# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py from dataclasses import dataclass from turtle import forward from typing import Optional import torch import torch.nn.functional as F from torch import nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.modeling_utils import ModelMixin from diffusers.utils import BaseOutput from diffusers.utils.import_utils import is_xformers_available from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm from einops import rearrange, repeat from .utils import zero_module @dataclass class Transformer3DModelOutput(BaseOutput): sample: torch.FloatTensor if is_xformers_available(): import xformers import xformers.ops else: xformers = None class Transformer3DModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, use_motion_module: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, add_audio_layer=False, audio_condition_method="cross_attn", custom_audio_layer: bool = False, ): super().__init__() self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim # Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) if not custom_audio_layer: # Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, use_motion_module=use_motion_module, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, add_audio_layer=add_audio_layer, custom_audio_layer=custom_audio_layer, audio_condition_method=audio_condition_method, ) for d in range(num_layers) ] ) else: self.transformer_blocks = nn.ModuleList( [ AudioTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, use_motion_module=use_motion_module, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, add_audio_layer=add_audio_layer, ) for d in range(num_layers) ] ) # 4. Define output layers if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) if custom_audio_layer: self.proj_out = zero_module(self.proj_out) def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): # Input assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") # No need to do this for audio input, because different audio samples are independent # encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) batch, channel, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) hidden_states = self.proj_in(hidden_states) # Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length, ) # Output if not self.use_linear_projection: hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) if not return_dict: return (output,) return Transformer3DModelOutput(sample=output) class BasicTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, use_motion_module: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, add_audio_layer=False, custom_audio_layer=False, audio_condition_method="cross_attn", ): super().__init__() self.only_cross_attention = only_cross_attention self.use_ada_layer_norm = num_embeds_ada_norm is not None self.unet_use_cross_frame_attention = unet_use_cross_frame_attention self.unet_use_temporal_attention = unet_use_temporal_attention self.use_motion_module = use_motion_module self.add_audio_layer = add_audio_layer # SC-Attn assert unet_use_cross_frame_attention is not None if unet_use_cross_frame_attention: raise NotImplementedError("SparseCausalAttention2D not implemented yet.") else: self.attn1 = CrossAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) # Cross-Attn if add_audio_layer and audio_condition_method == "cross_attn" and not custom_audio_layer: self.audio_cross_attn = AudioCrossAttn( dim=dim, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, dropout=dropout, attention_bias=attention_bias, upcast_attention=upcast_attention, num_embeds_ada_norm=num_embeds_ada_norm, use_ada_layer_norm=self.use_ada_layer_norm, zero_proj_out=False, ) else: self.audio_cross_attn = None # Feed-forward self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) self.norm3 = nn.LayerNorm(dim) # Temp-Attn assert unet_use_temporal_attention is not None if unet_use_temporal_attention: self.attn_temp = CrossAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) nn.init.zeros_(self.attn_temp.to_out[0].weight.data) self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool): if not is_xformers_available(): print("Here is how to install it") raise ModuleNotFoundError( "Refer to https://github.com/facebookresearch/xformers for more information on how to install" " xformers", name="xformers", ) elif not torch.cuda.is_available(): raise ValueError( "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" " available for GPU " ) else: try: # Make sure we can run the memory efficient attention _ = xformers.ops.memory_efficient_attention( torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), ) except Exception as e: raise e self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers if self.audio_cross_attn is not None: self.audio_cross_attn.attn._use_memory_efficient_attention_xformers = ( use_memory_efficient_attention_xformers ) # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers def forward( self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None ): # SparseCausal-Attention norm_hidden_states = ( self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) ) # if self.only_cross_attention: # hidden_states = ( # self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states # ) # else: # hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states # pdb.set_trace() if self.unet_use_cross_frame_attention: hidden_states = ( self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states ) else: hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states if self.audio_cross_attn is not None and encoder_hidden_states is not None: hidden_states = self.audio_cross_attn( hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask ) # Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states # Temporal-Attention if self.unet_use_temporal_attention: d = hidden_states.shape[1] hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) norm_hidden_states = ( self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) ) hidden_states = self.attn_temp(norm_hidden_states) + hidden_states hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states class AudioTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, use_motion_module: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, add_audio_layer=False, ): super().__init__() self.only_cross_attention = only_cross_attention self.use_ada_layer_norm = num_embeds_ada_norm is not None self.unet_use_cross_frame_attention = unet_use_cross_frame_attention self.unet_use_temporal_attention = unet_use_temporal_attention self.use_motion_module = use_motion_module self.add_audio_layer = add_audio_layer # SC-Attn assert unet_use_cross_frame_attention is not None if unet_use_cross_frame_attention: raise NotImplementedError("SparseCausalAttention2D not implemented yet.") else: self.attn1 = CrossAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) self.audio_cross_attn = AudioCrossAttn( dim=dim, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, dropout=dropout, attention_bias=attention_bias, upcast_attention=upcast_attention, num_embeds_ada_norm=num_embeds_ada_norm, use_ada_layer_norm=self.use_ada_layer_norm, zero_proj_out=False, ) # Feed-forward self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) self.norm3 = nn.LayerNorm(dim) def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool): if not is_xformers_available(): print("Here is how to install it") raise ModuleNotFoundError( "Refer to https://github.com/facebookresearch/xformers for more information on how to install" " xformers", name="xformers", ) elif not torch.cuda.is_available(): raise ValueError( "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" " available for GPU " ) else: try: # Make sure we can run the memory efficient attention _ = xformers.ops.memory_efficient_attention( torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), ) except Exception as e: raise e self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers if self.audio_cross_attn is not None: self.audio_cross_attn.attn._use_memory_efficient_attention_xformers = ( use_memory_efficient_attention_xformers ) # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers def forward( self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None ): # SparseCausal-Attention norm_hidden_states = ( self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) ) # pdb.set_trace() if self.unet_use_cross_frame_attention: hidden_states = ( self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states ) else: hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states if self.audio_cross_attn is not None and encoder_hidden_states is not None: hidden_states = self.audio_cross_attn( hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask ) # Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states return hidden_states class AudioCrossAttn(nn.Module): def __init__( self, dim, cross_attention_dim, num_attention_heads, attention_head_dim, dropout, attention_bias, upcast_attention, num_embeds_ada_norm, use_ada_layer_norm, zero_proj_out=False, ): super().__init__() self.norm = AdaLayerNorm(dim, num_embeds_ada_norm) if use_ada_layer_norm else nn.LayerNorm(dim) self.attn = CrossAttention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) if zero_proj_out: self.proj_out = zero_module(nn.Linear(dim, dim)) self.zero_proj_out = zero_proj_out self.use_ada_layer_norm = use_ada_layer_norm def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None): previous_hidden_states = hidden_states hidden_states = self.norm(hidden_states, timestep) if self.use_ada_layer_norm else self.norm(hidden_states) if encoder_hidden_states.dim() == 4: encoder_hidden_states = rearrange(encoder_hidden_states, "b f n d -> (b f) n d") hidden_states = self.attn( hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask ) if self.zero_proj_out: hidden_states = self.proj_out(hidden_states) return hidden_states + previous_hidden_states