Spaces:
Sleeping
Sleeping
# We modified the original AVReader class of decord to solve the problem of memory leak. | |
# For more details, refer to: https://github.com/dmlc/decord/issues/208 | |
import numpy as np | |
from decord.video_reader import VideoReader | |
from decord.audio_reader import AudioReader | |
from decord.ndarray import cpu | |
from decord import ndarray as _nd | |
from decord.bridge import bridge_out | |
class AVReader(object): | |
"""Individual audio video reader with convenient indexing function. | |
Parameters | |
---------- | |
uri: str | |
Path of file. | |
ctx: decord.Context | |
The context to decode the file, can be decord.cpu() or decord.gpu(). | |
sample_rate: int, default is -1 | |
Desired output sample rate of the audio, unchanged if `-1` is specified. | |
mono: bool, default is True | |
Desired output channel layout of the audio. `True` is mono layout. `False` is unchanged. | |
width : int, default is -1 | |
Desired output width of the video, unchanged if `-1` is specified. | |
height : int, default is -1 | |
Desired output height of the video, unchanged if `-1` is specified. | |
num_threads : int, default is 0 | |
Number of decoding thread, auto if `0` is specified. | |
fault_tol : int, default is -1 | |
The threshold of corupted and recovered frames. This is to prevent silent fault | |
tolerance when for example 50% frames of a video cannot be decoded and duplicate | |
frames are returned. You may find the fault tolerant feature sweet in many cases, | |
but not for training models. Say `N = # recovered frames` | |
If `fault_tol` < 0, nothing will happen. | |
If 0 < `fault_tol` < 1.0, if N > `fault_tol * len(video)`, raise `DECORDLimitReachedError`. | |
If 1 < `fault_tol`, if N > `fault_tol`, raise `DECORDLimitReachedError`. | |
""" | |
def __init__( | |
self, uri, ctx=cpu(0), sample_rate=44100, mono=True, width=-1, height=-1, num_threads=0, fault_tol=-1 | |
): | |
self.__audio_reader = AudioReader(uri, ctx, sample_rate, mono) | |
self.__audio_reader.add_padding() | |
if hasattr(uri, "read"): | |
uri.seek(0) | |
self.__video_reader = VideoReader(uri, ctx, width, height, num_threads, fault_tol) | |
self.__video_reader.seek(0) | |
def __len__(self): | |
"""Get length of the video. Note that sometimes FFMPEG reports inaccurate number of frames, | |
we always follow what FFMPEG reports. | |
Returns | |
------- | |
int | |
The number of frames in the video file. | |
""" | |
return len(self.__video_reader) | |
def __getitem__(self, idx): | |
"""Get audio samples and video frame at `idx`. | |
Parameters | |
---------- | |
idx : int or slice | |
The frame index, can be negative which means it will index backwards, | |
or slice of frame indices. | |
Returns | |
------- | |
(ndarray/list of ndarray, ndarray) | |
First element is samples of shape CxS or a list of length N containing samples of shape CxS, | |
where N is the number of frames, C is the number of channels, | |
S is the number of samples of the corresponding frame. | |
Second element is Frame of shape HxWx3 or batch of image frames with shape NxHxWx3, | |
where N is the length of the slice. | |
""" | |
assert self.__video_reader is not None and self.__audio_reader is not None | |
if isinstance(idx, slice): | |
return self.get_batch(range(*idx.indices(len(self.__video_reader)))) | |
if idx < 0: | |
idx += len(self.__video_reader) | |
if idx >= len(self.__video_reader) or idx < 0: | |
raise IndexError("Index: {} out of bound: {}".format(idx, len(self.__video_reader))) | |
audio_start_idx, audio_end_idx = self.__video_reader.get_frame_timestamp(idx) | |
audio_start_idx = self.__audio_reader._time_to_sample(audio_start_idx) | |
audio_end_idx = self.__audio_reader._time_to_sample(audio_end_idx) | |
results = (self.__audio_reader[audio_start_idx:audio_end_idx], self.__video_reader[idx]) | |
self.__video_reader.seek(0) | |
return results | |
def get_batch(self, indices): | |
"""Get entire batch of audio samples and video frames. | |
Parameters | |
---------- | |
indices : list of integers | |
A list of frame indices. If negative indices detected, the indices will be indexed from backward | |
Returns | |
------- | |
(list of ndarray, ndarray) | |
First element is a list of length N containing samples of shape CxS, | |
where N is the number of frames, C is the number of channels, | |
S is the number of samples of the corresponding frame. | |
Second element is Frame of shape HxWx3 or batch of image frames with shape NxHxWx3, | |
where N is the length of the slice. | |
""" | |
assert self.__video_reader is not None and self.__audio_reader is not None | |
indices = self._validate_indices(indices) | |
audio_arr = [] | |
prev_video_idx = None | |
prev_audio_end_idx = None | |
for idx in list(indices): | |
frame_start_time, frame_end_time = self.__video_reader.get_frame_timestamp(idx) | |
# timestamp and sample conversion could have some error that could cause non-continuous audio | |
# we detect if retrieving continuous frame and make the audio continuous | |
if prev_video_idx and idx == prev_video_idx + 1: | |
audio_start_idx = prev_audio_end_idx | |
else: | |
audio_start_idx = self.__audio_reader._time_to_sample(frame_start_time) | |
audio_end_idx = self.__audio_reader._time_to_sample(frame_end_time) | |
audio_arr.append(self.__audio_reader[audio_start_idx:audio_end_idx]) | |
prev_video_idx = idx | |
prev_audio_end_idx = audio_end_idx | |
results = (audio_arr, self.__video_reader.get_batch(indices)) | |
self.__video_reader.seek(0) | |
return results | |
def _get_slice(self, sl): | |
audio_arr = np.empty(shape=(self.__audio_reader.shape()[0], 0), dtype="float32") | |
for idx in list(sl): | |
audio_start_idx, audio_end_idx = self.__video_reader.get_frame_timestamp(idx) | |
audio_start_idx = self.__audio_reader._time_to_sample(audio_start_idx) | |
audio_end_idx = self.__audio_reader._time_to_sample(audio_end_idx) | |
audio_arr = np.concatenate( | |
(audio_arr, self.__audio_reader[audio_start_idx:audio_end_idx].asnumpy()), axis=1 | |
) | |
results = (bridge_out(_nd.array(audio_arr)), self.__video_reader.get_batch(sl)) | |
self.__video_reader.seek(0) | |
return results | |
def _validate_indices(self, indices): | |
"""Validate int64 integers and convert negative integers to positive by backward search""" | |
assert self.__video_reader is not None and self.__audio_reader is not None | |
indices = np.array(indices, dtype=np.int64) | |
# process negative indices | |
indices[indices < 0] += len(self.__video_reader) | |
if not (indices >= 0).all(): | |
raise IndexError("Invalid negative indices: {}".format(indices[indices < 0] + len(self.__video_reader))) | |
if not (indices < len(self.__video_reader)).all(): | |
raise IndexError("Out of bound indices: {}".format(indices[indices >= len(self.__video_reader)])) | |
return indices | |