Spaces:
Sleeping
Sleeping
# Adapted from https://github.com/universome/stylegan-v/blob/master/src/metrics/metric_utils.py | |
import os | |
import random | |
import torch | |
import pickle | |
import numpy as np | |
from typing import List, Tuple | |
def seed_everything(seed): | |
random.seed(seed) | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
class FeatureStats: | |
''' | |
Class to store statistics of features, including all features and mean/covariance. | |
Args: | |
capture_all: Whether to store all the features. | |
capture_mean_cov: Whether to store mean and covariance. | |
max_items: Maximum number of items to store. | |
''' | |
def __init__(self, capture_all: bool = False, capture_mean_cov: bool = False, max_items: int = None): | |
''' | |
''' | |
self.capture_all = capture_all | |
self.capture_mean_cov = capture_mean_cov | |
self.max_items = max_items | |
self.num_items = 0 | |
self.num_features = None | |
self.all_features = None | |
self.raw_mean = None | |
self.raw_cov = None | |
def set_num_features(self, num_features: int): | |
''' | |
Set the number of features diminsions. | |
Args: | |
num_features: Number of features diminsions. | |
''' | |
if self.num_features is not None: | |
assert num_features == self.num_features | |
else: | |
self.num_features = num_features | |
self.all_features = [] | |
self.raw_mean = np.zeros([num_features], dtype=np.float64) | |
self.raw_cov = np.zeros([num_features, num_features], dtype=np.float64) | |
def is_full(self) -> bool: | |
''' | |
Check if the maximum number of samples is reached. | |
Returns: | |
True if the storage is full, False otherwise. | |
''' | |
return (self.max_items is not None) and (self.num_items >= self.max_items) | |
def append(self, x: np.ndarray): | |
''' | |
Add the newly computed features to the list. Update the mean and covariance. | |
Args: | |
x: New features to record. | |
''' | |
x = np.asarray(x, dtype=np.float32) | |
assert x.ndim == 2 | |
if (self.max_items is not None) and (self.num_items + x.shape[0] > self.max_items): | |
if self.num_items >= self.max_items: | |
return | |
x = x[:self.max_items - self.num_items] | |
self.set_num_features(x.shape[1]) | |
self.num_items += x.shape[0] | |
if self.capture_all: | |
self.all_features.append(x) | |
if self.capture_mean_cov: | |
x64 = x.astype(np.float64) | |
self.raw_mean += x64.sum(axis=0) | |
self.raw_cov += x64.T @ x64 | |
def append_torch(self, x: torch.Tensor, rank: int, num_gpus: int): | |
''' | |
Add the newly computed PyTorch features to the list. Update the mean and covariance. | |
Args: | |
x: New features to record. | |
rank: Rank of the current GPU. | |
num_gpus: Total number of GPUs. | |
''' | |
assert isinstance(x, torch.Tensor) and x.ndim == 2 | |
assert 0 <= rank < num_gpus | |
if num_gpus > 1: | |
ys = [] | |
for src in range(num_gpus): | |
y = x.clone() | |
torch.distributed.broadcast(y, src=src) | |
ys.append(y) | |
x = torch.stack(ys, dim=1).flatten(0, 1) # interleave samples | |
self.append(x.cpu().numpy()) | |
def get_all(self) -> np.ndarray: | |
''' | |
Get all the stored features as NumPy Array. | |
Returns: | |
Concatenation of the stored features. | |
''' | |
assert self.capture_all | |
return np.concatenate(self.all_features, axis=0) | |
def get_all_torch(self) -> torch.Tensor: | |
''' | |
Get all the stored features as PyTorch Tensor. | |
Returns: | |
Concatenation of the stored features. | |
''' | |
return torch.from_numpy(self.get_all()) | |
def get_mean_cov(self) -> Tuple[np.ndarray, np.ndarray]: | |
''' | |
Get the mean and covariance of the stored features. | |
Returns: | |
Mean and covariance of the stored features. | |
''' | |
assert self.capture_mean_cov | |
mean = self.raw_mean / self.num_items | |
cov = self.raw_cov / self.num_items | |
cov = cov - np.outer(mean, mean) | |
return mean, cov | |
def save(self, pkl_file: str): | |
''' | |
Save the features and statistics to a pickle file. | |
Args: | |
pkl_file: Path to the pickle file. | |
''' | |
with open(pkl_file, 'wb') as f: | |
pickle.dump(self.__dict__, f) | |
def load(pkl_file: str) -> 'FeatureStats': | |
''' | |
Load the features and statistics from a pickle file. | |
Args: | |
pkl_file: Path to the pickle file. | |
''' | |
with open(pkl_file, 'rb') as f: | |
s = pickle.load(f) | |
obj = FeatureStats(capture_all=s['capture_all'], max_items=s['max_items']) | |
obj.__dict__.update(s) | |
print('Loaded %d features from %s' % (obj.num_items, pkl_file)) | |
return obj | |