Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,52 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
import subprocess
|
3 |
-
import os
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
command = [
|
15 |
"python3", "sample_video.py",
|
16 |
-
"--
|
17 |
-
"--video-size", video_size,
|
18 |
"--video-length", str(video_length),
|
19 |
"--infer-steps", str(infer_steps),
|
20 |
-
"--
|
21 |
-
"--
|
|
|
|
|
22 |
]
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
subprocess.run(command, check=True)
|
27 |
-
# Return the path to the generated video file
|
28 |
-
generated_video_path = os.path.join(save_path, "generated_video.mp4")
|
29 |
-
return generated_video_path
|
30 |
-
except subprocess.CalledProcessError as e:
|
31 |
-
return f"Error generating video: {e}"
|
32 |
-
|
33 |
-
# Create the Gradio interface
|
34 |
-
def create_interface():
|
35 |
-
# Define input components
|
36 |
-
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter the prompt for the video.")
|
37 |
-
video_size_input = gr.Textbox(label="Video Size", value="720 1280")
|
38 |
-
video_length_input = gr.Slider(label="Video Length", minimum=1, maximum=200, value=129)
|
39 |
-
infer_steps_input = gr.Slider(label="Inference Steps", minimum=1, maximum=100, value=30)
|
40 |
-
seed_input = gr.Slider(label="Seed", minimum=0, maximum=1000, value=0)
|
41 |
-
save_path_input = gr.Textbox(label="Save Path", value=output_dir)
|
42 |
-
|
43 |
-
# Define output component
|
44 |
-
output_video = gr.Video(label="Generated Video")
|
45 |
-
|
46 |
-
# Create Gradio interface
|
47 |
-
interface = gr.Interface(
|
48 |
-
fn=generate_video,
|
49 |
-
inputs=[prompt_input, video_size_input, video_length_input, infer_steps_input, seed_input, save_path_input],
|
50 |
-
outputs=[output_video],
|
51 |
-
live=True
|
52 |
-
)
|
53 |
|
54 |
-
#
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
import subprocess
|
|
|
7 |
|
8 |
+
# Carica il modello HunyuanVideo
|
9 |
+
model = torch.hub.load('tencent/HunyuanVideo', 'HunyuanVideo', pretrained=True)
|
10 |
|
11 |
+
# Definisci la funzione per generare video
|
12 |
+
def generate_video(prompt, video_size=(720, 1280), video_length=129, infer_steps=50):
|
13 |
+
# Prepara il prompt per il modello
|
14 |
+
prompt = prompt.strip()
|
15 |
+
|
16 |
+
# Genera il video utilizzando il modello
|
17 |
command = [
|
18 |
"python3", "sample_video.py",
|
19 |
+
"--video-size", str(video_size[0]), str(video_size[1]),
|
|
|
20 |
"--video-length", str(video_length),
|
21 |
"--infer-steps", str(infer_steps),
|
22 |
+
"--prompt", prompt,
|
23 |
+
"--flow-reverse",
|
24 |
+
"--use-cpu-offload",
|
25 |
+
"--save-path", "./results"
|
26 |
]
|
27 |
|
28 |
+
# Esegue il comando
|
29 |
+
subprocess.run(command)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Carica il video generato
|
32 |
+
video_path = "./results/generated_video.mp4"
|
33 |
+
|
34 |
+
# Ritorna il video generato
|
35 |
+
return video_path
|
36 |
+
|
37 |
+
# Crea l'interfaccia Gradio
|
38 |
+
iface = gr.Interface(
|
39 |
+
fn=generate_video,
|
40 |
+
inputs=[
|
41 |
+
gr.Textbox(label="Inserisci il prompt", placeholder="Un gatto cammina sull'erba, stile realistico."),
|
42 |
+
gr.Dropdown(label="Dimensione del video", choices=[(720, 1280), (544, 960)], value=(720, 1280)),
|
43 |
+
gr.Slider(label="Lunghezza del video (frame)", minimum=1, maximum=300, value=129),
|
44 |
+
gr.Slider(label="Passi di inferenza", minimum=1, maximum=100, value=50)
|
45 |
+
],
|
46 |
+
outputs=gr.Video(label="Video generato"),
|
47 |
+
title="Generazione di video con HunyuanVideo",
|
48 |
+
description="Genera video utilizzando il modello HunyuanVideo fornendo un prompt di testo."
|
49 |
+
)
|
50 |
|
51 |
+
# Avvia l'applicazione Gradio
|
52 |
+
iface.launch()
|