Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import UNet2DConditionLoadersMixin | |
from diffusers.utils import BaseOutput, logging | |
from diffusers.models.embeddings import ( | |
GaussianFourierProjection, | |
TextImageProjection, | |
TextImageTimeEmbedding, | |
TextTimeEmbedding, | |
TimestepEmbedding, | |
Timesteps, | |
) | |
from diffusers.models.modeling_utils import ModelMixin | |
from .unet_2d_blocks import ( | |
CrossAttnDownBlock2D, | |
CrossAttnUpBlock2D, | |
DownBlock2D, | |
UNetMidBlock2DCrossAttn, | |
UpBlock2D, | |
get_down_block, | |
get_up_block, | |
) | |
from .attention_processor import AttentionProcessor, AttnProcessor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class UNet2DConditionOutput(BaseOutput): | |
""" | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
""" | |
sample: torch.FloatTensor | |
cross_attention_probs_down: List[Any] | |
cross_attention_probs_mid: List[Any] | |
cross_attention_probs_up: List[Any] | |
class FourierEmbedder(nn.Module): | |
def __init__(self, num_freqs=64, temperature=100): | |
super().__init__() | |
self.num_freqs = num_freqs | |
self.temperature = temperature | |
freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs) | |
freq_bands = freq_bands[None, None, None] | |
self.register_buffer('freq_bands', freq_bands, persistent=False) | |
def __call__(self, x): | |
x = self.freq_bands * x.unsqueeze(-1) | |
return torch.stack((x.sin(), x.cos()), dim=-1).permute(0, 1, 3, 4, 2).reshape(*x.shape[:2], -1) | |
class PositionNet(nn.Module): | |
def __init__(self, positive_len, out_dim, fourier_freqs=8): | |
super().__init__() | |
self.positive_len = positive_len | |
self.out_dim = out_dim | |
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs) | |
self.position_dim = fourier_freqs * 2 * 4 # 2: sin/cos, 4: xyxy | |
self.linears = nn.Sequential( | |
nn.Linear(self.positive_len + self.position_dim, 512), | |
nn.SiLU(), | |
nn.Linear(512, 512), | |
nn.SiLU(), | |
nn.Linear(512, out_dim), | |
) | |
self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) | |
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) | |
def forward(self, boxes, masks, positive_embeddings): | |
masks = masks.unsqueeze(-1) | |
# embedding position (it may includes padding as placeholder) | |
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 -> B*N*C | |
# learnable null embedding | |
positive_null = self.null_positive_feature.view(1, 1, -1) | |
xyxy_null = self.null_position_feature.view(1, 1, -1) | |
# replace padding with learnable null embedding | |
positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null | |
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null | |
objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) | |
return objs | |
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
r""" | |
UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep | |
and returns sample shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
implements for all the models (such as downloading or saving, etc.) | |
Parameters: | |
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
Height and width of input/output sample. | |
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. | |
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. | |
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): | |
Whether to flip the sin to cos in the time embedding. | |
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
The tuple of downsample blocks to use. | |
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): | |
The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`, will skip the | |
mid block layer if `None`. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): | |
The tuple of upsample blocks to use. | |
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`): | |
Whether to include self-attention in the basic transformer blocks, see | |
[`~models.attention.BasicTransformerBlock`]. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. | |
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | |
If `None`, it will skip the normalization and activation layers in post-processing | |
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. | |
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): | |
The dimension of the cross attention features. | |
encoder_hid_dim (`int`, *optional*, defaults to None): | |
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` | |
dimension to `cross_attention_dim`. | |
encoder_hid_dim_type (`str`, *optional*, defaults to None): | |
If given, the `encoder_hidden_states` and potentially other embeddings will be down-projected to text | |
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. | |
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. | |
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config | |
for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`. | |
class_embed_type (`str`, *optional*, defaults to None): | |
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, | |
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. | |
addition_embed_type (`str`, *optional*, defaults to None): | |
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or | |
"text". "text" will use the `TextTimeEmbedding` layer. | |
num_class_embeds (`int`, *optional*, defaults to None): | |
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing | |
class conditioning with `class_embed_type` equal to `None`. | |
time_embedding_type (`str`, *optional*, default to `positional`): | |
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. | |
time_embedding_dim (`int`, *optional*, default to `None`): | |
An optional override for the dimension of the projected time embedding. | |
time_embedding_act_fn (`str`, *optional*, default to `None`): | |
Optional activation function to use on the time embeddings only one time before they as passed to the rest | |
of the unet. Choose from `silu`, `mish`, `gelu`, and `swish`. | |
timestep_post_act (`str, *optional*, default to `None`): | |
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. | |
time_cond_proj_dim (`int`, *optional*, default to `None`): | |
The dimension of `cond_proj` layer in timestep embedding. | |
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. | |
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer. | |
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when | |
using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`. | |
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time | |
embeddings with the class embeddings. | |
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`): | |
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If | |
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is None, the | |
`only_cross_attention` value will be used as the value for `mid_block_only_cross_attention`. Else, it will | |
default to `False`. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
center_input_sample: bool = False, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"DownBlock2D", | |
), | |
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", | |
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), | |
only_cross_attention: Union[bool, Tuple[bool]] = False, | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: Union[int, Tuple[int]] = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: Optional[int] = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: Union[int, Tuple[int]] = 1280, | |
encoder_hid_dim: Optional[int] = None, | |
encoder_hid_dim_type: Optional[str] = None, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
class_embed_type: Optional[str] = None, | |
addition_embed_type: Optional[str] = None, | |
num_class_embeds: Optional[int] = None, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
resnet_skip_time_act: bool = False, | |
resnet_out_scale_factor: int = 1.0, | |
time_embedding_type: str = "positional", | |
time_embedding_dim: Optional[int] = None, | |
time_embedding_act_fn: Optional[str] = None, | |
timestep_post_act: Optional[str] = None, | |
time_cond_proj_dim: Optional[int] = None, | |
conv_in_kernel: int = 3, | |
conv_out_kernel: int = 3, | |
projection_class_embeddings_input_dim: Optional[int] = None, | |
class_embeddings_concat: bool = False, | |
mid_block_only_cross_attention: Optional[bool] = None, | |
cross_attention_norm: Optional[str] = None, | |
addition_embed_type_num_heads=64, | |
use_gated_attention: bool = False, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
# Check inputs | |
if len(down_block_types) != len(up_block_types): | |
raise ValueError( | |
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
) | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." | |
) | |
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
) | |
# input | |
conv_in_padding = (conv_in_kernel - 1) // 2 | |
self.conv_in = nn.Conv2d( | |
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
) | |
# time | |
if time_embedding_type == "fourier": | |
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 | |
if time_embed_dim % 2 != 0: | |
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") | |
self.time_proj = GaussianFourierProjection( | |
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos | |
) | |
timestep_input_dim = time_embed_dim | |
elif time_embedding_type == "positional": | |
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 | |
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
else: | |
raise ValueError( | |
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." | |
) | |
self.time_embedding = TimestepEmbedding( | |
timestep_input_dim, | |
time_embed_dim, | |
act_fn=act_fn, | |
post_act_fn=timestep_post_act, | |
cond_proj_dim=time_cond_proj_dim, | |
) | |
if encoder_hid_dim_type is None and encoder_hid_dim is not None: | |
encoder_hid_dim_type = "text_proj" | |
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") | |
if encoder_hid_dim is None and encoder_hid_dim_type is not None: | |
raise ValueError( | |
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." | |
) | |
if encoder_hid_dim_type == "text_proj": | |
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) | |
elif encoder_hid_dim_type == "text_image_proj": | |
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much | |
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use | |
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` | |
self.encoder_hid_proj = TextImageProjection( | |
text_embed_dim=encoder_hid_dim, | |
image_embed_dim=cross_attention_dim, | |
cross_attention_dim=cross_attention_dim, | |
) | |
elif encoder_hid_dim_type is not None: | |
raise ValueError( | |
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." | |
) | |
else: | |
self.encoder_hid_proj = None | |
# class embedding | |
if class_embed_type is None and num_class_embeds is not None: | |
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
elif class_embed_type == "timestep": | |
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) | |
elif class_embed_type == "identity": | |
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
elif class_embed_type == "projection": | |
if projection_class_embeddings_input_dim is None: | |
raise ValueError( | |
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" | |
) | |
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except | |
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings | |
# 2. it projects from an arbitrary input dimension. | |
# | |
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. | |
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. | |
# As a result, `TimestepEmbedding` can be passed arbitrary vectors. | |
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
elif class_embed_type == "simple_projection": | |
if projection_class_embeddings_input_dim is None: | |
raise ValueError( | |
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" | |
) | |
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) | |
else: | |
self.class_embedding = None | |
if addition_embed_type == "text": | |
if encoder_hid_dim is not None: | |
text_time_embedding_from_dim = encoder_hid_dim | |
else: | |
text_time_embedding_from_dim = cross_attention_dim | |
self.add_embedding = TextTimeEmbedding( | |
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads | |
) | |
elif addition_embed_type == "text_image": | |
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much | |
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use | |
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` | |
self.add_embedding = TextImageTimeEmbedding( | |
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim | |
) | |
elif addition_embed_type is not None: | |
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") | |
if time_embedding_act_fn is None: | |
self.time_embed_act = None | |
elif time_embedding_act_fn == "swish": | |
self.time_embed_act = lambda x: F.silu(x) | |
elif time_embedding_act_fn == "mish": | |
self.time_embed_act = nn.Mish() | |
elif time_embedding_act_fn == "silu": | |
self.time_embed_act = nn.SiLU() | |
elif time_embedding_act_fn == "gelu": | |
self.time_embed_act = nn.GELU() | |
else: | |
raise ValueError(f"Unsupported activation function: {time_embedding_act_fn}") | |
self.down_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(only_cross_attention, bool): | |
if mid_block_only_cross_attention is None: | |
mid_block_only_cross_attention = only_cross_attention | |
only_cross_attention = [only_cross_attention] * len(down_block_types) | |
if mid_block_only_cross_attention is None: | |
mid_block_only_cross_attention = False | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
if isinstance(cross_attention_dim, int): | |
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
else: | |
assert not use_gated_attention, f"use_gated_attention is not supported with varying cross_attention_dim: {cross_attention_dim}" | |
if isinstance(layers_per_block, int): | |
layers_per_block = [layers_per_block] * len(down_block_types) | |
if class_embeddings_concat: | |
# The time embeddings are concatenated with the class embeddings. The dimension of the | |
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the | |
# regular time embeddings | |
blocks_time_embed_dim = time_embed_dim * 2 | |
else: | |
blocks_time_embed_dim = time_embed_dim | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim[i], | |
attn_num_head_channels=attention_head_dim[i], | |
downsample_padding=downsample_padding, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resnet_skip_time_act=resnet_skip_time_act, | |
resnet_out_scale_factor=resnet_out_scale_factor, | |
cross_attention_norm=cross_attention_norm, | |
use_gated_attention=use_gated_attention, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
if mid_block_type == "UNetMidBlock2DCrossAttn": | |
self.mid_block = UNetMidBlock2DCrossAttn( | |
in_channels=block_out_channels[-1], | |
temb_channels=blocks_time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
cross_attention_dim=cross_attention_dim[-1], | |
attn_num_head_channels=attention_head_dim[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
use_gated_attention=use_gated_attention, | |
) | |
elif mid_block_type is None: | |
self.mid_block = None | |
else: | |
raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
# count how many layers upsample the images | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
reversed_layers_per_block = list(reversed(layers_per_block)) | |
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) | |
only_cross_attention = list(reversed(only_cross_attention)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=reversed_layers_per_block[i] + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=reversed_cross_attention_dim[i], | |
attn_num_head_channels=reversed_attention_head_dim[i], | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resnet_skip_time_act=resnet_skip_time_act, | |
resnet_out_scale_factor=resnet_out_scale_factor, | |
cross_attention_norm=cross_attention_norm, | |
use_gated_attention=use_gated_attention, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
if norm_num_groups is not None: | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps | |
) | |
if act_fn == "swish": | |
self.conv_act = lambda x: F.silu(x) | |
elif act_fn == "mish": | |
self.conv_act = nn.Mish() | |
elif act_fn == "silu": | |
self.conv_act = nn.SiLU() | |
elif act_fn == "gelu": | |
self.conv_act = nn.GELU() | |
else: | |
raise ValueError(f"Unsupported activation function: {act_fn}") | |
else: | |
self.conv_norm_out = None | |
self.conv_act = None | |
conv_out_padding = (conv_out_kernel - 1) // 2 | |
self.conv_out = nn.Conv2d( | |
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding | |
) | |
if use_gated_attention: | |
self.position_net = PositionNet(positive_len=768, out_dim=cross_attention_dim[-1]) | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "set_processor"): | |
processors[f"{name}.processor"] = module.processor | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Parameters: | |
`processor (`dict` of `AttentionProcessor` or `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
of **all** `Attention` layers. | |
In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.: | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
self.set_attn_processor(AttnProcessor()) | |
def set_attention_slice(self, slice_size): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
`"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_sliceable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_sliceable_dims(module) | |
num_sliceable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_sliceable_layers * [1] | |
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i in range(len(slice_size)): | |
size = slice_size[i] | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
class_labels: Optional[torch.Tensor] = None, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
return_cross_attention_probs: bool = False | |
) -> Union[UNet2DConditionOutput, Tuple]: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states | |
encoder_attention_mask (`torch.Tensor`): | |
(batch, sequence_length) cross-attention mask, applied to encoder_hidden_states. True = keep, False = | |
discard. Mask will be converted into a bias, which adds large negative values to attention scores | |
corresponding to "discard" tokens. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
added_cond_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified includes additonal conditions that can be used for additonal time | |
embeddings or encoder hidden states projections. See the configurations `encoder_hid_dim_type` and | |
`addition_embed_type` for more information. | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is the sample tensor. | |
""" | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
logger.info("Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# 0. center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# there might be better ways to encapsulate this. | |
class_labels = class_labels.to(dtype=sample.dtype) | |
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) | |
if self.config.class_embeddings_concat: | |
emb = torch.cat([emb, class_emb], dim=-1) | |
else: | |
emb = emb + class_emb | |
if self.config.addition_embed_type == "text": | |
aug_emb = self.add_embedding(encoder_hidden_states) | |
emb = emb + aug_emb | |
elif self.config.addition_embed_type == "text_image": | |
# Kadinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) | |
aug_emb = self.add_embedding(text_embs, image_embs) | |
emb = emb + aug_emb | |
if self.time_embed_act is not None: | |
emb = self.time_embed_act(emb) | |
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": | |
# Kadinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
# 2.5 GLIGEN position net | |
if cross_attention_kwargs is not None and cross_attention_kwargs.get('gligen', None) is not None: | |
cross_attention_kwargs = cross_attention_kwargs.copy() | |
cross_attention_kwargs['gligen'] = { | |
'objs': self.position_net( | |
boxes=cross_attention_kwargs['gligen']['boxes'], | |
masks=cross_attention_kwargs['gligen']['masks'], | |
positive_embeddings=cross_attention_kwargs['gligen']['positive_embeddings'] | |
), | |
'fuser_attn_kwargs': cross_attention_kwargs['gligen'].get('fuser_attn_kwargs', {}) | |
} | |
# 3. down | |
down_block_res_samples = (sample,) | |
cross_attention_probs_down = [] | |
if cross_attention_kwargs is None: | |
cross_attention_kwargs = {} | |
for i, downsample_block in enumerate(self.down_blocks): | |
cross_attention_kwargs["attn_key"] = ["down", i] | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
downsample_block_output = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
return_cross_attention_probs=return_cross_attention_probs, | |
) | |
if return_cross_attention_probs: | |
sample, res_samples, cross_attention_probs = downsample_block_output | |
cross_attention_probs_down.append(cross_attention_probs) | |
else: | |
sample, res_samples = downsample_block_output | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
down_block_res_samples += res_samples | |
if down_block_additional_residuals is not None: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
# 4. mid | |
cross_attention_probs_mid = [] | |
if self.mid_block is not None: | |
cross_attention_kwargs["attn_key"] = ["mid", 0] | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
return_cross_attention_probs=return_cross_attention_probs, | |
) | |
if return_cross_attention_probs: | |
sample, cross_attention_probs = sample | |
cross_attention_probs_mid.append(cross_attention_probs) | |
if mid_block_additional_residual is not None: | |
sample = sample + mid_block_additional_residual | |
cross_attention_probs_up = [] | |
# 5. up | |
for i, upsample_block in enumerate(self.up_blocks): | |
cross_attention_kwargs["attn_key"] = ["up", i] | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_cross_attention_probs=return_cross_attention_probs, | |
) | |
if return_cross_attention_probs: | |
sample, cross_attention_probs = sample | |
cross_attention_probs_up.append(cross_attention_probs) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
) | |
# 6. post-process | |
if self.conv_norm_out: | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if not return_dict: | |
return (sample,) | |
return UNet2DConditionOutput(sample=sample, cross_attention_probs_down=cross_attention_probs_down, cross_attention_probs_mid=cross_attention_probs_mid, cross_attention_probs_up=cross_attention_probs_up) | |