llm-grounded-diffusion / models /attention_processor.py
michaelcreatesstuff's picture
Duplicate from michaelcreatesstuff/llm-grounded-diffusion
60ae4ee
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Callable, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.utils import deprecate, logging, maybe_allow_in_graph
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@maybe_allow_in_graph
class Attention(nn.Module):
r"""
A cross attention layer.
Parameters:
query_dim (`int`): The number of channels in the query.
cross_attention_dim (`int`, *optional*):
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
bias (`bool`, *optional*, defaults to False):
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
"""
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias=False,
upcast_attention: bool = False,
upcast_softmax: bool = False,
cross_attention_norm: Optional[str] = None,
cross_attention_norm_num_groups: int = 32,
added_kv_proj_dim: Optional[int] = None,
norm_num_groups: Optional[int] = None,
spatial_norm_dim: Optional[int] = None,
out_bias: bool = True,
scale_qk: bool = True,
only_cross_attention: bool = False,
eps: float = 1e-5,
rescale_output_factor: float = 1.0,
residual_connection: bool = False,
_from_deprecated_attn_block=False,
processor: Optional["AttnProcessor"] = None,
):
super().__init__()
inner_dim = dim_head * heads
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.rescale_output_factor = rescale_output_factor
self.residual_connection = residual_connection
# we make use of this private variable to know whether this class is loaded
# with an deprecated state dict so that we can convert it on the fly
self._from_deprecated_attn_block = _from_deprecated_attn_block
self.scale_qk = scale_qk
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
self.heads = heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self.added_kv_proj_dim = added_kv_proj_dim
self.only_cross_attention = only_cross_attention
if self.added_kv_proj_dim is None and self.only_cross_attention:
raise ValueError(
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
)
if norm_num_groups is not None:
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
else:
self.group_norm = None
if spatial_norm_dim is not None:
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
else:
self.spatial_norm = None
if cross_attention_norm is None:
self.norm_cross = None
elif cross_attention_norm == "layer_norm":
self.norm_cross = nn.LayerNorm(cross_attention_dim)
elif cross_attention_norm == "group_norm":
if self.added_kv_proj_dim is not None:
# The given `encoder_hidden_states` are initially of shape
# (batch_size, seq_len, added_kv_proj_dim) before being projected
# to (batch_size, seq_len, cross_attention_dim). The norm is applied
# before the projection, so we need to use `added_kv_proj_dim` as
# the number of channels for the group norm.
norm_cross_num_channels = added_kv_proj_dim
else:
norm_cross_num_channels = cross_attention_dim
self.norm_cross = nn.GroupNorm(
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
)
else:
raise ValueError(
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
)
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
if not self.only_cross_attention:
# only relevant for the `AddedKVProcessor` classes
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
else:
self.to_k = None
self.to_v = None
if self.added_kv_proj_dim is not None:
self.add_k_proj = nn.Linear(added_kv_proj_dim, inner_dim)
self.add_v_proj = nn.Linear(added_kv_proj_dim, inner_dim)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim, bias=out_bias))
self.to_out.append(nn.Dropout(dropout))
# set attention processor
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
if processor is None:
# processor = (
# AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
# )
# Note: efficient attention is not used. We can use efficient attention to speed up.
processor = AttnProcessor()
self.set_processor(processor)
def set_processor(self, processor: "AttnProcessor"):
# if current processor is in `self._modules` and if passed `processor` is not, we need to
# pop `processor` from `self._modules`
if (
hasattr(self, "processor")
and isinstance(self.processor, torch.nn.Module)
and not isinstance(processor, torch.nn.Module)
):
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
self._modules.pop("processor")
self.processor = processor
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, return_attntion_probs=False, **cross_attention_kwargs):
# The `Attention` class can call different attention processors / attention functions
# here we simply pass along all tensors to the selected processor class
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
return_attntion_probs=return_attntion_probs,
**cross_attention_kwargs,
)
def batch_to_head_dim(self, tensor):
head_size = self.heads
batch_size, seq_len, dim = tensor.shape
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def head_to_batch_dim(self, tensor, out_dim=3):
head_size = self.heads
batch_size, seq_len, dim = tensor.shape
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3)
if out_dim == 3:
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def get_attention_scores(self, query, key, attention_mask=None):
dtype = query.dtype
if self.upcast_attention:
query = query.float()
key = key.float()
if attention_mask is None:
baddbmm_input = torch.empty(
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
)
beta = 0
else:
baddbmm_input = attention_mask
beta = 1
attention_scores = torch.baddbmm(
baddbmm_input,
query,
key.transpose(-1, -2),
beta=beta,
alpha=self.scale,
)
del baddbmm_input
if self.upcast_softmax:
attention_scores = attention_scores.float()
attention_probs = attention_scores.softmax(dim=-1)
del attention_scores
attention_probs = attention_probs.to(dtype)
return attention_probs
def prepare_attention_mask(self, attention_mask, target_length, batch_size=None, out_dim=3):
if batch_size is None:
deprecate(
"batch_size=None",
"0.0.15",
(
"Not passing the `batch_size` parameter to `prepare_attention_mask` can lead to incorrect"
" attention mask preparation and is deprecated behavior. Please make sure to pass `batch_size` to"
" `prepare_attention_mask` when preparing the attention_mask."
),
)
batch_size = 1
head_size = self.heads
if attention_mask is None:
return attention_mask
current_length: int = attention_mask.shape[-1]
if current_length != target_length:
if attention_mask.device.type == "mps":
# HACK: MPS: Does not support padding by greater than dimension of input tensor.
# Instead, we can manually construct the padding tensor.
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
attention_mask = torch.cat([attention_mask, padding], dim=2)
else:
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
# we want to instead pad by (0, remaining_length), where remaining_length is:
# remaining_length: int = target_length - current_length
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
if out_dim == 3:
if attention_mask.shape[0] < batch_size * head_size:
attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
elif out_dim == 4:
attention_mask = attention_mask.unsqueeze(1)
attention_mask = attention_mask.repeat_interleave(head_size, dim=1)
return attention_mask
def norm_encoder_hidden_states(self, encoder_hidden_states):
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
if isinstance(self.norm_cross, nn.LayerNorm):
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
elif isinstance(self.norm_cross, nn.GroupNorm):
# Group norm norms along the channels dimension and expects
# input to be in the shape of (N, C, *). In this case, we want
# to norm along the hidden dimension, so we need to move
# (batch_size, sequence_length, hidden_size) ->
# (batch_size, hidden_size, sequence_length)
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
else:
assert False
return encoder_hidden_states
class AttnProcessor:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call_fast__(
self,
attn: Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
inner_dim = hidden_states.shape[-1]
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def __call__(
self,
attn: Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
return_attntion_probs=False,
attn_key=None,
attn_process_fn=None,
return_cond_ca_only=False,
return_token_ca_only=None,
offload_cross_attn_to_cpu=False,
save_attn_to_dict=None,
save_keys=None,
enable_flash_attn=True,
):
"""
attn_key: current key (a tuple of hierarchy index (up/mid/down, stage id, block id, sub-block id), sub block id should always be 0 in SD UNet)
save_attn_to_dict: pass in a dict to save to dict
"""
cross_attn = encoder_hidden_states is not None
if (not cross_attn) or (
(attn_process_fn is None)
and not (save_attn_to_dict is not None and (save_keys is None or (tuple(attn_key) in save_keys)))
and not return_attntion_probs):
with torch.backends.cuda.sdp_kernel(enable_flash=enable_flash_attn, enable_math=True, enable_mem_efficient=enable_flash_attn):
return self.__call_fast__(attn, hidden_states, encoder_hidden_states, attention_mask, temb)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
# Currently only process cross-attention
if attn_process_fn is not None and cross_attn:
attention_probs_before_process = attention_probs.clone()
attention_probs = attn_process_fn(attention_probs, query, key, value, attn_key=attn_key, cross_attn=cross_attn, batch_size=batch_size, heads=attn.heads)
else:
attention_probs_before_process = attention_probs
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
if return_attntion_probs or save_attn_to_dict is not None:
# Recover batch dimension: (batch_size, heads, flattened_2d, text_tokens)
attention_probs_unflattened = attention_probs_before_process.unflatten(dim=0, sizes=(batch_size, attn.heads))
if return_token_ca_only is not None:
# (batch size, n heads, 2d dimension, num text tokens)
if isinstance(return_token_ca_only, int):
# return_token_ca_only: an integer
attention_probs_unflattened = attention_probs_unflattened[:, :, :, return_token_ca_only:return_token_ca_only+1]
else:
# return_token_ca_only: A 1d index tensor
attention_probs_unflattened = attention_probs_unflattened[:, :, :, return_token_ca_only]
if return_cond_ca_only:
assert batch_size % 2 == 0, f"Samples are not in pairs: {batch_size} samples"
attention_probs_unflattened = attention_probs_unflattened[batch_size // 2:]
if offload_cross_attn_to_cpu:
attention_probs_unflattened = attention_probs_unflattened.cpu()
if save_attn_to_dict is not None and (save_keys is None or (tuple(attn_key) in save_keys)):
save_attn_to_dict[tuple(attn_key)] = attention_probs_unflattened
if return_attntion_probs:
return hidden_states, attention_probs_unflattened
return hidden_states
# For typing
AttentionProcessor = AttnProcessor
class SpatialNorm(nn.Module):
"""
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002
"""
def __init__(
self,
f_channels,
zq_channels,
):
super().__init__()
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True)
self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
def forward(self, f, zq):
f_size = f.shape[-2:]
zq = F.interpolate(zq, size=f_size, mode="nearest")
norm_f = self.norm_layer(f)
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
return new_f