AnanthanarayananSeetharaman commited on
Commit
3d6bc30
·
verified ·
1 Parent(s): 186de23

Update app.py

Browse files

enhanced to handle casual / malicuous / threat message and do NER only if mrkt research text.
Used Zero short classifier !

Files changed (1) hide show
  1. app.py +9 -3
app.py CHANGED
@@ -65,7 +65,7 @@ def predict_ner(text):
65
  # Define the classification function
66
  def classify_text(text):
67
  # Refined labels for better classification
68
- candidate_labels = ["market research", "casual/social message"]
69
  hypothesis_template = "This text is a {}."
70
 
71
  # Classify the text
@@ -81,7 +81,13 @@ def process_text(text):
81
  # Classify the text as social or research
82
  classification, confidence = classify_text(text)
83
 
84
- if classification == "casual/social message" and confidence > 0.8:
 
 
 
 
 
 
85
  # If it's social text with high confidence, print it as a social message
86
  print("This is a social message:")
87
  print(text)
@@ -94,7 +100,7 @@ def process_text(text):
94
  retail_confidence = retail_classification["scores"][0]
95
 
96
  if retail_label != "r" and retail_confidence > 0.2:
97
- # If it's about retail, send it to the NER pipeline
98
  print("This is a research text about retail. Extracting entities...")
99
  predictions = predict_ner(text)
100
 
 
65
  # Define the classification function
66
  def classify_text(text):
67
  # Refined labels for better classification
68
+ candidate_labels = ["market research", "casual/social message", "security threat", "malicious"]
69
  hypothesis_template = "This text is a {}."
70
 
71
  # Classify the text
 
81
  # Classify the text as social or research
82
  classification, confidence = classify_text(text)
83
 
84
+ print(classification)
85
+ if classification == "security threat" or classification == "malicious":
86
+ # If it's social text with high confidence, print it as a social message
87
+ print("This is a security threat:")
88
+ print(text)
89
+ return ["This is not a market research text!"]
90
+ elif classification == "casual/social message" and confidence > 0.8:
91
  # If it's social text with high confidence, print it as a social message
92
  print("This is a social message:")
93
  print(text)
 
100
  retail_confidence = retail_classification["scores"][0]
101
 
102
  if retail_label != "r" and retail_confidence > 0.2:
103
+ # TODO If it's about retail, send it to the NER pipeline
104
  print("This is a research text about retail. Extracting entities...")
105
  predictions = predict_ner(text)
106