import math from typing import List, Optional, Tuple, Union import torch class NullCtx: def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass class AmpOptimizer: def __init__( self, mixed_precision: int, optimizer: torch.optim.Optimizer, names: List[str], paras: List[torch.nn.Parameter], grad_clip: float, n_gradient_accumulation: int = 1, ): self.enable_amp = mixed_precision > 0 self.using_fp16_rather_bf16 = mixed_precision == 1 if self.enable_amp: self.amp_ctx = torch.autocast('cuda', enabled=True, dtype=torch.float16 if self.using_fp16_rather_bf16 else torch.bfloat16, cache_enabled=True) self.scaler = torch.cuda.amp.GradScaler(init_scale=2. ** 11, growth_interval=1000) if self.using_fp16_rather_bf16 else None # only fp16 needs a scaler else: self.amp_ctx = NullCtx() self.scaler = None self.optimizer, self.names, self.paras = optimizer, names, paras # paras have been filtered so everyone requires grad self.grad_clip = grad_clip self.early_clipping = self.grad_clip > 0 and not hasattr(optimizer, 'global_grad_norm') self.late_clipping = self.grad_clip > 0 and hasattr(optimizer, 'global_grad_norm') self.r_accu = 1 / n_gradient_accumulation # r_accu == 1.0 / n_gradient_accumulation def backward_clip_step( self, stepping: bool, loss: torch.Tensor, ) -> Tuple[Optional[Union[torch.Tensor, float]], Optional[float]]: # backward loss = loss.mul(self.r_accu) # r_accu == 1.0 / n_gradient_accumulation orig_norm = scaler_sc = None if self.scaler is not None: self.scaler.scale(loss).backward(retain_graph=False, create_graph=False) else: loss.backward(retain_graph=False, create_graph=False) if stepping: if self.scaler is not None: self.scaler.unscale_(self.optimizer) if self.early_clipping: orig_norm = torch.nn.utils.clip_grad_norm_(self.paras, self.grad_clip) if self.scaler is not None: self.scaler.step(self.optimizer) scaler_sc: float = self.scaler.get_scale() if scaler_sc > 32768.: # fp16 will overflow when >65536, so multiply 32768 could be dangerous self.scaler.update(new_scale=32768.) else: self.scaler.update() try: scaler_sc = float(math.log2(scaler_sc)) except Exception as e: print(f'[scaler_sc = {scaler_sc}]\n' * 15, flush=True) raise e else: self.optimizer.step() if self.late_clipping: orig_norm = self.optimizer.global_grad_norm self.optimizer.zero_grad(set_to_none=True) return orig_norm, scaler_sc def state_dict(self): return { 'optimizer': self.optimizer.state_dict() } if self.scaler is None else { 'scaler': self.scaler.state_dict(), 'optimizer': self.optimizer.state_dict() } def load_state_dict(self, state, strict=True): if self.scaler is not None: try: self.scaler.load_state_dict(state['scaler']) except Exception as e: print(f'[fp16 load_state_dict err] {e}') self.optimizer.load_state_dict(state['optimizer'])