PopYou / utils /misc.py
AmitIsraeli's picture
Add model and infrance app
64bf706
raw
history blame
13.7 kB
import datetime
import functools
import glob
import os
import subprocess
import sys
import time
from collections import defaultdict, deque
from typing import Iterator, List, Tuple
import numpy as np
import pytz
import torch
import torch.distributed as tdist
import dist
from utils import arg_util
os_system = functools.partial(subprocess.call, shell=True)
def echo(info):
os_system(f'echo "[$(date "+%m-%d-%H:%M:%S")] ({os.path.basename(sys._getframe().f_back.f_code.co_filename)}, line{sys._getframe().f_back.f_lineno})=> {info}"')
def os_system_get_stdout(cmd):
return subprocess.run(cmd, shell=True, stdout=subprocess.PIPE).stdout.decode('utf-8')
def os_system_get_stdout_stderr(cmd):
cnt = 0
while True:
try:
sp = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=30)
except subprocess.TimeoutExpired:
cnt += 1
print(f'[fetch free_port file] timeout cnt={cnt}')
else:
return sp.stdout.decode('utf-8'), sp.stderr.decode('utf-8')
def time_str(fmt='[%m-%d %H:%M:%S]'):
return datetime.datetime.now(tz=pytz.timezone('Asia/Shanghai')).strftime(fmt)
def init_distributed_mode(local_out_path, only_sync_master=False, timeout=30):
try:
dist.initialize(fork=False, timeout=timeout)
dist.barrier()
except RuntimeError:
print(f'{">"*75} NCCL Error {"<"*75}', flush=True)
time.sleep(10)
if local_out_path is not None: os.makedirs(local_out_path, exist_ok=True)
_change_builtin_print(dist.is_local_master())
if (dist.is_master() if only_sync_master else dist.is_local_master()) and local_out_path is not None and len(local_out_path):
sys.stdout, sys.stderr = SyncPrint(local_out_path, sync_stdout=True), SyncPrint(local_out_path, sync_stdout=False)
def _change_builtin_print(is_master):
import builtins as __builtin__
builtin_print = __builtin__.print
if type(builtin_print) != type(open):
return
def prt(*args, **kwargs):
force = kwargs.pop('force', False)
clean = kwargs.pop('clean', False)
deeper = kwargs.pop('deeper', False)
if is_master or force:
if not clean:
f_back = sys._getframe().f_back
if deeper and f_back.f_back is not None:
f_back = f_back.f_back
file_desc = f'{f_back.f_code.co_filename:24s}'[-24:]
builtin_print(f'{time_str()} ({file_desc}, line{f_back.f_lineno:-4d})=>', *args, **kwargs)
else:
builtin_print(*args, **kwargs)
__builtin__.print = prt
class SyncPrint(object):
def __init__(self, local_output_dir, sync_stdout=True):
self.sync_stdout = sync_stdout
self.terminal_stream = sys.stdout if sync_stdout else sys.stderr
fname = os.path.join(local_output_dir, 'stdout.txt' if sync_stdout else 'stderr.txt')
existing = os.path.exists(fname)
self.file_stream = open(fname, 'a')
if existing:
self.file_stream.write('\n'*7 + '='*55 + f' RESTART {time_str()} ' + '='*55 + '\n')
self.file_stream.flush()
self.enabled = True
def write(self, message):
self.terminal_stream.write(message)
self.file_stream.write(message)
def flush(self):
self.terminal_stream.flush()
self.file_stream.flush()
def close(self):
if not self.enabled:
return
self.enabled = False
self.file_stream.flush()
self.file_stream.close()
if self.sync_stdout:
sys.stdout = self.terminal_stream
sys.stdout.flush()
else:
sys.stderr = self.terminal_stream
sys.stderr.flush()
def __del__(self):
self.close()
class DistLogger(object):
def __init__(self, lg, verbose):
self._lg, self._verbose = lg, verbose
@staticmethod
def do_nothing(*args, **kwargs):
pass
def __getattr__(self, attr: str):
return getattr(self._lg, attr) if self._verbose else DistLogger.do_nothing
class TensorboardLogger(object):
def __init__(self, log_dir, filename_suffix):
try: import tensorflow_io as tfio
except: pass
from torch.utils.tensorboard import SummaryWriter
self.writer = SummaryWriter(log_dir=log_dir, filename_suffix=filename_suffix)
self.step = 0
def set_step(self, step=None):
if step is not None:
self.step = step
else:
self.step += 1
def update(self, head='scalar', step=None, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
# assert isinstance(v, (float, int)), type(v)
if step is None: # iter wise
it = self.step
if it == 0 or (it + 1) % 500 == 0:
if hasattr(v, 'item'): v = v.item()
self.writer.add_scalar(f'{head}/{k}', v, it)
else: # epoch wise
if hasattr(v, 'item'): v = v.item()
self.writer.add_scalar(f'{head}/{k}', v, step)
def log_tensor_as_distri(self, tag, tensor1d, step=None):
if step is None: # iter wise
step = self.step
loggable = step == 0 or (step + 1) % 500 == 0
else: # epoch wise
loggable = True
if loggable:
try:
self.writer.add_histogram(tag=tag, values=tensor1d, global_step=step)
except Exception as e:
print(f'[log_tensor_as_distri writer.add_histogram failed]: {e}')
def log_image(self, tag, img_chw, step=None):
if step is None: # iter wise
step = self.step
loggable = step == 0 or (step + 1) % 500 == 0
else: # epoch wise
loggable = True
if loggable:
self.writer.add_image(tag, img_chw, step, dataformats='CHW')
def flush(self):
self.writer.flush()
def close(self):
self.writer.close()
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=30, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
tdist.barrier()
tdist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
return np.median(self.deque) if len(self.deque) else 0
@property
def avg(self):
return sum(self.deque) / (len(self.deque) or 1)
@property
def global_avg(self):
return self.total / (self.count or 1)
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1] if len(self.deque) else 0
def time_preds(self, counts) -> Tuple[float, str, str]:
remain_secs = counts * self.median
return remain_secs, str(datetime.timedelta(seconds=round(remain_secs))), time.strftime("%Y-%m-%d %H:%M", time.localtime(time.time() + remain_secs))
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter=' '):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
self.iter_end_t = time.time()
self.log_iters = []
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if hasattr(v, 'item'): v = v.item()
# assert isinstance(v, (float, int)), type(v)
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
if len(meter.deque):
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, start_it, max_iters, itrt, print_freq, header=None):
self.log_iters = set(np.linspace(0, max_iters-1, print_freq, dtype=int).tolist())
self.log_iters.add(start_it)
if not header:
header = ''
start_time = time.time()
self.iter_end_t = time.time()
self.iter_time = SmoothedValue(fmt='{avg:.4f}')
self.data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(max_iters))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
log_msg = self.delimiter.join(log_msg)
if isinstance(itrt, Iterator) and not hasattr(itrt, 'preload') and not hasattr(itrt, 'set_epoch'):
for i in range(start_it, max_iters):
obj = next(itrt)
self.data_time.update(time.time() - self.iter_end_t)
yield i, obj
self.iter_time.update(time.time() - self.iter_end_t)
if i in self.log_iters:
eta_seconds = self.iter_time.global_avg * (max_iters - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
print(log_msg.format(
i, max_iters, eta=eta_string,
meters=str(self),
time=str(self.iter_time), data=str(self.data_time)), flush=True)
self.iter_end_t = time.time()
else:
if isinstance(itrt, int): itrt = range(itrt)
for i, obj in enumerate(itrt):
self.data_time.update(time.time() - self.iter_end_t)
yield i, obj
self.iter_time.update(time.time() - self.iter_end_t)
if i in self.log_iters:
eta_seconds = self.iter_time.global_avg * (max_iters - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
print(log_msg.format(
i, max_iters, eta=eta_string,
meters=str(self),
time=str(self.iter_time), data=str(self.data_time)), flush=True)
self.iter_end_t = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.3f} s / it)'.format(
header, total_time_str, total_time / max_iters), flush=True)
def glob_with_latest_modified_first(pattern, recursive=False):
return sorted(glob.glob(pattern, recursive=recursive), key=os.path.getmtime, reverse=True)
def auto_resume(args: arg_util.Args, pattern='ckpt*.pth') -> Tuple[List[str], int, int, dict, dict]:
info = []
file = os.path.join(args.local_out_dir_path, pattern)
all_ckpt = glob_with_latest_modified_first(file)
if len(all_ckpt) == 0:
info.append(f'[auto_resume] no ckpt found @ {file}')
info.append(f'[auto_resume quit]')
return info, 0, 0, {}, {}
else:
info.append(f'[auto_resume] load ckpt from @ {all_ckpt[0]} ...')
ckpt = torch.load(all_ckpt[0], map_location='cpu')
ep, it = ckpt['epoch'], ckpt['iter']
info.append(f'[auto_resume success] resume from ep{ep}, it{it}')
return info, ep, it, ckpt['trainer'], ckpt['args']
def create_npz_from_sample_folder(sample_folder: str):
"""
Builds a single .npz file from a folder of .png samples. Refer to DiT.
"""
import os, glob
import numpy as np
from tqdm import tqdm
from PIL import Image
samples = []
pngs = glob.glob(os.path.join(sample_folder, '*.png')) + glob.glob(os.path.join(sample_folder, '*.PNG'))
assert len(pngs) == 50_000, f'{len(pngs)} png files found in {sample_folder}, but expected 50,000'
for png in tqdm(pngs, desc='Building .npz file from samples (png only)'):
with Image.open(png) as sample_pil:
sample_np = np.asarray(sample_pil).astype(np.uint8)
samples.append(sample_np)
samples = np.stack(samples)
assert samples.shape == (50_000, samples.shape[1], samples.shape[2], 3)
npz_path = f'{sample_folder}.npz'
np.savez(npz_path, arr_0=samples)
print(f'Saved .npz file to {npz_path} [shape={samples.shape}].')
return npz_path