Spaces:
Sleeping
Sleeping
import os.path as osp | |
import PIL.Image as PImage | |
from torchvision.datasets.folder import DatasetFolder, IMG_EXTENSIONS | |
from torchvision.transforms import InterpolationMode, transforms | |
def normalize_01_into_pm1(x): # normalize x from [0, 1] to [-1, 1] by (x*2) - 1 | |
return x.add(x).add_(-1) | |
def build_dataset( | |
data_path: str, final_reso: int, | |
hflip=False, mid_reso=1.125, | |
): | |
# build augmentations | |
mid_reso = round(mid_reso * final_reso) # first resize to mid_reso, then crop to final_reso | |
train_aug, val_aug = [ | |
transforms.Resize(mid_reso, interpolation=InterpolationMode.LANCZOS), # transforms.Resize: resize the shorter edge to mid_reso | |
transforms.RandomCrop((final_reso, final_reso)), | |
transforms.ToTensor(), normalize_01_into_pm1, | |
], [ | |
transforms.Resize(mid_reso, interpolation=InterpolationMode.LANCZOS), # transforms.Resize: resize the shorter edge to mid_reso | |
transforms.CenterCrop((final_reso, final_reso)), | |
transforms.ToTensor(), normalize_01_into_pm1, | |
] | |
if hflip: train_aug.insert(0, transforms.RandomHorizontalFlip()) | |
train_aug, val_aug = transforms.Compose(train_aug), transforms.Compose(val_aug) | |
# build dataset | |
train_set = DatasetFolder(root=osp.join(data_path, 'train'), loader=pil_loader, extensions=IMG_EXTENSIONS, transform=train_aug) | |
val_set = DatasetFolder(root=osp.join(data_path, 'val'), loader=pil_loader, extensions=IMG_EXTENSIONS, transform=val_aug) | |
num_classes = 1000 | |
print(f'[Dataset] {len(train_set)=}, {len(val_set)=}, {num_classes=}') | |
print_aug(train_aug, '[train]') | |
print_aug(val_aug, '[val]') | |
return num_classes, train_set, val_set | |
def pil_loader(path): | |
with open(path, 'rb') as f: | |
img: PImage.Image = PImage.open(f).convert('RGB') | |
return img | |
def print_aug(transform, label): | |
print(f'Transform {label} = ') | |
if hasattr(transform, 'transforms'): | |
for t in transform.transforms: | |
print(t) | |
else: | |
print(transform) | |
print('---------------------------\n') | |