PopYou / utils /data.py
AmitIsraeli's picture
Add model and infrance app
64bf706
raw
history blame
2.08 kB
import os.path as osp
import PIL.Image as PImage
from torchvision.datasets.folder import DatasetFolder, IMG_EXTENSIONS
from torchvision.transforms import InterpolationMode, transforms
def normalize_01_into_pm1(x): # normalize x from [0, 1] to [-1, 1] by (x*2) - 1
return x.add(x).add_(-1)
def build_dataset(
data_path: str, final_reso: int,
hflip=False, mid_reso=1.125,
):
# build augmentations
mid_reso = round(mid_reso * final_reso) # first resize to mid_reso, then crop to final_reso
train_aug, val_aug = [
transforms.Resize(mid_reso, interpolation=InterpolationMode.LANCZOS), # transforms.Resize: resize the shorter edge to mid_reso
transforms.RandomCrop((final_reso, final_reso)),
transforms.ToTensor(), normalize_01_into_pm1,
], [
transforms.Resize(mid_reso, interpolation=InterpolationMode.LANCZOS), # transforms.Resize: resize the shorter edge to mid_reso
transforms.CenterCrop((final_reso, final_reso)),
transforms.ToTensor(), normalize_01_into_pm1,
]
if hflip: train_aug.insert(0, transforms.RandomHorizontalFlip())
train_aug, val_aug = transforms.Compose(train_aug), transforms.Compose(val_aug)
# build dataset
train_set = DatasetFolder(root=osp.join(data_path, 'train'), loader=pil_loader, extensions=IMG_EXTENSIONS, transform=train_aug)
val_set = DatasetFolder(root=osp.join(data_path, 'val'), loader=pil_loader, extensions=IMG_EXTENSIONS, transform=val_aug)
num_classes = 1000
print(f'[Dataset] {len(train_set)=}, {len(val_set)=}, {num_classes=}')
print_aug(train_aug, '[train]')
print_aug(val_aug, '[val]')
return num_classes, train_set, val_set
def pil_loader(path):
with open(path, 'rb') as f:
img: PImage.Image = PImage.open(f).convert('RGB')
return img
def print_aug(transform, label):
print(f'Transform {label} = ')
if hasattr(transform, 'transforms'):
for t in transform.transforms:
print(t)
else:
print(transform)
print('---------------------------\n')