PopYou / utils /amp_sc.py
AmitIsraeli's picture
Add model and infrance app
64bf706
raw
history blame
3.6 kB
import math
from typing import List, Optional, Tuple, Union
import torch
class NullCtx:
def __enter__(self):
pass
def __exit__(self, exc_type, exc_val, exc_tb):
pass
class AmpOptimizer:
def __init__(
self,
mixed_precision: int,
optimizer: torch.optim.Optimizer, names: List[str], paras: List[torch.nn.Parameter],
grad_clip: float, n_gradient_accumulation: int = 1,
):
self.enable_amp = mixed_precision > 0
self.using_fp16_rather_bf16 = mixed_precision == 1
if self.enable_amp:
self.amp_ctx = torch.autocast('cuda', enabled=True, dtype=torch.float16 if self.using_fp16_rather_bf16 else torch.bfloat16, cache_enabled=True)
self.scaler = torch.cuda.amp.GradScaler(init_scale=2. ** 11, growth_interval=1000) if self.using_fp16_rather_bf16 else None # only fp16 needs a scaler
else:
self.amp_ctx = NullCtx()
self.scaler = None
self.optimizer, self.names, self.paras = optimizer, names, paras # paras have been filtered so everyone requires grad
self.grad_clip = grad_clip
self.early_clipping = self.grad_clip > 0 and not hasattr(optimizer, 'global_grad_norm')
self.late_clipping = self.grad_clip > 0 and hasattr(optimizer, 'global_grad_norm')
self.r_accu = 1 / n_gradient_accumulation # r_accu == 1.0 / n_gradient_accumulation
def backward_clip_step(
self, stepping: bool, loss: torch.Tensor,
) -> Tuple[Optional[Union[torch.Tensor, float]], Optional[float]]:
# backward
loss = loss.mul(self.r_accu) # r_accu == 1.0 / n_gradient_accumulation
orig_norm = scaler_sc = None
if self.scaler is not None:
self.scaler.scale(loss).backward(retain_graph=False, create_graph=False)
else:
loss.backward(retain_graph=False, create_graph=False)
if stepping:
if self.scaler is not None: self.scaler.unscale_(self.optimizer)
if self.early_clipping:
orig_norm = torch.nn.utils.clip_grad_norm_(self.paras, self.grad_clip)
if self.scaler is not None:
self.scaler.step(self.optimizer)
scaler_sc: float = self.scaler.get_scale()
if scaler_sc > 32768.: # fp16 will overflow when >65536, so multiply 32768 could be dangerous
self.scaler.update(new_scale=32768.)
else:
self.scaler.update()
try:
scaler_sc = float(math.log2(scaler_sc))
except Exception as e:
print(f'[scaler_sc = {scaler_sc}]\n' * 15, flush=True)
raise e
else:
self.optimizer.step()
if self.late_clipping:
orig_norm = self.optimizer.global_grad_norm
self.optimizer.zero_grad(set_to_none=True)
return orig_norm, scaler_sc
def state_dict(self):
return {
'optimizer': self.optimizer.state_dict()
} if self.scaler is None else {
'scaler': self.scaler.state_dict(),
'optimizer': self.optimizer.state_dict()
}
def load_state_dict(self, state, strict=True):
if self.scaler is not None:
try: self.scaler.load_state_dict(state['scaler'])
except Exception as e: print(f'[fp16 load_state_dict err] {e}')
self.optimizer.load_state_dict(state['optimizer'])