File size: 11,237 Bytes
64bf706
 
 
 
 
 
 
 
3aaab28
 
64bf706
 
 
 
 
 
 
 
 
3aaab28
64bf706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6d4208
64bf706
f6d4208
64bf706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7d1a1
64bf706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6d4208
 
64bf706
 
 
 
 
 
 
 
 
 
 
 
f6d4208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d1279d
64bf706
f6d4208
 
 
 
 
 
 
 
 
 
 
 
64bf706
 
 
 
 
 
f6d4208
8d1279d
f6d4208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7d1a1
f6d4208
7a7d1a1
f6d4208
 
 
 
 
 
 
 
8d1279d
f6d4208
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import torch
from models import VQVAE, build_vae_var
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, SiglipTextModel
from peft import LoraConfig, get_peft_model
from torchvision.transforms import ToPILImage
import random
import gradio as gr

class SimpleAdapter(nn.Module):
    def __init__(self, input_dim=512, hidden_dim=1024, out_dim=1024):
        super(SimpleAdapter, self).__init__()
        self.layer1 = nn.Linear(input_dim, hidden_dim)
        self.norm0 = nn.LayerNorm(input_dim)
        self.activation1 = nn.GELU()
        self.layer2 = nn.Linear(hidden_dim, out_dim)
        self.norm2 = nn.LayerNorm(out_dim)
        self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight, gain=0.001)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.LayerNorm):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)

    def forward(self, x):
        x = self.norm0(x)
        x = self.layer1(x)
        x = self.activation1(x)
        x = self.layer2(x)
        x = self.norm2(x)
        return x

class InferenceTextVAR(nn.Module):
    def __init__(self, pl_checkpoint=None, start_class_id=578, hugging_face_token=None, siglip_model='google/siglip-base-patch16-224', device="cpu", MODEL_DEPTH=16):
        super(InferenceTextVAR, self).__init__()
        self.device = device
        self.class_id = start_class_id
        # Define layers
        patch_nums = (1, 2, 3, 4, 5, 6, 8, 10, 13, 16)
        self.vae, self.var = build_vae_var(
            V=4096, Cvae=32, ch=160, share_quant_resi=4,
            device=device, patch_nums=patch_nums,
            num_classes=1000, depth=MODEL_DEPTH, shared_aln=False,
        )
        self.text_processor = AutoTokenizer.from_pretrained(siglip_model, token=hugging_face_token)
        self.siglip_text_encoder = SiglipTextModel.from_pretrained(siglip_model, token=hugging_face_token).to(device)
        self.adapter = SimpleAdapter(
            input_dim=self.siglip_text_encoder.config.hidden_size,
            out_dim=self.var.C  # Ensure dimensional consistency
        ).to(device)
        self.apply_lora_to_var()
        if pl_checkpoint is not None:
            state_dict = torch.load(pl_checkpoint, map_location="cpu")['state_dict']
            var_state_dict = {k[len('var.'):]: v for k, v in state_dict.items() if k.startswith('var.')}
            vae_state_dict = {k[len('vae.'):]: v for k, v in state_dict.items() if k.startswith('vae.')}
            adapter_state_dict = {k[len('adapter.'):]: v for k, v in state_dict.items() if k.startswith('adapter.')}
            self.var.load_state_dict(var_state_dict)
            self.vae.load_state_dict(vae_state_dict)
            self.adapter.load_state_dict(adapter_state_dict)
        del self.vae.encoder

    def apply_lora_to_var(self):
        """
        Applies LoRA (Low-Rank Adaptation) to the VAR model.
        """
        def find_linear_module_names(model):
            linear_module_names = []
            for name, module in model.named_modules():
                if isinstance(module, nn.Linear):
                    linear_module_names.append(name)
            return linear_module_names

        linear_module_names = find_linear_module_names(self.var)

        lora_config = LoraConfig(
            r=8,
            lora_alpha=32,
            target_modules=linear_module_names,
            lora_dropout=0.05,
            bias="none",
        )

        self.var = get_peft_model(self.var, lora_config)

    @torch.no_grad()
    def generate_image(self, text, beta=1, seed=None, more_smooth=False, top_k=0, top_p=0.5):
        if seed is None:
            seed = random.randint(0, 2**32 - 1)
        inputs = self.text_processor([text], padding="max_length", return_tensors="pt").to(self.device)
        outputs = self.siglip_text_encoder(**inputs)
        pooled_output = outputs.pooler_output  # pooled (EOS token) states
        pooled_output = F.normalize(pooled_output, p=2, dim=-1)  # Normalize delta condition
        cond_delta = F.normalize(pooled_output, p=2, dim=-1).to(self.device)  # Use correct device
        cond_delta = self.adapter(cond_delta)
        cond_delta = F.normalize(cond_delta, p=2, dim=-1)  # Normalize delta condition
        generated_images = self.var.autoregressive_infer_cfg(
            B=1,
            label_B=self.class_id,
            delta_condition=cond_delta[:1],
            beta=beta,
            alpha=1,
            top_k=top_k,
            top_p=top_p,
            more_smooth=more_smooth,
            g_seed=seed
        )
        image = ToPILImage()(generated_images[0].cpu())
        return image


if __name__ == '__main__':
    # Initialize the model
    checkpoint = 'VARtext_v1.pth'  # Replace with your actual checkpoint path
    device = 'cpu' if not torch.cuda.is_available() else 'cuda'
    model = InferenceTextVAR(device=device)
    model.load_state_dict(torch.load(checkpoint, map_location=device))
    model.to(device)

    def generate_image_gradio(text, beta=1.0, seed=None, more_smooth=False, top_k=0, top_p=0.9):
        print(f"Generating image for text: {text}\n"
              f"beta: {beta}\n"
              f"seed: {seed}\n"
              f"more_smooth: {more_smooth}\n"
              f"top_k: {top_k}\n"
              f"top_p: {top_p}\n")
        image = model.generate_image(text, beta=beta, seed=seed, more_smooth=more_smooth, top_k=int(top_k), top_p=top_p)
        return image

    with gr.Blocks(css="""
    .project-item {margin-bottom: 30px;}
    .project-description {margin-top: 20px;}
    .github-button, .huggingface-button, .wandb-button {
        display: inline-block; margin-left: 10px; text-decoration: none; font-size: 14px;
        padding: 5px 10px; background-color: #f0f0f0; border-radius: 5px; color: black;
    }
    .project-content {display: flex; flex-direction: row;}
    .project-description {flex: 2; padding-right: 20px;}
    .project-options-image {flex: 1;}
    .funko-image {width: 100%; max-width: 300px;}
    """) as demo:
        gr.Markdown("""
        # PopYou2 - VAR Text

        <!-- Project Links -->
        [![GitHub](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/amit154154/VAR_clip)
        [![Weights & Biases](https://img.shields.io/badge/Weights%20%26%20Biases-Report-orange?logo=weightsandbiases)](https://api.wandb.ai/links/amit154154/cqccmfsl)

        ## Project Explanation

        - **Dataset Generation:** Generated a comprehensive dataset of approximately 100,000 Funko Pop! images with detailed prompts using [SDXL Turbo](https://huggingface.co/stabilityai/sdxl-turbo) for high-quality data creation.
        - **Model Fine-tuning:** Fine-tuned the [Visual AutoRegressive (VAR)](https://arxiv.org/abs/2404.02905) model, pretrained on ImageNet, to adapt it for Funko Pop! generation by injecting a custom embedding representing the "doll" class.
        - **Adapter Training:** Trained an adapter with the frozen [SigLIP image encoder](https://github.com/FoundationVision/VAR) and a lightweight LoRA module to map image embeddings to text representation in a large language model.
        - **Text-to-Image Generation:** Enabled text-to-image generation by replacing the SigLIP image encoder with its text encoder, retaining frozen components such as the VAE and generator for efficiency and quality.

        ## Generate Your Own Funko Pop!
        """)

        with gr.Tab("Generate Image"):
            with gr.Row():
                with gr.Column(scale=1):
                    text_input = gr.Textbox(label="Input Text", placeholder="Enter a description for your Funko Pop!")
                    beta_input = gr.Slider(label="Beta", minimum=0.0, maximum=2.5, step=0.05, value=1.0)
                    seed_input = gr.Number(label="Seed", value=None)
                    more_smooth_input = gr.Checkbox(label="More Smooth", value=False)
                    top_k_input = gr.Number(label="Top K", value=0)
                    top_p_input = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, step=0.01, value=0.5)
                    generate_button = gr.Button("Generate Image")
                with gr.Column(scale=1):
                    image_output = gr.Image(label="Generated Image")

            generate_button.click(
                generate_image_gradio,
                inputs=[text_input, beta_input, seed_input, more_smooth_input, top_k_input, top_p_input],
                outputs=image_output
            )

        gr.Markdown("## Examples")

        with gr.Row():
            with gr.Column():
                gr.Markdown("### Example 1")
                gr.Markdown("A Funko Pop figure of a yellow robot Tom Cruise with headphones on a white background")
                example1_image = gr.Image(value="examples/tom_cruise_robot.png")  # Replace with the actual path

            with gr.Column():
                gr.Markdown("### Example 2")
                gr.Markdown("A Funko Pop figure of an alien Scarlett Johansson holding a shield on a white background")
                example2_image = gr.Image(value="examples/alien_Scarlett_Johansson.png")  # Replace with the actual path

            with gr.Column():
                gr.Markdown("### Example 3")
                gr.Markdown("A Funko Pop figure of a woman with a hat and pink long hair and blue dress on a white background")
                example3_image = gr.Image(value="examples/woman_pink.png")  # Replace with the actual path

        gr.Markdown("""
        ## Customize Your Funko Pop!

        Build your own Funko Pop! by selecting options below and clicking "Generate Custom Funko Pop!".

        """)

        def update_custom_image(famous_name, character, action):
            # Build the prompt based on the selections
            parts = []
            if famous_name != "None":
                parts.append(f"a Funko Pop figure of {famous_name}")
            else:
                parts.append("a Funko Pop figure")
            if character != "None":
                parts.append(f"styled as a {character}")
            if action != "None":
                parts.append(f"performing {action}")
            parts.append("on a white background")
            prompt = ", ".join(parts)
            image = model.generate_image(prompt)
            return image

        famous_name_input = gr.Dropdown(choices=["None", "Donald Trump", "Johnny Depp", "Oprah Winfrey,Lebron James"], label="Famous Name", value="None")
        character_input = gr.Dropdown(choices=["None", "Alien", "Robot"], label="Character", value="None")
        action_input = gr.Dropdown(choices=["None", "Playing the Guitar", "Holding the Sword","wearing headphone"], label="Action", value="None")
        custom_generate_button = gr.Button("Generate Custom Funko Pop!")
        custom_image_output = gr.Image(label="Custom Funko Pop!")

        custom_generate_button.click(
            update_custom_image,
            inputs=[famous_name_input, character_input, action_input],
            outputs=custom_image_output
        )

    demo.launch()