File size: 13,530 Bytes
64bf706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import json
import os
import random
import re
import subprocess
import sys
import time
from collections import OrderedDict
from typing import Optional, Union

import numpy as np
import torch

try:
    from tap import Tap
except ImportError as e:
    print(f'`>>>>>>>> from tap import Tap` failed, please run:      pip3 install typed-argument-parser     <<<<<<<<', file=sys.stderr, flush=True)
    print(f'`>>>>>>>> from tap import Tap` failed, please run:      pip3 install typed-argument-parser     <<<<<<<<', file=sys.stderr, flush=True)
    time.sleep(5)
    raise e

import dist


class Args(Tap):
    data_path: str = '/path/to/imagenet'
    exp_name: str = 'text'
    
    # VAE
    vfast: int = 0      # torch.compile VAE; =0: not compile; 1: compile with 'reduce-overhead'; 2: compile with 'max-autotune'
    # VAR
    tfast: int = 0      # torch.compile VAR; =0: not compile; 1: compile with 'reduce-overhead'; 2: compile with 'max-autotune'
    depth: int = 16     # VAR depth
    # VAR initialization
    ini: float = -1     # -1: automated model parameter initialization
    hd: float = 0.02    # head.w *= hd
    aln: float = 0.5    # the multiplier of ada_lin.w's initialization
    alng: float = 1e-5  # the multiplier of ada_lin.w[gamma channels]'s initialization
    # VAR optimization
    fp16: int = 0           # 1: using fp16, 2: bf16
    tblr: float = 1e-4      # base lr
    tlr: float = None       # lr = base lr * (bs / 256)
    twd: float = 0.05       # initial wd
    twde: float = 0         # final wd, =twde or twd
    tclip: float = 2.       # <=0 for not using grad clip
    ls: float = 0.0         # label smooth
    
    bs: int = 768           # global batch size
    batch_size: int = 0     # [automatically set; don't specify this] batch size per GPU = round(args.bs / args.ac / dist.get_world_size() / 8) * 8
    glb_batch_size: int = 0 # [automatically set; don't specify this] global batch size = args.batch_size * dist.get_world_size()
    ac: int = 1             # gradient accumulation
    
    ep: int = 250
    wp: float = 0
    wp0: float = 0.005      # initial lr ratio at the begging of lr warm up
    wpe: float = 0.01       # final lr ratio at the end of training
    sche: str = 'lin0'      # lr schedule
    
    opt: str = 'adamw'      # lion: https://cloud.tencent.com/developer/article/2336657?areaId=106001 lr=5e-5 (0.25x) wd=0.8 (8x); Lion needs a large bs to work
    afuse: bool = True      # fused adamw
    
    # other hps
    saln: bool = False      # whether to use shared adaln
    anorm: bool = True      # whether to use L2 normalized attention
    fuse: bool = True       # whether to use fused op like flash attn, xformers, fused MLP, fused LayerNorm, etc.
    
    # data
    pn: str = '1_2_3_4_5_6_8_10_13_16'
    patch_size: int = 16
    patch_nums: tuple = None    # [automatically set; don't specify this] = tuple(map(int, args.pn.replace('-', '_').split('_')))
    resos: tuple = None         # [automatically set; don't specify this] = tuple(pn * args.patch_size for pn in args.patch_nums)
    
    data_load_reso: int = None  # [automatically set; don't specify this] would be max(patch_nums) * patch_size
    mid_reso: float = 1.125     # aug: first resize to mid_reso = 1.125 * data_load_reso, then crop to data_load_reso
    hflip: bool = False         # augmentation: horizontal flip
    workers: int = 0        # num workers; 0: auto, -1: don't use multiprocessing in DataLoader
    
    # progressive training
    pg: float = 0.0         # >0 for use progressive training during [0%, this] of training
    pg0: int = 4            # progressive initial stage, 0: from the 1st token map, 1: from the 2nd token map, etc
    pgwp: float = 0         # num of warmup epochs at each progressive stage
    
    # would be automatically set in runtime
    cmd: str = ' '.join(sys.argv[1:])  # [automatically set; don't specify this]
    branch: str = subprocess.check_output(f'git symbolic-ref --short HEAD 2>/dev/null || git rev-parse HEAD', shell=True).decode('utf-8').strip() or '[unknown]' # [automatically set; don't specify this]
    commit_id: str = subprocess.check_output(f'git rev-parse HEAD', shell=True).decode('utf-8').strip() or '[unknown]'  # [automatically set; don't specify this]
    commit_msg: str = (subprocess.check_output(f'git log -1', shell=True).decode('utf-8').strip().splitlines() or ['[unknown]'])[-1].strip()    # [automatically set; don't specify this]
    acc_mean: float = None      # [automatically set; don't specify this]
    acc_tail: float = None      # [automatically set; don't specify this]
    L_mean: float = None        # [automatically set; don't specify this]
    L_tail: float = None        # [automatically set; don't specify this]
    vacc_mean: float = None     # [automatically set; don't specify this]
    vacc_tail: float = None     # [automatically set; don't specify this]
    vL_mean: float = None       # [automatically set; don't specify this]
    vL_tail: float = None       # [automatically set; don't specify this]
    grad_norm: float = None     # [automatically set; don't specify this]
    cur_lr: float = None        # [automatically set; don't specify this]
    cur_wd: float = None        # [automatically set; don't specify this]
    cur_it: str = ''            # [automatically set; don't specify this]
    cur_ep: str = ''            # [automatically set; don't specify this]
    remain_time: str = ''       # [automatically set; don't specify this]
    finish_time: str = ''       # [automatically set; don't specify this]
    
    # environment
    local_out_dir_path: str = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'local_output')  # [automatically set; don't specify this]
    tb_log_dir_path: str = '...tb-...'  # [automatically set; don't specify this]
    log_txt_path: str = '...'           # [automatically set; don't specify this]
    last_ckpt_path: str = '...'         # [automatically set; don't specify this]
    
    tf32: bool = True       # whether to use TensorFloat32
    device: str = 'cpu'     # [automatically set; don't specify this]
    seed: int = None        # seed
    def seed_everything(self, benchmark: bool):
        torch.backends.cudnn.enabled = True
        torch.backends.cudnn.benchmark = benchmark
        if self.seed is None:
            torch.backends.cudnn.deterministic = False
        else:
            torch.backends.cudnn.deterministic = True
            seed = self.seed * dist.get_world_size() + dist.get_rank()
            os.environ['PYTHONHASHSEED'] = str(seed)
            random.seed(seed)
            np.random.seed(seed)
            torch.manual_seed(seed)
            if torch.cuda.is_available():
                torch.cuda.manual_seed(seed)
                torch.cuda.manual_seed_all(seed)
    same_seed_for_all_ranks: int = 0     # this is only for distributed sampler
    def get_different_generator_for_each_rank(self) -> Optional[torch.Generator]:   # for random augmentation
        if self.seed is None:
            return None
        g = torch.Generator()
        g.manual_seed(self.seed * dist.get_world_size() + dist.get_rank())
        return g
    
    local_debug: bool = 'KEVIN_LOCAL' in os.environ
    dbg_nan: bool = False   # 'KEVIN_LOCAL' in os.environ
    
    def compile_model(self, m, fast):
        if fast == 0 or self.local_debug:
            return m
        return torch.compile(m, mode={
            1: 'reduce-overhead',
            2: 'max-autotune',
            3: 'default',
        }[fast]) if hasattr(torch, 'compile') else m
    
    def state_dict(self, key_ordered=True) -> Union[OrderedDict, dict]:
        d = (OrderedDict if key_ordered else dict)()
        # self.as_dict() would contain methods, but we only need variables
        for k in self.class_variables.keys():
            if k not in {'device'}:     # these are not serializable
                d[k] = getattr(self, k)
        return d
    
    def load_state_dict(self, d: Union[OrderedDict, dict, str]):
        if isinstance(d, str):  # for compatibility with old version
            d: dict = eval('\n'.join([l for l in d.splitlines() if '<bound' not in l and 'device(' not in l]))
        for k in d.keys():
            try:
                setattr(self, k, d[k])
            except Exception as e:
                print(f'k={k}, v={d[k]}')
                raise e
    
    @staticmethod
    def set_tf32(tf32: bool):
        if torch.cuda.is_available():
            torch.backends.cudnn.allow_tf32 = bool(tf32)
            torch.backends.cuda.matmul.allow_tf32 = bool(tf32)
            if hasattr(torch, 'set_float32_matmul_precision'):
                torch.set_float32_matmul_precision('high' if tf32 else 'highest')
                print(f'[tf32] [precis] torch.get_float32_matmul_precision(): {torch.get_float32_matmul_precision()}')
            print(f'[tf32] [ conv ] torch.backends.cudnn.allow_tf32: {torch.backends.cudnn.allow_tf32}')
            print(f'[tf32] [matmul] torch.backends.cuda.matmul.allow_tf32: {torch.backends.cuda.matmul.allow_tf32}')
    
    def dump_log(self):
        if not dist.is_local_master():
            return
        if '1/' in self.cur_ep: # first time to dump log
            with open(self.log_txt_path, 'w') as fp:
                json.dump({'is_master': dist.is_master(), 'name': self.exp_name, 'cmd': self.cmd, 'commit': self.commit_id, 'branch': self.branch, 'tb_log_dir_path': self.tb_log_dir_path}, fp, indent=0)
                fp.write('\n')
        
        log_dict = {}
        for k, v in {
            'it': self.cur_it, 'ep': self.cur_ep,
            'lr': self.cur_lr, 'wd': self.cur_wd, 'grad_norm': self.grad_norm,
            'L_mean': self.L_mean, 'L_tail': self.L_tail, 'acc_mean': self.acc_mean, 'acc_tail': self.acc_tail,
            'vL_mean': self.vL_mean, 'vL_tail': self.vL_tail, 'vacc_mean': self.vacc_mean, 'vacc_tail': self.vacc_tail,
            'remain_time': self.remain_time, 'finish_time': self.finish_time,
        }.items():
            if hasattr(v, 'item'): v = v.item()
            log_dict[k] = v
        with open(self.log_txt_path, 'a') as fp:
            fp.write(f'{log_dict}\n')
    
    def __str__(self):
        s = []
        for k in self.class_variables.keys():
            if k not in {'device', 'dbg_ks_fp'}:     # these are not serializable
                s.append(f'  {k:20s}: {getattr(self, k)}')
        s = '\n'.join(s)
        return f'{{\n{s}\n}}\n'


def init_dist_and_get_args():
    for i in range(len(sys.argv)):
        if sys.argv[i].startswith('--local-rank=') or sys.argv[i].startswith('--local_rank='):
            del sys.argv[i]
            break
    args = Args(explicit_bool=True).parse_args(known_only=True)
    if args.local_debug:
        args.pn = '1_2_3'
        args.seed = 1
        args.aln = 1e-2
        args.alng = 1e-5
        args.saln = False
        args.afuse = False
        args.pg = 0.8
        args.pg0 = 1
    else:
        if args.data_path == '/path/to/imagenet':
            raise ValueError(f'{"*"*40}  please specify --data_path=/path/to/imagenet  {"*"*40}')
    
    # warn args.extra_args
    if len(args.extra_args) > 0:
        print(f'======================================================================================')
        print(f'=========================== WARNING: UNEXPECTED EXTRA ARGS ===========================\n{args.extra_args}')
        print(f'=========================== WARNING: UNEXPECTED EXTRA ARGS ===========================')
        print(f'======================================================================================\n\n')
    
    # init torch distributed
    from utils import misc
    os.makedirs(args.local_out_dir_path, exist_ok=True)
    misc.init_distributed_mode(local_out_path=args.local_out_dir_path, timeout=30)
    
    # set env
    args.set_tf32(args.tf32)
    args.seed_everything(benchmark=args.pg == 0)
    
    # update args: data loading
    args.device = dist.get_device()
    if args.pn == '256':
        args.pn = '1_2_3_4_5_6_8_10_13_16'
    elif args.pn == '512':
        args.pn = '1_2_3_4_6_9_13_18_24_32'
    elif args.pn == '1024':
        args.pn = '1_2_3_4_5_7_9_12_16_21_27_36_48_64'
    args.patch_nums = tuple(map(int, args.pn.replace('-', '_').split('_')))
    args.resos = tuple(pn * args.patch_size for pn in args.patch_nums)
    args.data_load_reso = max(args.resos)
    
    # update args: bs and lr
    bs_per_gpu = round(args.bs / args.ac / dist.get_world_size())
    args.batch_size = bs_per_gpu
    args.bs = args.glb_batch_size = args.batch_size * dist.get_world_size()
    args.workers = min(max(0, args.workers), args.batch_size)
    
    args.tlr = args.ac * args.tblr * args.glb_batch_size / 256
    args.twde = args.twde or args.twd
    
    if args.wp == 0:
        args.wp = args.ep * 1/50
    
    # update args: progressive training
    if args.pgwp == 0:
        args.pgwp = args.ep * 1/300
    if args.pg > 0:
        args.sche = f'lin{args.pg:g}'
    
    # update args: paths
    args.log_txt_path = os.path.join(args.local_out_dir_path, 'log.txt')
    args.last_ckpt_path = os.path.join(args.local_out_dir_path, f'ar-ckpt-last.pth')
    _reg_valid_name = re.compile(r'[^\w\-+,.]')
    tb_name = _reg_valid_name.sub(
        '_',
        f'tb-VARd{args.depth}'
        f'__pn{args.pn}'
        f'__b{args.bs}ep{args.ep}{args.opt[:4]}lr{args.tblr:g}wd{args.twd:g}'
    )
    args.tb_log_dir_path = os.path.join(args.local_out_dir_path, tb_name)
    
    return args