AminFaraji commited on
Commit
a4522e9
·
verified ·
1 Parent(s): 8317bae

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +289 -0
app.py ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print(55877)
2
+ import argparse
3
+ # from dataclasses import dataclass
4
+ from langchain.prompts import ChatPromptTemplate
5
+ try:
6
+ from langchain_community.vectorstores import Chroma
7
+ except:
8
+ from langchain_community.vectorstores import Chroma
9
+ #from langchain_openai import OpenAIEmbeddings
10
+ #from langchain_openai import ChatOpenAI
11
+
12
+ # from langchain.document_loaders import DirectoryLoader
13
+ from langchain_community.document_loaders import DirectoryLoader
14
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
15
+ from langchain.schema import Document
16
+ # from langchain.embeddings import OpenAIEmbeddings
17
+ #from langchain_openai import OpenAIEmbeddings
18
+ from langchain_community.vectorstores import Chroma
19
+ import openai
20
+ from dotenv import load_dotenv
21
+ import os
22
+ import shutil
23
+
24
+
25
+ import re
26
+ import warnings
27
+ from typing import List
28
+
29
+ import torch
30
+ from langchain import PromptTemplate
31
+ from langchain.chains import ConversationChain
32
+ from langchain.chains.conversation.memory import ConversationBufferWindowMemory
33
+ from langchain.llms import HuggingFacePipeline
34
+ from langchain.schema import BaseOutputParser
35
+ from transformers import (
36
+ AutoModelForCausalLM,
37
+ AutoTokenizer,
38
+ StoppingCriteria,
39
+ StoppingCriteriaList,
40
+ pipeline,
41
+ )
42
+
43
+ warnings.filterwarnings("ignore", category=UserWarning)
44
+
45
+ MODEL_NAME = "tiiuae/falcon-7b-instruct"
46
+
47
+ model = AutoModelForCausalLM.from_pretrained(
48
+ MODEL_NAME, trust_remote_code=True, device_map="auto",offload_folder="offload"
49
+ )
50
+ model = model.eval()
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
53
+ print(f"Model device: {model.device}")
54
+
55
+ # a custom embedding
56
+ from sentence_transformers import SentenceTransformer
57
+ from langchain_experimental.text_splitter import SemanticChunker
58
+ from typing import List
59
+
60
+
61
+ class MyEmbeddings:
62
+ def __init__(self):
63
+ self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
64
+ #self.model=model
65
+
66
+ def embed_documents(self, texts: List[str]) -> List[List[float]]:
67
+ return [self.model.encode(t).tolist() for t in texts]
68
+ def embed_query(self, query: str) -> List[float]:
69
+ return [self.model.encode([query])][0][0].tolist()
70
+
71
+
72
+ embeddings = MyEmbeddings()
73
+
74
+ splitter = SemanticChunker(embeddings)
75
+
76
+
77
+
78
+
79
+ # Create CLI.
80
+ #parser = argparse.ArgumentParser()
81
+ #parser.add_argument("query_text", type=str, help="The query text.")
82
+ #args = parser.parse_args()
83
+ #query_text = args.query_text
84
+
85
+ # a sample query to be asked from the bot and it is expected to be answered based on the template
86
+ query_text="what did alice say to rabbit"
87
+
88
+ # Prepare the DB.
89
+ #embedding_function = OpenAIEmbeddings() # main
90
+
91
+ CHROMA_PATH = "chroma8"
92
+ # call the chroma generated in a directory
93
+ db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
94
+
95
+ # Search the DB for similar documents to the query.
96
+ results = db.similarity_search_with_relevance_scores(query_text, k=2)
97
+ if len(results) == 0 or results[0][1] < 0.5:
98
+ print(f"Unable to find matching results.")
99
+
100
+
101
+ context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
102
+ prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
103
+ prompt = prompt_template.format(context=context_text, question=query_text)
104
+ print(prompt)
105
+
106
+
107
+
108
+
109
+ generation_config = model.generation_config
110
+ generation_config.temperature = 0
111
+ generation_config.num_return_sequences = 1
112
+ generation_config.max_new_tokens = 256
113
+ generation_config.use_cache = False
114
+ generation_config.repetition_penalty = 1.7
115
+ generation_config.pad_token_id = tokenizer.eos_token_id
116
+ generation_config.eos_token_id = tokenizer.eos_token_id
117
+ generation_config
118
+
119
+ prompt = """
120
+ The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
121
+
122
+ Current conversation:
123
+
124
+ Human: Who is Dwight K Schrute?
125
+ AI:
126
+ """.strip()
127
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
128
+ input_ids = input_ids.to(model.device)
129
+
130
+ class StopGenerationCriteria(StoppingCriteria):
131
+ def __init__(
132
+ self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
133
+ ):
134
+ stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
135
+ self.stop_token_ids = [
136
+ torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
137
+ ]
138
+
139
+ def __call__(
140
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
141
+ ) -> bool:
142
+ for stop_ids in self.stop_token_ids:
143
+ if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
144
+ return True
145
+ return False
146
+
147
+ stop_tokens = [["Human", ":"], ["AI", ":"]]
148
+ stopping_criteria = StoppingCriteriaList(
149
+ [StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
150
+ )
151
+
152
+
153
+ generation_pipeline = pipeline(
154
+ model=model,
155
+ tokenizer=tokenizer,
156
+ return_full_text=True,
157
+ task="text-generation",
158
+ stopping_criteria=stopping_criteria,
159
+ generation_config=generation_config,
160
+ )
161
+
162
+ llm = HuggingFacePipeline(pipeline=generation_pipeline)
163
+
164
+
165
+ # propably sets the number of previous conversation history to take into account for new answers
166
+ template = """
167
+ The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
168
+ Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
169
+ Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
170
+
171
+ Current conversation:
172
+ {history}
173
+ Human: {input}
174
+ AI:""".strip()
175
+
176
+ prompt = PromptTemplate(input_variables=["history", "input"], template=template)
177
+ memory = ConversationBufferWindowMemory(
178
+ memory_key="history", k=6, return_only_outputs=True
179
+ )
180
+
181
+ chain = ConversationChain(llm=llm, memory=memory, prompt=prompt, verbose=True)
182
+
183
+
184
+
185
+ class CleanupOutputParser(BaseOutputParser):
186
+ def parse(self, text: str) -> str:
187
+ user_pattern = r"\nUser"
188
+ text = re.sub(user_pattern, "", text)
189
+ human_pattern = r"\nHuman:"
190
+ text = re.sub(human_pattern, "", text)
191
+ ai_pattern = r"\nAI:"
192
+ return re.sub(ai_pattern, "", text).strip()
193
+
194
+ @property
195
+ def _type(self) -> str:
196
+ return "output_parser"
197
+
198
+
199
+
200
+ class CleanupOutputParser(BaseOutputParser):
201
+ def parse(self, text: str) -> str:
202
+ user_pattern = r"\nUser"
203
+ text = re.sub(user_pattern, "", text)
204
+ human_pattern = r"\nquestion:"
205
+ text = re.sub(human_pattern, "", text)
206
+ ai_pattern = r"\nanswer:"
207
+ return re.sub(ai_pattern, "", text).strip()
208
+
209
+ @property
210
+ def _type(self) -> str:
211
+ return "output_parser"
212
+
213
+
214
+
215
+ template = """
216
+ The following is a conversation between a human an AI. The AI acts exactly like Dwight K Schrute from the TV show The Office.
217
+ Dwight is an experienced and very successful online marketer and salesperson. He is witty, persuasive, uncensored, direct and practical.
218
+ Dwight helps with every marketing task is given to him. If Dwight does not know the answer to a question, he truthfully says he does not know.
219
+
220
+ Current conversation:
221
+ {history}
222
+ Human: {input}
223
+ AI:""".strip()
224
+
225
+ prompt = PromptTemplate(input_variables=["history", "input"], template=template)
226
+
227
+ memory = ConversationBufferWindowMemory(
228
+ memory_key="history", k=3, return_only_outputs=True
229
+ )
230
+
231
+ chain = ConversationChain(
232
+ llm=llm,
233
+ memory=memory,
234
+ prompt=prompt,
235
+ output_parser=CleanupOutputParser(),
236
+ verbose=True,
237
+ )
238
+
239
+
240
+ # Generate a response from the Llama model
241
+ def get_llama_response(message: str, history: list) -> str:
242
+ """
243
+ Generates a conversational response from the Llama model.
244
+
245
+ Parameters:
246
+ message (str): User's input message.
247
+ history (list): Past conversation history.
248
+
249
+ Returns:
250
+ str: Generated response from the Llama model.
251
+ """
252
+ query_text =message
253
+
254
+ results = db.similarity_search_with_relevance_scores(query_text, k=2)
255
+ if len(results) == 0 or results[0][1] < 0.5:
256
+ print(f"Unable to find matching results.")
257
+
258
+
259
+ context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results ])
260
+
261
+ template = """
262
+ The following is a conversation between a human an AI. Answer question based only on the conversation.
263
+
264
+ Current conversation:
265
+ {history}
266
+
267
+ """
268
+
269
+
270
+
271
+ s="""
272
+
273
+ \n question: {input}
274
+
275
+ \n answer:""".strip()
276
+
277
+
278
+ prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+'\n'+s)
279
+
280
+ #print(template)
281
+ chain.prompt=prompt
282
+ res = chain.predict(input=query_text)
283
+ return res
284
+ #return response.strip()
285
+
286
+
287
+ import gradio as gr
288
+ iface = gr.Interface(fn=get_llama_response, inputs="text", outputs="text")
289
+ iface.launch(share=True)