Spaces:
Running
Running
AlirezaF138
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,9 @@ from pdf2image import convert_from_path
|
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
|
7 |
-
# Function to perform OCR
|
8 |
-
def
|
9 |
extracted_text = ""
|
10 |
-
keyword_found = False
|
11 |
|
12 |
# Check if the input file is a PDF or an image
|
13 |
if isinstance(input_file, str) and input_file.endswith('.pdf'): # Check if the file is a PDF
|
@@ -19,52 +18,53 @@ def ocr_and_search(input_file, keyword, lang='fas'): # 'fas': Persian language
|
|
19 |
text = pytesseract.image_to_string(image, lang=lang)
|
20 |
extracted_text += text
|
21 |
|
22 |
-
# Check if the keyword is in the extracted text
|
23 |
-
if keyword.lower() in text.lower():
|
24 |
-
keyword_found = True
|
25 |
-
|
26 |
elif isinstance(input_file, Image.Image): # If the input is an image
|
27 |
text = pytesseract.image_to_string(input_file, lang=lang)
|
28 |
extracted_text = text
|
29 |
-
|
30 |
-
# Check if the keyword is in the extracted text
|
31 |
-
if keyword.lower() in text.lower():
|
32 |
-
keyword_found = True
|
33 |
-
|
34 |
-
if not keyword_found:
|
35 |
-
result_message = f"Keyword '{keyword}' not found in the document."
|
36 |
-
else:
|
37 |
-
result_message = f"Keyword '{keyword}' found in the document."
|
38 |
|
39 |
-
return extracted_text
|
40 |
|
41 |
-
# Create Gradio interface
|
42 |
def gradio_interface():
|
43 |
# Define Gradio inputs and outputs
|
44 |
-
input_type = gr.Radio(["PDF", "Image"], label="Choose Input Type", value="PDF")
|
45 |
file_input = gr.File(label="Upload PDF/Image")
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
output_text = gr.Textbox(label="Extracted Text", interactive=False)
|
48 |
-
output_message = gr.Textbox(label="Keyword Search Result", interactive=False)
|
49 |
|
50 |
# Function to process the inputs and return the outputs
|
51 |
-
def process(input_type, file,
|
52 |
-
# Handle PDF and image accordingly
|
53 |
if input_type == "PDF":
|
54 |
-
extracted_text
|
55 |
-
else:
|
56 |
-
image = Image.open(file.name)
|
57 |
-
extracted_text
|
58 |
-
|
59 |
-
return extracted_text, result_message
|
60 |
|
61 |
# Create and launch Gradio interface
|
62 |
-
gr.Interface(
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
68 |
|
69 |
# Call the function to create the interface
|
70 |
gradio_interface()
|
|
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
|
7 |
+
# Function to perform OCR
|
8 |
+
def ocr(input_file, lang='fas'): # 'fas': Persian language (Farsi)
|
9 |
extracted_text = ""
|
|
|
10 |
|
11 |
# Check if the input file is a PDF or an image
|
12 |
if isinstance(input_file, str) and input_file.endswith('.pdf'): # Check if the file is a PDF
|
|
|
18 |
text = pytesseract.image_to_string(image, lang=lang)
|
19 |
extracted_text += text
|
20 |
|
|
|
|
|
|
|
|
|
21 |
elif isinstance(input_file, Image.Image): # If the input is an image
|
22 |
text = pytesseract.image_to_string(input_file, lang=lang)
|
23 |
extracted_text = text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
return extracted_text
|
26 |
|
|
|
27 |
def gradio_interface():
|
28 |
# Define Gradio inputs and outputs
|
29 |
+
input_type = gr.Radio(["PDF", "Image"], label="Choose Input Type", value="PDF")
|
30 |
file_input = gr.File(label="Upload PDF/Image")
|
31 |
+
language_input = gr.Dropdown(
|
32 |
+
label="Select OCR Language",
|
33 |
+
choices=[
|
34 |
+
("English", "eng"),
|
35 |
+
("Mandarin Chinese", "chi_sim"),
|
36 |
+
("Hindi", "hin"),
|
37 |
+
("Spanish", "spa"),
|
38 |
+
("French", "fra"),
|
39 |
+
("Standard Arabic", "ara"),
|
40 |
+
("Bengali", "ben"),
|
41 |
+
("Portuguese", "por"),
|
42 |
+
("Russian", "rus"),
|
43 |
+
("Urdu", "urd"),
|
44 |
+
("Persian (Farsi)", "fas")
|
45 |
+
],
|
46 |
+
value="fas" # Default to Persian
|
47 |
+
)
|
48 |
output_text = gr.Textbox(label="Extracted Text", interactive=False)
|
|
|
49 |
|
50 |
# Function to process the inputs and return the outputs
|
51 |
+
def process(input_type, file, lang):
|
|
|
52 |
if input_type == "PDF":
|
53 |
+
extracted_text = ocr(file.name, lang)
|
54 |
+
else:
|
55 |
+
image = Image.open(file.name)
|
56 |
+
extracted_text = ocr(image, lang)
|
57 |
+
return extracted_text
|
|
|
58 |
|
59 |
# Create and launch Gradio interface
|
60 |
+
gr.Interface(
|
61 |
+
fn=process,
|
62 |
+
inputs=[input_type, file_input, language_input],
|
63 |
+
outputs=[output_text],
|
64 |
+
title="OCR (PDF/Image)",
|
65 |
+
description="Upload a PDF or Image, select the OCR language, and extract the text."
|
66 |
+
).launch()
|
67 |
+
|
68 |
|
69 |
# Call the function to create the interface
|
70 |
gradio_interface()
|