Spaces:
Runtime error
Runtime error
AliMustapha
commited on
Commit
·
1ffb898
1
Parent(s):
46236ad
code cleaning
Browse files- Dictionary_guesser/dsutil.py +0 -2
- Dictionary_guesser/name_maker.py +0 -2
- Dictionary_guesser/name_nation_guesser.py +1 -2
- dt.py +386 -0
Dictionary_guesser/dsutil.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
|
3 |
-
__copyright__ = "Copyright (C) 2022 Davide Rossi"
|
4 |
-
__license__ = "GPL-3.0-or-later"
|
5 |
|
6 |
import pandas as pd
|
7 |
import numpy as np
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
|
|
|
|
|
3 |
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
Dictionary_guesser/name_maker.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
|
3 |
-
__copyright__ = "Copyright (C) 2022 Davide Rossi"
|
4 |
-
__license__ = "GPL-3.0-or-later"
|
5 |
|
6 |
import pandas as pd
|
7 |
import numpy as np
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
|
|
|
|
|
3 |
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
Dictionary_guesser/name_nation_guesser.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
|
3 |
-
|
4 |
-
__license__ = "GPL-3.0-or-later"
|
5 |
|
6 |
import pandas as pd
|
7 |
import numpy as np
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
|
3 |
+
|
|
|
4 |
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
dt.py
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from Dictionary_guesser.name_nation_guesser import NameNationGuesser
|
2 |
+
# import datetime
|
3 |
+
# from GitScraping import CommitInfo
|
4 |
+
# if __name__ == "__main__":
|
5 |
+
|
6 |
+
# guesser =NameNationGuesser(names_filename="Dictionary_guesser/names.csv",places_filename='Dictionary_guesser/places.tab', guess_first_second_min_mag=None,place_column_name="sub-region")
|
7 |
+
# commit_info=CommitInfo("https://github.com/AhmadM-DL/On-Learning-Implicit-Protected-Attributes")
|
8 |
+
# df,first_commit_dates = commit_info.get_first_commit_dates()
|
9 |
+
|
10 |
+
# def guess_zone(name, epoch, offset):
|
11 |
+
# dt = datetime.datetime.fromtimestamp(epoch)
|
12 |
+
# country_pop_map = guesser.country_pop_from_datetime(dt, offset)
|
13 |
+
# # print(country_pop_map)
|
14 |
+
# return guesser.guess_zone(name, country_pop_map=country_pop_map)
|
15 |
+
# first_commit_dates['Commit_Seconds'] = first_commit_dates['First_Commit_Date'].apply(lambda x: x.timestamp())
|
16 |
+
# first_commit_dates['Author_Timezone'] = first_commit_dates['Author_Timezone'] /60
|
17 |
+
|
18 |
+
|
19 |
+
# first_commit_dates['region_Dictionary'] = first_commit_dates.apply(lambda row: guess_zone(row['Author'],row['Commit_Seconds'], row['Author_Timezone']), axis=1)
|
20 |
+
# print(first_commit_dates)
|
21 |
+
|
22 |
+
from google.cloud import storage
|
23 |
+
import json
|
24 |
+
import os
|
25 |
+
import pandas as pd
|
26 |
+
# # Initialize a client
|
27 |
+
# jsonApi = os.getenv('apiKey')
|
28 |
+
# print(jsonApi)
|
29 |
+
|
30 |
+
# export jsonApi='{
|
31 |
+
# "type": "service_account",
|
32 |
+
# "project_id": "kinetic-guild-369323",
|
33 |
+
# "private_key_id": "b06a3ad76990da0e6970c072e95e7d26bb2e8c1d",
|
34 |
+
# "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDTahMlxsz8Zv1T\nY3+C4E5MS6SnP7ESeAKdhm6IHiELrvekmPsTkaZhf1UWpOuzj76iklWwocVpnDCw\nINn0BAg/ttBKA24PQzTinsw2C5gRtB4J36n5rLZ2wmLw8HkLXsm2z7w+4h0VHLCN\nIwp1+L/AS967nQ5qXzf+AR47RoKcMY7Ia2WzF8Cv+/rBsVbl2w+Mz7xTSnZl8neg\nIaL4QMguZWHR6W9Hc/lt1+ZSoDgZmqj+DjXd5NPwNfckPaX5nppz/kzmfuUkWI8U\njBv6KyqBKcmdr1aJMc8XH64y7BW6pmH7WEJAN/H/uiycj1b09Lr27BUwogbr/0Ae\n6exf0lnZAgMBAAECggEAL2foPj7LRUe0w0ea1paEiCAoHiauhoUplPgJffU/lLaZ\nqitxlWxCAjfCtS6q+ZsgdKTamR5VPX67/iqHpOtojBzqrMYDHmIEEFLqWK4V3dZl\nK/Ke0zESwyOIex15Dv8kvRzsya77NXo27pbuaBCssqpwmeI4UsriK89FX6ZKcEpV\n7xMJgOm9WA0OrPsO6GFVF5htvTh0QFuoq1kJDiQguOrez9qa+F52PXl4RArwCSeK\nbchQhHd6ASXCyRB+Bx39Vh62Xv6xJ6LiEsCC41gzH6jHAyFZZ/v2mFAlHnUg9qIN\nJKdQM5zXFA1dUB/l17k8BWu+Achanegd7gNxv1prrwKBgQD6AEgxYrVT5sChZjP2\nvzQIYNlx+rft8e/MsOjKzl+9ObS+1xuhTlekZnxhtRm8vAoD7XM4Rb4fDJWwR2vq\naBVvKt93Eg68gWsPOmqkdPkPLiW877VU4QLk07yEM6Nl/OqdlRF0EzKXHXmk4AVL\njSh0MLbc7McmoLVgre33m754IwKBgQDYfMKo4f8bev+91kXMTlTq/Kgpyyaqwcsq\nibyNYAtXdwknZW0iOhA9lQZADH9vG9QELspi0Zy2Uv1LLVk1cGJ6up8eVpWFzZ2S\nSgLZJ6WuqK6OcewqWFA/WQ3U94lKgdnWqT/rDSHgnw3kSmyEiQ+IL0zKa8IzuV0F\nRGqj4Ngn0wKBgQD1NMGabs6bdIELzUq6gd9vOE8O1HMDF4G0qvApuzF8T9VQOXwI\nQucDgOIOk6qiy2ynXYbdcsp/ecB4HhVi3KPpXYvBJhz+F5ICZbGjjHecxA6Pui2J\nCwnjlyoYIO3rYp5b4ZI033+HaImfhXqsF8/N5tn05uiOoqJEKVR2wHOZMQKBgBRy\nhDhLUDsaPPmDOYh4hZDEWGXKKFbMgxH7fHGl9qxGM/kinVI0RcBrSPHXvFmUOUxD\n1x3KSpD1+bKWD+z6NnL9GXZWGz1OFGnyz54PHpkGmaYeoH3HZZz2HlZVIwSEizy5\nM65RyTdcDoXXebRy9aKZRRmBYBBem6iZs7DS1de9AoGAFf/tR1HK4Cugh9vebzp0\nB5j7EJP1XESDKsGAOIFC7dereuDNHMDmRH72BMYSBvrfAY77mDzEpW1TGK9Qxch3\nvm1tKCdZTnYSMoq0nbc/QIFyn20StR6OD+0nS94NN8IpGM882D7fWITrhn4XrZe3\nrdE4C0JqAQ6BKL0ka4j93eQ=\n-----END PRIVATE KEY-----\n",
|
35 |
+
# "client_email": "[email protected]",
|
36 |
+
# "client_id": "102736498211031284416",
|
37 |
+
# "auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
38 |
+
# "token_uri": "https://oauth2.googleapis.com/token",
|
39 |
+
# "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
40 |
+
# "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/geogenderali%40kinetic-guild-369323.iam.gserviceaccount.com",
|
41 |
+
# "universe_domain": "googleapis.com"
|
42 |
+
# }'
|
43 |
+
#
|
44 |
+
# os.environ['apiKey'] = json_string
|
45 |
+
#
|
46 |
+
|
47 |
+
jsonApi = os.getenv('jsonApi')
|
48 |
+
bucket_name = os.getenv('bucket_name')
|
49 |
+
file_name = os.getenv('file_name')
|
50 |
+
print(file_name)
|
51 |
+
print(bucket_name)
|
52 |
+
print(jsonApi)
|
53 |
+
service_account_info = json.loads(jsonApi)
|
54 |
+
client = storage.Client.from_service_account_info(service_account_info)
|
55 |
+
|
56 |
+
blob = client.get_bucket(bucket_name).blob(file_name)
|
57 |
+
|
58 |
+
with blob.open("r") as file:
|
59 |
+
df = pd.read_csv(file,sep="\t")
|
60 |
+
|
61 |
+
print(df.head())
|
62 |
+
# Now df contains the data from the CSV file
|
63 |
+
print(df.head())
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
#!/usr/bin/env python3
|
86 |
+
|
87 |
+
__copyright__ = "Copyright (C) 2022 Davide Rossi"
|
88 |
+
__license__ = "GPL-3.0-or-later"
|
89 |
+
|
90 |
+
import pandas as pd
|
91 |
+
import numpy as np
|
92 |
+
import re
|
93 |
+
import random
|
94 |
+
import pytz
|
95 |
+
import datetime
|
96 |
+
import time
|
97 |
+
import regex
|
98 |
+
import click
|
99 |
+
import code
|
100 |
+
import logging
|
101 |
+
from enum import Enum
|
102 |
+
import csv
|
103 |
+
from unidecode import unidecode
|
104 |
+
from collections import defaultdict
|
105 |
+
|
106 |
+
|
107 |
+
class Algorithms(str,Enum):
|
108 |
+
AVG = 'avg'
|
109 |
+
PROD = 'prod'
|
110 |
+
class NameNationGuesser:
|
111 |
+
WORD_RE = re.compile(r'\W+')
|
112 |
+
CAMEL_RE = re.compile(r'([A-Z][a-z]+)')
|
113 |
+
UPPER_RE = re.compile(r'([A-Z]+)')
|
114 |
+
UNDER_RE = re.compile(r'(_)')
|
115 |
+
LEADING_BLANKS_RE = re.compile(r'^\s*')
|
116 |
+
DEFAULT_PLACES_FILENAME = 'places.tab'
|
117 |
+
DEFAULT_NAMES_FILENAME = 'names_codes.tab'
|
118 |
+
DEFAULT_GUESS_FIRST_SECOND_MIN_MAG = None
|
119 |
+
DEFAULT_ALGORITHM = Algorithms.AVG
|
120 |
+
DEFAULT_COLUMN_NAME="zone"
|
121 |
+
|
122 |
+
def __init__(self, places_filename=DEFAULT_PLACES_FILENAME, names_filename=DEFAULT_NAMES_FILENAME, algorithm=DEFAULT_ALGORITHM, guess_first_second_min_mag=DEFAULT_GUESS_FIRST_SECOND_MIN_MAG,place_column_name=DEFAULT_COLUMN_NAME):
|
123 |
+
self.zone_by_place = {}
|
124 |
+
self.pop_by_place = {}
|
125 |
+
self.min_freq_by_place = {}
|
126 |
+
self.cumsum_population_by_code = {}
|
127 |
+
self.name_rows_by_name = defaultdict(list)
|
128 |
+
self.all_timezones = None
|
129 |
+
self.places_data = None
|
130 |
+
self.names_data = None
|
131 |
+
self.names_data_empty = None
|
132 |
+
self.names_data_col_names = ['name', 'type', 'code', 'frequency', 'gender']
|
133 |
+
self.names_data_dtype = {'frequency': float}
|
134 |
+
self.names_data_by_name = None
|
135 |
+
self.guess_first_second_min_mag = guess_first_second_min_mag
|
136 |
+
self.algorithm = algorithm
|
137 |
+
self.place_column_name=place_column_name
|
138 |
+
self.places_data = pd.read_csv(places_filename, sep='\t', header=0, keep_default_na=False, na_values='',
|
139 |
+
names=['country', 'state_name', 'region', 'un_subregion', 'zone', 'timezone', 'population', 'sovereignty_numeric', 'sovereignty', 'code', 'code3', 'code_num', 'cctdl',"_",'sub-region'],
|
140 |
+
dtype={'population':int, 'sovereignty_numeric':int, 'code_num':int})
|
141 |
+
|
142 |
+
self.names_data = self.__read_names_data(names_filename)
|
143 |
+
self.names_data_empty = pd.DataFrame().reindex(columns=self.names_data.columns)
|
144 |
+
|
145 |
+
@classmethod
|
146 |
+
def advanced_splitter(cls, seq):
|
147 |
+
"""Split words separated by spaces or using CamelNotation"""
|
148 |
+
return cls.WORD_RE.split(cls.LEADING_BLANKS_RE.sub(r'', cls.CAMEL_RE.sub(r' \1', cls.UPPER_RE.sub(r' \1', cls.UNDER_RE.sub(r' ', seq)))))
|
149 |
+
|
150 |
+
def __get_cumsum_population(self, code):
|
151 |
+
if code not in self.cumsum_population_by_code:
|
152 |
+
df = self.places_data
|
153 |
+
#create a data frame for a specific code with an ordered cumsum population
|
154 |
+
df_code = df[(df['code'] == code) & (df['population'] != 0)][['timezone', 'population']]
|
155 |
+
population = df_code['population'].sum()
|
156 |
+
df_code = df_code.sort_values('population')
|
157 |
+
df_code['population'] = df_code['population'].cumsum()
|
158 |
+
self.cumsum_population_by_code[code] = (population, df_code.copy().reset_index(drop=True))
|
159 |
+
return self.cumsum_population_by_code[code]
|
160 |
+
|
161 |
+
def compatible_datetime_offset(self, code):
|
162 |
+
#extract a random timezone, with a chance proportional to the population of the people in that timezone
|
163 |
+
population, df_code = self.__get_cumsum_population(code)
|
164 |
+
timezone_name = df_code[df_code['population'] >= random.randrange(population)].iloc[0]['timezone']
|
165 |
+
valid_time = False
|
166 |
+
while not valid_time:
|
167 |
+
valid_time = True
|
168 |
+
#create a random datetime from 1/1/1970 to now
|
169 |
+
current_epoch = time.time()
|
170 |
+
epoch = random.uniform(0, current_epoch)
|
171 |
+
dt = datetime.datetime.fromtimestamp(epoch)
|
172 |
+
#localize the datetime using the timezone and calculate its UTC offset
|
173 |
+
timezone = pytz.timezone(timezone_name)
|
174 |
+
try: #it may not work because of an ambiguous or unexistent time for that timezone in that date
|
175 |
+
offset = int(timezone.utcoffset(dt).total_seconds()/60)
|
176 |
+
except:
|
177 |
+
valid_time = False
|
178 |
+
return dt, offset
|
179 |
+
def is_roman_language(self,text):
|
180 |
+
roman_pattern = r'^\p{Latin}+$'
|
181 |
+
match = regex.match(roman_pattern, text, flags=regex.UNICODE)
|
182 |
+
return match is not None
|
183 |
+
|
184 |
+
def text_to_romanize(self,text):
|
185 |
+
text=str(text)
|
186 |
+
translator = str.maketrans(r"-._\/+", " ")
|
187 |
+
text= text.translate(translator)
|
188 |
+
if not self.is_roman_language(text):
|
189 |
+
return unidecode(text)
|
190 |
+
else :
|
191 |
+
return text
|
192 |
+
def __read_names_data(self, names_filename):
|
193 |
+
self.names_data_by_name = defaultdict(list)
|
194 |
+
names = self.names_data_col_names
|
195 |
+
name_pos = names.index('name')
|
196 |
+
dtype = self.names_data_dtype
|
197 |
+
rows = []
|
198 |
+
with open(names_filename, "r") as file:
|
199 |
+
reader = csv.reader(file, delimiter='\t')
|
200 |
+
next(reader)
|
201 |
+
for row in reader:
|
202 |
+
name = row[name_pos].lower()
|
203 |
+
row[name_pos] = name
|
204 |
+
rows.append(row)
|
205 |
+
self.name_rows_by_name[name].append(row)
|
206 |
+
names_data = pd.DataFrame(rows)
|
207 |
+
names_data.columns = names
|
208 |
+
names_data = names_data.astype(dtype)
|
209 |
+
|
210 |
+
return names_data
|
211 |
+
|
212 |
+
def place_population(self, code):
|
213 |
+
if code not in self.pop_by_place:
|
214 |
+
self.pop_by_place[code] = self.places_data[self.places_data.code == code].population.sum()
|
215 |
+
return self.pop_by_place[code]
|
216 |
+
|
217 |
+
def min_frequency(self, code):
|
218 |
+
if code not in self.min_freq_by_place:
|
219 |
+
# min_freq_dict[code] = names_data[names_data.code == code]['frequency'].min()
|
220 |
+
# self.min_freq_by_place[code] = self.names_data['frequency'].min()
|
221 |
+
self.min_freq_by_place[code] = self.names_data[(self.names_data['code'] == code) & (self.names_data['frequency'] > 0)]['frequency'].min()
|
222 |
+
return self.min_freq_by_place[code]
|
223 |
+
|
224 |
+
def name_data_for_name(self, name):
|
225 |
+
if name in self.names_data_by_name:
|
226 |
+
return self.names_data_by_name[name]
|
227 |
+
elif name in self.name_rows_by_name:
|
228 |
+
self.names_data_by_name[name] = pd.DataFrame(self.name_rows_by_name[name])
|
229 |
+
self.names_data_by_name[name].columns = self.names_data_col_names
|
230 |
+
self.names_data_by_name[name] = self.names_data_by_name[name].astype(self.names_data_dtype)
|
231 |
+
return self.names_data_by_name[name]
|
232 |
+
else:
|
233 |
+
return self.names_data_empty
|
234 |
+
# return names_data_by_name[name] if name in names_data_by_name else names_data_empty #that is deadly slow, it's better to create a new data frame for each name
|
235 |
+
|
236 |
+
def get_all_timezones(self):
|
237 |
+
df = self.places_data
|
238 |
+
if self.all_timezones is None:
|
239 |
+
self.all_timezones = list(df[(df['timezone'].notnull()) & (df['population'] > 0)]['timezone'].unique())
|
240 |
+
return self.all_timezones
|
241 |
+
|
242 |
+
def country_pop_from_datetime(self, dt, offset):
|
243 |
+
df = self.places_data
|
244 |
+
places_pop = {}
|
245 |
+
for tz in self.get_all_timezones():
|
246 |
+
timezone = pytz.timezone(tz)
|
247 |
+
try:
|
248 |
+
timezone_offset = timezone.utcoffset(dt).total_seconds() // 60
|
249 |
+
except pytz.exceptions.AmbiguousTimeError:
|
250 |
+
timezone_offset = timezone.utcoffset(dt, is_dst=True).total_seconds() // 60
|
251 |
+
except pytz.exceptions.NonExistentTimeError:
|
252 |
+
timezone_offset = None
|
253 |
+
if timezone_offset == offset:
|
254 |
+
df_tz_pop = df[df['timezone'] == tz].iloc[0]
|
255 |
+
population = df_tz_pop['population']
|
256 |
+
code = df_tz_pop['code']
|
257 |
+
places_pop[code] = population
|
258 |
+
return places_pop
|
259 |
+
|
260 |
+
def score_a_name_part(self, name, countries=None, country_pop_map=None):
|
261 |
+
if countries is not None and country_pop_map is not None:
|
262 |
+
raise ValueError(f'At least one of countries and country_pop_map must be None')
|
263 |
+
name_data = self.name_data_for_name(name)
|
264 |
+
if country_pop_map is not None:
|
265 |
+
countries = list(country_pop_map.keys())
|
266 |
+
if countries is not None:
|
267 |
+
name_data = name_data[name_data.code.isin(countries)]
|
268 |
+
score_dict = {}
|
269 |
+
for code, _, frequency in zip(name_data.code, name_data.type, name_data.frequency):
|
270 |
+
# if not places_data[places_data.code == code].empty:
|
271 |
+
if code in self.places_data["code"].values:
|
272 |
+
if country_pop_map is not None:
|
273 |
+
population = country_pop_map[code]
|
274 |
+
else:
|
275 |
+
population = self.place_population(code)
|
276 |
+
score = population * frequency
|
277 |
+
score_dict[code] = score if not code in score_dict else score + score_dict[code]
|
278 |
+
else:
|
279 |
+
raise LookupError(f'{code} not in places data frame')
|
280 |
+
|
281 |
+
return [(code, score) for code, score in sorted(score_dict.items(), key=lambda item: item[1], reverse=True)], score_dict
|
282 |
+
|
283 |
+
def guess_scores(self, name, countries=None, country_pop_map=None, return_dict=False):
|
284 |
+
if countries is not None and country_pop_map is not None:
|
285 |
+
raise ValueError(f'At least one of countries and country_pop_map must be None')
|
286 |
+
#collect scores dict for all name parts
|
287 |
+
score_parts = []
|
288 |
+
name = name.lower()
|
289 |
+
for name_part in NameNationGuesser.advanced_splitter(name):
|
290 |
+
_, score_part_dict = self.score_a_name_part(name_part, countries=countries, country_pop_map=country_pop_map)
|
291 |
+
|
292 |
+
score_parts.append(score_part_dict)
|
293 |
+
#identify all places in the scores
|
294 |
+
all_places = set()
|
295 |
+
for score_part in score_parts:
|
296 |
+
all_places = all_places.union(set(score_part.keys()))
|
297 |
+
parts = len(score_parts)
|
298 |
+
#construct a scores dict with the score for each place
|
299 |
+
scores_avg = {}
|
300 |
+
for place in all_places:
|
301 |
+
scores = []
|
302 |
+
population = self.place_population(place) #TODO: should we use the population of country_pop_map if available?
|
303 |
+
for score_part in score_parts:
|
304 |
+
if place in score_part:
|
305 |
+
scores.append(score_part[place])
|
306 |
+
else:
|
307 |
+
if self.algorithm == Algorithms.AVG:
|
308 |
+
scores.append(0)
|
309 |
+
elif self.algorithm == Algorithms.PROD:
|
310 |
+
scores.append(self.min_frequency(place) * population)
|
311 |
+
if self.algorithm == Algorithms.AVG:
|
312 |
+
score = sum(scores) / len(scores)
|
313 |
+
elif self.algorithm == Algorithms.PROD:
|
314 |
+
score = np.prod([score/population for score in scores]) * population #each score part is already multiplied by population, this fixes that
|
315 |
+
else:
|
316 |
+
raise ValueError(f'Unknown algorithm: {self.algorithm}')
|
317 |
+
scores_avg[place] = score
|
318 |
+
retval = [(code, score) for code, score in sorted(scores_avg.items(), key=lambda item: item[1], reverse=True)]
|
319 |
+
if return_dict:
|
320 |
+
return retval, scores_avg
|
321 |
+
else:
|
322 |
+
return retval
|
323 |
+
|
324 |
+
def guess(self, name, countries=None, country_pop_map=None):
|
325 |
+
if countries is not None and country_pop_map is not None:
|
326 |
+
raise ValueError(f'At least one of countries and country_pop_map must be None')
|
327 |
+
scores = self.guess_scores(name, countries=countries, country_pop_map=country_pop_map)
|
328 |
+
if len(scores) == 0:
|
329 |
+
return None
|
330 |
+
if len(scores) == 1 or self.guess_first_second_min_mag is None:
|
331 |
+
place, _ = scores[0]
|
332 |
+
return place
|
333 |
+
else:
|
334 |
+
place, score0 = scores[0]
|
335 |
+
_, score1 = scores[1]
|
336 |
+
if score0 >= score1 * self.guess_first_second_min_mag:
|
337 |
+
return place
|
338 |
+
else:
|
339 |
+
return None
|
340 |
+
|
341 |
+
|
342 |
+
def zone_scores_from_place_scores(self, score_list, return_dict=False):
|
343 |
+
score_dict = {}
|
344 |
+
for code, score in score_list:
|
345 |
+
zone = self.get_zone_by_place(code)
|
346 |
+
score_dict[zone] = score if zone not in score_dict else score + score_dict[zone]
|
347 |
+
retval = [(zone, score) for zone, score in sorted(score_dict.items(), key=lambda item: item[1], reverse=True)]
|
348 |
+
|
349 |
+
if return_dict:
|
350 |
+
return retval, score_dict
|
351 |
+
else:
|
352 |
+
return retval
|
353 |
+
|
354 |
+
|
355 |
+
def zone_scores(self, name, countries=None, country_pop_map=None, return_dict=False):
|
356 |
+
if countries is not None and country_pop_map is not None:
|
357 |
+
raise ValueError(f'At least one of countries and country_pop_map must be None')
|
358 |
+
score_list = self.guess_scores(name, countries=countries, country_pop_map=country_pop_map)
|
359 |
+
return self.zone_scores_from_place_scores(score_list, return_dict=return_dict)
|
360 |
+
|
361 |
+
def guess_zone(self, name, countries=None, country_pop_map=None):
|
362 |
+
scores = self.zone_scores(name, countries=countries, country_pop_map=country_pop_map)
|
363 |
+
if len(scores) == 0:
|
364 |
+
return None
|
365 |
+
|
366 |
+
if len(scores) == 1 or self.guess_first_second_min_mag is None:
|
367 |
+
place, _ = scores[0]
|
368 |
+
return place
|
369 |
+
else:
|
370 |
+
place, score0 = scores[0]
|
371 |
+
_, score1 = scores[1]
|
372 |
+
if score0 >= score1 * self.guess_first_second_min_mag:
|
373 |
+
return place
|
374 |
+
else:
|
375 |
+
return None
|
376 |
+
|
377 |
+
|
378 |
+
|
379 |
+
def get_zone_by_place(self, code):
|
380 |
+
if code in self.zone_by_place:
|
381 |
+
return self.zone_by_place[code]
|
382 |
+
places_data_code = self.places_data[self.places_data.code == code]
|
383 |
+
zone = places_data_code.loc[places_data_code['population'].idxmax()][self.place_column_name]
|
384 |
+
self.zone_by_place[code] = zone
|
385 |
+
|
386 |
+
return zone
|