Spaces:
Running
Running
Alekseystr
commited on
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from gtts import gTTS
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
|
9 |
+
language_model_name = "Qwen/Qwen2-1.5B-Instruct"
|
10 |
+
language_model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
language_model_name,
|
12 |
+
torch_dtype="auto",
|
13 |
+
device_map="auto"
|
14 |
+
)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(language_model_name)
|
16 |
+
|
17 |
+
def process_input(input_text, action):
|
18 |
+
if action == "Translate to English":
|
19 |
+
prompt = f"Please translate the following text into English: {input_text}"
|
20 |
+
lang = "en"
|
21 |
+
elif action == "Translate to Chinese":
|
22 |
+
prompt = f"Please translate the following text into Chinese: {input_text}"
|
23 |
+
lang = "zh-cn"
|
24 |
+
elif action == "Translate to Japanese":
|
25 |
+
prompt = f"Please translate the following text into Japanese: {input_text}"
|
26 |
+
lang = "ja"
|
27 |
+
elif action == "Translate to Russian":
|
28 |
+
prompt = f"Please translate the following text into Russian: {input_text}"
|
29 |
+
lang = "ru"
|
30 |
+
else:
|
31 |
+
prompt = input_text
|
32 |
+
lang = "en"
|
33 |
+
|
34 |
+
messages = [
|
35 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
36 |
+
{"role": "user", "content": prompt}
|
37 |
+
]
|
38 |
+
text = tokenizer.apply_chat_template(
|
39 |
+
messages,
|
40 |
+
tokenize=False,
|
41 |
+
add_generation_prompt=True
|
42 |
+
)
|
43 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
44 |
+
|
45 |
+
generated_ids = language_model.generate(
|
46 |
+
model_inputs.input_ids,
|
47 |
+
max_new_tokens=512
|
48 |
+
)
|
49 |
+
generated_ids = [
|
50 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
51 |
+
]
|
52 |
+
|
53 |
+
output_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
54 |
+
return output_text, lang
|
55 |
+
|
56 |
+
def text_to_speech(text, lang):
|
57 |
+
tts = gTTS(text=text, lang=lang)
|
58 |
+
filename = "output_audio.mp3"
|
59 |
+
tts.save(filename)
|
60 |
+
return filename
|
61 |
+
|
62 |
+
def handle_interaction(input_text, action):
|
63 |
+
output_text, lang = process_input(input_text, action)
|
64 |
+
audio_filename = text_to_speech(output_text, lang)
|
65 |
+
return output_text, audio_filename
|
66 |
+
|
67 |
+
action_options = ["Translate to English", "Translate to Chinese", "Translate to Russian", "效邪褌 褋 袠袠"]
|
68 |
+
|
69 |
+
iface = gr.Interface(
|
70 |
+
fn=handle_interaction,
|
71 |
+
inputs=[
|
72 |
+
gr.Textbox(label="input text"),
|
73 |
+
gr.Dropdown(action_options, label="select action")
|
74 |
+
],
|
75 |
+
outputs=[
|
76 |
+
gr.Textbox(label="output text"),
|
77 |
+
gr.Audio(label="output audio")
|
78 |
+
],
|
79 |
+
title="Translation and Chat App using AI",
|
80 |
+
description="Translate input text or chat based on the selected action.",
|
81 |
+
theme= "gradio/soft"
|
82 |
+
)
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
iface.launch(share=True)
|