File size: 8,635 Bytes
2cbe354
 
 
 
 
 
 
 
 
 
 
1896da0
 
 
2cbe354
 
1896da0
2cbe354
48a7a92
2cbe354
 
 
 
 
 
 
 
 
 
 
 
 
 
6624245
 
 
 
 
 
 
 
 
 
2cbe354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1444c
2cbe354
7c1444c
 
2cbe354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48a7a92
2cbe354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1444c
2cbe354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1444c
2cbe354
 
 
 
7c1444c
2cbe354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd891a
2cbe354
 
 
7dd891a
2cbe354
 
 
 
 
7dd891a
2cbe354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
import copy
import random
import time
from diffusers.models.transformers import FluxTransformer2DModel
import safetensors.torch
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import HfFileSystem, ModelCard
from safetensors.torch import load_file
from huggingface_hub import login

hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "John6666/hyper-flux1-dev-fp8-flux"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=good_vae).to(device)

model_id = ("zer0int/LongCLIP-GmP-ViT-L-14")
config = CLIPConfig.from_pretrained(model_id)
config.text_config.max_position_embeddings = 248
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True)
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=248)
pipe.tokenizer = clip_processor.tokenizer
pipe.text_encoder = clip_model.text_model
pipe.tokenizer_max_length = 248
pipe.text_encoder.dtype = torch.bfloat16
    
MAX_SEED = 2**32-1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")


def update_selection(evt: gr.SelectData, width, height):
    selected_lora = loras[evt.index]
    new_placeholder = f"Prompt with activator word(s): '{selected_lora['trigger_word']}'! "
    lora_repo = selected_lora["repo"]
    lora_trigger = selected_lora['trigger_word']
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}). Prompt using: '{lora_trigger}'!"
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        width,
        height,
    )

@spaces.GPU()
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    
    with calculateDuration("Generating image"):
        # Generate image
        image = pipe(
            prompt=f"{prompt} {trigger_word}",
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": lora_scale},
        ).images[0]
    return image

def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.")

    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora['trigger_word']
    if(trigger_word):
        if "trigger_position" in selected_lora:
            if selected_lora["trigger_position"] == "prepend":
                prompt_mash = f"{trigger_word} {prompt}"
            else:
                prompt_mash = f"{prompt} {trigger_word}"
        else:
            prompt_mash = f"{trigger_word} {prompt}"
    else:
        prompt_mash = prompt

    # Load LoRA weights
    with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
        if "weights" in selected_lora:
            pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
        else:
            pipe.load_lora_weights(lora_path)
        
    # Set random seed for reproducibility
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
    
    image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
    pipe.to("cpu")
    pipe.unload_lora_weights()
    return image, seed  

run_lora.zerogpu = True

css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
    title = gr.HTML(
        """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> SOONfactory </h1>""",
        elem_id="title",
    )
    	    # Info blob stating what the app is running
    info_blob = gr.HTML(
        """<div id="info_blob"> Novorealist LoRa-stocked Birthweek-inspired Img Manufactory for Dunova, Dunovas, & Dunovaists! Nearly all of the LoRA adapters accessible via this space were trained by us in an extensive progression of inspired experiments and conceptual mini-projects. Check out our poetry translations at WWW.SILVERagePOETS.com Find our music on SoundCloud @ AlekseyCalvin & YouTube @ SilverAgePoets / AlekseyCalvin! </div>"""
    )

        # Info blob stating what the app is running
    info_blob = gr.HTML(
        """<div id="info_blob"> To reinforce/focus in selected fine-tuned LoRAs (Low-Rank Adapters), add special “trigger" words/phrases to your prompts. </div>"""
    )
    selected_index = gr.State(None)
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
    with gr.Row():
        with gr.Column(scale=3):
            selected_info = gr.Markdown("")
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Inventory",
                allow_preview=False,
                columns=3,
                elem_id="gallery"
            )
            
        with gr.Column(scale=4):
            result = gr.Image(label="Generated Image")

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=True):
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=0.5, value=3.0)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=12)
                
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1088)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.0, step=0.01, value=1.05)

    gallery.select(
        update_selection,
        inputs=[width, height],
        outputs=[prompt, selected_info, selected_index, width, height]
    )

    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
        outputs=[result, seed]
    )

app.queue(default_concurrency_limit=2).launch(show_error=True)
app.launch()