Spaces:
Sleeping
Sleeping
Commit
·
1d47317
0
Parent(s):
Duplicate from LumeraDS/deathCertReader
Browse filesCo-authored-by: D P <[email protected]>
- .gitattributes +34 -0
- README.md +13 -0
- app.py +386 -0
- models/CNN_deskew_v0.0.2.onnx +3 -0
- models/ResNet_od_v0.0.2.onnx +3 -0
- models/autoencoder_denoise_v0.0.2.onnx +3 -0
- requirements.txt +9 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: DeathCertifReader
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.28.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: LumeraDS/deathCertReader
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from alessandro
|
2 |
+
import re
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from paddleocr import PaddleOCR
|
6 |
+
from PIL import Image
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import pandas as pd
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
ocr = PaddleOCR(lang='sl')
|
12 |
+
|
13 |
+
# def convert_to_image(document):
|
14 |
+
# '''
|
15 |
+
# Function: converts the pdf to image
|
16 |
+
# Input: pdf document
|
17 |
+
# Output: image
|
18 |
+
# '''
|
19 |
+
|
20 |
+
# # reads PDFs
|
21 |
+
# # reads only first page of PDF documents
|
22 |
+
|
23 |
+
# # os.path.join(document.name, 'sample.pdf')
|
24 |
+
# pdf_document = load_from_file(document)
|
25 |
+
# page_1 = pdf_document.create_page(0)
|
26 |
+
# images = renderer.render_page(page_1)
|
27 |
+
# image_data = image.data
|
28 |
+
# # convert the image to numpy array
|
29 |
+
# image = np.array(images)
|
30 |
+
# # handles non-PDF formats (e.g., .tif)
|
31 |
+
# # else:
|
32 |
+
# # images = Image.open(document)
|
33 |
+
# # # convert the image to RGB
|
34 |
+
# # image = images.convert('RGB')
|
35 |
+
# # # convert the image to numpy array
|
36 |
+
# # image = np.array(image)
|
37 |
+
# # # TODO: change to dynamic scaling
|
38 |
+
# # # downscale the image
|
39 |
+
# # scale = 1.494
|
40 |
+
# # width = int(image.shape[1] / scale)
|
41 |
+
# # height = int(image.shape[0] / scale)
|
42 |
+
# # dim = (width, height)
|
43 |
+
# # image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
|
44 |
+
# # fig, ax = plt.subplots(figsize=(15, 10))
|
45 |
+
# # ax.imshow(image, cmap = 'gray')
|
46 |
+
# return image
|
47 |
+
|
48 |
+
|
49 |
+
def deskew(image, model):
|
50 |
+
'''
|
51 |
+
Function: deskew an image
|
52 |
+
Input: takes an image as an array
|
53 |
+
Output: deskewed image
|
54 |
+
'''
|
55 |
+
|
56 |
+
# map the model classes to the actual degree of skew
|
57 |
+
map = { 0: '-1', 1: '-10', 2: '-11', 3: '-12', 4: '-13',
|
58 |
+
5: '-14',6: '-15', 7: '-2', 8: '-3', 9: '-4',
|
59 |
+
10: '-5',11: '-6',12: '-7', 13: '-8', 14: '-9',
|
60 |
+
15: '0', 16: '1', 17: '10', 18: '11', 19: '12',
|
61 |
+
20: '13',21: '14',22: '15', 23: '180',24: '2',
|
62 |
+
25: '270',26: '3',27: '4', 28: '5', 29: '6',
|
63 |
+
30: '7', 31: '8',32: '9', 33: '90'}
|
64 |
+
|
65 |
+
image_d = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
66 |
+
width = int(image_d.shape[1] * 0.2)
|
67 |
+
height = int(image_d.shape[0] * 0.2)
|
68 |
+
dim = (width, height)
|
69 |
+
# resize image
|
70 |
+
res = cv2.resize(image_d, dim, interpolation = cv2.INTER_AREA)
|
71 |
+
resized = cv2.resize(res, (200, 200))
|
72 |
+
# add two dimensions to feed to the model
|
73 |
+
resized = resized.astype('float32').reshape(1, 200, 200 ,1)
|
74 |
+
# normalize
|
75 |
+
resized = resized/255
|
76 |
+
# predictions
|
77 |
+
predictions = model.run(None, {'conv2d_input': resized})
|
78 |
+
# best prediction
|
79 |
+
pred = predictions[0].argmax()
|
80 |
+
# angle of skew
|
81 |
+
angle = int(map[pred])
|
82 |
+
skew_confidence = predictions[0][0][pred] * 100
|
83 |
+
# deskew original image
|
84 |
+
if angle == 90:
|
85 |
+
deskewed_image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
86 |
+
return deskewed_image, angle, skew_confidence
|
87 |
+
if angle == 270:
|
88 |
+
deskewed_image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
|
89 |
+
return deskewed_image, angle, skew_confidence
|
90 |
+
|
91 |
+
(h, w) = image.shape[:2]
|
92 |
+
center = (w // 2, h // 2)
|
93 |
+
M = cv2.getRotationMatrix2D(center, -angle, 1.0)
|
94 |
+
deskewed_image = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC,
|
95 |
+
borderMode=cv2.BORDER_REPLICATE)
|
96 |
+
return deskewed_image, angle, skew_confidence
|
97 |
+
|
98 |
+
|
99 |
+
def prepare_image_to_autoencoder(image):
|
100 |
+
'''
|
101 |
+
Function: prepare the image to be passed to the autoencoder.
|
102 |
+
Input: image (_type_): deskewed image
|
103 |
+
Output: resized image to be passed to the autoencoder
|
104 |
+
'''
|
105 |
+
|
106 |
+
height, width = image.shape[:2]
|
107 |
+
target_height = 600
|
108 |
+
target_width = 600
|
109 |
+
image = image[int(height/3.6): int(height/1.87), int(width/3.67): int(width/1.575)]
|
110 |
+
# reshape image to fixed size
|
111 |
+
image = cv2.resize(image, (target_width, target_height))
|
112 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
113 |
+
# normalize images
|
114 |
+
image = image / 255.0
|
115 |
+
# reshape to pass image to autoencoder
|
116 |
+
image = image.reshape(target_height, target_width, 1)
|
117 |
+
return image
|
118 |
+
|
119 |
+
|
120 |
+
def autoencode_ONNX(image, model):
|
121 |
+
'''
|
122 |
+
Function: remove noise from image
|
123 |
+
Input: image and autoencoder model
|
124 |
+
Output: image
|
125 |
+
'''
|
126 |
+
|
127 |
+
image = image.astype(np.float32).reshape(1, 600, 600, 1)
|
128 |
+
image = model.run(None, {'input_2': image})
|
129 |
+
image = image[0]
|
130 |
+
image = image.squeeze()
|
131 |
+
image = image * 255
|
132 |
+
image = image.astype('uint8')
|
133 |
+
# fig, ax = plt.subplots(figsize=(8, 5))
|
134 |
+
# ax.imshow(image, cmap = 'gray')
|
135 |
+
return image
|
136 |
+
|
137 |
+
|
138 |
+
def detect_entries_ONNX(denoised, model):
|
139 |
+
'''
|
140 |
+
Function: detect boxes Priimek, Ime and Datum boxes
|
141 |
+
Priimek: lastname
|
142 |
+
Ime: firstname
|
143 |
+
Datum smrti: date of death
|
144 |
+
Input: image
|
145 |
+
Output: boxes and confidence scores
|
146 |
+
'''
|
147 |
+
|
148 |
+
# the object detection model requires a tensor(1, h, w, 3)
|
149 |
+
autoencoded_RGB = cv2.cvtColor(denoised, cv2.COLOR_GRAY2RGB)
|
150 |
+
# adds the 1 to the tensor
|
151 |
+
autoencoded_expanded = np.expand_dims(autoencoded_RGB, axis=0)
|
152 |
+
detections = model.run(None, {'input_tensor': autoencoded_expanded})
|
153 |
+
boxes = detections[1]
|
154 |
+
confidence = detections[4] # returns a ndarray in a list of list
|
155 |
+
boxes = np.array(boxes[0])
|
156 |
+
confidence = np.array(confidence).reshape(5, 1)
|
157 |
+
boxes_and_confidence = np.append(boxes, confidence, axis=1)
|
158 |
+
# reshapes the boxes to be sorted
|
159 |
+
boxes_and_confidence = boxes_and_confidence.reshape(5, 5)
|
160 |
+
# sorts
|
161 |
+
boxes_and_confidence = \
|
162 |
+
boxes_and_confidence[boxes_and_confidence[:, 0].argsort()]
|
163 |
+
# boxes (expressed in image %)
|
164 |
+
boxes = boxes_and_confidence[:, :-1]
|
165 |
+
# boxes (expressed in actual pixels: ymin, xmin, ymax, xmax)
|
166 |
+
boxes = boxes * 600
|
167 |
+
# confidence boxes
|
168 |
+
confidence_boxes = boxes_and_confidence[:, -1].tolist()
|
169 |
+
|
170 |
+
for box in boxes:
|
171 |
+
ymin, xmin, ymax, xmax = box.astype(int)
|
172 |
+
cv2.rectangle(autoencoded_RGB, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
|
173 |
+
plt.figure()
|
174 |
+
plt.imshow(cv2.cvtColor(autoencoded_RGB, cv2.COLOR_BGR2RGB))
|
175 |
+
plt.title("Detected Boxes")
|
176 |
+
plt.savefig("test.jpg")
|
177 |
+
img = cv2.imread("test.jpg")
|
178 |
+
return Image.fromarray(img), confidence_boxes
|
179 |
+
|
180 |
+
def extract_detected_entries_pdl(image):
|
181 |
+
|
182 |
+
result = ocr.ocr(image, cls=False)
|
183 |
+
|
184 |
+
# boxes = [line[0] for line in result]
|
185 |
+
# txts = [line[1][0] for line in result]
|
186 |
+
# scores = [line[1][1] for line in result]
|
187 |
+
# im_show = draw_ocr(image, boxes, txts, scores, font_path ='/usr/share/fonts/truetype/liberation/LiberationMono-Regular.ttf')
|
188 |
+
txt = []
|
189 |
+
scores = []
|
190 |
+
boxes = []
|
191 |
+
for r in result[0]:
|
192 |
+
txt.append(cleanString_basic(r[-1][0]))
|
193 |
+
scores.append(r[-1][1])
|
194 |
+
boxes.append(r[0])
|
195 |
+
|
196 |
+
return pd.DataFrame(np.transpose([txt,scores, boxes]),columns = ["Text","Score", "Boundary Box"])
|
197 |
+
|
198 |
+
def cleanString_basic(word):
|
199 |
+
word = word.replace("$", "s")
|
200 |
+
return word
|
201 |
+
|
202 |
+
def clean_string_start(string: 'str'):
|
203 |
+
|
204 |
+
names_flags = "√"
|
205 |
+
chars_to_remove = ['!', "'", '[', ']', '*', '|', '.', ':', '\\', '/']
|
206 |
+
if string.startswith(tuple(chars_to_remove)):
|
207 |
+
names_flags = string[0]
|
208 |
+
string = string[1:]
|
209 |
+
return string, names_flags
|
210 |
+
|
211 |
+
def clean_string_end(string: 'str'):
|
212 |
+
|
213 |
+
names_flags = "√"
|
214 |
+
chars_to_remove = ['!', "'", '[', ']', '*', '|', '.', ':', '\\', '/']
|
215 |
+
if string.endswith(tuple(chars_to_remove)):
|
216 |
+
names_flags = string[-1]
|
217 |
+
string = string[:-1]
|
218 |
+
return string, names_flags
|
219 |
+
|
220 |
+
def clean_dates(date: 'str'):
|
221 |
+
'''
|
222 |
+
Function: cleans the fields "datum smrti" and returns the char removed.
|
223 |
+
Input: date (string format)
|
224 |
+
Output: cleaned frame
|
225 |
+
'''
|
226 |
+
|
227 |
+
date_flags = "Y"
|
228 |
+
# finds special characters in the string
|
229 |
+
special_char = re.findall(r'[a-zA-Z!\[\|]', date)
|
230 |
+
if len(special_char) > 0:
|
231 |
+
date_flags = special_char
|
232 |
+
# remove special characters in the string
|
233 |
+
string = re.sub(r'[a-zA-Z!\[\|]', '', date)
|
234 |
+
return string, date_flags
|
235 |
+
|
236 |
+
def regex_string(string):
|
237 |
+
'''
|
238 |
+
Function: swaps the carachters with the "hat" with the regular ones
|
239 |
+
Input: string
|
240 |
+
Output: cleaned string
|
241 |
+
'''
|
242 |
+
map = {'Č': 'C',
|
243 |
+
'č': 'c',
|
244 |
+
'Š': 'S',
|
245 |
+
'š': 's',
|
246 |
+
'Ž': 'Z',
|
247 |
+
'ž':'z'}
|
248 |
+
for x in string:
|
249 |
+
if x in map:
|
250 |
+
string = string.replace(x, map[x])
|
251 |
+
return string
|
252 |
+
|
253 |
+
import onnxruntime
|
254 |
+
|
255 |
+
def pdf_deskew_gr (document):
|
256 |
+
img = convert_to_image(document)
|
257 |
+
model = onnxruntime.InferenceSession("./models/CNN_deskew_v0.0.2.onnx")
|
258 |
+
deskewed_image, angle, skew_confidence = deskew(img, model)
|
259 |
+
return deskewed_image, angle, skew_confidence
|
260 |
+
|
261 |
+
def pdf_clean_gr(document):
|
262 |
+
img = convert_to_image(document)
|
263 |
+
model = onnxruntime.InferenceSession("./models/CNN_deskew_v0.0.2.onnx")
|
264 |
+
deskewed_image, angle, skew_confidence = deskew(img, model)
|
265 |
+
img = prepare_image_to_autoencoder(img)
|
266 |
+
model = onnxruntime.InferenceSession("./models/autoencoder_denoise_v0.0.2.onnx")
|
267 |
+
img = autoencode_ONNX(img, model)
|
268 |
+
return img
|
269 |
+
|
270 |
+
def pdf_resnet_gr(document):
|
271 |
+
img = convert_to_image(document)
|
272 |
+
model = onnxruntime.InferenceSession("/content/drive/MyDrive/cpo/Alessandro/ai_models/Latest/CNN_deskew_v0.0.2.onnx")
|
273 |
+
deskewed_image, angle, skew_confidence = deskew(img, model)
|
274 |
+
img = prepare_image_to_autoencoder(img)
|
275 |
+
model = onnxruntime.InferenceSession("/content/drive/MyDrive/cpo/Alessandro/ai_models/Latest/autoencoder_denoise_v0.0.2.onnx")
|
276 |
+
img = autoencode_ONNX(img, model)
|
277 |
+
model = onnxruntime.InferenceSession("/content/drive/MyDrive/cpo/Alessandro/ai_models/Latest/ResNet_od_v0.0.2.onnx")
|
278 |
+
boxes, confidence_boxes = detect_entries_ONNX(img, model)
|
279 |
+
return boxes, confidence_boxes
|
280 |
+
|
281 |
+
def pdf_extract_gr(extractimg):
|
282 |
+
# extractimg = convert_to_image(document)
|
283 |
+
extractimg = np.array(extractimg)
|
284 |
+
model = onnxruntime.InferenceSession("./models/CNN_deskew_v0.0.2.onnx")
|
285 |
+
deskewed_image, angle, skew_confidence = deskew(extractimg, model)
|
286 |
+
cleanimg = prepare_image_to_autoencoder(deskewed_image)
|
287 |
+
model = onnxruntime.InferenceSession("./models/autoencoder_denoise_v0.0.2.onnx")
|
288 |
+
img = autoencode_ONNX(cleanimg, model)
|
289 |
+
# model = onnxruntime.InferenceSession("./models/ResNet_od_v0.0.2.onnx")
|
290 |
+
# boxes, confidence_boxes = detect_entries_ONNX(img, model)
|
291 |
+
# confidence_entries, lastname, firstname, death_date = extract_detected_entries_pdl(img, boxes)
|
292 |
+
|
293 |
+
df = extract_detected_entries_pdl(img)
|
294 |
+
|
295 |
+
firstnamerow = df.iloc[0]
|
296 |
+
firstname = firstnamerow[0]
|
297 |
+
firstnameconfidence = round(float(firstnamerow[1]) * 100,3)
|
298 |
+
firstnameconfidence = f"{firstnameconfidence}%"
|
299 |
+
|
300 |
+
surnamerow = df.iloc[1]
|
301 |
+
surname = surnamerow[0]
|
302 |
+
surnameconfidence = round(float(surnamerow[1]) * 100,3)
|
303 |
+
surnameconfidence = f"{surnameconfidence}%"
|
304 |
+
|
305 |
+
dodrow = df.iloc[2]
|
306 |
+
dodname = dodrow[0]
|
307 |
+
dodconfidence = round(float(dodrow[1]) * 100,3)
|
308 |
+
dodconfidence = f"{dodconfidence}%"
|
309 |
+
|
310 |
+
return df, deskewed_image, angle, skew_confidence, img, firstname, firstnameconfidence, surname, surnameconfidence, dodname, dodconfidence
|
311 |
+
|
312 |
+
css = """
|
313 |
+
.run_container {
|
314 |
+
display: flex;
|
315 |
+
flex-direction: column;
|
316 |
+
align-items: center;
|
317 |
+
gap: 10px;
|
318 |
+
}
|
319 |
+
|
320 |
+
.run_btn {
|
321 |
+
margin: auto;
|
322 |
+
width: 50%;
|
323 |
+
display: flex;
|
324 |
+
}
|
325 |
+
.upload_cell {
|
326 |
+
margin: auto;
|
327 |
+
display: flex;
|
328 |
+
}
|
329 |
+
|
330 |
+
.results_container {
|
331 |
+
display: flex;
|
332 |
+
justify-content: space-evenly;
|
333 |
+
}
|
334 |
+
|
335 |
+
.results_cell {
|
336 |
+
|
337 |
+
}
|
338 |
+
|
339 |
+
"""
|
340 |
+
|
341 |
+
import gradio as gr
|
342 |
+
|
343 |
+
with gr.Blocks(css = css) as demo:
|
344 |
+
gr.Markdown("""
|
345 |
+
# Death Certificate Extraction
|
346 |
+
""", elem_classes = "h1")
|
347 |
+
gr.Markdown("Upload a PDF, extract data")
|
348 |
+
with gr.Box(elem_classes = "run_container"):
|
349 |
+
# ExtractInput = gr.File(label = "Death Certificate", elem_classes="upload_cell")
|
350 |
+
ExtractButton = gr.Button(label = "Extract", elem_classes="run_btn")
|
351 |
+
with gr.Row(elem_id = "hide"):
|
352 |
+
with gr.Column():
|
353 |
+
ExtractInput = gr.Image()
|
354 |
+
with gr.Column():
|
355 |
+
# ExtractResult = gr.Image(label = "result")
|
356 |
+
with gr.Row(elem_classes = "results_container"):
|
357 |
+
FirstNameBox = gr.Textbox(label = "First Name", elem_classes = "results_cell")
|
358 |
+
FirstNameConfidenceBox = gr.Textbox(label = "First Name Confidence", elem_classes = "results_cell")
|
359 |
+
with gr.Row(elem_classes = "results_container"):
|
360 |
+
SurnameNameBox = gr.Textbox(label = "Surname", elem_classes = "results_cell")
|
361 |
+
SurnameNameConfidenceBox = gr.Textbox(label = "Surname Confidence", elem_classes = "results_cell")
|
362 |
+
with gr.Row(elem_classes = "results_container"):
|
363 |
+
DODBox = gr.Textbox(label = "Date of Death", elem_classes = "results_cell")
|
364 |
+
DODConfidenceBox = gr.Textbox(label = "Date of Death Confidence", elem_classes = "results_cell")
|
365 |
+
|
366 |
+
with gr.Accordion("Full Results", open = False):
|
367 |
+
ExtractDF = gr.Dataframe(label = "Results")
|
368 |
+
|
369 |
+
with gr.Accordion("Clean Image", open = False):
|
370 |
+
CleanOutput = gr.Image()
|
371 |
+
|
372 |
+
with gr.Accordion("Deskew", open = False):
|
373 |
+
DeskewOutput = gr.Image()
|
374 |
+
with gr.Column():
|
375 |
+
DeskewAngle = gr.Number(label = "Angle")
|
376 |
+
with gr.Column():
|
377 |
+
DeskewConfidence = gr.Number(label = "Confidence")
|
378 |
+
|
379 |
+
ExtractButton.click(fn=pdf_extract_gr,
|
380 |
+
inputs = ExtractInput,
|
381 |
+
outputs = [ExtractDF, DeskewOutput, DeskewAngle,
|
382 |
+
DeskewConfidence, CleanOutput, FirstNameBox,
|
383 |
+
FirstNameConfidenceBox, SurnameNameBox,
|
384 |
+
SurnameNameConfidenceBox, DODBox, DODConfidenceBox])
|
385 |
+
|
386 |
+
demo.launch(show_api=True, share=False, debug=True)
|
models/CNN_deskew_v0.0.2.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cb73b87df7c3aff0b1a8237e8d839fbb7d1ba80c6ea95f6b21782bf7ba02eb0
|
3 |
+
size 444268
|
models/ResNet_od_v0.0.2.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:120ba5866d26033b936a7f814f3c96ad62fa1a8cadbeb6a11bb5401d41966161
|
3 |
+
size 204978340
|
models/autoencoder_denoise_v0.0.2.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69b6a595e3ca6c0bb6fcda28022c436bd92579779f3ab5af58f1eb0bc904df44
|
3 |
+
size 607567
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
onnxruntime==1.12.1
|
2 |
+
opencv-contrib-python==4.6.0.66
|
3 |
+
opencv-python==4.6.0.66
|
4 |
+
paddle-bfloat==0.1.7
|
5 |
+
paddleocr==2.6.1.3
|
6 |
+
paddlepaddle==2.4.2
|
7 |
+
pandas==1.3.5
|
8 |
+
pdf2image==1.16.2
|
9 |
+
Pillow==9.3.0
|