import spaces import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import gradio as gr text_generator = None is_hugging_face = False def init(): global text_generator huggingface_token = os.getenv("HUGGINGFACE_TOKEN") if not huggingface_token: pass print("no HUGGINGFACE_TOKEN if you need set secret ") #raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" model_id = "google/gemma-2b" model_id = "Qwen/Qwen2.5-0.5B-Instruct" device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu") #device = "cuda" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token) print(model_id,device,dtype) histories = [] #model = None model = AutoModelForCausalLM.from_pretrained( model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device ) text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device) if not is_hugging_face: if next(model.parameters()).is_cuda: print("The model is on a GPU") else: print("The model is on a CPU") #print(f"text_generator.device='{text_generator.device}") if str(text_generator.device).strip() == 'cuda': print("The pipeline is using a GPU") else: print("The pipeline is using a CPU") print("initialized") @spaces.GPU def generate_text(messages): global text_generator if is_hugging_face:#need everytime initialize for ZeroGPU model = AutoModelForCausalLM.from_pretrained( model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device ) text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device) result = text_generator(messages, max_new_tokens=32, do_sample=True, temperature=0.7) generated_output = result[0]["generated_text"] if isinstance(generated_output, list): for message in reversed(generated_output): if message.get("role") == "assistant": content= message.get("content", "No content found.") return content return "No assistant response found." else: return "Unexpected output format." def call_generate_text(message, history): if len(message) == 0: message.append({"role": "system", "content": "you response around 10 words"}) # history.append({"role": "user", "content": message}) print(message) print(history) messages = history+[{"role":"user","content":message}] try: text = generate_text(messages) messages += [{"role":"assistant","content":text}] return "",messages except RuntimeError as e: print(f"An unexpected error occurred: {e}") return "",history head = ''' ''' with gr.Blocks(title="LLM with TTS",head=head) as demo: gr.Markdown("## Please be patient, the first response may have a delay of up to 20 seconds while loading.") gr.Markdown("**Qwen2.5-0.5B-Instruct/LJSpeech**.LLM and TTS models will change without notice.") js = """ function(chatbot){ text = (chatbot[chatbot.length -1])["content"] window.MatchaTTSEn(text) } """ chatbot = gr.Chatbot(type="messages") chatbot.change(None,[chatbot],[],js=js) msg = gr.Textbox() clear = gr.ClearButton([msg, chatbot]) gr.HTML("""
""") msg.submit(call_generate_text, [msg, chatbot], [msg, chatbot]) if __name__ == "__main__": init() demo.launch(share=True)