Spaces:
Running
on
Zero
Running
on
Zero
update
Browse files- README.md +4 -4
- app.py +71 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.40.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
+
title: qwen2-05b
|
3 |
+
emoji: 🐠
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.40.0
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
model_name = "Qwen/Qwen1.5-0.5B-Chat"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
|
10 |
+
def generate_text(text):
|
11 |
+
# Tokenize the input text, including attention mas
|
12 |
+
#input_ids = tokenizer(text, return_tensors="pt", padding=True)
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
messages = []
|
17 |
+
use_system_prompt = True
|
18 |
+
DEFAULT_SYSTEM_PROMPT = "you are helpfull assistant."
|
19 |
+
if use_system_prompt:
|
20 |
+
messages = [
|
21 |
+
{"role": "system", "content": DEFAULT_SYSTEM_PROMPT}
|
22 |
+
]
|
23 |
+
|
24 |
+
user_messages = [
|
25 |
+
{"role": "user", "content": text}
|
26 |
+
]
|
27 |
+
messages += user_messages
|
28 |
+
|
29 |
+
prompt = tokenizer.apply_chat_template(
|
30 |
+
conversation=messages,
|
31 |
+
add_generation_prompt=True,
|
32 |
+
tokenize=False
|
33 |
+
)
|
34 |
+
|
35 |
+
input_datas = tokenizer(
|
36 |
+
prompt,
|
37 |
+
add_special_tokens=True,
|
38 |
+
return_tensors="pt"
|
39 |
+
)
|
40 |
+
|
41 |
+
# Generate text, passing the attention mask
|
42 |
+
generated_ids = model.generate(input_ids=input_datas.input_ids, attention_mask=input_datas.attention_mask,max_length=10000)
|
43 |
+
#generated_ids = model.generate(input_ids=input_ids, max_length=100)
|
44 |
+
|
45 |
+
# Decode the generated tokens
|
46 |
+
generated_text = tokenizer.decode(generated_ids[0][input_datas.input_ids.size(1) :], skip_special_tokens=True)
|
47 |
+
|
48 |
+
# Print the generated text
|
49 |
+
#print(generated_text)
|
50 |
+
return generated_text
|
51 |
+
|
52 |
+
from flask import Flask, request, jsonify
|
53 |
+
|
54 |
+
app = Flask(__name__)
|
55 |
+
#app.logger.disabled = True
|
56 |
+
#log = logging.getLogger('werkzeug')
|
57 |
+
#log.disabled = True
|
58 |
+
|
59 |
+
@app.route('/')
|
60 |
+
def predict():
|
61 |
+
param_value = request.args.get('param', '')
|
62 |
+
# ここにモデルの推論ロジックを追加
|
63 |
+
#output = pipe(messages, **generation_args)
|
64 |
+
#text = (output[0]['generated_text'])
|
65 |
+
#print("hello")
|
66 |
+
#result = {"prediction": "dummy_result"}
|
67 |
+
text = generate_text(param_value)
|
68 |
+
return f"{text}"
|
69 |
+
|
70 |
+
if __name__ == '__main__':
|
71 |
+
app.run(host='0.0.0.0', port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama-cpp-python
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
accelerate
|
5 |
+
flask
|