jonigata commited on
Commit
f2a4883
·
1 Parent(s): 293705e

merge origin

Browse files
Files changed (11) hide show
  1. .gitignore +160 -0
  2. LICENSE +201 -0
  3. README.md +26 -1
  4. app.py +92 -0
  5. controlnet/lineart/__put_your_lineart_model +0 -0
  6. convertor.py +102 -0
  7. output/output.txt +0 -0
  8. requirements.txt +11 -0
  9. sd_model.py +64 -0
  10. starline.py +268 -0
  11. utils.py +53 -0
.gitignore ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -9,4 +9,29 @@ app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  pinned: false
10
  ---
11
 
12
+ # starline
13
+ **St**rict coloring m**a**chine fo**r** **line** drawings.
14
+
15
+
16
+ ![image](https://github.com/mattyamonaca/starline/assets/48423148/eae07a6e-9c7b-4292-8c70-dac8ec8eeb7b)
17
+
18
+
19
+ https://github.com/mattyamonaca/starline/assets/48423148/8199c65c-a19f-42e9-aab7-df5ed6ef5b4c
20
+
21
+
22
+ # Usage
23
+ - ```python app.py```
24
+ - Input the line drawing you wish to color (The background should be transparent).
25
+ - Input a prompt describing the color you want to add.
26
+
27
+ - 背景を透過した状態で線画を入力します
28
+ - 付けたい色を説明するプロンプトを入力します
29
+
30
+ # Precautions
31
+ - Image size 1024 x 1024 is recommended.
32
+ - Aliasing is a beta version.
33
+ - Areas finely surrounded by line drawings cannot be colored.
34
+
35
+ - 画像サイズは1024×1024を推奨します
36
+ - エイリアス処理はβ版です。より線画に忠実であることを求める場合は2値線画を推奨します
37
+ - 線画で細かく囲まれた部分は着色できません。着色できない部分は透過した状態で出力されます。
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import sys
3
+ from starline import process
4
+
5
+ from utils import load_cn_model, load_cn_config, randomname
6
+ from convertor import pil2cv, cv2pil
7
+
8
+ from sd_model import get_cn_pipeline, generate, get_cn_detector
9
+ import cv2
10
+ import os
11
+ import numpy as np
12
+ from PIL import Image
13
+
14
+
15
+ path = os.getcwd()
16
+ output_dir = f"{path}/output"
17
+ input_dir = f"{path}/input"
18
+ cn_lineart_dir = f"{path}/controlnet/lineart"
19
+
20
+ load_cn_model(cn_lineart_dir)
21
+ load_cn_config(cn_lineart_dir)
22
+
23
+ class webui:
24
+ def __init__(self):
25
+ self.demo = gr.Blocks()
26
+
27
+ def undercoat(self, input_image, pos_prompt, neg_prompt, alpha_th):
28
+ org_line_image = input_image
29
+ image = pil2cv(input_image)
30
+ image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
31
+
32
+ index = np.where(image[:, :, 3] == 0)
33
+ image[index] = [255, 255, 255, 255]
34
+ input_image = cv2pil(image)
35
+
36
+ pipe = get_cn_pipeline()
37
+ detectors = get_cn_detector(input_image.resize((1024, 1024), Image.ANTIALIAS))
38
+
39
+
40
+ gen_image = generate(pipe, detectors, pos_prompt, neg_prompt)
41
+ output = process(gen_image.resize((image.shape[1], image.shape[0]), Image.ANTIALIAS) , org_line_image, alpha_th)
42
+
43
+ output = output.resize((image.shape[1], image.shape[0]) , Image.ANTIALIAS)
44
+
45
+
46
+ output = Image.alpha_composite(output, org_line_image)
47
+ name = randomname(10)
48
+ output.save(f"{output_dir}/output_{name}.png")
49
+ #output = pil2cv(output)
50
+ file_name = f"{output_dir}/output_{name}.png"
51
+
52
+ return output, file_name
53
+
54
+
55
+
56
+ def launch(self, share):
57
+ with self.demo:
58
+ with gr.Row():
59
+ with gr.Column():
60
+ input_image = gr.Image(type="pil", image_mode="RGBA")
61
+
62
+ pos_prompt = gr.Textbox(max_lines=1000, label="positive prompt")
63
+ neg_prompt = gr.Textbox(max_lines=1000, label="negative prompt")
64
+
65
+ alpha_th = gr.Slider(maximum = 255, value=100, label = "alpha threshold")
66
+
67
+ submit = gr.Button(value="Start")
68
+ with gr.Row():
69
+ with gr.Column():
70
+ with gr.Tab("output"):
71
+ output_0 = gr.Image()
72
+
73
+ output_file = gr.File()
74
+ submit.click(
75
+ self.undercoat,
76
+ inputs=[input_image, pos_prompt, neg_prompt, alpha_th],
77
+ outputs=[output_0, output_file]
78
+ )
79
+
80
+ self.demo.queue()
81
+ self.demo.launch(share=share)
82
+
83
+
84
+ if __name__ == "__main__":
85
+ ui = webui()
86
+ if len(sys.argv) > 1:
87
+ if sys.argv[1] == "share":
88
+ ui.launch(share=True)
89
+ else:
90
+ ui.launch(share=False)
91
+ else:
92
+ ui.launch(share=False)
controlnet/lineart/__put_your_lineart_model ADDED
File without changes
convertor.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ from skimage import color
4
+ from PIL import Image
5
+
6
+
7
+ def skimage_rgb2lab(rgb):
8
+ return color.rgb2lab(rgb.reshape(1,1,3))
9
+
10
+
11
+ def rgb2df(img):
12
+ h, w, _ = img.shape
13
+ x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
14
+ r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
15
+ df = pd.DataFrame({
16
+ "x_l": x_l.ravel(),
17
+ "y_l": y_l.ravel(),
18
+ "r": r.ravel(),
19
+ "g": g.ravel(),
20
+ "b": b.ravel(),
21
+ })
22
+ return df
23
+
24
+ def mask2df(mask):
25
+ h, w = mask.shape
26
+ x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
27
+ flg = mask.astype(int)
28
+ df = pd.DataFrame({
29
+ "x_l_m": x_l.ravel(),
30
+ "y_l_m": y_l.ravel(),
31
+ "m_flg": flg.ravel(),
32
+ })
33
+ return df
34
+
35
+
36
+ def rgba2df(img):
37
+ h, w, _ = img.shape
38
+ x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
39
+ r, g, b, a = img[:,:,0], img[:,:,1], img[:,:,2], img[:,:,3]
40
+ df = pd.DataFrame({
41
+ "x_l": x_l.ravel(),
42
+ "y_l": y_l.ravel(),
43
+ "r": r.ravel(),
44
+ "g": g.ravel(),
45
+ "b": b.ravel(),
46
+ "a": a.ravel()
47
+ })
48
+ return df
49
+
50
+ def hsv2df(img):
51
+ x_l, y_l = np.meshgrid(np.arange(img.shape[0]), np.arange(img.shape[1]), indexing='ij')
52
+ h, s, v = np.transpose(img, (2, 0, 1))
53
+ df = pd.DataFrame({'x_l': x_l.flatten(), 'y_l': y_l.flatten(), 'h': h.flatten(), 's': s.flatten(), 'v': v.flatten()})
54
+ return df
55
+
56
+ def df2rgba(img_df):
57
+ r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
58
+ g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
59
+ b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
60
+ a_img = img_df.pivot_table(index="x_l", columns="y_l",values= "a").reset_index(drop=True).values
61
+ df_img = np.stack([r_img, g_img, b_img, a_img], 2).astype(np.uint8)
62
+ return df_img
63
+
64
+ def df2bgra(img_df):
65
+ r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
66
+ g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
67
+ b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
68
+ a_img = img_df.pivot_table(index="x_l", columns="y_l",values= "a").reset_index(drop=True).values
69
+ df_img = np.stack([b_img, g_img, r_img, a_img], 2).astype(np.uint8)
70
+ return df_img
71
+
72
+ def df2rgb(img_df):
73
+ r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
74
+ g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
75
+ b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
76
+ df_img = np.stack([r_img, g_img, b_img], 2).astype(np.uint8)
77
+ return df_img
78
+
79
+ def pil2cv(image):
80
+ new_image = np.array(image, dtype=np.uint8)
81
+ if new_image.ndim == 2:
82
+ pass
83
+ elif new_image.shape[2] == 3:
84
+ new_image = new_image[:, :, ::-1]
85
+ elif new_image.shape[2] == 4:
86
+ new_image = new_image[:, :, [2, 1, 0, 3]]
87
+ return new_image
88
+
89
+ def cv2pil(image):
90
+ new_image = image.copy()
91
+ if new_image.ndim == 2:
92
+ pass
93
+ elif new_image.shape[2] == 3:
94
+ new_image = new_image[:, :, ::-1]
95
+ elif new_image.shape[2] == 4:
96
+ new_image = new_image[:, :, [2, 1, 0, 3]]
97
+ new_image = Image.fromarray(new_image)
98
+ return new_image
99
+
100
+
101
+
102
+
output/output.txt ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ opencv-python==4.7.0.68
2
+ pandas==1.5.3
3
+ gradio==3.16.2
4
+ scikit-learn==1.2.1
5
+ scikit-image==0.19.3
6
+ Pillow==9.4.0
7
+ tqdm==4.63.0
8
+ diffusers==0.27.2
9
+ gradio==3.16.2
10
+ gradio_client==0.2.5
11
+
sd_model.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
2
+ from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
3
+ import torch
4
+
5
+ device = "cuda"
6
+
7
+ def get_cn_pipeline():
8
+ controlnets = [
9
+ ControlNetModel.from_pretrained("./controlnet/lineart", torch_dtype=torch.float16, use_safetensors=True),
10
+ ControlNetModel.from_pretrained("mattyamonaca/controlnet_line2line_xl", torch_dtype=torch.float16)
11
+ ]
12
+
13
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
14
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
15
+ "cagliostrolab/animagine-xl-3.1", controlnet=controlnets, vae=vae, torch_dtype=torch.float16
16
+ )
17
+
18
+ pipe.enable_model_cpu_offload()
19
+
20
+ #if pipe.safety_checker is not None:
21
+ # pipe.safety_checker = lambda images, **kwargs: (images, [False])
22
+
23
+ #pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
24
+ #pipe.to(device)
25
+
26
+ return pipe
27
+
28
+ def invert_image(img):
29
+ # 画像を読み込む
30
+ # 画像をグレースケールに変換(もしもともと白黒でない場合)
31
+ img = img.convert('L')
32
+ # 画像の各ピクセルを反転
33
+ inverted_img = img.point(lambda p: 255 - p)
34
+ # 反転した画像を保存
35
+ return inverted_img
36
+
37
+
38
+ def get_cn_detector(image):
39
+ #lineart_anime = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
40
+ #canny = CannyDetector()
41
+ #lineart_anime_img = lineart_anime(image)
42
+ #canny_img = canny(image)
43
+ #canny_img = canny_img.resize((lineart_anime(image).width, lineart_anime(image).height))
44
+ re_image = invert_image(image)
45
+
46
+
47
+ detectors = [re_image, image]
48
+ print(detectors)
49
+ return detectors
50
+
51
+ def generate(pipe, detectors, prompt, negative_prompt):
52
+ default_pos = "1girl, bestquality, 4K, ((white background)), no background"
53
+ default_neg = "shadow, (worst quality, low quality:1.2), (lowres:1.2), (bad anatomy:1.2), (greyscale, monochrome:1.4)"
54
+ prompt = default_pos + prompt
55
+ negative_prompt = default_neg + negative_prompt
56
+ print(type(pipe))
57
+ image = pipe(
58
+ prompt=prompt,
59
+ negative_prompt = negative_prompt,
60
+ image=detectors,
61
+ num_inference_steps=50,
62
+ controlnet_conditioning_scale=[1.0, 0.2],
63
+ ).images[0]
64
+ return image
starline.py ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageFilter
2
+ from collections import defaultdict
3
+ from skimage import color as sk_color
4
+ from PIL import Image
5
+ from tqdm import tqdm
6
+ from skimage.color import deltaE_ciede2000, rgb2lab
7
+ import cv2
8
+ import numpy as np
9
+
10
+
11
+ def replace_color(image, color_1, color_2, alpha_np):
12
+ # 画像データを配列に変換
13
+ data = np.array(image)
14
+
15
+ # RGBAモードの画像であるため、形状変更時に4チャネルを考慮
16
+ original_shape = data.shape
17
+ data = data.reshape(-1, 4) # RGBAのため、4チャネルでフラット化
18
+
19
+ # color_1のマッチングを検索する際にはRGB値のみを比較
20
+ matches = np.all(data[:, :3] == color_1, axis=1)
21
+
22
+ # 変更を追跡するためのフラグ
23
+ nochange_count = 0
24
+ idx = 0
25
+
26
+ while np.any(matches):
27
+ idx += 1
28
+ new_matches = np.zeros_like(matches)
29
+ match_num = np.sum(matches)
30
+ for i in tqdm(range(len(data))):
31
+ if matches[i]:
32
+ x, y = divmod(i, original_shape[1])
33
+ neighbors = [
34
+ (x-1, y), (x+1, y), (x, y-1), (x, y+1) # 上下左右
35
+ ]
36
+ replacement_found = False
37
+ for nx, ny in neighbors:
38
+ if 0 <= nx < original_shape[0] and 0 <= ny < original_shape[1]:
39
+ ni = nx * original_shape[1] + ny
40
+ # RGBのみ比較し、アルファは無視
41
+ if not np.all(data[ni, :3] == color_1, axis=0) and not np.all(data[ni, :3] == color_2, axis=0):
42
+ data[i, :3] = data[ni, :3] # RGB値のみ更新
43
+ replacement_found = True
44
+ continue
45
+ if not replacement_found:
46
+ new_matches[i] = True
47
+ matches = new_matches
48
+ if match_num == np.sum(matches):
49
+ nochange_count += 1
50
+ if nochange_count > 5:
51
+ break
52
+
53
+ # 最終的な画像をPIL形式で返す
54
+ data = data.reshape(original_shape)
55
+ data[:, :, 3] = 255 - alpha_np
56
+ return Image.fromarray(data, 'RGBA')
57
+
58
+ def recolor_lineart_and_composite(lineart_image, base_image, new_color, alpha_th):
59
+ """
60
+ Recolor an RGBA lineart image to a single new color while preserving alpha, and composite it over a base image.
61
+
62
+ Args:
63
+ lineart_image (PIL.Image): The lineart image with RGBA channels.
64
+ base_image (PIL.Image): The base image to composite onto.
65
+ new_color (tuple): The new RGB color for the lineart (e.g., (255, 0, 0) for red).
66
+
67
+ Returns:
68
+ PIL.Image: The composited image with the recolored lineart on top.
69
+ """
70
+ # Ensure images are in RGBA mode
71
+ if lineart_image.mode != 'RGBA':
72
+ lineart_image = lineart_image.convert('RGBA')
73
+ if base_image.mode != 'RGBA':
74
+ base_image = base_image.convert('RGBA')
75
+
76
+ # Extract the alpha channel from the lineart image
77
+ r, g, b, alpha = lineart_image.split()
78
+
79
+ alpha_np = np.array(alpha)
80
+ alpha_np[alpha_np < alpha_th] = 0
81
+ alpha_np[alpha_np >= alpha_th] = 255
82
+
83
+ new_alpha = Image.fromarray(alpha_np)
84
+
85
+ # Create a new image using the new color and the alpha channel from the original lineart
86
+ new_lineart_image = Image.merge('RGBA', (
87
+ Image.new('L', lineart_image.size, int(new_color[0])),
88
+ Image.new('L', lineart_image.size, int(new_color[1])),
89
+ Image.new('L', lineart_image.size, int(new_color[2])),
90
+ new_alpha
91
+ ))
92
+
93
+ # Composite the new lineart image over the base image
94
+ composite_image = Image.alpha_composite(base_image, new_lineart_image)
95
+
96
+ return composite_image, alpha_np
97
+
98
+
99
+ def thicken_and_recolor_lines(base_image, lineart, thickness=3, new_color=(0, 0, 0)):
100
+ """
101
+ Thicken the lines of a lineart image, recolor them, and composite onto another image,
102
+ while preserving the transparency of the original lineart.
103
+
104
+ Args:
105
+ base_image (PIL.Image): The base image to composite onto.
106
+ lineart (PIL.Image): The lineart image with transparent background.
107
+ thickness (int): The desired thickness of the lines.
108
+ new_color (tuple): The new color to apply to the lines (R, G, B).
109
+
110
+ Returns:
111
+ PIL.Image: The image with the recolored and thickened lineart composited on top.
112
+ """
113
+ # Ensure both images are in RGBA format
114
+ if base_image.mode != 'RGBA':
115
+ base_image = base_image.convert('RGBA')
116
+ if lineart.mode != 'RGB':
117
+ lineart = lineart.convert('RGBA')
118
+
119
+ # Convert the lineart image to OpenCV format
120
+ lineart_cv = np.array(lineart)
121
+
122
+ white_pixels = np.sum(lineart_cv == 255)
123
+ black_pixels = np.sum(lineart_cv == 0)
124
+
125
+
126
+ lineart_gray = cv2.cvtColor(lineart_cv, cv2.COLOR_RGBA2GRAY)
127
+
128
+ if white_pixels > black_pixels:
129
+ lineart_gray = cv2.bitwise_not(lineart_gray)
130
+
131
+
132
+ # Thicken the lines using OpenCV
133
+ kernel = np.ones((thickness, thickness), np.uint8)
134
+ lineart_thickened = cv2.dilate(lineart_gray, kernel, iterations=1)
135
+ lineart_thickened = cv2.bitwise_not(lineart_thickened)
136
+ # Create a new RGBA image for the recolored lineart
137
+ lineart_recolored = np.zeros_like(lineart_cv)
138
+ lineart_recolored[:, :, :3] = new_color # Set new RGB color
139
+
140
+ lineart_recolored[:, :, 3] = np.where(lineart_thickened < 250, 255, 0) # Blend alpha with thickened lines
141
+
142
+ # Convert back to PIL Image
143
+ lineart_recolored_pil = Image.fromarray(lineart_recolored, 'RGBA')
144
+
145
+ # Composite the thickened and recolored lineart onto the base image
146
+ combined_image = Image.alpha_composite(base_image, lineart_recolored_pil)
147
+
148
+
149
+ return combined_image
150
+
151
+
152
+
153
+ def generate_distant_colors(consolidated_colors, distance_threshold):
154
+ """
155
+ Generate new RGB colors that are at least 'distance_threshold' CIEDE2000 units away from given colors.
156
+
157
+ Args:
158
+ consolidated_colors (list of tuples): List of ((R, G, B), count) tuples.
159
+ distance_threshold (float): The minimum CIEDE2000 distance from the given colors.
160
+
161
+ Returns:
162
+ list of tuples: List of new RGB colors that meet the distance requirement.
163
+ """
164
+ #new_colors = []
165
+ # Convert the consolidated colors to LAB
166
+ consolidated_lab = [rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3) for color, _ in consolidated_colors]
167
+
168
+ # Try to find a distant color
169
+ max_attempts = 10000
170
+ for _ in range(max_attempts):
171
+ # Generate a random color in RGB and convert to LAB
172
+ random_rgb = np.random.randint(0, 256, size=3)
173
+ random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(3)
174
+ for base_color_lab in consolidated_lab:
175
+ # Calculate the CIEDE2000 distance
176
+ distance = deltaE_ciede2000(base_color_lab, random_lab)
177
+ if distance <= distance_threshold:
178
+ break
179
+ new_color = tuple(random_rgb)
180
+ break
181
+ return new_color
182
+
183
+
184
+
185
+ def consolidate_colors(major_colors, threshold):
186
+ """
187
+ Consolidate similar colors in the major_colors list based on the CIEDE2000 metric.
188
+
189
+ Args:
190
+ major_colors (list of tuples): List of ((R, G, B), count) tuples.
191
+ threshold (float): Threshold for CIEDE2000 color difference.
192
+
193
+ Returns:
194
+ list of tuples: Consolidated list of ((R, G, B), count) tuples.
195
+ """
196
+ # Convert RGB to LAB
197
+ colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
198
+ n = len(colors_lab)
199
+
200
+ # Find similar colors and consolidate
201
+ i = 0
202
+ while i < n:
203
+ j = i + 1
204
+ while j < n:
205
+ delta_e = deltaE_ciede2000(colors_lab[i], colors_lab[j])
206
+ if delta_e < threshold:
207
+ # Compare counts and consolidate to the color with the higher count
208
+ if major_colors[i][1] >= major_colors[j][1]:
209
+ major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
210
+ major_colors.pop(j)
211
+ colors_lab.pop(j)
212
+ else:
213
+ major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
214
+ major_colors.pop(i)
215
+ colors_lab.pop(i)
216
+ n -= 1
217
+ continue
218
+ j += 1
219
+ i += 1
220
+
221
+ return major_colors
222
+
223
+
224
+
225
+
226
+ def get_major_colors(image, threshold_percentage=0.01):
227
+ """
228
+ Analyze an image to find the major RGB values based on a threshold percentage.
229
+
230
+ Args:
231
+ image (PIL.Image): The image to analyze.
232
+ threshold_percentage (float): The percentage threshold to consider a color as major.
233
+
234
+ Returns:
235
+ list of tuples: A list of (color, count) tuples for colors that are more frequent than the threshold.
236
+ """
237
+ # Convert image to RGB if it's not
238
+ if image.mode != 'RGB':
239
+ image = image.convert('RGB')
240
+
241
+ # Count each color
242
+ color_count = defaultdict(int)
243
+ for pixel in image.getdata():
244
+ color_count[pixel] += 1
245
+
246
+ # Total number of pixels
247
+ total_pixels = image.width * image.height
248
+
249
+ # Filter colors to find those above the threshold
250
+ major_colors = [(color, count) for color, count in color_count.items()
251
+ if (count / total_pixels) >= threshold_percentage]
252
+
253
+ return major_colors
254
+
255
+
256
+ def process(image, lineart, alpha_th):
257
+ org = image
258
+
259
+ major_colors = get_major_colors(image, threshold_percentage=0.05)
260
+ major_colors = consolidate_colors(major_colors, 10)
261
+ new_color_1 = generate_distant_colors(major_colors, 100)
262
+ image = thicken_and_recolor_lines(org, lineart, thickness=5, new_color=new_color_1)
263
+ major_colors.append((new_color_1, 0))
264
+ new_color_2 = generate_distant_colors(major_colors, 100)
265
+ image, alpha_np = recolor_lineart_and_composite(lineart, image, new_color_2, alpha_th)
266
+ image = replace_color(image, new_color_1, new_color_2, alpha_np)
267
+
268
+ return image
utils.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import string
3
+ import os
4
+
5
+ import requests
6
+ from tqdm import tqdm
7
+
8
+
9
+ def randomname(n):
10
+ randlst = [random.choice(string.ascii_letters + string.digits) for i in range(n)]
11
+ return ''.join(randlst)
12
+
13
+ def load_cn_model(model_dir):
14
+ folder = model_dir
15
+ file_name = 'diffusion_pytorch_model.safetensors'
16
+ url = "https://huggingface.co/kataragi/ControlNet-LineartXL/resolve/main/Katarag_lineartXL-fp16.safetensors"
17
+
18
+ file_path = os.path.join(folder, file_name)
19
+ if not os.path.exists(file_path):
20
+ response = requests.get(url, stream=True)
21
+
22
+ total_size = int(response.headers.get('content-length', 0))
23
+ with open(file_path, 'wb') as f, tqdm(
24
+ desc=file_name,
25
+ total=total_size,
26
+ unit='iB',
27
+ unit_scale=True,
28
+ unit_divisor=1024,
29
+ ) as bar:
30
+ for data in response.iter_content(chunk_size=1024):
31
+ size = f.write(data)
32
+ bar.update(size)
33
+
34
+ def load_cn_config(model_dir):
35
+ folder = model_dir
36
+ file_name = 'config.json'
37
+ url = "https://huggingface.co/mattyamonaca/controlnet_line2line_xl/resolve/main/config.json"
38
+
39
+ file_path = os.path.join(folder, file_name)
40
+ if not os.path.exists(file_path):
41
+ response = requests.get(url, stream=True)
42
+
43
+ total_size = int(response.headers.get('content-length', 0))
44
+ with open(file_path, 'wb') as f, tqdm(
45
+ desc=file_name,
46
+ total=total_size,
47
+ unit='iB',
48
+ unit_scale=True,
49
+ unit_divisor=1024,
50
+ ) as bar:
51
+ for data in response.iter_content(chunk_size=1024):
52
+ size = f.write(data)
53
+ bar.update(size)