Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import librosa
|
|
5 |
import soundfile
|
6 |
import io
|
7 |
import argparse
|
|
|
8 |
from inference.infer_tool import Svc
|
9 |
|
10 |
def get_or_create_eventloop():
|
@@ -25,8 +26,8 @@ def tts_get_voices_list():
|
|
25 |
return voices
|
26 |
|
27 |
def tts_mode(txt, voice):
|
28 |
-
tts = asyncio.run(edge_tts.Communicate(txt, voice).save('
|
29 |
-
audio, sr = librosa.load('
|
30 |
raw_path = io.BytesIO()
|
31 |
soundfile.write(raw_path, audio, 16000, format="wav")
|
32 |
raw_path.seek(0)
|
@@ -35,6 +36,23 @@ def tts_mode(txt, voice):
|
|
35 |
|
36 |
return (44100, out_audio.cpu().numpy())
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
if __name__ == '__main__':
|
39 |
parser = argparse.ArgumentParser()
|
40 |
parser.add_argument('--device', type=str, default='cpu')
|
@@ -52,9 +70,20 @@ if __name__ == '__main__':
|
|
52 |
'</div>')
|
53 |
tts_text = gr.Textbox(label="TTS text (100 words limitation)", visible = True)
|
54 |
tts_voice = gr.Dropdown(choices= tts_get_voices_list(), visible = True)
|
|
|
|
|
55 |
audio_output = gr.Audio(label="Output Audio")
|
56 |
btn_submit = gr.Button("Generate")
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)
|
|
|
5 |
import soundfile
|
6 |
import io
|
7 |
import argparse
|
8 |
+
import numpy as np
|
9 |
from inference.infer_tool import Svc
|
10 |
|
11 |
def get_or_create_eventloop():
|
|
|
26 |
return voices
|
27 |
|
28 |
def tts_mode(txt, voice):
|
29 |
+
tts = asyncio.run(edge_tts.Communicate(txt, voice).save('audio.mp3'))
|
30 |
+
audio, sr = librosa.load('audio.mp3', sr=16000, mono=True)
|
31 |
raw_path = io.BytesIO()
|
32 |
soundfile.write(raw_path, audio, 16000, format="wav")
|
33 |
raw_path.seek(0)
|
|
|
36 |
|
37 |
return (44100, out_audio.cpu().numpy())
|
38 |
|
39 |
+
def audio_infer_mode(input_audio):
|
40 |
+
sampling_rate, audio = input_audio
|
41 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
42 |
+
|
43 |
+
if len(audio.shape) > 1:
|
44 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
45 |
+
if sampling_rate != 16000:
|
46 |
+
audio = librosa.resample(audio, org_sr=sampling_rate, target_sr=16000)
|
47 |
+
|
48 |
+
raw_path = io.BytesIO()
|
49 |
+
soundfile.write(raw_path, audio, 16000, format="wav")
|
50 |
+
raw_path.seek(0)
|
51 |
+
model = Svc(fr"Herta-Svc/G_10000.pth", f"Herta-Svc/config.json", device = 'cpu')
|
52 |
+
out_audio, out_sr = model.infer('speaker0', 0, raw_path, auto_predict_f0 = True,)
|
53 |
+
|
54 |
+
return (44100, out_audio.cpu().numpy())
|
55 |
+
|
56 |
if __name__ == '__main__':
|
57 |
parser = argparse.ArgumentParser()
|
58 |
parser.add_argument('--device', type=str, default='cpu')
|
|
|
70 |
'</div>')
|
71 |
tts_text = gr.Textbox(label="TTS text (100 words limitation)", visible = True)
|
72 |
tts_voice = gr.Dropdown(choices= tts_get_voices_list(), visible = True)
|
73 |
+
audio_mode = gr.Checkbox(label = 'Upload audio instead')
|
74 |
+
audio_input = gr.Audio(label = 'Input Audio')
|
75 |
audio_output = gr.Audio(label="Output Audio")
|
76 |
btn_submit = gr.Button("Generate")
|
77 |
+
|
78 |
+
if audio_mode.update == True:
|
79 |
+
tts_text = gr.Textbox.update(label="TTS text (100 words limitation)", visible = False, show_label = False)
|
80 |
+
tts_voice = gr.Dropdown.update(choices= tts_get_voices_list(), visible = False, show_label = False)
|
81 |
+
audio_input = gr.Audio.update(label = 'Input Audio', visible = True, show_label = True)
|
82 |
+
else:
|
83 |
+
tts_text = gr.Textbox.update(label="TTS text (100 words limitation)", visible = True, show_label = True)
|
84 |
+
tts_voice = gr.Dropdown.update(choices= tts_get_voices_list(), visible = True, show_label = True)
|
85 |
+
audio_input = gr.Audio.update(label = 'Input Audio', visible = False, show_label = False)
|
86 |
+
|
87 |
+
btn_submit.click([tts_mode, audio_infer_mode], [tts_text, tts_voice, audio_input], [audio_output])
|
88 |
|
89 |
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)
|