Spaces:
Runtime error
Runtime error
File size: 972 Bytes
3bdc2cd ef9a2a1 ff2876e ef9a2a1 46426cb ef9a2a1 4c3570d ef9a2a1 c154497 ef9a2a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import streamlit as st
import requests
from io import BytesIO
from PIL import Image
import os
api_key = os.environ['API_KEY']
API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2FHrishikesh332%2Fautotrain-meme-classification-42897109437%26quot%3B%3C%2Fspan%3E
headers = {"Authorization": f"Bearer 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"}
def query(data : bytes):
response = requests.post(API_URL, headers=headers, data=data)
return response.json()
st.markdown("<h1 style='text-align: center;'>Mememeter 💬</h1>", unsafe_allow_html=True)
st.markdown("---")
with st.sidebar:
st.title("Mememeter")
st.caption('''
Memeter is an application used for the classification of whether the images provided is meme or not meme
''', unsafe_allow_html=False)
img = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
if img is not None:
data = img.read()
output = query(data)
st.image(data)
st.write("Predicted Output:", output) |