Ailyth commited on
Commit
d631c8d
·
1 Parent(s): 2d122b6

0308-185944-Detecting_input_language_automatically.

Browse files
app.py CHANGED
@@ -6,6 +6,7 @@ from time import time as ttime
6
  from my_utils import load_audio
7
  from transformers import pipeline
8
  from text.cleaner import clean_text
 
9
  from feature_extractor import cnhubert
10
  from timeit import default_timer as timer
11
  from text import cleaned_text_to_sequence
@@ -29,7 +30,6 @@ logging.getLogger("multipart").setLevel(logging.WARNING)
29
  from download import *
30
  download()
31
 
32
-
33
  if "_CUDA_VISIBLE_DEVICES" in os.environ:
34
  os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
35
  tz = pytz.timezone('Asia/Singapore')
@@ -372,7 +372,12 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
372
  tprint(f'🏕️LOADED GPT Model: {gpt_path}')
373
 
374
  prompt_language = dict_language[prompt_language]
375
- text_language = dict_language[text_language]
 
 
 
 
 
376
  prompt_text = prompt_text.strip("\n")
377
  if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
378
  text = text.strip("\n")
@@ -584,6 +589,8 @@ def custom_sort_key(s):
584
  parts = [int(part) if part.isdigit() else part for part in parts]
585
  return parts
586
 
 
 
587
  def tprint(text):
588
  now=datetime.now(tz).strftime('%H:%M:%S')
589
  print(f'UTC+8 - {now} - {text}')
@@ -592,7 +599,25 @@ def wprint(text):
592
  tprint(text)
593
  gr.Warning(text)
594
 
595
- #裁切文本
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
596
  def trim_text(text,language):
597
  limit_cj = 120 #character
598
  limit_en = 60 #words
@@ -755,15 +780,21 @@ with gr.Blocks(theme='Kasien/ali_theme_custom') as app:
755
  chinese_choice = gr.Radio(chinese_models, label="CN|中文模型",scale=2)
756
  japanese_choice = gr.Radio(japanese_models, label="JP|日本語モデル",scale=4)
757
 
758
- plsh='Text must match the selected language option to prevent errors, for example, if English is input but Chinese is selected for generation.\n文字一定要和语言选项匹配,不然要报错,比如输入的是英文,生成语言选中文'
759
  limit='Max 70 words. Excess will be ignored./单次最多处理120字左右,多余的会被忽略'
760
 
761
  gr.HTML('''
762
  <b>输入文字</b>''')
763
  with gr.Row():
764
- model_name = gr.Textbox(label="Seleted Model/已选模型", value=default_model_name, scale=1)
765
- text = gr.Textbox(label="Input some text for voice generation/输入想要生成语音的文字", lines=5,scale=8,
 
 
 
 
 
766
  placeholder=plsh,info=limit)
 
767
 
768
 
769
  with gr.Row():
@@ -773,15 +804,7 @@ with gr.Blocks(theme='Kasien/ali_theme_custom') as app:
773
  choices=["tone1","tone2","tone3"],
774
  value="tone1",
775
  info='Tone influences the emotional expression ',scale=1)
776
-
777
- text_language = gr.Radio(
778
- label="Select language for input text/输入的文字对应语言",
779
- choices=["中文","English","日本語"],
780
- value=default_language,
781
- info='Input text and language must match.',scale=1,
782
- )
783
-
784
- tone_sample=gr.Audio(label="🔊Preview tone/试听语气 ", scale=5)
785
 
786
 
787
  with gr.Accordion(label="prpt voice", open=False,visible=False):
@@ -789,8 +812,8 @@ with gr.Blocks(theme='Kasien/ali_theme_custom') as app:
789
  inp_ref = gr.Audio(label="Reference audio", type="filepath", value=default_voice_wav, scale=3)
790
  prompt_text = gr.Textbox(label="Reference text", value=default_voice_wav_words, scale=3)
791
  prompt_language = gr.Dropdown(label="Language of the reference audio", choices=["中文", "English", "日本語"], value=default_language, scale=1,interactive=False)
792
-
793
-
794
 
795
  with gr.Accordion(label="Additional generation options/附加生成选项", open=False):
796
  how_to_cut = gr.Dropdown(
@@ -807,8 +830,8 @@ with gr.Blocks(theme='Kasien/ali_theme_custom') as app:
807
  gr.HTML('''
808
  <b>开始生成</b>''')
809
  with gr.Row():
810
- main_button = gr.Button("✨Generate Voice", variant="primary", scale=1)
811
- output = gr.Audio(label="💾Download it by clicking ⬇️", scale=3)
812
  #info = gr.Textbox(label="INFO", visible=True, readonly=True, scale=1)
813
 
814
  gr.HTML('''
@@ -822,18 +845,20 @@ with gr.Blocks(theme='Kasien/ali_theme_custom') as app:
822
 
823
  with gr.Row():
824
  user_voice = gr.Audio(type="filepath", label="(3~10s)Upload or Record audio/上传或录制声音",scale=3)
825
- user_lang = gr.Dropdown(label="Language/生成语言", choices=["中文", "English", "日本語"],scale=1,value='English')
826
- user_text= gr.Textbox(label="Text for generation/输入想要生成语音的文字", lines=5,scale=5,
 
827
  placeholder=plsh,info=limit)
828
-
 
829
  user_button = gr.Button("✨Clone Voice", variant="primary")
830
  user_output = gr.Audio(label="💾Download it by clicking ⬇️")
831
 
832
  gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLMP9" /></div>''')
833
 
834
- english_choice.change(update_model, inputs=[english_choice], outputs=[inp_ref, prompt_text, prompt_language, text_language, model_name, tone_select, tone_sample])
835
- chinese_choice.change(update_model, inputs=[chinese_choice], outputs=[inp_ref, prompt_text, prompt_language, text_language, model_name, tone_select, tone_sample])
836
- japanese_choice.change(update_model, inputs=[japanese_choice], outputs=[inp_ref, prompt_text, prompt_language, text_language, model_name, tone_select, tone_sample])
837
  tone_select.change(update_tone, inputs=[model_name, tone_select], outputs=[inp_ref, prompt_text, tone_sample])
838
 
839
  main_button.click(
 
6
  from my_utils import load_audio
7
  from transformers import pipeline
8
  from text.cleaner import clean_text
9
+ from polyglot.detect import Detector
10
  from feature_extractor import cnhubert
11
  from timeit import default_timer as timer
12
  from text import cleaned_text_to_sequence
 
30
  from download import *
31
  download()
32
 
 
33
  if "_CUDA_VISIBLE_DEVICES" in os.environ:
34
  os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
35
  tz = pytz.timezone('Asia/Singapore')
 
372
  tprint(f'🏕️LOADED GPT Model: {gpt_path}')
373
 
374
  prompt_language = dict_language[prompt_language]
375
+ try:
376
+ text_language = dict_language[text_language]
377
+ except KeyError as e:
378
+ wprint(f"Not supported language types/不支持此語言: {e}")
379
+ return None
380
+
381
  prompt_text = prompt_text.strip("\n")
382
  if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
383
  text = text.strip("\n")
 
589
  parts = [int(part) if part.isdigit() else part for part in parts]
590
  return parts
591
 
592
+ #==========custom functions============
593
+
594
  def tprint(text):
595
  now=datetime.now(tz).strftime('%H:%M:%S')
596
  print(f'UTC+8 - {now} - {text}')
 
599
  tprint(text)
600
  gr.Warning(text)
601
 
602
+ def lang_detector(text):
603
+ min_chars = 5
604
+ if len(text) < min_chars:
605
+ return "Input text too short/输入文本太短"
606
+ try:
607
+ detector = Detector(text).language
608
+ lang_info = str(detector)
609
+ code = re.search(r"code: (\w+)", lang_info).group(1)
610
+ if code == 'ja':
611
+ return "日本語"
612
+ elif code == 'zh':
613
+ return "中文"
614
+ elif code == 'en':
615
+ return 'English'
616
+ else:
617
+ return re.search(r"name: (\w+)", lang_info).group(1)
618
+ except Exception as e:
619
+ return f"ERROR:{str(e)}"
620
+
621
  def trim_text(text,language):
622
  limit_cj = 120 #character
623
  limit_en = 60 #words
 
780
  chinese_choice = gr.Radio(chinese_models, label="CN|中文模型",scale=2)
781
  japanese_choice = gr.Radio(japanese_models, label="JP|日本語モデル",scale=4)
782
 
783
+ plsh='Input any text you like / 輸入任意文字'
784
  limit='Max 70 words. Excess will be ignored./单次最多处理120字左右,多余的会被忽略'
785
 
786
  gr.HTML('''
787
  <b>输入文字</b>''')
788
  with gr.Row():
789
+ with gr.Column(scale=2):
790
+ model_name = gr.Textbox(label="Seleted Model/已选模型", value=default_model_name, scale=1)
791
+ text_language = gr.Textbox(
792
+ label="Select language for input text/输入的文字对应语言",
793
+ info='Automatic detection of input language type.',scale=1,interactive=False
794
+ )
795
+ text = gr.Textbox(label="Input some text for voice generation/输入想要生成语音的文字", lines=5,scale=6,
796
  placeholder=plsh,info=limit)
797
+ text.change( lang_detector, text, text_language)
798
 
799
 
800
  with gr.Row():
 
804
  choices=["tone1","tone2","tone3"],
805
  value="tone1",
806
  info='Tone influences the emotional expression ',scale=1)
807
+ tone_sample=gr.Audio(label="🔊Preview tone/试听语气 ", scale=6)
 
 
 
 
 
 
 
 
808
 
809
 
810
  with gr.Accordion(label="prpt voice", open=False,visible=False):
 
812
  inp_ref = gr.Audio(label="Reference audio", type="filepath", value=default_voice_wav, scale=3)
813
  prompt_text = gr.Textbox(label="Reference text", value=default_voice_wav_words, scale=3)
814
  prompt_language = gr.Dropdown(label="Language of the reference audio", choices=["中文", "English", "日本語"], value=default_language, scale=1,interactive=False)
815
+ dummy = gr.Radio(choices=["中文","English","日本語"],visible=False)
816
+
817
 
818
  with gr.Accordion(label="Additional generation options/附加生成选项", open=False):
819
  how_to_cut = gr.Dropdown(
 
830
  gr.HTML('''
831
  <b>开始生成</b>''')
832
  with gr.Row():
833
+ main_button = gr.Button("✨Generate Voice", variant="primary", scale=2)
834
+ output = gr.Audio(label="💾Download it by clicking ⬇️", scale=6)
835
  #info = gr.Textbox(label="INFO", visible=True, readonly=True, scale=1)
836
 
837
  gr.HTML('''
 
845
 
846
  with gr.Row():
847
  user_voice = gr.Audio(type="filepath", label="(3~10s)Upload or Record audio/上传或录制声音",scale=3)
848
+ with gr.Column(scale=7):
849
+ user_lang = gr.Textbox(label="Language/生成语言",info='Automatic detection of input language type.',interactive=False)
850
+ user_text= gr.Textbox(label="Text for generation/输入想要生成语音的文字", lines=5,
851
  placeholder=plsh,info=limit)
852
+ user_text.change( lang_detector, user_text, user_lang)
853
+
854
  user_button = gr.Button("✨Clone Voice", variant="primary")
855
  user_output = gr.Audio(label="💾Download it by clicking ⬇️")
856
 
857
  gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLMP9" /></div>''')
858
 
859
+ english_choice.change(update_model, inputs=[english_choice], outputs=[inp_ref, prompt_text, prompt_language,dummy,model_name, tone_select, tone_sample])
860
+ chinese_choice.change(update_model, inputs=[chinese_choice], outputs=[inp_ref, prompt_text, prompt_language, dummy,model_name, tone_select, tone_sample])
861
+ japanese_choice.change(update_model, inputs=[japanese_choice], outputs=[inp_ref, prompt_text, prompt_language,dummy,model_name, tone_select, tone_sample])
862
  tone_select.change(update_tone, inputs=[model_name, tone_select], outputs=[inp_ref, prompt_text, tone_sample])
863
 
864
  main_button.click(
pretrained_models/whisper-small/README.md DELETED
@@ -1,452 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- - zh
5
- - de
6
- - es
7
- - ru
8
- - ko
9
- - fr
10
- - ja
11
- - pt
12
- - tr
13
- - pl
14
- - ca
15
- - nl
16
- - ar
17
- - sv
18
- - it
19
- - id
20
- - hi
21
- - fi
22
- - vi
23
- - he
24
- - uk
25
- - el
26
- - ms
27
- - cs
28
- - ro
29
- - da
30
- - hu
31
- - ta
32
- - no
33
- - th
34
- - ur
35
- - hr
36
- - bg
37
- - lt
38
- - la
39
- - mi
40
- - ml
41
- - cy
42
- - sk
43
- - te
44
- - fa
45
- - lv
46
- - bn
47
- - sr
48
- - az
49
- - sl
50
- - kn
51
- - et
52
- - mk
53
- - br
54
- - eu
55
- - is
56
- - hy
57
- - ne
58
- - mn
59
- - bs
60
- - kk
61
- - sq
62
- - sw
63
- - gl
64
- - mr
65
- - pa
66
- - si
67
- - km
68
- - sn
69
- - yo
70
- - so
71
- - af
72
- - oc
73
- - ka
74
- - be
75
- - tg
76
- - sd
77
- - gu
78
- - am
79
- - yi
80
- - lo
81
- - uz
82
- - fo
83
- - ht
84
- - ps
85
- - tk
86
- - nn
87
- - mt
88
- - sa
89
- - lb
90
- - my
91
- - bo
92
- - tl
93
- - mg
94
- - as
95
- - tt
96
- - haw
97
- - ln
98
- - ha
99
- - ba
100
- - jw
101
- - su
102
- tags:
103
- - audio
104
- - automatic-speech-recognition
105
- - hf-asr-leaderboard
106
- widget:
107
- - example_title: Librispeech sample 1
108
- src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
109
- - example_title: Librispeech sample 2
110
- src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
111
- model-index:
112
- - name: whisper-small
113
- results:
114
- - task:
115
- name: Automatic Speech Recognition
116
- type: automatic-speech-recognition
117
- dataset:
118
- name: LibriSpeech (clean)
119
- type: librispeech_asr
120
- config: clean
121
- split: test
122
- args:
123
- language: en
124
- metrics:
125
- - name: Test WER
126
- type: wer
127
- value: 3.432213777886737
128
- - task:
129
- name: Automatic Speech Recognition
130
- type: automatic-speech-recognition
131
- dataset:
132
- name: LibriSpeech (other)
133
- type: librispeech_asr
134
- config: other
135
- split: test
136
- args:
137
- language: en
138
- metrics:
139
- - name: Test WER
140
- type: wer
141
- value: 7.628304527060248
142
- - task:
143
- name: Automatic Speech Recognition
144
- type: automatic-speech-recognition
145
- dataset:
146
- name: Common Voice 11.0
147
- type: mozilla-foundation/common_voice_11_0
148
- config: hi
149
- split: test
150
- args:
151
- language: hi
152
- metrics:
153
- - name: Test WER
154
- type: wer
155
- value: 87.3
156
- - task:
157
- name: Automatic Speech Recognition
158
- type: automatic-speech-recognition
159
- dataset:
160
- name: Common Voice 13.0
161
- type: mozilla-foundation/common_voice_13_0
162
- config: dv
163
- split: test
164
- args:
165
- language: dv
166
- metrics:
167
- - name: Wer
168
- type: wer
169
- value: 125.69809089960707
170
- pipeline_tag: automatic-speech-recognition
171
- license: apache-2.0
172
- ---
173
-
174
- # Whisper
175
-
176
- Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours
177
- of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need
178
- for fine-tuning.
179
-
180
- Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356)
181
- by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper).
182
-
183
- **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were
184
- copied and pasted from the original model card.
185
-
186
- ## Model details
187
-
188
- Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model.
189
- It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision.
190
-
191
- The models were trained on either English-only data or multilingual data. The English-only models were trained
192
- on the task of speech recognition. The multilingual models were trained on both speech recognition and speech
193
- translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio.
194
- For speech translation, the model predicts transcriptions to a *different* language to the audio.
195
-
196
- Whisper checkpoints come in five configurations of varying model sizes.
197
- The smallest four are trained on either English-only or multilingual data.
198
- The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
199
- are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
200
- checkpoints are summarised in the following table with links to the models on the Hub:
201
-
202
- | Size | Parameters | English-only | Multilingual |
203
- |----------|------------|------------------------------------------------------|-----------------------------------------------------|
204
- | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) |
205
- | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |
206
- | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |
207
- | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |
208
- | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |
209
- | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) |
210
-
211
- # Usage
212
-
213
- To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
214
-
215
- The `WhisperProcessor` is used to:
216
- 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model)
217
- 2. Post-process the model outputs (converting them from tokens to text)
218
-
219
- The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens
220
- are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order:
221
- 1. The transcription always starts with the `<|startoftranscript|>` token
222
- 2. The second token is the language token (e.g. `<|en|>` for English)
223
- 3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation
224
- 4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction
225
-
226
- Thus, a typical sequence of context tokens might look as follows:
227
- ```
228
- <|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|>
229
- ```
230
- Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps.
231
-
232
- These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at
233
- each position. This allows one to control the output language and task for the Whisper model. If they are un-forced,
234
- the Whisper model will automatically predict the output langauge and task itself.
235
-
236
- The context tokens can be set accordingly:
237
-
238
- ```python
239
- model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe")
240
- ```
241
-
242
- Which forces the model to predict in English under the task of speech recognition.
243
-
244
- ## Transcription
245
-
246
- ### English to English
247
- In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language
248
- (English) and task (transcribe).
249
-
250
- ```python
251
- >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
252
- >>> from datasets import load_dataset
253
-
254
- >>> # load model and processor
255
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small")
256
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
257
- >>> model.config.forced_decoder_ids = None
258
-
259
- >>> # load dummy dataset and read audio files
260
- >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
261
- >>> sample = ds[0]["audio"]
262
- >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
263
-
264
- >>> # generate token ids
265
- >>> predicted_ids = model.generate(input_features)
266
- >>> # decode token ids to text
267
- >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
268
- ['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>']
269
-
270
- >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
271
- [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.']
272
- ```
273
- The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
274
-
275
- ### French to French
276
- The following example demonstrates French to French transcription by setting the decoder ids appropriately.
277
-
278
- ```python
279
- >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
280
- >>> from datasets import Audio, load_dataset
281
-
282
- >>> # load model and processor
283
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small")
284
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
285
- >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe")
286
-
287
- >>> # load streaming dataset and read first audio sample
288
- >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
289
- >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
290
- >>> input_speech = next(iter(ds))["audio"]
291
- >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
292
-
293
- >>> # generate token ids
294
- >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
295
- >>> # decode token ids to text
296
- >>> transcription = processor.batch_decode(predicted_ids)
297
- ['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>']
298
-
299
- >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
300
- [' Un vrai travail intéressant va enfin être mené sur ce sujet.']
301
- ```
302
-
303
- ## Translation
304
- Setting the task to "translate" forces the Whisper model to perform speech translation.
305
-
306
- ### French to English
307
-
308
- ```python
309
- >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
310
- >>> from datasets import Audio, load_dataset
311
-
312
- >>> # load model and processor
313
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small")
314
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
315
- >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate")
316
-
317
- >>> # load streaming dataset and read first audio sample
318
- >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
319
- >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
320
- >>> input_speech = next(iter(ds))["audio"]
321
- >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
322
-
323
- >>> # generate token ids
324
- >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
325
- >>> # decode token ids to text
326
- >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
327
- [' A very interesting work, we will finally be given on this subject.']
328
- ```
329
-
330
- ## Evaluation
331
-
332
- This code snippet shows how to evaluate Whisper Small on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr):
333
-
334
- ```python
335
- >>> from datasets import load_dataset
336
- >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
337
- >>> import torch
338
- >>> from evaluate import load
339
-
340
- >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test")
341
-
342
- >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small")
343
- >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to("cuda")
344
-
345
- >>> def map_to_pred(batch):
346
- >>> audio = batch["audio"]
347
- >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
348
- >>> batch["reference"] = processor.tokenizer._normalize(batch['text'])
349
- >>>
350
- >>> with torch.no_grad():
351
- >>> predicted_ids = model.generate(input_features.to("cuda"))[0]
352
- >>> transcription = processor.decode(predicted_ids)
353
- >>> batch["prediction"] = processor.tokenizer._normalize(transcription)
354
- >>> return batch
355
-
356
- >>> result = librispeech_test_clean.map(map_to_pred)
357
-
358
- >>> wer = load("wer")
359
- >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
360
- 3.432213777886737
361
- ```
362
-
363
- ## Long-Form Transcription
364
-
365
- The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
366
- algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
367
- [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
368
- method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline
369
- can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`:
370
-
371
- ```python
372
- >>> import torch
373
- >>> from transformers import pipeline
374
- >>> from datasets import load_dataset
375
-
376
- >>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
377
-
378
- >>> pipe = pipeline(
379
- >>> "automatic-speech-recognition",
380
- >>> model="openai/whisper-small",
381
- >>> chunk_length_s=30,
382
- >>> device=device,
383
- >>> )
384
-
385
- >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
386
- >>> sample = ds[0]["audio"]
387
-
388
- >>> prediction = pipe(sample.copy(), batch_size=8)["text"]
389
- " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
390
-
391
- >>> # we can also return timestamps for the predictions
392
- >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
393
- [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
394
- 'timestamp': (0.0, 5.44)}]
395
- ```
396
-
397
- Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm.
398
-
399
- ## Fine-Tuning
400
-
401
- The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
402
- its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
403
- post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
404
- guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
405
-
406
- ### Evaluated Use
407
-
408
- The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research.
409
-
410
- The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
411
-
412
- In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
413
-
414
-
415
- ## Training Data
416
-
417
- The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages.
418
-
419
- As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
420
-
421
-
422
- ## Performance and Limitations
423
-
424
- Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
425
-
426
- However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
427
-
428
- Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
429
-
430
- In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
431
-
432
-
433
- ## Broader Implications
434
-
435
- We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
436
-
437
- There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
438
-
439
-
440
- ### BibTeX entry and citation info
441
- ```bibtex
442
- @misc{radford2022whisper,
443
- doi = {10.48550/ARXIV.2212.04356},
444
- url = {https://arxiv.org/abs/2212.04356},
445
- author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
446
- title = {Robust Speech Recognition via Large-Scale Weak Supervision},
447
- publisher = {arXiv},
448
- year = {2022},
449
- copyright = {arXiv.org perpetual, non-exclusive license}
450
- }
451
- ```
452
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pretrained_models/whisper-small/added_tokens.json DELETED
@@ -1,1609 +0,0 @@
1
- {
2
- "<|0.00|>": 50364,
3
- "<|0.02|>": 50365,
4
- "<|0.04|>": 50366,
5
- "<|0.06|>": 50367,
6
- "<|0.08|>": 50368,
7
- "<|0.10|>": 50369,
8
- "<|0.12|>": 50370,
9
- "<|0.14|>": 50371,
10
- "<|0.16|>": 50372,
11
- "<|0.18|>": 50373,
12
- "<|0.20|>": 50374,
13
- "<|0.22|>": 50375,
14
- "<|0.24|>": 50376,
15
- "<|0.26|>": 50377,
16
- "<|0.28|>": 50378,
17
- "<|0.30|>": 50379,
18
- "<|0.32|>": 50380,
19
- "<|0.34|>": 50381,
20
- "<|0.36|>": 50382,
21
- "<|0.38|>": 50383,
22
- "<|0.40|>": 50384,
23
- "<|0.42|>": 50385,
24
- "<|0.44|>": 50386,
25
- "<|0.46|>": 50387,
26
- "<|0.48|>": 50388,
27
- "<|0.50|>": 50389,
28
- "<|0.52|>": 50390,
29
- "<|0.54|>": 50391,
30
- "<|0.56|>": 50392,
31
- "<|0.58|>": 50393,
32
- "<|0.60|>": 50394,
33
- "<|0.62|>": 50395,
34
- "<|0.64|>": 50396,
35
- "<|0.66|>": 50397,
36
- "<|0.68|>": 50398,
37
- "<|0.70|>": 50399,
38
- "<|0.72|>": 50400,
39
- "<|0.74|>": 50401,
40
- "<|0.76|>": 50402,
41
- "<|0.78|>": 50403,
42
- "<|0.80|>": 50404,
43
- "<|0.82|>": 50405,
44
- "<|0.84|>": 50406,
45
- "<|0.86|>": 50407,
46
- "<|0.88|>": 50408,
47
- "<|0.90|>": 50409,
48
- "<|0.92|>": 50410,
49
- "<|0.94|>": 50411,
50
- "<|0.96|>": 50412,
51
- "<|0.98|>": 50413,
52
- "<|1.00|>": 50414,
53
- "<|1.02|>": 50415,
54
- "<|1.04|>": 50416,
55
- "<|1.06|>": 50417,
56
- "<|1.08|>": 50418,
57
- "<|1.10|>": 50419,
58
- "<|1.12|>": 50420,
59
- "<|1.14|>": 50421,
60
- "<|1.16|>": 50422,
61
- "<|1.18|>": 50423,
62
- "<|1.20|>": 50424,
63
- "<|1.22|>": 50425,
64
- "<|1.24|>": 50426,
65
- "<|1.26|>": 50427,
66
- "<|1.28|>": 50428,
67
- "<|1.30|>": 50429,
68
- "<|1.32|>": 50430,
69
- "<|1.34|>": 50431,
70
- "<|1.36|>": 50432,
71
- "<|1.38|>": 50433,
72
- "<|1.40|>": 50434,
73
- "<|1.42|>": 50435,
74
- "<|1.44|>": 50436,
75
- "<|1.46|>": 50437,
76
- "<|1.48|>": 50438,
77
- "<|1.50|>": 50439,
78
- "<|1.52|>": 50440,
79
- "<|1.54|>": 50441,
80
- "<|1.56|>": 50442,
81
- "<|1.58|>": 50443,
82
- "<|1.60|>": 50444,
83
- "<|1.62|>": 50445,
84
- "<|1.64|>": 50446,
85
- "<|1.66|>": 50447,
86
- "<|1.68|>": 50448,
87
- "<|1.70|>": 50449,
88
- "<|1.72|>": 50450,
89
- "<|1.74|>": 50451,
90
- "<|1.76|>": 50452,
91
- "<|1.78|>": 50453,
92
- "<|1.80|>": 50454,
93
- "<|1.82|>": 50455,
94
- "<|1.84|>": 50456,
95
- "<|1.86|>": 50457,
96
- "<|1.88|>": 50458,
97
- "<|1.90|>": 50459,
98
- "<|1.92|>": 50460,
99
- "<|1.94|>": 50461,
100
- "<|1.96|>": 50462,
101
- "<|1.98|>": 50463,
102
- "<|10.00|>": 50864,
103
- "<|10.02|>": 50865,
104
- "<|10.04|>": 50866,
105
- "<|10.06|>": 50867,
106
- "<|10.08|>": 50868,
107
- "<|10.10|>": 50869,
108
- "<|10.12|>": 50870,
109
- "<|10.14|>": 50871,
110
- "<|10.16|>": 50872,
111
- "<|10.18|>": 50873,
112
- "<|10.20|>": 50874,
113
- "<|10.22|>": 50875,
114
- "<|10.24|>": 50876,
115
- "<|10.26|>": 50877,
116
- "<|10.28|>": 50878,
117
- "<|10.30|>": 50879,
118
- "<|10.32|>": 50880,
119
- "<|10.34|>": 50881,
120
- "<|10.36|>": 50882,
121
- "<|10.38|>": 50883,
122
- "<|10.40|>": 50884,
123
- "<|10.42|>": 50885,
124
- "<|10.44|>": 50886,
125
- "<|10.46|>": 50887,
126
- "<|10.48|>": 50888,
127
- "<|10.50|>": 50889,
128
- "<|10.52|>": 50890,
129
- "<|10.54|>": 50891,
130
- "<|10.56|>": 50892,
131
- "<|10.58|>": 50893,
132
- "<|10.60|>": 50894,
133
- "<|10.62|>": 50895,
134
- "<|10.64|>": 50896,
135
- "<|10.66|>": 50897,
136
- "<|10.68|>": 50898,
137
- "<|10.70|>": 50899,
138
- "<|10.72|>": 50900,
139
- "<|10.74|>": 50901,
140
- "<|10.76|>": 50902,
141
- "<|10.78|>": 50903,
142
- "<|10.80|>": 50904,
143
- "<|10.82|>": 50905,
144
- "<|10.84|>": 50906,
145
- "<|10.86|>": 50907,
146
- "<|10.88|>": 50908,
147
- "<|10.90|>": 50909,
148
- "<|10.92|>": 50910,
149
- "<|10.94|>": 50911,
150
- "<|10.96|>": 50912,
151
- "<|10.98|>": 50913,
152
- "<|11.00|>": 50914,
153
- "<|11.02|>": 50915,
154
- "<|11.04|>": 50916,
155
- "<|11.06|>": 50917,
156
- "<|11.08|>": 50918,
157
- "<|11.10|>": 50919,
158
- "<|11.12|>": 50920,
159
- "<|11.14|>": 50921,
160
- "<|11.16|>": 50922,
161
- "<|11.18|>": 50923,
162
- "<|11.20|>": 50924,
163
- "<|11.22|>": 50925,
164
- "<|11.24|>": 50926,
165
- "<|11.26|>": 50927,
166
- "<|11.28|>": 50928,
167
- "<|11.30|>": 50929,
168
- "<|11.32|>": 50930,
169
- "<|11.34|>": 50931,
170
- "<|11.36|>": 50932,
171
- "<|11.38|>": 50933,
172
- "<|11.40|>": 50934,
173
- "<|11.42|>": 50935,
174
- "<|11.44|>": 50936,
175
- "<|11.46|>": 50937,
176
- "<|11.48|>": 50938,
177
- "<|11.50|>": 50939,
178
- "<|11.52|>": 50940,
179
- "<|11.54|>": 50941,
180
- "<|11.56|>": 50942,
181
- "<|11.58|>": 50943,
182
- "<|11.60|>": 50944,
183
- "<|11.62|>": 50945,
184
- "<|11.64|>": 50946,
185
- "<|11.66|>": 50947,
186
- "<|11.68|>": 50948,
187
- "<|11.70|>": 50949,
188
- "<|11.72|>": 50950,
189
- "<|11.74|>": 50951,
190
- "<|11.76|>": 50952,
191
- "<|11.78|>": 50953,
192
- "<|11.80|>": 50954,
193
- "<|11.82|>": 50955,
194
- "<|11.84|>": 50956,
195
- "<|11.86|>": 50957,
196
- "<|11.88|>": 50958,
197
- "<|11.90|>": 50959,
198
- "<|11.92|>": 50960,
199
- "<|11.94|>": 50961,
200
- "<|11.96|>": 50962,
201
- "<|11.98|>": 50963,
202
- "<|12.00|>": 50964,
203
- "<|12.02|>": 50965,
204
- "<|12.04|>": 50966,
205
- "<|12.06|>": 50967,
206
- "<|12.08|>": 50968,
207
- "<|12.10|>": 50969,
208
- "<|12.12|>": 50970,
209
- "<|12.14|>": 50971,
210
- "<|12.16|>": 50972,
211
- "<|12.18|>": 50973,
212
- "<|12.20|>": 50974,
213
- "<|12.22|>": 50975,
214
- "<|12.24|>": 50976,
215
- "<|12.26|>": 50977,
216
- "<|12.28|>": 50978,
217
- "<|12.30|>": 50979,
218
- "<|12.32|>": 50980,
219
- "<|12.34|>": 50981,
220
- "<|12.36|>": 50982,
221
- "<|12.38|>": 50983,
222
- "<|12.40|>": 50984,
223
- "<|12.42|>": 50985,
224
- "<|12.44|>": 50986,
225
- "<|12.46|>": 50987,
226
- "<|12.48|>": 50988,
227
- "<|12.50|>": 50989,
228
- "<|12.52|>": 50990,
229
- "<|12.54|>": 50991,
230
- "<|12.56|>": 50992,
231
- "<|12.58|>": 50993,
232
- "<|12.60|>": 50994,
233
- "<|12.62|>": 50995,
234
- "<|12.64|>": 50996,
235
- "<|12.66|>": 50997,
236
- "<|12.68|>": 50998,
237
- "<|12.70|>": 50999,
238
- "<|12.72|>": 51000,
239
- "<|12.74|>": 51001,
240
- "<|12.76|>": 51002,
241
- "<|12.78|>": 51003,
242
- "<|12.80|>": 51004,
243
- "<|12.82|>": 51005,
244
- "<|12.84|>": 51006,
245
- "<|12.86|>": 51007,
246
- "<|12.88|>": 51008,
247
- "<|12.90|>": 51009,
248
- "<|12.92|>": 51010,
249
- "<|12.94|>": 51011,
250
- "<|12.96|>": 51012,
251
- "<|12.98|>": 51013,
252
- "<|13.00|>": 51014,
253
- "<|13.02|>": 51015,
254
- "<|13.04|>": 51016,
255
- "<|13.06|>": 51017,
256
- "<|13.08|>": 51018,
257
- "<|13.10|>": 51019,
258
- "<|13.12|>": 51020,
259
- "<|13.14|>": 51021,
260
- "<|13.16|>": 51022,
261
- "<|13.18|>": 51023,
262
- "<|13.20|>": 51024,
263
- "<|13.22|>": 51025,
264
- "<|13.24|>": 51026,
265
- "<|13.26|>": 51027,
266
- "<|13.28|>": 51028,
267
- "<|13.30|>": 51029,
268
- "<|13.32|>": 51030,
269
- "<|13.34|>": 51031,
270
- "<|13.36|>": 51032,
271
- "<|13.38|>": 51033,
272
- "<|13.40|>": 51034,
273
- "<|13.42|>": 51035,
274
- "<|13.44|>": 51036,
275
- "<|13.46|>": 51037,
276
- "<|13.48|>": 51038,
277
- "<|13.50|>": 51039,
278
- "<|13.52|>": 51040,
279
- "<|13.54|>": 51041,
280
- "<|13.56|>": 51042,
281
- "<|13.58|>": 51043,
282
- "<|13.60|>": 51044,
283
- "<|13.62|>": 51045,
284
- "<|13.64|>": 51046,
285
- "<|13.66|>": 51047,
286
- "<|13.68|>": 51048,
287
- "<|13.70|>": 51049,
288
- "<|13.72|>": 51050,
289
- "<|13.74|>": 51051,
290
- "<|13.76|>": 51052,
291
- "<|13.78|>": 51053,
292
- "<|13.80|>": 51054,
293
- "<|13.82|>": 51055,
294
- "<|13.84|>": 51056,
295
- "<|13.86|>": 51057,
296
- "<|13.88|>": 51058,
297
- "<|13.90|>": 51059,
298
- "<|13.92|>": 51060,
299
- "<|13.94|>": 51061,
300
- "<|13.96|>": 51062,
301
- "<|13.98|>": 51063,
302
- "<|14.00|>": 51064,
303
- "<|14.02|>": 51065,
304
- "<|14.04|>": 51066,
305
- "<|14.06|>": 51067,
306
- "<|14.08|>": 51068,
307
- "<|14.10|>": 51069,
308
- "<|14.12|>": 51070,
309
- "<|14.14|>": 51071,
310
- "<|14.16|>": 51072,
311
- "<|14.18|>": 51073,
312
- "<|14.20|>": 51074,
313
- "<|14.22|>": 51075,
314
- "<|14.24|>": 51076,
315
- "<|14.26|>": 51077,
316
- "<|14.28|>": 51078,
317
- "<|14.30|>": 51079,
318
- "<|14.32|>": 51080,
319
- "<|14.34|>": 51081,
320
- "<|14.36|>": 51082,
321
- "<|14.38|>": 51083,
322
- "<|14.40|>": 51084,
323
- "<|14.42|>": 51085,
324
- "<|14.44|>": 51086,
325
- "<|14.46|>": 51087,
326
- "<|14.48|>": 51088,
327
- "<|14.50|>": 51089,
328
- "<|14.52|>": 51090,
329
- "<|14.54|>": 51091,
330
- "<|14.56|>": 51092,
331
- "<|14.58|>": 51093,
332
- "<|14.60|>": 51094,
333
- "<|14.62|>": 51095,
334
- "<|14.64|>": 51096,
335
- "<|14.66|>": 51097,
336
- "<|14.68|>": 51098,
337
- "<|14.70|>": 51099,
338
- "<|14.72|>": 51100,
339
- "<|14.74|>": 51101,
340
- "<|14.76|>": 51102,
341
- "<|14.78|>": 51103,
342
- "<|14.80|>": 51104,
343
- "<|14.82|>": 51105,
344
- "<|14.84|>": 51106,
345
- "<|14.86|>": 51107,
346
- "<|14.88|>": 51108,
347
- "<|14.90|>": 51109,
348
- "<|14.92|>": 51110,
349
- "<|14.94|>": 51111,
350
- "<|14.96|>": 51112,
351
- "<|14.98|>": 51113,
352
- "<|15.00|>": 51114,
353
- "<|15.02|>": 51115,
354
- "<|15.04|>": 51116,
355
- "<|15.06|>": 51117,
356
- "<|15.08|>": 51118,
357
- "<|15.10|>": 51119,
358
- "<|15.12|>": 51120,
359
- "<|15.14|>": 51121,
360
- "<|15.16|>": 51122,
361
- "<|15.18|>": 51123,
362
- "<|15.20|>": 51124,
363
- "<|15.22|>": 51125,
364
- "<|15.24|>": 51126,
365
- "<|15.26|>": 51127,
366
- "<|15.28|>": 51128,
367
- "<|15.30|>": 51129,
368
- "<|15.32|>": 51130,
369
- "<|15.34|>": 51131,
370
- "<|15.36|>": 51132,
371
- "<|15.38|>": 51133,
372
- "<|15.40|>": 51134,
373
- "<|15.42|>": 51135,
374
- "<|15.44|>": 51136,
375
- "<|15.46|>": 51137,
376
- "<|15.48|>": 51138,
377
- "<|15.50|>": 51139,
378
- "<|15.52|>": 51140,
379
- "<|15.54|>": 51141,
380
- "<|15.56|>": 51142,
381
- "<|15.58|>": 51143,
382
- "<|15.60|>": 51144,
383
- "<|15.62|>": 51145,
384
- "<|15.64|>": 51146,
385
- "<|15.66|>": 51147,
386
- "<|15.68|>": 51148,
387
- "<|15.70|>": 51149,
388
- "<|15.72|>": 51150,
389
- "<|15.74|>": 51151,
390
- "<|15.76|>": 51152,
391
- "<|15.78|>": 51153,
392
- "<|15.80|>": 51154,
393
- "<|15.82|>": 51155,
394
- "<|15.84|>": 51156,
395
- "<|15.86|>": 51157,
396
- "<|15.88|>": 51158,
397
- "<|15.90|>": 51159,
398
- "<|15.92|>": 51160,
399
- "<|15.94|>": 51161,
400
- "<|15.96|>": 51162,
401
- "<|15.98|>": 51163,
402
- "<|16.00|>": 51164,
403
- "<|16.02|>": 51165,
404
- "<|16.04|>": 51166,
405
- "<|16.06|>": 51167,
406
- "<|16.08|>": 51168,
407
- "<|16.10|>": 51169,
408
- "<|16.12|>": 51170,
409
- "<|16.14|>": 51171,
410
- "<|16.16|>": 51172,
411
- "<|16.18|>": 51173,
412
- "<|16.20|>": 51174,
413
- "<|16.22|>": 51175,
414
- "<|16.24|>": 51176,
415
- "<|16.26|>": 51177,
416
- "<|16.28|>": 51178,
417
- "<|16.30|>": 51179,
418
- "<|16.32|>": 51180,
419
- "<|16.34|>": 51181,
420
- "<|16.36|>": 51182,
421
- "<|16.38|>": 51183,
422
- "<|16.40|>": 51184,
423
- "<|16.42|>": 51185,
424
- "<|16.44|>": 51186,
425
- "<|16.46|>": 51187,
426
- "<|16.48|>": 51188,
427
- "<|16.50|>": 51189,
428
- "<|16.52|>": 51190,
429
- "<|16.54|>": 51191,
430
- "<|16.56|>": 51192,
431
- "<|16.58|>": 51193,
432
- "<|16.60|>": 51194,
433
- "<|16.62|>": 51195,
434
- "<|16.64|>": 51196,
435
- "<|16.66|>": 51197,
436
- "<|16.68|>": 51198,
437
- "<|16.70|>": 51199,
438
- "<|16.72|>": 51200,
439
- "<|16.74|>": 51201,
440
- "<|16.76|>": 51202,
441
- "<|16.78|>": 51203,
442
- "<|16.80|>": 51204,
443
- "<|16.82|>": 51205,
444
- "<|16.84|>": 51206,
445
- "<|16.86|>": 51207,
446
- "<|16.88|>": 51208,
447
- "<|16.90|>": 51209,
448
- "<|16.92|>": 51210,
449
- "<|16.94|>": 51211,
450
- "<|16.96|>": 51212,
451
- "<|16.98|>": 51213,
452
- "<|17.00|>": 51214,
453
- "<|17.02|>": 51215,
454
- "<|17.04|>": 51216,
455
- "<|17.06|>": 51217,
456
- "<|17.08|>": 51218,
457
- "<|17.10|>": 51219,
458
- "<|17.12|>": 51220,
459
- "<|17.14|>": 51221,
460
- "<|17.16|>": 51222,
461
- "<|17.18|>": 51223,
462
- "<|17.20|>": 51224,
463
- "<|17.22|>": 51225,
464
- "<|17.24|>": 51226,
465
- "<|17.26|>": 51227,
466
- "<|17.28|>": 51228,
467
- "<|17.30|>": 51229,
468
- "<|17.32|>": 51230,
469
- "<|17.34|>": 51231,
470
- "<|17.36|>": 51232,
471
- "<|17.38|>": 51233,
472
- "<|17.40|>": 51234,
473
- "<|17.42|>": 51235,
474
- "<|17.44|>": 51236,
475
- "<|17.46|>": 51237,
476
- "<|17.48|>": 51238,
477
- "<|17.50|>": 51239,
478
- "<|17.52|>": 51240,
479
- "<|17.54|>": 51241,
480
- "<|17.56|>": 51242,
481
- "<|17.58|>": 51243,
482
- "<|17.60|>": 51244,
483
- "<|17.62|>": 51245,
484
- "<|17.64|>": 51246,
485
- "<|17.66|>": 51247,
486
- "<|17.68|>": 51248,
487
- "<|17.70|>": 51249,
488
- "<|17.72|>": 51250,
489
- "<|17.74|>": 51251,
490
- "<|17.76|>": 51252,
491
- "<|17.78|>": 51253,
492
- "<|17.80|>": 51254,
493
- "<|17.82|>": 51255,
494
- "<|17.84|>": 51256,
495
- "<|17.86|>": 51257,
496
- "<|17.88|>": 51258,
497
- "<|17.90|>": 51259,
498
- "<|17.92|>": 51260,
499
- "<|17.94|>": 51261,
500
- "<|17.96|>": 51262,
501
- "<|17.98|>": 51263,
502
- "<|18.00|>": 51264,
503
- "<|18.02|>": 51265,
504
- "<|18.04|>": 51266,
505
- "<|18.06|>": 51267,
506
- "<|18.08|>": 51268,
507
- "<|18.10|>": 51269,
508
- "<|18.12|>": 51270,
509
- "<|18.14|>": 51271,
510
- "<|18.16|>": 51272,
511
- "<|18.18|>": 51273,
512
- "<|18.20|>": 51274,
513
- "<|18.22|>": 51275,
514
- "<|18.24|>": 51276,
515
- "<|18.26|>": 51277,
516
- "<|18.28|>": 51278,
517
- "<|18.30|>": 51279,
518
- "<|18.32|>": 51280,
519
- "<|18.34|>": 51281,
520
- "<|18.36|>": 51282,
521
- "<|18.38|>": 51283,
522
- "<|18.40|>": 51284,
523
- "<|18.42|>": 51285,
524
- "<|18.44|>": 51286,
525
- "<|18.46|>": 51287,
526
- "<|18.48|>": 51288,
527
- "<|18.50|>": 51289,
528
- "<|18.52|>": 51290,
529
- "<|18.54|>": 51291,
530
- "<|18.56|>": 51292,
531
- "<|18.58|>": 51293,
532
- "<|18.60|>": 51294,
533
- "<|18.62|>": 51295,
534
- "<|18.64|>": 51296,
535
- "<|18.66|>": 51297,
536
- "<|18.68|>": 51298,
537
- "<|18.70|>": 51299,
538
- "<|18.72|>": 51300,
539
- "<|18.74|>": 51301,
540
- "<|18.76|>": 51302,
541
- "<|18.78|>": 51303,
542
- "<|18.80|>": 51304,
543
- "<|18.82|>": 51305,
544
- "<|18.84|>": 51306,
545
- "<|18.86|>": 51307,
546
- "<|18.88|>": 51308,
547
- "<|18.90|>": 51309,
548
- "<|18.92|>": 51310,
549
- "<|18.94|>": 51311,
550
- "<|18.96|>": 51312,
551
- "<|18.98|>": 51313,
552
- "<|19.00|>": 51314,
553
- "<|19.02|>": 51315,
554
- "<|19.04|>": 51316,
555
- "<|19.06|>": 51317,
556
- "<|19.08|>": 51318,
557
- "<|19.10|>": 51319,
558
- "<|19.12|>": 51320,
559
- "<|19.14|>": 51321,
560
- "<|19.16|>": 51322,
561
- "<|19.18|>": 51323,
562
- "<|19.20|>": 51324,
563
- "<|19.22|>": 51325,
564
- "<|19.24|>": 51326,
565
- "<|19.26|>": 51327,
566
- "<|19.28|>": 51328,
567
- "<|19.30|>": 51329,
568
- "<|19.32|>": 51330,
569
- "<|19.34|>": 51331,
570
- "<|19.36|>": 51332,
571
- "<|19.38|>": 51333,
572
- "<|19.40|>": 51334,
573
- "<|19.42|>": 51335,
574
- "<|19.44|>": 51336,
575
- "<|19.46|>": 51337,
576
- "<|19.48|>": 51338,
577
- "<|19.50|>": 51339,
578
- "<|19.52|>": 51340,
579
- "<|19.54|>": 51341,
580
- "<|19.56|>": 51342,
581
- "<|19.58|>": 51343,
582
- "<|19.60|>": 51344,
583
- "<|19.62|>": 51345,
584
- "<|19.64|>": 51346,
585
- "<|19.66|>": 51347,
586
- "<|19.68|>": 51348,
587
- "<|19.70|>": 51349,
588
- "<|19.72|>": 51350,
589
- "<|19.74|>": 51351,
590
- "<|19.76|>": 51352,
591
- "<|19.78|>": 51353,
592
- "<|19.80|>": 51354,
593
- "<|19.82|>": 51355,
594
- "<|19.84|>": 51356,
595
- "<|19.86|>": 51357,
596
- "<|19.88|>": 51358,
597
- "<|19.90|>": 51359,
598
- "<|19.92|>": 51360,
599
- "<|19.94|>": 51361,
600
- "<|19.96|>": 51362,
601
- "<|19.98|>": 51363,
602
- "<|2.00|>": 50464,
603
- "<|2.02|>": 50465,
604
- "<|2.04|>": 50466,
605
- "<|2.06|>": 50467,
606
- "<|2.08|>": 50468,
607
- "<|2.10|>": 50469,
608
- "<|2.12|>": 50470,
609
- "<|2.14|>": 50471,
610
- "<|2.16|>": 50472,
611
- "<|2.18|>": 50473,
612
- "<|2.20|>": 50474,
613
- "<|2.22|>": 50475,
614
- "<|2.24|>": 50476,
615
- "<|2.26|>": 50477,
616
- "<|2.28|>": 50478,
617
- "<|2.30|>": 50479,
618
- "<|2.32|>": 50480,
619
- "<|2.34|>": 50481,
620
- "<|2.36|>": 50482,
621
- "<|2.38|>": 50483,
622
- "<|2.40|>": 50484,
623
- "<|2.42|>": 50485,
624
- "<|2.44|>": 50486,
625
- "<|2.46|>": 50487,
626
- "<|2.48|>": 50488,
627
- "<|2.50|>": 50489,
628
- "<|2.52|>": 50490,
629
- "<|2.54|>": 50491,
630
- "<|2.56|>": 50492,
631
- "<|2.58|>": 50493,
632
- "<|2.60|>": 50494,
633
- "<|2.62|>": 50495,
634
- "<|2.64|>": 50496,
635
- "<|2.66|>": 50497,
636
- "<|2.68|>": 50498,
637
- "<|2.70|>": 50499,
638
- "<|2.72|>": 50500,
639
- "<|2.74|>": 50501,
640
- "<|2.76|>": 50502,
641
- "<|2.78|>": 50503,
642
- "<|2.80|>": 50504,
643
- "<|2.82|>": 50505,
644
- "<|2.84|>": 50506,
645
- "<|2.86|>": 50507,
646
- "<|2.88|>": 50508,
647
- "<|2.90|>": 50509,
648
- "<|2.92|>": 50510,
649
- "<|2.94|>": 50511,
650
- "<|2.96|>": 50512,
651
- "<|2.98|>": 50513,
652
- "<|20.00|>": 51364,
653
- "<|20.02|>": 51365,
654
- "<|20.04|>": 51366,
655
- "<|20.06|>": 51367,
656
- "<|20.08|>": 51368,
657
- "<|20.10|>": 51369,
658
- "<|20.12|>": 51370,
659
- "<|20.14|>": 51371,
660
- "<|20.16|>": 51372,
661
- "<|20.18|>": 51373,
662
- "<|20.20|>": 51374,
663
- "<|20.22|>": 51375,
664
- "<|20.24|>": 51376,
665
- "<|20.26|>": 51377,
666
- "<|20.28|>": 51378,
667
- "<|20.30|>": 51379,
668
- "<|20.32|>": 51380,
669
- "<|20.34|>": 51381,
670
- "<|20.36|>": 51382,
671
- "<|20.38|>": 51383,
672
- "<|20.40|>": 51384,
673
- "<|20.42|>": 51385,
674
- "<|20.44|>": 51386,
675
- "<|20.46|>": 51387,
676
- "<|20.48|>": 51388,
677
- "<|20.50|>": 51389,
678
- "<|20.52|>": 51390,
679
- "<|20.54|>": 51391,
680
- "<|20.56|>": 51392,
681
- "<|20.58|>": 51393,
682
- "<|20.60|>": 51394,
683
- "<|20.62|>": 51395,
684
- "<|20.64|>": 51396,
685
- "<|20.66|>": 51397,
686
- "<|20.68|>": 51398,
687
- "<|20.70|>": 51399,
688
- "<|20.72|>": 51400,
689
- "<|20.74|>": 51401,
690
- "<|20.76|>": 51402,
691
- "<|20.78|>": 51403,
692
- "<|20.80|>": 51404,
693
- "<|20.82|>": 51405,
694
- "<|20.84|>": 51406,
695
- "<|20.86|>": 51407,
696
- "<|20.88|>": 51408,
697
- "<|20.90|>": 51409,
698
- "<|20.92|>": 51410,
699
- "<|20.94|>": 51411,
700
- "<|20.96|>": 51412,
701
- "<|20.98|>": 51413,
702
- "<|21.00|>": 51414,
703
- "<|21.02|>": 51415,
704
- "<|21.04|>": 51416,
705
- "<|21.06|>": 51417,
706
- "<|21.08|>": 51418,
707
- "<|21.10|>": 51419,
708
- "<|21.12|>": 51420,
709
- "<|21.14|>": 51421,
710
- "<|21.16|>": 51422,
711
- "<|21.18|>": 51423,
712
- "<|21.20|>": 51424,
713
- "<|21.22|>": 51425,
714
- "<|21.24|>": 51426,
715
- "<|21.26|>": 51427,
716
- "<|21.28|>": 51428,
717
- "<|21.30|>": 51429,
718
- "<|21.32|>": 51430,
719
- "<|21.34|>": 51431,
720
- "<|21.36|>": 51432,
721
- "<|21.38|>": 51433,
722
- "<|21.40|>": 51434,
723
- "<|21.42|>": 51435,
724
- "<|21.44|>": 51436,
725
- "<|21.46|>": 51437,
726
- "<|21.48|>": 51438,
727
- "<|21.50|>": 51439,
728
- "<|21.52|>": 51440,
729
- "<|21.54|>": 51441,
730
- "<|21.56|>": 51442,
731
- "<|21.58|>": 51443,
732
- "<|21.60|>": 51444,
733
- "<|21.62|>": 51445,
734
- "<|21.64|>": 51446,
735
- "<|21.66|>": 51447,
736
- "<|21.68|>": 51448,
737
- "<|21.70|>": 51449,
738
- "<|21.72|>": 51450,
739
- "<|21.74|>": 51451,
740
- "<|21.76|>": 51452,
741
- "<|21.78|>": 51453,
742
- "<|21.80|>": 51454,
743
- "<|21.82|>": 51455,
744
- "<|21.84|>": 51456,
745
- "<|21.86|>": 51457,
746
- "<|21.88|>": 51458,
747
- "<|21.90|>": 51459,
748
- "<|21.92|>": 51460,
749
- "<|21.94|>": 51461,
750
- "<|21.96|>": 51462,
751
- "<|21.98|>": 51463,
752
- "<|22.00|>": 51464,
753
- "<|22.02|>": 51465,
754
- "<|22.04|>": 51466,
755
- "<|22.06|>": 51467,
756
- "<|22.08|>": 51468,
757
- "<|22.10|>": 51469,
758
- "<|22.12|>": 51470,
759
- "<|22.14|>": 51471,
760
- "<|22.16|>": 51472,
761
- "<|22.18|>": 51473,
762
- "<|22.20|>": 51474,
763
- "<|22.22|>": 51475,
764
- "<|22.24|>": 51476,
765
- "<|22.26|>": 51477,
766
- "<|22.28|>": 51478,
767
- "<|22.30|>": 51479,
768
- "<|22.32|>": 51480,
769
- "<|22.34|>": 51481,
770
- "<|22.36|>": 51482,
771
- "<|22.38|>": 51483,
772
- "<|22.40|>": 51484,
773
- "<|22.42|>": 51485,
774
- "<|22.44|>": 51486,
775
- "<|22.46|>": 51487,
776
- "<|22.48|>": 51488,
777
- "<|22.50|>": 51489,
778
- "<|22.52|>": 51490,
779
- "<|22.54|>": 51491,
780
- "<|22.56|>": 51492,
781
- "<|22.58|>": 51493,
782
- "<|22.60|>": 51494,
783
- "<|22.62|>": 51495,
784
- "<|22.64|>": 51496,
785
- "<|22.66|>": 51497,
786
- "<|22.68|>": 51498,
787
- "<|22.70|>": 51499,
788
- "<|22.72|>": 51500,
789
- "<|22.74|>": 51501,
790
- "<|22.76|>": 51502,
791
- "<|22.78|>": 51503,
792
- "<|22.80|>": 51504,
793
- "<|22.82|>": 51505,
794
- "<|22.84|>": 51506,
795
- "<|22.86|>": 51507,
796
- "<|22.88|>": 51508,
797
- "<|22.90|>": 51509,
798
- "<|22.92|>": 51510,
799
- "<|22.94|>": 51511,
800
- "<|22.96|>": 51512,
801
- "<|22.98|>": 51513,
802
- "<|23.00|>": 51514,
803
- "<|23.02|>": 51515,
804
- "<|23.04|>": 51516,
805
- "<|23.06|>": 51517,
806
- "<|23.08|>": 51518,
807
- "<|23.10|>": 51519,
808
- "<|23.12|>": 51520,
809
- "<|23.14|>": 51521,
810
- "<|23.16|>": 51522,
811
- "<|23.18|>": 51523,
812
- "<|23.20|>": 51524,
813
- "<|23.22|>": 51525,
814
- "<|23.24|>": 51526,
815
- "<|23.26|>": 51527,
816
- "<|23.28|>": 51528,
817
- "<|23.30|>": 51529,
818
- "<|23.32|>": 51530,
819
- "<|23.34|>": 51531,
820
- "<|23.36|>": 51532,
821
- "<|23.38|>": 51533,
822
- "<|23.40|>": 51534,
823
- "<|23.42|>": 51535,
824
- "<|23.44|>": 51536,
825
- "<|23.46|>": 51537,
826
- "<|23.48|>": 51538,
827
- "<|23.50|>": 51539,
828
- "<|23.52|>": 51540,
829
- "<|23.54|>": 51541,
830
- "<|23.56|>": 51542,
831
- "<|23.58|>": 51543,
832
- "<|23.60|>": 51544,
833
- "<|23.62|>": 51545,
834
- "<|23.64|>": 51546,
835
- "<|23.66|>": 51547,
836
- "<|23.68|>": 51548,
837
- "<|23.70|>": 51549,
838
- "<|23.72|>": 51550,
839
- "<|23.74|>": 51551,
840
- "<|23.76|>": 51552,
841
- "<|23.78|>": 51553,
842
- "<|23.80|>": 51554,
843
- "<|23.82|>": 51555,
844
- "<|23.84|>": 51556,
845
- "<|23.86|>": 51557,
846
- "<|23.88|>": 51558,
847
- "<|23.90|>": 51559,
848
- "<|23.92|>": 51560,
849
- "<|23.94|>": 51561,
850
- "<|23.96|>": 51562,
851
- "<|23.98|>": 51563,
852
- "<|24.00|>": 51564,
853
- "<|24.02|>": 51565,
854
- "<|24.04|>": 51566,
855
- "<|24.06|>": 51567,
856
- "<|24.08|>": 51568,
857
- "<|24.10|>": 51569,
858
- "<|24.12|>": 51570,
859
- "<|24.14|>": 51571,
860
- "<|24.16|>": 51572,
861
- "<|24.18|>": 51573,
862
- "<|24.20|>": 51574,
863
- "<|24.22|>": 51575,
864
- "<|24.24|>": 51576,
865
- "<|24.26|>": 51577,
866
- "<|24.28|>": 51578,
867
- "<|24.30|>": 51579,
868
- "<|24.32|>": 51580,
869
- "<|24.34|>": 51581,
870
- "<|24.36|>": 51582,
871
- "<|24.38|>": 51583,
872
- "<|24.40|>": 51584,
873
- "<|24.42|>": 51585,
874
- "<|24.44|>": 51586,
875
- "<|24.46|>": 51587,
876
- "<|24.48|>": 51588,
877
- "<|24.50|>": 51589,
878
- "<|24.52|>": 51590,
879
- "<|24.54|>": 51591,
880
- "<|24.56|>": 51592,
881
- "<|24.58|>": 51593,
882
- "<|24.60|>": 51594,
883
- "<|24.62|>": 51595,
884
- "<|24.64|>": 51596,
885
- "<|24.66|>": 51597,
886
- "<|24.68|>": 51598,
887
- "<|24.70|>": 51599,
888
- "<|24.72|>": 51600,
889
- "<|24.74|>": 51601,
890
- "<|24.76|>": 51602,
891
- "<|24.78|>": 51603,
892
- "<|24.80|>": 51604,
893
- "<|24.82|>": 51605,
894
- "<|24.84|>": 51606,
895
- "<|24.86|>": 51607,
896
- "<|24.88|>": 51608,
897
- "<|24.90|>": 51609,
898
- "<|24.92|>": 51610,
899
- "<|24.94|>": 51611,
900
- "<|24.96|>": 51612,
901
- "<|24.98|>": 51613,
902
- "<|25.00|>": 51614,
903
- "<|25.02|>": 51615,
904
- "<|25.04|>": 51616,
905
- "<|25.06|>": 51617,
906
- "<|25.08|>": 51618,
907
- "<|25.10|>": 51619,
908
- "<|25.12|>": 51620,
909
- "<|25.14|>": 51621,
910
- "<|25.16|>": 51622,
911
- "<|25.18|>": 51623,
912
- "<|25.20|>": 51624,
913
- "<|25.22|>": 51625,
914
- "<|25.24|>": 51626,
915
- "<|25.26|>": 51627,
916
- "<|25.28|>": 51628,
917
- "<|25.30|>": 51629,
918
- "<|25.32|>": 51630,
919
- "<|25.34|>": 51631,
920
- "<|25.36|>": 51632,
921
- "<|25.38|>": 51633,
922
- "<|25.40|>": 51634,
923
- "<|25.42|>": 51635,
924
- "<|25.44|>": 51636,
925
- "<|25.46|>": 51637,
926
- "<|25.48|>": 51638,
927
- "<|25.50|>": 51639,
928
- "<|25.52|>": 51640,
929
- "<|25.54|>": 51641,
930
- "<|25.56|>": 51642,
931
- "<|25.58|>": 51643,
932
- "<|25.60|>": 51644,
933
- "<|25.62|>": 51645,
934
- "<|25.64|>": 51646,
935
- "<|25.66|>": 51647,
936
- "<|25.68|>": 51648,
937
- "<|25.70|>": 51649,
938
- "<|25.72|>": 51650,
939
- "<|25.74|>": 51651,
940
- "<|25.76|>": 51652,
941
- "<|25.78|>": 51653,
942
- "<|25.80|>": 51654,
943
- "<|25.82|>": 51655,
944
- "<|25.84|>": 51656,
945
- "<|25.86|>": 51657,
946
- "<|25.88|>": 51658,
947
- "<|25.90|>": 51659,
948
- "<|25.92|>": 51660,
949
- "<|25.94|>": 51661,
950
- "<|25.96|>": 51662,
951
- "<|25.98|>": 51663,
952
- "<|26.00|>": 51664,
953
- "<|26.02|>": 51665,
954
- "<|26.04|>": 51666,
955
- "<|26.06|>": 51667,
956
- "<|26.08|>": 51668,
957
- "<|26.10|>": 51669,
958
- "<|26.12|>": 51670,
959
- "<|26.14|>": 51671,
960
- "<|26.16|>": 51672,
961
- "<|26.18|>": 51673,
962
- "<|26.20|>": 51674,
963
- "<|26.22|>": 51675,
964
- "<|26.24|>": 51676,
965
- "<|26.26|>": 51677,
966
- "<|26.28|>": 51678,
967
- "<|26.30|>": 51679,
968
- "<|26.32|>": 51680,
969
- "<|26.34|>": 51681,
970
- "<|26.36|>": 51682,
971
- "<|26.38|>": 51683,
972
- "<|26.40|>": 51684,
973
- "<|26.42|>": 51685,
974
- "<|26.44|>": 51686,
975
- "<|26.46|>": 51687,
976
- "<|26.48|>": 51688,
977
- "<|26.50|>": 51689,
978
- "<|26.52|>": 51690,
979
- "<|26.54|>": 51691,
980
- "<|26.56|>": 51692,
981
- "<|26.58|>": 51693,
982
- "<|26.60|>": 51694,
983
- "<|26.62|>": 51695,
984
- "<|26.64|>": 51696,
985
- "<|26.66|>": 51697,
986
- "<|26.68|>": 51698,
987
- "<|26.70|>": 51699,
988
- "<|26.72|>": 51700,
989
- "<|26.74|>": 51701,
990
- "<|26.76|>": 51702,
991
- "<|26.78|>": 51703,
992
- "<|26.80|>": 51704,
993
- "<|26.82|>": 51705,
994
- "<|26.84|>": 51706,
995
- "<|26.86|>": 51707,
996
- "<|26.88|>": 51708,
997
- "<|26.90|>": 51709,
998
- "<|26.92|>": 51710,
999
- "<|26.94|>": 51711,
1000
- "<|26.96|>": 51712,
1001
- "<|26.98|>": 51713,
1002
- "<|27.00|>": 51714,
1003
- "<|27.02|>": 51715,
1004
- "<|27.04|>": 51716,
1005
- "<|27.06|>": 51717,
1006
- "<|27.08|>": 51718,
1007
- "<|27.10|>": 51719,
1008
- "<|27.12|>": 51720,
1009
- "<|27.14|>": 51721,
1010
- "<|27.16|>": 51722,
1011
- "<|27.18|>": 51723,
1012
- "<|27.20|>": 51724,
1013
- "<|27.22|>": 51725,
1014
- "<|27.24|>": 51726,
1015
- "<|27.26|>": 51727,
1016
- "<|27.28|>": 51728,
1017
- "<|27.30|>": 51729,
1018
- "<|27.32|>": 51730,
1019
- "<|27.34|>": 51731,
1020
- "<|27.36|>": 51732,
1021
- "<|27.38|>": 51733,
1022
- "<|27.40|>": 51734,
1023
- "<|27.42|>": 51735,
1024
- "<|27.44|>": 51736,
1025
- "<|27.46|>": 51737,
1026
- "<|27.48|>": 51738,
1027
- "<|27.50|>": 51739,
1028
- "<|27.52|>": 51740,
1029
- "<|27.54|>": 51741,
1030
- "<|27.56|>": 51742,
1031
- "<|27.58|>": 51743,
1032
- "<|27.60|>": 51744,
1033
- "<|27.62|>": 51745,
1034
- "<|27.64|>": 51746,
1035
- "<|27.66|>": 51747,
1036
- "<|27.68|>": 51748,
1037
- "<|27.70|>": 51749,
1038
- "<|27.72|>": 51750,
1039
- "<|27.74|>": 51751,
1040
- "<|27.76|>": 51752,
1041
- "<|27.78|>": 51753,
1042
- "<|27.80|>": 51754,
1043
- "<|27.82|>": 51755,
1044
- "<|27.84|>": 51756,
1045
- "<|27.86|>": 51757,
1046
- "<|27.88|>": 51758,
1047
- "<|27.90|>": 51759,
1048
- "<|27.92|>": 51760,
1049
- "<|27.94|>": 51761,
1050
- "<|27.96|>": 51762,
1051
- "<|27.98|>": 51763,
1052
- "<|28.00|>": 51764,
1053
- "<|28.02|>": 51765,
1054
- "<|28.04|>": 51766,
1055
- "<|28.06|>": 51767,
1056
- "<|28.08|>": 51768,
1057
- "<|28.10|>": 51769,
1058
- "<|28.12|>": 51770,
1059
- "<|28.14|>": 51771,
1060
- "<|28.16|>": 51772,
1061
- "<|28.18|>": 51773,
1062
- "<|28.20|>": 51774,
1063
- "<|28.22|>": 51775,
1064
- "<|28.24|>": 51776,
1065
- "<|28.26|>": 51777,
1066
- "<|28.28|>": 51778,
1067
- "<|28.30|>": 51779,
1068
- "<|28.32|>": 51780,
1069
- "<|28.34|>": 51781,
1070
- "<|28.36|>": 51782,
1071
- "<|28.38|>": 51783,
1072
- "<|28.40|>": 51784,
1073
- "<|28.42|>": 51785,
1074
- "<|28.44|>": 51786,
1075
- "<|28.46|>": 51787,
1076
- "<|28.48|>": 51788,
1077
- "<|28.50|>": 51789,
1078
- "<|28.52|>": 51790,
1079
- "<|28.54|>": 51791,
1080
- "<|28.56|>": 51792,
1081
- "<|28.58|>": 51793,
1082
- "<|28.60|>": 51794,
1083
- "<|28.62|>": 51795,
1084
- "<|28.64|>": 51796,
1085
- "<|28.66|>": 51797,
1086
- "<|28.68|>": 51798,
1087
- "<|28.70|>": 51799,
1088
- "<|28.72|>": 51800,
1089
- "<|28.74|>": 51801,
1090
- "<|28.76|>": 51802,
1091
- "<|28.78|>": 51803,
1092
- "<|28.80|>": 51804,
1093
- "<|28.82|>": 51805,
1094
- "<|28.84|>": 51806,
1095
- "<|28.86|>": 51807,
1096
- "<|28.88|>": 51808,
1097
- "<|28.90|>": 51809,
1098
- "<|28.92|>": 51810,
1099
- "<|28.94|>": 51811,
1100
- "<|28.96|>": 51812,
1101
- "<|28.98|>": 51813,
1102
- "<|29.00|>": 51814,
1103
- "<|29.02|>": 51815,
1104
- "<|29.04|>": 51816,
1105
- "<|29.06|>": 51817,
1106
- "<|29.08|>": 51818,
1107
- "<|29.10|>": 51819,
1108
- "<|29.12|>": 51820,
1109
- "<|29.14|>": 51821,
1110
- "<|29.16|>": 51822,
1111
- "<|29.18|>": 51823,
1112
- "<|29.20|>": 51824,
1113
- "<|29.22|>": 51825,
1114
- "<|29.24|>": 51826,
1115
- "<|29.26|>": 51827,
1116
- "<|29.28|>": 51828,
1117
- "<|29.30|>": 51829,
1118
- "<|29.32|>": 51830,
1119
- "<|29.34|>": 51831,
1120
- "<|29.36|>": 51832,
1121
- "<|29.38|>": 51833,
1122
- "<|29.40|>": 51834,
1123
- "<|29.42|>": 51835,
1124
- "<|29.44|>": 51836,
1125
- "<|29.46|>": 51837,
1126
- "<|29.48|>": 51838,
1127
- "<|29.50|>": 51839,
1128
- "<|29.52|>": 51840,
1129
- "<|29.54|>": 51841,
1130
- "<|29.56|>": 51842,
1131
- "<|29.58|>": 51843,
1132
- "<|29.60|>": 51844,
1133
- "<|29.62|>": 51845,
1134
- "<|29.64|>": 51846,
1135
- "<|29.66|>": 51847,
1136
- "<|29.68|>": 51848,
1137
- "<|29.70|>": 51849,
1138
- "<|29.72|>": 51850,
1139
- "<|29.74|>": 51851,
1140
- "<|29.76|>": 51852,
1141
- "<|29.78|>": 51853,
1142
- "<|29.80|>": 51854,
1143
- "<|29.82|>": 51855,
1144
- "<|29.84|>": 51856,
1145
- "<|29.86|>": 51857,
1146
- "<|29.88|>": 51858,
1147
- "<|29.90|>": 51859,
1148
- "<|29.92|>": 51860,
1149
- "<|29.94|>": 51861,
1150
- "<|29.96|>": 51862,
1151
- "<|29.98|>": 51863,
1152
- "<|3.00|>": 50514,
1153
- "<|3.02|>": 50515,
1154
- "<|3.04|>": 50516,
1155
- "<|3.06|>": 50517,
1156
- "<|3.08|>": 50518,
1157
- "<|3.10|>": 50519,
1158
- "<|3.12|>": 50520,
1159
- "<|3.14|>": 50521,
1160
- "<|3.16|>": 50522,
1161
- "<|3.18|>": 50523,
1162
- "<|3.20|>": 50524,
1163
- "<|3.22|>": 50525,
1164
- "<|3.24|>": 50526,
1165
- "<|3.26|>": 50527,
1166
- "<|3.28|>": 50528,
1167
- "<|3.30|>": 50529,
1168
- "<|3.32|>": 50530,
1169
- "<|3.34|>": 50531,
1170
- "<|3.36|>": 50532,
1171
- "<|3.38|>": 50533,
1172
- "<|3.40|>": 50534,
1173
- "<|3.42|>": 50535,
1174
- "<|3.44|>": 50536,
1175
- "<|3.46|>": 50537,
1176
- "<|3.48|>": 50538,
1177
- "<|3.50|>": 50539,
1178
- "<|3.52|>": 50540,
1179
- "<|3.54|>": 50541,
1180
- "<|3.56|>": 50542,
1181
- "<|3.58|>": 50543,
1182
- "<|3.60|>": 50544,
1183
- "<|3.62|>": 50545,
1184
- "<|3.64|>": 50546,
1185
- "<|3.66|>": 50547,
1186
- "<|3.68|>": 50548,
1187
- "<|3.70|>": 50549,
1188
- "<|3.72|>": 50550,
1189
- "<|3.74|>": 50551,
1190
- "<|3.76|>": 50552,
1191
- "<|3.78|>": 50553,
1192
- "<|3.80|>": 50554,
1193
- "<|3.82|>": 50555,
1194
- "<|3.84|>": 50556,
1195
- "<|3.86|>": 50557,
1196
- "<|3.88|>": 50558,
1197
- "<|3.90|>": 50559,
1198
- "<|3.92|>": 50560,
1199
- "<|3.94|>": 50561,
1200
- "<|3.96|>": 50562,
1201
- "<|3.98|>": 50563,
1202
- "<|30.00|>": 51864,
1203
- "<|4.00|>": 50564,
1204
- "<|4.02|>": 50565,
1205
- "<|4.04|>": 50566,
1206
- "<|4.06|>": 50567,
1207
- "<|4.08|>": 50568,
1208
- "<|4.10|>": 50569,
1209
- "<|4.12|>": 50570,
1210
- "<|4.14|>": 50571,
1211
- "<|4.16|>": 50572,
1212
- "<|4.18|>": 50573,
1213
- "<|4.20|>": 50574,
1214
- "<|4.22|>": 50575,
1215
- "<|4.24|>": 50576,
1216
- "<|4.26|>": 50577,
1217
- "<|4.28|>": 50578,
1218
- "<|4.30|>": 50579,
1219
- "<|4.32|>": 50580,
1220
- "<|4.34|>": 50581,
1221
- "<|4.36|>": 50582,
1222
- "<|4.38|>": 50583,
1223
- "<|4.40|>": 50584,
1224
- "<|4.42|>": 50585,
1225
- "<|4.44|>": 50586,
1226
- "<|4.46|>": 50587,
1227
- "<|4.48|>": 50588,
1228
- "<|4.50|>": 50589,
1229
- "<|4.52|>": 50590,
1230
- "<|4.54|>": 50591,
1231
- "<|4.56|>": 50592,
1232
- "<|4.58|>": 50593,
1233
- "<|4.60|>": 50594,
1234
- "<|4.62|>": 50595,
1235
- "<|4.64|>": 50596,
1236
- "<|4.66|>": 50597,
1237
- "<|4.68|>": 50598,
1238
- "<|4.70|>": 50599,
1239
- "<|4.72|>": 50600,
1240
- "<|4.74|>": 50601,
1241
- "<|4.76|>": 50602,
1242
- "<|4.78|>": 50603,
1243
- "<|4.80|>": 50604,
1244
- "<|4.82|>": 50605,
1245
- "<|4.84|>": 50606,
1246
- "<|4.86|>": 50607,
1247
- "<|4.88|>": 50608,
1248
- "<|4.90|>": 50609,
1249
- "<|4.92|>": 50610,
1250
- "<|4.94|>": 50611,
1251
- "<|4.96|>": 50612,
1252
- "<|4.98|>": 50613,
1253
- "<|5.00|>": 50614,
1254
- "<|5.02|>": 50615,
1255
- "<|5.04|>": 50616,
1256
- "<|5.06|>": 50617,
1257
- "<|5.08|>": 50618,
1258
- "<|5.10|>": 50619,
1259
- "<|5.12|>": 50620,
1260
- "<|5.14|>": 50621,
1261
- "<|5.16|>": 50622,
1262
- "<|5.18|>": 50623,
1263
- "<|5.20|>": 50624,
1264
- "<|5.22|>": 50625,
1265
- "<|5.24|>": 50626,
1266
- "<|5.26|>": 50627,
1267
- "<|5.28|>": 50628,
1268
- "<|5.30|>": 50629,
1269
- "<|5.32|>": 50630,
1270
- "<|5.34|>": 50631,
1271
- "<|5.36|>": 50632,
1272
- "<|5.38|>": 50633,
1273
- "<|5.40|>": 50634,
1274
- "<|5.42|>": 50635,
1275
- "<|5.44|>": 50636,
1276
- "<|5.46|>": 50637,
1277
- "<|5.48|>": 50638,
1278
- "<|5.50|>": 50639,
1279
- "<|5.52|>": 50640,
1280
- "<|5.54|>": 50641,
1281
- "<|5.56|>": 50642,
1282
- "<|5.58|>": 50643,
1283
- "<|5.60|>": 50644,
1284
- "<|5.62|>": 50645,
1285
- "<|5.64|>": 50646,
1286
- "<|5.66|>": 50647,
1287
- "<|5.68|>": 50648,
1288
- "<|5.70|>": 50649,
1289
- "<|5.72|>": 50650,
1290
- "<|5.74|>": 50651,
1291
- "<|5.76|>": 50652,
1292
- "<|5.78|>": 50653,
1293
- "<|5.80|>": 50654,
1294
- "<|5.82|>": 50655,
1295
- "<|5.84|>": 50656,
1296
- "<|5.86|>": 50657,
1297
- "<|5.88|>": 50658,
1298
- "<|5.90|>": 50659,
1299
- "<|5.92|>": 50660,
1300
- "<|5.94|>": 50661,
1301
- "<|5.96|>": 50662,
1302
- "<|5.98|>": 50663,
1303
- "<|6.00|>": 50664,
1304
- "<|6.02|>": 50665,
1305
- "<|6.04|>": 50666,
1306
- "<|6.06|>": 50667,
1307
- "<|6.08|>": 50668,
1308
- "<|6.10|>": 50669,
1309
- "<|6.12|>": 50670,
1310
- "<|6.14|>": 50671,
1311
- "<|6.16|>": 50672,
1312
- "<|6.18|>": 50673,
1313
- "<|6.20|>": 50674,
1314
- "<|6.22|>": 50675,
1315
- "<|6.24|>": 50676,
1316
- "<|6.26|>": 50677,
1317
- "<|6.28|>": 50678,
1318
- "<|6.30|>": 50679,
1319
- "<|6.32|>": 50680,
1320
- "<|6.34|>": 50681,
1321
- "<|6.36|>": 50682,
1322
- "<|6.38|>": 50683,
1323
- "<|6.40|>": 50684,
1324
- "<|6.42|>": 50685,
1325
- "<|6.44|>": 50686,
1326
- "<|6.46|>": 50687,
1327
- "<|6.48|>": 50688,
1328
- "<|6.50|>": 50689,
1329
- "<|6.52|>": 50690,
1330
- "<|6.54|>": 50691,
1331
- "<|6.56|>": 50692,
1332
- "<|6.58|>": 50693,
1333
- "<|6.60|>": 50694,
1334
- "<|6.62|>": 50695,
1335
- "<|6.64|>": 50696,
1336
- "<|6.66|>": 50697,
1337
- "<|6.68|>": 50698,
1338
- "<|6.70|>": 50699,
1339
- "<|6.72|>": 50700,
1340
- "<|6.74|>": 50701,
1341
- "<|6.76|>": 50702,
1342
- "<|6.78|>": 50703,
1343
- "<|6.80|>": 50704,
1344
- "<|6.82|>": 50705,
1345
- "<|6.84|>": 50706,
1346
- "<|6.86|>": 50707,
1347
- "<|6.88|>": 50708,
1348
- "<|6.90|>": 50709,
1349
- "<|6.92|>": 50710,
1350
- "<|6.94|>": 50711,
1351
- "<|6.96|>": 50712,
1352
- "<|6.98|>": 50713,
1353
- "<|7.00|>": 50714,
1354
- "<|7.02|>": 50715,
1355
- "<|7.04|>": 50716,
1356
- "<|7.06|>": 50717,
1357
- "<|7.08|>": 50718,
1358
- "<|7.10|>": 50719,
1359
- "<|7.12|>": 50720,
1360
- "<|7.14|>": 50721,
1361
- "<|7.16|>": 50722,
1362
- "<|7.18|>": 50723,
1363
- "<|7.20|>": 50724,
1364
- "<|7.22|>": 50725,
1365
- "<|7.24|>": 50726,
1366
- "<|7.26|>": 50727,
1367
- "<|7.28|>": 50728,
1368
- "<|7.30|>": 50729,
1369
- "<|7.32|>": 50730,
1370
- "<|7.34|>": 50731,
1371
- "<|7.36|>": 50732,
1372
- "<|7.38|>": 50733,
1373
- "<|7.40|>": 50734,
1374
- "<|7.42|>": 50735,
1375
- "<|7.44|>": 50736,
1376
- "<|7.46|>": 50737,
1377
- "<|7.48|>": 50738,
1378
- "<|7.50|>": 50739,
1379
- "<|7.52|>": 50740,
1380
- "<|7.54|>": 50741,
1381
- "<|7.56|>": 50742,
1382
- "<|7.58|>": 50743,
1383
- "<|7.60|>": 50744,
1384
- "<|7.62|>": 50745,
1385
- "<|7.64|>": 50746,
1386
- "<|7.66|>": 50747,
1387
- "<|7.68|>": 50748,
1388
- "<|7.70|>": 50749,
1389
- "<|7.72|>": 50750,
1390
- "<|7.74|>": 50751,
1391
- "<|7.76|>": 50752,
1392
- "<|7.78|>": 50753,
1393
- "<|7.80|>": 50754,
1394
- "<|7.82|>": 50755,
1395
- "<|7.84|>": 50756,
1396
- "<|7.86|>": 50757,
1397
- "<|7.88|>": 50758,
1398
- "<|7.90|>": 50759,
1399
- "<|7.92|>": 50760,
1400
- "<|7.94|>": 50761,
1401
- "<|7.96|>": 50762,
1402
- "<|7.98|>": 50763,
1403
- "<|8.00|>": 50764,
1404
- "<|8.02|>": 50765,
1405
- "<|8.04|>": 50766,
1406
- "<|8.06|>": 50767,
1407
- "<|8.08|>": 50768,
1408
- "<|8.10|>": 50769,
1409
- "<|8.12|>": 50770,
1410
- "<|8.14|>": 50771,
1411
- "<|8.16|>": 50772,
1412
- "<|8.18|>": 50773,
1413
- "<|8.20|>": 50774,
1414
- "<|8.22|>": 50775,
1415
- "<|8.24|>": 50776,
1416
- "<|8.26|>": 50777,
1417
- "<|8.28|>": 50778,
1418
- "<|8.30|>": 50779,
1419
- "<|8.32|>": 50780,
1420
- "<|8.34|>": 50781,
1421
- "<|8.36|>": 50782,
1422
- "<|8.38|>": 50783,
1423
- "<|8.40|>": 50784,
1424
- "<|8.42|>": 50785,
1425
- "<|8.44|>": 50786,
1426
- "<|8.46|>": 50787,
1427
- "<|8.48|>": 50788,
1428
- "<|8.50|>": 50789,
1429
- "<|8.52|>": 50790,
1430
- "<|8.54|>": 50791,
1431
- "<|8.56|>": 50792,
1432
- "<|8.58|>": 50793,
1433
- "<|8.60|>": 50794,
1434
- "<|8.62|>": 50795,
1435
- "<|8.64|>": 50796,
1436
- "<|8.66|>": 50797,
1437
- "<|8.68|>": 50798,
1438
- "<|8.70|>": 50799,
1439
- "<|8.72|>": 50800,
1440
- "<|8.74|>": 50801,
1441
- "<|8.76|>": 50802,
1442
- "<|8.78|>": 50803,
1443
- "<|8.80|>": 50804,
1444
- "<|8.82|>": 50805,
1445
- "<|8.84|>": 50806,
1446
- "<|8.86|>": 50807,
1447
- "<|8.88|>": 50808,
1448
- "<|8.90|>": 50809,
1449
- "<|8.92|>": 50810,
1450
- "<|8.94|>": 50811,
1451
- "<|8.96|>": 50812,
1452
- "<|8.98|>": 50813,
1453
- "<|9.00|>": 50814,
1454
- "<|9.02|>": 50815,
1455
- "<|9.04|>": 50816,
1456
- "<|9.06|>": 50817,
1457
- "<|9.08|>": 50818,
1458
- "<|9.10|>": 50819,
1459
- "<|9.12|>": 50820,
1460
- "<|9.14|>": 50821,
1461
- "<|9.16|>": 50822,
1462
- "<|9.18|>": 50823,
1463
- "<|9.20|>": 50824,
1464
- "<|9.22|>": 50825,
1465
- "<|9.24|>": 50826,
1466
- "<|9.26|>": 50827,
1467
- "<|9.28|>": 50828,
1468
- "<|9.30|>": 50829,
1469
- "<|9.32|>": 50830,
1470
- "<|9.34|>": 50831,
1471
- "<|9.36|>": 50832,
1472
- "<|9.38|>": 50833,
1473
- "<|9.40|>": 50834,
1474
- "<|9.42|>": 50835,
1475
- "<|9.44|>": 50836,
1476
- "<|9.46|>": 50837,
1477
- "<|9.48|>": 50838,
1478
- "<|9.50|>": 50839,
1479
- "<|9.52|>": 50840,
1480
- "<|9.54|>": 50841,
1481
- "<|9.56|>": 50842,
1482
- "<|9.58|>": 50843,
1483
- "<|9.60|>": 50844,
1484
- "<|9.62|>": 50845,
1485
- "<|9.64|>": 50846,
1486
- "<|9.66|>": 50847,
1487
- "<|9.68|>": 50848,
1488
- "<|9.70|>": 50849,
1489
- "<|9.72|>": 50850,
1490
- "<|9.74|>": 50851,
1491
- "<|9.76|>": 50852,
1492
- "<|9.78|>": 50853,
1493
- "<|9.80|>": 50854,
1494
- "<|9.82|>": 50855,
1495
- "<|9.84|>": 50856,
1496
- "<|9.86|>": 50857,
1497
- "<|9.88|>": 50858,
1498
- "<|9.90|>": 50859,
1499
- "<|9.92|>": 50860,
1500
- "<|9.94|>": 50861,
1501
- "<|9.96|>": 50862,
1502
- "<|9.98|>": 50863,
1503
- "<|af|>": 50327,
1504
- "<|am|>": 50334,
1505
- "<|ar|>": 50272,
1506
- "<|as|>": 50350,
1507
- "<|az|>": 50304,
1508
- "<|ba|>": 50355,
1509
- "<|be|>": 50330,
1510
- "<|bg|>": 50292,
1511
- "<|bn|>": 50302,
1512
- "<|bo|>": 50347,
1513
- "<|br|>": 50309,
1514
- "<|bs|>": 50315,
1515
- "<|ca|>": 50270,
1516
- "<|cs|>": 50283,
1517
- "<|cy|>": 50297,
1518
- "<|da|>": 50285,
1519
- "<|de|>": 50261,
1520
- "<|el|>": 50281,
1521
- "<|en|>": 50259,
1522
- "<|es|>": 50262,
1523
- "<|et|>": 50307,
1524
- "<|eu|>": 50310,
1525
- "<|fa|>": 50300,
1526
- "<|fi|>": 50277,
1527
- "<|fo|>": 50338,
1528
- "<|fr|>": 50265,
1529
- "<|gl|>": 50319,
1530
- "<|gu|>": 50333,
1531
- "<|haw|>": 50352,
1532
- "<|ha|>": 50354,
1533
- "<|he|>": 50279,
1534
- "<|hi|>": 50276,
1535
- "<|hr|>": 50291,
1536
- "<|ht|>": 50339,
1537
- "<|hu|>": 50286,
1538
- "<|hy|>": 50312,
1539
- "<|id|>": 50275,
1540
- "<|is|>": 50311,
1541
- "<|it|>": 50274,
1542
- "<|ja|>": 50266,
1543
- "<|jw|>": 50356,
1544
- "<|ka|>": 50329,
1545
- "<|kk|>": 50316,
1546
- "<|km|>": 50323,
1547
- "<|kn|>": 50306,
1548
- "<|ko|>": 50264,
1549
- "<|la|>": 50294,
1550
- "<|lb|>": 50345,
1551
- "<|ln|>": 50353,
1552
- "<|lo|>": 50336,
1553
- "<|lt|>": 50293,
1554
- "<|lv|>": 50301,
1555
- "<|mg|>": 50349,
1556
- "<|mi|>": 50295,
1557
- "<|mk|>": 50308,
1558
- "<|ml|>": 50296,
1559
- "<|mn|>": 50314,
1560
- "<|mr|>": 50320,
1561
- "<|ms|>": 50282,
1562
- "<|mt|>": 50343,
1563
- "<|my|>": 50346,
1564
- "<|ne|>": 50313,
1565
- "<|nl|>": 50271,
1566
- "<|nn|>": 50342,
1567
- "<|nocaptions|>": 50362,
1568
- "<|notimestamps|>": 50363,
1569
- "<|no|>": 50288,
1570
- "<|oc|>": 50328,
1571
- "<|pa|>": 50321,
1572
- "<|pl|>": 50269,
1573
- "<|ps|>": 50340,
1574
- "<|pt|>": 50267,
1575
- "<|ro|>": 50284,
1576
- "<|ru|>": 50263,
1577
- "<|sa|>": 50344,
1578
- "<|sd|>": 50332,
1579
- "<|si|>": 50322,
1580
- "<|sk|>": 50298,
1581
- "<|sl|>": 50305,
1582
- "<|sn|>": 50324,
1583
- "<|so|>": 50326,
1584
- "<|sq|>": 50317,
1585
- "<|sr|>": 50303,
1586
- "<|startoflm|>": 50360,
1587
- "<|startofprev|>": 50361,
1588
- "<|startoftranscript|>": 50258,
1589
- "<|su|>": 50357,
1590
- "<|sv|>": 50273,
1591
- "<|sw|>": 50318,
1592
- "<|ta|>": 50287,
1593
- "<|te|>": 50299,
1594
- "<|tg|>": 50331,
1595
- "<|th|>": 50289,
1596
- "<|tk|>": 50341,
1597
- "<|tl|>": 50348,
1598
- "<|transcribe|>": 50359,
1599
- "<|translate|>": 50358,
1600
- "<|tr|>": 50268,
1601
- "<|tt|>": 50351,
1602
- "<|uk|>": 50280,
1603
- "<|ur|>": 50290,
1604
- "<|uz|>": 50337,
1605
- "<|vi|>": 50278,
1606
- "<|yi|>": 50335,
1607
- "<|yo|>": 50325,
1608
- "<|zh|>": 50260
1609
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pretrained_models/whisper-small/config.json DELETED
@@ -1,142 +0,0 @@
1
- {
2
- "_name_or_path": "openai/whisper-small",
3
- "activation_dropout": 0.0,
4
- "activation_function": "gelu",
5
- "architectures": [
6
- "WhisperForConditionalGeneration"
7
- ],
8
- "attention_dropout": 0.0,
9
- "begin_suppress_tokens": [
10
- 220,
11
- 50257
12
- ],
13
- "bos_token_id": 50257,
14
- "d_model": 768,
15
- "decoder_attention_heads": 12,
16
- "decoder_ffn_dim": 3072,
17
- "decoder_layerdrop": 0.0,
18
- "decoder_layers": 12,
19
- "decoder_start_token_id": 50258,
20
- "dropout": 0.0,
21
- "encoder_attention_heads": 12,
22
- "encoder_ffn_dim": 3072,
23
- "encoder_layerdrop": 0.0,
24
- "encoder_layers": 12,
25
- "eos_token_id": 50257,
26
- "forced_decoder_ids": [
27
- [
28
- 1,
29
- 50259
30
- ],
31
- [
32
- 2,
33
- 50359
34
- ],
35
- [
36
- 3,
37
- 50363
38
- ]
39
- ],
40
- "init_std": 0.02,
41
- "is_encoder_decoder": true,
42
- "max_length": 448,
43
- "max_source_positions": 1500,
44
- "max_target_positions": 448,
45
- "model_type": "whisper",
46
- "num_hidden_layers": 12,
47
- "num_mel_bins": 80,
48
- "pad_token_id": 50257,
49
- "scale_embedding": false,
50
- "suppress_tokens": [
51
- 1,
52
- 2,
53
- 7,
54
- 8,
55
- 9,
56
- 10,
57
- 14,
58
- 25,
59
- 26,
60
- 27,
61
- 28,
62
- 29,
63
- 31,
64
- 58,
65
- 59,
66
- 60,
67
- 61,
68
- 62,
69
- 63,
70
- 90,
71
- 91,
72
- 92,
73
- 93,
74
- 359,
75
- 503,
76
- 522,
77
- 542,
78
- 873,
79
- 893,
80
- 902,
81
- 918,
82
- 922,
83
- 931,
84
- 1350,
85
- 1853,
86
- 1982,
87
- 2460,
88
- 2627,
89
- 3246,
90
- 3253,
91
- 3268,
92
- 3536,
93
- 3846,
94
- 3961,
95
- 4183,
96
- 4667,
97
- 6585,
98
- 6647,
99
- 7273,
100
- 9061,
101
- 9383,
102
- 10428,
103
- 10929,
104
- 11938,
105
- 12033,
106
- 12331,
107
- 12562,
108
- 13793,
109
- 14157,
110
- 14635,
111
- 15265,
112
- 15618,
113
- 16553,
114
- 16604,
115
- 18362,
116
- 18956,
117
- 20075,
118
- 21675,
119
- 22520,
120
- 26130,
121
- 26161,
122
- 26435,
123
- 28279,
124
- 29464,
125
- 31650,
126
- 32302,
127
- 32470,
128
- 36865,
129
- 42863,
130
- 47425,
131
- 49870,
132
- 50254,
133
- 50258,
134
- 50360,
135
- 50361,
136
- 50362
137
- ],
138
- "torch_dtype": "float32",
139
- "transformers_version": "4.27.0.dev0",
140
- "use_cache": true,
141
- "vocab_size": 51865
142
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pretrained_models/whisper-small/generation_config.json DELETED
@@ -1,264 +0,0 @@
1
- {
2
- "alignment_heads": [
3
- [
4
- 5,
5
- 3
6
- ],
7
- [
8
- 5,
9
- 9
10
- ],
11
- [
12
- 8,
13
- 0
14
- ],
15
- [
16
- 8,
17
- 4
18
- ],
19
- [
20
- 8,
21
- 7
22
- ],
23
- [
24
- 8,
25
- 8
26
- ],
27
- [
28
- 9,
29
- 0
30
- ],
31
- [
32
- 9,
33
- 7
34
- ],
35
- [
36
- 9,
37
- 9
38
- ],
39
- [
40
- 10,
41
- 5
42
- ]
43
- ],
44
- "begin_suppress_tokens": [
45
- 220,
46
- 50257
47
- ],
48
- "bos_token_id": 50257,
49
- "decoder_start_token_id": 50258,
50
- "eos_token_id": 50257,
51
- "forced_decoder_ids": [
52
- [
53
- 1,
54
- null
55
- ],
56
- [
57
- 2,
58
- 50359
59
- ]
60
- ],
61
- "is_multilingual": true,
62
- "lang_to_id": {
63
- "<|af|>": 50327,
64
- "<|am|>": 50334,
65
- "<|ar|>": 50272,
66
- "<|as|>": 50350,
67
- "<|az|>": 50304,
68
- "<|ba|>": 50355,
69
- "<|be|>": 50330,
70
- "<|bg|>": 50292,
71
- "<|bn|>": 50302,
72
- "<|bo|>": 50347,
73
- "<|br|>": 50309,
74
- "<|bs|>": 50315,
75
- "<|ca|>": 50270,
76
- "<|cs|>": 50283,
77
- "<|cy|>": 50297,
78
- "<|da|>": 50285,
79
- "<|de|>": 50261,
80
- "<|el|>": 50281,
81
- "<|en|>": 50259,
82
- "<|es|>": 50262,
83
- "<|et|>": 50307,
84
- "<|eu|>": 50310,
85
- "<|fa|>": 50300,
86
- "<|fi|>": 50277,
87
- "<|fo|>": 50338,
88
- "<|fr|>": 50265,
89
- "<|gl|>": 50319,
90
- "<|gu|>": 50333,
91
- "<|haw|>": 50352,
92
- "<|ha|>": 50354,
93
- "<|he|>": 50279,
94
- "<|hi|>": 50276,
95
- "<|hr|>": 50291,
96
- "<|ht|>": 50339,
97
- "<|hu|>": 50286,
98
- "<|hy|>": 50312,
99
- "<|id|>": 50275,
100
- "<|is|>": 50311,
101
- "<|it|>": 50274,
102
- "<|ja|>": 50266,
103
- "<|jw|>": 50356,
104
- "<|ka|>": 50329,
105
- "<|kk|>": 50316,
106
- "<|km|>": 50323,
107
- "<|kn|>": 50306,
108
- "<|ko|>": 50264,
109
- "<|la|>": 50294,
110
- "<|lb|>": 50345,
111
- "<|ln|>": 50353,
112
- "<|lo|>": 50336,
113
- "<|lt|>": 50293,
114
- "<|lv|>": 50301,
115
- "<|mg|>": 50349,
116
- "<|mi|>": 50295,
117
- "<|mk|>": 50308,
118
- "<|ml|>": 50296,
119
- "<|mn|>": 50314,
120
- "<|mr|>": 50320,
121
- "<|ms|>": 50282,
122
- "<|mt|>": 50343,
123
- "<|my|>": 50346,
124
- "<|ne|>": 50313,
125
- "<|nl|>": 50271,
126
- "<|nn|>": 50342,
127
- "<|no|>": 50288,
128
- "<|oc|>": 50328,
129
- "<|pa|>": 50321,
130
- "<|pl|>": 50269,
131
- "<|ps|>": 50340,
132
- "<|pt|>": 50267,
133
- "<|ro|>": 50284,
134
- "<|ru|>": 50263,
135
- "<|sa|>": 50344,
136
- "<|sd|>": 50332,
137
- "<|si|>": 50322,
138
- "<|sk|>": 50298,
139
- "<|sl|>": 50305,
140
- "<|sn|>": 50324,
141
- "<|so|>": 50326,
142
- "<|sq|>": 50317,
143
- "<|sr|>": 50303,
144
- "<|su|>": 50357,
145
- "<|sv|>": 50273,
146
- "<|sw|>": 50318,
147
- "<|ta|>": 50287,
148
- "<|te|>": 50299,
149
- "<|tg|>": 50331,
150
- "<|th|>": 50289,
151
- "<|tk|>": 50341,
152
- "<|tl|>": 50348,
153
- "<|tr|>": 50268,
154
- "<|tt|>": 50351,
155
- "<|uk|>": 50280,
156
- "<|ur|>": 50290,
157
- "<|uz|>": 50337,
158
- "<|vi|>": 50278,
159
- "<|yi|>": 50335,
160
- "<|yo|>": 50325,
161
- "<|zh|>": 50260
162
- },
163
- "max_initial_timestamp_index": 50,
164
- "max_length": 448,
165
- "no_timestamps_token_id": 50363,
166
- "pad_token_id": 50257,
167
- "prev_sot_token_id": 50361,
168
- "return_timestamps": false,
169
- "suppress_tokens": [
170
- 1,
171
- 2,
172
- 7,
173
- 8,
174
- 9,
175
- 10,
176
- 14,
177
- 25,
178
- 26,
179
- 27,
180
- 28,
181
- 29,
182
- 31,
183
- 58,
184
- 59,
185
- 60,
186
- 61,
187
- 62,
188
- 63,
189
- 90,
190
- 91,
191
- 92,
192
- 93,
193
- 359,
194
- 503,
195
- 522,
196
- 542,
197
- 873,
198
- 893,
199
- 902,
200
- 918,
201
- 922,
202
- 931,
203
- 1350,
204
- 1853,
205
- 1982,
206
- 2460,
207
- 2627,
208
- 3246,
209
- 3253,
210
- 3268,
211
- 3536,
212
- 3846,
213
- 3961,
214
- 4183,
215
- 4667,
216
- 6585,
217
- 6647,
218
- 7273,
219
- 9061,
220
- 9383,
221
- 10428,
222
- 10929,
223
- 11938,
224
- 12033,
225
- 12331,
226
- 12562,
227
- 13793,
228
- 14157,
229
- 14635,
230
- 15265,
231
- 15618,
232
- 16553,
233
- 16604,
234
- 18362,
235
- 18956,
236
- 20075,
237
- 21675,
238
- 22520,
239
- 26130,
240
- 26161,
241
- 26435,
242
- 28279,
243
- 29464,
244
- 31650,
245
- 32302,
246
- 32470,
247
- 36865,
248
- 42863,
249
- 47425,
250
- 49870,
251
- 50254,
252
- 50258,
253
- 50358,
254
- 50359,
255
- 50360,
256
- 50361,
257
- 50362
258
- ],
259
- "task_to_id": {
260
- "transcribe": 50359,
261
- "translate": 50358
262
- },
263
- "transformers_version": "4.31.0.dev0"
264
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pretrained_models/whisper-small/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
pretrained_models/whisper-small/model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1d7734884874f1a1513ed9aa760a4f8e97aaa02fd6d93a3a85d27b2ae9ca596b
3
- size 966995080
 
 
 
 
pretrained_models/whisper-small/normalizer.json DELETED
@@ -1,1742 +0,0 @@
1
- {
2
- "accessorise": "accessorize",
3
- "accessorised": "accessorized",
4
- "accessorises": "accessorizes",
5
- "accessorising": "accessorizing",
6
- "acclimatisation": "acclimatization",
7
- "acclimatise": "acclimatize",
8
- "acclimatised": "acclimatized",
9
- "acclimatises": "acclimatizes",
10
- "acclimatising": "acclimatizing",
11
- "accoutrements": "accouterments",
12
- "aeon": "eon",
13
- "aeons": "eons",
14
- "aerogramme": "aerogram",
15
- "aerogrammes": "aerograms",
16
- "aeroplane": "airplane",
17
- "aeroplanes": "airplanes",
18
- "aesthete": "esthete",
19
- "aesthetes": "esthetes",
20
- "aesthetic": "esthetic",
21
- "aesthetically": "esthetically",
22
- "aesthetics": "esthetics",
23
- "aetiology": "etiology",
24
- "ageing": "aging",
25
- "aggrandisement": "aggrandizement",
26
- "agonise": "agonize",
27
- "agonised": "agonized",
28
- "agonises": "agonizes",
29
- "agonising": "agonizing",
30
- "agonisingly": "agonizingly",
31
- "almanack": "almanac",
32
- "almanacks": "almanacs",
33
- "aluminium": "aluminum",
34
- "amortisable": "amortizable",
35
- "amortisation": "amortization",
36
- "amortisations": "amortizations",
37
- "amortise": "amortize",
38
- "amortised": "amortized",
39
- "amortises": "amortizes",
40
- "amortising": "amortizing",
41
- "amphitheatre": "amphitheater",
42
- "amphitheatres": "amphitheaters",
43
- "anaemia": "anemia",
44
- "anaemic": "anemic",
45
- "anaesthesia": "anesthesia",
46
- "anaesthetic": "anesthetic",
47
- "anaesthetics": "anesthetics",
48
- "anaesthetise": "anesthetize",
49
- "anaesthetised": "anesthetized",
50
- "anaesthetises": "anesthetizes",
51
- "anaesthetising": "anesthetizing",
52
- "anaesthetist": "anesthetist",
53
- "anaesthetists": "anesthetists",
54
- "anaesthetize": "anesthetize",
55
- "anaesthetized": "anesthetized",
56
- "anaesthetizes": "anesthetizes",
57
- "anaesthetizing": "anesthetizing",
58
- "analogue": "analog",
59
- "analogues": "analogs",
60
- "analyse": "analyze",
61
- "analysed": "analyzed",
62
- "analyses": "analyzes",
63
- "analysing": "analyzing",
64
- "anglicise": "anglicize",
65
- "anglicised": "anglicized",
66
- "anglicises": "anglicizes",
67
- "anglicising": "anglicizing",
68
- "annualised": "annualized",
69
- "antagonise": "antagonize",
70
- "antagonised": "antagonized",
71
- "antagonises": "antagonizes",
72
- "antagonising": "antagonizing",
73
- "apologise": "apologize",
74
- "apologised": "apologized",
75
- "apologises": "apologizes",
76
- "apologising": "apologizing",
77
- "appal": "appall",
78
- "appals": "appalls",
79
- "appetiser": "appetizer",
80
- "appetisers": "appetizers",
81
- "appetising": "appetizing",
82
- "appetisingly": "appetizingly",
83
- "arbour": "arbor",
84
- "arbours": "arbors",
85
- "archaeologically": "archeologically",
86
- "archaeologist": "archeologist",
87
- "archaeologists": "archeologists",
88
- "archaeology": "archeology</span>",
89
- "archeological": "archaeological",
90
- "ardour": "ardor",
91
- "armour": "armor",
92
- "armoured": "armored",
93
- "armourer": "armorer",
94
- "armourers": "armorers",
95
- "armouries": "armories",
96
- "armoury": "armory",
97
- "artefact": "artifact",
98
- "artefacts": "artifacts",
99
- "authorise": "authorize",
100
- "authorised": "authorized",
101
- "authorises": "authorizes",
102
- "authorising": "authorizing",
103
- "axe": "ax",
104
- "backpedalled": "backpedaled",
105
- "backpedalling": "backpedaling",
106
- "bannister": "banister",
107
- "bannisters": "banisters",
108
- "baptise": "baptize",
109
- "baptised": "baptized",
110
- "baptises": "baptizes",
111
- "baptising": "baptizing",
112
- "bastardise": "bastardize",
113
- "bastardised": "bastardized",
114
- "bastardises": "bastardizes",
115
- "bastardising": "bastardizing",
116
- "battleax": "battleaxe",
117
- "baulk": "balk",
118
- "baulked": "balked",
119
- "baulking": "balking",
120
- "baulks": "balks",
121
- "bedevilled": "bedeviled",
122
- "bedevilling": "bedeviling",
123
- "behaviour": "behavior",
124
- "behavioural": "behavioral",
125
- "behaviourism": "behaviorism",
126
- "behaviourist": "behaviorist",
127
- "behaviourists": "behaviorists",
128
- "behaviours": "behaviors",
129
- "behove": "behoove",
130
- "behoved": "behooved",
131
- "behoves": "behooves",
132
- "bejewelled": "bejeweled",
133
- "belabour": "belabor",
134
- "belaboured": "belabored",
135
- "belabouring": "belaboring",
136
- "belabours": "belabors",
137
- "bevelled": "beveled",
138
- "bevvies": "bevies",
139
- "bevvy": "bevy",
140
- "biassed": "biased",
141
- "biassing": "biasing",
142
- "bingeing": "binging",
143
- "bougainvillaea": "bougainvillea",
144
- "bougainvillaeas": "bougainvilleas",
145
- "bowdlerise": "bowdlerize",
146
- "bowdlerised": "bowdlerized",
147
- "bowdlerises": "bowdlerizes",
148
- "bowdlerising": "bowdlerizing",
149
- "breathalyse": "breathalyze",
150
- "breathalysed": "breathalyzed",
151
- "breathalyser": "breathalyzer",
152
- "breathalysers": "breathalyzers",
153
- "breathalyses": "breathalyzes",
154
- "breathalysing": "breathalyzing",
155
- "brutalise": "brutalize",
156
- "brutalised": "brutalized",
157
- "brutalises": "brutalizes",
158
- "brutalising": "brutalizing",
159
- "busses": "buses",
160
- "bussing": "busing",
161
- "caesarean": "cesarean",
162
- "caesareans": "cesareans",
163
- "calibre": "caliber",
164
- "calibres": "calibers",
165
- "calliper": "caliper",
166
- "callipers": "calipers",
167
- "callisthenics": "calisthenics",
168
- "canalise": "canalize",
169
- "canalised": "canalized",
170
- "canalises": "canalizes",
171
- "canalising": "canalizing",
172
- "cancelation": "cancellation",
173
- "cancelations": "cancellations",
174
- "cancelled": "canceled",
175
- "cancelling": "canceling",
176
- "candour": "candor",
177
- "cannibalise": "cannibalize",
178
- "cannibalised": "cannibalized",
179
- "cannibalises": "cannibalizes",
180
- "cannibalising": "cannibalizing",
181
- "canonise": "canonize",
182
- "canonised": "canonized",
183
- "canonises": "canonizes",
184
- "canonising": "canonizing",
185
- "capitalise": "capitalize",
186
- "capitalised": "capitalized",
187
- "capitalises": "capitalizes",
188
- "capitalising": "capitalizing",
189
- "caramelise": "caramelize",
190
- "caramelised": "caramelized",
191
- "caramelises": "caramelizes",
192
- "caramelising": "caramelizing",
193
- "carbonise": "carbonize",
194
- "carbonised": "carbonized",
195
- "carbonises": "carbonizes",
196
- "carbonising": "carbonizing",
197
- "carolled": "caroled",
198
- "carolling": "caroling",
199
- "catalogue": "catalog",
200
- "catalogued": "cataloged",
201
- "catalogues": "catalogs",
202
- "cataloguing": "cataloging",
203
- "catalyse": "catalyze",
204
- "catalysed": "catalyzed",
205
- "catalyses": "catalyzes",
206
- "catalysing": "catalyzing",
207
- "categorise": "categorize",
208
- "categorised": "categorized",
209
- "categorises": "categorizes",
210
- "categorising": "categorizing",
211
- "cauterise": "cauterize",
212
- "cauterised": "cauterized",
213
- "cauterises": "cauterizes",
214
- "cauterising": "cauterizing",
215
- "cavilled": "caviled",
216
- "cavilling": "caviling",
217
- "centigramme": "centigram",
218
- "centigrammes": "centigrams",
219
- "centilitre": "centiliter",
220
- "centilitres": "centiliters",
221
- "centimetre": "centimeter",
222
- "centimetres": "centimeters",
223
- "centralise": "centralize",
224
- "centralised": "centralized",
225
- "centralises": "centralizes",
226
- "centralising": "centralizing",
227
- "centre": "center",
228
- "centred": "centered",
229
- "centrefold": "centerfold",
230
- "centrefolds": "centerfolds",
231
- "centrepiece": "centerpiece",
232
- "centrepieces": "centerpieces",
233
- "centres": "centers",
234
- "channelled": "channeled",
235
- "channelling": "channeling",
236
- "characterise": "characterize",
237
- "characterised": "characterized",
238
- "characterises": "characterizes",
239
- "characterising": "characterizing",
240
- "cheque": "check",
241
- "chequebook": "checkbook",
242
- "chequebooks": "checkbooks",
243
- "chequered": "checkered",
244
- "cheques": "checks",
245
- "chilli": "chili",
246
- "chimaera": "chimera",
247
- "chimaeras": "chimeras",
248
- "chiselled": "chiseled",
249
- "chiselling": "chiseling",
250
- "circularise": "circularize",
251
- "circularised": "circularized",
252
- "circularises": "circularizes",
253
- "circularising": "circularizing",
254
- "civilise": "civilize",
255
- "civilised": "civilized",
256
- "civilises": "civilizes",
257
- "civilising": "civilizing",
258
- "clamour": "clamor",
259
- "clamoured": "clamored",
260
- "clamouring": "clamoring",
261
- "clamours": "clamors",
262
- "clangour": "clangor",
263
- "clarinettist": "clarinetist",
264
- "clarinettists": "clarinetists",
265
- "collectivise": "collectivize",
266
- "collectivised": "collectivized",
267
- "collectivises": "collectivizes",
268
- "collectivising": "collectivizing",
269
- "colonisation": "colonization",
270
- "colonise": "colonize",
271
- "colonised": "colonized",
272
- "coloniser": "colonizer",
273
- "colonisers": "colonizers",
274
- "colonises": "colonizes",
275
- "colonising": "colonizing",
276
- "colour": "color",
277
- "colourant": "colorant",
278
- "colourants": "colorants",
279
- "coloured": "colored",
280
- "coloureds": "coloreds",
281
- "colourful": "colorful",
282
- "colourfully": "colorfully",
283
- "colouring": "coloring",
284
- "colourize": "colorize",
285
- "colourized": "colorized",
286
- "colourizes": "colorizes",
287
- "colourizing": "colorizing",
288
- "colourless": "colorless",
289
- "colours": "colors",
290
- "commercialise": "commercialize",
291
- "commercialised": "commercialized",
292
- "commercialises": "commercializes",
293
- "commercialising": "commercializing",
294
- "compartmentalise": "compartmentalize",
295
- "compartmentalised": "compartmentalized",
296
- "compartmentalises": "compartmentalizes",
297
- "compartmentalising": "compartmentalizing",
298
- "computerise": "computerize",
299
- "computerised": "computerized",
300
- "computerises": "computerizes",
301
- "computerising": "computerizing",
302
- "conceptualise": "conceptualize",
303
- "conceptualised": "conceptualized",
304
- "conceptualises": "conceptualizes",
305
- "conceptualising": "conceptualizing",
306
- "connexion": "connection",
307
- "connexions": "connections",
308
- "contextualise": "contextualize",
309
- "contextualised": "contextualized",
310
- "contextualises": "contextualizes",
311
- "contextualising": "contextualizing",
312
- "cosier": "cozier",
313
- "cosies": "cozies",
314
- "cosiest": "coziest",
315
- "cosily": "cozily",
316
- "cosiness": "coziness",
317
- "cosy": "cozy",
318
- "councillor": "councilor",
319
- "councillors": "councilors",
320
- "counselled": "counseled",
321
- "counselling": "counseling",
322
- "counsellor": "counselor",
323
- "counsellors": "counselors",
324
- "crenelated": "crenellated",
325
- "criminalise": "criminalize",
326
- "criminalised": "criminalized",
327
- "criminalises": "criminalizes",
328
- "criminalising": "criminalizing",
329
- "criticise": "criticize",
330
- "criticised": "criticized",
331
- "criticises": "criticizes",
332
- "criticising": "criticizing",
333
- "crueller": "crueler",
334
- "cruellest": "cruelest",
335
- "crystallisation": "crystallization",
336
- "crystallise": "crystallize",
337
- "crystallised": "crystallized",
338
- "crystallises": "crystallizes",
339
- "crystallising": "crystallizing",
340
- "cudgelled": "cudgeled",
341
- "cudgelling": "cudgeling",
342
- "customise": "customize",
343
- "customised": "customized",
344
- "customises": "customizes",
345
- "customising": "customizing",
346
- "cypher": "cipher",
347
- "cyphers": "ciphers",
348
- "decentralisation": "decentralization",
349
- "decentralise": "decentralize",
350
- "decentralised": "decentralized",
351
- "decentralises": "decentralizes",
352
- "decentralising": "decentralizing",
353
- "decriminalisation": "decriminalization",
354
- "decriminalise": "decriminalize",
355
- "decriminalised": "decriminalized",
356
- "decriminalises": "decriminalizes",
357
- "decriminalising": "decriminalizing",
358
- "defence": "defense",
359
- "defenceless": "defenseless",
360
- "defences": "defenses",
361
- "dehumanisation": "dehumanization",
362
- "dehumanise": "dehumanize",
363
- "dehumanised": "dehumanized",
364
- "dehumanises": "dehumanizes",
365
- "dehumanising": "dehumanizing",
366
- "demeanour": "demeanor",
367
- "demilitarisation": "demilitarization",
368
- "demilitarise": "demilitarize",
369
- "demilitarised": "demilitarized",
370
- "demilitarises": "demilitarizes",
371
- "demilitarising": "demilitarizing",
372
- "demobilisation": "demobilization",
373
- "demobilise": "demobilize",
374
- "demobilised": "demobilized",
375
- "demobilises": "demobilizes",
376
- "demobilising": "demobilizing",
377
- "democratisation": "democratization",
378
- "democratise": "democratize",
379
- "democratised": "democratized",
380
- "democratises": "democratizes",
381
- "democratising": "democratizing",
382
- "demonise": "demonize",
383
- "demonised": "demonized",
384
- "demonises": "demonizes",
385
- "demonising": "demonizing",
386
- "demoralisation": "demoralization",
387
- "demoralise": "demoralize",
388
- "demoralised": "demoralized",
389
- "demoralises": "demoralizes",
390
- "demoralising": "demoralizing",
391
- "denationalisation": "denationalization",
392
- "denationalise": "denationalize",
393
- "denationalised": "denationalized",
394
- "denationalises": "denationalizes",
395
- "denationalising": "denationalizing",
396
- "deodorise": "deodorize",
397
- "deodorised": "deodorized",
398
- "deodorises": "deodorizes",
399
- "deodorising": "deodorizing",
400
- "depersonalise": "depersonalize",
401
- "depersonalised": "depersonalized",
402
- "depersonalises": "depersonalizes",
403
- "depersonalising": "depersonalizing",
404
- "deputise": "deputize",
405
- "deputised": "deputized",
406
- "deputises": "deputizes",
407
- "deputising": "deputizing",
408
- "desensitisation": "desensitization",
409
- "desensitise": "desensitize",
410
- "desensitised": "desensitized",
411
- "desensitises": "desensitizes",
412
- "desensitising": "desensitizing",
413
- "destabilisation": "destabilization",
414
- "destabilise": "destabilize",
415
- "destabilised": "destabilized",
416
- "destabilises": "destabilizes",
417
- "destabilising": "destabilizing",
418
- "dialled": "dialed",
419
- "dialling": "dialing",
420
- "dialogue": "dialog",
421
- "dialogues": "dialogs",
422
- "diarrhoea": "diarrhea",
423
- "digitise": "digitize",
424
- "digitised": "digitized",
425
- "digitises": "digitizes",
426
- "digitising": "digitizing",
427
- "disc": "disk",
428
- "discolour": "discolor",
429
- "discoloured": "discolored",
430
- "discolouring": "discoloring",
431
- "discolours": "discolors",
432
- "discs": "disks",
433
- "disembowelled": "disemboweled",
434
- "disembowelling": "disemboweling",
435
- "disfavour": "disfavor",
436
- "dishevelled": "disheveled",
437
- "dishonour": "dishonor",
438
- "dishonourable": "dishonorable",
439
- "dishonourably": "dishonorably",
440
- "dishonoured": "dishonored",
441
- "dishonouring": "dishonoring",
442
- "dishonours": "dishonors",
443
- "disorganisation": "disorganization",
444
- "disorganised": "disorganized",
445
- "distil": "distill",
446
- "distils": "distills",
447
- "dramatisation": "dramatization",
448
- "dramatisations": "dramatizations",
449
- "dramatise": "dramatize",
450
- "dramatised": "dramatized",
451
- "dramatises": "dramatizes",
452
- "dramatising": "dramatizing",
453
- "draught": "draft",
454
- "draughtboard": "draftboard",
455
- "draughtboards": "draftboards",
456
- "draughtier": "draftier",
457
- "draughtiest": "draftiest",
458
- "draughts": "drafts",
459
- "draughtsman": "draftsman",
460
- "draughtsmanship": "draftsmanship",
461
- "draughtsmen": "draftsmen",
462
- "draughtswoman": "draftswoman",
463
- "draughtswomen": "draftswomen",
464
- "draughty": "drafty",
465
- "drivelled": "driveled",
466
- "drivelling": "driveling",
467
- "duelled": "dueled",
468
- "duelling": "dueling",
469
- "economise": "economize",
470
- "economised": "economized",
471
- "economises": "economizes",
472
- "economising": "economizing",
473
- "editorialise": "editorialize",
474
- "editorialised": "editorialized",
475
- "editorialises": "editorializes",
476
- "editorialising": "editorializing",
477
- "edoema": "edema",
478
- "empathise": "empathize",
479
- "empathised": "empathized",
480
- "empathises": "empathizes",
481
- "empathising": "empathizing",
482
- "emphasise": "emphasize",
483
- "emphasised": "emphasized",
484
- "emphasises": "emphasizes",
485
- "emphasising": "emphasizing",
486
- "enamelled": "enameled",
487
- "enamelling": "enameling",
488
- "enamoured": "enamored",
489
- "encyclopaedia": "encyclopedia",
490
- "encyclopaedias": "encyclopedias",
491
- "encyclopaedic": "encyclopedic",
492
- "endeavour": "endeavor",
493
- "endeavoured": "endeavored",
494
- "endeavouring": "endeavoring",
495
- "endeavours": "endeavors",
496
- "energise": "energize",
497
- "energised": "energized",
498
- "energises": "energizes",
499
- "energising": "energizing",
500
- "enrol": "enroll",
501
- "enrols": "enrolls",
502
- "enthral": "enthrall",
503
- "enthrals": "enthralls",
504
- "epaulette": "epaulet",
505
- "epaulettes": "epaulets",
506
- "epicentre": "epicenter",
507
- "epicentres": "epicenters",
508
- "epilogue": "epilog",
509
- "epilogues": "epilogs",
510
- "epitomise": "epitomize",
511
- "epitomised": "epitomized",
512
- "epitomises": "epitomizes",
513
- "epitomising": "epitomizing",
514
- "equalisation": "equalization",
515
- "equalise": "equalize",
516
- "equalised": "equalized",
517
- "equaliser": "equalizer",
518
- "equalisers": "equalizers",
519
- "equalises": "equalizes",
520
- "equalising": "equalizing",
521
- "eulogise": "eulogize",
522
- "eulogised": "eulogized",
523
- "eulogises": "eulogizes",
524
- "eulogising": "eulogizing",
525
- "evangelise": "evangelize",
526
- "evangelised": "evangelized",
527
- "evangelises": "evangelizes",
528
- "evangelising": "evangelizing",
529
- "exorcise": "exorcize",
530
- "exorcised": "exorcized",
531
- "exorcises": "exorcizes",
532
- "exorcising": "exorcizing",
533
- "extemporisation": "extemporization",
534
- "extemporise": "extemporize",
535
- "extemporised": "extemporized",
536
- "extemporises": "extemporizes",
537
- "extemporising": "extemporizing",
538
- "externalisation": "externalization",
539
- "externalisations": "externalizations",
540
- "externalise": "externalize",
541
- "externalised": "externalized",
542
- "externalises": "externalizes",
543
- "externalising": "externalizing",
544
- "factorise": "factorize",
545
- "factorised": "factorized",
546
- "factorises": "factorizes",
547
- "factorising": "factorizing",
548
- "faecal": "fecal",
549
- "faeces": "feces",
550
- "familiarisation": "familiarization",
551
- "familiarise": "familiarize",
552
- "familiarised": "familiarized",
553
- "familiarises": "familiarizes",
554
- "familiarising": "familiarizing",
555
- "fantasise": "fantasize",
556
- "fantasised": "fantasized",
557
- "fantasises": "fantasizes",
558
- "fantasising": "fantasizing",
559
- "favour": "favor",
560
- "favourable": "favorable",
561
- "favourably": "favorably",
562
- "favoured": "favored",
563
- "favouring": "favoring",
564
- "favourite": "favorite",
565
- "favourites": "favorites",
566
- "favouritism": "favoritism",
567
- "favours": "favors",
568
- "feminise": "feminize",
569
- "feminised": "feminized",
570
- "feminises": "feminizes",
571
- "feminising": "feminizing",
572
- "fertilisation": "fertilization",
573
- "fertilise": "fertilize",
574
- "fertilised": "fertilized",
575
- "fertiliser": "fertilizer",
576
- "fertilisers": "fertilizers",
577
- "fertilises": "fertilizes",
578
- "fertilising": "fertilizing",
579
- "fervour": "fervor",
580
- "fibre": "fiber",
581
- "fibreglass": "fiberglass",
582
- "fibres": "fibers",
583
- "fictionalisation": "fictionalization",
584
- "fictionalisations": "fictionalizations",
585
- "fictionalise": "fictionalize",
586
- "fictionalised": "fictionalized",
587
- "fictionalises": "fictionalizes",
588
- "fictionalising": "fictionalizing",
589
- "fillet": "filet",
590
- "filleted": "fileted",
591
- "filleting": "fileting",
592
- "fillets": "filets",
593
- "finalisation": "finalization",
594
- "finalise": "finalize",
595
- "finalised": "finalized",
596
- "finalises": "finalizes",
597
- "finalising": "finalizing",
598
- "flautist": "flutist",
599
- "flautists": "flutists",
600
- "flavour": "flavor",
601
- "flavoured": "flavored",
602
- "flavouring": "flavoring",
603
- "flavourings": "flavorings",
604
- "flavourless": "flavorless",
605
- "flavours": "flavors",
606
- "flavoursome": "flavorsome",
607
- "flyer / flier": "flier / flyer",
608
- "foetal": "fetal",
609
- "foetid": "fetid",
610
- "foetus": "fetus",
611
- "foetuses": "fetuses",
612
- "formalisation": "formalization",
613
- "formalise": "formalize",
614
- "formalised": "formalized",
615
- "formalises": "formalizes",
616
- "formalising": "formalizing",
617
- "fossilisation": "fossilization",
618
- "fossilise": "fossilize",
619
- "fossilised": "fossilized",
620
- "fossilises": "fossilizes",
621
- "fossilising": "fossilizing",
622
- "fraternisation": "fraternization",
623
- "fraternise": "fraternize",
624
- "fraternised": "fraternized",
625
- "fraternises": "fraternizes",
626
- "fraternising": "fraternizing",
627
- "fulfil": "fulfill",
628
- "fulfilment": "fulfillment",
629
- "fulfils": "fulfills",
630
- "funnelled": "funneled",
631
- "funnelling": "funneling",
632
- "gage": "gauge",
633
- "gaged": "gauged",
634
- "gages": "gauges",
635
- "gaging": "gauging",
636
- "galvanise": "galvanize",
637
- "galvanised": "galvanized",
638
- "galvanises": "galvanizes",
639
- "galvanising": "galvanizing",
640
- "gambolled": "gamboled",
641
- "gambolling": "gamboling",
642
- "gaol": "jail",
643
- "gaolbird": "jailbird",
644
- "gaolbirds": "jailbirds",
645
- "gaolbreak": "jailbreak",
646
- "gaolbreaks": "jailbreaks",
647
- "gaoled": "jailed",
648
- "gaoler": "jailer",
649
- "gaolers": "jailers",
650
- "gaoling": "jailing",
651
- "gaols": "jails",
652
- "gasses": "gases",
653
- "generalisation": "generalization",
654
- "generalisations": "generalizations",
655
- "generalise": "generalize",
656
- "generalised": "generalized",
657
- "generalises": "generalizes",
658
- "generalising": "generalizing",
659
- "ghettoise": "ghettoize",
660
- "ghettoised": "ghettoized",
661
- "ghettoises": "ghettoizes",
662
- "ghettoising": "ghettoizing",
663
- "gipsies": "gypsies",
664
- "glamor": "glamour",
665
- "glamorise": "glamorize",
666
- "glamorised": "glamorized",
667
- "glamorises": "glamorizes",
668
- "glamorising": "glamorizing",
669
- "globalisation": "globalization",
670
- "globalise": "globalize",
671
- "globalised": "globalized",
672
- "globalises": "globalizes",
673
- "globalising": "globalizing",
674
- "glueing": "gluing",
675
- "goitre": "goiter",
676
- "goitres": "goiters",
677
- "gonorrhoea": "gonorrhea",
678
- "gramme": "gram",
679
- "grammes": "grams",
680
- "gravelled": "graveled",
681
- "grey": "gray",
682
- "greyed": "grayed",
683
- "greying": "graying",
684
- "greyish": "grayish",
685
- "greyness": "grayness",
686
- "greys": "grays",
687
- "grovelled": "groveled",
688
- "grovelling": "groveling",
689
- "groyne": "groin",
690
- "groynes": "groins",
691
- "gruelling": "grueling",
692
- "gruellingly": "gruelingly",
693
- "gryphon": "griffin",
694
- "gryphons": "griffins",
695
- "gynaecological": "gynecological",
696
- "gynaecologist": "gynecologist",
697
- "gynaecologists": "gynecologists",
698
- "gynaecology": "gynecology",
699
- "haematological": "hematological",
700
- "haematologist": "hematologist",
701
- "haematologists": "hematologists",
702
- "haematology": "hematology",
703
- "haemoglobin": "hemoglobin",
704
- "haemophilia": "hemophilia",
705
- "haemophiliac": "hemophiliac",
706
- "haemophiliacs": "hemophiliacs",
707
- "haemorrhage": "hemorrhage",
708
- "haemorrhaged": "hemorrhaged",
709
- "haemorrhages": "hemorrhages",
710
- "haemorrhaging": "hemorrhaging",
711
- "haemorrhoids": "hemorrhoids",
712
- "harbour": "harbor",
713
- "harboured": "harbored",
714
- "harbouring": "harboring",
715
- "harbours": "harbors",
716
- "harmonisation": "harmonization",
717
- "harmonise": "harmonize",
718
- "harmonised": "harmonized",
719
- "harmonises": "harmonizes",
720
- "harmonising": "harmonizing",
721
- "homoeopath": "homeopath",
722
- "homoeopathic": "homeopathic",
723
- "homoeopaths": "homeopaths",
724
- "homoeopathy": "homeopathy",
725
- "homogenise": "homogenize",
726
- "homogenised": "homogenized",
727
- "homogenises": "homogenizes",
728
- "homogenising": "homogenizing",
729
- "honour": "honor",
730
- "honourable": "honorable",
731
- "honourably": "honorably",
732
- "honoured": "honored",
733
- "honouring": "honoring",
734
- "honours": "honors",
735
- "hospitalisation": "hospitalization",
736
- "hospitalise": "hospitalize",
737
- "hospitalised": "hospitalized",
738
- "hospitalises": "hospitalizes",
739
- "hospitalising": "hospitalizing",
740
- "humanise": "humanize",
741
- "humanised": "humanized",
742
- "humanises": "humanizes",
743
- "humanising": "humanizing",
744
- "humour": "humor",
745
- "humoured": "humored",
746
- "humouring": "humoring",
747
- "humourless": "humorless",
748
- "humours": "humors",
749
- "hybridise": "hybridize",
750
- "hybridised": "hybridized",
751
- "hybridises": "hybridizes",
752
- "hybridising": "hybridizing",
753
- "hypnotise": "hypnotize",
754
- "hypnotised": "hypnotized",
755
- "hypnotises": "hypnotizes",
756
- "hypnotising": "hypnotizing",
757
- "hypothesise": "hypothesize",
758
- "hypothesised": "hypothesized",
759
- "hypothesises": "hypothesizes",
760
- "hypothesising": "hypothesizing",
761
- "idealisation": "idealization",
762
- "idealise": "idealize",
763
- "idealised": "idealized",
764
- "idealises": "idealizes",
765
- "idealising": "idealizing",
766
- "idolise": "idolize",
767
- "idolised": "idolized",
768
- "idolises": "idolizes",
769
- "idolising": "idolizing",
770
- "immobilisation": "immobilization",
771
- "immobilise": "immobilize",
772
- "immobilised": "immobilized",
773
- "immobiliser": "immobilizer",
774
- "immobilisers": "immobilizers",
775
- "immobilises": "immobilizes",
776
- "immobilising": "immobilizing",
777
- "immortalise": "immortalize",
778
- "immortalised": "immortalized",
779
- "immortalises": "immortalizes",
780
- "immortalising": "immortalizing",
781
- "immunisation": "immunization",
782
- "immunise": "immunize",
783
- "immunised": "immunized",
784
- "immunises": "immunizes",
785
- "immunising": "immunizing",
786
- "impanelled": "impaneled",
787
- "impanelling": "impaneling",
788
- "imperilled": "imperiled",
789
- "imperilling": "imperiling",
790
- "individualise": "individualize",
791
- "individualised": "individualized",
792
- "individualises": "individualizes",
793
- "individualising": "individualizing",
794
- "industrialise": "industrialize",
795
- "industrialised": "industrialized",
796
- "industrialises": "industrializes",
797
- "industrialising": "industrializing",
798
- "inflexion": "inflection",
799
- "inflexions": "inflections",
800
- "initialise": "initialize",
801
- "initialised": "initialized",
802
- "initialises": "initializes",
803
- "initialising": "initializing",
804
- "initialled": "initialed",
805
- "initialling": "initialing",
806
- "instal": "install",
807
- "instalment": "installment",
808
- "instalments": "installments",
809
- "instals": "installs",
810
- "instil": "instill",
811
- "instils": "instills",
812
- "institutionalisation": "institutionalization",
813
- "institutionalise": "institutionalize",
814
- "institutionalised": "institutionalized",
815
- "institutionalises": "institutionalizes",
816
- "institutionalising": "institutionalizing",
817
- "intellectualise": "intellectualize",
818
- "intellectualised": "intellectualized",
819
- "intellectualises": "intellectualizes",
820
- "intellectualising": "intellectualizing",
821
- "internalisation": "internalization",
822
- "internalise": "internalize",
823
- "internalised": "internalized",
824
- "internalises": "internalizes",
825
- "internalising": "internalizing",
826
- "internationalisation": "internationalization",
827
- "internationalise": "internationalize",
828
- "internationalised": "internationalized",
829
- "internationalises": "internationalizes",
830
- "internationalising": "internationalizing",
831
- "ionisation": "ionization",
832
- "ionise": "ionize",
833
- "ionised": "ionized",
834
- "ioniser": "ionizer",
835
- "ionisers": "ionizers",
836
- "ionises": "ionizes",
837
- "ionising": "ionizing",
838
- "italicise": "italicize",
839
- "italicised": "italicized",
840
- "italicises": "italicizes",
841
- "italicising": "italicizing",
842
- "itemise": "itemize",
843
- "itemised": "itemized",
844
- "itemises": "itemizes",
845
- "itemising": "itemizing",
846
- "jeopardise": "jeopardize",
847
- "jeopardised": "jeopardized",
848
- "jeopardises": "jeopardizes",
849
- "jeopardising": "jeopardizing",
850
- "jewelled": "jeweled",
851
- "jeweller": "jeweler",
852
- "jewellers": "jewelers",
853
- "jewellery": "jewelry",
854
- "judgement": "judgment",
855
- "kilogramme": "kilogram",
856
- "kilogrammes": "kilograms",
857
- "kilometre": "kilometer",
858
- "kilometres": "kilometers",
859
- "labelled": "labeled",
860
- "labelling": "labeling",
861
- "labour": "labor",
862
- "laboured": "labored",
863
- "labourer": "laborer",
864
- "labourers": "laborers",
865
- "labouring": "laboring",
866
- "labours": "labors",
867
- "lacklustre": "lackluster",
868
- "legalisation": "legalization",
869
- "legalise": "legalize",
870
- "legalised": "legalized",
871
- "legalises": "legalizes",
872
- "legalising": "legalizing",
873
- "legitimise": "legitimize",
874
- "legitimised": "legitimized",
875
- "legitimises": "legitimizes",
876
- "legitimising": "legitimizing",
877
- "leukaemia": "leukemia",
878
- "levelled": "leveled",
879
- "leveller": "leveler",
880
- "levellers": "levelers",
881
- "levelling": "leveling",
882
- "libelled": "libeled",
883
- "libelling": "libeling",
884
- "libellous": "libelous",
885
- "liberalisation": "liberalization",
886
- "liberalise": "liberalize",
887
- "liberalised": "liberalized",
888
- "liberalises": "liberalizes",
889
- "liberalising": "liberalizing",
890
- "licence": "license",
891
- "licenced": "licensed",
892
- "licences": "licenses",
893
- "licencing": "licensing",
894
- "likeable": "likable",
895
- "lionisation": "lionization",
896
- "lionise": "lionize",
897
- "lionised": "lionized",
898
- "lionises": "lionizes",
899
- "lionising": "lionizing",
900
- "liquidise": "liquidize",
901
- "liquidised": "liquidized",
902
- "liquidiser": "liquidizer",
903
- "liquidisers": "liquidizers",
904
- "liquidises": "liquidizes",
905
- "liquidising": "liquidizing",
906
- "litre": "liter",
907
- "litres": "liters",
908
- "localise": "localize",
909
- "localised": "localized",
910
- "localises": "localizes",
911
- "localising": "localizing",
912
- "louvre": "louver",
913
- "louvred": "louvered",
914
- "louvres": "louvers",
915
- "lustre": "luster",
916
- "magnetise": "magnetize",
917
- "magnetised": "magnetized",
918
- "magnetises": "magnetizes",
919
- "magnetising": "magnetizing",
920
- "manoeuvrability": "maneuverability",
921
- "manoeuvrable": "maneuverable",
922
- "manoeuvre": "maneuver",
923
- "manoeuvred": "maneuvered",
924
- "manoeuvres": "maneuvers",
925
- "manoeuvring": "maneuvering",
926
- "manoeuvrings": "maneuverings",
927
- "marginalisation": "marginalization",
928
- "marginalise": "marginalize",
929
- "marginalised": "marginalized",
930
- "marginalises": "marginalizes",
931
- "marginalising": "marginalizing",
932
- "marshalled": "marshaled",
933
- "marshalling": "marshaling",
934
- "marvelled": "marveled",
935
- "marvelling": "marveling",
936
- "marvellous": "marvelous",
937
- "marvellously": "marvelously",
938
- "materialisation": "materialization",
939
- "materialise": "materialize",
940
- "materialised": "materialized",
941
- "materialises": "materializes",
942
- "materialising": "materializing",
943
- "maximisation": "maximization",
944
- "maximise": "maximize",
945
- "maximised": "maximized",
946
- "maximises": "maximizes",
947
- "maximising": "maximizing",
948
- "meagre": "meager",
949
- "mechanisation": "mechanization",
950
- "mechanise": "mechanize",
951
- "mechanised": "mechanized",
952
- "mechanises": "mechanizes",
953
- "mechanising": "mechanizing",
954
- "mediaeval": "medieval",
955
- "memorialise": "memorialize",
956
- "memorialised": "memorialized",
957
- "memorialises": "memorializes",
958
- "memorialising": "memorializing",
959
- "memorise": "memorize",
960
- "memorised": "memorized",
961
- "memorises": "memorizes",
962
- "memorising": "memorizing",
963
- "mesmerise": "mesmerize",
964
- "mesmerised": "mesmerized",
965
- "mesmerises": "mesmerizes",
966
- "mesmerising": "mesmerizing",
967
- "metabolise": "metabolize",
968
- "metabolised": "metabolized",
969
- "metabolises": "metabolizes",
970
- "metabolising": "metabolizing",
971
- "metre": "meter",
972
- "metres": "meters",
973
- "mhm": "hmm",
974
- "micrometre": "micrometer",
975
- "micrometres": "micrometers",
976
- "militarise": "militarize",
977
- "militarised": "militarized",
978
- "militarises": "militarizes",
979
- "militarising": "militarizing",
980
- "milligramme": "milligram",
981
- "milligrammes": "milligrams",
982
- "millilitre": "milliliter",
983
- "millilitres": "milliliters",
984
- "millimetre": "millimeter",
985
- "millimetres": "millimeters",
986
- "miniaturisation": "miniaturization",
987
- "miniaturise": "miniaturize",
988
- "miniaturised": "miniaturized",
989
- "miniaturises": "miniaturizes",
990
- "miniaturising": "miniaturizing",
991
- "minibusses": "minibuses",
992
- "minimise": "minimize",
993
- "minimised": "minimized",
994
- "minimises": "minimizes",
995
- "minimising": "minimizing",
996
- "misbehaviour": "misbehavior",
997
- "misdemeanour": "misdemeanor",
998
- "misdemeanours": "misdemeanors",
999
- "misspelt": "misspelled",
1000
- "mitre": "miter",
1001
- "mitres": "miters",
1002
- "mm": "hmm",
1003
- "mmm": "hmm",
1004
- "mobilisation": "mobilization",
1005
- "mobilise": "mobilize",
1006
- "mobilised": "mobilized",
1007
- "mobilises": "mobilizes",
1008
- "mobilising": "mobilizing",
1009
- "modelled": "modeled",
1010
- "modeller": "modeler",
1011
- "modellers": "modelers",
1012
- "modelling": "modeling",
1013
- "modernise": "modernize",
1014
- "modernised": "modernized",
1015
- "modernises": "modernizes",
1016
- "modernising": "modernizing",
1017
- "moisturise": "moisturize",
1018
- "moisturised": "moisturized",
1019
- "moisturiser": "moisturizer",
1020
- "moisturisers": "moisturizers",
1021
- "moisturises": "moisturizes",
1022
- "moisturising": "moisturizing",
1023
- "monologue": "monolog",
1024
- "monologues": "monologs",
1025
- "monopolisation": "monopolization",
1026
- "monopolise": "monopolize",
1027
- "monopolised": "monopolized",
1028
- "monopolises": "monopolizes",
1029
- "monopolising": "monopolizing",
1030
- "moralise": "moralize",
1031
- "moralised": "moralized",
1032
- "moralises": "moralizes",
1033
- "moralising": "moralizing",
1034
- "motorised": "motorized",
1035
- "mould": "mold",
1036
- "moulded": "molded",
1037
- "moulder": "molder",
1038
- "mouldered": "moldered",
1039
- "mouldering": "moldering",
1040
- "moulders": "molders",
1041
- "mouldier": "moldier",
1042
- "mouldiest": "moldiest",
1043
- "moulding": "molding",
1044
- "mouldings": "moldings",
1045
- "moulds": "molds",
1046
- "mouldy": "moldy",
1047
- "moult": "molt",
1048
- "moulted": "molted",
1049
- "moulting": "molting",
1050
- "moults": "molts",
1051
- "moustache": "mustache",
1052
- "moustached": "mustached",
1053
- "moustaches": "mustaches",
1054
- "moustachioed": "mustachioed",
1055
- "multicoloured": "multicolored",
1056
- "nationalisation": "nationalization",
1057
- "nationalisations": "nationalizations",
1058
- "nationalise": "nationalize",
1059
- "nationalised": "nationalized",
1060
- "nationalises": "nationalizes",
1061
- "nationalising": "nationalizing",
1062
- "naturalisation": "naturalization",
1063
- "naturalise": "naturalize",
1064
- "naturalised": "naturalized",
1065
- "naturalises": "naturalizes",
1066
- "naturalising": "naturalizing",
1067
- "neighbour": "neighbor",
1068
- "neighbourhood": "neighborhood",
1069
- "neighbourhoods": "neighborhoods",
1070
- "neighbouring": "neighboring",
1071
- "neighbourliness": "neighborliness",
1072
- "neighbourly": "neighborly",
1073
- "neighbours": "neighbors",
1074
- "neutralisation": "neutralization",
1075
- "neutralise": "neutralize",
1076
- "neutralised": "neutralized",
1077
- "neutralises": "neutralizes",
1078
- "neutralising": "neutralizing",
1079
- "normalisation": "normalization",
1080
- "normalise": "normalize",
1081
- "normalised": "normalized",
1082
- "normalises": "normalizes",
1083
- "normalising": "normalizing",
1084
- "odour": "odor",
1085
- "odourless": "odorless",
1086
- "odours": "odors",
1087
- "oesophagus": "esophagus",
1088
- "oesophaguses": "esophaguses",
1089
- "oestrogen": "estrogen",
1090
- "offence": "offense",
1091
- "offences": "offenses",
1092
- "omelette": "omelet",
1093
- "omelettes": "omelets",
1094
- "optimise": "optimize",
1095
- "optimised": "optimized",
1096
- "optimises": "optimizes",
1097
- "optimising": "optimizing",
1098
- "organisation": "organization",
1099
- "organisational": "organizational",
1100
- "organisations": "organizations",
1101
- "organise": "organize",
1102
- "organised": "organized",
1103
- "organiser": "organizer",
1104
- "organisers": "organizers",
1105
- "organises": "organizes",
1106
- "organising": "organizing",
1107
- "orthopaedic": "orthopedic",
1108
- "orthopaedics": "orthopedics",
1109
- "ostracise": "ostracize",
1110
- "ostracised": "ostracized",
1111
- "ostracises": "ostracizes",
1112
- "ostracising": "ostracizing",
1113
- "outmanoeuvre": "outmaneuver",
1114
- "outmanoeuvred": "outmaneuvered",
1115
- "outmanoeuvres": "outmaneuvers",
1116
- "outmanoeuvring": "outmaneuvering",
1117
- "overemphasise": "overemphasize",
1118
- "overemphasised": "overemphasized",
1119
- "overemphasises": "overemphasizes",
1120
- "overemphasising": "overemphasizing",
1121
- "oxidisation": "oxidization",
1122
- "oxidise": "oxidize",
1123
- "oxidised": "oxidized",
1124
- "oxidises": "oxidizes",
1125
- "oxidising": "oxidizing",
1126
- "paederast": "pederast",
1127
- "paederasts": "pederasts",
1128
- "paediatric": "pediatric",
1129
- "paediatrician": "pediatrician",
1130
- "paediatricians": "pediatricians",
1131
- "paediatrics": "pediatrics",
1132
- "paedophile": "pedophile",
1133
- "paedophiles": "pedophiles",
1134
- "paedophilia": "pedophilia",
1135
- "palaeolithic": "paleolithic",
1136
- "palaeontologist": "paleontologist",
1137
- "palaeontologists": "paleontologists",
1138
- "palaeontology": "paleontology",
1139
- "panelled": "paneled",
1140
- "panelling": "paneling",
1141
- "panellist": "panelist",
1142
- "panellists": "panelists",
1143
- "paralyse": "paralyze",
1144
- "paralysed": "paralyzed",
1145
- "paralyses": "paralyzes",
1146
- "paralysing": "paralyzing",
1147
- "parcelled": "parceled",
1148
- "parcelling": "parceling",
1149
- "parlour": "parlor",
1150
- "parlours": "parlors",
1151
- "particularise": "particularize",
1152
- "particularised": "particularized",
1153
- "particularises": "particularizes",
1154
- "particularising": "particularizing",
1155
- "passivisation": "passivization",
1156
- "passivise": "passivize",
1157
- "passivised": "passivized",
1158
- "passivises": "passivizes",
1159
- "passivising": "passivizing",
1160
- "pasteurisation": "pasteurization",
1161
- "pasteurise": "pasteurize",
1162
- "pasteurised": "pasteurized",
1163
- "pasteurises": "pasteurizes",
1164
- "pasteurising": "pasteurizing",
1165
- "patronise": "patronize",
1166
- "patronised": "patronized",
1167
- "patronises": "patronizes",
1168
- "patronising": "patronizing",
1169
- "patronisingly": "patronizingly",
1170
- "pedalled": "pedaled",
1171
- "pedalling": "pedaling",
1172
- "pedestrianisation": "pedestrianization",
1173
- "pedestrianise": "pedestrianize",
1174
- "pedestrianised": "pedestrianized",
1175
- "pedestrianises": "pedestrianizes",
1176
- "pedestrianising": "pedestrianizing",
1177
- "penalise": "penalize",
1178
- "penalised": "penalized",
1179
- "penalises": "penalizes",
1180
- "penalising": "penalizing",
1181
- "pencilled": "penciled",
1182
- "pencilling": "penciling",
1183
- "personalise": "personalize",
1184
- "personalised": "personalized",
1185
- "personalises": "personalizes",
1186
- "personalising": "personalizing",
1187
- "pharmacopoeia": "pharmacopeia",
1188
- "pharmacopoeias": "pharmacopeias",
1189
- "philosophise": "philosophize",
1190
- "philosophised": "philosophized",
1191
- "philosophises": "philosophizes",
1192
- "philosophising": "philosophizing",
1193
- "philtre": "filter",
1194
- "philtres": "filters",
1195
- "phoney": "phony",
1196
- "plagiarise": "plagiarize",
1197
- "plagiarised": "plagiarized",
1198
- "plagiarises": "plagiarizes",
1199
- "plagiarising": "plagiarizing",
1200
- "plough": "plow",
1201
- "ploughed": "plowed",
1202
- "ploughing": "plowing",
1203
- "ploughman": "plowman",
1204
- "ploughmen": "plowmen",
1205
- "ploughs": "plows",
1206
- "ploughshare": "plowshare",
1207
- "ploughshares": "plowshares",
1208
- "polarisation": "polarization",
1209
- "polarise": "polarize",
1210
- "polarised": "polarized",
1211
- "polarises": "polarizes",
1212
- "polarising": "polarizing",
1213
- "politicisation": "politicization",
1214
- "politicise": "politicize",
1215
- "politicised": "politicized",
1216
- "politicises": "politicizes",
1217
- "politicising": "politicizing",
1218
- "popularisation": "popularization",
1219
- "popularise": "popularize",
1220
- "popularised": "popularized",
1221
- "popularises": "popularizes",
1222
- "popularising": "popularizing",
1223
- "pouffe": "pouf",
1224
- "pouffes": "poufs",
1225
- "practise": "practice",
1226
- "practised": "practiced",
1227
- "practises": "practices",
1228
- "practising": "practicing",
1229
- "praesidium": "presidium",
1230
- "praesidiums": "presidiums",
1231
- "pressurisation": "pressurization",
1232
- "pressurise": "pressurize",
1233
- "pressurised": "pressurized",
1234
- "pressurises": "pressurizes",
1235
- "pressurising": "pressurizing",
1236
- "pretence": "pretense",
1237
- "pretences": "pretenses",
1238
- "primaeval": "primeval",
1239
- "prioritisation": "prioritization",
1240
- "prioritise": "prioritize",
1241
- "prioritised": "prioritized",
1242
- "prioritises": "prioritizes",
1243
- "prioritising": "prioritizing",
1244
- "privatisation": "privatization",
1245
- "privatisations": "privatizations",
1246
- "privatise": "privatize",
1247
- "privatised": "privatized",
1248
- "privatises": "privatizes",
1249
- "privatising": "privatizing",
1250
- "professionalisation": "professionalization",
1251
- "professionalise": "professionalize",
1252
- "professionalised": "professionalized",
1253
- "professionalises": "professionalizes",
1254
- "professionalising": "professionalizing",
1255
- "programme": "program",
1256
- "programmes": "programs",
1257
- "prologue": "prolog",
1258
- "prologues": "prologs",
1259
- "propagandise": "propagandize",
1260
- "propagandised": "propagandized",
1261
- "propagandises": "propagandizes",
1262
- "propagandising": "propagandizing",
1263
- "proselytise": "proselytize",
1264
- "proselytised": "proselytized",
1265
- "proselytiser": "proselytizer",
1266
- "proselytisers": "proselytizers",
1267
- "proselytises": "proselytizes",
1268
- "proselytising": "proselytizing",
1269
- "psychoanalyse": "psychoanalyze",
1270
- "psychoanalysed": "psychoanalyzed",
1271
- "psychoanalyses": "psychoanalyzes",
1272
- "psychoanalysing": "psychoanalyzing",
1273
- "publicise": "publicize",
1274
- "publicised": "publicized",
1275
- "publicises": "publicizes",
1276
- "publicising": "publicizing",
1277
- "pulverisation": "pulverization",
1278
- "pulverise": "pulverize",
1279
- "pulverised": "pulverized",
1280
- "pulverises": "pulverizes",
1281
- "pulverising": "pulverizing",
1282
- "pummelled": "pummel",
1283
- "pummelling": "pummeled",
1284
- "pyjama": "pajama",
1285
- "pyjamas": "pajamas",
1286
- "pzazz": "pizzazz",
1287
- "quarrelled": "quarreled",
1288
- "quarrelling": "quarreling",
1289
- "radicalise": "radicalize",
1290
- "radicalised": "radicalized",
1291
- "radicalises": "radicalizes",
1292
- "radicalising": "radicalizing",
1293
- "rancour": "rancor",
1294
- "randomise": "randomize",
1295
- "randomised": "randomized",
1296
- "randomises": "randomizes",
1297
- "randomising": "randomizing",
1298
- "rationalisation": "rationalization",
1299
- "rationalisations": "rationalizations",
1300
- "rationalise": "rationalize",
1301
- "rationalised": "rationalized",
1302
- "rationalises": "rationalizes",
1303
- "rationalising": "rationalizing",
1304
- "ravelled": "raveled",
1305
- "ravelling": "raveling",
1306
- "realisable": "realizable",
1307
- "realisation": "realization",
1308
- "realisations": "realizations",
1309
- "realise": "realize",
1310
- "realised": "realized",
1311
- "realises": "realizes",
1312
- "realising": "realizing",
1313
- "recognisable": "recognizable",
1314
- "recognisably": "recognizably",
1315
- "recognisance": "recognizance",
1316
- "recognise": "recognize",
1317
- "recognised": "recognized",
1318
- "recognises": "recognizes",
1319
- "recognising": "recognizing",
1320
- "reconnoitre": "reconnoiter",
1321
- "reconnoitred": "reconnoitered",
1322
- "reconnoitres": "reconnoiters",
1323
- "reconnoitring": "reconnoitering",
1324
- "refuelled": "refueled",
1325
- "refuelling": "refueling",
1326
- "regularisation": "regularization",
1327
- "regularise": "regularize",
1328
- "regularised": "regularized",
1329
- "regularises": "regularizes",
1330
- "regularising": "regularizing",
1331
- "remodelled": "remodeled",
1332
- "remodelling": "remodeling",
1333
- "remould": "remold",
1334
- "remoulded": "remolded",
1335
- "remoulding": "remolding",
1336
- "remoulds": "remolds",
1337
- "reorganisation": "reorganization",
1338
- "reorganisations": "reorganizations",
1339
- "reorganise": "reorganize",
1340
- "reorganised": "reorganized",
1341
- "reorganises": "reorganizes",
1342
- "reorganising": "reorganizing",
1343
- "revelled": "reveled",
1344
- "reveller": "reveler",
1345
- "revellers": "revelers",
1346
- "revelling": "reveling",
1347
- "revitalise": "revitalize",
1348
- "revitalised": "revitalized",
1349
- "revitalises": "revitalizes",
1350
- "revitalising": "revitalizing",
1351
- "revolutionise": "revolutionize",
1352
- "revolutionised": "revolutionized",
1353
- "revolutionises": "revolutionizes",
1354
- "revolutionising": "revolutionizing",
1355
- "rhapsodise": "rhapsodize",
1356
- "rhapsodised": "rhapsodized",
1357
- "rhapsodises": "rhapsodizes",
1358
- "rhapsodising": "rhapsodizing",
1359
- "rigour": "rigor",
1360
- "rigours": "rigors",
1361
- "ritualised": "ritualized",
1362
- "rivalled": "rivaled",
1363
- "rivalling": "rivaling",
1364
- "romanticise": "romanticize",
1365
- "romanticised": "romanticized",
1366
- "romanticises": "romanticizes",
1367
- "romanticising": "romanticizing",
1368
- "rumour": "rumor",
1369
- "rumoured": "rumored",
1370
- "rumours": "rumors",
1371
- "sabre": "saber",
1372
- "sabres": "sabers",
1373
- "saltpetre": "saltpeter",
1374
- "sanitise": "sanitize",
1375
- "sanitised": "sanitized",
1376
- "sanitises": "sanitizes",
1377
- "sanitising": "sanitizing",
1378
- "satirise": "satirize",
1379
- "satirised": "satirized",
1380
- "satirises": "satirizes",
1381
- "satirising": "satirizing",
1382
- "saviour": "savior",
1383
- "saviours": "saviors",
1384
- "savour": "savor",
1385
- "savoured": "savored",
1386
- "savouries": "savories",
1387
- "savouring": "savoring",
1388
- "savours": "savors",
1389
- "savoury": "savory",
1390
- "scandalise": "scandalize",
1391
- "scandalised": "scandalized",
1392
- "scandalises": "scandalizes",
1393
- "scandalising": "scandalizing",
1394
- "sceptic": "skeptic",
1395
- "sceptical": "skeptical",
1396
- "sceptically": "skeptically",
1397
- "scepticism": "skepticism",
1398
- "sceptics": "skeptics",
1399
- "sceptre": "scepter",
1400
- "sceptres": "scepters",
1401
- "scrutinise": "scrutinize",
1402
- "scrutinised": "scrutinized",
1403
- "scrutinises": "scrutinizes",
1404
- "scrutinising": "scrutinizing",
1405
- "secularisation": "secularization",
1406
- "secularise": "secularize",
1407
- "secularised": "secularized",
1408
- "secularises": "secularizes",
1409
- "secularising": "secularizing",
1410
- "sensationalise": "sensationalize",
1411
- "sensationalised": "sensationalized",
1412
- "sensationalises": "sensationalizes",
1413
- "sensationalising": "sensationalizing",
1414
- "sensitise": "sensitize",
1415
- "sensitised": "sensitized",
1416
- "sensitises": "sensitizes",
1417
- "sensitising": "sensitizing",
1418
- "sentimentalise": "sentimentalize",
1419
- "sentimentalised": "sentimentalized",
1420
- "sentimentalises": "sentimentalizes",
1421
- "sentimentalising": "sentimentalizing",
1422
- "sepulchre": "sepulcher",
1423
- "sepulchres": "sepulchers",
1424
- "serialisation": "serialization",
1425
- "serialisations": "serializations",
1426
- "serialise": "serialize",
1427
- "serialised": "serialized",
1428
- "serialises": "serializes",
1429
- "serialising": "serializing",
1430
- "sermonise": "sermonize",
1431
- "sermonised": "sermonized",
1432
- "sermonises": "sermonizes",
1433
- "sermonising": "sermonizing",
1434
- "sheikh": "sheik",
1435
- "shovelled": "shoveled",
1436
- "shovelling": "shoveling",
1437
- "shrivelled": "shriveled",
1438
- "shrivelling": "shriveling",
1439
- "signalise": "signalize",
1440
- "signalised": "signalized",
1441
- "signalises": "signalizes",
1442
- "signalising": "signalizing",
1443
- "signalled": "signaled",
1444
- "signalling": "signaling",
1445
- "smoulder": "smolder",
1446
- "smouldered": "smoldered",
1447
- "smouldering": "smoldering",
1448
- "smoulders": "smolders",
1449
- "snivelled": "sniveled",
1450
- "snivelling": "sniveling",
1451
- "snorkelled": "snorkeled",
1452
- "snorkelling": "snorkeling",
1453
- "snowplough": "snowplow",
1454
- "snowploughs": "snowplow",
1455
- "socialisation": "socialization",
1456
- "socialise": "socialize",
1457
- "socialised": "socialized",
1458
- "socialises": "socializes",
1459
- "socialising": "socializing",
1460
- "sodomise": "sodomize",
1461
- "sodomised": "sodomized",
1462
- "sodomises": "sodomizes",
1463
- "sodomising": "sodomizing",
1464
- "solemnise": "solemnize",
1465
- "solemnised": "solemnized",
1466
- "solemnises": "solemnizes",
1467
- "solemnising": "solemnizing",
1468
- "sombre": "somber",
1469
- "specialisation": "specialization",
1470
- "specialisations": "specializations",
1471
- "specialise": "specialize",
1472
- "specialised": "specialized",
1473
- "specialises": "specializes",
1474
- "specialising": "specializing",
1475
- "spectre": "specter",
1476
- "spectres": "specters",
1477
- "spiralled": "spiraled",
1478
- "spiralling": "spiraling",
1479
- "splendour": "splendor",
1480
- "splendours": "splendors",
1481
- "squirrelled": "squirreled",
1482
- "squirrelling": "squirreling",
1483
- "stabilisation": "stabilization",
1484
- "stabilise": "stabilize",
1485
- "stabilised": "stabilized",
1486
- "stabiliser": "stabilizer",
1487
- "stabilisers": "stabilizers",
1488
- "stabilises": "stabilizes",
1489
- "stabilising": "stabilizing",
1490
- "standardisation": "standardization",
1491
- "standardise": "standardize",
1492
- "standardised": "standardized",
1493
- "standardises": "standardizes",
1494
- "standardising": "standardizing",
1495
- "stencilled": "stenciled",
1496
- "stencilling": "stenciling",
1497
- "sterilisation": "sterilization",
1498
- "sterilisations": "sterilizations",
1499
- "sterilise": "sterilize",
1500
- "sterilised": "sterilized",
1501
- "steriliser": "sterilizer",
1502
- "sterilisers": "sterilizers",
1503
- "sterilises": "sterilizes",
1504
- "sterilising": "sterilizing",
1505
- "stigmatisation": "stigmatization",
1506
- "stigmatise": "stigmatize",
1507
- "stigmatised": "stigmatized",
1508
- "stigmatises": "stigmatizes",
1509
- "stigmatising": "stigmatizing",
1510
- "storey": "story",
1511
- "storeys": "stories",
1512
- "subsidisation": "subsidization",
1513
- "subsidise": "subsidize",
1514
- "subsidised": "subsidized",
1515
- "subsidiser": "subsidizer",
1516
- "subsidisers": "subsidizers",
1517
- "subsidises": "subsidizes",
1518
- "subsidising": "subsidizing",
1519
- "succour": "succor",
1520
- "succoured": "succored",
1521
- "succouring": "succoring",
1522
- "succours": "succors",
1523
- "sulphate": "sulfate",
1524
- "sulphates": "sulfates",
1525
- "sulphide": "sulfide",
1526
- "sulphides": "sulfides",
1527
- "sulphur": "sulfur",
1528
- "sulphurous": "sulfurous",
1529
- "summarise": "summarize",
1530
- "summarised": "summarized",
1531
- "summarises": "summarizes",
1532
- "summarising": "summarizing",
1533
- "swivelled": "swiveled",
1534
- "swivelling": "swiveling",
1535
- "symbolise": "symbolize",
1536
- "symbolised": "symbolized",
1537
- "symbolises": "symbolizes",
1538
- "symbolising": "symbolizing",
1539
- "sympathise": "sympathize",
1540
- "sympathised": "sympathized",
1541
- "sympathiser": "sympathizer",
1542
- "sympathisers": "sympathizers",
1543
- "sympathises": "sympathizes",
1544
- "sympathising": "sympathizing",
1545
- "synchronisation": "synchronization",
1546
- "synchronise": "synchronize",
1547
- "synchronised": "synchronized",
1548
- "synchronises": "synchronizes",
1549
- "synchronising": "synchronizing",
1550
- "synthesise": "synthesize",
1551
- "synthesised": "synthesized",
1552
- "synthesiser": "synthesizer",
1553
- "synthesisers": "synthesizers",
1554
- "synthesises": "synthesizes",
1555
- "synthesising": "synthesizing",
1556
- "syphon": "siphon",
1557
- "syphoned": "siphoned",
1558
- "syphoning": "siphoning",
1559
- "syphons": "siphons",
1560
- "systematisation": "systematization",
1561
- "systematise": "systematize",
1562
- "systematised": "systematized",
1563
- "systematises": "systematizes",
1564
- "systematising": "systematizing",
1565
- "tantalise": "tantalize",
1566
- "tantalised": "tantalized",
1567
- "tantalises": "tantalizes",
1568
- "tantalising": "tantalizing",
1569
- "tantalisingly": "tantalizingly",
1570
- "tasselled": "tasseled",
1571
- "technicolour": "technicolor",
1572
- "temporise": "temporize",
1573
- "temporised": "temporized",
1574
- "temporises": "temporizes",
1575
- "temporising": "temporizing",
1576
- "tenderise": "tenderize",
1577
- "tenderised": "tenderized",
1578
- "tenderises": "tenderizes",
1579
- "tenderising": "tenderizing",
1580
- "terrorise": "terrorize",
1581
- "terrorised": "terrorized",
1582
- "terrorises": "terrorizes",
1583
- "terrorising": "terrorizing",
1584
- "theatre": "theater",
1585
- "theatregoer": "theatergoer",
1586
- "theatregoers": "theatergoers",
1587
- "theatres": "theaters",
1588
- "theorise": "theorize",
1589
- "theorised": "theorized",
1590
- "theorises": "theorizes",
1591
- "theorising": "theorizing",
1592
- "tonne": "ton",
1593
- "tonnes": "tons",
1594
- "towelled": "toweled",
1595
- "towelling": "toweling",
1596
- "toxaemia": "toxemia",
1597
- "tranquillise": "tranquilize",
1598
- "tranquillised": "tranquilized",
1599
- "tranquilliser": "tranquilizer",
1600
- "tranquillisers": "tranquilizers",
1601
- "tranquillises": "tranquilizes",
1602
- "tranquillising": "tranquilizing",
1603
- "tranquillity": "tranquility",
1604
- "tranquillize": "tranquilize",
1605
- "tranquillized": "tranquilized",
1606
- "tranquillizer": "tranquilizer",
1607
- "tranquillizers": "tranquilizers",
1608
- "tranquillizes": "tranquilizes",
1609
- "tranquillizing": "tranquilizing",
1610
- "tranquilly": "tranquility",
1611
- "transistorised": "transistorized",
1612
- "traumatise": "traumatize",
1613
- "traumatised": "traumatized",
1614
- "traumatises": "traumatizes",
1615
- "traumatising": "traumatizing",
1616
- "travelled": "traveled",
1617
- "traveller": "traveler",
1618
- "travellers": "travelers",
1619
- "travelling": "traveling",
1620
- "travelog": "travelogue",
1621
- "travelogs": "travelogues",
1622
- "trialled": "trialed",
1623
- "trialling": "trialing",
1624
- "tricolour": "tricolor",
1625
- "tricolours": "tricolors",
1626
- "trivialise": "trivialize",
1627
- "trivialised": "trivialized",
1628
- "trivialises": "trivializes",
1629
- "trivialising": "trivializing",
1630
- "tumour": "tumor",
1631
- "tumours": "tumors",
1632
- "tunnelled": "tunneled",
1633
- "tunnelling": "tunneling",
1634
- "tyrannise": "tyrannize",
1635
- "tyrannised": "tyrannized",
1636
- "tyrannises": "tyrannizes",
1637
- "tyrannising": "tyrannizing",
1638
- "tyre": "tire",
1639
- "tyres": "tires",
1640
- "unauthorised": "unauthorized",
1641
- "uncivilised": "uncivilized",
1642
- "underutilised": "underutilized",
1643
- "unequalled": "unequaled",
1644
- "unfavourable": "unfavorable",
1645
- "unfavourably": "unfavorably",
1646
- "unionisation": "unionization",
1647
- "unionise": "unionize",
1648
- "unionised": "unionized",
1649
- "unionises": "unionizes",
1650
- "unionising": "unionizing",
1651
- "unorganised": "unorganized",
1652
- "unravelled": "unraveled",
1653
- "unravelling": "unraveling",
1654
- "unrecognisable": "unrecognizable",
1655
- "unrecognised": "unrecognized",
1656
- "unrivalled": "unrivaled",
1657
- "unsavoury": "unsavory",
1658
- "untrammelled": "untrammeled",
1659
- "urbanisation": "urbanization",
1660
- "urbanise": "urbanize",
1661
- "urbanised": "urbanized",
1662
- "urbanises": "urbanizes",
1663
- "urbanising": "urbanizing",
1664
- "utilisable": "utilizable",
1665
- "utilisation": "utilization",
1666
- "utilise": "utilize",
1667
- "utilised": "utilized",
1668
- "utilises": "utilizes",
1669
- "utilising": "utilizing",
1670
- "valour": "valor",
1671
- "vandalise": "vandalize",
1672
- "vandalised": "vandalized",
1673
- "vandalises": "vandalizes",
1674
- "vandalising": "vandalizing",
1675
- "vaporisation": "vaporization",
1676
- "vaporise": "vaporize",
1677
- "vaporised": "vaporized",
1678
- "vaporises": "vaporizes",
1679
- "vaporising": "vaporizing",
1680
- "vapour": "vapor",
1681
- "vapours": "vapors",
1682
- "verbalise": "verbalize",
1683
- "verbalised": "verbalized",
1684
- "verbalises": "verbalizes",
1685
- "verbalising": "verbalizing",
1686
- "victimisation": "victimization",
1687
- "victimise": "victimize",
1688
- "victimised": "victimized",
1689
- "victimises": "victimizes",
1690
- "victimising": "victimizing",
1691
- "videodisc": "videodisk",
1692
- "videodiscs": "videodisks",
1693
- "vigour": "vigor",
1694
- "visualisation": "visualization",
1695
- "visualisations": "visualizations",
1696
- "visualise": "visualize",
1697
- "visualised": "visualized",
1698
- "visualises": "visualizes",
1699
- "visualising": "visualizing",
1700
- "vocalisation": "vocalization",
1701
- "vocalisations": "vocalizations",
1702
- "vocalise": "vocalize",
1703
- "vocalised": "vocalized",
1704
- "vocalises": "vocalizes",
1705
- "vocalising": "vocalizing",
1706
- "vulcanised": "vulcanized",
1707
- "vulgarisation": "vulgarization",
1708
- "vulgarise": "vulgarize",
1709
- "vulgarised": "vulgarized",
1710
- "vulgarises": "vulgarizes",
1711
- "vulgarising": "vulgarizing",
1712
- "waggon": "wagon",
1713
- "waggons": "wagons",
1714
- "watercolour": "watercolor",
1715
- "watercolours": "watercolors",
1716
- "weaselled": "weaseled",
1717
- "weaselling": "weaseling",
1718
- "westernisation": "westernization",
1719
- "westernise": "westernize",
1720
- "westernised": "westernized",
1721
- "westernises": "westernizes",
1722
- "westernising": "westernizing",
1723
- "womanise": "womanize",
1724
- "womanised": "womanized",
1725
- "womaniser": "womanizer",
1726
- "womanisers": "womanizers",
1727
- "womanises": "womanizes",
1728
- "womanising": "womanizing",
1729
- "woollen": "woolen",
1730
- "woollens": "woolens",
1731
- "woollies": "woolies",
1732
- "woolly": "wooly",
1733
- "worshipped": "worshiped",
1734
- "worshipper": "worshiper",
1735
- "worshipping": "worshiping",
1736
- "yodelled": "yodeled",
1737
- "yodelling": "yodeling",
1738
- "yoghourt": "yogurt",
1739
- "yoghourts": "yogurts",
1740
- "yoghurt": "yogurt",
1741
- "yoghurts": "yogurts"
1742
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pretrained_models/whisper-small/preprocessor_config.json DELETED
The diff for this file is too large to render. See raw diff
 
pretrained_models/whisper-small/special_tokens_map.json DELETED
@@ -1,133 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- "<|endoftext|>",
4
- "<|startoftranscript|>",
5
- "<|en|>",
6
- "<|zh|>",
7
- "<|de|>",
8
- "<|es|>",
9
- "<|ru|>",
10
- "<|ko|>",
11
- "<|fr|>",
12
- "<|ja|>",
13
- "<|pt|>",
14
- "<|tr|>",
15
- "<|pl|>",
16
- "<|ca|>",
17
- "<|nl|>",
18
- "<|ar|>",
19
- "<|sv|>",
20
- "<|it|>",
21
- "<|id|>",
22
- "<|hi|>",
23
- "<|fi|>",
24
- "<|vi|>",
25
- "<|he|>",
26
- "<|uk|>",
27
- "<|el|>",
28
- "<|ms|>",
29
- "<|cs|>",
30
- "<|ro|>",
31
- "<|da|>",
32
- "<|hu|>",
33
- "<|ta|>",
34
- "<|no|>",
35
- "<|th|>",
36
- "<|ur|>",
37
- "<|hr|>",
38
- "<|bg|>",
39
- "<|lt|>",
40
- "<|la|>",
41
- "<|mi|>",
42
- "<|ml|>",
43
- "<|cy|>",
44
- "<|sk|>",
45
- "<|te|>",
46
- "<|fa|>",
47
- "<|lv|>",
48
- "<|bn|>",
49
- "<|sr|>",
50
- "<|az|>",
51
- "<|sl|>",
52
- "<|kn|>",
53
- "<|et|>",
54
- "<|mk|>",
55
- "<|br|>",
56
- "<|eu|>",
57
- "<|is|>",
58
- "<|hy|>",
59
- "<|ne|>",
60
- "<|mn|>",
61
- "<|bs|>",
62
- "<|kk|>",
63
- "<|sq|>",
64
- "<|sw|>",
65
- "<|gl|>",
66
- "<|mr|>",
67
- "<|pa|>",
68
- "<|si|>",
69
- "<|km|>",
70
- "<|sn|>",
71
- "<|yo|>",
72
- "<|so|>",
73
- "<|af|>",
74
- "<|oc|>",
75
- "<|ka|>",
76
- "<|be|>",
77
- "<|tg|>",
78
- "<|sd|>",
79
- "<|gu|>",
80
- "<|am|>",
81
- "<|yi|>",
82
- "<|lo|>",
83
- "<|uz|>",
84
- "<|fo|>",
85
- "<|ht|>",
86
- "<|ps|>",
87
- "<|tk|>",
88
- "<|nn|>",
89
- "<|mt|>",
90
- "<|sa|>",
91
- "<|lb|>",
92
- "<|my|>",
93
- "<|bo|>",
94
- "<|tl|>",
95
- "<|mg|>",
96
- "<|as|>",
97
- "<|tt|>",
98
- "<|haw|>",
99
- "<|ln|>",
100
- "<|ha|>",
101
- "<|ba|>",
102
- "<|jw|>",
103
- "<|su|>",
104
- "<|translate|>",
105
- "<|transcribe|>",
106
- "<|startoflm|>",
107
- "<|startofprev|>",
108
- "<|nocaptions|>",
109
- "<|notimestamps|>"
110
- ],
111
- "bos_token": {
112
- "content": "<|endoftext|>",
113
- "lstrip": false,
114
- "normalized": true,
115
- "rstrip": false,
116
- "single_word": false
117
- },
118
- "eos_token": {
119
- "content": "<|endoftext|>",
120
- "lstrip": false,
121
- "normalized": true,
122
- "rstrip": false,
123
- "single_word": false
124
- },
125
- "pad_token": "<|endoftext|>",
126
- "unk_token": {
127
- "content": "<|endoftext|>",
128
- "lstrip": false,
129
- "normalized": true,
130
- "rstrip": false,
131
- "single_word": false
132
- }
133
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pretrained_models/whisper-small/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
pretrained_models/whisper-small/tokenizer_config.json DELETED
@@ -1,35 +0,0 @@
1
- {
2
- "add_bos_token": false,
3
- "add_prefix_space": false,
4
- "bos_token": {
5
- "__type": "AddedToken",
6
- "content": "<|endoftext|>",
7
- "lstrip": false,
8
- "normalized": true,
9
- "rstrip": false,
10
- "single_word": false
11
- },
12
- "clean_up_tokenization_spaces": true,
13
- "eos_token": {
14
- "__type": "AddedToken",
15
- "content": "<|endoftext|>",
16
- "lstrip": false,
17
- "normalized": true,
18
- "rstrip": false,
19
- "single_word": false
20
- },
21
- "errors": "replace",
22
- "model_max_length": 1024,
23
- "pad_token": null,
24
- "processor_class": "WhisperProcessor",
25
- "return_attention_mask": false,
26
- "tokenizer_class": "WhisperTokenizer",
27
- "unk_token": {
28
- "__type": "AddedToken",
29
- "content": "<|endoftext|>",
30
- "lstrip": false,
31
- "normalized": true,
32
- "rstrip": false,
33
- "single_word": false
34
- }
35
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pretrained_models/whisper-small/vocab.json DELETED
The diff for this file is too large to render. See raw diff