add xavy model
Browse files- .gitignore +1 -0
- app.py +58 -49
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.venv/
|
app.py
CHANGED
@@ -1,51 +1,59 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
#import spaces #[uncomment to use ZeroGPU]
|
5 |
-
from diffusers import
|
6 |
import torch
|
7 |
|
8 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
|
10 |
|
11 |
-
if torch.cuda.is_available():
|
12 |
-
|
13 |
-
else:
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
17 |
-
pipe = pipe.to(device)
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
-
|
|
|
|
|
23 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
24 |
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
-
|
28 |
generator = torch.Generator().manual_seed(seed)
|
29 |
-
|
30 |
-
image =
|
31 |
-
prompt
|
32 |
-
negative_prompt
|
33 |
-
guidance_scale
|
34 |
-
num_inference_steps
|
35 |
-
width
|
36 |
-
height
|
37 |
-
generator
|
38 |
-
).images[0]
|
39 |
-
|
40 |
return image, seed
|
41 |
|
|
|
42 |
examples = [
|
43 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
44 |
"An astronaut riding a green horse",
|
45 |
"A delicious ceviche cheesecake slice",
|
46 |
]
|
47 |
|
48 |
-
css="""
|
49 |
#col-container {
|
50 |
margin: 0 auto;
|
51 |
max-width: 640px;
|
@@ -53,14 +61,14 @@ css="""
|
|
53 |
"""
|
54 |
|
55 |
with gr.Blocks(css=css) as demo:
|
56 |
-
|
57 |
with gr.Column(elem_id="col-container"):
|
58 |
gr.Markdown(f"""
|
59 |
# Text-to-Image Gradio Template
|
60 |
""")
|
61 |
-
|
62 |
with gr.Row():
|
63 |
-
|
64 |
prompt = gr.Text(
|
65 |
label="Prompt",
|
66 |
show_label=False,
|
@@ -68,20 +76,20 @@ with gr.Blocks(css=css) as demo:
|
|
68 |
placeholder="Enter your prompt",
|
69 |
container=False,
|
70 |
)
|
71 |
-
|
72 |
run_button = gr.Button("Run", scale=0)
|
73 |
-
|
74 |
result = gr.Image(label="Result", show_label=False)
|
75 |
|
76 |
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
|
78 |
negative_prompt = gr.Text(
|
79 |
label="Negative prompt",
|
80 |
max_lines=1,
|
81 |
placeholder="Enter a negative prompt",
|
82 |
visible=False,
|
83 |
)
|
84 |
-
|
85 |
seed = gr.Slider(
|
86 |
label="Seed",
|
87 |
minimum=0,
|
@@ -89,54 +97,55 @@ with gr.Blocks(css=css) as demo:
|
|
89 |
step=1,
|
90 |
value=0,
|
91 |
)
|
92 |
-
|
93 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
94 |
-
|
95 |
with gr.Row():
|
96 |
-
|
97 |
width = gr.Slider(
|
98 |
label="Width",
|
99 |
minimum=256,
|
100 |
maximum=MAX_IMAGE_SIZE,
|
101 |
step=32,
|
102 |
-
value=1024,
|
103 |
)
|
104 |
-
|
105 |
height = gr.Slider(
|
106 |
label="Height",
|
107 |
minimum=256,
|
108 |
maximum=MAX_IMAGE_SIZE,
|
109 |
step=32,
|
110 |
-
value=1024,
|
111 |
)
|
112 |
-
|
113 |
with gr.Row():
|
114 |
-
|
115 |
guidance_scale = gr.Slider(
|
116 |
label="Guidance scale",
|
117 |
minimum=0.0,
|
118 |
maximum=10.0,
|
119 |
step=0.1,
|
120 |
-
value=0.0,
|
121 |
)
|
122 |
-
|
123 |
num_inference_steps = gr.Slider(
|
124 |
label="Number of inference steps",
|
125 |
minimum=1,
|
126 |
maximum=50,
|
127 |
step=1,
|
128 |
-
value=2,
|
129 |
)
|
130 |
-
|
131 |
gr.Examples(
|
132 |
-
examples
|
133 |
-
inputs
|
134 |
)
|
135 |
gr.on(
|
136 |
triggers=[run_button.click, prompt.submit],
|
137 |
-
fn
|
138 |
-
inputs
|
139 |
-
|
|
|
140 |
)
|
141 |
|
142 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
# import spaces #[uncomment to use ZeroGPU]
|
5 |
+
from diffusers import AutoPipelineForText2Image
|
6 |
import torch
|
7 |
|
8 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
# model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
|
10 |
|
11 |
+
# if torch.cuda.is_available():
|
12 |
+
# torch_dtype = torch.float16
|
13 |
+
# else:
|
14 |
+
# torch_dtype = torch.float32
|
15 |
+
|
16 |
+
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
17 |
+
# pipe = pipe.to(device)
|
18 |
+
|
19 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
20 |
+
'black-forest-labs/FLUX.1-schnell', torch_dtype=torch.bfloat16).to('cuda')
|
21 |
+
pipeline.load_lora_weights('Roomie/xavyy', weight_name='xavyy.safetensors')
|
22 |
|
|
|
|
|
23 |
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
MAX_IMAGE_SIZE = 1024
|
26 |
|
27 |
+
# @spaces.GPU #[uncomment to use ZeroGPU]
|
28 |
+
|
29 |
+
|
30 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
31 |
|
32 |
if randomize_seed:
|
33 |
seed = random.randint(0, MAX_SEED)
|
34 |
+
|
35 |
generator = torch.Generator().manual_seed(seed)
|
36 |
+
|
37 |
+
image = pipeline(
|
38 |
+
prompt=prompt,
|
39 |
+
# negative_prompt=negative_prompt,
|
40 |
+
# guidance_scale=guidance_scale,
|
41 |
+
# num_inference_steps=num_inference_steps,
|
42 |
+
# width=width,
|
43 |
+
# height=height,
|
44 |
+
# generator=generator
|
45 |
+
).images[0]
|
46 |
+
|
47 |
return image, seed
|
48 |
|
49 |
+
|
50 |
examples = [
|
51 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
52 |
"An astronaut riding a green horse",
|
53 |
"A delicious ceviche cheesecake slice",
|
54 |
]
|
55 |
|
56 |
+
css = """
|
57 |
#col-container {
|
58 |
margin: 0 auto;
|
59 |
max-width: 640px;
|
|
|
61 |
"""
|
62 |
|
63 |
with gr.Blocks(css=css) as demo:
|
64 |
+
|
65 |
with gr.Column(elem_id="col-container"):
|
66 |
gr.Markdown(f"""
|
67 |
# Text-to-Image Gradio Template
|
68 |
""")
|
69 |
+
|
70 |
with gr.Row():
|
71 |
+
|
72 |
prompt = gr.Text(
|
73 |
label="Prompt",
|
74 |
show_label=False,
|
|
|
76 |
placeholder="Enter your prompt",
|
77 |
container=False,
|
78 |
)
|
79 |
+
|
80 |
run_button = gr.Button("Run", scale=0)
|
81 |
+
|
82 |
result = gr.Image(label="Result", show_label=False)
|
83 |
|
84 |
with gr.Accordion("Advanced Settings", open=False):
|
85 |
+
|
86 |
negative_prompt = gr.Text(
|
87 |
label="Negative prompt",
|
88 |
max_lines=1,
|
89 |
placeholder="Enter a negative prompt",
|
90 |
visible=False,
|
91 |
)
|
92 |
+
|
93 |
seed = gr.Slider(
|
94 |
label="Seed",
|
95 |
minimum=0,
|
|
|
97 |
step=1,
|
98 |
value=0,
|
99 |
)
|
100 |
+
|
101 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
102 |
+
|
103 |
with gr.Row():
|
104 |
+
|
105 |
width = gr.Slider(
|
106 |
label="Width",
|
107 |
minimum=256,
|
108 |
maximum=MAX_IMAGE_SIZE,
|
109 |
step=32,
|
110 |
+
value=1024, # Replace with defaults that work for your model
|
111 |
)
|
112 |
+
|
113 |
height = gr.Slider(
|
114 |
label="Height",
|
115 |
minimum=256,
|
116 |
maximum=MAX_IMAGE_SIZE,
|
117 |
step=32,
|
118 |
+
value=1024, # Replace with defaults that work for your model
|
119 |
)
|
120 |
+
|
121 |
with gr.Row():
|
122 |
+
|
123 |
guidance_scale = gr.Slider(
|
124 |
label="Guidance scale",
|
125 |
minimum=0.0,
|
126 |
maximum=10.0,
|
127 |
step=0.1,
|
128 |
+
value=0.0, # Replace with defaults that work for your model
|
129 |
)
|
130 |
+
|
131 |
num_inference_steps = gr.Slider(
|
132 |
label="Number of inference steps",
|
133 |
minimum=1,
|
134 |
maximum=50,
|
135 |
step=1,
|
136 |
+
value=2, # Replace with defaults that work for your model
|
137 |
)
|
138 |
+
|
139 |
gr.Examples(
|
140 |
+
examples=examples,
|
141 |
+
inputs=[prompt]
|
142 |
)
|
143 |
gr.on(
|
144 |
triggers=[run_button.click, prompt.submit],
|
145 |
+
fn=infer,
|
146 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed,
|
147 |
+
width, height, guidance_scale, num_inference_steps],
|
148 |
+
outputs=[result, seed]
|
149 |
)
|
150 |
|
151 |
+
demo.queue().launch()
|