mrestrepo commited on
Commit
2b83eaa
·
1 Parent(s): 72ba2f7

add xavy model

Browse files
Files changed (2) hide show
  1. .gitignore +1 -0
  2. app.py +58 -49
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .venv/
app.py CHANGED
@@ -1,51 +1,59 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- #import spaces #[uncomment to use ZeroGPU]
5
- from diffusers import DiffusionPipeline
6
  import torch
7
 
8
- device = "cuda" if torch.cuda.is_available() else "cpu"
9
- model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
10
 
11
- if torch.cuda.is_available():
12
- torch_dtype = torch.float16
13
- else:
14
- torch_dtype = torch.float32
 
 
 
 
 
 
 
15
 
16
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
- pipe = pipe.to(device)
18
 
19
  MAX_SEED = np.iinfo(np.int32).max
20
  MAX_IMAGE_SIZE = 1024
21
 
22
- #@spaces.GPU #[uncomment to use ZeroGPU]
 
 
23
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
24
 
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
-
28
  generator = torch.Generator().manual_seed(seed)
29
-
30
- image = pipe(
31
- prompt = prompt,
32
- negative_prompt = negative_prompt,
33
- guidance_scale = guidance_scale,
34
- num_inference_steps = num_inference_steps,
35
- width = width,
36
- height = height,
37
- generator = generator
38
- ).images[0]
39
-
40
  return image, seed
41
 
 
42
  examples = [
43
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
  "An astronaut riding a green horse",
45
  "A delicious ceviche cheesecake slice",
46
  ]
47
 
48
- css="""
49
  #col-container {
50
  margin: 0 auto;
51
  max-width: 640px;
@@ -53,14 +61,14 @@ css="""
53
  """
54
 
55
  with gr.Blocks(css=css) as demo:
56
-
57
  with gr.Column(elem_id="col-container"):
58
  gr.Markdown(f"""
59
  # Text-to-Image Gradio Template
60
  """)
61
-
62
  with gr.Row():
63
-
64
  prompt = gr.Text(
65
  label="Prompt",
66
  show_label=False,
@@ -68,20 +76,20 @@ with gr.Blocks(css=css) as demo:
68
  placeholder="Enter your prompt",
69
  container=False,
70
  )
71
-
72
  run_button = gr.Button("Run", scale=0)
73
-
74
  result = gr.Image(label="Result", show_label=False)
75
 
76
  with gr.Accordion("Advanced Settings", open=False):
77
-
78
  negative_prompt = gr.Text(
79
  label="Negative prompt",
80
  max_lines=1,
81
  placeholder="Enter a negative prompt",
82
  visible=False,
83
  )
84
-
85
  seed = gr.Slider(
86
  label="Seed",
87
  minimum=0,
@@ -89,54 +97,55 @@ with gr.Blocks(css=css) as demo:
89
  step=1,
90
  value=0,
91
  )
92
-
93
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
94
-
95
  with gr.Row():
96
-
97
  width = gr.Slider(
98
  label="Width",
99
  minimum=256,
100
  maximum=MAX_IMAGE_SIZE,
101
  step=32,
102
- value=1024, #Replace with defaults that work for your model
103
  )
104
-
105
  height = gr.Slider(
106
  label="Height",
107
  minimum=256,
108
  maximum=MAX_IMAGE_SIZE,
109
  step=32,
110
- value=1024, #Replace with defaults that work for your model
111
  )
112
-
113
  with gr.Row():
114
-
115
  guidance_scale = gr.Slider(
116
  label="Guidance scale",
117
  minimum=0.0,
118
  maximum=10.0,
119
  step=0.1,
120
- value=0.0, #Replace with defaults that work for your model
121
  )
122
-
123
  num_inference_steps = gr.Slider(
124
  label="Number of inference steps",
125
  minimum=1,
126
  maximum=50,
127
  step=1,
128
- value=2, #Replace with defaults that work for your model
129
  )
130
-
131
  gr.Examples(
132
- examples = examples,
133
- inputs = [prompt]
134
  )
135
  gr.on(
136
  triggers=[run_button.click, prompt.submit],
137
- fn = infer,
138
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
139
- outputs = [result, seed]
 
140
  )
141
 
142
- demo.queue().launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ # import spaces #[uncomment to use ZeroGPU]
5
+ from diffusers import AutoPipelineForText2Image
6
  import torch
7
 
8
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ # model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
10
 
11
+ # if torch.cuda.is_available():
12
+ # torch_dtype = torch.float16
13
+ # else:
14
+ # torch_dtype = torch.float32
15
+
16
+ # pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
+ # pipe = pipe.to(device)
18
+
19
+ pipeline = AutoPipelineForText2Image.from_pretrained(
20
+ 'black-forest-labs/FLUX.1-schnell', torch_dtype=torch.bfloat16).to('cuda')
21
+ pipeline.load_lora_weights('Roomie/xavyy', weight_name='xavyy.safetensors')
22
 
 
 
23
 
24
  MAX_SEED = np.iinfo(np.int32).max
25
  MAX_IMAGE_SIZE = 1024
26
 
27
+ # @spaces.GPU #[uncomment to use ZeroGPU]
28
+
29
+
30
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
31
 
32
  if randomize_seed:
33
  seed = random.randint(0, MAX_SEED)
34
+
35
  generator = torch.Generator().manual_seed(seed)
36
+
37
+ image = pipeline(
38
+ prompt=prompt,
39
+ # negative_prompt=negative_prompt,
40
+ # guidance_scale=guidance_scale,
41
+ # num_inference_steps=num_inference_steps,
42
+ # width=width,
43
+ # height=height,
44
+ # generator=generator
45
+ ).images[0]
46
+
47
  return image, seed
48
 
49
+
50
  examples = [
51
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
52
  "An astronaut riding a green horse",
53
  "A delicious ceviche cheesecake slice",
54
  ]
55
 
56
+ css = """
57
  #col-container {
58
  margin: 0 auto;
59
  max-width: 640px;
 
61
  """
62
 
63
  with gr.Blocks(css=css) as demo:
64
+
65
  with gr.Column(elem_id="col-container"):
66
  gr.Markdown(f"""
67
  # Text-to-Image Gradio Template
68
  """)
69
+
70
  with gr.Row():
71
+
72
  prompt = gr.Text(
73
  label="Prompt",
74
  show_label=False,
 
76
  placeholder="Enter your prompt",
77
  container=False,
78
  )
79
+
80
  run_button = gr.Button("Run", scale=0)
81
+
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
85
+
86
  negative_prompt = gr.Text(
87
  label="Negative prompt",
88
  max_lines=1,
89
  placeholder="Enter a negative prompt",
90
  visible=False,
91
  )
92
+
93
  seed = gr.Slider(
94
  label="Seed",
95
  minimum=0,
 
97
  step=1,
98
  value=0,
99
  )
100
+
101
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
102
+
103
  with gr.Row():
104
+
105
  width = gr.Slider(
106
  label="Width",
107
  minimum=256,
108
  maximum=MAX_IMAGE_SIZE,
109
  step=32,
110
+ value=1024, # Replace with defaults that work for your model
111
  )
112
+
113
  height = gr.Slider(
114
  label="Height",
115
  minimum=256,
116
  maximum=MAX_IMAGE_SIZE,
117
  step=32,
118
+ value=1024, # Replace with defaults that work for your model
119
  )
120
+
121
  with gr.Row():
122
+
123
  guidance_scale = gr.Slider(
124
  label="Guidance scale",
125
  minimum=0.0,
126
  maximum=10.0,
127
  step=0.1,
128
+ value=0.0, # Replace with defaults that work for your model
129
  )
130
+
131
  num_inference_steps = gr.Slider(
132
  label="Number of inference steps",
133
  minimum=1,
134
  maximum=50,
135
  step=1,
136
+ value=2, # Replace with defaults that work for your model
137
  )
138
+
139
  gr.Examples(
140
+ examples=examples,
141
+ inputs=[prompt]
142
  )
143
  gr.on(
144
  triggers=[run_button.click, prompt.submit],
145
+ fn=infer,
146
+ inputs=[prompt, negative_prompt, seed, randomize_seed,
147
+ width, height, guidance_scale, num_inference_steps],
148
+ outputs=[result, seed]
149
  )
150
 
151
+ demo.queue().launch()