import os import time import json import openai import gradio as gr from datetime import datetime from openai.error import RateLimitError, APIConnectionError, Timeout, APIError, \ ServiceUnavailableError from huggingface_hub import hf_hub_download, HfApi def get_main_data(): """ Initializes the key for the api and returns the parameters for the scores, name of the possible authors and prompts (the one for the conversation and another for the summary) """ openai.api_key = os.environ.get('API_KEY') scores_parameters = [ 'Personalidad', 'Intereses', 'Lenguaje/Estilo', 'Autenticidad', 'Habilidad de conversación', 'Marca/Producto', 'Identificación', 'Experiencia de uso', 'Recomendacion', 'Conversación organica' ] authors = ['Sofia', 'Eliza', 'Sindy', 'Carlos', 'Andres', 'Adriana', 'Carolina', 'Valeria'] with open('prompt_conversation.txt', encoding='utf-8') as file: prompt_conversation = file.read() return scores_parameters, authors, prompt_conversation def innit_bot(prompt: str): """ Initialize the bot by adding the prompt from the txt file to the messages history """ prompt.replace('HISTORY', '') message_history = [{"role": "system", "content": prompt}] return message_history def make_visible(): """ Makes visible the returned elements """ return ( gr.Chatbot.update(visible=True), gr.Textbox.update(visible=True), gr.Row.update(visible=True)) def make_noninteractive(): """ Makes no interactive the returned elements """ return gr.Dropdown.update(interactive=False) def call_api(msg_history: gr.State, cost: gr.State): """ Returns the API's response """ response = openai.ChatCompletion.create( model="gpt-4", messages=msg_history, temperature=0.8 ) print("*" * 20) print(msg_history) print("*" * 20) tokens_input = response['usage']['prompt_tokens'] tokens_output = response['usage']['completion_tokens'] cost.append({'Model': 'gpt-4', 'Input': tokens_input, 'Output': tokens_output}) return response def handle_call(msg_history: gr.State, cost: gr.State): """ Returns the response and waiting time of the AI. It also handles the possible errors """ tries = 0 max_tries = 3 while True: try: start_time = time.time() response = call_api(msg_history, cost) end_time = time.time() break except (RateLimitError, APIError, Timeout, APIConnectionError, ServiceUnavailableError) as e: print(e) if tries == max_tries: response = "Despues de muchos intentos, no se pudo completar la comunicacion con OpenAI. " \ "Envia lo que tengas hasta el momento e inicia un chat nuevo dentro de unos minutos." raise gr.Error(response) tries += 1 time.sleep(60) needed_time = end_time - start_time return response, needed_time def get_template(chatbot_history: gr.Chatbot, previous_summary: gr.State): with open('prompt_summary.txt', encoding='utf-8') as file: template_summary = file.read() conversation = '' for i, msg in enumerate(chatbot_history): conversation += f'Usuario: {msg[0]} \n' conversation += f'Roomie: {msg[1]} \n' template_summary = template_summary.replace('CONVERSATION', conversation) return template_summary def get_summary(chatbot_history: gr.Chatbot, previous_summary: gr.State, cost: gr.State): msg = get_template(chatbot_history, previous_summary) print(msg, end='\n\n') with open('prompt_summary_system.txt', encoding='utf-8') as file: system_prompt = file.read() calling = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": msg} ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=calling, temperature=0 ) tokens_input = response['usage']['prompt_tokens'] tokens_output = response['usage']['completion_tokens'] cost.append({'Model': 'gpt-3.5-turbo', 'Input': tokens_input, 'Output': tokens_output}) return response["choices"][0]["message"]["content"] def get_ai_answer( msg: str, msg_history: gr.State, num_interactions: gr.State, previous_summary: gr.State, cost: gr.State, chatbot_history: gr.Chatbot): """ Returns the response given by the model, all the message history so far and the seconds the api took to retrieve such response. It also removes some messages in the message history so only the last n (keep) are used (costs are cheaper) """ # Call GPT 3.5 if num_interactions >= 2: previous_output = msg_history.pop() summary = get_summary(chatbot_history, previous_summary, cost) with open('prompt_conversation.txt', encoding='utf-8') as file: prompt_template = file.read() prompt_template = prompt_template.replace('HISTORY', summary) msg_history = [{"role": "system", "content": prompt_template}] msg_history.append(previous_output) print('RESUMEN DE GPT 3.5', summary, end='\n----------------------------------------------------------------\n') else: summary = '' # Call GPT 4 msg_history.append({"role": "user", "content": msg}) response, needed_time = handle_call(msg_history, cost) AI_response = response["choices"][0]["message"]["content"] msg_history.append({'role': 'assistant', 'content': AI_response}) return AI_response, msg_history, needed_time, summary def get_answer( msg: str, msg_history: gr.State, chatbot_history: gr.Chatbot, waiting_time: gr.State, num_interactions: gr.State, previous_summary: gr.State, cost: gr.State): """ Cleans msg box, adds the new message to the message history, gets the answer from the bot and adds it to the chatbot history and gets the time needed to get such answer and saves it """ # Get bot answer (output), messages history and waiting time AI_response, msg_history, needed_time, summary = get_ai_answer( msg, msg_history, num_interactions, previous_summary, cost, chatbot_history ) # Save waiting time waiting_time.append(needed_time) # Save output in the chat chatbot_history.append((msg, AI_response)) num_interactions += 1 return "", msg_history, chatbot_history, waiting_time, num_interactions, summary, cost def save_scores( author: gr.Dropdown, history: gr.Chatbot, waiting_time: gr.State, opinion: gr.Textbox, cost: gr.State, *score_values): """ Saves the scores and chat's info into the json file """ # Get the parameters for each score score_parameters, _, _ = get_main_data() # Get the score of each parameter scores = dict() for parameter, score in zip(score_parameters, score_values): # Check the score is a valid value if not, raise Error if score is None: raise gr.Error('Asegurese de haber seleccionado al menos 1 opcion en cada categoria') scores[parameter] = score # Get all the messages including their reaction chat = [] for conversation in history: info = { 'message': conversation[0], 'answer': conversation[1], 'waiting': waiting_time.pop(0) } chat.append(info) date = datetime.now().strftime("%Y-%m-%d %H:%M:%S") with open('prompt_conversation.txt', encoding='utf-8') as file: prompt = file.read() # Save the info session = dict( prompt=prompt, temperature=0.8, scores=scores, opinion=opinion, chat=chat, cost=cost, author=author, model='gpt-4', date=date ) # Open the file, add the new info and save it hf_hub_download( repo_id=os.environ.get('DATA'), repo_type='dataset', filename="data.json", token=os.environ.get('HUB_TOKEN'), local_dir="./" ) with open('data.json', 'r') as infile: past_sessions = json.load(infile) # Add the new info past_sessions['sessions'].append(session) with open('data.json', 'w', encoding='utf-8') as outfile: json.dump(past_sessions, outfile, indent=4, ensure_ascii=False) # Save the updated file api = HfApi(token=os.environ.get('HUB_TOKEN')) api.upload_file( path_or_fileobj="data.json", path_in_repo="data.json", repo_id=os.environ.get('DATA'), repo_type='dataset' ) # Return a confirmation message return 'Done'