chatbot_test / app.py
vmoras's picture
Initial commit
60fc0c5
raw
history blame
8.39 kB
import os
import time
import json
import openai
import gradio as gr
from datetime import datetime
from openai.error import RateLimitError, APIConnectionError, Timeout, APIError, \
ServiceUnavailableError, InvalidRequestError
from huggingface_hub import hf_hub_download, HfApi
openai.api_key = os.environ.get('API_KEY')
score_parameters = [
'Personalidad', 'Intereses', 'Lenguaje/Estilo',
'Autenticidad', 'Habilidad de conversaci贸n',
'Marca/Producto', 'Identificaci贸n', 'Experiencia de uso',
'Recomendacion', 'Conversaci贸n organica'
]
authors = ['Sofia', 'Eliza', 'Sindy', 'Carlos', 'Andres', 'Adriana', 'Carolina', 'Valeria']
models = ["gpt-4"]
temperature_values = [0.2, 0.8, 1.0]
def innit_bot():
"""
Initialize the bot by adding the prompt from the txt file to the messages history
"""
with open('prompt.txt', encoding='utf-8') as file:
prompt = file.read()
message_history = [{"role": "system", "content": prompt}]
return message_history
def make_visible():
"""
Makes visible the returned elements
"""
return (
gr.Chatbot.update(visible=True),
gr.Textbox.update(visible=True),
gr.Row.update(visible=True))
def make_noninteractive():
"""
Makes no interactive the returned elements
"""
return (
gr.Dropdown.update(interactive=False),
gr.Radio.update(interactive=False))
def call_api(model: gr.Dropdown, msg_history: gr.State, temperature: gr.State):
"""
Returns the API's response
"""
response = openai.ChatCompletion.create(
model=model,
messages=msg_history,
temperature=temperature
)
return response
def handle_call(model: gr.Dropdown, msg_history: gr.State, temperature: gr.State):
"""
Returns the response and waiting time of the AI. It also handles the possible errors
"""
tries = 0
max_tries = 3
while True:
try:
start_time = time.time()
response = call_api(model, msg_history, temperature)
end_time = time.time()
break
except InvalidRequestError as e:
print(e)
response = 'Ya no tienes mas tokens disponibles. Envia lo que tengas hasta el momento e inicia otro chat'
raise gr.Error(response)
except (RateLimitError, APIError, Timeout, APIConnectionError, ServiceUnavailableError) as e:
print(e)
if tries == max_tries:
response = "Despues de muchos intentos, no se pudo completar la comunicacion con OpenAI. " \
"Envia lo que tengas hasta el momento e inicia un chat nuevo dentro de unos minutos."
raise gr.Error(response)
tries += 1
time.sleep(60)
needed_time = end_time - start_time
return response, needed_time
def get_ai_answer(msg: str, model: gr.Dropdown, msg_history: gr.State, temperature: gr.State):
"""
Returns the response given by the model, all the message history so far and the seconds
the api took to retrieve such response. Both depend on the model
"""
msg_history.append({"role": "user", "content": msg})
response, needed_time = handle_call(model, msg_history, temperature)
AI_response = response["choices"][0]["message"]["content"]
msg_history.append({'role': 'assistant', 'content': AI_response})
return AI_response, msg_history, needed_time
def get_answer(
msg: str, msg_history: gr.State,
chatbot_history: gr.Chatbot, waiting_time: gr.State,
temperature: gr.State, model: gr.Dropdown):
"""
Cleans msg box, adds the new message to the message history,
gets the answer from the bot and adds it to the chatbot history
and gets the time needed to get such answer and saves it
"""
# Get bot answer (output), messages history and waiting time
AI_response, msg_history, needed_time = get_ai_answer(msg, model, msg_history, temperature)
# Save waiting time
waiting_time.append(needed_time)
# Save output in the chat
chatbot_history.append((msg, AI_response))
return "", msg_history, chatbot_history, waiting_time
def save_scores(
author: gr.Dropdown, temperature: gr.State,
history: gr.Chatbot, waiting_time: gr.State,
model: gr.Dropdown, opinion: gr.Textbox, *score_values):
"""
Saves the scores and chat's info into the json file
"""
# Get the score of each parameter
scores = dict()
for parameter, score in zip(score_parameters, score_values):
# Check the score is a valid value if not, raise Error
if score is None:
raise gr.Error('Asegurese de haber seleccionado al menos 1 opcion en cada categoria')
scores[parameter] = score
# Get all the messages including their reaction
chat = []
for conversation in history:
info = {
'message': conversation[0],
'answer': conversation[1],
'waiting': waiting_time.pop(0)
}
chat.append(info)
date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
with open('prompt.txt', encoding='utf-8') as file:
prompt = file.read()
# Save the info
session = dict(
prompt=prompt,
temperature=temperature,
scores=scores,
opinion=opinion,
chat=chat,
author=author,
model=model,
date=date
)
# Open the file, add the new info and save it
hf_hub_download(
repo_id=os.environ.get('DATA'), repo_type='dataset', filename="data.json", token=os.environ.get('HUB_TOKEN'),
local_dir="./"
)
with open('data.json', 'r') as infile:
past_sessions = json.load(infile)
# Add the new info
past_sessions['sessions'].append(session)
with open('data.json', 'w', encoding='utf-8') as outfile:
json.dump(past_sessions, outfile, indent=4, ensure_ascii=False)
# Save the updated file
api = HfApi(token=os.environ.get('HUB_TOKEN'))
api.upload_file(
path_or_fileobj="data.json",
path_in_repo="data.json",
repo_id=os.environ.get('DATA'),
)
# Return a confirmation message
return 'Done'
with gr.Blocks() as app:
msg_history = gr.State() # Messages with the format used by OpenAI
waiting_time = gr.State([]) # Seconds needed to get each answer
with gr.Tab('Test Chats'):
with gr.Row():
model = gr.Textbox(value=models[0], label='Model', interactive=False)
author = gr.Dropdown(authors, value=authors[0], label='Author', interactive=True)
temperature = gr.Radio(temperature_values, label="Randomness", value=0.2)
chat_btn = gr.Button(value='Start chat')
# ------------------------------------- Chat -------------------------------------------
chatbot = gr.Chatbot(label='Chat', visible=False)
message = gr.Textbox(label='Message', visible=False)
# ------------------------------------- Result's tab ---------------------------------------
with gr.Tab('Save results'):
with gr.Row(visible=False) as scores_row:
with gr.Column(scale=75):
with gr.Row():
scores = [
gr.Radio(choices=['Aprovado', 'No aprovado'], label=parameter)
for parameter in score_parameters
]
with gr.Column(scale=25):
opinion_box = gr.Textbox(label='Opinion')
scores_btn = gr.Button(value='Send scores')
scores_box = gr.Textbox(label='Status', interactive=False)
# -------------------------------------- Actions -----------------------------------------
chat_btn.click(
innit_bot, None, [msg_history]
).then(
make_noninteractive, None, [author, temperature]
).then(
make_visible, None, [
chatbot, message, scores_row]
)
message.submit(
get_answer,
[message, msg_history, chatbot, waiting_time, temperature, model],
[message, msg_history, chatbot, waiting_time])
scores_btn.click(
save_scores,
[author, temperature, chatbot, waiting_time, model, opinion_box] + scores,
scores_box)
app.launch(debug=True, auth=(os.environ.get('USERNAME'), os.environ.get('PASSWORD')))