#!/usr/bin/env python3 from doctest import OutputChecker import sys import torch import re import os import gradio as gr import requests import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel from torch.nn.functional import softmax import numpy as np # just for the sake of this demo, we use cloze prob to initialize the hypothesis #url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models" #resp = requests.get(url) from sentence_transformers import SentenceTransformer, util #model_sts = SentenceTransformer('stsb-distilbert-base') model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens') #batch_size = 1 #scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size) #import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel import numpy as np import re def Sort_Tuple(tup): # (Sorts in descending order) tup.sort(key = lambda x: x[1]) return tup[::-1] def softmax(x): exps = np.exp(x) return np.divide(exps, np.sum(exps)) def get_sim(x): x = str(x)[1:-1] x = str(x)[1:-1] return x # Load pre-trained model #model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True) #model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True) #model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True) #model.eval() #tokenizer = gr.Interface.load('huggingface/distilgpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') def sentence_prob_mean(text): # Tokenize the input text and add special tokens input_ids = tokenizer.encode(text, return_tensors='pt') # Obtain model outputs with torch.no_grad(): outputs = model(input_ids, labels=input_ids) logits = outputs.logits # logits are the model outputs before applying softmax # Shift logits and labels so that tokens are aligned: shift_logits = logits[..., :-1, :].contiguous() shift_labels = input_ids[..., 1:].contiguous() # Calculate the softmax probabilities probs = softmax(shift_logits, dim=-1) # Gather the probabilities of the actual token IDs gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1) # Compute the mean probability across the tokens mean_prob = torch.mean(gathered_probs).item() return mean_prob # def cloze_prob(text): # whole_text_encoding = tokenizer.encode(text) # text_list = text.split() # stem = ' '.join(text_list[:-1]) # stem_encoding = tokenizer.encode(stem) # cw_encoding = whole_text_encoding[len(stem_encoding):] # tokens_tensor = torch.tensor([whole_text_encoding]) # with torch.no_grad(): # outputs = model(tokens_tensor) # predictions = outputs[0] # logprobs = [] # start = -1-len(cw_encoding) # for j in range(start,-1,1): # raw_output = [] # for i in predictions[-1][j]: # raw_output.append(i.item()) # logprobs.append(np.log(softmax(raw_output))) # conditional_probs = [] # for cw,prob in zip(cw_encoding,logprobs): # conditional_probs.append(prob[cw]) # return np.exp(np.sum(conditional_probs)) def cos_sim(a, b): return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b))) def Visual_re_ranker(caption_man, caption_woman, context_label, context_prob): caption_man = caption_man caption_woman = caption_woman context_label= context_label context_prob = context_prob caption_emb_man = model_sts.encode(caption_man, convert_to_tensor=True) caption_emb_woman = model_sts.encode(caption_woman, convert_to_tensor=True) context_label_emb = model_sts.encode(context_label, convert_to_tensor=True) sim_m = cosine_scores = util.pytorch_cos_sim(caption_emb_man, context_label_emb) sim_m = sim_m.cpu().numpy() sim_m = get_sim(sim_m) sim_w = cosine_scores = util.pytorch_cos_sim(caption_emb_woman, context_label_emb) sim_w = sim_w.cpu().numpy() sim_w = get_sim(sim_w) LM_man = sentence_prob_mean(caption_man) LM_woman = sentence_prob_mean(caption_woman) #LM_man = cloze_prob(caption_man) #LM_woman = cloze_prob(caption_woman) #LM = scorer.sentence_score(caption, reduce="mean") score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob))) score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob))) #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 } return {"Man": float(score_man)/1, "Woman": float(score_woman)/1} #return LM, sim, score demo = gr.Interface( fn=Visual_re_ranker, description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender (distilbert)", inputs=[gr.Textbox(value="a man riding a motorcycle on a road") , gr.Textbox(value="a woman riding a motorcycle on a road"), gr.Textbox(value="motor scooter"), gr.Textbox(value="0.2183")], outputs="label", ) demo.launch()