AhmedSSabir commited on
Commit
0aa8ed6
·
1 Parent(s): 18cd94a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -8
app.py CHANGED
@@ -115,20 +115,53 @@ def cos_sim(a, b):
115
 
116
 
117
  #def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
118
- def Visual_re_ranker(caption_man, caption_woman, visual_context_label, visual_context_prob):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
  caption_man = caption_man
120
  caption_woman = caption_woman
121
- visual_context_label= visual_context_label
122
- visual_context_prob = visual_context_prob
123
  caption_emb_man = model_sts.encode(caption_man, convert_to_tensor=True)
124
  caption_emb_woman = model_sts.encode(caption_woman, convert_to_tensor=True)
125
- visual_context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True)
126
 
127
- sim_m = cosine_scores = util.pytorch_cos_sim(caption_emb_man, visual_context_label_emb)
128
  sim_m = sim_m.cpu().numpy()
129
  sim_m = get_sim(sim_m)
130
 
131
- sim_w = cosine_scores = util.pytorch_cos_sim(caption_emb_woman, visual_context_label_emb)
132
  sim_w = sim_w.cpu().numpy()
133
  sim_w = get_sim(sim_w)
134
 
@@ -136,8 +169,8 @@ def Visual_re_ranker(caption_man, caption_woman, visual_context_label, visual_co
136
  LM_man = cloze_prob(caption_man)
137
  LM_woman = cloze_prob(caption_woman)
138
  #LM = scorer.sentence_score(caption, reduce="mean")
139
- score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(visual_context_prob)))
140
- score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(visual_context_prob)))
141
 
142
 
143
 
@@ -150,6 +183,7 @@ def Visual_re_ranker(caption_man, caption_woman, visual_context_label, visual_co
150
 
151
 
152
 
 
153
  demo = gr.Interface(
154
  fn=Visual_re_ranker,
155
  description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender",
 
115
 
116
 
117
  #def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
118
+ #def Visual_re_ranker(caption_man, caption_woman, visual_context_label, visual_context_prob):
119
+ # caption_man = caption_man
120
+ # caption_woman = caption_woman
121
+ # visual_context_label= visual_context_label
122
+ # visual_context_prob = visual_context_prob
123
+ # caption_emb_man = model_sts.encode(caption_man, convert_to_tensor=True)
124
+ # caption_emb_woman = model_sts.encode(caption_woman, convert_to_tensor=True)
125
+ # visual_context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True)
126
+
127
+ # sim_m = cosine_scores = util.pytorch_cos_sim(caption_emb_man, visual_context_label_emb)
128
+ # sim_m = sim_m.cpu().numpy()
129
+ # sim_m = get_sim(sim_m)
130
+
131
+ # sim_w = cosine_scores = util.pytorch_cos_sim(caption_emb_woman, visual_context_label_emb)
132
+ # sim_w = sim_w.cpu().numpy()
133
+ # sim_w = get_sim(sim_w)
134
+
135
+
136
+ # LM_man = cloze_prob(caption_man)
137
+ # LM_woman = cloze_prob(caption_woman)
138
+ #LM = scorer.sentence_score(caption, reduce="mean")
139
+ # score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(visual_context_prob)))
140
+ # score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(visual_context_prob)))
141
+
142
+
143
+
144
+
145
+ #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 }
146
+ # return {"Man": float(score_man)/1, "Woman": float(score_woman)/1}
147
+ #return LM, sim, score
148
+
149
+
150
+
151
+ def Visual_re_ranker(caption_man, caption_woman, context_label, context_prob):
152
  caption_man = caption_man
153
  caption_woman = caption_woman
154
+ context_label= context_label
155
+ context_prob = context_prob
156
  caption_emb_man = model_sts.encode(caption_man, convert_to_tensor=True)
157
  caption_emb_woman = model_sts.encode(caption_woman, convert_to_tensor=True)
158
+ context_label_emb = model_sts.encode(context_label, convert_to_tensor=True)
159
 
160
+ sim_m = cosine_scores = util.pytorch_cos_sim(caption_emb_man, context_label_emb)
161
  sim_m = sim_m.cpu().numpy()
162
  sim_m = get_sim(sim_m)
163
 
164
+ sim_w = cosine_scores = util.pytorch_cos_sim(caption_emb_woman, context_label_emb)
165
  sim_w = sim_w.cpu().numpy()
166
  sim_w = get_sim(sim_w)
167
 
 
169
  LM_man = cloze_prob(caption_man)
170
  LM_woman = cloze_prob(caption_woman)
171
  #LM = scorer.sentence_score(caption, reduce="mean")
172
+ score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob)))
173
+ score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob)))
174
 
175
 
176
 
 
183
 
184
 
185
 
186
+
187
  demo = gr.Interface(
188
  fn=Visual_re_ranker,
189
  description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender",