Spaces:
Runtime error
Runtime error
Ahmadkhan12
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
2 |
from datasets import load_dataset
|
3 |
import faiss
|
@@ -5,10 +6,23 @@ import numpy as np
|
|
5 |
import streamlit as st
|
6 |
|
7 |
# Load the datasets from Hugging Face
|
8 |
-
datasets_dict = {
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Load the T5 model and tokenizer for summarization
|
14 |
t5_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
@@ -26,37 +40,6 @@ def prepare_dataset(dataset_name):
|
|
26 |
documents = dataset['train']['text'][:100] # Use a subset for demo purposes
|
27 |
titles = dataset['train']['title'][:100] # Get corresponding titles
|
28 |
|
29 |
-
prepare_dataset(selected_dataset)
|
30 |
-
|
31 |
-
# Function to embed text for retrieval
|
32 |
-
def embed_text(text):
|
33 |
-
input_ids = t5_tokenizer.encode(text, return_tensors="pt", max_length=512, truncation=True)
|
34 |
-
with torch.no_grad():
|
35 |
-
outputs = t5_model.encoder(input_ids)
|
36 |
-
return outputs.last_hidden_state.mean(dim=1).numpy()
|
37 |
-
|
38 |
-
# Create embeddings for the documents
|
39 |
-
doc_embeddings = np.vstack([embed_text(doc) for doc in documents]).astype(np.float32)
|
40 |
-
|
41 |
-
# Initialize FAISS index
|
42 |
-
index = faiss.IndexFlatL2(doc_embeddings.shape[1])
|
43 |
-
index.add(doc_embeddings)
|
44 |
-
|
45 |
-
# Define functions for retrieving and summarizing cases
|
46 |
-
def retrieve_cases(query, top_k=3):
|
47 |
-
query_embedding = embed_text(query)
|
48 |
-
distances, indices = index.search(query_embedding, top_k)
|
49 |
-
return [(documents[i], titles[i]) for i in indices[0]] # Return documents and their titles
|
50 |
-
|
51 |
-
def summarize_cases(cases):
|
52 |
-
summaries = []
|
53 |
-
for case, _ in cases:
|
54 |
-
input_ids = t5_tokenizer.encode(case, return_tensors="pt", max_length=512, truncation=True)
|
55 |
-
outputs = t5_model.generate(input_ids, max_length=60, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
|
56 |
-
summary = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
57 |
-
summaries.append(summary)
|
58 |
-
return summaries
|
59 |
-
|
60 |
# Streamlit App Code
|
61 |
st.title("Legal Case Summarizer")
|
62 |
st.write("Select a dataset and enter keywords to retrieve and summarize relevant cases.")
|
|
|
1 |
+
import torch
|
2 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
3 |
from datasets import load_dataset
|
4 |
import faiss
|
|
|
6 |
import streamlit as st
|
7 |
|
8 |
# Load the datasets from Hugging Face
|
9 |
+
datasets_dict = {}
|
10 |
+
|
11 |
+
# Function to load datasets safely
|
12 |
+
def load_datasets():
|
13 |
+
global datasets_dict
|
14 |
+
try:
|
15 |
+
datasets_dict["BillSum"] = load_dataset("billsum")
|
16 |
+
except Exception as e:
|
17 |
+
st.error(f"Error loading BillSum dataset: {e}")
|
18 |
+
|
19 |
+
try:
|
20 |
+
datasets_dict["EurLex"] = load_dataset("eurlex", trust_remote_code=True) # Set trust_remote_code=True
|
21 |
+
except Exception as e:
|
22 |
+
st.error(f"Error loading EurLex dataset: {e}")
|
23 |
+
|
24 |
+
# Load datasets at the start
|
25 |
+
load_datasets()
|
26 |
|
27 |
# Load the T5 model and tokenizer for summarization
|
28 |
t5_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
|
|
40 |
documents = dataset['train']['text'][:100] # Use a subset for demo purposes
|
41 |
titles = dataset['train']['title'][:100] # Get corresponding titles
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Streamlit App Code
|
44 |
st.title("Legal Case Summarizer")
|
45 |
st.write("Select a dataset and enter keywords to retrieve and summarize relevant cases.")
|