AchilleDev commited on
Commit
d8fb76e
Β·
verified Β·
1 Parent(s): e178e68

Upload 5 files

Browse files
Files changed (5) hide show
  1. OpenAI_logo.png +0 -0
  2. README.md +13 -4
  3. app.py +511 -0
  4. gitattributes +35 -0
  5. requirements.txt +8 -0
OpenAI_logo.png ADDED
README.md CHANGED
@@ -1,4 +1,13 @@
1
- ---
2
- license: other
3
- title: Perpetron
4
- ---
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: OpenGPT 4o
3
+ emoji: πŸ”₯
4
+ colorFrom: blue
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 4.31.1
8
+ app_file: app.py
9
+ pinned: true
10
+ short_description: GPT 4o like bot.
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,511 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+
4
+ # Install flash attention
5
+ subprocess.run(
6
+ "pip install flash-attn --no-build-isolation",
7
+ env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
8
+ shell=True,
9
+ )
10
+
11
+
12
+ import copy
13
+ import spaces
14
+ import time
15
+ import torch
16
+
17
+ from threading import Thread
18
+ from typing import List, Dict, Union
19
+ import urllib
20
+ from PIL import Image
21
+ import io
22
+ import datasets
23
+
24
+ import gradio as gr
25
+ from transformers import AutoProcessor, TextIteratorStreamer
26
+ from transformers import Idefics2ForConditionalGeneration
27
+ import tempfile
28
+ from streaming_stt_nemo import Model
29
+ from huggingface_hub import InferenceClient
30
+ import edge_tts
31
+ import asyncio
32
+
33
+ theme = gr.themes.Base(
34
+ font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
35
+ )
36
+
37
+ default_lang = "en"
38
+
39
+ engines = { default_lang: Model(default_lang) }
40
+
41
+ def transcribe(audio):
42
+ lang = "en"
43
+ model = engines[lang]
44
+ text = model.stt_file(audio)[0]
45
+ return text
46
+
47
+ client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
48
+
49
+ system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'KingNish.' You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
50
+
51
+ def model(text):
52
+ generate_kwargs = dict(
53
+ temperature=0.7,
54
+ max_new_tokens=512,
55
+ top_p=0.95,
56
+ repetition_penalty=1,
57
+ do_sample=True,
58
+ seed=42,
59
+ )
60
+
61
+ formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
62
+ stream = client1.text_generation(
63
+ formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
64
+ output = ""
65
+ for response in stream:
66
+ if not response.token.text == "</s>":
67
+ output += response.token.text
68
+
69
+ return output
70
+
71
+ async def respond(audio):
72
+ user = transcribe(audio)
73
+ reply = model(user)
74
+ communicate = edge_tts.Communicate(reply)
75
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
76
+ tmp_path = tmp_file.name
77
+ await communicate.save(tmp_path)
78
+ yield tmp_path
79
+
80
+ DEVICE = torch.device("cuda")
81
+ MODELS = {
82
+ "idefics2-8b-chatty": Idefics2ForConditionalGeneration.from_pretrained(
83
+ "HuggingFaceM4/idefics2-8b-chatty",
84
+ torch_dtype=torch.bfloat16,
85
+ _attn_implementation="flash_attention_2",
86
+ ).to(DEVICE),
87
+ }
88
+ PROCESSOR = AutoProcessor.from_pretrained(
89
+ "HuggingFaceM4/idefics2-8b",
90
+ )
91
+
92
+ SYSTEM_PROMPT = [
93
+ {
94
+ "role": "system",
95
+ "content": [
96
+ {
97
+ "type": "text",
98
+ "text": """You are OpenGPT 4o, a highly knowledgeable and intelligent multitalented AI assistant created by KingNish, referred to as Assistant, and a human user called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to generate images, perceive images, answer Users question from images, chat with user, bulk creation of any of this and reason about them. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always follows user instructions.
99
+ Assistant can also generate images, If user ask Assistant to create or generate images, or when assistant fell necessary.
100
+ Now question arrises how Assistant generate images, Assistant use this link ![](https://image.pollinations.ai/prompt/{description}?width={width}&height={height}&nologo=poll&nofeed=yes&seed={random}), and replace {description} with {StyleofImage}%20{OptimizedPrompt}%20{adjective}%20{charactersDetailed}%20{visualStyle}%20{genre} , replace {random} with Random 5-digit positive integer. then assistant Select width and height according to image, Assistant mainly create image in HD.
101
+ Example image:
102
+ [USER] Create image of Effiel tower.
103
+ [ASSISTANT] Generating Images ...
104
+ ![Eiffel Tower](https://image.pollinations.ai/prompt/Eiffel%20Tower%20Tall%20and%20Graceful%20Tower%20in%20Paris%20France?width=1800&height=1600&nologo=poll&nofeed=yes&seed=62831)
105
+ Assistant can even bulk generate images just by increasing number of links.
106
+ Bulk image generation Example:
107
+ [USER] Create 7 image each consist of 1 wonder from 7 wonders.
108
+ [ASSISTANT] Generating Images ...
109
+ 1. A photorealistic image of the Great Pyramid of Giza in Egypt. ![](https://pollinations.ai/p/a-photorealistic-image-of-the-great-pyramid-of-giza-in-egypt-showcasing-its-immense-size-and-intricate-design-against-the-backdrop-of-a-clear-blue-sky?width=1920&height=1080&nologo=poll&seed=78182)
110
+ 2. A 3D rendering of the Colosseum in Rome, Italy, ![](https://pollinations.ai/p/a-3d-rendering-of-the-colosseum-in-rome-italy-with-its-impressive-structure-and-historical-significance-highlighted-in-the-image-include-realistic-lighting-and-textures-for-added-detail?width=1200&height=1600&nologo=poll&seed=91531)
111
+ 3. A painting of the Taj Mahal in Agra, India, ![](https://pollinations.ai/p/a-painting-of-the-taj-mahal-in-agra-india-depicting-its-iconic-white-marble-facade-and-intricate-architectural-details-capture-the-beauty-of-the-structure-against-a-serene-sunset?width=1080&height=1920&nologo=poll&seed=34251)
112
+ 4. A cartoon illustration of the Great Wall of China, ![](https://pollinations.ai/p/a-cartoon-illustration-of-the-great-wall-of-china-featuring-a-fun-and-whimsical-representation-of-the-ancient-structure-winding-through-the-mountains-add-colorful-elements-and-quirky-characters-for-a-playful-touch?width=1600&height=900&nologo=poll&seed=93015)
113
+ 5. A surreal, dreamlike depiction of Chichen Itza in Mexico, ![](https://pollinations.ai/p/a-surreal-dreamlike-depiction-of-chichen-itza-in-mexico-showcasing-the-ancient-mayan-city-s-iconic-el-castillo-pyramid-incorporate-mystical-elements-like-swirling-clouds-glowing-lights-and-ethereal-landscapes-to-create-a-mesmerizing-atmosphere?width=1440&height=2560&nologo=poll&seed=67281)
114
+ 6. A vintage, sepia-toned photograph of Machu Picchu in Peru, ![](https://pollinations.ai/p/a-vintage-sepia-toned-photograph-of-machu-picchu-in-peru-highlighting-the-incan-ruins-mysterious-beauty-and-historical-significance-add-subtle-details-like-foggy-mountains-and-a-peaceful-river-to-enhance-the-image-s-atmosphere?width=2560&height=1440&nologo=poll&seed=93423)
115
+ 7. A modern, minimalistic image of Petra in Jordan, ![](https://pollinations.ai/p/a-modern-minimalistic-image-of-petra-in-jordan-featuring-the-iconic-treasury-building-carved-into-the-sandstone-cliffs-use-clean-lines-a-muted-color-palette-and-a-minimalistic-approach-to-create-a-contemporary-and-visually-striking-representation-of-this-ancient-wonder?width=1024&height=1024&nologo=poll&seed=67693)
116
+ Note: Assistant Must give link while generating images. and Create uniques images.
117
+ Assistant also have very good reasoning, memory, people and object identification skill and Assistant is master in every field.""",
118
+ },
119
+ ],
120
+ },
121
+ {
122
+ "role": "assistant",
123
+ "content": [
124
+ {
125
+ "type": "text",
126
+ "text": "Hello, I'm OpenGPT 4o, made by KingNish. How can I help you? I can chat with you, generate images, classify images and even do all these work in bulk and simulateously",
127
+ },
128
+ ],
129
+ }
130
+ ]
131
+
132
+ examples_path = os.path.dirname(__file__)
133
+ EXAMPLES = [
134
+ [
135
+ {
136
+ "text": "Hi, who are you",
137
+ }
138
+ ],
139
+ [
140
+ {
141
+ "text": "Create a image of Eiffel Tower",
142
+ }
143
+ ],
144
+ [
145
+ {
146
+ "text": "Read what's written on the paper",
147
+ "files": [f"{examples_path}/example_images/paper_with_text.png"],
148
+ }
149
+ ],
150
+ [
151
+ {
152
+ "text": "Identify 2 famous person in these 2 images",
153
+ "files": [f"{examples_path}/example_images/elon_smoking.jpg", f"{examples_path}/example_images/steve_jobs.jpg",]
154
+ }
155
+ ],
156
+ [
157
+ {
158
+ "text": "Create 7 different images of 7 wonders",
159
+ }
160
+ ],
161
+ [
162
+ {
163
+ "text": "What is 900*900",
164
+ }
165
+ ],
166
+ [
167
+ {
168
+ "text": "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?",
169
+ "files": [f"{examples_path}/example_images/mmmu_example.jpeg"],
170
+ }
171
+ ],
172
+ [
173
+ {
174
+ "text": "Write an online ad for that product.",
175
+ "files": [f"{examples_path}/example_images/shampoo.jpg"],
176
+ }
177
+ ],
178
+ [
179
+ {
180
+ "text": "What is formed by the deposition of either the weathered remains of other rocks?",
181
+ "files": [f"{examples_path}/example_images/ai2d_example.jpeg"],
182
+ }
183
+ ],
184
+ [
185
+ {
186
+ "text": "What's unusual about this image?",
187
+ "files": [f"{examples_path}/example_images/dragons_playing.png"],
188
+ }
189
+ ],
190
+ ]
191
+
192
+ BOT_AVATAR = "OpenAI_logo.png"
193
+
194
+
195
+ # Chatbot utils
196
+ def turn_is_pure_media(turn):
197
+ return turn[1] is None
198
+
199
+
200
+ def load_image_from_url(url):
201
+ with urllib.request.urlopen(url) as response:
202
+ image_data = response.read()
203
+ image_stream = io.BytesIO(image_data)
204
+ image = Image.open(image_stream)
205
+ return image
206
+
207
+
208
+ def img_to_bytes(image_path):
209
+ image = Image.open(image_path).convert(mode='RGB')
210
+ buffer = io.BytesIO()
211
+ image.save(buffer, format="JPEG")
212
+ img_bytes = buffer.getvalue()
213
+ image.close()
214
+ return img_bytes
215
+
216
+
217
+ def format_user_prompt_with_im_history_and_system_conditioning(
218
+ user_prompt, chat_history
219
+ ) -> List[Dict[str, Union[List, str]]]:
220
+ """
221
+ Produces the resulting list that needs to go inside the processor.
222
+ It handles the potential image(s), the history and the system conditionning.
223
+ """
224
+ resulting_messages = copy.deepcopy(SYSTEM_PROMPT)
225
+ resulting_images = []
226
+ for resulting_message in resulting_messages:
227
+ if resulting_message["role"] == "user":
228
+ for content in resulting_message["content"]:
229
+ if content["type"] == "image":
230
+ resulting_images.append(load_image_from_url(content["image"]))
231
+
232
+ # Format history
233
+ for turn in chat_history:
234
+ if not resulting_messages or (
235
+ resulting_messages and resulting_messages[-1]["role"] != "user"
236
+ ):
237
+ resulting_messages.append(
238
+ {
239
+ "role": "user",
240
+ "content": [],
241
+ }
242
+ )
243
+
244
+ if turn_is_pure_media(turn):
245
+ media = turn[0][0]
246
+ resulting_messages[-1]["content"].append({"type": "image"})
247
+ resulting_images.append(Image.open(media))
248
+ else:
249
+ user_utterance, assistant_utterance = turn
250
+ resulting_messages[-1]["content"].append(
251
+ {"type": "text", "text": user_utterance.strip()}
252
+ )
253
+ resulting_messages.append(
254
+ {
255
+ "role": "assistant",
256
+ "content": [{"type": "text", "text": user_utterance.strip()}],
257
+ }
258
+ )
259
+
260
+ # Format current input
261
+ if not user_prompt["files"]:
262
+ resulting_messages.append(
263
+ {
264
+ "role": "user",
265
+ "content": [{"type": "text", "text": user_prompt["text"]}],
266
+ }
267
+ )
268
+ else:
269
+ # Choosing to put the image first (i.e. before the text), but this is an arbiratrary choice.
270
+ resulting_messages.append(
271
+ {
272
+ "role": "user",
273
+ "content": [{"type": "image"}] * len(user_prompt["files"])
274
+ + [{"type": "text", "text": user_prompt["text"]}],
275
+ }
276
+ )
277
+ resulting_images.extend([Image.open(path) for path in user_prompt["files"]])
278
+
279
+ return resulting_messages, resulting_images
280
+
281
+
282
+ def extract_images_from_msg_list(msg_list):
283
+ all_images = []
284
+ for msg in msg_list:
285
+ for c_ in msg["content"]:
286
+ if isinstance(c_, Image.Image):
287
+ all_images.append(c_)
288
+ return all_images
289
+
290
+
291
+ @spaces.GPU(duration=60, queue=False)
292
+ def model_inference(
293
+ user_prompt,
294
+ chat_history,
295
+ model_selector,
296
+ decoding_strategy,
297
+ temperature,
298
+ max_new_tokens,
299
+ repetition_penalty,
300
+ top_p,
301
+ ):
302
+ if user_prompt["text"].strip() == "" and not user_prompt["files"]:
303
+ gr.Error("Please input a query and optionally image(s).")
304
+
305
+ if user_prompt["text"].strip() == "" and user_prompt["files"]:
306
+ gr.Error("Please input a text query along the image(s).")
307
+
308
+ streamer = TextIteratorStreamer(
309
+ PROCESSOR.tokenizer,
310
+ skip_prompt=True,
311
+ timeout=120.0,
312
+ )
313
+
314
+ generation_args = {
315
+ "max_new_tokens": max_new_tokens,
316
+ "repetition_penalty": repetition_penalty,
317
+ "streamer": streamer,
318
+ }
319
+
320
+ assert decoding_strategy in [
321
+ "Greedy",
322
+ "Top P Sampling",
323
+ ]
324
+ if decoding_strategy == "Greedy":
325
+ generation_args["do_sample"] = False
326
+ elif decoding_strategy == "Top P Sampling":
327
+ generation_args["temperature"] = temperature
328
+ generation_args["do_sample"] = True
329
+ generation_args["top_p"] = top_p
330
+
331
+ # Creating model inputs
332
+ (
333
+ resulting_text,
334
+ resulting_images,
335
+ ) = format_user_prompt_with_im_history_and_system_conditioning(
336
+ user_prompt=user_prompt,
337
+ chat_history=chat_history,
338
+ )
339
+ prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True)
340
+ inputs = PROCESSOR(
341
+ text=prompt,
342
+ images=resulting_images if resulting_images else None,
343
+ return_tensors="pt",
344
+ )
345
+ inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
346
+ generation_args.update(inputs)
347
+
348
+ thread = Thread(
349
+ target=MODELS[model_selector].generate,
350
+ kwargs=generation_args,
351
+ )
352
+ thread.start()
353
+
354
+ print("Start generating")
355
+ acc_text = ""
356
+ for text_token in streamer:
357
+ time.sleep(0.01)
358
+ acc_text += text_token
359
+ if acc_text.endswith("<end_of_utterance>"):
360
+ acc_text = acc_text[:-18]
361
+ yield acc_text
362
+ print("Success - generated the following text:", acc_text)
363
+ print("-----")
364
+
365
+
366
+ FEATURES = datasets.Features(
367
+ {
368
+ "model_selector": datasets.Value("string"),
369
+ "images": datasets.Sequence(datasets.Image(decode=True)),
370
+ "conversation": datasets.Sequence({"User": datasets.Value("string"), "Assistant": datasets.Value("string")}),
371
+ "decoding_strategy": datasets.Value("string"),
372
+ "temperature": datasets.Value("float32"),
373
+ "max_new_tokens": datasets.Value("int32"),
374
+ "repetition_penalty": datasets.Value("float32"),
375
+ "top_p": datasets.Value("int32"),
376
+ }
377
+ )
378
+
379
+
380
+ # Hyper-parameters for generation
381
+ max_new_tokens = gr.Slider(
382
+ minimum=1024,
383
+ maximum=8192,
384
+ value=4096,
385
+ step=1,
386
+ interactive=True,
387
+ label="Maximum number of new tokens to generate",
388
+ )
389
+ repetition_penalty = gr.Slider(
390
+ minimum=0.01,
391
+ maximum=5.0,
392
+ value=1,
393
+ step=0.01,
394
+ interactive=True,
395
+ label="Repetition penalty",
396
+ info="1.0 is equivalent to no penalty",
397
+ )
398
+ decoding_strategy = gr.Radio(
399
+ [
400
+ "Greedy",
401
+ "Top P Sampling",
402
+ ],
403
+ value="Top P Sampling",
404
+ label="Decoding strategy",
405
+ interactive=True,
406
+ info="Higher values is equivalent to sampling more low-probability tokens.",
407
+ )
408
+ temperature = gr.Slider(
409
+ minimum=0.0,
410
+ maximum=2.0,
411
+ value=0.75,
412
+ step=0.05,
413
+ visible=True,
414
+ interactive=True,
415
+ label="Sampling temperature",
416
+ info="Higher values will produce more diverse outputs.",
417
+ )
418
+ top_p = gr.Slider(
419
+ minimum=0.01,
420
+ maximum=0.99,
421
+ value=0.95,
422
+ step=0.01,
423
+ visible=True,
424
+ interactive=True,
425
+ label="Top P",
426
+ info="Higher values is equivalent to sampling more low-probability tokens.",
427
+ )
428
+
429
+
430
+ chatbot = gr.Chatbot(
431
+ label="OpnGPT-4o-Chatty",
432
+ avatar_images=[None, BOT_AVATAR],
433
+ show_copy_button=True,
434
+ likeable=True,
435
+ layout="bubble"
436
+ )
437
+
438
+ output=gr.Textbox(label="Prompt")
439
+
440
+ with gr.Blocks(
441
+ fill_height=True,
442
+ css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""",
443
+ ) as img:
444
+
445
+ gr.Markdown("# Image Chat, Image Generation, Image classification and Normal Chat")
446
+ with gr.Row(elem_id="model_selector_row"):
447
+ model_selector = gr.Dropdown(
448
+ choices=MODELS.keys(),
449
+ value=list(MODELS.keys())[0],
450
+ interactive=True,
451
+ show_label=False,
452
+ container=False,
453
+ label="Model",
454
+ visible=False,
455
+ )
456
+
457
+ decoding_strategy.change(
458
+ fn=lambda selection: gr.Slider(
459
+ visible=(
460
+ selection
461
+ in [
462
+ "contrastive_sampling",
463
+ "beam_sampling",
464
+ "Top P Sampling",
465
+ "sampling_top_k",
466
+ ]
467
+ )
468
+ ),
469
+ inputs=decoding_strategy,
470
+ outputs=temperature,
471
+ )
472
+ decoding_strategy.change(
473
+ fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
474
+ inputs=decoding_strategy,
475
+ outputs=top_p,
476
+ )
477
+
478
+ gr.ChatInterface(
479
+ fn=model_inference,
480
+ chatbot=chatbot,
481
+ examples=EXAMPLES,
482
+ multimodal=True,
483
+ cache_examples=False,
484
+ additional_inputs=[
485
+ model_selector,
486
+ decoding_strategy,
487
+ temperature,
488
+ max_new_tokens,
489
+ repetition_penalty,
490
+ top_p,
491
+ ],
492
+ )
493
+
494
+ with gr.Blocks() as voice:
495
+ with gr.Row():
496
+ input = gr.Audio(label="Voice Chat", sources="microphone", type="filepath", waveform_options=False)
497
+ output = gr.Audio(label="OpenGPT 4o", type="filepath",
498
+ interactive=False,
499
+ autoplay=True,
500
+ elem_classes="audio")
501
+ gr.Interface(
502
+ fn=respond,
503
+ inputs=[input],
504
+ outputs=[output], live=True)
505
+
506
+ with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none}", title="GPT 4o DEMO") as demo:
507
+ gr.Markdown("# OpenGPT 4o")
508
+ gr.TabbedInterface([img, voice], ['πŸ’¬ SuperChat','πŸ—£οΈ Voice Chat', ])
509
+
510
+ demo.queue(max_size=20)
511
+ demo.launch()
gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ transformers==4.40.0
2
+ datasets
3
+ pillow
4
+ numpy
5
+ torch
6
+ streaming-stt-nemo==0.2.0
7
+ edge-tts
8
+ asyncio