import streamlit as st import json import faiss import numpy as np from sentence_transformers import SentenceTransformer import base64 from PIL import Image import io import cv2 from insightface.app import FaceAnalysis from moviepy.editor import VideoFileClip from sklearn.cluster import DBSCAN from sklearn.decomposition import PCA import plotly.graph_objs as go from collections import defaultdict # Load models @st.cache_resource def load_models(): text_model = SentenceTransformer("all-MiniLM-L6-v2") image_model = SentenceTransformer("clip-ViT-B-32") face_app = FaceAnalysis(providers=['CPUExecutionProvider']) face_app.prepare(ctx_id=0, det_size=(640, 640)) return text_model, image_model, face_app text_model, image_model, face_app = load_models() # Load data @st.cache_data def load_data(video_id, output_dir): with open(f"{output_dir}/{video_id}_summary.json", "r") as f: summary = json.load(f) with open(f"{output_dir}/{video_id}_transcription.json", "r") as f: transcription = json.load(f) with open(f"{output_dir}/{video_id}_text_metadata.json", "r") as f: text_metadata = json.load(f) with open(f"{output_dir}/{video_id}_image_metadata.json", "r") as f: image_metadata = json.load(f) with open(f"{output_dir}/{video_id}_face_metadata.json", "r") as f: face_metadata = json.load(f) face_index = faiss.read_index(f"{output_dir}/{video_id}_face_index.faiss") return summary, transcription, text_metadata, image_metadata, face_metadata, face_index video_id = "IMFUOexuEXw" output_dir = "./" video_path = "avengers_interview.mp4" summary, transcription, text_metadata, image_metadata, face_metadata, face_index = load_data(video_id, output_dir) # Load FAISS indexes @st.cache_resource def load_indexes(video_id, output_dir): text_index = faiss.read_index(f"{output_dir}/{video_id}_text_index.faiss") image_index = faiss.read_index(f"{output_dir}/{video_id}_image_index.faiss") return text_index, image_index text_index, image_index = load_indexes(video_id, output_dir) def create_comprehensive_face_summary(face_index, face_metadata, eps=0.5, min_samples=3, top_k=5): # Extract face embeddings face_embeddings = face_index.reconstruct_n(0, face_index.ntotal) # Normalize embeddings face_embeddings = face_embeddings / np.linalg.norm(face_embeddings, axis=1)[:, np.newaxis] # Perform DBSCAN clustering clustering = DBSCAN(eps=eps, min_samples=min_samples, metric='cosine').fit(face_embeddings) # Group faces by cluster face_clusters = defaultdict(list) for i, label in enumerate(clustering.labels_): face_clusters[label].append(face_metadata[i]) # Sort clusters by size sorted_clusters = sorted(face_clusters.items(), key=lambda x: len(x[1]), reverse=True) all_faces_summary = [] prominent_faces = [] for i, (label, cluster) in enumerate(sorted_clusters): if label != -1: # Ignore noise points # Collect all appearances appearances = [ { 'start': face['start'], 'end': face['end'], 'size_ratio': face.get('size_ratio', 1.0) # Use 1.0 as default if size_ratio is not present } for face in cluster ] # Sort appearances by start time appearances.sort(key=lambda x: x['start']) # Select representative face (e.g., largest face in the cluster) representative_face = max(cluster, key=lambda f: f.get('size_ratio', 1.0)) face_summary = { "id": f"face_{i}", "cluster_id": f"cluster_{label}", "bbox": representative_face.get('bbox', []), "embedding": representative_face.get('embedding', []), "appearances": appearances, "total_appearances": len(appearances), "total_screen_time": sum(app['end'] - app['start'] for app in appearances), "first_appearance": appearances[0]['start'], "last_appearance": appearances[-1]['end'], "thumbnail": representative_face.get('thumbnail', '') } all_faces_summary.append(face_summary) if i < top_k: prominent_faces.append(face_summary) return all_faces_summary, prominent_faces, face_embeddings, clustering.labels_ # Usage in the main Streamlit app: all_faces_summary, prominent_faces, face_embeddings, face_labels = create_comprehensive_face_summary(face_index, face_metadata) # Face cluster visualization # Update the face cluster visualization function def plot_face_clusters_interactive(face_embeddings, face_labels, all_faces_summary, prominent_faces): pca = PCA(n_components=3) embeddings_3d = pca.fit_transform(face_embeddings) unique_labels = set(face_labels) colors = [f'rgb({int(r*255)},{int(g*255)},{int(b*255)})' for r, g, b, _ in plt.cm.rainbow(np.linspace(0, 1, len(unique_labels)))] traces = [] for label, color in zip(unique_labels, colors): if label == -1: continue # Skip noise points cluster_points = embeddings_3d[face_labels == label] cluster_faces = [face for face in all_faces_summary if face['cluster_id'] == f'cluster_{label}'] hover_text = [ f"Cluster {label}
" f"Time: {face['appearances'][0]['start']:.2f}s - {face['appearances'][-1]['end']:.2f}s
" f"Appearances: {face['total_appearances']}" for face in cluster_faces ] trace = go.Scatter3d( x=cluster_points[:, 0], y=cluster_points[:, 1], z=cluster_points[:, 2], mode='markers', name=f'Cluster {label}', marker=dict(size=5, color=color, opacity=0.8), text=hover_text, hoverinfo='text' ) traces.append(trace) # Add markers for prominent faces prominent_points = [embeddings_3d[face_labels == int(face['cluster_id'].split('_')[1])][0] for face in prominent_faces] prominent_trace = go.Scatter3d( x=[p[0] for p in prominent_points], y=[p[1] for p in prominent_points], z=[p[2] for p in prominent_points], mode='markers', name='Prominent Faces', marker=dict(size=10, color='red', symbol='star'), text=[f"Prominent Face
Cluster {face['cluster_id']}" for face in prominent_faces], hoverinfo='text' ) traces.append(prominent_trace) layout = go.Layout( title='Face Clusters Visualization', scene=dict(xaxis_title='PCA 1', yaxis_title='PCA 2', zaxis_title='PCA 3'), margin=dict(r=0, b=0, l=0, t=40) ) fig = go.Figure(data=traces, layout=layout) return fig # Search functions def combined_search(query, text_index, image_index, text_metadata, image_metadata, text_model, image_model, n_results=5): if isinstance(query, str): text_vector = text_model.encode([query], convert_to_tensor=True).cpu().numpy() image_vector = image_model.encode([query], convert_to_tensor=True).cpu().numpy() else: # Assume it's an image image_vector = image_model.encode(query, convert_to_tensor=True).cpu().numpy() text_vector = image_vector # Use the same vector for text search in this case text_D, text_I = text_index.search(text_vector, n_results) image_D, image_I = image_index.search(image_vector, n_results) text_results = [{'data': text_metadata[i], 'distance': d, 'type': 'text'} for i, d in zip(text_I[0], text_D[0])] image_results = [{'data': image_metadata[i], 'distance': d, 'type': 'image'} for i, d in zip(image_I[0], image_D[0])] combined_results = sorted(text_results + image_results, key=lambda x: x['distance']) return combined_results[:n_results] def face_search(face_embedding, face_index, face_metadata, n_results=5): D, I = face_index.search(np.array([face_embedding]), n_results) results = [face_metadata[i] for i in I[0]] return results, D[0] def detect_and_embed_face(image, face_app): img_array = np.array(image) faces = face_app.get(img_array) if len(faces) == 0: return None largest_face = max(faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1])) return largest_face.embedding def create_video_clip(video_path, start_time, end_time, output_path): with VideoFileClip(video_path) as video: new_clip = video.subclip(start_time, end_time) new_clip.write_videofile(output_path, codec="libx264", audio_codec="aac") return output_path # Streamlit UI st.title("Video Analysis Dashboard") # Sidebar with full video and scrollable transcript st.sidebar.header("Full Video") st.sidebar.video(video_path) st.sidebar.header("Video Transcript") transcript_text = transcription['transcription'] st.sidebar.text_area("Full Transcript", transcript_text, height=300) # Main content st.header("Video Summary") # Face Clusters st.subheader("Prominent Face Clusters") for face in prominent_faces: # Use prominent_faces instead of face_summary st.write(f"Face Cluster {face['cluster_id']}:") st.write(f" Total appearances: {face['total_appearances']}") st.write(f" Total screen time: {face['total_screen_time']:.2f} seconds") st.write(f" First appearance: {face['first_appearance']:.2f} seconds") st.write(f" Last appearance: {face['last_appearance']:.2f} seconds") st.write(f" Timeline: {len(face['appearances'])} appearances") st.write(" First 5 appearances:") for app in face['appearances'][:5]: st.write(f" {app['start']:.2f}s - {app['end']:.2f}s") if face['thumbnail']: image = Image.open(io.BytesIO(base64.b64decode(face['thumbnail']))) st.image(image, caption=f"Representative face for {face['cluster_id']}", width=100) st.write("---") # Face Cluster Visualization st.subheader("Face Cluster Visualization") fig = plot_face_clusters_interactive(face_embeddings, face_labels, all_faces_summary, prominent_faces) st.plotly_chart(fig) # Themes st.subheader("Themes") for theme in summary['themes']: st.write(f"Theme ID: {theme['id']}, Keywords: {', '.join(theme['keywords'])}") # Search functionality st.header("Search") search_type = st.selectbox("Select search type", ["Combined", "Face"]) if search_type == "Combined": search_method = st.radio("Choose search method", ["Text", "Image"]) if search_method == "Text": query = st.text_input("Enter your search query") if st.button("Search"): results = combined_search(query, text_index, image_index, text_metadata, image_metadata, text_model, image_model) st.subheader("Search Results") for result in results: st.write(f"Type: {result['type']}, Time: {result['data']['start']:.2f}s - {result['data']['end']:.2f}s, Distance: {result['distance']:.4f}") if 'text' in result['data']: st.write(f"Text: {result['data']['text']}") clip_path = create_video_clip(video_path, result['data']['start'], result['data']['end'], f"temp_clip_{result['data']['start']}.mp4") st.video(clip_path) st.write("---") else: uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) if st.button("Search"): results = combined_search(image, text_index, image_index, text_metadata, image_metadata, text_model, image_model) st.subheader("Image Search Results") for result in results: st.write(f"Type: {result['type']}, Time: {result['data']['start']:.2f}s - {result['data']['end']:.2f}s, Distance: {result['distance']:.4f}") clip_path = create_video_clip(video_path, result['data']['start'], result['data']['end'], f"temp_clip_{result['data']['start']}.mp4") st.video(clip_path) st.write("---") elif search_type == "Face": face_search_type = st.radio("Choose face search method", ["Select from clusters", "Upload image"]) if face_search_type == "Select from clusters": cluster_id = st.selectbox("Select a face cluster", [cluster['cluster_id'] for cluster in face_summary]) if st.button("Search"): selected_cluster = next(cluster for cluster in face_summary if cluster['cluster_id'] == cluster_id) st.subheader("Face Cluster Search Results") for appearance in selected_cluster['appearances'][:5]: # Show first 5 appearances st.write(f"Time: {appearance['start']:.2f}s - {appearance['end']:.2f}s") clip_path = create_video_clip(video_path, appearance['start'], appearance['end'], f"temp_face_clip_{appearance['start']}.mp4") st.video(clip_path) st.write("---") else: uploaded_file = st.file_uploader("Choose a face image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) if st.button("Search"): face_embedding = detect_and_embed_face(image, face_app) if face_embedding is not None: face_results, face_distances = face_search(face_embedding, face_index, face_metadata) st.subheader("Face Search Results") for result, distance in zip(face_results, face_distances): st.write(f"Time: {result['start']:.2f}s - {result['end']:.2f}s, Distance: {distance:.4f}") clip_path = create_video_clip(video_path, result['start'], result['end'], f"temp_face_clip_{result['start']}.mp4") st.video(clip_path) st.write("---") else: st.error("No face detected in the uploaded image. Please try another image.")