File size: 14,450 Bytes
f25ff37
f279bf5
f25ff37
f279bf5
f25ff37
f279bf5
 
 
f25ff37
f279bf5
4a3a5b5
bdcf215
 
b5642bf
a916b41
 
 
f25ff37
 
 
 
bdcf215
 
f279bf5
 
bdcf215
f279bf5
bdcf215
f279bf5
 
 
b5642bf
 
f279bf5
b5642bf
f279bf5
b5642bf
bdcf215
b5642bf
bdcf215
b5642bf
f279bf5
b5642bf
 
f279bf5
 
b5642bf
6a8900c
b5642bf
f279bf5
 
 
b5642bf
 
 
 
f25ff37
b5642bf
a916b41
 
b5642bf
 
a916b41
 
 
 
bdcf215
b5642bf
a916b41
 
b5642bf
a916b41
 
 
 
 
 
 
b5642bf
a916b41
b5642bf
a916b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5642bf
a916b41
 
 
 
 
 
 
 
b5642bf
a916b41
 
 
 
 
b5642bf
a916b41
b5642bf
a916b41
 
bdcf215
b5642bf
a916b41
 
bdcf215
 
 
a916b41
bdcf215
 
 
 
 
b5642bf
 
bdcf215
a916b41
 
 
 
 
 
 
 
 
bdcf215
 
 
 
 
 
 
b5642bf
bdcf215
 
 
 
 
a916b41
 
 
 
 
 
 
 
 
 
 
 
 
 
bdcf215
 
b5642bf
bdcf215
 
 
 
 
f279bf5
 
bdcf215
4a3a5b5
bdcf215
 
4a3a5b5
bdcf215
 
4a3a5b5
bdcf215
 
 
 
 
 
 
 
f279bf5
b5642bf
 
 
f279bf5
 
 
 
 
 
 
 
 
f25ff37
4a3a5b5
 
 
 
 
 
f25ff37
f279bf5
 
6a8900c
 
 
 
4a3a5b5
 
 
 
 
6a8900c
b5642bf
 
a916b41
 
 
 
 
 
 
 
b5642bf
a916b41
b5642bf
a916b41
 
 
b5642bf
 
 
bdcf215
a916b41
bdcf215
 
b5642bf
 
 
 
 
f279bf5
 
 
bdcf215
f279bf5
bdcf215
4a3a5b5
 
 
 
 
bdcf215
4a3a5b5
 
bdcf215
4a3a5b5
 
 
 
f279bf5
4a3a5b5
 
 
 
 
 
bdcf215
4a3a5b5
 
bdcf215
4a3a5b5
 
 
f279bf5
 
bdcf215
f25ff37
bdcf215
b5642bf
f279bf5
b5642bf
bdcf215
b5642bf
 
 
4a3a5b5
f279bf5
 
 
 
 
 
 
 
 
 
 
 
 
4a3a5b5
 
f279bf5
 
4a3a5b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import streamlit as st
import json
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
import base64
from PIL import Image
import io
import cv2
from insightface.app import FaceAnalysis
from moviepy.editor import VideoFileClip
from sklearn.cluster import DBSCAN
from sklearn.decomposition import PCA
import plotly.graph_objs as go
from collections import defaultdict



# Load models
@st.cache_resource
def load_models():
    text_model = SentenceTransformer("all-MiniLM-L6-v2")
    image_model = SentenceTransformer("clip-ViT-B-32")
    face_app = FaceAnalysis(providers=['CPUExecutionProvider'])
    face_app.prepare(ctx_id=0, det_size=(640, 640))
    return text_model, image_model, face_app

text_model, image_model, face_app = load_models()

# Load data
@st.cache_data
def load_data(video_id, output_dir):
    with open(f"{output_dir}/{video_id}_summary.json", "r") as f:
        summary = json.load(f)
    with open(f"{output_dir}/{video_id}_transcription.json", "r") as f:
        transcription = json.load(f)
    with open(f"{output_dir}/{video_id}_text_metadata.json", "r") as f:
        text_metadata = json.load(f)
    with open(f"{output_dir}/{video_id}_image_metadata.json", "r") as f:
        image_metadata = json.load(f)
    with open(f"{output_dir}/{video_id}_face_metadata.json", "r") as f:
        face_metadata = json.load(f)
    face_index = faiss.read_index(f"{output_dir}/{video_id}_face_index.faiss")
    return summary, transcription, text_metadata, image_metadata, face_metadata, face_index

video_id = "IMFUOexuEXw"
output_dir = "video_analysis_output"
video_path = "avengers_interview.mp4"
summary, transcription, text_metadata, image_metadata, face_metadata, face_index = load_data(video_id, output_dir)

# Load FAISS indexes
@st.cache_resource
def load_indexes(video_id, output_dir):
    text_index = faiss.read_index(f"{output_dir}/{video_id}_text_index.faiss")
    image_index = faiss.read_index(f"{output_dir}/{video_id}_image_index.faiss")
    return text_index, image_index

text_index, image_index = load_indexes(video_id, output_dir)
def create_comprehensive_face_summary(face_index, face_metadata, eps=0.5, min_samples=3, top_k=5):
    # Extract face embeddings
    face_embeddings = face_index.reconstruct_n(0, face_index.ntotal)
    
    # Normalize embeddings
    face_embeddings = face_embeddings / np.linalg.norm(face_embeddings, axis=1)[:, np.newaxis]
    
    # Perform DBSCAN clustering
    clustering = DBSCAN(eps=eps, min_samples=min_samples, metric='cosine').fit(face_embeddings)
    
    # Group faces by cluster
    face_clusters = defaultdict(list)
    for i, label in enumerate(clustering.labels_):
        face_clusters[label].append(face_metadata[i])
    
    # Sort clusters by size
    sorted_clusters = sorted(face_clusters.items(), key=lambda x: len(x[1]), reverse=True)
    
    all_faces_summary = []
    prominent_faces = []
    
    for i, (label, cluster) in enumerate(sorted_clusters):
        if label != -1:  # Ignore noise points
            # Collect all appearances
            appearances = [
                {
                    'start': face['start'],
                    'end': face['end'],
                    'size_ratio': face.get('size_ratio', 1.0)  # Use 1.0 as default if size_ratio is not present
                }
                for face in cluster
            ]
            
            # Sort appearances by start time
            appearances.sort(key=lambda x: x['start'])
            
            # Select representative face (e.g., largest face in the cluster)
            representative_face = max(cluster, key=lambda f: f.get('size_ratio', 1.0))
            
            face_summary = {
                "id": f"face_{i}",
                "cluster_id": f"cluster_{label}",
                "bbox": representative_face.get('bbox', []),
                "embedding": representative_face.get('embedding', []),
                "appearances": appearances,
                "total_appearances": len(appearances),
                "total_screen_time": sum(app['end'] - app['start'] for app in appearances),
                "first_appearance": appearances[0]['start'],
                "last_appearance": appearances[-1]['end'],
                "thumbnail": representative_face.get('thumbnail', '')
            }
            
            all_faces_summary.append(face_summary)
            
            if i < top_k:
                prominent_faces.append(face_summary)
    
    return all_faces_summary, prominent_faces, face_embeddings, clustering.labels_

# Usage in the main Streamlit app:
all_faces_summary, prominent_faces, face_embeddings, face_labels = create_comprehensive_face_summary(face_index, face_metadata)

# Face cluster visualization
# Update the face cluster visualization function
def plot_face_clusters_interactive(face_embeddings, face_labels, all_faces_summary, prominent_faces):
    pca = PCA(n_components=3)
    embeddings_3d = pca.fit_transform(face_embeddings)
    
    unique_labels = set(face_labels)
    colors = [f'rgb({int(r*255)},{int(g*255)},{int(b*255)})' 
              for r, g, b, _ in plt.cm.rainbow(np.linspace(0, 1, len(unique_labels)))]
    
    traces = []
    for label, color in zip(unique_labels, colors):
        if label == -1:
            continue  # Skip noise points
        
        cluster_points = embeddings_3d[face_labels == label]
        cluster_faces = [face for face in all_faces_summary if face['cluster_id'] == f'cluster_{label}']
        
        hover_text = [
            f"Cluster {label}<br>"
            f"Time: {face['appearances'][0]['start']:.2f}s - {face['appearances'][-1]['end']:.2f}s<br>"
            f"Appearances: {face['total_appearances']}"
            for face in cluster_faces
        ]
        
        trace = go.Scatter3d(
            x=cluster_points[:, 0],
            y=cluster_points[:, 1],
            z=cluster_points[:, 2],
            mode='markers',
            name=f'Cluster {label}',
            marker=dict(size=5, color=color, opacity=0.8),
            text=hover_text,
            hoverinfo='text'
        )
        traces.append(trace)
    
    # Add markers for prominent faces
    prominent_points = [embeddings_3d[face_labels == int(face['cluster_id'].split('_')[1])][0] for face in prominent_faces]
    prominent_trace = go.Scatter3d(
        x=[p[0] for p in prominent_points],
        y=[p[1] for p in prominent_points],
        z=[p[2] for p in prominent_points],
        mode='markers',
        name='Prominent Faces',
        marker=dict(size=10, color='red', symbol='star'),
        text=[f"Prominent Face<br>Cluster {face['cluster_id']}" for face in prominent_faces],
        hoverinfo='text'
    )
    traces.append(prominent_trace)
    
    layout = go.Layout(
        title='Face Clusters Visualization',
        scene=dict(xaxis_title='PCA 1', yaxis_title='PCA 2', zaxis_title='PCA 3'),
        margin=dict(r=0, b=0, l=0, t=40)
    )
    
    fig = go.Figure(data=traces, layout=layout)
    return fig

# Search functions
def combined_search(query, text_index, image_index, text_metadata, image_metadata, text_model, image_model, n_results=5):
    if isinstance(query, str):
        text_vector = text_model.encode([query], convert_to_tensor=True).cpu().numpy()
        image_vector = image_model.encode([query], convert_to_tensor=True).cpu().numpy()
    else:  # Assume it's an image
        image_vector = image_model.encode(query, convert_to_tensor=True).cpu().numpy()
        text_vector = image_vector  # Use the same vector for text search in this case
    
    text_D, text_I = text_index.search(text_vector, n_results)
    image_D, image_I = image_index.search(image_vector, n_results)
    
    text_results = [{'data': text_metadata[i], 'distance': d, 'type': 'text'} for i, d in zip(text_I[0], text_D[0])]
    image_results = [{'data': image_metadata[i], 'distance': d, 'type': 'image'} for i, d in zip(image_I[0], image_D[0])]
    
    combined_results = sorted(text_results + image_results, key=lambda x: x['distance'])
    return combined_results[:n_results]

def face_search(face_embedding, face_index, face_metadata, n_results=5):
    D, I = face_index.search(np.array([face_embedding]), n_results)
    results = [face_metadata[i] for i in I[0]]
    return results, D[0]

def detect_and_embed_face(image, face_app):
    img_array = np.array(image)
    faces = face_app.get(img_array)
    if len(faces) == 0:
        return None
    largest_face = max(faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
    return largest_face.embedding

def create_video_clip(video_path, start_time, end_time, output_path):
    with VideoFileClip(video_path) as video:
        new_clip = video.subclip(start_time, end_time)
        new_clip.write_videofile(output_path, codec="libx264", audio_codec="aac")
    return output_path

# Streamlit UI
st.title("Video Analysis Dashboard")

# Sidebar with full video and scrollable transcript
st.sidebar.header("Full Video")
st.sidebar.video(video_path)

st.sidebar.header("Video Transcript")
transcript_text = transcription['transcription']
st.sidebar.text_area("Full Transcript", transcript_text, height=300)

# Main content
st.header("Video Summary")

# Face Clusters
st.subheader("Prominent Face Clusters")
for face in prominent_faces:  # Use prominent_faces instead of face_summary
    st.write(f"Face Cluster {face['cluster_id']}:")
    st.write(f"  Total appearances: {face['total_appearances']}")
    st.write(f"  Total screen time: {face['total_screen_time']:.2f} seconds")
    st.write(f"  First appearance: {face['first_appearance']:.2f} seconds")
    st.write(f"  Last appearance: {face['last_appearance']:.2f} seconds")
    st.write(f"  Timeline: {len(face['appearances'])} appearances")
    st.write("  First 5 appearances:")
    for app in face['appearances'][:5]:
        st.write(f"    {app['start']:.2f}s - {app['end']:.2f}s")
    if face['thumbnail']:
        image = Image.open(io.BytesIO(base64.b64decode(face['thumbnail'])))
        st.image(image, caption=f"Representative face for {face['cluster_id']}", width=100)
    st.write("---")

# Face Cluster Visualization
st.subheader("Face Cluster Visualization")
fig = plot_face_clusters_interactive(face_embeddings, face_labels, all_faces_summary, prominent_faces)
st.plotly_chart(fig)

# Themes
st.subheader("Themes")
for theme in summary['themes']:
    st.write(f"Theme ID: {theme['id']}, Keywords: {', '.join(theme['keywords'])}")

# Search functionality
st.header("Search")

search_type = st.selectbox("Select search type", ["Combined", "Face"])

if search_type == "Combined":
    search_method = st.radio("Choose search method", ["Text", "Image"])
    
    if search_method == "Text":
        query = st.text_input("Enter your search query")
        if st.button("Search"):
            results = combined_search(query, text_index, image_index, text_metadata, image_metadata, text_model, image_model)
            st.subheader("Search Results")
            for result in results:
                st.write(f"Type: {result['type']}, Time: {result['data']['start']:.2f}s - {result['data']['end']:.2f}s, Distance: {result['distance']:.4f}")
                if 'text' in result['data']:
                    st.write(f"Text: {result['data']['text']}")
                clip_path = create_video_clip(video_path, result['data']['start'], result['data']['end'], f"temp_clip_{result['data']['start']}.mp4")
                st.video(clip_path)
                st.write("---")
    else:
        uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
        if uploaded_file is not None:
            image = Image.open(uploaded_file)
            st.image(image, caption="Uploaded Image", use_column_width=True)
            if st.button("Search"):
                results = combined_search(image, text_index, image_index, text_metadata, image_metadata, text_model, image_model)
                st.subheader("Image Search Results")
                for result in results:
                    st.write(f"Type: {result['type']}, Time: {result['data']['start']:.2f}s - {result['data']['end']:.2f}s, Distance: {result['distance']:.4f}")
                    clip_path = create_video_clip(video_path, result['data']['start'], result['data']['end'], f"temp_clip_{result['data']['start']}.mp4")
                    st.video(clip_path)
                    st.write("---")

elif search_type == "Face":
    face_search_type = st.radio("Choose face search method", ["Select from clusters", "Upload image"])
    
    if face_search_type == "Select from clusters":
        cluster_id = st.selectbox("Select a face cluster", [cluster['cluster_id'] for cluster in face_summary])
        if st.button("Search"):
            selected_cluster = next(cluster for cluster in face_summary if cluster['cluster_id'] == cluster_id)
            st.subheader("Face Cluster Search Results")
            for appearance in selected_cluster['appearances'][:5]:  # Show first 5 appearances
                st.write(f"Time: {appearance['start']:.2f}s - {appearance['end']:.2f}s")
                clip_path = create_video_clip(video_path, appearance['start'], appearance['end'], f"temp_face_clip_{appearance['start']}.mp4")
                st.video(clip_path)
                st.write("---")
    else:
        uploaded_file = st.file_uploader("Choose a face image...", type=["jpg", "jpeg", "png"])
        if uploaded_file is not None:
            image = Image.open(uploaded_file)
            st.image(image, caption="Uploaded Image", use_column_width=True)
            if st.button("Search"):
                face_embedding = detect_and_embed_face(image, face_app)
                if face_embedding is not None:
                    face_results, face_distances = face_search(face_embedding, face_index, face_metadata)
                    st.subheader("Face Search Results")
                    for result, distance in zip(face_results, face_distances):
                        st.write(f"Time: {result['start']:.2f}s - {result['end']:.2f}s, Distance: {distance:.4f}")
                        clip_path = create_video_clip(video_path, result['start'], result['end'], f"temp_face_clip_{result['start']}.mp4")
                        st.video(clip_path)
                        st.write("---")
                else:
                    st.error("No face detected in the uploaded image. Please try another image.")