File size: 6,265 Bytes
f25ff37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import streamlit as st
import torch
from PIL import Image
import face_recognition
import faiss
from sentence_transformers import SentenceTransformer
from transformers import pipeline
import cv2
import numpy as np
import subprocess
import tempfile
import os
import yt_dlp
from moviepy.editor import VideoFileClip

# Helper functions
def get_video_id(url):
    return url.split("v=")[1].split("&")[0]

def download_youtube_video(url, output_path):
    ydl_opts = {
        'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
        'outtmpl': os.path.join(output_path, '%(id)s.%(ext)s'),
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        info = ydl.extract_info(url, download=True)
        filename = ydl.prepare_filename(info)
    return filename

def process_video(video_url, output_dir, video_id):
    # Placeholder for video processing logic
    # This should include face detection, object detection, transcription, etc.
    # For now, we'll just download the video
    video_path = download_youtube_video(video_url, output_dir)
    
    # Extract frames (simplified version)
    video = cv2.VideoCapture(video_path)
    fps = video.get(cv2.CAP_PROP_FPS)
    frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    duration = frame_count / fps
    
    frames = []
    frame_times = []
    for i in range(0, frame_count, int(fps)):  # Extract one frame per second
        video.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = video.read()
        if ret:
            frames.append(frame)
            frame_times.append(i / fps)
    
    video.release()
    
    return {
        'video_path': video_path,
        'frames': frames,
        'frame_times': frame_times,
        'duration': duration,
        'fps': fps
    }

def search(query, index_path, metadata_path, model):
    # Placeholder for search functionality
    # This should use FAISS for efficient similarity search
    return [], []

# Load models
@st.cache_resource
def load_models():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    clip_model, preprocess = torch.hub.load('openai/CLIP', 'clip_vit_b32', device=device)
    text_model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
    qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad", device=0 if torch.cuda.is_available() else -1)
    return clip_model, preprocess, text_model, qa_model

clip_model, preprocess, text_model, qa_model = load_models()

# Streamlit UI
st.title("Enhanced YouTube Video Analysis")

video_url = st.text_input("Enter YouTube Video URL")
if st.button("Analyze"):
    with st.spinner("Processing video..."):
        video_id = get_video_id(video_url)
        results = process_video(video_url, "output_dir", video_id)
    
    if results:
        st.success("Video processed successfully!")
        
        # Text search and question answering
        st.subheader("Text Search and Q&A")
        query = st.text_input("Enter a search query or question")
        if query:
            # Placeholder for text search and QA
            st.write("Text search and QA functionality to be implemented")
        
        # Image upload and similarity search
        st.subheader("Image Search")
        uploaded_image = st.file_uploader("Upload an image to find similar frames", type=["jpg", "jpeg", "png"])
        if uploaded_image:
            # Placeholder for image search
            st.write("Image search functionality to be implemented")
        
        # Face upload and recognition
        st.subheader("Face Search")
        uploaded_face = st.file_uploader("Upload a face image to find appearances", type=["jpg", "jpeg", "png"])
        if uploaded_face:
            face_image = face_recognition.load_image_file(uploaded_face)
            face_encoding = face_recognition.face_encodings(face_image)[0]
            
            face_appearances = []
            face_frames = []
            
            for i, frame in enumerate(results['frames']):
                face_locations = face_recognition.face_locations(frame)
                face_encodings = face_recognition.face_encodings(frame, face_locations)
                
                for encoding in face_encodings:
                    if face_recognition.compare_faces([face_encoding], encoding)[0]:
                        face_appearances.append(results['frame_times'][i])
                        face_frames.append(frame)
            
            st.write(f"Face appearances found at {len(face_appearances)} timestamps.")
            
            if face_frames:
                # Create a temporary directory to store frames
                with tempfile.TemporaryDirectory() as temp_dir:
                    # Save frames as images
                    for i, frame in enumerate(face_frames):
                        cv2.imwrite(os.path.join(temp_dir, f"frame_{i:04d}.jpg"), frame)
                    
                    # Use FFmpeg to create a video from the frames
                    output_video = "face_appearances.mp4"
                    ffmpeg_command = [
                        "ffmpeg",
                        "-framerate", str(results['fps']),
                        "-i", os.path.join(temp_dir, "frame_%04d.jpg"),
                        "-c:v", "libx264",
                        "-pix_fmt", "yuv420p",
                        output_video
                    ]
                    subprocess.run(ffmpeg_command, check=True)
                
                # Display the generated video
                st.video(output_video)
                
                # Provide download link for the video
                with open(output_video, "rb") as file:
                    btn = st.download_button(
                        label="Download Face Appearances Video",
                        data=file,
                        file_name="face_appearances.mp4",
                        mime="video/mp4"
                    )
            else:
                st.write("No frames with the uploaded face were found in the video.")
        
        # Display original video
        st.subheader("Original Video")
        st.video(results['video_path'])

else:
    st.warning("Please enter a valid YouTube URL and click 'Analyze'")