import os import requests from io import BytesIO import base64 import streamlit as st import requests AUTH_TOKEN = st. secrets["AUTH_TOKEN"] headers = {"Authorization": f"Bearer {AUTH_TOKEN}"} st.set_page_config(page_title="Image Similarity", page_icon="🎆🎇") CHAT_API = "https://abhilashvj-chat-api.hf.space/" # IMAGE_SIMILARITY_DEMO = "http://127.0.0.1:8000/find-similar-image-pinecone/" TMP_DIR = "./tmp" os.makedirs(TMP_DIR, exist_ok=True) st.title("Resume Reframing App") # Uploading files using Streamlit resume_file = st.file_uploader("Upload Resume", type=["txt", "pdf"]) template_file = st.file_uploader("Upload Template (Optional)", type=["txt", "pdf"], accept_multiple_files=False) job_description_file = st.file_uploader("Upload Job Description (Optional)", type=["txt", "pdf"], accept_multiple_files=False) # Inputs for QueryData text_input = st.text_input("Enter your text:", "Your text here") top_k = st.number_input("Top K", min_value=1, max_value=100, value=5) primer = st.text_input("Enter primer:", "Your primer here") if st.button("Submit"): if resume_file: # The URL to your FastAPI endpoint url = f"{CHAT_API}/upload/" # Setting up the data for the `QueryData` model data = { "text": text_input, "top_k": top_k, "primer": primer, } files = {"resume": resume_file.getvalue()} if template_file: files["template"] = template_file.getvalue() if job_description_file: files["job_description"] = job_description_file.getvalue() # Making the POST request response = requests.post(url, data=data, files=files) # Displaying the response st.write(response.json()) else: st.warning("Please upload a resume!")