|
from transformers import DetrImageProcessor, DetrForObjectDetection |
|
import torch |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
import matplotlib.patches as patches |
|
import gradio as gr |
|
import io |
|
|
|
|
|
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm") |
|
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm") |
|
|
|
def detect_and_display_image(image): |
|
|
|
if isinstance(image, bytes): |
|
image = Image.open(io.BytesIO(image)) |
|
elif isinstance(image, str): |
|
image = Image.open(image) |
|
|
|
|
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
|
|
outputs = model(**inputs) |
|
|
|
|
|
target_sizes = torch.tensor([image.size[::-1]]) |
|
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] |
|
|
|
|
|
fig, ax = plt.subplots(1, figsize=(12, 9)) |
|
ax.imshow(image) |
|
|
|
|
|
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): |
|
box = [round(i, 2) for i in box.tolist()] |
|
|
|
rect = patches.Rectangle( |
|
(box[0], box[1]), |
|
box[2] - box[0], |
|
box[3] - box[1], |
|
linewidth=2, |
|
edgecolor='red', |
|
facecolor='none' |
|
) |
|
|
|
ax.add_patch(rect) |
|
|
|
plt.text( |
|
box[0], box[1], |
|
f'{model.config.id2label[label.item()]}: {round(score.item(), 3)}', |
|
color='red', |
|
fontsize=12, |
|
bbox=dict(facecolor='yellow', alpha=0.5) |
|
) |
|
|
|
plt.axis('off') |
|
|
|
|
|
buf = io.BytesIO() |
|
plt.savefig(buf, format='png') |
|
buf.seek(0) |
|
return Image.open(buf) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=detect_and_display_image, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Image(type="pil"), |
|
title="Object Detection with DETR", |
|
description="Upload an image to detect objects using the DETR model.", |
|
live=True |
|
) |
|
|
|
|
|
iface.launch() |
|
|
|
|
|
|