AbdulBasit2007
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,145 +1,252 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
import gradio as gr
|
|
|
5 |
import numpy as np
|
6 |
-
import
|
7 |
-
|
8 |
-
from diffusers import
|
9 |
import torch
|
|
|
10 |
|
11 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
-
model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
|
13 |
-
|
14 |
-
if torch.cuda.is_available():
|
15 |
-
torch_dtype = torch.float16
|
16 |
-
else:
|
17 |
-
torch_dtype = torch.float32
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
MAX_SEED = np.iinfo(np.int32).max
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if randomize_seed:
|
29 |
seed = random.randint(0, MAX_SEED)
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
generator = torch.Generator().manual_seed(seed)
|
32 |
|
|
|
|
|
|
|
|
|
33 |
image = pipe(
|
34 |
-
prompt
|
35 |
-
negative_prompt
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
generator
|
41 |
-
|
42 |
-
|
43 |
return image, seed
|
44 |
|
|
|
45 |
examples = [
|
46 |
-
"
|
47 |
-
"
|
48 |
-
"
|
|
|
|
|
|
|
|
|
49 |
]
|
50 |
|
51 |
-
css=
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
}
|
56 |
-
|
57 |
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
-
|
60 |
-
with gr.
|
61 |
-
gr.
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
with gr.Accordion("Advanced Settings", open=False):
|
80 |
-
|
81 |
-
negative_prompt = gr.Text(
|
82 |
label="Negative prompt",
|
83 |
max_lines=1,
|
84 |
placeholder="Enter a negative prompt",
|
85 |
-
visible=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
)
|
87 |
-
|
88 |
seed = gr.Slider(
|
89 |
label="Seed",
|
90 |
minimum=0,
|
91 |
maximum=MAX_SEED,
|
92 |
step=1,
|
93 |
value=0,
|
94 |
-
|
95 |
-
|
96 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
97 |
-
|
98 |
-
with gr.Row():
|
99 |
-
|
100 |
width = gr.Slider(
|
101 |
label="Width",
|
102 |
minimum=256,
|
103 |
maximum=MAX_IMAGE_SIZE,
|
104 |
step=32,
|
105 |
-
value=1024,
|
106 |
)
|
107 |
-
|
108 |
height = gr.Slider(
|
109 |
label="Height",
|
110 |
minimum=256,
|
111 |
maximum=MAX_IMAGE_SIZE,
|
112 |
step=32,
|
113 |
-
value=1024,
|
114 |
-
)
|
115 |
-
|
116 |
-
with gr.Row():
|
117 |
-
|
118 |
-
guidance_scale = gr.Slider(
|
119 |
-
label="Guidance scale",
|
120 |
-
minimum=0.0,
|
121 |
-
maximum=10.0,
|
122 |
-
step=0.1,
|
123 |
-
value=0.0, #Replace with defaults that work for your model
|
124 |
-
)
|
125 |
-
|
126 |
-
num_inference_steps = gr.Slider(
|
127 |
-
label="Number of inference steps",
|
128 |
-
minimum=1,
|
129 |
-
maximum=50,
|
130 |
-
step=1,
|
131 |
-
value=2, #Replace with defaults that work for your model
|
132 |
)
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
gr.on(
|
139 |
-
triggers=[
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
)
|
144 |
|
145 |
-
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import os
|
3 |
+
import random
|
4 |
import gradio as gr
|
5 |
+
import spaces
|
6 |
import numpy as np
|
7 |
+
import uuid
|
8 |
+
from optimum.quanto import freeze, qfloat8, quantize
|
9 |
+
from diffusers import PixArtAlphaPipeline, LCMScheduler
|
10 |
import torch
|
11 |
+
from typing import Tuple
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
DESCRIPTION = """ # Instant Image
|
15 |
+
### Super fast text to Image Generator.
|
16 |
+
### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.
|
17 |
+
### First Image processing takes time then images generate faster.
|
18 |
+
"""
|
19 |
+
if not torch.cuda.is_available():
|
20 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
21 |
|
22 |
MAX_SEED = np.iinfo(np.int32).max
|
23 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
24 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192"))
|
25 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "1") == "1"
|
26 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
27 |
+
|
28 |
+
style_list = [
|
29 |
+
{
|
30 |
+
"name": "(No style)",
|
31 |
+
"prompt": "{prompt}",
|
32 |
+
"negative_prompt": "",
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"name": "Cinematic",
|
36 |
+
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
37 |
+
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"name": "Realistic",
|
41 |
+
"prompt": "Photorealistic {prompt} . Ulta-realistic, professional, 4k, highly detailed",
|
42 |
+
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, disfigured",
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"name": "Anime",
|
46 |
+
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
|
47 |
+
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"name": "Digital Art",
|
51 |
+
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
|
52 |
+
"negative_prompt": "photo, photorealistic, realism, ugly",
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"name": "Pixel art",
|
56 |
+
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
|
57 |
+
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"name": "Fantasy art",
|
61 |
+
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
62 |
+
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"name": "3D Model",
|
66 |
+
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
|
67 |
+
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
|
68 |
+
},
|
69 |
+
]
|
70 |
+
|
71 |
+
|
72 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
73 |
+
STYLE_NAMES = list(styles.keys())
|
74 |
+
DEFAULT_STYLE_NAME = "(No style)"
|
75 |
+
NUM_IMAGES_PER_PROMPT = 1
|
76 |
|
77 |
+
pipe = PixArtAlphaPipeline.from_pretrained(
|
78 |
+
"PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
|
79 |
+
torch_dtype=torch.float16,
|
80 |
+
use_safetensors=True,
|
81 |
+
).to("cuda:0")
|
82 |
|
83 |
+
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
84 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
85 |
+
if not negative:
|
86 |
+
negative = ""
|
87 |
+
return p.replace("{prompt}", positive), n + negative
|
88 |
+
|
89 |
+
if USE_TORCH_COMPILE:
|
90 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
|
91 |
+
print("Model Compiled!")
|
92 |
+
|
93 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
94 |
if randomize_seed:
|
95 |
seed = random.randint(0, MAX_SEED)
|
96 |
+
return seed
|
97 |
+
|
98 |
+
@spaces.GPU(duration=30)
|
99 |
+
def generate(
|
100 |
+
prompt: str,
|
101 |
+
negative_prompt: str = "",
|
102 |
+
style: str = DEFAULT_STYLE_NAME,
|
103 |
+
use_negative_prompt: bool = False,
|
104 |
+
seed: int = 0,
|
105 |
+
width: int = 1024,
|
106 |
+
height: int = 1024,
|
107 |
+
inference_steps: int = 12,
|
108 |
+
randomize_seed: bool = False,
|
109 |
+
use_resolution_binning: bool = True,
|
110 |
+
progress=gr.Progress(track_tqdm=True),
|
111 |
+
):
|
112 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
113 |
generator = torch.Generator().manual_seed(seed)
|
114 |
|
115 |
+
if not use_negative_prompt:
|
116 |
+
negative_prompt = None # type: ignore
|
117 |
+
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
|
118 |
+
|
119 |
image = pipe(
|
120 |
+
prompt=prompt,
|
121 |
+
negative_prompt=negative_prompt,
|
122 |
+
width=width,
|
123 |
+
height=height,
|
124 |
+
guidance_scale=0,
|
125 |
+
num_inference_steps=inference_steps,
|
126 |
+
generator=generator,
|
127 |
+
use_resolution_binning=use_resolution_binning,
|
128 |
+
).images[0]
|
129 |
return image, seed
|
130 |
|
131 |
+
|
132 |
examples = [
|
133 |
+
"A Monkey with a happy face in the Sahara desert.",
|
134 |
+
"Eiffel Tower was Made up of ICE.",
|
135 |
+
"photo of 8k ultra realistic harbour, nreal engine 5, port, boats, sunset, beautiful light, full of colour, cinematic lighting, battered, trending on artstation, 4k, hyperrealistic, focused, extreme details",
|
136 |
+
"Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.",
|
137 |
+
"A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.",
|
138 |
+
"A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
|
139 |
+
"an astronaut sitting in a diner, eating fries, cinematic, analog film",
|
140 |
]
|
141 |
|
142 |
+
css = '''
|
143 |
+
.gradio-container{max-width: 560px !important}
|
144 |
+
h1{text-align:center}
|
145 |
+
footer {
|
146 |
+
visibility: hidden
|
147 |
}
|
148 |
+
'''
|
149 |
|
150 |
with gr.Blocks(css=css) as demo:
|
151 |
+
gr.Markdown(DESCRIPTION)
|
152 |
+
with gr.Row(equal_height=False):
|
153 |
+
with gr.Group():
|
154 |
+
with gr.Row():
|
155 |
+
prompt = gr.Text(
|
156 |
+
label="Prompt",
|
157 |
+
show_label=False,
|
158 |
+
max_lines=1,
|
159 |
+
placeholder="Enter your prompt",
|
160 |
+
container=False,
|
161 |
+
)
|
162 |
+
run_button = gr.Button("Run", scale=0)
|
163 |
+
result = gr.Image(label="Result")
|
164 |
+
|
165 |
+
with gr.Accordion("Advanced options", open=False):
|
166 |
+
with gr.Group():
|
167 |
+
with gr.Row():
|
168 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
|
169 |
+
negative_prompt = gr.Text(
|
|
|
|
|
|
|
|
|
170 |
label="Negative prompt",
|
171 |
max_lines=1,
|
172 |
placeholder="Enter a negative prompt",
|
173 |
+
visible=True,
|
174 |
+
)
|
175 |
+
style_selection = gr.Radio(
|
176 |
+
show_label=True,
|
177 |
+
container=True,
|
178 |
+
interactive=True,
|
179 |
+
choices=STYLE_NAMES,
|
180 |
+
value=DEFAULT_STYLE_NAME,
|
181 |
+
label="Image Style",
|
182 |
)
|
|
|
183 |
seed = gr.Slider(
|
184 |
label="Seed",
|
185 |
minimum=0,
|
186 |
maximum=MAX_SEED,
|
187 |
step=1,
|
188 |
value=0,
|
189 |
+
)
|
|
|
190 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
191 |
+
with gr.Row(visible=True):
|
|
|
|
|
192 |
width = gr.Slider(
|
193 |
label="Width",
|
194 |
minimum=256,
|
195 |
maximum=MAX_IMAGE_SIZE,
|
196 |
step=32,
|
197 |
+
value=1024,
|
198 |
)
|
|
|
199 |
height = gr.Slider(
|
200 |
label="Height",
|
201 |
minimum=256,
|
202 |
maximum=MAX_IMAGE_SIZE,
|
203 |
step=32,
|
204 |
+
value=1024,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
)
|
206 |
+
with gr.Row():
|
207 |
+
inference_steps = gr.Slider(
|
208 |
+
label="Steps",
|
209 |
+
minimum=4,
|
210 |
+
maximum=20,
|
211 |
+
step=1,
|
212 |
+
value=8,
|
213 |
+
)
|
214 |
+
|
215 |
+
gr.Examples(
|
216 |
+
examples=examples,
|
217 |
+
inputs=prompt,
|
218 |
+
outputs=[result, seed],
|
219 |
+
fn=generate,
|
220 |
+
cache_examples=CACHE_EXAMPLES,
|
221 |
+
)
|
222 |
+
use_negative_prompt.change(
|
223 |
+
fn=lambda x: gr.update(visible=x),
|
224 |
+
inputs=use_negative_prompt,
|
225 |
+
outputs=negative_prompt,
|
226 |
+
api_name=False,
|
227 |
+
)
|
228 |
+
|
229 |
gr.on(
|
230 |
+
triggers=[
|
231 |
+
prompt.submit,
|
232 |
+
negative_prompt.submit,
|
233 |
+
run_button.click,
|
234 |
+
],
|
235 |
+
fn=generate,
|
236 |
+
inputs=[
|
237 |
+
prompt,
|
238 |
+
negative_prompt,
|
239 |
+
style_selection,
|
240 |
+
use_negative_prompt,
|
241 |
+
seed,
|
242 |
+
width,
|
243 |
+
height,
|
244 |
+
inference_steps,
|
245 |
+
randomize_seed,
|
246 |
+
],
|
247 |
+
outputs=[result, seed],
|
248 |
+
api_name="run",
|
249 |
)
|
250 |
|
251 |
+
if __name__ == "__main__":
|
252 |
+
demo.queue(max_size=200).launch()
|