topic2poem / app.py
Abdllh's picture
Duplicate from aaaaaabbbbbbbdddddddduuuuulllll/topic2poem
f97eb9b
from transformers import BertTokenizer, EncoderDecoderModel
import gradio as gr
tokenizerM = BertTokenizer.from_pretrained("mareloraby/BERTShared-PoetryGen-arV01")
bertSharedM = EncoderDecoderModel.from_pretrained("mareloraby/BERTShared-PoetryGen-arV01")
# bertSharedM.cuda()
def generate_response(text, k = 70, p = 0.9, nb = 4):
prompt = f"{text}"
encoded_prompt = tokenizerM.encode_plus(prompt, return_tensors = 'pt')#.to(device)
gneration = bertSharedM.generate(
input_ids = encoded_prompt.input_ids,
attention_mask = encoded_prompt.attention_mask,
do_sample = True,
top_k= k,
top_p = p,
num_beams= nb,
max_length =130,
repetition_penalty = 2.0,
no_repeat_ngram_size = 2,
early_stopping=True)
generated_text = tokenizerM.decode(gneration[0], skip_special_tokens=True)
bayts = generated_text.split("[BSEP]")
while("FSEP" not in bayts[-1]):
bayts = bayts[:-1]
bayts = bayts[:-1]
temp_poem = ''
for b in range(len(bayts)):
temp_line = bayts[b].split('[FSEP]')
temp_poem = temp_poem + temp_line[1] + ' - ' + temp_line[0] +'\n'
return temp_poem
iface = gr.Interface(fn=generate_response,
title = 'BERTShared - topic based generation',
inputs=[
gr.inputs.Radio(['حزينه','هجاء','عتاب','غزل','مدح','رومنسيه','دينية'],label='Choose Topic'),
gr.inputs.Slider(10, 200, step=10,default = 70, label='Top-K'),
gr.inputs.Slider(0.10, 0.99, step=0.02, default = 0.90, label='Top-P'),
#gr.inputs.Slider(1, 20, step=1, default = 4, label='Beams'),
],
outputs="text")
iface.launch()