Spaces:
Runtime error
Runtime error
File size: 9,151 Bytes
a74897e 1a014ff a74897e a49fcac b73db7d 1982aac b73db7d a2723b3 2e83d59 d692eef a2723b3 2f2f3ae d692eef 1982aac 2f2f3ae 1840d1a 2f2f3ae a2723b3 1982aac b73db7d 1982aac b73db7d 0df3458 1982aac b73db7d 1982aac 1a014ff b73db7d 1982aac b73db7d 1982aac b73db7d 1982aac b73db7d 1982aac 1a014ff a49fcac 1a014ff b73db7d 1982aac 1a014ff b73db7d 1a014ff b73db7d 1982aac 1a014ff b73db7d 1982aac b73db7d 1982aac 52101ad 250d5a2 52101ad 250d5a2 52101ad 1a014ff a49fcac 1a014ff a49fcac 1a014ff a49fcac 1982aac 2f2f3ae 1982aac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
import time
os.system("wget https://raw.githubusercontent.com/Weyaxi/scrape-open-llm-leaderboard/main/openllm.py")
from huggingface_hub import CommitOperationAdd, create_commit, HfApi, HfFileSystem, RepoUrl
from huggingface_hub import ModelCardData, EvalResult, ModelCard
from huggingface_hub.repocard_data import eval_results_to_model_index
from huggingface_hub.repocard import RepoCard
from openllm import get_json_format_data, get_datas
from tqdm import tqdm
import time
import requests
import pandas as pd
from pytablewriter import MarkdownTableWriter
import threading
import gradio as gr
from gradio_space_ci import enable_space_ci
enable_space_ci()
HF_TOKEN = os.getenv('HF_TOKEN')
BOT_HF_TOKEN = os.getenv('BOT_HF_TOKEN')
api = HfApi()
fs = HfFileSystem()
data = get_json_format_data()
finished_models = get_datas(data)
df = pd.DataFrame(finished_models)
def refresh(how_much=3600): # default to 1 hour
global data, finished_models, df
time.sleep(how_much)
try:
data = get_json_format_data()
finished_models = get_datas(data)
df = pd.DataFrame(finished_models)
except Exception as e:
print(f"Error while scraping leaderboard, trying again... {e}")
refresh(600) # 10 minutes if any error happens
def search(df, value):
result_df = df[df["Model"] == value]
return result_df.iloc[0].to_dict() if not result_df.empty else None
def get_details_url(repo):
author, model = repo.split("/")
return f"https://huggingface.co/datasets/open-llm-leaderboard/details_{author}__{model}"
def get_query_url(repo):
return f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query={repo}"
desc = """
This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions
"""
def get_task_summary(results):
return {
"ARC":
{"dataset_type":"ai2_arc",
"dataset_name":"AI2 Reasoning Challenge (25-Shot)",
"metric_type":"acc_norm",
"metric_value":results["ARC"],
"dataset_config":"ARC-Challenge",
"dataset_split":"test",
"dataset_revision":None,
"dataset_args":{"num_few_shot": 25},
"metric_name":"normalized accuracy"
},
"HellaSwag":
{"dataset_type":"hellaswag",
"dataset_name":"HellaSwag (10-Shot)",
"metric_type":"acc_norm",
"metric_value":results["HellaSwag"],
"dataset_config":None,
"dataset_split":"validation",
"dataset_revision":None,
"dataset_args":{"num_few_shot": 10},
"metric_name":"normalized accuracy"
},
"MMLU":
{
"dataset_type":"cais/mmlu",
"dataset_name":"MMLU (5-Shot)",
"metric_type":"acc",
"metric_value":results["MMLU"],
"dataset_config":"all",
"dataset_split":"test",
"dataset_revision":None,
"dataset_args":{"num_few_shot": 5},
"metric_name":"accuracy"
},
"TruthfulQA":
{
"dataset_type":"truthful_qa",
"dataset_name":"TruthfulQA (0-shot)",
"metric_type":"mc2",
"metric_value":results["TruthfulQA"],
"dataset_config":"multiple_choice",
"dataset_split":"validation",
"dataset_revision":None,
"dataset_args":{"num_few_shot": 0},
"metric_name":None
},
"Winogrande":
{
"dataset_type":"winogrande",
"dataset_name":"Winogrande (5-shot)",
"metric_type":"acc",
"metric_value":results["Winogrande"],
"dataset_config":"winogrande_xl",
"dataset_split":"validation",
"dataset_args":{"num_few_shot": 5},
"metric_name":"accuracy"
},
"GSM8K":
{
"dataset_type":"gsm8k",
"dataset_name":"GSM8k (5-shot)",
"metric_type":"acc",
"metric_value":results["GSM8K"],
"dataset_config":"main",
"dataset_split":"test",
"dataset_args":{"num_few_shot": 5},
"metric_name":"accuracy"
}
}
def get_eval_results(repo):
results = search(df, repo)
task_summary = get_task_summary(results)
md_writer = MarkdownTableWriter()
md_writer.headers = ["Metric", "Value"]
md_writer.value_matrix = [["Avg.", results['Average ⬆️']]] + [[v["dataset_name"], v["metric_value"]] for v in task_summary.values()]
text = f"""
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here]({get_details_url(repo)})
{md_writer.dumps()}
"""
return text
def get_edited_yaml_readme(repo, token: str | None):
card = ModelCard.load(repo, token=token)
results = search(df, repo)
common = {"task_type": 'text-generation', "task_name": 'Text Generation', "source_name": "Open LLM Leaderboard", "source_url": f"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query={repo}"}
tasks_results = get_task_summary(results)
if not card.data['eval_results']: # No results reported yet, we initialize the metadata
card.data["model-index"] = eval_results_to_model_index(repo.split('/')[1], [EvalResult(**task, **common) for task in tasks_results.values()])
else: # We add the new evaluations
for task in tasks_results.values():
cur_result = EvalResult(**task, **common)
if any(result.is_equal_except_value(cur_result) for result in card.data['eval_results']):
continue
card.data['eval_results'].append(cur_result)
return str(card)
def commit(repo, pr_number=None, message="Adding Evaluation Results", oauth_token: gr.OAuthToken | None = None): # specify pr number if you want to edit it, don't if you don't want
if oauth_token is None:
raise gr.Error("You must be logged in to open a PR. Click on 'Sign in with Huggingface' first.")
if oauth_token.expires_at < time.time():
raise gr.Error("Token expired. Logout and try again.")
token = oauth_token.token
if repo.startswith("https://huggingface.co/"):
try:
repo = RepoUrl(repo).repo_id
except Exception:
raise gr.Error(f"Not a valid repo id: {str(repo)}")
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}
try:
try: # check if there is a readme already
readme_text = get_edited_yaml_readme(repo, token=token) + get_eval_results(repo)
except Exception as e:
if "Repo card metadata block was not found." in str(e): # There is no readme
readme_text = get_edited_yaml_readme(repo, token=token)
else:
print(f"Something went wrong: {e}")
liste = [CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=readme_text.encode())]
commit = (create_commit(repo_id=repo, token=token, operations=liste, commit_message=message, commit_description=desc, repo_type="model", **edited).pr_url)
return commit
except Exception as e:
if "Discussions are disabled for this repo" in str(e):
return "Discussions disabled"
elif "Cannot access gated repo" in str(e):
return "Gated repo"
elif "Repository Not Found" in str(e):
return "Repository Not Found"
else:
return e
gradio_title="🧐 Open LLM Leaderboard Results PR Opener"
gradio_desc= """🎯 This tool's aim is to provide [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) results in the model card.
## 💭 What Does This Tool Do:
- This tool adds the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) result of your model at the end of your model card.
- This tool also adds evaluation results as your model's metadata to showcase the evaluation results as a widget.
## 🛠️ Backend
The leaderboard's backend mainly runs on the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api).
## 🤝 Acknowledgements
- Special thanks to [Clémentine Fourrier (clefourrier)](https://huggingface.co/clefourrier) for her help and contributions to the code.
- Special thanks to [Lucain Pouget (Wauplin)](https://huggingface.co/Wauplin) for assisting with the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api).
"""
with gr.Blocks() as demo:
gr.HTML(f"""<h1 align="center" id="space-title">{gradio_title}</h1>""")
gr.Markdown(gradio_desc)
with gr.Row(equal_height=False):
with gr.Column():
model_id = gr.Textbox(label="Model ID or URL", lines=1)
gr.LoginButton()
with gr.Column():
output = gr.Textbox(label="Output", lines=1)
gr.LogoutButton()
submit_btn = gr.Button("Submit", variant="primary")
submit_btn.click(commit, model_id, output)
threading.Thread(target=refresh).start()
demo.launch() |