Shashwat2528 commited on
Commit
c6cab21
·
1 Parent(s): 46af362

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +143 -1
README.md CHANGED
@@ -8,4 +8,146 @@ pinned: false
8
  license: cc-by-4.0
9
  ---
10
 
11
- Edit this `README.md` markdown file to author your organization card 🔥
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  license: cc-by-4.0
9
  ---
10
 
11
+ ---
12
+ language: en
13
+ license: cc-by-4.0
14
+ datasets:
15
+ - squad_v2
16
+ model-index:
17
+ - name: Aviskaaram-ekta
18
+ results:
19
+ - task:
20
+ type: Question-Answering
21
+ name: Question Answering
22
+ dataset:
23
+ name: squad_v2
24
+ type: squad_v2
25
+ config: squad_v2
26
+ split: validation
27
+ metrics:
28
+ - type: exact_match
29
+ value: -
30
+ name: Exact Match
31
+ verified: true
32
+ verifyToken: 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
33
+
34
+ - type: f1
35
+ value: -
36
+ name: F1
37
+ verified: true
38
+ verifyToken: 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
39
+
40
+ - type: total
41
+ value: 11869
42
+ name: total
43
+ verified: true
44
+ verifyToken: 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
45
+
46
+ ---
47
+
48
+ # Aviskaaram-ekta for QA
49
+
50
+ This is the [Aviskaaram-ekta](https://huggingface.co/) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
51
+
52
+
53
+ ## Overview
54
+ **Language model:**Aviskaaram-ekta
55
+ **Language:** English
56
+ **Downstream-task:** Extractive QA
57
+ **Training data:** SQuAD 2.0
58
+ **Eval data:** SQuAD 2.0
59
+ **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)
60
+ **Infrastructure**: 4x Tesla v100
61
+
62
+ ## Hyperparameters
63
+
64
+ ```
65
+ batch_size = 4
66
+ n_epochs = 50
67
+ base_LM_model = "roberta-base"
68
+ max_seq_len = 512
69
+ learning_rate = 9e-5
70
+ lr_schedule = LinearWarmup
71
+ warmup_proportion = 0.2
72
+ doc_stride=128
73
+ max_query_length=64
74
+ ```
75
+
76
+
77
+ ## Usage
78
+
79
+ ### In Haystack
80
+ Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
81
+ ```python
82
+ reader = FARMReader(model_name_or_path="AVISHKAARAM/avishkaarak-ekta-hindi")
83
+ # or
84
+ reader = TransformersReader(model_name_or_path="AVISHKAARAM/avishkaarak-ekta-hindi",tokenizer="deepset/roberta-base-squad2")
85
+ ```
86
+ For a complete example of ``avishkaarak-ekta-hindi`` being used for Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system)
87
+
88
+ ### In Transformers
89
+ ```python
90
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
91
+
92
+ model_name = "AVISHKAARAM/avishkaarak-ekta-hindi"
93
+
94
+ # a) Get predictions
95
+ nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
96
+ QA_input = {
97
+ 'question': 'Why is model conversion important?',
98
+ 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
99
+ }
100
+ res = nlp(QA_input)
101
+
102
+ # b) Load model & tokenizer
103
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
104
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
105
+ ```
106
+
107
+ ## Performance
108
+ Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
109
+
110
+ ```
111
+ "exact": ,
112
+ "f1": ,
113
+
114
+ "total": ,
115
+ "HasAns_exact": ,
116
+ "HasAns_f1": ,
117
+ "HasAns_total": ,
118
+ "NoAns_exact": ,
119
+ "NoAns_f1": ,
120
+ "NoAns_total":
121
+ ```
122
+
123
+ ## Authors
124
+ **Branden Chan:** [email protected]
125
+ **Timo Möller:** [email protected]
126
+ **Malte Pietsch:** [email protected]
127
+ **Tanay Soni:** [email protected]
128
+
129
+ ## About us
130
+
131
+ <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
132
+ <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
133
+ <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
134
+ </div>
135
+ <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
136
+ <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
137
+ </div>
138
+ </div>
139
+
140
+ [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
141
+
142
+
143
+
144
+ ## Get in touch and join the Haystack community
145
+
146
+ <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
147
+
148
+ We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
149
+
150
+ [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
151
+
152
+ By the way: [we're hiring!](http://www.deepset.ai/jobs)
153
+