Spaces:
Sleeping
Sleeping
from transformers import BertTokenizer, EncoderDecoderModel | |
import gradio as gr | |
tokenizerM = BertTokenizer.from_pretrained("mareloraby/BERTShared-PoetryGen-arV01") | |
bertSharedM = EncoderDecoderModel.from_pretrained("mareloraby/BERTShared-PoetryGen-arV01") | |
# bertSharedM.cuda() | |
def generate_response(text, k = 70, p = 0.9, nb = 4): | |
prompt = f"{text}" | |
encoded_prompt = tokenizerM.encode_plus(prompt, return_tensors = 'pt')#.to(device) | |
gneration = bertSharedM.generate( | |
input_ids = encoded_prompt.input_ids, | |
attention_mask = encoded_prompt.attention_mask, | |
do_sample = True, | |
top_k= k, | |
top_p = p, | |
num_beams= nb, | |
max_length =130, | |
repetition_penalty = 2.0, | |
no_repeat_ngram_size = 2, | |
early_stopping=True) | |
generated_text = tokenizerM.decode(gneration[0], skip_special_tokens=True) | |
bayts = generated_text.split("[BSEP]") | |
while("FSEP" not in bayts[-1]): | |
bayts = bayts[:-1] | |
bayts = bayts[:-1] | |
temp_poem = '' | |
for b in range(len(bayts)): | |
temp_line = bayts[b].split('[FSEP]') | |
temp_poem = temp_poem + temp_line[1] + ' - ' + temp_line[0] +'\n' | |
return temp_poem | |
iface = gr.Interface(fn=generate_response, | |
title = 'BERTShared - topic based generation', | |
inputs=[ | |
gr.inputs.Radio(['حزينه','هجاء','عتاب','غزل','مدح','رومنسيه','دينية'],label='Choose Topic'), | |
gr.inputs.Slider(10, 200, step=10,default = 70, label='Top-K'), | |
gr.inputs.Slider(0.10, 0.99, step=0.02, default = 0.90, label='Top-P'), | |
#gr.inputs.Slider(1, 20, step=1, default = 4, label='Beams'), | |
], | |
outputs="text") | |
iface.launch() |