Spaces:
Running
Running
import os | |
import cv2 | |
import numpy as np | |
import trimesh | |
import torch | |
import torch.nn.functional as F | |
def dot(x, y): | |
return torch.sum(x * y, -1, keepdim=True) | |
def length(x, eps=1e-20): | |
return torch.sqrt(torch.clamp(dot(x, x), min=eps)) | |
def safe_normalize(x, eps=1e-20): | |
return x / length(x, eps) | |
class Mesh: | |
def __init__( | |
self, | |
v=None, | |
f=None, | |
vn=None, | |
fn=None, | |
vt=None, | |
ft=None, | |
albedo=None, | |
device=None, | |
): | |
self.device = device | |
self.v = v | |
self.vn = vn | |
self.vt = vt | |
self.f = f | |
self.fn = fn | |
self.ft = ft | |
# only support a single albedo | |
self.albedo = albedo | |
self.ori_center = 0 | |
self.ori_scale = 1 | |
def load(cls, path=None, resize=True, **kwargs): | |
# assume init with kwargs | |
if path is None: | |
mesh = cls(**kwargs) | |
# obj supports face uv | |
elif path.endswith(".obj"): | |
mesh = cls.load_obj(path, **kwargs) | |
# trimesh only supports vertex uv, but can load more formats | |
else: | |
mesh = cls.load_trimesh(path, **kwargs) | |
print(f"[Mesh loading] v: {mesh.v.shape}, f: {mesh.f.shape}") | |
# auto-normalize | |
if resize: | |
mesh.auto_size() | |
# auto-fix normal | |
if mesh.vn is None: | |
mesh.auto_normal() | |
print(f"[Mesh loading] vn: {mesh.vn.shape}, fn: {mesh.fn.shape}") | |
# auto-fix texture | |
if mesh.vt is None: | |
mesh.auto_uv(cache_path=path) | |
print(f"[Mesh loading] vt: {mesh.vt.shape}, ft: {mesh.ft.shape}") | |
return mesh | |
# load from obj file | |
def load_obj(cls, path, albedo_path=None, device=None, init_empty_tex=False): | |
assert os.path.splitext(path)[-1] == ".obj" | |
mesh = cls() | |
# device | |
if device is None: | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
mesh.device = device | |
# try to find texture from mtl file | |
if albedo_path is None: | |
mtl_path = path.replace(".obj", ".mtl") | |
if os.path.exists(mtl_path): | |
with open(mtl_path, "r") as f: | |
lines = f.readlines() | |
for line in lines: | |
split_line = line.split() | |
# empty line | |
if len(split_line) == 0: | |
continue | |
prefix = split_line[0] | |
# NOTE: simply use the first map_Kd as albedo! | |
if "map_Kd" in prefix: | |
albedo_path = os.path.join(os.path.dirname(path), split_line[1]) | |
print(f"[load_obj] use texture from: {albedo_path}") | |
break | |
if init_empty_tex or albedo_path is None or not os.path.exists(albedo_path): | |
# init an empty texture | |
print(f"[load_obj] init empty albedo!") | |
# albedo = np.random.rand(1024, 1024, 3).astype(np.float32) | |
albedo = np.ones((1024, 1024, 3), dtype=np.float32) * np.array( | |
[0.5, 0.5, 0.5] | |
) # default color | |
else: | |
albedo = cv2.imread(albedo_path, cv2.IMREAD_UNCHANGED) | |
albedo = cv2.cvtColor(albedo, cv2.COLOR_BGR2RGB) | |
albedo = albedo.astype(np.float32) / 255 | |
print(f"[load_obj] load texture: {albedo.shape}") | |
# import matplotlib.pyplot as plt | |
# plt.imshow(albedo) | |
# plt.show() | |
mesh.albedo = torch.tensor(albedo, dtype=torch.float32, device=device) | |
# load obj | |
with open(path, "r") as f: | |
lines = f.readlines() | |
def parse_f_v(fv): | |
# pass in a vertex term of a face, return {v, vt, vn} (-1 if not provided) | |
# supported forms: | |
# f v1 v2 v3 | |
# f v1/vt1 v2/vt2 v3/vt3 | |
# f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3 | |
# f v1//vn1 v2//vn2 v3//vn3 | |
xs = [int(x) - 1 if x != "" else -1 for x in fv.split("/")] | |
xs.extend([-1] * (3 - len(xs))) | |
return xs[0], xs[1], xs[2] | |
# NOTE: we ignore usemtl, and assume the mesh ONLY uses one material (first in mtl) | |
vertices, texcoords, normals = [], [], [] | |
faces, tfaces, nfaces = [], [], [] | |
for line in lines: | |
split_line = line.split() | |
# empty line | |
if len(split_line) == 0: | |
continue | |
# v/vn/vt | |
prefix = split_line[0].lower() | |
if prefix == "v": | |
vertices.append([float(v) for v in split_line[1:]]) | |
elif prefix == "vn": | |
normals.append([float(v) for v in split_line[1:]]) | |
elif prefix == "vt": | |
val = [float(v) for v in split_line[1:]] | |
texcoords.append([val[0], 1.0 - val[1]]) | |
elif prefix == "f": | |
vs = split_line[1:] | |
nv = len(vs) | |
v0, t0, n0 = parse_f_v(vs[0]) | |
for i in range(nv - 2): # triangulate (assume vertices are ordered) | |
v1, t1, n1 = parse_f_v(vs[i + 1]) | |
v2, t2, n2 = parse_f_v(vs[i + 2]) | |
faces.append([v0, v1, v2]) | |
tfaces.append([t0, t1, t2]) | |
nfaces.append([n0, n1, n2]) | |
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device) | |
mesh.vt = ( | |
torch.tensor(texcoords, dtype=torch.float32, device=device) | |
if len(texcoords) > 0 | |
else None | |
) | |
mesh.vn = ( | |
torch.tensor(normals, dtype=torch.float32, device=device) | |
if len(normals) > 0 | |
else None | |
) | |
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device) | |
mesh.ft = ( | |
torch.tensor(tfaces, dtype=torch.int32, device=device) | |
if texcoords is not None | |
else None | |
) | |
mesh.fn = ( | |
torch.tensor(nfaces, dtype=torch.int32, device=device) | |
if normals is not None | |
else None | |
) | |
return mesh | |
def load_trimesh(cls, path, device=None): | |
mesh = cls() | |
# device | |
if device is None: | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
mesh.device = device | |
# use trimesh to load glb, assume only has one single RootMesh... | |
_data = trimesh.load(path) | |
if isinstance(_data, trimesh.Scene): | |
mesh_keys = list(_data.geometry.keys()) | |
assert ( | |
len(mesh_keys) == 1 | |
), f"{path} contains more than one meshes, not supported!" | |
_mesh = _data.geometry[mesh_keys[0]] | |
elif isinstance(_data, trimesh.Trimesh): | |
_mesh = _data | |
else: | |
raise NotImplementedError(f"type {type(_data)} not supported!") | |
# TODO: exception handling if no material | |
_material = _mesh.visual.material | |
if isinstance(_material, trimesh.visual.material.PBRMaterial): | |
texture = np.array(_material.baseColorTexture).astype(np.float32) / 255 | |
elif isinstance(_material, trimesh.visual.material.SimpleMaterial): | |
texture = ( | |
np.array(_material.to_pbr().baseColorTexture).astype(np.float32) / 255 | |
) | |
else: | |
raise NotImplementedError(f"material type {type(_material)} not supported!") | |
print(f"[load_obj] load texture: {texture.shape}") | |
mesh.albedo = torch.tensor(texture, dtype=torch.float32, device=device) | |
vertices = _mesh.vertices | |
texcoords = _mesh.visual.uv | |
texcoords[:, 1] = 1 - texcoords[:, 1] | |
normals = _mesh.vertex_normals | |
# trimesh only support vertex uv... | |
faces = tfaces = nfaces = _mesh.faces | |
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device) | |
mesh.vt = ( | |
torch.tensor(texcoords, dtype=torch.float32, device=device) | |
if len(texcoords) > 0 | |
else None | |
) | |
mesh.vn = ( | |
torch.tensor(normals, dtype=torch.float32, device=device) | |
if len(normals) > 0 | |
else None | |
) | |
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device) | |
mesh.ft = ( | |
torch.tensor(tfaces, dtype=torch.int32, device=device) | |
if texcoords is not None | |
else None | |
) | |
mesh.fn = ( | |
torch.tensor(nfaces, dtype=torch.int32, device=device) | |
if normals is not None | |
else None | |
) | |
return mesh | |
# aabb | |
def aabb(self): | |
return torch.min(self.v, dim=0).values, torch.max(self.v, dim=0).values | |
# unit size | |
def auto_size(self): | |
vmin, vmax = self.aabb() | |
self.ori_center = (vmax + vmin) / 2 | |
self.ori_scale = 1.2 / torch.max(vmax - vmin).item() # to ~ [-0.6, 0.6] | |
self.v = (self.v - self.ori_center) * self.ori_scale | |
def auto_normal(self): | |
i0, i1, i2 = self.f[:, 0].long(), self.f[:, 1].long(), self.f[:, 2].long() | |
v0, v1, v2 = self.v[i0, :], self.v[i1, :], self.v[i2, :] | |
face_normals = torch.cross(v1 - v0, v2 - v0) | |
# Splat face normals to vertices | |
vn = torch.zeros_like(self.v) | |
vn.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals) | |
vn.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals) | |
vn.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals) | |
# Normalize, replace zero (degenerated) normals with some default value | |
vn = torch.where( | |
dot(vn, vn) > 1e-20, | |
vn, | |
torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device), | |
) | |
vn = safe_normalize(vn) | |
self.vn = vn | |
self.fn = self.f | |
def auto_uv(self, cache_path=None): | |
# try to load cache | |
if cache_path is not None: | |
cache_path = cache_path.replace(".obj", "_uv.npz") | |
if cache_path is not None and os.path.exists(cache_path): | |
data = np.load(cache_path) | |
vt_np, ft_np = data["vt"], data["ft"] | |
else: | |
import xatlas | |
v_np = self.v.detach().cpu().numpy() | |
f_np = self.f.detach().int().cpu().numpy() | |
atlas = xatlas.Atlas() | |
atlas.add_mesh(v_np, f_np) | |
chart_options = xatlas.ChartOptions() | |
# chart_options.max_iterations = 4 | |
atlas.generate(chart_options=chart_options) | |
vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2] | |
# save to cache | |
if cache_path is not None: | |
np.savez(cache_path, vt=vt_np, ft=ft_np) | |
vt = torch.from_numpy(vt_np.astype(np.float32)).to(self.device) | |
ft = torch.from_numpy(ft_np.astype(np.int32)).to(self.device) | |
self.vt = vt | |
self.ft = ft | |
def to(self, device): | |
self.device = device | |
for name in ["v", "f", "vn", "fn", "vt", "ft", "albedo"]: | |
tensor = getattr(self, name) | |
if tensor is not None: | |
setattr(self, name, tensor.to(device)) | |
return self | |
# write to ply file (only geom) | |
def write_ply(self, path): | |
assert path.endswith(".ply") | |
v_np = self.v.detach().cpu().numpy() | |
f_np = self.f.detach().cpu().numpy() | |
_mesh = trimesh.Trimesh(vertices=v_np, faces=f_np) | |
_mesh.export(path) | |
# write to obj file | |
def write(self, path): | |
mtl_path = path.replace(".obj", ".mtl") | |
albedo_path = path.replace(".obj", "_albedo.png") | |
v_np = self.v.detach().cpu().numpy() | |
vt_np = self.vt.detach().cpu().numpy() if self.vt is not None else None | |
vn_np = self.vn.detach().cpu().numpy() if self.vn is not None else None | |
f_np = self.f.detach().cpu().numpy() | |
ft_np = self.ft.detach().cpu().numpy() if self.ft is not None else None | |
fn_np = self.fn.detach().cpu().numpy() if self.fn is not None else None | |
with open(path, "w") as fp: | |
fp.write(f"mtllib {os.path.basename(mtl_path)} \n") | |
for v in v_np: | |
fp.write(f"v {v[0]} {v[1]} {v[2]} \n") | |
if vt_np is not None: | |
for v in vt_np: | |
fp.write(f"vt {v[0]} {1 - v[1]} \n") | |
if vn_np is not None: | |
for v in vn_np: | |
fp.write(f"vn {v[0]} {v[1]} {v[2]} \n") | |
fp.write(f"usemtl defaultMat \n") | |
for i in range(len(f_np)): | |
fp.write( | |
f'f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1 if ft_np is not None else ""}/{fn_np[i, 0] + 1 if fn_np is not None else ""} \ | |
{f_np[i, 1] + 1}/{ft_np[i, 1] + 1 if ft_np is not None else ""}/{fn_np[i, 1] + 1 if fn_np is not None else ""} \ | |
{f_np[i, 2] + 1}/{ft_np[i, 2] + 1 if ft_np is not None else ""}/{fn_np[i, 2] + 1 if fn_np is not None else ""} \n' | |
) | |
with open(mtl_path, "w") as fp: | |
fp.write(f"newmtl defaultMat \n") | |
fp.write(f"Ka 1 1 1 \n") | |
fp.write(f"Kd 1 1 1 \n") | |
fp.write(f"Ks 0 0 0 \n") | |
fp.write(f"Tr 1 \n") | |
fp.write(f"illum 1 \n") | |
fp.write(f"Ns 0 \n") | |
fp.write(f"map_Kd {os.path.basename(albedo_path)} \n") | |
albedo = self.albedo.detach().cpu().numpy() | |
albedo = (albedo * 255).astype(np.uint8) | |
cv2.imwrite(albedo_path, cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR)) | |