|
from skimage.transform import estimate_transform, AffineTransform |
|
import numpy as np |
|
from IPython import embed |
|
import mediapipe as mp |
|
import copy |
|
|
|
mp_face_mesh = mp.solutions.face_mesh |
|
|
|
|
|
FACEMESH_LEFT_EYE = [i for i in mp_face_mesh.FACEMESH_LEFT_EYE] |
|
FACEMESH_RIGHT_EYE = [i for i in mp_face_mesh.FACEMESH_RIGHT_EYE] |
|
FACEMESH_LEFT_EYEBROW = [i for i in mp_face_mesh.FACEMESH_LEFT_EYEBROW] |
|
FACEMESH_RIGHT_EYEBROW = [i for i in mp_face_mesh.FACEMESH_RIGHT_EYEBROW] |
|
|
|
|
|
FACEMESH_LIPS_OUTER_BOTTOM_LEFT = [(61,146),(146,91),(91,181),(181,84),(84,17)] |
|
FACEMESH_LIPS_OUTER_BOTTOM_RIGHT = [(17,314),(314,405),(405,321),(321,375),(375,291)] |
|
FACEMESH_LIPS_INNER_BOTTOM_LEFT = [(78,95),(95,88),(88,178),(178,87),(87,14)] |
|
FACEMESH_LIPS_INNER_BOTTOM_RIGHT = [(14,317),(317,402),(402,318),(318,324),(324,308)] |
|
FACEMESH_LIPS_OUTER_TOP_LEFT = [(61,185),(185,40),(40,39),(39,37),(37,0)] |
|
FACEMESH_LIPS_OUTER_TOP_RIGHT = [(0,267),(267,269),(269,270),(270,409),(409,291)] |
|
FACEMESH_LIPS_INNER_TOP_LEFT = [(78,191),(191,80),(80,81),(81,82),(82,13)] |
|
FACEMESH_LIPS_INNER_TOP_RIGHT = [(13,312),(312,311),(311,310),(310,415),(415,308)] |
|
FACEMESH_MOUSE = \ |
|
FACEMESH_LIPS_OUTER_BOTTOM_LEFT + \ |
|
FACEMESH_LIPS_OUTER_BOTTOM_RIGHT + \ |
|
FACEMESH_LIPS_INNER_BOTTOM_LEFT + \ |
|
FACEMESH_LIPS_INNER_BOTTOM_RIGHT + \ |
|
FACEMESH_LIPS_OUTER_TOP_LEFT + \ |
|
FACEMESH_LIPS_OUTER_TOP_RIGHT + \ |
|
FACEMESH_LIPS_INNER_TOP_LEFT + \ |
|
FACEMESH_LIPS_INNER_TOP_RIGHT |
|
|
|
LANDMARK_IDXES_DICT = { |
|
"left_eye" : sorted(list(set([j for i in FACEMESH_LEFT_EYE for j in i])) + [473]), |
|
"right_eye" : sorted(list(set([j for i in FACEMESH_RIGHT_EYE for j in i])) + [468]), |
|
"mouse" : sorted(list(set([j for i in FACEMESH_MOUSE for j in i]))), |
|
"nose" : sorted(list(set([1,4,5,274,275,281,44,45,51,220,440]))), |
|
"left_eyebow" : sorted(list(set([j for i in FACEMESH_LEFT_EYEBROW for j in i]))), |
|
"right_eyebow" : sorted(list(set([j for i in FACEMESH_RIGHT_EYEBROW for j in i]))), |
|
} |
|
|
|
def create_perspective_matrix(aspect_ratio): |
|
kDegreesToRadians = np.pi / 180. |
|
near = 1 |
|
far = 10000 |
|
perspective_matrix = np.zeros(16, dtype=np.float32) |
|
|
|
|
|
f = 1.0 / np.tan(kDegreesToRadians * 63 / 2.) |
|
|
|
denom = 1.0 / (near - far) |
|
perspective_matrix[0] = f / aspect_ratio |
|
perspective_matrix[5] = f |
|
perspective_matrix[10] = (near + far) * denom |
|
perspective_matrix[11] = -1. |
|
perspective_matrix[14] = 1. * far * near * denom |
|
|
|
|
|
|
|
|
|
perspective_matrix[5] *= -1. |
|
return perspective_matrix |
|
|
|
|
|
def project_points_with_trans(points_3d, transformation_matrix, image_shape): |
|
P = create_perspective_matrix(image_shape[1] / image_shape[0]).reshape(4, 4).T |
|
L, N, _ = points_3d.shape |
|
projected_points = np.zeros((L, N, 2)) |
|
|
|
for i in range(L): |
|
points_3d_frame = points_3d[i] |
|
ones = np.ones((points_3d_frame.shape[0], 1)) |
|
points_3d_homogeneous = np.hstack([points_3d_frame, ones]) |
|
transformed_points = points_3d_homogeneous @ transformation_matrix[i].T @ P |
|
projected_points_frame = transformed_points[:, :2] / transformed_points[:, 3, np.newaxis] |
|
projected_points_frame[:, 0] = (projected_points_frame[:, 0] + 1) * 0.5 * image_shape[1] |
|
projected_points_frame[:, 1] = (projected_points_frame[:, 1] + 1) * 0.5 * image_shape[0] |
|
projected_points[i] = projected_points_frame |
|
return projected_points |
|
|
|
def project_vertices_from_ref2tgt(ref_lmks3d, tgt_trans_mat): |
|
|
|
projected_vertices = project_points_with_trans(ref_lmks3d[np.newaxis, ...], tgt_trans_mat[np.newaxis, ...], [512, 512])[0] |
|
return projected_vertices |
|
|
|
|
|
def old_motion_sync_old(sequence_driver_det, reference_det): |
|
assert type(sequence_driver_det) is list |
|
assert type(sequence_driver_det[0]) is type(reference_det) |
|
|
|
lmks3d_mean = sum([i["lmks3d"] for i in sequence_driver_det]) / len(sequence_driver_det) |
|
overall_transform = estimate_transform('affine', lmks3d_mean, reference_det["lmks3d"]) |
|
|
|
eye_idxes_all = LANDMARK_IDXES_DICT["left_eye"] + LANDMARK_IDXES_DICT["right_eye"] |
|
for det_id in range(len(sequence_driver_det)): |
|
trans = estimate_transform('affine', sequence_driver_det[det_id]["lmks"][eye_idxes_all], sequence_driver_det[det_id]["lmks3d"][eye_idxes_all]) |
|
sequence_driver_det[det_id]["lmks3d"] = np.vstack([ |
|
sequence_driver_det[det_id]["lmks3d"], |
|
trans(sequence_driver_det[det_id]["lmks"][-10:]) |
|
]) |
|
|
|
trans_mats = [] |
|
for det in sequence_driver_det: |
|
trans_mats.append(det["trans_mat"] @ np.linalg.inv(sequence_driver_det[0]["trans_mat"])) |
|
|
|
trans_mats_smooth = [] |
|
smooth_margin = 2 |
|
for tm_itx in range(len(trans_mats)): |
|
smooth_idxes = [i for i in range(tm_itx - smooth_margin, tm_itx + smooth_margin + 1) if i >= 0 and i < len(trans_mats)] |
|
tm = sum([trans_mats[i] for i in smooth_idxes]) / len(smooth_idxes) |
|
trans_mats_smooth.append(tm) |
|
|
|
lmks3d_smooth = [] |
|
smooth_margin = 1 |
|
for det_itx in range(len(sequence_driver_det)): |
|
smooth_idxes = [i for i in range(det_itx - smooth_margin, det_itx + smooth_margin + 1) if i >= 0 and i < len(sequence_driver_det)] |
|
lmks3d_smooth.append(sum([sequence_driver_det[i]["lmks3d"] for i in smooth_idxes]) / len(smooth_idxes)) |
|
|
|
for det_itx, lmks3d in enumerate(lmks3d_smooth): |
|
sequence_driver_det[det_itx]["lmks3d"] = lmks3d |
|
|
|
projected_vertices_list = [] |
|
for det_itx in range(len(sequence_driver_det)): |
|
aligned_3d = overall_transform(sequence_driver_det[det_itx]["lmks3d"]) |
|
tmat = reference_det["trans_mat"] @ trans_mats_smooth[det_itx] |
|
projected_vertices = project_vertices_from_ref2tgt(aligned_3d, tmat) |
|
projected_vertices_list.append(projected_vertices) |
|
|
|
|
|
|
|
return projected_vertices_list |
|
|
|
|
|
def motion_sync(sequence_driver_det, reference_det, per_landmark_align=True): |
|
assert type(sequence_driver_det) is list |
|
assert type(sequence_driver_det[0]) is type(reference_det) |
|
|
|
eye_idxes_all = [i for i in sorted(list(set(LANDMARK_IDXES_DICT["left_eye"] + LANDMARK_IDXES_DICT["right_eye"]))) if i < len(reference_det["lmks3d"])] |
|
for det_id in range(len(sequence_driver_det)): |
|
trans_iris = estimate_transform('affine', sequence_driver_det[det_id]["lmks"][eye_idxes_all], sequence_driver_det[det_id]["lmks3d"][eye_idxes_all]) |
|
sequence_driver_det[det_id]["lmks3d"] = np.vstack([ |
|
sequence_driver_det[det_id]["lmks3d"], |
|
trans_iris(sequence_driver_det[det_id]["lmks"][-10:]) |
|
]) |
|
|
|
trans_iris = estimate_transform('affine', reference_det["lmks"][eye_idxes_all], reference_det["lmks3d"][eye_idxes_all]) |
|
reference_det["lmks3d"] = np.vstack([ |
|
reference_det["lmks3d"], |
|
trans_iris(reference_det["lmks"][-10:]) |
|
]) |
|
|
|
lmks3d_mean = sum([i["lmks3d"] for i in sequence_driver_det]) / len(sequence_driver_det) |
|
|
|
landmark_trans_dict = {} |
|
for landmark_name, landmark_idxes in LANDMARK_IDXES_DICT.items(): |
|
rf_lm = reference_det["lmks3d"][landmark_idxes] |
|
dr_lm = lmks3d_mean[landmark_idxes] |
|
landmark_trans_dict[landmark_name] = estimate_transform('affine', dr_lm, rf_lm) |
|
|
|
|
|
overall_transform = estimate_transform('affine', lmks3d_mean, reference_det["lmks3d"]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trans_mats = [] |
|
for det in sequence_driver_det: |
|
trans_mats.append(det["trans_mat"] @ np.linalg.inv(sequence_driver_det[0]["trans_mat"])) |
|
|
|
trans_mats_smooth = [] |
|
smooth_margin = 2 |
|
for tm_itx in range(len(trans_mats)): |
|
smooth_idxes = [i for i in range(tm_itx - smooth_margin, tm_itx + smooth_margin + 1) if i >= 0 and i < len(trans_mats)] |
|
tm = sum([trans_mats[i] for i in smooth_idxes]) / len(smooth_idxes) |
|
trans_mats_smooth.append(tm) |
|
|
|
lmks3d_smooth = [] |
|
smooth_margin = 1 |
|
for det_itx in range(len(sequence_driver_det)): |
|
smooth_idxes = [i for i in range(det_itx - smooth_margin, det_itx + smooth_margin + 1) if i >= 0 and i < len(sequence_driver_det)] |
|
lmks3d_smooth.append(sum([sequence_driver_det[i]["lmks3d"] for i in smooth_idxes]) / len(smooth_idxes)) |
|
|
|
for det_itx, lmks3d in enumerate(lmks3d_smooth): |
|
sequence_driver_det[det_itx]["lmks3d"] = lmks3d |
|
|
|
projected_vertices_list = [] |
|
for det_itx in range(len(sequence_driver_det)): |
|
|
|
aligned_3d = copy.deepcopy(sequence_driver_det[det_itx]["lmks3d"]) |
|
if per_landmark_align: |
|
for landmark_name, landmark_idxes in LANDMARK_IDXES_DICT.items(): |
|
dr_lm = sequence_driver_det[det_itx]["lmks3d"][landmark_idxes] |
|
lm_trans = landmark_trans_dict[landmark_name] |
|
aligned_3d[landmark_idxes] = lm_trans(dr_lm) |
|
|
|
|
|
tmat = trans_mats_smooth[det_itx] @ reference_det["trans_mat"] |
|
projected_vertices = project_vertices_from_ref2tgt(aligned_3d, tmat) |
|
projected_vertices_list.append(projected_vertices) |
|
|
|
continue |
|
|
|
trans_ref_aligned_to_driver = (sequence_driver_det[det_itx]["trans_mat"]) @ np.linalg.inv(reference_det["trans_mat"]) |
|
ref_aligned_to_driver = AffineTransform(trans_ref_aligned_to_driver)(reference_det["lmks3d"]) |
|
det["trans_mat"] @ np.linalg.inv(sequence_driver_det[0]["trans_mat"]) |
|
aligned_3d = sequence_driver_det[det_itx]["lmks3d"] |
|
|
|
|
|
|
|
|
|
|
|
tmat = sequence_driver_det[det_itx]["trans_mat"] @ trans_mats_smooth[det_itx] |
|
projected_vertices = project_vertices_from_ref2tgt(aligned_3d, tmat) |
|
|
|
|
|
projected_vertices_list.append(projected_vertices) |
|
|
|
|
|
|
|
return projected_vertices_list |
|
|
|
|