File size: 9,821 Bytes
03a856a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
@Project :EchoMimic
@File :audio2vid.py
@Author :juzhen.czy
@Date :2024/3/4 17:43
'''
import argparse
import os
import random
import platform
import subprocess
from datetime import datetime
from pathlib import Path
import cv2
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_echo import EchoUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echo_mimic import Audio2VideoPipeline
from src.utils.util import save_videos_grid, crop_and_pad
from src.models.face_locator import FaceLocator
from moviepy.editor import VideoFileClip, AudioFileClip
from facenet_pytorch import MTCNN
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None and platform.system() in ['Linux', 'Darwin']:
try:
result = subprocess.run(['which', 'ffmpeg'], capture_output=True, text=True)
if result.returncode == 0:
ffmpeg_path = result.stdout.strip()
print(f"FFmpeg is installed at: {ffmpeg_path}")
else:
print("FFmpeg is not installed. Please download ffmpeg-static and export to FFMPEG_PATH.")
print("For example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")
except Exception as e:
pass
if ffmpeg_path is not None and ffmpeg_path not in os.getenv('PATH'):
print("Adding FFMPEG_PATH to PATH")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/prompts/animation.yaml")
parser.add_argument("-W", type=int, default=512)
parser.add_argument("-H", type=int, default=512)
parser.add_argument("-L", type=int, default=1200)
parser.add_argument("--seed", type=int, default=420)
parser.add_argument("--facemusk_dilation_ratio", type=float, default=0.1)
parser.add_argument("--facecrop_dilation_ratio", type=float, default=0.5)
parser.add_argument("--context_frames", type=int, default=12)
parser.add_argument("--context_overlap", type=int, default=3)
parser.add_argument("--cfg", type=float, default=2.5)
parser.add_argument("--steps", type=int, default=30)
parser.add_argument("--sample_rate", type=int, default=16000)
parser.add_argument("--fps", type=int, default=24)
parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()
return args
def select_face(det_bboxes, probs):
## max face from faces that the prob is above 0.8
## box: xyxy
if det_bboxes is None or probs is None:
return None
filtered_bboxes = []
for bbox_i in range(len(det_bboxes)):
if probs[bbox_i] > 0.8:
filtered_bboxes.append(det_bboxes[bbox_i])
if len(filtered_bboxes) == 0:
return None
sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True)
return sorted_bboxes[0]
def main():
args = parse_args()
config = OmegaConf.load(args.config)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
device = args.device
if device.__contains__("cuda") and not torch.cuda.is_available():
device = "cpu"
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
## denoising net init
if os.path.exists(config.motion_module_path):
### stage1 + stage2
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
else:
### only stage1
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
"",
subfolder="unet",
unet_additional_kwargs={
"use_motion_module": False,
"unet_use_temporal_attention": False,
"cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim
}
).to(dtype=weight_dtype, device=device)
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False
)
## face locator init
face_locator = FaceLocator(320, conditioning_channels=1, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device="cuda"
)
face_locator.load_state_dict(torch.load(config.face_locator_path))
### load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)
### load face detector params
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device)
############# model_init finished #############
width, height = args.W, args.H
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
pipe = Audio2VideoPipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
face_locator=face_locator,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{args.seed}-{args.W}x{args.H}"
save_dir = Path(f"output/{date_str}/{save_dir_name}")
save_dir.mkdir(exist_ok=True, parents=True)
for ref_image_path in config["test_cases"].keys():
for audio_path in config["test_cases"][ref_image_path]:
if args.seed is not None and args.seed > -1:
generator = torch.manual_seed(args.seed)
else:
generator = torch.manual_seed(random.randint(100, 1000000))
ref_name = Path(ref_image_path).stem
audio_name = Path(audio_path).stem
final_fps = args.fps
#### face musk prepare
face_img = cv2.imread(ref_image_path)
face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
det_bboxes, probs = face_detector.detect(face_img)
select_bbox = select_face(det_bboxes, probs)
if select_bbox is None:
face_mask[:, :] = 255
else:
xyxy = select_bbox[:4]
xyxy = np.round(xyxy).astype('int')
rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
r_pad = int((re - rb) * args.facemusk_dilation_ratio)
c_pad = int((ce - cb) * args.facemusk_dilation_ratio)
face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
#### face crop
r_pad_crop = int((re - rb) * args.facecrop_dilation_ratio)
c_pad_crop = int((ce - cb) * args.facecrop_dilation_ratio)
crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + c_pad_crop, face_img.shape[0])]
print(crop_rect)
face_img = crop_and_pad(face_img, crop_rect)
face_mask = crop_and_pad(face_mask, crop_rect)
face_img = cv2.resize(face_img, (args.W, args.H))
face_mask = cv2.resize(face_mask, (args.W, args.H))
ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
video = pipe(
ref_image_pil,
audio_path,
face_mask_tensor,
width,
height,
args.L,
args.steps,
args.cfg,
generator=generator,
audio_sample_rate=args.sample_rate,
context_frames=args.context_frames,
fps=final_fps,
context_overlap=args.context_overlap
).videos
video = video
save_videos_grid(
video,
f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4",
n_rows=1,
fps=final_fps,
)
video_clip = VideoFileClip(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4")
audio_clip = AudioFileClip(audio_path)
video_clip = video_clip.set_audio(audio_clip)
video_clip.write_videofile(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4", codec="libx264", audio_codec="aac")
print(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4")
if __name__ == "__main__":
main()
|