|
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] |
|
import gradio as gr |
|
import pandas as pd |
|
import json |
|
import pdb |
|
import tempfile |
|
import re |
|
from constants import * |
|
from src.auto_leaderboard.model_metadata_type import ModelType |
|
|
|
|
|
global data_component, filter_component |
|
|
|
def validate_model_size(s): |
|
pattern = r'^\d+B$|^-$' |
|
if re.match(pattern, s): |
|
return s |
|
else: |
|
return '-' |
|
|
|
def upload_file(files): |
|
file_paths = [file.name for file in files] |
|
return file_paths |
|
|
|
def prediction_analyse(prediction_content): |
|
|
|
predictions = prediction_content.split("\n") |
|
|
|
|
|
with open("./file/SEED-Bench-1.json", "r") as file: |
|
ground_truth_data = json.load(file)["questions"] |
|
|
|
|
|
ground_truth = {item["question_id"]: item for item in ground_truth_data} |
|
|
|
|
|
results = {i: {"correct": 0, "total": 0} for i in range(1, 13)} |
|
|
|
|
|
for prediction in predictions: |
|
|
|
prediction = prediction.strip() |
|
if not prediction: |
|
continue |
|
try: |
|
prediction = json.loads(prediction) |
|
except json.JSONDecodeError: |
|
print(f"Warning: Skipping invalid JSON data in line: {prediction}") |
|
continue |
|
question_id = prediction["question_id"] |
|
if question_id not in ground_truth: |
|
continue |
|
gt_item = ground_truth[question_id] |
|
question_type_id = gt_item["question_type_id"] |
|
|
|
if prediction["prediction"] == gt_item["answer"]: |
|
results[question_type_id]["correct"] += 1 |
|
|
|
results[question_type_id]["total"] += 1 |
|
|
|
return results |
|
|
|
def prediction_analyse_v2(prediction_content): |
|
|
|
predictions = prediction_content.split("\n") |
|
|
|
|
|
with open("./file/SEED-Bench-2.json", "r") as file: |
|
ground_truth_data = json.load(file)["questions"] |
|
|
|
|
|
ground_truth = {item["question_id"]: item for item in ground_truth_data} |
|
|
|
|
|
results = {i: {"correct": 0, "total": 0} for i in range(1, 28)} |
|
|
|
|
|
for prediction in predictions: |
|
|
|
prediction = prediction.strip() |
|
if not prediction: |
|
continue |
|
try: |
|
prediction = json.loads(prediction) |
|
except json.JSONDecodeError: |
|
print(f"Warning: Skipping invalid JSON data in line: {prediction}") |
|
continue |
|
question_id = prediction["question_id"] |
|
if question_id not in ground_truth: |
|
continue |
|
gt_item = ground_truth[question_id] |
|
question_type_id = gt_item["question_type_id"] |
|
|
|
if prediction["prediction"] == gt_item["answer"]: |
|
results[question_type_id]["correct"] += 1 |
|
|
|
results[question_type_id]["total"] += 1 |
|
|
|
return results |
|
|
|
|
|
def add_new_eval( |
|
input_file, |
|
model_name_textbox: str, |
|
revision_name_textbox: str, |
|
model_type: str, |
|
model_link: str, |
|
model_size: str, |
|
benchmark_version: str, |
|
LLM_type: str, |
|
LLM_name_textbox: str, |
|
Evaluation_dimension: str, |
|
Evaluation_dimension_2: str, |
|
Evaluation_method: str |
|
|
|
): |
|
if input_file is None: |
|
return "Error! Empty file!" |
|
else: |
|
model_size = validate_model_size(model_size) |
|
|
|
if benchmark_version == 'v1': |
|
content = input_file.decode("utf-8") |
|
prediction = prediction_analyse(content) |
|
csv_data = pd.read_csv(CSV_DIR) |
|
csv_task_data = pd.read_csv(CSV_TASK_DIR) |
|
|
|
Start_dimension, End_dimension = 1, 13 |
|
if Evaluation_dimension == 'Image': |
|
End_dimension = 10 |
|
elif Evaluation_dimension == 'Video': |
|
Start_dimension = 10 |
|
each_task_accuracy = {i: round(prediction[i]["correct"] / prediction[i]["total"] * 100, 1) if i >= Start_dimension and i < End_dimension else 0 for i in range(1, 13)} |
|
|
|
|
|
total_correct_image = sum(prediction[i]["correct"] for i in range(1, 10)) |
|
total_correct_video = sum(prediction[i]["correct"] for i in range(10, 13)) |
|
|
|
total_image = sum(prediction[i]["total"] for i in range(1, 10)) |
|
total_video = sum(prediction[i]["total"] for i in range(10, 13)) |
|
|
|
if Evaluation_dimension != 'Video': |
|
average_accuracy_image = round(total_correct_image / total_image * 100, 1) |
|
average_task_accuracy_image = round(sum(each_task_accuracy[key] for key in range(1,10)) / 9, 1) |
|
else: |
|
average_accuracy_image = 0 |
|
average_task_accuracy_image = 0 |
|
|
|
if Evaluation_dimension != 'Image': |
|
average_accuracy_video = round(total_correct_video / total_video * 100, 1) |
|
average_task_accuracy_video = round(sum(each_task_accuracy[key] for key in range(10,13)) / 3, 1) |
|
else: |
|
average_accuracy_video = 0 |
|
average_task_accuracy_video = 0 |
|
|
|
if Evaluation_dimension == 'All': |
|
overall_accuracy = round((total_correct_image + total_correct_video) / (total_image + total_video) * 100, 1) |
|
overall_task_accuracy = round(sum(each_task_accuracy[key] for key in range(1,13)) / 12, 1) |
|
else: |
|
overall_accuracy = 0 |
|
overall_task_accuracy = 0 |
|
|
|
if LLM_type == 'Other': |
|
LLM_name = LLM_name_textbox |
|
else: |
|
LLM_name = LLM_type |
|
|
|
if revision_name_textbox == '': |
|
col = csv_data.shape[0] |
|
model_name = model_name_textbox |
|
else: |
|
model_name = revision_name_textbox |
|
model_name_list = csv_data['Model'] |
|
name_list = [name.split(']')[0][1:] for name in model_name_list] |
|
if revision_name_textbox not in name_list: |
|
col = csv_data.shape[0] |
|
else: |
|
col = name_list.index(revision_name_textbox) |
|
|
|
if model_link == '': |
|
model_name = model_name |
|
else: |
|
model_name = '[' + model_name + '](' + model_link + ')' |
|
|
|
|
|
new_data = [ |
|
model_type, |
|
model_name, |
|
LLM_name, |
|
model_size, |
|
Evaluation_method, |
|
overall_accuracy, |
|
average_accuracy_image, |
|
average_accuracy_video, |
|
each_task_accuracy[1], |
|
each_task_accuracy[2], |
|
each_task_accuracy[3], |
|
each_task_accuracy[4], |
|
each_task_accuracy[5], |
|
each_task_accuracy[6], |
|
each_task_accuracy[7], |
|
each_task_accuracy[8], |
|
each_task_accuracy[9], |
|
each_task_accuracy[10], |
|
each_task_accuracy[11], |
|
each_task_accuracy[12], |
|
] |
|
csv_data.loc[col] = new_data |
|
csv_data = csv_data.to_csv(CSV_DIR, index=False) |
|
|
|
new_task_data = [ |
|
model_type, |
|
model_name, |
|
LLM_name, |
|
model_size, |
|
Evaluation_method, |
|
overall_task_accuracy, |
|
average_task_accuracy_image, |
|
average_task_accuracy_video, |
|
each_task_accuracy[1], |
|
each_task_accuracy[2], |
|
each_task_accuracy[3], |
|
each_task_accuracy[4], |
|
each_task_accuracy[5], |
|
each_task_accuracy[6], |
|
each_task_accuracy[7], |
|
each_task_accuracy[8], |
|
each_task_accuracy[9], |
|
each_task_accuracy[10], |
|
each_task_accuracy[11], |
|
each_task_accuracy[12], |
|
] |
|
csv_task_data.loc[col] = new_data |
|
csv_task_data = csv_task_data.to_csv(CSV_TASK_DIR, index=False) |
|
|
|
else: |
|
content = input_file.decode("utf-8") |
|
prediction = prediction_analyse_v2(content) |
|
csv_data = pd.read_csv(CSV_V2_DIR) |
|
csv_task_data = pd.read_csv(CSV_V2_TASK_DIR) |
|
|
|
Start_dimension, End_dimension = 1, 28 |
|
if Evaluation_dimension_2 == 'Single': |
|
End_dimension = 17 |
|
elif Evaluation_dimension_2 == 'L1': |
|
End_dimension = 23 |
|
elif Evaluation_dimension_2 == 'L2': |
|
End_dimension = 25 |
|
elif Evaluation_dimension_2 == 'L3': |
|
End_dimension = 28 |
|
|
|
each_task_accuracy = {i: round(prediction[i]["correct"] / prediction[i]["total"] * 100, 1) if i >= Start_dimension and i < End_dimension else 0 for i in range(1, 28)} |
|
|
|
average_single = round(sum(prediction[i]["correct"] for i in range(1, 17)) / sum(prediction[i]["total"] for i in range(1, 17)) * 100, 1) |
|
average_task_single = round(sum(each_task_accuracy[key] for key in range(1,17)) / 16, 1) |
|
|
|
|
|
if Evaluation_dimension_2 == 'Single': |
|
average_multi = 0 |
|
average_video = 0 |
|
average_p1 = 0 |
|
average_p2 = 0 |
|
average_p3 = 0 |
|
average_task_multi = 0 |
|
average_task_video = 0 |
|
average_task_p1 = 0 |
|
average_task_p2 = 0 |
|
average_task_p3 = 0 |
|
else: |
|
average_multi = round(sum(prediction[i]["correct"] for i in range(17, 19)) / sum(prediction[i]["total"] for i in range(17, 19)) * 100, 1) |
|
average_video = round(sum(prediction[i]["correct"] for i in range(19, 23)) / sum(prediction[i]["total"] for i in range(19, 23)) * 100, 1) |
|
average_p1 = round(sum(prediction[i]["correct"] for i in range(1, 23)) / sum(prediction[i]["total"] for i in range(1, 23)) * 100, 1) |
|
average_task_multi = round(sum(each_task_accuracy[key] for key in range(17,19)) / 2, 1) |
|
average_task_video = round(sum(each_task_accuracy[key] for key in range(19,23)) / 4, 1) |
|
average_task_p1 = round(sum(each_task_accuracy[key] for key in range(1,23)) / 22, 1) |
|
|
|
if Evaluation_dimension_2 == 'L2': |
|
average_p2 = round(sum(prediction[i]["correct"] for i in range(23, 25)) / sum(prediction[i]["total"] for i in range(23, 25)) * 100, 1) |
|
average_task_p2 = round(sum(each_task_accuracy[key] for key in range(23,25)) / 2, 1) |
|
average_p3 = 0 |
|
average_task_p3 = 0 |
|
|
|
elif Evaluation_dimension_2 == 'L3': |
|
average_p2 = round(sum(prediction[i]["correct"] for i in range(23, 25)) / sum(prediction[i]["total"] for i in range(23, 25)) * 100, 1) |
|
average_task_p2 = round(sum(each_task_accuracy[key] for key in range(23,25)) / 2, 1) |
|
average_p3 = round(sum(prediction[i]["correct"] for i in range(25, 28)) / sum(prediction[i]["total"] for i in range(25, 28)) * 100, 1) |
|
average_task_p3 = round(sum(each_task_accuracy[key] for key in range(25,28)) / 3, 1) |
|
|
|
else: |
|
average_p2 = 0 |
|
average_task_p2 = 0 |
|
average_p3 = 0 |
|
average_task_p3 = 0 |
|
|
|
if LLM_type == 'Other': |
|
LLM_name = LLM_name_textbox |
|
else: |
|
LLM_name = LLM_type |
|
|
|
if revision_name_textbox == '': |
|
col = csv_data.shape[0] |
|
model_name = model_name_textbox |
|
else: |
|
model_name = revision_name_textbox |
|
model_name_list = csv_data['Model'] |
|
name_list = [name.split(']')[0][1:] for name in model_name_list] |
|
if revision_name_textbox not in name_list: |
|
col = csv_data.shape[0] |
|
else: |
|
col = name_list.index(revision_name_textbox) |
|
|
|
if model_link == '': |
|
model_name = model_name |
|
else: |
|
model_name = '[' + model_name + '](' + model_link + ')' |
|
|
|
|
|
new_data = [ |
|
model_name, |
|
LLM_name, |
|
model_size, |
|
Evaluation_method, |
|
average_single, |
|
average_multi, |
|
average_video, |
|
average_p1, |
|
average_p2, |
|
average_p3, |
|
each_task_accuracy[1], |
|
each_task_accuracy[2], |
|
each_task_accuracy[3], |
|
each_task_accuracy[4], |
|
each_task_accuracy[5], |
|
each_task_accuracy[6], |
|
each_task_accuracy[7], |
|
each_task_accuracy[8], |
|
each_task_accuracy[9], |
|
each_task_accuracy[10], |
|
each_task_accuracy[11], |
|
each_task_accuracy[12], |
|
each_task_accuracy[13], |
|
each_task_accuracy[14], |
|
each_task_accuracy[15], |
|
each_task_accuracy[16], |
|
each_task_accuracy[17], |
|
each_task_accuracy[18], |
|
each_task_accuracy[19], |
|
each_task_accuracy[20], |
|
each_task_accuracy[21], |
|
each_task_accuracy[22], |
|
each_task_accuracy[23], |
|
each_task_accuracy[24], |
|
each_task_accuracy[25], |
|
each_task_accuracy[26], |
|
each_task_accuracy[27] |
|
] |
|
csv_data.loc[col] = new_data |
|
csv_data = csv_data.to_csv(CSV_V2_DIR, index=False) |
|
|
|
new_task_data = [ |
|
model_name, |
|
LLM_name, |
|
model_size, |
|
Evaluation_method, |
|
average_task_single, |
|
average_task_multi, |
|
average_task_video, |
|
average_task_p1, |
|
average_task_p2, |
|
average_task_p3, |
|
each_task_accuracy[1], |
|
each_task_accuracy[2], |
|
each_task_accuracy[3], |
|
each_task_accuracy[4], |
|
each_task_accuracy[5], |
|
each_task_accuracy[6], |
|
each_task_accuracy[7], |
|
each_task_accuracy[8], |
|
each_task_accuracy[9], |
|
each_task_accuracy[10], |
|
each_task_accuracy[11], |
|
each_task_accuracy[12], |
|
each_task_accuracy[13], |
|
each_task_accuracy[14], |
|
each_task_accuracy[15], |
|
each_task_accuracy[16], |
|
each_task_accuracy[17], |
|
each_task_accuracy[18], |
|
each_task_accuracy[19], |
|
each_task_accuracy[20], |
|
each_task_accuracy[21], |
|
each_task_accuracy[22], |
|
each_task_accuracy[23], |
|
each_task_accuracy[24], |
|
each_task_accuracy[25], |
|
each_task_accuracy[26], |
|
each_task_accuracy[27] |
|
] |
|
csv_task_data.loc[col] = new_task_data |
|
csv_task_data = csv_task_data.to_csv(CSV_V2_TASK_DIR, index=False) |
|
return 0 |
|
|
|
def get_baseline_df(average_type): |
|
if average_type == 'All Average': |
|
df = pd.read_csv(CSV_DIR) |
|
else: |
|
df = pd.read_csv(CSV_TASK_DIR) |
|
df = df.sort_values(by="Avg. All", ascending=False) |
|
present_columns = MODEL_INFO + checkbox_group.value |
|
df = df[present_columns] |
|
return df |
|
|
|
def get_baseline_v2_df(average_type): |
|
|
|
if average_type == 'All Average': |
|
df = pd.read_csv(CSV_V2_DIR) |
|
else: |
|
df = pd.read_csv(CSV_V2_TASK_DIR) |
|
df = df.sort_values(by="Avg. Single", ascending=False) |
|
present_columns = MODEL_INFO_V2 + checkbox_group_v2.value |
|
|
|
df = df[present_columns] |
|
return df |
|
|
|
def get_all_df(): |
|
df = pd.read_csv(CSV_DIR) |
|
df = df.sort_values(by="Avg. All", ascending=False) |
|
return df |
|
|
|
def get_all_v2_df(): |
|
df = pd.read_csv(CSV_V2_DIR) |
|
df = df.sort_values(by="Avg. P1", ascending=False) |
|
return df |
|
|
|
|
|
def switch_version(version): |
|
return f"当前版本: {version}" |
|
|
|
block = gr.Blocks() |
|
|
|
|
|
with block: |
|
gr.Markdown( |
|
LEADERBORAD_INTRODUCTION |
|
) |
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("🏅 SEED Benchmark v2", elem_id="seed-benchmark-tab-table", id=0): |
|
with gr.Row(): |
|
with gr.Accordion("Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
).style(show_copy_button=True) |
|
|
|
gr.Markdown( |
|
TABLE_INTRODUCTION |
|
) |
|
|
|
|
|
checkbox_group_v2 = gr.CheckboxGroup( |
|
choices=TASK_V2_INFO, |
|
value=AVG_V2_INFO, |
|
label="Evaluation Dimension", |
|
interactive=True, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
model_size_v2 = gr.CheckboxGroup( |
|
choices=MODEL_SIZE, |
|
value=MODEL_SIZE, |
|
label="Model Size", |
|
interactive=True, |
|
) |
|
|
|
|
|
evaluation_method_v2 = gr.CheckboxGroup( |
|
choices=EVALUATION_METHOD, |
|
value=EVALUATION_METHOD, |
|
label="Evaluation Method", |
|
interactive=True, |
|
) |
|
|
|
average_type_v2 = gr.Radio(AVERAGE_TYPE, label="Performance Average Type", value="All Average") |
|
|
|
baseline_v2_value = get_baseline_v2_df(average_type_v2.value) |
|
baseline_v2_header = MODEL_INFO_V2 + checkbox_group_v2.value |
|
baseline_v2_datatype = ['markdown'] * 3 + ['number'] * len(checkbox_group_v2.value) |
|
|
|
|
|
data_component_v2 = gr.components.Dataframe( |
|
value=baseline_v2_value, |
|
headers=baseline_v2_header, |
|
type="pandas", |
|
datatype=baseline_v2_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
def on_filter_model_size_method_v2_change(selected_model_size, selected_evaluation_method, selected_columns): |
|
|
|
updated_data = get_all_v2_df() |
|
|
|
|
|
def custom_filter(row, model_size_filters, evaluation_method_filters): |
|
model_size = row['Model Size'] |
|
evaluation_method = row['Evaluation Method'] |
|
|
|
if model_size == '-': |
|
size_filter = '-' in model_size_filters |
|
elif 'B' in model_size: |
|
size = float(model_size.replace('B', '')) |
|
size_filter = ('>=10B' in model_size_filters and size >= 10) or ('<10B' in model_size_filters and size < 10) |
|
else: |
|
size_filter = False |
|
|
|
method_filter = evaluation_method in evaluation_method_filters |
|
|
|
return size_filter and method_filter |
|
|
|
|
|
mask = updated_data.apply(custom_filter, axis=1, model_size_filters=selected_model_size, evaluation_method_filters=selected_evaluation_method) |
|
updated_data = updated_data[mask] |
|
|
|
|
|
selected_columns = [item for item in TASK_V2_INFO if item in selected_columns] |
|
present_columns = MODEL_INFO_V2 + selected_columns |
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False) |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_V2_TYPE[COLUMN_V2_NAMES.index(x)] for x in updated_headers] |
|
|
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
|
|
return filter_component.value |
|
|
|
def on_average_type_v2_change(average_type_v2): |
|
return get_baseline_v2_df(average_type_v2) |
|
|
|
average_type_v2.change(fn=on_average_type_v2_change, inputs=[average_type_v2], outputs=data_component_v2) |
|
model_size_v2.change(fn=on_filter_model_size_method_v2_change, inputs=[model_size_v2, evaluation_method_v2, checkbox_group_v2], outputs=data_component_v2) |
|
evaluation_method_v2.change(fn=on_filter_model_size_method_v2_change, inputs=[model_size_v2, evaluation_method_v2, checkbox_group_v2], outputs=data_component_v2) |
|
checkbox_group_v2.change(fn=on_filter_model_size_method_v2_change, inputs=[model_size_v2, evaluation_method_v2, checkbox_group_v2], outputs=data_component_v2) |
|
|
|
|
|
with gr.TabItem("🏅 SEED Benchmark v1", elem_id="seed-benchmark-tab-table", id=1): |
|
with gr.Row(): |
|
with gr.Accordion("Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
).style(show_copy_button=True) |
|
|
|
gr.Markdown( |
|
TABLE_INTRODUCTION |
|
) |
|
|
|
|
|
checkbox_group = gr.CheckboxGroup( |
|
choices=TASK_INFO, |
|
value=AVG_INFO, |
|
label="Evaluation Dimension", |
|
interactive=True, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
model_size = gr.CheckboxGroup( |
|
choices=MODEL_SIZE, |
|
value=MODEL_SIZE, |
|
label="Model Size", |
|
interactive=True, |
|
) |
|
|
|
|
|
evaluation_method = gr.CheckboxGroup( |
|
choices=EVALUATION_METHOD, |
|
value=EVALUATION_METHOD, |
|
label="Evaluation Method", |
|
interactive=True, |
|
) |
|
|
|
average_type = gr.Radio(AVERAGE_TYPE, label="Performance Average Type", value="All Average") |
|
|
|
baseline_value = get_baseline_df(average_type.value) |
|
baseline_header = MODEL_INFO + checkbox_group.value |
|
baseline_datatype = ['markdown'] * 4 + ['number'] * len(checkbox_group.value) |
|
|
|
|
|
data_component = gr.components.Dataframe( |
|
value=baseline_value, |
|
headers=baseline_header, |
|
type="pandas", |
|
datatype=baseline_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
def on_filter_model_size_method_change(selected_model_size, selected_evaluation_method, selected_columns): |
|
|
|
updated_data = get_all_df() |
|
|
|
|
|
def custom_filter(row, model_size_filters, evaluation_method_filters): |
|
model_size = row['Model Size'] |
|
evaluation_method = row['Evaluation Method'] |
|
|
|
if model_size == '-': |
|
size_filter = '-' in model_size_filters |
|
elif 'B' in model_size: |
|
size = float(model_size.replace('B', '')) |
|
size_filter = ('>=10B' in model_size_filters and size >= 10) or ('<10B' in model_size_filters and size < 10) |
|
else: |
|
size_filter = False |
|
|
|
method_filter = evaluation_method in evaluation_method_filters |
|
|
|
return size_filter and method_filter |
|
|
|
|
|
mask = updated_data.apply(custom_filter, axis=1, model_size_filters=selected_model_size, evaluation_method_filters=selected_evaluation_method) |
|
updated_data = updated_data[mask] |
|
|
|
|
|
selected_columns = [item for item in TASK_INFO if item in selected_columns] |
|
present_columns = MODEL_INFO + selected_columns |
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False) |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] |
|
|
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
|
|
return filter_component.value |
|
|
|
def on_average_type_change(average_type): |
|
return get_baseline_df(average_type) |
|
|
|
average_type.change(fn=on_average_type_change, inputs=[average_type], outputs=data_component) |
|
model_size.change(fn=on_filter_model_size_method_change, inputs=[model_size, evaluation_method, checkbox_group], outputs=data_component) |
|
evaluation_method.change(fn=on_filter_model_size_method_change, inputs=[model_size, evaluation_method, checkbox_group], outputs=data_component) |
|
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[model_size, evaluation_method, checkbox_group], outputs=data_component) |
|
|
|
|
|
with gr.TabItem("📝 About", elem_id="seed-benchmark-tab-table", id=2): |
|
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("🚀 Submit here! ", elem_id="seed-benchmark-tab-table", id=3): |
|
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox( |
|
label="Model name", placeholder="LLaMA-7B" |
|
) |
|
revision_name_textbox = gr.Textbox( |
|
label="Revision Model Name", placeholder="LLaMA-7B" |
|
) |
|
model_type = gr.Dropdown( |
|
choices=[ |
|
"LLM", |
|
"ImageLLM", |
|
"VideoLLM", |
|
"Other", |
|
], |
|
label="Model type", |
|
multiselect=False, |
|
value="ImageLLM", |
|
interactive=True, |
|
) |
|
model_link = gr.Textbox( |
|
label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf" |
|
) |
|
model_size = gr.Textbox( |
|
label="Model size", placeholder="7B(Input content format must be 'number+B' or '-', default is '-')" |
|
) |
|
benchmark_version= gr.Dropdown( |
|
choices=["v1", "v2"], |
|
label="Benchmark version", |
|
multiselect=False, |
|
value="v1", |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
LLM_type = gr.Dropdown( |
|
choices=["Vicuna-7B", "Flan-T5-XL", "LLaMA-7B", "Other"], |
|
label="LLM type", |
|
multiselect=False, |
|
value="LLaMA-7B", |
|
interactive=True, |
|
) |
|
LLM_name_textbox = gr.Textbox( |
|
label="LLM model (Required for Other)", |
|
placeholder="LLaMA-13B", |
|
value="LLaMA-13B", |
|
) |
|
Evaluation_dimension = gr.Dropdown( |
|
choices=["All", "Image", "Video"], |
|
label="Evaluation dimension for SEED-Bench 1(for evaluate SEED-Bench 1)", |
|
multiselect=False, |
|
value="All", |
|
interactive=True, |
|
) |
|
Evaluation_dimension_2 = gr.Dropdown( |
|
choices=["Single", "L1", "L2", "L3"], |
|
label="Evaluation dimension for SEED-Bench 2(for evaluate SEED-Bench 2)", |
|
multiselect=False, |
|
value="L2", |
|
interactive=True, |
|
) |
|
Evaluation_method = gr.Dropdown( |
|
choices=EVALUATION_METHOD, |
|
label="Evaluation method", |
|
multiselect=False, |
|
value=EVALUATION_METHOD[0], |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
|
|
input_file = gr.inputs.File(label = "Click to Upload a json File", file_count="single", type='binary') |
|
submit_button = gr.Button("Submit Eval") |
|
|
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
inputs = [ |
|
input_file, |
|
model_name_textbox, |
|
revision_name_textbox, |
|
model_type, |
|
model_link, |
|
model_size, |
|
benchmark_version, |
|
LLM_type, |
|
LLM_name_textbox, |
|
Evaluation_dimension, |
|
Evaluation_dimension_2, |
|
Evaluation_method |
|
], |
|
) |
|
|
|
|
|
def refresh_data(): |
|
value1 = get_baseline_df(average_type) |
|
value2 = get_baseline_v2_df(average_type_v2) |
|
|
|
return value1, value2 |
|
|
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
data_run.click( |
|
refresh_data, outputs=[data_component, data_component_v2] |
|
) |
|
|
|
|
|
|
|
block.launch() |