import argparse from optimum_benchmark.experiment import launch, ExperimentConfig from optimum_benchmark.backends.pytorch.config import PyTorchConfig from optimum_benchmark.launchers.torchrun.config import TorchrunConfig from optimum_benchmark.benchmarks.inference.config import InferenceConfig if __name__ == "__main__": parser = argparse.ArgumentParser(description='Run optimum-benchmark') parser.add_argument('--config-name', dest='experiment_name', type=str, help='experiment name (text classification, etc.)') parser.add_argument('--backend-model', dest='backend_model', type=str, help='model name') parser.add_argument('--hydra-run-dir', dest='run_dir', type=str) args = parser.parse_args() backend_model = args.backend_model run_dir = args.run_dir experiment_name = args.experiment_name launcher_config = TorchrunConfig(nproc_per_node=2) benchmark_config = InferenceConfig(latency=True, memory=True) backend_config = PyTorchConfig(model=backend_model) experiment_config = ExperimentConfig( experiment_name=experiment_name, benchmark=benchmark_config, launcher=launcher_config, backend=backend_config, ) benchmark_report = launch(experiment_config) # push artifacts to the hub experiment_config.push_to_hub("EnergyStarAI/benchmarksDebug") benchmark_report.push_to_hub("EnergyStarAI/benchmarksDebug")