meg-huggingface
Adding AIEnergyStar docker deets
d023e59
raw
history blame
1.82 kB
FROM nvidia/cuda:12.2.0-devel-ubuntu22.04
ARG PYTORCH_VERSION=2.4.0
ARG PYTHON_VERSION=3.9
ARG CUDA_VERSION=12.1
ARG MAMBA_VERSION=24.3.0-0
ARG CUDA_CHANNEL=nvidia
ARG INSTALL_CHANNEL=pytorch
# Automatically set by buildx
ARG TARGETPLATFORM
ENV PATH=/opt/conda/bin:$PATH
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \
ca-certificates \
ccache \
curl \
git && \
rm -rf /var/lib/apt/lists/*
# Install conda
# translating Docker's TARGETPLATFORM into mamba arches
RUN case ${TARGETPLATFORM} in \
"linux/arm64") MAMBA_ARCH=aarch64 ;; \
*) MAMBA_ARCH=x86_64 ;; \
esac && \
curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
RUN chmod +x ~/mambaforge.sh && \
bash ~/mambaforge.sh -b -p /opt/conda && \
rm ~/mambaforge.sh
# Install pytorch
# On arm64 we exit with an error code
RUN case ${TARGETPLATFORM} in \
"linux/arm64") exit 1 ;; \
*) /opt/conda/bin/conda update -y conda && \
/opt/conda/bin/conda install -c "${INSTALL_CHANNEL}" -c "${CUDA_CHANNEL}" -y "python=${PYTHON_VERSION}" "pytorch=$PYTORCH_VERSION" "pytorch-cuda=$(echo $CUDA_VERSION | cut -d'.' -f 1-2)" ;; \
esac && \
/opt/conda/bin/conda clean -ya
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
RUN git clone -b energy_star_dev https://github.com/huggingface/optimum-benchmark.git /optimum-benchmark && cd optimum-benchmark && pip install -e .
COPY ./check_h100.py /check_h100.py
COPY ./entrypoint.sh /entrypoint.sh
RUN chmod +x /entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]