File size: 1,551 Bytes
ca2da1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216eab8
ca2da1c
 
 
c5729e2
258cdcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c60e715
216eab8
c5729e2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import argparse
import os

from datasets import load_dataset, Dataset
from huggingface_hub import HfApi

TOKEN = os.environ.get("DEBUG")
api = HfApi(token=TOKEN)

parser = argparse.ArgumentParser()
parser.add_argument(
    "--run_dir",
    default=None,
    type=str,
    required=True,
    help="Path to the run directory.",
)
parser.add_argument(
    "--model_name",
    default=None,
    type=str,
    required=True,
    help="Model to benchmark.",
)

args = parser.parse_args()

# Updating request
dataset = load_dataset("AIEnergyScore/requests_debug", split="test",
                       token=TOKEN).to_pandas()

# Set benchmark to failed
# TODO: This doesn't have to be try-except, we could actually check if the file is there.
try:
    # Read error message
    with open(f"{args.run_dir}/error.log", 'r') as file:
        for f in file.readlines():
            if 'Traceback (most recent call last):' in f:
                error_message = f
                dataset.loc[dataset["model"].isin([args.model_name]), [
                    'status']] = "FAILED"
                print("Status set to FAILED")
            else:
                dataset.loc[dataset["model"].isin([args.model_name]), [
                    'status']] = "COMPLETED"
    # Add a new column for the error message if necessary
except FileNotFoundError as e:
    print(f"Could not find {args.run_dir}/error.log")

updated_dataset = Dataset.from_pandas(dataset)
updated_dataset.push_to_hub("AIEnergyScore/requests_debug", split="test",
                            token=TOKEN)