diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..73068e8649fbf41e74f1097f2cfa103d35e641af Binary files /dev/null and b/.DS_Store differ diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000000000000000000000000000000000000..6c2673f8b954011bc693d8a7ba2e3578407d0438 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,35 @@ +*.7z filter=lfs diff=lfs merge=lfs text +*.arrow filter=lfs diff=lfs merge=lfs text +*.bin filter=lfs diff=lfs merge=lfs text +*.bz2 filter=lfs diff=lfs merge=lfs text +*.ckpt filter=lfs diff=lfs merge=lfs text +*.ftz filter=lfs diff=lfs merge=lfs text +*.gz filter=lfs diff=lfs merge=lfs text +*.h5 filter=lfs diff=lfs merge=lfs text +*.joblib filter=lfs diff=lfs merge=lfs text +*.lfs.* filter=lfs diff=lfs merge=lfs text +*.mlmodel filter=lfs diff=lfs merge=lfs text +*.model filter=lfs diff=lfs merge=lfs text +*.msgpack filter=lfs diff=lfs merge=lfs text +*.npy filter=lfs diff=lfs merge=lfs text +*.npz filter=lfs diff=lfs merge=lfs text +*.onnx filter=lfs diff=lfs merge=lfs text +*.ot filter=lfs diff=lfs merge=lfs text +*.parquet filter=lfs diff=lfs merge=lfs text +*.pb filter=lfs diff=lfs merge=lfs text +*.pickle filter=lfs diff=lfs merge=lfs text +*.pkl filter=lfs diff=lfs merge=lfs text +*.pt filter=lfs diff=lfs merge=lfs text +*.pth filter=lfs diff=lfs merge=lfs text +*.rar filter=lfs diff=lfs merge=lfs text +*.safetensors filter=lfs diff=lfs merge=lfs text +saved_model/**/* filter=lfs diff=lfs merge=lfs text +*.tar.* filter=lfs diff=lfs merge=lfs text +*.tar filter=lfs diff=lfs merge=lfs text +*.tflite filter=lfs diff=lfs merge=lfs text +*.tgz filter=lfs diff=lfs merge=lfs text +*.wasm filter=lfs diff=lfs merge=lfs text +*.xz filter=lfs diff=lfs merge=lfs text +*.zip filter=lfs diff=lfs merge=lfs text +*.zst filter=lfs diff=lfs merge=lfs text +*tfevents* filter=lfs diff=lfs merge=lfs text diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..54b548d4ecf408918da0bb40e6a07b30659b7150 --- /dev/null +++ b/.gitignore @@ -0,0 +1,3 @@ +upload.py +download.py +models/ \ No newline at end of file diff --git a/MagicQuill/.DS_Store b/MagicQuill/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..92f255efe283219850b962b09db1053a14ccd5ca Binary files /dev/null and b/MagicQuill/.DS_Store differ diff --git a/MagicQuill/LLaVA/.devcontainer/Dockerfile b/MagicQuill/LLaVA/.devcontainer/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..035e14937b3b57125ac54463770dfda25fbff6bf --- /dev/null +++ b/MagicQuill/LLaVA/.devcontainer/Dockerfile @@ -0,0 +1,53 @@ +FROM mcr.microsoft.com/devcontainers/base:ubuntu-20.04 + +SHELL [ "bash", "-c" ] + +# update apt and install packages +RUN apt update && \ + apt install -yq \ + ffmpeg \ + dkms \ + build-essential + +# add user tools +RUN sudo apt install -yq \ + jq \ + jp \ + tree \ + tldr + +# add git-lfs and install +RUN curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash && \ + sudo apt-get install -yq git-lfs && \ + git lfs install + +############################################ +# Setup user +############################################ + +USER vscode + +# install azcopy, a tool to copy to/from blob storage +# for more info: https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-blobs-upload#upload-a-file +RUN cd /tmp && \ + wget https://azcopyvnext.azureedge.net/release20230123/azcopy_linux_amd64_10.17.0.tar.gz && \ + tar xvf azcopy_linux_amd64_10.17.0.tar.gz && \ + mkdir -p ~/.local/bin && \ + mv azcopy_linux_amd64_10.17.0/azcopy ~/.local/bin && \ + chmod +x ~/.local/bin/azcopy && \ + rm -rf azcopy_linux_amd64* + +# Setup conda +RUN cd /tmp && \ + wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \ + bash ./Miniconda3-latest-Linux-x86_64.sh -b && \ + rm ./Miniconda3-latest-Linux-x86_64.sh + +# Install dotnet +RUN cd /tmp && \ + wget https://dot.net/v1/dotnet-install.sh && \ + chmod +x dotnet-install.sh && \ + ./dotnet-install.sh --channel 7.0 && \ + ./dotnet-install.sh --channel 3.1 && \ + rm ./dotnet-install.sh + diff --git a/MagicQuill/LLaVA/.devcontainer/devcontainer.env b/MagicQuill/LLaVA/.devcontainer/devcontainer.env new file mode 100644 index 0000000000000000000000000000000000000000..4cf3a49c16e1113f4d941b409bb9c7bea6c90fe0 --- /dev/null +++ b/MagicQuill/LLaVA/.devcontainer/devcontainer.env @@ -0,0 +1,2 @@ +SAMPLE_ENV_VAR1="Sample Value" +SAMPLE_ENV_VAR2=332431bf-68bf \ No newline at end of file diff --git a/MagicQuill/LLaVA/.devcontainer/devcontainer.json b/MagicQuill/LLaVA/.devcontainer/devcontainer.json new file mode 100644 index 0000000000000000000000000000000000000000..67f6ca20e17d808e3e77b806ad8a988b120f40a9 --- /dev/null +++ b/MagicQuill/LLaVA/.devcontainer/devcontainer.json @@ -0,0 +1,71 @@ +{ + "name": "LLaVA", + "build": { + "dockerfile": "Dockerfile", + "context": "..", + "args": {} + }, + "features": { + "ghcr.io/devcontainers/features/docker-in-docker:2": {}, + "ghcr.io/devcontainers/features/azure-cli:1": {}, + "ghcr.io/azure/azure-dev/azd:0": {}, + "ghcr.io/devcontainers/features/powershell:1": {}, + "ghcr.io/devcontainers/features/common-utils:2": {}, + "ghcr.io/devcontainers-contrib/features/zsh-plugins:0": {}, + }, + // "forwardPorts": [], + "postCreateCommand": "bash ./.devcontainer/postCreateCommand.sh", + "customizations": { + "vscode": { + "settings": { + "python.analysis.autoImportCompletions": true, + "python.analysis.autoImportUserSymbols": true, + "python.defaultInterpreterPath": "~/miniconda3/envs/llava/bin/python", + "python.formatting.provider": "yapf", + "python.linting.enabled": true, + "python.linting.flake8Enabled": true, + "isort.check": true, + "dev.containers.copyGitConfig": true, + "terminal.integrated.defaultProfile.linux": "zsh", + "terminal.integrated.profiles.linux": { + "zsh": { + "path": "/usr/bin/zsh" + }, + } + }, + "extensions": [ + "aaron-bond.better-comments", + "eamodio.gitlens", + "EditorConfig.EditorConfig", + "foxundermoon.shell-format", + "GitHub.copilot-chat", + "GitHub.copilot-labs", + "GitHub.copilot", + "lehoanganh298.json-lines-viewer", + "mhutchie.git-graph", + "ms-azuretools.vscode-docker", + "ms-dotnettools.dotnet-interactive-vscode", + "ms-python.flake8", + "ms-python.isort", + "ms-python.python", + "ms-python.vscode-pylance", + "njpwerner.autodocstring", + "redhat.vscode-yaml", + "stkb.rewrap", + "yzhang.markdown-all-in-one", + ] + } + }, + "mounts": [], + "runArgs": [ + "--gpus", + "all", + // "--ipc", + // "host", + "--ulimit", + "memlock=-1", + "--env-file", + ".devcontainer/devcontainer.env" + ], + // "remoteUser": "root" +} diff --git a/MagicQuill/LLaVA/.devcontainer/postCreateCommand.sh b/MagicQuill/LLaVA/.devcontainer/postCreateCommand.sh new file mode 100644 index 0000000000000000000000000000000000000000..b32449207ce184a0d13eac79fbd83235acd451db --- /dev/null +++ b/MagicQuill/LLaVA/.devcontainer/postCreateCommand.sh @@ -0,0 +1,45 @@ +git config --global safe.directory '*' +git config --global core.editor "code --wait" +git config --global pager.branch false + +# Set AZCOPY concurrency to auto +echo "export AZCOPY_CONCURRENCY_VALUE=AUTO" >> ~/.zshrc +echo "export AZCOPY_CONCURRENCY_VALUE=AUTO" >> ~/.bashrc + +# Activate conda by default +echo ". /home/vscode/miniconda3/bin/activate" >> ~/.zshrc +echo ". /home/vscode/miniconda3/bin/activate" >> ~/.bashrc + +# Use llava environment by default +echo "conda activate llava" >> ~/.zshrc +echo "conda activate llava" >> ~/.bashrc + +# Add dotnet to PATH +echo 'export PATH="$PATH:$HOME/.dotnet"' >> ~/.bashrc +echo 'export PATH="$PATH:$HOME/.dotnet"' >> ~/.zshrc + +# Create and activate llava environment +source /home/vscode/miniconda3/bin/activate +conda create -y -q -n llava python=3.10 +conda activate llava + +# Install Nvidia Cuda Compiler +conda install -y -c nvidia cuda-compiler + +pip install pre-commit==3.0.2 + +# Install package locally +pip install --upgrade pip # enable PEP 660 support +pip install -e . + +# Install additional packages for training +pip install -e ".[train]" +pip install flash-attn --no-build-isolation + +# Download checkpoints to location outside of the repo +git clone https://huggingface.co/liuhaotian/llava-v1.5-7b ~/llava-v1.5-7b + +# Commented because it is unlikely for users to have enough local GPU memory to load the model +# git clone https://huggingface.co/liuhaotian/llava-v1.5-13b ~/llava-v1.5-13b + +echo "postCreateCommand.sh COMPLETE!" diff --git a/MagicQuill/LLaVA/.dockerignore b/MagicQuill/LLaVA/.dockerignore new file mode 100644 index 0000000000000000000000000000000000000000..e98058ee30350a2be1da90c47bf2f335ec21457b --- /dev/null +++ b/MagicQuill/LLaVA/.dockerignore @@ -0,0 +1,21 @@ +# The .dockerignore file excludes files from the container build process. +# +# https://docs.docker.com/engine/reference/builder/#dockerignore-file + +# Exclude Git files +.git +.github +.gitignore + +# Exclude Python cache files +__pycache__ +.mypy_cache +.pytest_cache +.ruff_cache + +# Exclude Python virtual environment +/venv + +# Exclude some weights +/openai +/liuhaotian diff --git a/MagicQuill/LLaVA/.editorconfig b/MagicQuill/LLaVA/.editorconfig new file mode 100644 index 0000000000000000000000000000000000000000..d99a490bee397f969e93faa0c083b69674435ee8 --- /dev/null +++ b/MagicQuill/LLaVA/.editorconfig @@ -0,0 +1,18 @@ +root = true + +# Unix-style newlines with a newline ending every file +[*] +end_of_line = lf +insert_final_newline = true +trim_trailing_whitespace = true +charset = utf-8 + +# 4 space indentation +[*.{py,json}] +indent_style = space +indent_size = 4 + +# 2 space indentation +[*.{md,sh,yaml,yml}] +indent_style = space +indent_size = 2 \ No newline at end of file diff --git a/MagicQuill/LLaVA/.gitattributes b/MagicQuill/LLaVA/.gitattributes new file mode 100644 index 0000000000000000000000000000000000000000..5462cde720b76950382f4f83eb14d08ac438edaa --- /dev/null +++ b/MagicQuill/LLaVA/.gitattributes @@ -0,0 +1,29 @@ +# https://git-scm.com/docs/gitattributes + +# Set the default behavior, in case people don't have core.autocrlf set. +# https://git-scm.com/docs/gitattributes#_end_of_line_conversion +* text=auto + +# common python attributes, taken from https://github.com/alexkaratarakis/gitattributes/blob/710900479a2bedeec7003d381719521ffbb18bf8/Python.gitattributes +# Source files +# ============ +*.pxd text diff=python +*.py text diff=python +*.py3 text diff=python +*.pyw text diff=python +*.pyx text diff=python +*.pyz text diff=python +*.pyi text diff=python + +# Binary files +# ============ +*.db binary +*.p binary +*.pkl binary +*.pickle binary +*.pyc binary export-ignore +*.pyo binary export-ignore +*.pyd binary + +# Jupyter notebook +*.ipynb text eol=lf diff --git a/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/1-usage.yaml b/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/1-usage.yaml new file mode 100644 index 0000000000000000000000000000000000000000..bb4094e5ab241057019bf767e2fd7b7e9dfc7e7a --- /dev/null +++ b/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/1-usage.yaml @@ -0,0 +1,31 @@ +name: Usage issues +description: Report issues in usage. +title: "[Usage] " +body: + - type: markdown + attributes: + value: | + Thanks for taking the time to fill out this form. Please give as detailed description as possible for us to better assist with the issue :) + - type: textarea + id: what-happened + attributes: + label: Describe the issue + description: Please give as detailed description as possible for us to better assist with the issue. Please paste the **FULL** error log here, so that we can better understand the issue. Wrap the log with ``` for better readability in GitHub. + placeholder: Issue + value: | + Issue: + + Command: + ``` + PASTE THE COMMANDS HERE. + ``` + + Log: + ``` + PASTE THE LOGS HERE. + ``` + + Screenshots: + You may attach screenshots if it better explains the issue. + validations: + required: true diff --git a/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/2-feature-request.yaml b/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/2-feature-request.yaml new file mode 100644 index 0000000000000000000000000000000000000000..a55dc3136718f89096452e9a3018de23b5c385d9 --- /dev/null +++ b/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/2-feature-request.yaml @@ -0,0 +1,13 @@ +name: Feature Request +description: Request for a new feature +title: "[Feature request] " +body: + - type: markdown + attributes: + value: | + Thanks for your interest in our work. Please share your thoughts of the new features below. + - type: textarea + id: feature + attributes: + label: feature + placeholder: Start your thoughts here... \ No newline at end of file diff --git a/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/3-question.yaml b/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/3-question.yaml new file mode 100644 index 0000000000000000000000000000000000000000..7c4a4fc28f8ef61c6d5a4eca8f03a5c268998fcf --- /dev/null +++ b/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/3-question.yaml @@ -0,0 +1,13 @@ +name: Questions +description: General questions about the work +title: "[Question] " +body: + - type: markdown + attributes: + value: | + Thanks for your interest in our work. For this type of question, it may be more suitable to go to [discussion](https://github.com/haotian-liu/LLaVA/discussions) sections. If you believe an issue would be better for your request, please continue your post below :) + - type: textarea + id: question + attributes: + label: Question + placeholder: Start question here... \ No newline at end of file diff --git a/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/4-discussion.yaml b/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/4-discussion.yaml new file mode 100644 index 0000000000000000000000000000000000000000..c6dc05c3d144d028eaf696b9518354f482d34a0f --- /dev/null +++ b/MagicQuill/LLaVA/.github/ISSUE_TEMPLATE/4-discussion.yaml @@ -0,0 +1,13 @@ +name: Discussions +description: General discussions about the work +title: "[Discussion] " +body: + - type: markdown + attributes: + value: | + Thanks for your interest in our work. For this type of question, it may be more suitable to go to [discussion](https://github.com/haotian-liu/LLaVA/discussions) sections. If you believe an issue would be better for your request, please continue your post below :) + - type: textarea + id: discussion + attributes: + label: Discussion + placeholder: Start discussion here... \ No newline at end of file diff --git a/MagicQuill/LLaVA/.gitignore b/MagicQuill/LLaVA/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..6ff6a3dc8c18c7358083135d1eb5bbb9c20fa50f --- /dev/null +++ b/MagicQuill/LLaVA/.gitignore @@ -0,0 +1,35 @@ +# Python +__pycache__ +*.pyc +*.egg-info +dist + +# Log +*.log +*.log.* +*.json +*.jsonl + +# Data +!**/alpaca-data-conversation.json + +# Editor +.idea +*.swp + +# Other +.DS_Store +wandb +output + +checkpoints +ckpts* + +.ipynb_checkpoints +*.ipynb + +# DevContainer +!.devcontainer/* + +# Demo +serve_images/ diff --git a/MagicQuill/LLaVA/LICENSE b/MagicQuill/LLaVA/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/MagicQuill/LLaVA/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/MagicQuill/LLaVA/README.md b/MagicQuill/LLaVA/README.md new file mode 100644 index 0000000000000000000000000000000000000000..3a0099656bc17e996c3700ce36926796693ba045 --- /dev/null +++ b/MagicQuill/LLaVA/README.md @@ -0,0 +1,463 @@ +# 🌋 LLaVA: Large Language and Vision Assistant + +*Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.* + +[📢 [LLaVA-NeXT Blog](https://llava-vl.github.io/blog/2024-01-30-llava-next/)] [[Project Page](https://llava-vl.github.io/)] [[Demo](https://llava.hliu.cc/)] [[Data](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md)] [[Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)] + +🤝Community Contributions: [[llama.cpp](https://github.com/ggerganov/llama.cpp/pull/3436)] [[Colab](https://github.com/camenduru/LLaVA-colab)] [[🤗Space](https://huggingface.co/spaces/badayvedat/LLaVA)] [[Replicate](https://replicate.com/yorickvp/llava-13b)] [[AutoGen](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb)] [[BakLLaVA](https://github.com/SkunkworksAI/BakLLaVA)] + +**Improved Baselines with Visual Instruction Tuning** [[Paper](https://arxiv.org/abs/2310.03744)] [[HF](https://huggingface.co/papers/2310.03744)]
+[Haotian Liu](https://hliu.cc), [Chunyuan Li](https://chunyuan.li/), [Yuheng Li](https://yuheng-li.github.io/), [Yong Jae Lee](https://pages.cs.wisc.edu/~yongjaelee/) + +**Visual Instruction Tuning** (NeurIPS 2023, **Oral**) [[Paper](https://arxiv.org/abs/2304.08485)] [[HF](https://huggingface.co/papers/2304.08485)]
+[Haotian Liu*](https://hliu.cc), [Chunyuan Li*](https://chunyuan.li/), [Qingyang Wu](https://scholar.google.ca/citations?user=HDiw-TsAAAAJ&hl=en/), [Yong Jae Lee](https://pages.cs.wisc.edu/~yongjaelee/) (*Equal Contribution) + + + + +## Release + +- [2024/05/10] 🔥 **LLaVA-NeXT** (Stronger) models are released, stronger LMM with support of LLama-3 (8B) and Qwen-1.5 (72B/110B). [[Blog](https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/)] [[Checkpoints](https://huggingface.co/collections/lmms-lab/llava-next-6623288e2d61edba3ddbf5ff)] [[Demo](https://llava-next.lmms-lab.com/)] [[Code](https://github.com/LLaVA-VL/LLaVA-NeXT/)] +- [2024/05/10] 🔥 **LLaVA-NeXT** (Video) is released. The image-only-trained LLaVA-NeXT model is surprisingly strong on video tasks with zero-shot modality transfer. DPO training with AI feedback on videos can yield significant improvement. [[Blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)] [[Checkpoints](https://huggingface.co/collections/lmms-lab/llava-next-video-661e86f5e8dabc3ff793c944)] [[Code](https://github.com/LLaVA-VL/LLaVA-NeXT/)] +- [03/10] Releasing **LMMs-Eval**, a highly efficient evaluation pipeline we used when developing LLaVA-NeXT. It supports the evaluation of LMMs on dozens of public datasets and allows new dataset onboarding, making the dev of new LMMs much faster. [[Blog](https://lmms-lab.github.io/lmms-eval-blog/lmms-eval-0.1/)] [[Codebase](https://github.com/EvolvingLMMs-Lab/lmms-eval)] +- [1/30] 🔥 **LLaVA-NeXT** (LLaVA-1.6) is out! With additional scaling to LLaVA-1.5, LLaVA-NeXT-34B outperforms Gemini Pro on some benchmarks. It can now process 4x more pixels and perform more tasks/applications than before. Check out the [blog post](https://llava-vl.github.io/blog/2024-01-30-llava-next/), and explore the [demo](https://llava.hliu.cc/)! Models are available in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). Training/eval data and scripts coming soon. +- [11/10] [LLaVA-Plus](https://llava-vl.github.io/llava-plus/) is released: Learning to Use Tools for Creating Multimodal Agents, with LLaVA-Plus (LLaVA that Plug and Learn to Use Skills). [[Project Page](https://llava-vl.github.io/llava-plus/)] [[Demo](https://llavaplus.ngrok.io/)] [[Code](https://github.com/LLaVA-VL/LLaVA-Plus-Codebase)] [[Paper](https://arxiv.org/abs/2311.05437)] +- [11/2] [LLaVA-Interactive](https://llava-vl.github.io/llava-interactive/) is released: Experience the future of human-AI multimodal interaction with an all-in-one demo for Image Chat, Segmentation, Generation and Editing. [[Project Page](https://llava-vl.github.io/llava-interactive/)] [[Demo](https://llavainteractive.ngrok.io/)] [[Code](https://github.com/LLaVA-VL/LLaVA-Interactive-Demo)] [[Paper](https://arxiv.org/abs/2311.00571)] +- [10/26] 🔥 LLaVA-1.5 with LoRA achieves comparable performance as full-model finetuning, with a reduced GPU RAM requirement ([ckpts](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md#llava-v15), [script](https://github.com/haotian-liu/LLaVA#train)). We also provide a [doc](https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md) on how to finetune LLaVA-1.5 on your own dataset with LoRA. +- [10/12] Check out the Korean LLaVA (Ko-LLaVA), created by ETRI, who has generously supported our research! [[🤗 Demo](https://huggingface.co/spaces/etri-vilab/Ko-LLaVA)] +- [10/5] 🔥 LLaVA-1.5 is out! Achieving SoTA on 11 benchmarks, with just simple modifications to the original LLaVA, utilizes all public data, completes training in ~1 day on a single 8-A100 node, and surpasses methods like Qwen-VL-Chat that use billion-scale data. Check out the [technical report](https://arxiv.org/abs/2310.03744), and explore the [demo](https://llava.hliu.cc/)! Models are available in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). The training data and scripts of LLaVA-1.5 are released [here](https://github.com/haotian-liu/LLaVA#train), and evaluation scripts are released [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md)! +- [9/26] LLaVA is improved with reinforcement learning from human feedback (RLHF) to improve fact grounding and reduce hallucination. Check out the new SFT and RLHF checkpoints at project [[LLavA-RLHF]](https://llava-rlhf.github.io/) +- [9/22] [LLaVA](https://arxiv.org/abs/2304.08485) is accepted by NeurIPS 2023 as **oral presentation**, and [LLaVA-Med](https://arxiv.org/abs/2306.00890) is accepted by NeurIPS 2023 Datasets and Benchmarks Track as **spotlight presentation**. + +
+More + +- [11/6] Support **Intel** dGPU and CPU platforms. [More details here.](https://github.com/haotian-liu/LLaVA/tree/intel/docs/intel) +- [10/12] LLaVA is now supported in [llama.cpp](https://github.com/ggerganov/llama.cpp/pull/3436) with 4-bit / 5-bit quantization support! +- [10/11] The training data and scripts of LLaVA-1.5 are released [here](https://github.com/haotian-liu/LLaVA#train), and evaluation scripts are released [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md)! +- [10/10] [Roboflow Deep Dive](https://blog.roboflow.com/first-impressions-with-llava-1-5/): First Impressions with LLaVA-1.5. +- [9/20] We summarize our empirical study of training 33B and 65B LLaVA models in a [note](https://arxiv.org/abs/2309.09958). Further, if you are interested in the comprehensive review, evolution and trend of multimodal foundation models, please check out our recent survey paper [``Multimodal Foundation Models: From Specialists to General-Purpose Assistants''.](https://arxiv.org/abs/2309.10020) +

+ +

+ +- [7/19] 🔥 We release a major upgrade, including support for LLaMA-2, LoRA training, 4-/8-bit inference, higher resolution (336x336), and a lot more. We release [LLaVA Bench](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md) for benchmarking open-ended visual chat with results from Bard and Bing-Chat. We also support and verify training with RTX 3090 and RTX A6000. Check out [LLaVA-from-LLaMA-2](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_from_LLaMA2.md), and our [model zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)! +- [6/26] [CVPR 2023 Tutorial](https://vlp-tutorial.github.io/) on **Large Multimodal Models: Towards Building and Surpassing Multimodal GPT-4**! Please check out [[Slides](https://datarelease.blob.core.windows.net/tutorial/vision_foundation_models_2023/slides/Chunyuan_cvpr2023_tutorial_lmm.pdf)] [[Notes](https://arxiv.org/abs/2306.14895)] [[YouTube](https://youtu.be/mkI7EPD1vp8)] [[Bilibli](https://www.bilibili.com/video/BV1Ng4y1T7v3/)]. +- [6/11] We released the preview for the most requested feature: DeepSpeed and LoRA support! Please see documentations [here](./docs/LoRA.md). +- [6/1] We released **LLaVA-Med: Large Language and Vision Assistant for Biomedicine**, a step towards building biomedical domain large language and vision models with GPT-4 level capabilities. Checkout the [paper](https://arxiv.org/abs/2306.00890) and [page](https://github.com/microsoft/LLaVA-Med). +- [5/6] We are releasing [LLaVA-Lighting-MPT-7B-preview](https://huggingface.co/liuhaotian/LLaVA-Lightning-MPT-7B-preview), based on MPT-7B-Chat! See [here](#LLaVA-MPT-7b) for more details. +- [5/2] 🔥 We are releasing LLaVA-Lighting! Train a lite, multimodal GPT-4 with just $40 in 3 hours! See [here](#train-llava-lightning) for more details. +- [4/27] Thanks to the community effort, LLaVA-13B with 4-bit quantization allows you to run on a GPU with as few as 12GB VRAM! Try it out [here](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/llava). +- [4/17] 🔥 We released **LLaVA: Large Language and Vision Assistant**. We propose visual instruction tuning, towards building large language and vision models with GPT-4 level capabilities. Checkout the [paper](https://arxiv.org/abs/2304.08485) and [demo](https://llava.hliu.cc/). + +
+ + + +[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE) +**Usage and License Notices**: This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses, including but not limited to the [OpenAI Terms of Use](https://openai.com/policies/terms-of-use) for the dataset and the specific licenses for base language models for checkpoints trained using the dataset (e.g. [Llama community license](https://ai.meta.com/llama/license/) for LLaMA-2 and Vicuna-v1.5). This project does not impose any additional constraints beyond those stipulated in the original licenses. Furthermore, users are reminded to ensure that their use of the dataset and checkpoints is in compliance with all applicable laws and regulations. + + +## Contents +- [Install](#install) +- [LLaVA Weights](#llava-weights) +- [Demo](#Demo) +- [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md) +- [Dataset](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md) +- [Train](#train) +- [Evaluation](#evaluation) + +## Install + +If you are not using Linux, do *NOT* proceed, see instructions for [macOS](https://github.com/haotian-liu/LLaVA/blob/main/docs/macOS.md) and [Windows](https://github.com/haotian-liu/LLaVA/blob/main/docs/Windows.md). + +1. Clone this repository and navigate to LLaVA folder +```bash +git clone https://github.com/haotian-liu/LLaVA.git +cd LLaVA +``` + +2. Install Package +```Shell +conda create -n llava python=3.10 -y +conda activate llava +pip install --upgrade pip # enable PEP 660 support +pip install -e . +``` + +3. Install additional packages for training cases +``` +pip install -e ".[train]" +pip install flash-attn --no-build-isolation +``` + +### Upgrade to latest code base + +```Shell +git pull +pip install -e . + +# if you see some import errors when you upgrade, +# please try running the command below (without #) +# pip install flash-attn --no-build-isolation --no-cache-dir +``` + +### Quick Start With HuggingFace + +
+Example Code + +```Python +from llava.model.builder import load_pretrained_model +from llava.mm_utils import get_model_name_from_path +from llava.eval.run_llava import eval_model + +model_path = "liuhaotian/llava-v1.5-7b" + +tokenizer, model, image_processor, context_len = load_pretrained_model( + model_path=model_path, + model_base=None, + model_name=get_model_name_from_path(model_path) +) +``` + +Check out the details wth the `load_pretrained_model` function in `llava/model/builder.py`. + +You can also use the `eval_model` function in `llava/eval/run_llava.py` to get the output easily. By doing so, you can use this code on Colab directly after downloading this repository. + +``` python +model_path = "liuhaotian/llava-v1.5-7b" +prompt = "What are the things I should be cautious about when I visit here?" +image_file = "https://llava-vl.github.io/static/images/view.jpg" + +args = type('Args', (), { + "model_path": model_path, + "model_base": None, + "model_name": get_model_name_from_path(model_path), + "query": prompt, + "conv_mode": None, + "image_file": image_file, + "sep": ",", + "temperature": 0, + "top_p": None, + "num_beams": 1, + "max_new_tokens": 512 +})() + +eval_model(args) +``` +
+ +## LLaVA Weights +Please check out our [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md) for all public LLaVA checkpoints, and the instructions of how to use the weights. + +## Demo + +### Gradio Web UI + +To launch a Gradio demo locally, please run the following commands one by one. If you plan to launch multiple model workers to compare between different checkpoints, you only need to launch the controller and the web server *ONCE*. + +```mermaid +flowchart BT + %% Declare Nodes + gws("Gradio (UI Server)") + c("Controller (API Server):
PORT: 10000") + mw7b("Model Worker:
llava-v1.5-7b
PORT: 40000") + mw13b("Model Worker:
llava-v1.5-13b
PORT: 40001") + sglw13b("SGLang Backend:
llava-v1.6-34b
http://localhost:30000") + lsglw13b("SGLang Worker:
llava-v1.6-34b
PORT: 40002") + + %% Declare Styles + classDef data fill:#3af,stroke:#48a,stroke-width:2px,color:#444 + classDef success fill:#8f8,stroke:#0a0,stroke-width:2px,color:#444 + classDef failure fill:#f88,stroke:#f00,stroke-width:2px,color:#444 + + %% Assign Styles + class id,od data; + class cimg,cs_s,scsim_s success; + class ncimg,cs_f,scsim_f failure; + + subgraph Demo Connections + direction BT + c<-->gws + + mw7b<-->c + mw13b<-->c + lsglw13b<-->c + sglw13b<-->lsglw13b + end +``` + +#### Launch a controller +```Shell +python -m llava.serve.controller --host 0.0.0.0 --port 10000 +``` + +#### Launch a gradio web server. +```Shell +python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload +``` +You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker. + +#### Launch a SGLang worker + +This is the recommended way to serve LLaVA model with high throughput, and you need to install SGLang first. Note that currently `4-bit` quantization is not supported yet on SGLang-LLaVA, and if you have limited GPU VRAM, please check out model worker with [quantization](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#launch-a-model-worker-4-bit-8-bit-inference-quantized). + +```Shell +pip install "sglang[all]" +``` + +You'll first launch a SGLang backend worker which will execute the models on GPUs. Remember the `--port` you've set and you'll use that later. + +```Shell +# Single GPU +CUDA_VISIBLE_DEVICES=0 python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --port 30000 + +# Multiple GPUs with tensor parallel +CUDA_VISIBLE_DEVICES=0,1 python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-13b --tokenizer-path llava-hf/llava-1.5-13b-hf --port 30000 --tp 2 +``` + +Tokenizers (temporary): `llava-hf/llava-1.5-7b-hf`, `llava-hf/llava-1.5-13b-hf`, `liuhaotian/llava-v1.6-34b-tokenizer`. + +You'll then launch a LLaVA-SGLang worker that will communicate between LLaVA controller and SGLang backend to route the requests. Set `--sgl-endpoint` to `http://127.0.0.1:port` where `port` is the one you just set (default: 30000). + +```Shell +python -m llava.serve.sglang_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --sgl-endpoint http://127.0.0.1:30000 +``` + +#### Launch a model worker + +This is the actual *worker* that performs the inference on the GPU. Each worker is responsible for a single model specified in `--model-path`. + +```Shell +python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b +``` +Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list. + +You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker. +```Shell +python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port --worker http://localhost: --model-path +``` + +If you are using an Apple device with an M1 or M2 chip, you can specify the mps device by using the `--device` flag: `--device mps`. + +#### Launch a model worker (Multiple GPUs, when GPU VRAM <= 24GB) + +If the VRAM of your GPU is less than 24GB (e.g., RTX 3090, RTX 4090, etc.), you may try running it with multiple GPUs. Our latest code base will automatically try to use multiple GPUs if you have more than one GPU. You can specify which GPUs to use with `CUDA_VISIBLE_DEVICES`. Below is an example of running with the first two GPUs. + +```Shell +CUDA_VISIBLE_DEVICES=0,1 python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b +``` + +#### Launch a model worker (4-bit, 8-bit inference, quantized) + +You can launch the model worker with quantized bits (4-bit, 8-bit), which allows you to run the inference with reduced GPU memory footprint, potentially allowing you to run on a GPU with as few as 12GB VRAM. Note that inference with quantized bits may not be as accurate as the full-precision model. Simply append `--load-4bit` or `--load-8bit` to the **model worker** command that you are executing. Below is an example of running with 4-bit quantization. + +```Shell +python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b --load-4bit +``` + +#### Launch a model worker (LoRA weights, unmerged) + +You can launch the model worker with LoRA weights, without merging them with the base checkpoint, to save disk space. There will be additional loading time, while the inference speed is the same as the merged checkpoints. Unmerged LoRA checkpoints do not have `lora-merge` in the model name, and are usually much smaller (less than 1GB) than the merged checkpoints (13G for 7B, and 25G for 13B). + +To load unmerged LoRA weights, you simply need to pass an additional argument `--model-base`, which is the base LLM that is used to train the LoRA weights. You can check the base LLM of each LoRA weights in the [model zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). + +```Shell +python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1-0719-336px-lora-vicuna-13b-v1.3 --model-base lmsys/vicuna-13b-v1.3 +``` + +### CLI Inference + +Chat about images using LLaVA without the need of Gradio interface. It also supports multiple GPUs, 4-bit and 8-bit quantized inference. With 4-bit quantization, for our LLaVA-1.5-7B, it uses less than 8GB VRAM on a single GPU. + +```Shell +python -m llava.serve.cli \ + --model-path liuhaotian/llava-v1.5-7b \ + --image-file "https://llava-vl.github.io/static/images/view.jpg" \ + --load-4bit +``` + + + +## Train + +*Below is the latest training configuration for LLaVA v1.5. For legacy models, please refer to README of [this](https://github.com/haotian-liu/LLaVA/tree/v1.0.1) version for now. We'll add them in a separate doc later.* + +LLaVA training consists of two stages: (1) feature alignment stage: use our 558K subset of the LAION-CC-SBU dataset to connect a *frozen pretrained* vision encoder to a *frozen LLM*; (2) visual instruction tuning stage: use 150K GPT-generated multimodal instruction-following data, plus around 515K VQA data from academic-oriented tasks, to teach the model to follow multimodal instructions. + +LLaVA is trained on 8 A100 GPUs with 80GB memory. To train on fewer GPUs, you can reduce the `per_device_train_batch_size` and increase the `gradient_accumulation_steps` accordingly. Always keep the global batch size the same: `per_device_train_batch_size` x `gradient_accumulation_steps` x `num_gpus`. + +### Hyperparameters +We use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below. + +1. Pretraining + +| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | +| --- | ---: | ---: | ---: | ---: | ---: | +| LLaVA-v1.5-13B | 256 | 1e-3 | 1 | 2048 | 0 | + +2. Finetuning + +| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | +| --- | ---: | ---: | ---: | ---: | ---: | +| LLaVA-v1.5-13B | 128 | 2e-5 | 1 | 2048 | 0 | + +### Download Vicuna checkpoints (automatically) + +Our base model Vicuna v1.5, which is an instruction-tuned chatbot, will be downloaded automatically when you run our provided training scripts. No action is needed. + +### Pretrain (feature alignment) + +Please download the 558K subset of the LAION-CC-SBU dataset with BLIP captions we use in the paper [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain). + +Pretrain takes around 5.5 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 3.5 hours for LLaVA-v1.5-7B. + +Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/pretrain.sh). + +- `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector. +- `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px. + +
+Pretrain takes around 20 hours for LLaVA-7B on 8x V100 (32G) + + We provide training script with DeepSpeed [here](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain_xformers.sh). +Tips: +- If you are using V100 which is not supported by FlashAttention, you can use the [memory-efficient attention](https://arxiv.org/abs/2112.05682) implemented in [xFormers](https://github.com/facebookresearch/xformers). Install xformers and replace `llava/train/train_mem.py` above with [llava/train/train_xformers.py](llava/train/train_xformers.py). +
+ +### Visual Instruction Tuning + +1. Prepare data + +Please download the annotation of the final mixture our instruction tuning data [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json), and download the images from constituting datasets: + +- COCO: [train2017](http://images.cocodataset.org/zips/train2017.zip) +- GQA: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip) +- OCR-VQA: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing), **we save all files as `.jpg`** +- TextVQA: [train_val_images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip) +- VisualGenome: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip) + +After downloading all of them, organize the data as follows in `./playground/data`, + +``` +├── coco +│ └── train2017 +├── gqa +│ └── images +├── ocr_vqa +│ └── images +├── textvqa +│ └── train_images +└── vg + ├── VG_100K + └── VG_100K_2 +``` + +2. Start training! + +You may download our pretrained projectors in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). It is not recommended to use legacy projectors, as they may be trained with a different version of the codebase, and if any option is off, the model will not function/train as we expected. + +Visual instruction tuning takes around 20 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 10 hours for LLaVA-v1.5-7B on 8x A100 (40G). + +Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune.sh). + +If you are do not have enough GPU memory: + +- Use LoRA: [`finetune_lora.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_lora.sh). We are able to fit 13B training in 8-A100-40G/8-A6000, and 7B training in 8-RTX3090. Make sure `per_device_train_batch_size*gradient_accumulation_steps` is the same as the provided script for best reproducibility. +- Replace `zero3.json` with `zero3_offload.json` which offloads some parameters to CPU RAM. This slows down the training speed. + +If you are interested in finetuning LLaVA model to your own task/data, please check out [`Finetune_Custom_Data.md`](https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md)。 + +New options to note: + +- `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector. +- `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px. +- `--image_aspect_ratio pad`: this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination. +- `--group_by_modality_length True`: this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). It makes the training sampler only sample a single modality (either image or language) during training, which we observe to speed up training by ~25%, and does not affect the final outcome. + +## Evaluation + +In LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs. + +See [Evaluation.md](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md). + +### GPT-assisted Evaluation + +Our GPT-assisted evaluation pipeline for multimodal modeling is provided for a comprehensive understanding of the capabilities of vision-language models. Please see our paper for more details. + +1. Generate LLaVA responses + +```Shell +python model_vqa.py \ + --model-path ./checkpoints/LLaVA-13B-v0 \ + --question-file \ + playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \ + --image-folder \ + /path/to/coco2014_val \ + --answers-file \ + /path/to/answer-file-our.jsonl +``` + +2. Evaluate the generated responses. In our case, [`answer-file-ref.jsonl`](./playground/data/coco2014_val_qa_eval/qa90_gpt4_answer.jsonl) is the response generated by text-only GPT-4 (0314), with the context captions/boxes provided. + +```Shell +OPENAI_API_KEY="sk-***********************************" python llava/eval/eval_gpt_review_visual.py \ + --question playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \ + --context llava/eval/table/caps_boxes_coco2014_val_80.jsonl \ + --answer-list \ + /path/to/answer-file-ref.jsonl \ + /path/to/answer-file-our.jsonl \ + --rule llava/eval/table/rule.json \ + --output /path/to/review.json +``` + +3. Summarize the evaluation results + +```Shell +python summarize_gpt_review.py +``` + +## Citation + +If you find LLaVA useful for your research and applications, please cite using this BibTeX: +```bibtex +@misc{liu2024llavanext, + title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge}, + url={https://llava-vl.github.io/blog/2024-01-30-llava-next/}, + author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae}, + month={January}, + year={2024} +} + +@misc{liu2023improvedllava, + title={Improved Baselines with Visual Instruction Tuning}, + author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Lee, Yong Jae}, + publisher={arXiv:2310.03744}, + year={2023}, +} + +@misc{liu2023llava, + title={Visual Instruction Tuning}, + author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae}, + publisher={NeurIPS}, + year={2023}, +} +``` + +## Acknowledgement + +- [Vicuna](https://github.com/lm-sys/FastChat): the codebase we built upon, and our base model Vicuna-13B that has the amazing language capabilities! + +## Related Projects + +- [Instruction Tuning with GPT-4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM) +- [LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day](https://github.com/microsoft/LLaVA-Med) +- [Otter: In-Context Multi-Modal Instruction Tuning](https://github.com/Luodian/Otter) + +For future project ideas, please check out: +- [SEEM: Segment Everything Everywhere All at Once](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once) +- [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything) to detect, segment, and generate anything by marrying [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO) and [Segment-Anything](https://github.com/facebookresearch/segment-anything). diff --git a/MagicQuill/LLaVA/cog.yaml b/MagicQuill/LLaVA/cog.yaml new file mode 100644 index 0000000000000000000000000000000000000000..55b739fd437a1897c1c1ec001f47aac2fbfdf68b --- /dev/null +++ b/MagicQuill/LLaVA/cog.yaml @@ -0,0 +1,37 @@ +# Configuration for Cog ⚙️ +# Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md + +build: + gpu: true + + python_version: "3.11" + + python_packages: + - "torch==2.0.1" + - "accelerate==0.21.0" + - "bitsandbytes==0.41.0" + - "deepspeed==0.9.5" + - "einops-exts==0.0.4" + - "einops==0.6.1" + - "gradio==3.35.2" + - "gradio_client==0.2.9" + - "httpx==0.24.0" + - "markdown2==2.4.10" + - "numpy==1.26.0" + - "peft==0.4.0" + - "scikit-learn==1.2.2" + - "sentencepiece==0.1.99" + - "shortuuid==1.0.11" + - "timm==0.6.13" + - "tokenizers==0.13.3" + - "torch==2.0.1" + - "torchvision==0.15.2" + - "transformers==4.31.0" + - "wandb==0.15.12" + - "wavedrom==2.0.3.post3" + - "Pygments==2.16.1" + run: + - curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.0.3/pget" && chmod +x /usr/local/bin/pget + +# predict.py defines how predictions are run on your model +predict: "predict.py:Predictor" diff --git a/MagicQuill/LLaVA/docs/Customize_Component.md b/MagicQuill/LLaVA/docs/Customize_Component.md new file mode 100644 index 0000000000000000000000000000000000000000..e99a60879920b389799fb3a0baf1fd864ee0bccc --- /dev/null +++ b/MagicQuill/LLaVA/docs/Customize_Component.md @@ -0,0 +1,20 @@ +# Customize Components in LLaVA + +This is an initial guide on how to replace the LLMs, visual encoders, etc. with your choice of components. + +## LLM + +It is quite simple to swap out LLaMA to any other LLMs. You can refer to our implementation of [`llava_llama.py`](https://raw.githubusercontent.com/haotian-liu/LLaVA/main/llava/model/language_model/llava_llama.py) for an example of how to replace the LLM. + +Although it may seem that it still needs ~100 lines of code, most of them are copied from the original `llama.py` from HF. The only part that is different is to insert some lines for processing the multimodal inputs. + +In `forward` function, you can see that we call `self.prepare_inputs_labels_for_multimodal` to process the multimodal inputs. This function is defined in `LlavaMetaForCausalLM` and you just need to insert it into the `forward` function of your LLM. + +In `prepare_inputs_for_generation` function, you can see that we add `images` to the `model_inputs`. This is because we need to pass the images to the LLM during generation. + +These are basically all the changes you need to make to replace the LLM. + +## Visual Encoder + +You can check out [`clip_encoder.py`](https://github.com/haotian-liu/LLaVA/blob/main/llava/model/multimodal_encoder/clip_encoder.py) on how we implement the CLIP visual encoder. + diff --git a/MagicQuill/LLaVA/docs/Data.md b/MagicQuill/LLaVA/docs/Data.md new file mode 100644 index 0000000000000000000000000000000000000000..a13877451bae7a6e774258a2f1753bbecb32b890 --- /dev/null +++ b/MagicQuill/LLaVA/docs/Data.md @@ -0,0 +1,29 @@ +## Data + +| Data file name | Size | +| --- | ---: | +| [llava_instruct_150k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_instruct_150k.json) | 229 MB | +| [llava_instruct_80k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_instruct_80k.json) | 229 MB | +| [conversation_58k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/conversation_58k.json) | 126 MB | +| [detail_23k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/detail_23k.json) | 20.5 MB | +| [complex_reasoning_77k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/complex_reasoning_77k.json) | 79.6 MB | + +### Pretraining Dataset +The pretraining dataset used in this release is a subset of CC-3M dataset, filtered with a more balanced concept coverage distribution. Please see [here](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K) for a detailed description of the dataset structure and how to download the images. + +If you already have CC-3M dataset on your disk, the image names follow this format: `GCC_train_000000000.jpg`. You may edit the `image` field correspondingly if necessary. + +| Data | Chat File | Meta Data | Size | +| --- | --- | --- | ---: | +| CC-3M Concept-balanced 595K | [chat.json](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/chat.json) | [metadata.json](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/metadata.json) | 211 MB +| LAION/CC/SBU BLIP-Caption Concept-balanced 558K | [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/blip_laion_cc_sbu_558k.json) | [metadata.json](#) | 181 MB + +**Important notice**: Upon the request from the community, as ~15% images of the original CC-3M dataset are no longer accessible, we upload [`images.zip`](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/images.zip) for better reproducing our work in research community. It must not be used for any other purposes. The use of these images must comply with the CC-3M license. This may be taken down at any time when requested by the original CC-3M dataset owner or owners of the referenced images. + +### GPT-4 Prompts + +We provide our prompts and few-shot samples for GPT-4 queries, to better facilitate research in this domain. Please check out the [`prompts`](https://github.com/haotian-liu/LLaVA/tree/main/playground/data/prompts) folder for three kinds of questions: conversation, detail description, and complex reasoning. + +They are organized in a format of `system_message.txt` for system message, pairs of `abc_caps.txt` for few-shot sample user input, and `abc_conv.txt` for few-shot sample reference output. + +Note that you may find them in different format. For example, `conversation` is in `jsonl`, and detail description is answer-only. The selected format in our preliminary experiments works slightly better than a limited set of alternatives that we tried: `jsonl`, more natural format, answer-only. If interested, you may try other variants or conduct more careful study in this. Contributions are welcomed! diff --git a/MagicQuill/LLaVA/docs/Evaluation.md b/MagicQuill/LLaVA/docs/Evaluation.md new file mode 100644 index 0000000000000000000000000000000000000000..4bc49735c0c8f6eebb498b7ff8cb93262e1cd5cc --- /dev/null +++ b/MagicQuill/LLaVA/docs/Evaluation.md @@ -0,0 +1,167 @@ +# Evaluation + +In LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs. + +Currently, we mostly utilize the official toolkit or server for the evaluation. + +## Evaluate on Custom Datasets + +You can evaluate LLaVA on your custom datasets by converting your dataset to LLaVA's jsonl format, and evaluate using [`model_vqa.py`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/model_vqa.py). + +Below we provide a general guideline for evaluating datasets with some common formats. + +1. Short-answer (e.g. VQAv2, MME). + +``` + +Answer the question using a single word or phrase. +``` + +2. Option-only for multiple-choice (e.g. MMBench, SEED-Bench). + +``` + +A. +B. +C. +D. +Answer with the option's letter from the given choices directly. +``` + +3. Natural QA (e.g. LLaVA-Bench, MM-Vet). + +No postprocessing is needed. + +## Scripts + +Before preparing task-specific data, **you MUST first download [eval.zip](https://drive.google.com/file/d/1atZSBBrAX54yYpxtVVW33zFvcnaHeFPy/view?usp=sharing)**. It contains custom annotations, scripts, and the prediction files with LLaVA v1.5. Extract to `./playground/data/eval`. This also provides a general structure for all datasets. + +### VQAv2 + +1. Download [`test2015`](http://images.cocodataset.org/zips/test2015.zip) and put it under `./playground/data/eval/vqav2`. +2. Multi-GPU inference. +```Shell +CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/v1_5/eval/vqav2.sh +``` +3. Submit the results to the [evaluation server](https://eval.ai/web/challenges/challenge-page/830/my-submission): `./playground/data/eval/vqav2/answers_upload`. + +### GQA + +1. Download the [data](https://cs.stanford.edu/people/dorarad/gqa/download.html) and [evaluation scripts](https://cs.stanford.edu/people/dorarad/gqa/evaluate.html) following the official instructions and put under `./playground/data/eval/gqa/data`. You may need to modify `eval.py` as [this](https://gist.github.com/haotian-liu/db6eddc2a984b4cbcc8a7f26fd523187) due to the missing assets in the GQA v1.2 release. +2. Multi-GPU inference. +```Shell +CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/v1_5/eval/gqa.sh +``` + +### VisWiz + +1. Download [`test.json`](https://vizwiz.cs.colorado.edu/VizWiz_final/vqa_data/Annotations.zip) and extract [`test.zip`](https://vizwiz.cs.colorado.edu/VizWiz_final/images/test.zip) to `test`. Put them under `./playground/data/eval/vizwiz`. +2. Single-GPU inference. +```Shell +CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/vizwiz.sh +``` +3. Submit the results to the [evaluation server](https://eval.ai/web/challenges/challenge-page/2185/my-submission): `./playground/data/eval/vizwiz/answers_upload`. + +### ScienceQA + +1. Under `./playground/data/eval/scienceqa`, download `images`, `pid_splits.json`, `problems.json` from the `data/scienceqa` folder of the ScienceQA [repo](https://github.com/lupantech/ScienceQA). +2. Single-GPU inference and evaluate. +```Shell +CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/sqa.sh +``` + +### TextVQA + +1. Download [`TextVQA_0.5.1_val.json`](https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json) and [images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip) and extract to `./playground/data/eval/textvqa`. +2. Single-GPU inference and evaluate. +```Shell +CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/textvqa.sh +``` + +### POPE + +1. Download `coco` from [POPE](https://github.com/AoiDragon/POPE/tree/e3e39262c85a6a83f26cf5094022a782cb0df58d/output/coco) and put under `./playground/data/eval/pope`. +2. Single-GPU inference and evaluate. +```Shell +CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/pope.sh +``` + +### MME + +1. Download the data following the official instructions [here](https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation). +2. Downloaded images to `MME_Benchmark_release_version`. +3. put the official `eval_tool` and `MME_Benchmark_release_version` under `./playground/data/eval/MME`. +4. Single-GPU inference and evaluate. +```Shell +CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mme.sh +``` + +### MMBench + +1. Download [`mmbench_dev_20230712.tsv`](https://download.openmmlab.com/mmclassification/datasets/mmbench/mmbench_dev_20230712.tsv) and put under `./playground/data/eval/mmbench`. +2. Single-GPU inference. +```Shell +CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mmbench.sh +``` +3. Submit the results to the [evaluation server](https://opencompass.org.cn/leaderboard-multimodal): `./playground/data/eval/mmbench/answers_upload/mmbench_dev_20230712`. + +### MMBench-CN + +1. Download [`mmbench_dev_cn_20231003.tsv`](https://download.openmmlab.com/mmclassification/datasets/mmbench/mmbench_dev_cn_20231003.tsv) and put under `./playground/data/eval/mmbench`. +2. Single-GPU inference. +```Shell +CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mmbench_cn.sh +``` +3. Submit the results to the evaluation server: `./playground/data/eval/mmbench/answers_upload/mmbench_dev_cn_20231003`. + + +### SEED-Bench + +1. Following the official [instructions](https://github.com/AILab-CVC/SEED-Bench/blob/main/DATASET.md) to download the images and the videos. Put images under `./playground/data/eval/seed_bench/SEED-Bench-image`. +2. Extract the video frame in the middle from the downloaded videos, and put them under `./playground/data/eval/seed_bench/SEED-Bench-video-image`. We provide our script `extract_video_frames.py` modified from the official one. +3. Multiple-GPU inference and evaluate. +```Shell +CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/v1_5/eval/seed.sh +``` +4. Optionally, submit the results to the leaderboard: `./playground/data/eval/seed_bench/answers_upload` using the official jupyter notebook. + +### LLaVA-Bench-in-the-Wild + +1. Extract contents of [`llava-bench-in-the-wild`](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild) to `./playground/data/eval/llava-bench-in-the-wild`. +2. Single-GPU inference and evaluate. +```Shell +CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/llavabench.sh +``` + +### MM-Vet + +1. Extract [`mm-vet.zip`](https://github.com/yuweihao/MM-Vet/releases/download/v1/mm-vet.zip) to `./playground/data/eval/mmvet`. +2. Single-GPU inference. +```Shell +CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/mmvet.sh +``` +3. Evaluate the predictions in `./playground/data/eval/mmvet/results` using the official jupyter notebook. + +## More Benchmarks + +Below are awesome benchmarks for multimodal understanding from the research community, that are not initially included in the LLaVA-1.5 release. + +### Q-Bench + +1. Download [`llvisionqa_dev.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/llvisionqa_dev.json) (for `dev`-subset) and [`llvisionqa_test.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/llvisionqa_test.json) (for `test`-subset). Put them under `./playground/data/eval/qbench`. +2. Download and extract [images](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/images_llvisionqa.tar) and put all the images directly under `./playground/data/eval/qbench/images_llviqionqa`. +3. Single-GPU inference (change `dev` to `test` for evaluation on test set). +```Shell +CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/qbench.sh dev +``` +4. Submit the results by instruction [here](https://github.com/VQAssessment/Q-Bench#option-1-submit-results): `./playground/data/eval/qbench/llvisionqa_dev_answers.jsonl`. + +### Chinese-Q-Bench + +1. Download [`质衡-问答-验证集.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/%E8%B4%A8%E8%A1%A1-%E9%97%AE%E7%AD%94-%E9%AA%8C%E8%AF%81%E9%9B%86.json) (for `dev`-subset) and [`质衡-问答-测试集.json`](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/%E8%B4%A8%E8%A1%A1-%E9%97%AE%E7%AD%94-%E6%B5%8B%E8%AF%95%E9%9B%86.json) (for `test`-subset). Put them under `./playground/data/eval/qbench`. +2. Download and extract [images](https://huggingface.co/datasets/nanyangtu/LLVisionQA-QBench/resolve/main/images_llvisionqa.tar) and put all the images directly under `./playground/data/eval/qbench/images_llviqionqa`. +3. Single-GPU inference (change `dev` to `test` for evaluation on test set). +```Shell +CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/qbench_zh.sh dev +``` +4. Submit the results by instruction [here](https://github.com/VQAssessment/Q-Bench#option-1-submit-results): `./playground/data/eval/qbench/llvisionqa_zh_dev_answers.jsonl`. diff --git a/MagicQuill/LLaVA/docs/Finetune_Custom_Data.md b/MagicQuill/LLaVA/docs/Finetune_Custom_Data.md new file mode 100644 index 0000000000000000000000000000000000000000..60baadaaef58ba96987f515b62caebf60a75dd2c --- /dev/null +++ b/MagicQuill/LLaVA/docs/Finetune_Custom_Data.md @@ -0,0 +1,37 @@ +# Finetune LLaVA on Custom Datasets + +## Dataset Format + +Convert your data to a JSON file of a List of all samples. Sample metadata should contain `id` (a unique identifier), `image` (the path to the image), and `conversations` (the conversation data between human and AI). + +A sample JSON for finetuning LLaVA for generating tag-style captions for Stable Diffusion: + +```json +[ + { + "id": "997bb945-628d-4724-b370-b84de974a19f", + "image": "part-000001/997bb945-628d-4724-b370-b84de974a19f.jpg", + "conversations": [ + { + "from": "human", + "value": "\nWrite a prompt for Stable Diffusion to generate this image." + }, + { + "from": "gpt", + "value": "a beautiful painting of chernobyl by nekro, pascal blanche, john harris, greg rutkowski, sin jong hun, moebius, simon stalenhag. in style of cg art. ray tracing. cel shading. hyper detailed. realistic. ue 5. maya. octane render. " + }, + ] + }, + ... +] +``` + +## Command + +If you have a limited task-specific data, we recommend finetuning from LLaVA checkpoints with LoRA following this [script](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_task_lora.sh). + +If the amount of the task-specific data is sufficient, you can also finetune from LLaVA checkpoints with full-model finetuning following this [script](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_task.sh). + +You may need to adjust the hyperparameters to fit each specific dataset and your hardware constraint. + + diff --git a/MagicQuill/LLaVA/docs/Intel.md b/MagicQuill/LLaVA/docs/Intel.md new file mode 100644 index 0000000000000000000000000000000000000000..c759e4098aa06f89d04199182702176aa4c64b12 --- /dev/null +++ b/MagicQuill/LLaVA/docs/Intel.md @@ -0,0 +1,7 @@ +# Intel Platforms + +* Support [Intel GPU Max Series](https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html) +* Support [Intel CPU Sapphire Rapides](https://ark.intel.com/content/www/us/en/ark/products/codename/126212/products-formerly-sapphire-rapids.html) +* Based on [Intel Extension for Pytorch](https://intel.github.io/intel-extension-for-pytorch) + +More details in [**intel branch**](https://github.com/haotian-liu/LLaVA/tree/intel/docs/intel) diff --git a/MagicQuill/LLaVA/docs/LLaVA_Bench.md b/MagicQuill/LLaVA/docs/LLaVA_Bench.md new file mode 100644 index 0000000000000000000000000000000000000000..643fee99cd6252e2f53353b9744f3ad392e5db4f --- /dev/null +++ b/MagicQuill/LLaVA/docs/LLaVA_Bench.md @@ -0,0 +1,31 @@ +# LLaVA-Bench [[Download](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild)] + +**-Introduction-** Large commercial multimodal chatbots have been released in this week, including +- [Multimodal Bing-Chat by Microsoft](https://blogs.bing.com/search/july-2023/Bing-Chat-Enterprise-announced,-multimodal-Visual-Search-rolling-out-to-Bing-Chat) (July 18, 2023) +- [Multimodal Bard by Google](https://bard.google.com/). + +These chatbots are presumably supported by proprietary large multimodal models (LMM). Compared with the open-source LMM such as LLaVA, proprietary LMM represent the scaling success upperbound of the current SoTA techniques. They share the goal of developing multimodal chatbots that follow human intents to complete various daily-life visual tasks in the wild. While it remains less explored how to evaluate multimodal chat ability, it provides useful feedback to study open-source LMMs against the commercial multimodal chatbots. In addition to the *LLaVA-Bench (COCO)* dataset we used to develop the early versions of LLaVA, we are releasing [*LLaVA-Bench (In-the-Wild)*](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild) to the community for the public use. + +## LLaVA-Bench (In-the-Wild *[Ongoing work]*) + +To evaluate the model's capability in more challenging tasks and generalizability to novel domains, we collect a diverse set of 24 images with 60 questions in total, including indoor and outdoor scenes, memes, paintings, sketches, etc, and associate each image with a highly-detailed and manually-curated description and a proper selection of questions. Such design also assesses the model's robustness to different prompts. In this release, we also categorize questions into three categories: conversation (simple QA), detailed description, and complex reasoning. We continue to expand and improve the diversity of the LLaVA-Bench (In-the-Wild). We manually query Bing-Chat and Bard to get the responses. + +### Results + +The score is measured by comparing against a reference answer generated by text-only GPT-4. It is generated by feeding the question, along with the ground truth image annotations as the context. A text-only GPT-4 evaluator rates both answers. We query GPT-4 by putting the reference answer first, and then the answer generated by the candidate model. We upload images at their original resolution to Bard and Bing-Chat to obtain the results. + +| Approach | Conversation | Detail | Reasoning | Overall | +|----------------|--------------|--------|-----------|---------| +| Bard-0718 | 83.7 | 69.7 | 78.7 | 77.8 | +| Bing-Chat-0629 | 59.6 | 52.2 | 90.1 | 71.5 | +| LLaVA-13B-v1-336px-0719 (beam=1) | 64.3 | 55.9 | 81.7 | 70.1 | +| LLaVA-13B-v1-336px-0719 (beam=5) | 68.4 | 59.9 | 84.3 | 73.5 | + +Note that Bard sometimes refuses to answer questions about images containing humans, and Bing-Chat blurs the human faces in the images. We also provide the benchmark score for the subset without humans. + +| Approach | Conversation | Detail | Reasoning | Overall | +|----------------|--------------|--------|-----------|---------| +| Bard-0718 | 94.9 | 74.3 | 84.3 | 84.6 | +| Bing-Chat-0629 | 55.8 | 53.6 | 93.5 | 72.6 | +| LLaVA-13B-v1-336px-0719 (beam=1) | 62.2 | 56.4 | 82.2 | 70.0 | +| LLaVA-13B-v1-336px-0719 (beam=5) | 65.6 | 61.7 | 85.0 | 73.6 | diff --git a/MagicQuill/LLaVA/docs/LLaVA_from_LLaMA2.md b/MagicQuill/LLaVA/docs/LLaVA_from_LLaMA2.md new file mode 100644 index 0000000000000000000000000000000000000000..214754bf2f206c2d95ff744429d49420e2745d19 --- /dev/null +++ b/MagicQuill/LLaVA/docs/LLaVA_from_LLaMA2.md @@ -0,0 +1,29 @@ +# LLaVA (based on Llama 2 LLM, Preview) + +*NOTE: This is a technical preview. We are still running hyperparameter search, and will release the final model soon. If you'd like to contribute to this, please contact us.* + +:llama: **-Introduction-** [Llama 2 is an open-source LLM released by Meta AI](https://about.fb.com/news/2023/07/llama-2/) today (July 18, 2023). Compared with its early version [Llama 1](https://ai.meta.com/blog/large-language-model-llama-meta-ai/), Llama 2 is more favored in ***stronger language performance***, ***longer context window***, and importantly ***commercially usable***! While Llama 2 is changing the LLM market landscape in the language space, its multimodal ability remains unknown. We quickly develop the LLaVA variant based on the latest Llama 2 checkpoints, and release it to the community for the public use. + +You need to apply for and download the latest Llama 2 checkpoints to start your own training (apply [here](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)) + + +## Training + +Please checkout [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain.sh), [`finetune.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune.sh), [`finetune_lora.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_lora.sh). + +## LLaVA (based on Llama 2), What is different? + +:volcano: How is the new LLaVA based on Llama 2 different from Llama 1? The comparisons of the training process are described: +- **Pre-training**. The pre-trained base LLM is changed from Llama 1 to Llama 2 +- **Language instruction-tuning**. The previous LLaVA model starts with Vicuna, which is instruct tuned on ShareGPT data from Llama 1; The new LLaVA model starts with Llama 2 Chat, which is an instruct tuned checkpoint on dialogue data from Llama 2. +- **Multimodal instruction-tuning**. The same LLaVA-Lighting process is applied. + + +### Results + +- Llama 2 is better at following the instructions of role playing; Llama 2 fails in following the instructions of translation +- The quantitative evaluation on [LLaVA-Bench](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md) demonstrates on-par performance between Llama 2 and Llama 1 in LLaVA's multimodal chat ability. + + + + diff --git a/MagicQuill/LLaVA/docs/LoRA.md b/MagicQuill/LLaVA/docs/LoRA.md new file mode 100644 index 0000000000000000000000000000000000000000..bed25f57d0aaa8c37f63703f6f641999b02b1b3e --- /dev/null +++ b/MagicQuill/LLaVA/docs/LoRA.md @@ -0,0 +1,46 @@ +# LLaVA (LoRA, Preview) + +NOTE: This is a technical preview, and is not yet ready for production use. We are still running hyperparameter search for the LoRA model, and will release the final model soon. If you'd like to contribute to this, please contact us. + +You need latest code base for LoRA support (instructions [here](https://github.com/haotian-liu/LLaVA#upgrade-to-latest-code-base)) + +## Demo (Web UI) + +Please execute each of the commands below one by one (after the previous one has finished). The commands are the same as launching other demos except for an additional `--model-base` flag to specify the base model to use. Please make sure the base model corresponds to the LoRA checkpoint that you are using. For this technical preview, you need Vicuna v1.1 (7B) checkpoint (if you do not have that already, follow the instructions [here](https://github.com/lm-sys/FastChat#vicuna-weights)). + +#### Launch a controller +```Shell +python -m llava.serve.controller --host 0.0.0.0 --port 10000 +``` + +#### Launch a gradio web server. +```Shell +python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload +``` +You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker. + +#### Launch a model worker +```Shell +python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-vicuna-7b-v1.1-lcs_558k-instruct_80k_3e-lora-preview-alpha --model-base /path/to/vicuna-v1.1 +``` +Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list. + +You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker. + + +## Training + +Please see sample training scripts for [LoRA](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_lora.sh) and [QLoRA](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_qlora.sh). + +We provide sample DeepSpeed configs, [`zero3.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3.json) is more like PyTorch FSDP, and [`zero3_offload.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3_offload.json) can further save memory consumption by offloading parameters to CPU. `zero3.json` is usually faster than `zero3_offload.json` but requires more GPU memory, therefore, we recommend trying `zero3.json` first, and if you run out of GPU memory, try `zero3_offload.json`. You can also tweak the `per_device_train_batch_size` and `gradient_accumulation_steps` in the config to save memory, and just to make sure that `per_device_train_batch_size` and `gradient_accumulation_steps` remains the same. + +If you are having issues with ZeRO-3 configs, and there are enough VRAM, you may try [`zero2.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero2.json). This consumes slightly more memory than ZeRO-3, and behaves more similar to PyTorch FSDP, while still supporting parameter-efficient tuning. + +## Create Merged Checkpoints + +```Shell +python scripts/merge_lora_weights.py \ + --model-path /path/to/lora_model \ + --model-base /path/to/base_model \ + --save-model-path /path/to/merge_model +``` diff --git a/MagicQuill/LLaVA/docs/MODEL_ZOO.md b/MagicQuill/LLaVA/docs/MODEL_ZOO.md new file mode 100644 index 0000000000000000000000000000000000000000..2d870e6c0b8e97dc08d4e1b6a2d4ca0af9185ee1 --- /dev/null +++ b/MagicQuill/LLaVA/docs/MODEL_ZOO.md @@ -0,0 +1,150 @@ +# Model Zoo + +**To Use LLaVA-1.6 checkpoints, your llava package version must be newer than 1.2.0. [Instructions](https://github.com/haotian-liu/LLaVA#upgrade-to-latest-code-base) on how to upgrade.** + +If you are interested in including any other details in Model Zoo, please open an issue :) + +The model weights below are *merged* weights. You do not need to apply delta. The usage of LLaVA checkpoints should comply with the base LLM's model license. + +## LLaVA-v1.6 + +| Version | LLM | Schedule | Checkpoint | MMMU | MathVista | VQAv2 | GQA | VizWiz | SQA | TextVQA | POPE | MME | MM-Bench | MM-Bench-CN | SEED-IMG | LLaVA-Bench-Wild | MM-Vet | +|----------|----------|-----------|-----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---| +| LLaVA-1.6 | Vicuna-7B | full_ft-1e | [liuhaotian/llava-v1.6-vicuna-7b](https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b) | 35.8 | 34.6 | 81.8 | 64.2 | 57.6 | 70.1 | 64.9 | 86.5 | 1519/332 | 67.4 | 60.6 | 70.2 | 81.6 | 43.9 | +| LLaVA-1.6 | Vicuna-13B | full_ft-1e | [liuhaotian/llava-v1.6-vicuna-13b](https://huggingface.co/liuhaotian/llava-v1.6-vicuna-13b) | 36.2 | 35.3 | 82.8 | 65.4 | 60.5 | 73.6 | 67.1 | 86.2 | 1575/326 | 70 | 64.4 | 71.9 | 87.3 | 48.4 | +| LLaVA-1.6 | Mistral-7B | full_ft-1e | [liuhaotian/llava-v1.6-mistral-7b](https://huggingface.co/liuhaotian/llava-v1.6-mistral-7b) | 35.3 | 37.7 | 82.2 | 64.8 | 60.0 | 72.8 | 65.7 | 86.7 | 1498/321 | 68.7 | 61.2 | 72.2 | 83.2 | 47.3 | +| LLaVA-1.6 | Hermes-Yi-34B | full_ft-1e | [liuhaotian/llava-v1.6-34b](https://huggingface.co/liuhaotian/llava-v1.6-34b) | 51.1 | 46.5 | 83.7 | 67.1 | 63.8 | 81.8 | 69.5 | 87.7 | 1631/397 | 79.3 | 79 | 75.9 | 89.6 | 57.4 | + +*LLaVA-1.6-34B outperforms Gemini Pro on benchmarks like MMMU and MathVista.* + + +## LLaVA-v1.5 + +| Version | Size | Schedule | Checkpoint | VQAv2 | GQA | VizWiz | SQA | TextVQA | POPE | MME | MM-Bench | MM-Bench-CN | SEED | LLaVA-Bench-Wild | MM-Vet | +|----------|----------|-----------|-----------|---|---|---|---|---|---|---|---|---|---|---|---| +| LLaVA-1.5 | 7B | full_ft-1e | [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 78.5 | 62.0 | 50.0 | 66.8 | 58.2 | 85.9 | 1510.7 | 64.3 | 58.3 | 58.6 | 65.4 | 31.1 | +| LLaVA-1.5 | 13B | full_ft-1e | [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) | 80.0 | 63.3 | 53.6 | 71.6 | 61.3 | 85.9 | 1531.3 | 67.7 | 63.6 | 61.6 | 72.5 | 36.1 | +| LLaVA-1.5 | 7B | lora-1e | [liuhaotian/llava-v1.5-7b-lora](https://huggingface.co/liuhaotian/llava-v1.5-7b-lora) | 79.1 | 63.0 | 47.8 | 68.4 | 58.2 | 86.4 | 1476.9 | 66.1 | 58.9 | 60.1 | 67.9 | 30.2 | +| LLaVA-1.5 | 13B | lora-1e | [liuhaotian/llava-v1.5-13b-lora](https://huggingface.co/liuhaotian/llava-v1.5-13b-lora) | 80.0 | 63.3 | 58.9 | 71.2 | 60.2 | 86.7 | 1541.7 | 68.5 | 61.5 | 61.3 | 69.5 | 38.3 | + +Base model: Vicuna v1.5. Training logs: [wandb](https://api.wandb.ai/links/lht/6orh56wc). + +

+
+ LLaVA-1.5 achieves SoTA performance across 11 benchmarks. +

+ + +## LLaVA-v1 + +*Note: We recommend using the most capable LLaVA-v1.6 series above for the best performance.* + +| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | LLaVA-Bench-Conv | LLaVA-Bench-Detail | LLaVA-Bench-Complex | LLaVA-Bench-Overall | Download | +|----------|----------------|---------------|----------------------|-----------------|--------------------|------------------|--------------------|---------------------|---------------------|---------------------| +| Vicuna-13B-v1.3 | CLIP-L-336px | LCS-558K | 1e | LLaVA-Instruct-80K | proj-1e, lora-1e | 64.3 | 55.9 | 81.7 | 70.1 | [LoRA](https://huggingface.co/liuhaotian/llava-v1-0719-336px-lora-vicuna-13b-v1.3) [LoRA-Merged](https://huggingface.co/liuhaotian/llava-v1-0719-336px-lora-merge-vicuna-13b-v1.3) | +| LLaMA-2-13B-Chat | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | full_ft-1e | 56.7 | 58.6 | 80.0 | 67.9 | [ckpt](https://huggingface.co/liuhaotian/llava-llama-2-13b-chat-lightning-preview) | +| LLaMA-2-7B-Chat | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | lora-1e | 51.2 | 58.9 | 71.6 | 62.8 | [LoRA](https://huggingface.co/liuhaotian/llava-llama-2-7b-chat-lightning-lora-preview) | + + +## Projector weights + +These are projector weights we have pretrained. You can use these projector weights for visual instruction tuning. They are just pretrained on image-text pairs and are NOT instruction-tuned, which means they do NOT follow instructions as well as our official models and can output repetitive, lengthy, and garbled outputs. If you want to have nice conversations with LLaVA, use the checkpoints above (LLaVA v1.6). + +NOTE: These projector weights are only compatible with `llava>=1.0.0`. Please check out the latest codebase if your local code version is below v1.0.0. + +NOTE: When you use our pretrained projector for visual instruction tuning, it is very important to use the same base LLM and vision encoder as the one we used for pretraining the projector. Otherwise, the performance will be very poor. + +When using these projector weights to instruction-tune your LMM, please make sure that these options are correctly set as follows, + +```Shell +--mm_use_im_start_end False +--mm_use_im_patch_token False +``` + +| Base LLM | Vision Encoder | Projection | Pretrain Data | Pretraining schedule | Download | +|----------|----------------|---------------|----------------------|----------|----------| +| Vicuna-13B-v1.5 | CLIP-L-336px | MLP-2x | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-v1.5-mlp2x-336px-pretrain-vicuna-13b-v1.5) | +| Vicuna-7B-v1.5 | CLIP-L-336px | MLP-2x | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-v1.5-mlp2x-336px-pretrain-vicuna-7b-v1.5) | +| LLaMA-2-13B-Chat | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-llama-2-13b-chat) | +| LLaMA-2-7B-Chat | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-llama-2-7b-chat) | +| LLaMA-2-13B-Chat | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-llama-2-13b-chat) | +| LLaMA-2-7B-Chat | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-llama-2-7b-chat) | +| Vicuna-13B-v1.3 | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-vicuna-13b-v1.3) | +| Vicuna-7B-v1.3 | CLIP-L-336px | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-336px-pretrain-vicuna-7b-v1.3) | +| Vicuna-13B-v1.3 | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-vicuna-13b-v1.3) | +| Vicuna-7B-v1.3 | CLIP-L | Linear | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/llava-pretrain-vicuna-7b-v1.3) | + + +## Science QA Checkpoints + +| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | Download | +|----------|----------------|---------------|----------------------|-----------------|--------------------|---------------------| +| Vicuna-13B-v1.3 | CLIP-L | LCS-558K | 1e | ScienceQA | full_ft-12e | [ckpt](https://huggingface.co/liuhaotian/llava-lcs558k-scienceqa-vicuna-13b-v1.3) | + + +## Legacy Models (merged weights) + +The model weights below are *merged* weights. You do not need to apply delta. The usage of LLaVA checkpoints should comply with the base LLM's model license. + +| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | Download | +|----------|----------------|---------------|----------------------|-----------------|--------------------|------------------| +| MPT-7B-Chat | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | full_ft-1e | [preview](https://huggingface.co/liuhaotian/LLaVA-Lightning-MPT-7B-preview) | + + +## Legacy Models (delta weights) + +The model weights below are *delta* weights. The usage of LLaVA checkpoints should comply with the base LLM's model license: [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md). + +You can add our delta to the original LLaMA weights to obtain the LLaVA weights. + +Instructions: + +1. Get the original LLaMA weights in the huggingface format by following the instructions [here](https://huggingface.co/docs/transformers/main/model_doc/llama). +2. Use the following scripts to get LLaVA weights by applying our delta. It will automatically download delta weights from our Hugging Face account. In the script below, we use the delta weights of [`liuhaotian/LLaVA-7b-delta-v0`](https://huggingface.co/liuhaotian/LLaVA-7b-delta-v0) as an example. It can be adapted for other delta weights by changing the `--delta` argument (and base/target accordingly). + +```bash +python3 -m llava.model.apply_delta \ + --base /path/to/llama-7b \ + --target /output/path/to/LLaVA-7B-v0 \ + --delta liuhaotian/LLaVA-7b-delta-v0 +``` + +| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | Download | +|----------|----------------|---------------|----------------------|-----------------|--------------------|------------------| +| Vicuna-13B-v1.1 | CLIP-L | CC-595K | 1e | LLaVA-Instruct-158K | full_ft-3e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1) | +| Vicuna-7B-v1.1 | CLIP-L | LCS-558K | 1e | LLaVA-Instruct-80K | full_ft-1e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-Lightning-7B-delta-v1-1) | +| Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | LLaVA-Instruct-158K | full_ft-3e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v0) | +| Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | ScienceQA | full_ft-12e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v0-science_qa) | +| Vicuna-7B-v0 | CLIP-L | CC-595K | 1e | LLaVA-Instruct-158K | full_ft-3e | [delta-weights](https://huggingface.co/liuhaotian/LLaVA-7b-delta-v0) | + + + +## Legacy Projector weights + +The following projector weights are deprecated, and the support for them may be removed in the future. They do not support zero-shot inference. Please use the projector weights in the [table above](#projector-weights) if possible. + +**NOTE**: When you use our pretrained projector for visual instruction tuning, it is very important to **use the same base LLM and vision encoder** as the one we used for pretraining the projector. Otherwise, the performance will be very bad. + +When using these projector weights to instruction tune your LMM, please make sure that these options are correctly set as follows, + +```Shell +--mm_use_im_start_end True +--mm_use_im_patch_token False +``` + +| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Download | +|----------|----------------|---------------|----------------------|----------| +| Vicuna-7B-v1.1 | CLIP-L | LCS-558K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-7b-pretrain-projector-v1-1-LCS-558K-blip_caption.bin) | +| Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-13b-pretrain-projector-v0-CC3M-595K-original_caption.bin) | +| Vicuna-7B-v0 | CLIP-L | CC-595K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-7b-pretrain-projector-v0-CC3M-595K-original_caption.bin) | + +When using these projector weights to instruction tune your LMM, please make sure that these options are correctly set as follows, + +```Shell +--mm_use_im_start_end False +--mm_use_im_patch_token False +``` + +| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Download | +|----------|----------------|---------------|----------------------|----------| +| Vicuna-13B-v0 | CLIP-L | CC-595K | 1e | [projector](https://huggingface.co/liuhaotian/LLaVA-Pretrained-Projectors/blob/main/LLaVA-13b-pretrain-projector-v0-CC3M-595K-original_caption-no_im_token.bin) | diff --git a/MagicQuill/LLaVA/docs/ScienceQA.md b/MagicQuill/LLaVA/docs/ScienceQA.md new file mode 100644 index 0000000000000000000000000000000000000000..8881c41c67002a3798435b051c9a609dd1c0d506 --- /dev/null +++ b/MagicQuill/LLaVA/docs/ScienceQA.md @@ -0,0 +1,53 @@ +### ScienceQA + +#### Prepare Data +1. Please see ScienceQA [repo](https://github.com/lupantech/ScienceQA) for setting up the dataset. +2. Generate ScienceQA dataset for LLaVA conversation-style format. + +```Shell +python scripts/convert_sqa_to_llava.py \ + convert_to_llava \ + --base-dir /path/to/ScienceQA/data/scienceqa \ + --prompt-format "QCM-LEA" \ + --split {train,val,minival,test,minitest} +``` + +#### Training + +1. Pretraining + +You can download our pretrained projector weights from our [Model Zoo](), or train your own projector weights using [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain.sh). + +2. Finetuning + +See [`finetune_sqa.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_sqa.sh). + +#### Evaluation + +1. Multiple-GPU inference +You may evaluate this with multiple GPUs, and concatenate the generated jsonl files. Please refer to our script for [batch evaluation](https://github.com/haotian-liu/LLaVA/blob/main/scripts/sqa_eval_batch.sh) and [results gathering](https://github.com/haotian-liu/LLaVA/blob/main/scripts/sqa_eval_gather.sh). + +2. Single-GPU inference + +(a) Generate LLaVA responses on ScienceQA dataset + +```Shell +python -m llava.eval.model_vqa_science \ + --model-path liuhaotian/llava-lcs558k-scienceqa-vicuna-13b-v1.3 \ + --question-file /path/to/ScienceQA/data/scienceqa/llava_test_QCM-LEA.json \ + --image-folder /path/to/ScienceQA/data/scienceqa/images/test \ + --answers-file vqa/results/ScienceQA/test_llava-13b.jsonl \ + --conv-mode llava_v1 +``` + +(b) Evaluate the generated responses + +```Shell +python eval_science_qa.py \ + --base-dir /path/to/ScienceQA/data/scienceqa \ + --result-file vqa/results/ScienceQA/test_llava-13b.jsonl \ + --output-file vqa/results/ScienceQA/test_llava-13b_output.json \ + --output-result vqa/results/ScienceQA/test_llava-13b_result.json \ +``` + +For reference, we attach our prediction file [`test_sqa_llava_lcs_558k_sqa_12e_vicuna_v1_3_13b.json`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/results/test_sqa_llava_lcs_558k_sqa_12e_vicuna_v1_3_13b.json) and [`test_sqa_llava_13b_v0.json`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/results/test_sqa_llava_13b_v0.json) for comparison when reproducing our results, as well as for further analysis in detail. diff --git a/MagicQuill/LLaVA/docs/Windows.md b/MagicQuill/LLaVA/docs/Windows.md new file mode 100644 index 0000000000000000000000000000000000000000..355ab81ffa1a73e874f3a8fb85d2742896068d08 --- /dev/null +++ b/MagicQuill/LLaVA/docs/Windows.md @@ -0,0 +1,27 @@ +# Run LLaVA on Windows + +*NOTE: LLaVA on Windows is not fully supported. Currently we only support 16-bit inference. For a more complete support, please use [WSL2](https://learn.microsoft.com/en-us/windows/wsl/install) for now. More functionalities on Windows is to be added soon, stay tuned.* + +## Installation + +1. Clone this repository and navigate to LLaVA folder +```bash +git clone https://github.com/haotian-liu/LLaVA.git +cd LLaVA +``` + +2. Install Package +```Shell +conda create -n llava python=3.10 -y +conda activate llava +python -m pip install --upgrade pip # enable PEP 660 support +pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu117 +pip install -e . +pip uninstall bitsandbytes +``` + +## Run demo + +See instructions [here](https://github.com/haotian-liu/LLaVA#demo). + +Note that quantization (4-bit, 8-bit) is *NOT* supported on Windows. Stay tuned for the 4-bit support on Windows! diff --git a/MagicQuill/LLaVA/docs/macOS.md b/MagicQuill/LLaVA/docs/macOS.md new file mode 100644 index 0000000000000000000000000000000000000000..0008e5e7cf52e99d85388ef7f0f77d76940c8cef --- /dev/null +++ b/MagicQuill/LLaVA/docs/macOS.md @@ -0,0 +1,29 @@ +# Run LLaVA on macOS + +*NOTE: LLaVA on macOS is not fully supported. Currently we only support 16-bit inference. More functionalities on macOS is to be added soon, stay tuned.* + +## Installation + +1. Clone this repository and navigate to LLaVA folder +```bash +git clone https://github.com/haotian-liu/LLaVA.git +cd LLaVA +``` + +2. Install Package +```Shell +conda create -n llava python=3.10 -y +conda activate llava +python -mpip install --upgrade pip # enable PEP 660 support +pip install -e . +pip install torch==2.1.0 torchvision==0.16.0 +pip uninstall bitsandbytes +``` + +## Run demo + +Specify `--device mps` when launching model worker or CLI. + +See instructions [here](https://github.com/haotian-liu/LLaVA#demo). + +Note that quantization (4-bit, 8-bit) is *NOT* supported on macOS. Stay tuned for the 4-bit support on macOS! diff --git a/MagicQuill/LLaVA/llava/__init__.py b/MagicQuill/LLaVA/llava/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4d1f016db1028101d45ba7d68cb3f0bcb558c2bb --- /dev/null +++ b/MagicQuill/LLaVA/llava/__init__.py @@ -0,0 +1 @@ +from .model import LlavaLlamaForCausalLM diff --git a/MagicQuill/LLaVA/llava/constants.py b/MagicQuill/LLaVA/llava/constants.py new file mode 100644 index 0000000000000000000000000000000000000000..374be090510b302de9882d880c755787a8eafe11 --- /dev/null +++ b/MagicQuill/LLaVA/llava/constants.py @@ -0,0 +1,13 @@ +CONTROLLER_HEART_BEAT_EXPIRATION = 30 +WORKER_HEART_BEAT_INTERVAL = 15 + +LOGDIR = "." + +# Model Constants +IGNORE_INDEX = -100 +IMAGE_TOKEN_INDEX = -200 +DEFAULT_IMAGE_TOKEN = "" +DEFAULT_IMAGE_PATCH_TOKEN = "" +DEFAULT_IM_START_TOKEN = "" +DEFAULT_IM_END_TOKEN = "" +IMAGE_PLACEHOLDER = "" diff --git a/MagicQuill/LLaVA/llava/conversation.py b/MagicQuill/LLaVA/llava/conversation.py new file mode 100644 index 0000000000000000000000000000000000000000..00c56867dd1fd88094df9556f3d1c57e71a7ada8 --- /dev/null +++ b/MagicQuill/LLaVA/llava/conversation.py @@ -0,0 +1,396 @@ +import dataclasses +from enum import auto, Enum +from typing import List, Tuple +import base64 +from io import BytesIO +from PIL import Image + + +class SeparatorStyle(Enum): + """Different separator style.""" + SINGLE = auto() + TWO = auto() + MPT = auto() + PLAIN = auto() + LLAMA_2 = auto() + + +@dataclasses.dataclass +class Conversation: + """A class that keeps all conversation history.""" + system: str + roles: List[str] + messages: List[List[str]] + offset: int + sep_style: SeparatorStyle = SeparatorStyle.SINGLE + sep: str = "###" + sep2: str = None + version: str = "Unknown" + + skip_next: bool = False + + def get_prompt(self): + messages = self.messages + if len(messages) > 0 and type(messages[0][1]) is tuple: + messages = self.messages.copy() + init_role, init_msg = messages[0].copy() + init_msg = init_msg[0].replace("", "").strip() + if 'mmtag' in self.version: + messages[0] = (init_role, init_msg) + messages.insert(0, (self.roles[0], "")) + messages.insert(1, (self.roles[1], "Received.")) + else: + messages[0] = (init_role, "\n" + init_msg) + + if self.sep_style == SeparatorStyle.SINGLE: + ret = self.system + self.sep + for role, message in messages: + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + ": " + message + self.sep + else: + ret += role + ":" + elif self.sep_style == SeparatorStyle.TWO: + seps = [self.sep, self.sep2] + ret = self.system + seps[0] + for i, (role, message) in enumerate(messages): + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + ": " + message + seps[i % 2] + else: + ret += role + ":" + elif self.sep_style == SeparatorStyle.MPT: + ret = self.system + self.sep + for role, message in messages: + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + message + self.sep + else: + ret += role + elif self.sep_style == SeparatorStyle.LLAMA_2: + wrap_sys = lambda msg: f"<>\n{msg}\n<>\n\n" if len(msg) > 0 else msg + wrap_inst = lambda msg: f"[INST] {msg} [/INST]" + ret = "" + + for i, (role, message) in enumerate(messages): + if i == 0: + assert message, "first message should not be none" + assert role == self.roles[0], "first message should come from user" + if message: + if type(message) is tuple: + message, _, _ = message + if i == 0: message = wrap_sys(self.system) + message + if i % 2 == 0: + message = wrap_inst(message) + ret += self.sep + message + else: + ret += " " + message + " " + self.sep2 + else: + ret += "" + ret = ret.lstrip(self.sep) + elif self.sep_style == SeparatorStyle.PLAIN: + seps = [self.sep, self.sep2] + ret = self.system + for i, (role, message) in enumerate(messages): + if message: + if type(message) is tuple: + message, _, _ = message + ret += message + seps[i % 2] + else: + ret += "" + else: + raise ValueError(f"Invalid style: {self.sep_style}") + + return ret + + def append_message(self, role, message): + self.messages.append([role, message]) + + def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=1344, min_len=672): + if image_process_mode == "Pad": + def expand2square(pil_img, background_color=(122, 116, 104)): + width, height = pil_img.size + if width == height: + return pil_img + elif width > height: + result = Image.new(pil_img.mode, (width, width), background_color) + result.paste(pil_img, (0, (width - height) // 2)) + return result + else: + result = Image.new(pil_img.mode, (height, height), background_color) + result.paste(pil_img, ((height - width) // 2, 0)) + return result + image = expand2square(image) + elif image_process_mode in ["Default", "Crop"]: + pass + elif image_process_mode == "Resize": + image = image.resize((336, 336)) + else: + raise ValueError(f"Invalid image_process_mode: {image_process_mode}") + if max(image.size) > max_len: + max_hw, min_hw = max(image.size), min(image.size) + aspect_ratio = max_hw / min_hw + shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) + longest_edge = int(shortest_edge * aspect_ratio) + W, H = image.size + if H > W: + H, W = longest_edge, shortest_edge + else: + H, W = shortest_edge, longest_edge + image = image.resize((W, H)) + if return_pil: + return image + else: + buffered = BytesIO() + image.save(buffered, format=image_format) + img_b64_str = base64.b64encode(buffered.getvalue()).decode() + return img_b64_str + + def get_images(self, return_pil=False): + images = [] + for i, (role, msg) in enumerate(self.messages[self.offset:]): + if i % 2 == 0: + if type(msg) is tuple: + msg, image, image_process_mode = msg + image = self.process_image(image, image_process_mode, return_pil=return_pil) + images.append(image) + return images + + def to_gradio_chatbot(self): + ret = [] + for i, (role, msg) in enumerate(self.messages[self.offset:]): + if i % 2 == 0: + if type(msg) is tuple: + msg, image, image_process_mode = msg + img_b64_str = self.process_image( + image, "Default", return_pil=False, + image_format='JPEG') + img_str = f'user upload image' + msg = img_str + msg.replace('', '').strip() + ret.append([msg, None]) + else: + ret.append([msg, None]) + else: + ret[-1][-1] = msg + return ret + + def copy(self): + return Conversation( + system=self.system, + roles=self.roles, + messages=[[x, y] for x, y in self.messages], + offset=self.offset, + sep_style=self.sep_style, + sep=self.sep, + sep2=self.sep2, + version=self.version) + + def dict(self): + if len(self.get_images()) > 0: + return { + "system": self.system, + "roles": self.roles, + "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages], + "offset": self.offset, + "sep": self.sep, + "sep2": self.sep2, + } + return { + "system": self.system, + "roles": self.roles, + "messages": self.messages, + "offset": self.offset, + "sep": self.sep, + "sep2": self.sep2, + } + + +conv_vicuna_v0 = Conversation( + system="A chat between a curious human and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the human's questions.", + roles=("Human", "Assistant"), + messages=( + ("Human", "What are the key differences between renewable and non-renewable energy sources?"), + ("Assistant", + "Renewable energy sources are those that can be replenished naturally in a relatively " + "short amount of time, such as solar, wind, hydro, geothermal, and biomass. " + "Non-renewable energy sources, on the other hand, are finite and will eventually be " + "depleted, such as coal, oil, and natural gas. Here are some key differences between " + "renewable and non-renewable energy sources:\n" + "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable " + "energy sources are finite and will eventually run out.\n" + "2. Environmental impact: Renewable energy sources have a much lower environmental impact " + "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, " + "and other negative effects.\n" + "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically " + "have lower operational costs than non-renewable sources.\n" + "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote " + "locations than non-renewable sources.\n" + "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different " + "situations and needs, while non-renewable sources are more rigid and inflexible.\n" + "6. Sustainability: Renewable energy sources are more sustainable over the long term, while " + "non-renewable sources are not, and their depletion can lead to economic and social instability.\n") + ), + offset=2, + sep_style=SeparatorStyle.SINGLE, + sep="###", +) + +conv_vicuna_v1 = Conversation( + system="A chat between a curious user and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the user's questions.", + roles=("USER", "ASSISTANT"), + version="v1", + messages=(), + offset=0, + sep_style=SeparatorStyle.TWO, + sep=" ", + sep2="", +) + +conv_llama_2 = Conversation( + system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. + +If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""", + roles=("USER", "ASSISTANT"), + version="llama_v2", + messages=(), + offset=0, + sep_style=SeparatorStyle.LLAMA_2, + sep="", + sep2="", +) + +conv_llava_llama_2 = Conversation( + system="You are a helpful language and vision assistant. " + "You are able to understand the visual content that the user provides, " + "and assist the user with a variety of tasks using natural language.", + roles=("USER", "ASSISTANT"), + version="llama_v2", + messages=(), + offset=0, + sep_style=SeparatorStyle.LLAMA_2, + sep="", + sep2="", +) + +conv_mpt = Conversation( + system="""<|im_start|>system +A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""", + roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), + version="mpt", + messages=(), + offset=0, + sep_style=SeparatorStyle.MPT, + sep="<|im_end|>", +) + +conv_llava_plain = Conversation( + system="", + roles=("", ""), + messages=( + ), + offset=0, + sep_style=SeparatorStyle.PLAIN, + sep="\n", +) + +conv_llava_v0 = Conversation( + system="A chat between a curious human and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the human's questions.", + roles=("Human", "Assistant"), + messages=( + ), + offset=0, + sep_style=SeparatorStyle.SINGLE, + sep="###", +) + +conv_llava_v0_mmtag = Conversation( + system="A chat between a curious user and an artificial intelligence assistant. " + "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." + "The visual content will be provided with the following format: visual content.", + roles=("Human", "Assistant"), + messages=( + ), + offset=0, + sep_style=SeparatorStyle.SINGLE, + sep="###", + version="v0_mmtag", +) + +conv_llava_v1 = Conversation( + system="A chat between a curious human and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the human's questions.", + roles=("USER", "ASSISTANT"), + version="v1", + messages=(), + offset=0, + sep_style=SeparatorStyle.TWO, + sep=" ", + sep2="", +) + +conv_llava_v1_mmtag = Conversation( + system="A chat between a curious user and an artificial intelligence assistant. " + "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." + "The visual content will be provided with the following format: visual content.", + roles=("USER", "ASSISTANT"), + messages=(), + offset=0, + sep_style=SeparatorStyle.TWO, + sep=" ", + sep2="", + version="v1_mmtag", +) + +conv_mistral_instruct = Conversation( + system="", + roles=("USER", "ASSISTANT"), + version="llama_v2", + messages=(), + offset=0, + sep_style=SeparatorStyle.LLAMA_2, + sep="", + sep2="", +) + +conv_chatml_direct = Conversation( + system="""<|im_start|>system +Answer the questions.""", + roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), + version="mpt", + messages=(), + offset=0, + sep_style=SeparatorStyle.MPT, + sep="<|im_end|>", +) + +default_conversation = conv_vicuna_v1 +conv_templates = { + "default": conv_vicuna_v0, + "v0": conv_vicuna_v0, + "v1": conv_vicuna_v1, + "vicuna_v1": conv_vicuna_v1, + "llama_2": conv_llama_2, + "mistral_instruct": conv_mistral_instruct, + "chatml_direct": conv_chatml_direct, + "mistral_direct": conv_chatml_direct, + + "plain": conv_llava_plain, + "v0_plain": conv_llava_plain, + "llava_v0": conv_llava_v0, + "v0_mmtag": conv_llava_v0_mmtag, + "llava_v1": conv_llava_v1, + "v1_mmtag": conv_llava_v1_mmtag, + "llava_llama_2": conv_llava_llama_2, + + "mpt": conv_mpt, +} + + +if __name__ == "__main__": + print(default_conversation.get_prompt()) diff --git a/MagicQuill/LLaVA/llava/eval/eval_gpt_review.py b/MagicQuill/LLaVA/llava/eval/eval_gpt_review.py new file mode 100644 index 0000000000000000000000000000000000000000..8af4559c65fc2728b11fd2097a109981ee1ef686 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/eval_gpt_review.py @@ -0,0 +1,113 @@ +import argparse +import json +import os + +import openai +import tqdm +import ray +import time + +NUM_SECONDS_TO_SLEEP = 3 + +@ray.remote(num_cpus=4) +def get_eval(content: str, max_tokens: int): + while True: + try: + response = openai.ChatCompletion.create( + model='gpt-4', + messages=[{ + 'role': 'system', + 'content': 'You are a helpful and precise assistant for checking the quality of the answer.' + }, { + 'role': 'user', + 'content': content, + }], + temperature=0.2, # TODO: figure out which temperature is best for evaluation + max_tokens=max_tokens, + ) + break + except openai.error.RateLimitError: + pass + except Exception as e: + print(e) + time.sleep(NUM_SECONDS_TO_SLEEP) + + print('success!') + return response['choices'][0]['message']['content'] + + +def parse_score(review): + try: + score_pair = review.split('\n')[0] + score_pair = score_pair.replace(',', ' ') + sp = score_pair.split(' ') + if len(sp) == 2: + return [float(sp[0]), float(sp[1])] + else: + print('error', review) + return [-1, -1] + except Exception as e: + print(e) + print('error', review) + return [-1, -1] + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.') + parser.add_argument('-q', '--question') + # parser.add_argument('-a', '--answer') + parser.add_argument('-a', '--answer-list', nargs='+', default=[]) + parser.add_argument('-r', '--rule') + parser.add_argument('-o', '--output') + parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output') + args = parser.parse_args() + + ray.init() + + f_q = open(os.path.expanduser(args.question)) + f_ans1 = open(os.path.expanduser(args.answer_list[0])) + f_ans2 = open(os.path.expanduser(args.answer_list[1])) + rule_dict = json.load(open(os.path.expanduser(args.rule), 'r')) + + review_file = open(f'{args.output}', 'w') + + js_list = [] + handles = [] + idx = 0 + for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2): + # if idx == 1: + # break + + ques = json.loads(ques_js) + ans1 = json.loads(ans1_js) + ans2 = json.loads(ans2_js) + + category = json.loads(ques_js)['category'] + if category in rule_dict: + rule = rule_dict[category] + else: + rule = rule_dict['default'] + prompt = rule['prompt'] + role = rule['role'] + content = (f'[Question]\n{ques["text"]}\n\n' + f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n' + f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n' + f'[System]\n{prompt}\n\n') + js_list.append({ + 'id': idx+1, + 'question_id': ques['question_id'], + 'answer1_id': ans1['answer_id'], + 'answer2_id': ans2['answer_id'], + 'category': category}) + idx += 1 + handles.append(get_eval.remote(content, args.max_tokens)) + # To avoid the rate limit set by OpenAI + time.sleep(NUM_SECONDS_TO_SLEEP) + + reviews = ray.get(handles) + for idx, review in enumerate(reviews): + scores = parse_score(review) + js_list[idx]['content'] = review + js_list[idx]['tuple'] = scores + review_file.write(json.dumps(js_list[idx]) + '\n') + review_file.close() diff --git a/MagicQuill/LLaVA/llava/eval/eval_gpt_review_bench.py b/MagicQuill/LLaVA/llava/eval/eval_gpt_review_bench.py new file mode 100644 index 0000000000000000000000000000000000000000..06160f2422b5368f30fb967f7cae635208a1dc69 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/eval_gpt_review_bench.py @@ -0,0 +1,121 @@ +import argparse +import json +import os + +import openai +import time + +NUM_SECONDS_TO_SLEEP = 0.5 + + +def get_eval(content: str, max_tokens: int): + while True: + try: + response = openai.ChatCompletion.create( + model='gpt-4-0314', + messages=[{ + 'role': 'system', + 'content': 'You are a helpful and precise assistant for checking the quality of the answer.' + }, { + 'role': 'user', + 'content': content, + }], + temperature=0.2, # TODO: figure out which temperature is best for evaluation + max_tokens=max_tokens, + ) + break + except openai.error.RateLimitError: + pass + except Exception as e: + print(e) + time.sleep(NUM_SECONDS_TO_SLEEP) + + return response['choices'][0]['message']['content'] + + +def parse_score(review): + try: + score_pair = review.split('\n')[0] + score_pair = score_pair.replace(',', ' ') + sp = score_pair.split(' ') + if len(sp) == 2: + return [float(sp[0]), float(sp[1])] + else: + print('error', review) + return [-1, -1] + except Exception as e: + print(e) + print('error', review) + return [-1, -1] + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.') + parser.add_argument('-q', '--question') + parser.add_argument('-c', '--context') + parser.add_argument('-a', '--answer-list', nargs='+', default=[]) + parser.add_argument('-r', '--rule') + parser.add_argument('-o', '--output') + parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output') + args = parser.parse_args() + + f_q = open(os.path.expanduser(args.question)) + f_ans1 = open(os.path.expanduser(args.answer_list[0])) + f_ans2 = open(os.path.expanduser(args.answer_list[1])) + rule_dict = json.load(open(os.path.expanduser(args.rule), 'r')) + + if os.path.isfile(os.path.expanduser(args.output)): + cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))] + else: + cur_reviews = [] + + review_file = open(f'{args.output}', 'a') + + context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))] + image_to_context = {context['image']: context for context in context_list} + + handles = [] + idx = 0 + for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2): + ques = json.loads(ques_js) + ans1 = json.loads(ans1_js) + ans2 = json.loads(ans2_js) + + inst = image_to_context[ques['image']] + + if isinstance(inst['caption'], list): + cap_str = '\n'.join(inst['caption']) + else: + cap_str = inst['caption'] + + category = 'llava_bench_' + json.loads(ques_js)['category'] + if category in rule_dict: + rule = rule_dict[category] + else: + assert False, f"Visual QA category not found in rule file: {category}." + prompt = rule['prompt'] + role = rule['role'] + content = (f'[Context]\n{cap_str}\n\n' + f'[Question]\n{ques["text"]}\n\n' + f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n' + f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n' + f'[System]\n{prompt}\n\n') + cur_js = { + 'id': idx+1, + 'question_id': ques['question_id'], + 'answer1_id': ans1.get('answer_id', ans1['question_id']), + 'answer2_id': ans2.get('answer_id', ans2['answer_id']), + 'category': category + } + if idx >= len(cur_reviews): + review = get_eval(content, args.max_tokens) + scores = parse_score(review) + cur_js['content'] = review + cur_js['tuple'] = scores + review_file.write(json.dumps(cur_js) + '\n') + review_file.flush() + else: + print(f'Skipping {idx} as we already have it.') + idx += 1 + print(idx) + review_file.close() diff --git a/MagicQuill/LLaVA/llava/eval/eval_gpt_review_visual.py b/MagicQuill/LLaVA/llava/eval/eval_gpt_review_visual.py new file mode 100644 index 0000000000000000000000000000000000000000..d6e407a400a67020d801e6c27a3c32a2ee38f30c --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/eval_gpt_review_visual.py @@ -0,0 +1,118 @@ +import argparse +import json +import os + +import openai +import time + +NUM_SECONDS_TO_SLEEP = 0.5 + + +def get_eval(content: str, max_tokens: int): + while True: + try: + response = openai.ChatCompletion.create( + model='gpt-4-0314', + messages=[{ + 'role': 'system', + 'content': 'You are a helpful and precise assistant for checking the quality of the answer.' + }, { + 'role': 'user', + 'content': content, + }], + temperature=0.2, # TODO: figure out which temperature is best for evaluation + max_tokens=max_tokens, + ) + break + except openai.error.RateLimitError: + pass + except Exception as e: + print(e) + time.sleep(NUM_SECONDS_TO_SLEEP) + + return response['choices'][0]['message']['content'] + + +def parse_score(review): + try: + score_pair = review.split('\n')[0] + score_pair = score_pair.replace(',', ' ') + sp = score_pair.split(' ') + if len(sp) == 2: + return [float(sp[0]), float(sp[1])] + else: + print('error', review) + return [-1, -1] + except Exception as e: + print(e) + print('error', review) + return [-1, -1] + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.') + parser.add_argument('-q', '--question') + parser.add_argument('-c', '--context') + parser.add_argument('-a', '--answer-list', nargs='+', default=[]) + parser.add_argument('-r', '--rule') + parser.add_argument('-o', '--output') + parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output') + args = parser.parse_args() + + f_q = open(os.path.expanduser(args.question)) + f_ans1 = open(os.path.expanduser(args.answer_list[0])) + f_ans2 = open(os.path.expanduser(args.answer_list[1])) + rule_dict = json.load(open(os.path.expanduser(args.rule), 'r')) + + if os.path.isfile(os.path.expanduser(args.output)): + cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))] + else: + cur_reviews = [] + + review_file = open(f'{args.output}', 'a') + + context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))] + image_to_context = {context['image']: context for context in context_list} + + handles = [] + idx = 0 + for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2): + ques = json.loads(ques_js) + ans1 = json.loads(ans1_js) + ans2 = json.loads(ans2_js) + + inst = image_to_context[ques['image']] + cap_str = '\n'.join(inst['captions']) + box_str = '\n'.join([f'{instance["category"]}: {instance["bbox"]}' for instance in inst['instances']]) + + category = json.loads(ques_js)['category'] + if category in rule_dict: + rule = rule_dict[category] + else: + assert False, f"Visual QA category not found in rule file: {category}." + prompt = rule['prompt'] + role = rule['role'] + content = (f'[Context]\n{cap_str}\n\n{box_str}\n\n' + f'[Question]\n{ques["text"]}\n\n' + f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n' + f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n' + f'[System]\n{prompt}\n\n') + cur_js = { + 'id': idx+1, + 'question_id': ques['question_id'], + 'answer1_id': ans1.get('answer_id', ans1['question_id']), + 'answer2_id': ans2.get('answer_id', ans2['answer_id']), + 'category': category + } + if idx >= len(cur_reviews): + review = get_eval(content, args.max_tokens) + scores = parse_score(review) + cur_js['content'] = review + cur_js['tuple'] = scores + review_file.write(json.dumps(cur_js) + '\n') + review_file.flush() + else: + print(f'Skipping {idx} as we already have it.') + idx += 1 + print(idx) + review_file.close() diff --git a/MagicQuill/LLaVA/llava/eval/eval_pope.py b/MagicQuill/LLaVA/llava/eval/eval_pope.py new file mode 100644 index 0000000000000000000000000000000000000000..b115b8f2327ea9d972f9e41bcbb03c68be6b3508 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/eval_pope.py @@ -0,0 +1,81 @@ +import os +import json +import argparse + +def eval_pope(answers, label_file): + label_list = [json.loads(q)['label'] for q in open(label_file, 'r')] + + for answer in answers: + text = answer['text'] + + # Only keep the first sentence + if text.find('.') != -1: + text = text.split('.')[0] + + text = text.replace(',', '') + words = text.split(' ') + if 'No' in words or 'not' in words or 'no' in words: + answer['text'] = 'no' + else: + answer['text'] = 'yes' + + for i in range(len(label_list)): + if label_list[i] == 'no': + label_list[i] = 0 + else: + label_list[i] = 1 + + pred_list = [] + for answer in answers: + if answer['text'] == 'no': + pred_list.append(0) + else: + pred_list.append(1) + + pos = 1 + neg = 0 + yes_ratio = pred_list.count(1) / len(pred_list) + + TP, TN, FP, FN = 0, 0, 0, 0 + for pred, label in zip(pred_list, label_list): + if pred == pos and label == pos: + TP += 1 + elif pred == pos and label == neg: + FP += 1 + elif pred == neg and label == neg: + TN += 1 + elif pred == neg and label == pos: + FN += 1 + + print('TP\tFP\tTN\tFN\t') + print('{}\t{}\t{}\t{}'.format(TP, FP, TN, FN)) + + precision = float(TP) / float(TP + FP) + recall = float(TP) / float(TP + FN) + f1 = 2*precision*recall / (precision + recall) + acc = (TP + TN) / (TP + TN + FP + FN) + print('Accuracy: {}'.format(acc)) + print('Precision: {}'.format(precision)) + print('Recall: {}'.format(recall)) + print('F1 score: {}'.format(f1)) + print('Yes ratio: {}'.format(yes_ratio)) + print('%.3f, %.3f, %.3f, %.3f, %.3f' % (f1, acc, precision, recall, yes_ratio) ) + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--annotation-dir", type=str) + parser.add_argument("--question-file", type=str) + parser.add_argument("--result-file", type=str) + args = parser.parse_args() + + questions = [json.loads(line) for line in open(args.question_file)] + questions = {question['question_id']: question for question in questions} + answers = [json.loads(q) for q in open(args.result_file)] + for file in os.listdir(args.annotation_dir): + assert file.startswith('coco_pope_') + assert file.endswith('.json') + category = file[10:-5] + cur_answers = [x for x in answers if questions[x['question_id']]['category'] == category] + print('Category: {}, # samples: {}'.format(category, len(cur_answers))) + eval_pope(cur_answers, os.path.join(args.annotation_dir, file)) + print("====================================") diff --git a/MagicQuill/LLaVA/llava/eval/eval_science_qa.py b/MagicQuill/LLaVA/llava/eval/eval_science_qa.py new file mode 100644 index 0000000000000000000000000000000000000000..ccf206bbd7a5d6376eef82d61b3ef8bbe0f71c6c --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/eval_science_qa.py @@ -0,0 +1,114 @@ +import argparse +import json +import os +import re +import random + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument('--base-dir', type=str) + parser.add_argument('--result-file', type=str) + parser.add_argument('--output-file', type=str) + parser.add_argument('--output-result', type=str) + parser.add_argument('--split', type=str, default='test') + parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"]) + return parser.parse_args() + + +def convert_caps(results): + fakecaps = [] + for result in results: + image_id = result['question_id'] + caption = result['text'] + fakecaps.append({"image_id": int(image_id), "caption": caption}) + return fakecaps + + +def get_pred_idx(prediction, choices, options): + """ + Get the index (e.g. 2) from the prediction (e.g. 'C') + """ + if prediction in options[:len(choices)]: + return options.index(prediction) + else: + return -1 + return random.choice(range(len(choices))) + + +if __name__ == "__main__": + args = get_args() + + base_dir = args.base_dir + split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split] + problems = json.load(open(os.path.join(base_dir, "problems.json"))) + predictions = [json.loads(line) for line in open(args.result_file)] + predictions = {pred['question_id']: pred for pred in predictions} + split_problems = {idx: problems[idx] for idx in split_indices} + + results = {'correct': [], 'incorrect': []} + sqa_results = {} + sqa_results['acc'] = None + sqa_results['correct'] = None + sqa_results['count'] = None + sqa_results['results'] = {} + sqa_results['outputs'] = {} + + for prob_id, prob in split_problems.items(): + if prob_id not in predictions: + pred = {'text': 'FAILED', 'prompt': 'Unknown'} + pred_text = 'FAILED' + else: + pred = predictions[prob_id] + pred_text = pred['text'] + + if pred_text in args.options: + answer = pred_text + elif len(pred_text) >= 3 and pred_text[0] in args.options and pred_text[1:3] == ". ": + answer = pred_text[0] + else: + pattern = re.compile(r'The answer is ([A-Z]).') + res = pattern.findall(pred_text) + if len(res) == 1: + answer = res[0] # 'A', 'B', ... + else: + answer = "FAILED" + + pred_idx = get_pred_idx(answer, prob['choices'], args.options) + + analysis = { + 'question_id': prob_id, + 'parsed_ans': answer, + 'ground_truth': args.options[prob['answer']], + 'question': pred['prompt'], + 'pred': pred_text, + 'is_multimodal': '' in pred['prompt'], + } + + sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options) + sqa_results['outputs'][prob_id] = pred_text + + if pred_idx == prob['answer']: + results['correct'].append(analysis) + else: + results['incorrect'].append(analysis) + + correct = len(results['correct']) + total = len(results['correct']) + len(results['incorrect']) + + ###### IMG ###### + multimodal_correct = len([x for x in results['correct'] if x['is_multimodal']]) + multimodal_incorrect = len([x for x in results['incorrect'] if x['is_multimodal']]) + multimodal_total = multimodal_correct + multimodal_incorrect + ###### IMG ###### + + print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%, IMG-Accuracy: {multimodal_correct / multimodal_total * 100:.2f}%') + + sqa_results['acc'] = correct / total * 100 + sqa_results['correct'] = correct + sqa_results['count'] = total + + with open(args.output_file, 'w') as f: + json.dump(results, f, indent=2) + with open(args.output_result, 'w') as f: + json.dump(sqa_results, f, indent=2) diff --git a/MagicQuill/LLaVA/llava/eval/eval_science_qa_gpt4.py b/MagicQuill/LLaVA/llava/eval/eval_science_qa_gpt4.py new file mode 100644 index 0000000000000000000000000000000000000000..c2ff17c915481fb556aba6ec816a9e08f519c515 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/eval_science_qa_gpt4.py @@ -0,0 +1,104 @@ +import argparse +import json +import os +import re +import random +from collections import defaultdict + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument('--base-dir', type=str) + parser.add_argument('--gpt4-result', type=str) + parser.add_argument('--our-result', type=str) + parser.add_argument('--split', type=str, default='test') + parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"]) + return parser.parse_args() + + +def convert_caps(results): + fakecaps = [] + for result in results: + image_id = result['question_id'] + caption = result['text'] + fakecaps.append({"image_id": int(image_id), "caption": caption}) + return fakecaps + + +def get_pred_idx(prediction, choices, options): + """ + Get the index (e.g. 2) from the prediction (e.g. 'C') + """ + if prediction in options[:len(choices)]: + return options.index(prediction) + else: + return random.choice(range(len(choices))) + + +if __name__ == "__main__": + args = get_args() + + base_dir = args.base_dir + split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split] + problems = json.load(open(os.path.join(base_dir, "problems.json"))) + our_predictions = [json.loads(line) for line in open(args.our_result)] + our_predictions = {pred['question_id']: pred for pred in our_predictions} + split_problems = {idx: problems[idx] for idx in split_indices} + + gpt4_predictions = json.load(open(args.gpt4_result))['outputs'] + + results = defaultdict(lambda: 0) + + for prob_id, prob in split_problems.items(): + if prob_id not in our_predictions: + continue + if prob_id not in gpt4_predictions: + continue + our_pred = our_predictions[prob_id]['text'] + gpt4_pred = gpt4_predictions[prob_id] + + pattern = re.compile(r'The answer is ([A-Z]).') + our_res = pattern.findall(our_pred) + if len(our_res) == 1: + our_answer = our_res[0] # 'A', 'B', ... + else: + our_answer = "FAILED" + gpt4_res = pattern.findall(gpt4_pred) + if len(gpt4_res) == 1: + gpt4_answer = gpt4_res[0] # 'A', 'B', ... + else: + gpt4_answer = "FAILED" + + our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options) + gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options) + + if gpt4_answer == 'FAILED': + results['gpt4_failed'] += 1 + # continue + gpt4_pred_idx = our_pred_idx + # if our_pred_idx != prob['answer']: + # print(our_predictions[prob_id]['prompt']) + # print('-----------------') + # print(f'LECTURE: {prob["lecture"]}') + # print(f'SOLUTION: {prob["solution"]}') + # print('=====================') + else: + # continue + pass + # gpt4_pred_idx = our_pred_idx + + if gpt4_pred_idx == prob['answer']: + results['correct'] += 1 + else: + results['incorrect'] += 1 + + + if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']: + results['correct_upperbound'] += 1 + + correct = results['correct'] + total = results['correct'] + results['incorrect'] + print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%') + print(f'Total: {total}, Correct (upper): {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%') + print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%') + diff --git a/MagicQuill/LLaVA/llava/eval/eval_science_qa_gpt4_requery.py b/MagicQuill/LLaVA/llava/eval/eval_science_qa_gpt4_requery.py new file mode 100644 index 0000000000000000000000000000000000000000..698546e995d365d1ccc2c25a87e6c5cd681e6eb6 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/eval_science_qa_gpt4_requery.py @@ -0,0 +1,149 @@ +import argparse +import json +import os +import re +import random +from collections import defaultdict + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument('--base-dir', type=str) + parser.add_argument('--gpt4-result', type=str) + parser.add_argument('--requery-result', type=str) + parser.add_argument('--our-result', type=str) + parser.add_argument('--output-result', type=str) + parser.add_argument('--split', type=str, default='test') + parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"]) + return parser.parse_args() + + +def convert_caps(results): + fakecaps = [] + for result in results: + image_id = result['question_id'] + caption = result['text'] + fakecaps.append({"image_id": int(image_id), "caption": caption}) + return fakecaps + + +def get_pred_idx(prediction, choices, options): + """ + Get the index (e.g. 2) from the prediction (e.g. 'C') + """ + if prediction in options[:len(choices)]: + return options.index(prediction) + else: + return random.choice(range(len(choices))) + + +if __name__ == "__main__": + args = get_args() + + base_dir = args.base_dir + split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split] + problems = json.load(open(os.path.join(base_dir, "problems.json"))) + our_predictions = [json.loads(line) for line in open(args.our_result)] + our_predictions = {pred['question_id']: pred for pred in our_predictions} + split_problems = {idx: problems[idx] for idx in split_indices} + + requery_predictions = [json.loads(line) for line in open(args.requery_result)] + requery_predictions = {pred['question_id']: pred for pred in requery_predictions} + + gpt4_predictions = json.load(open(args.gpt4_result))['outputs'] + + results = defaultdict(lambda: 0) + + sqa_results = {} + sqa_results['acc'] = None + sqa_results['correct'] = None + sqa_results['count'] = None + sqa_results['results'] = {} + sqa_results['outputs'] = {} + + for prob_id, prob in split_problems.items(): + if prob_id not in our_predictions: + assert False + if prob_id not in gpt4_predictions: + assert False + our_pred = our_predictions[prob_id]['text'] + gpt4_pred = gpt4_predictions[prob_id] + if prob_id not in requery_predictions: + results['missing_requery'] += 1 + requery_pred = "MISSING" + else: + requery_pred = requery_predictions[prob_id]['text'] + + pattern = re.compile(r'The answer is ([A-Z]).') + our_res = pattern.findall(our_pred) + if len(our_res) == 1: + our_answer = our_res[0] # 'A', 'B', ... + else: + our_answer = "FAILED" + + requery_res = pattern.findall(requery_pred) + if len(requery_res) == 1: + requery_answer = requery_res[0] # 'A', 'B', ... + else: + requery_answer = "FAILED" + + gpt4_res = pattern.findall(gpt4_pred) + if len(gpt4_res) == 1: + gpt4_answer = gpt4_res[0] # 'A', 'B', ... + else: + gpt4_answer = "FAILED" + + our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options) + gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options) + requery_pred_idx = get_pred_idx(requery_answer, prob['choices'], args.options) + + results['total'] += 1 + + if gpt4_answer == 'FAILED': + results['gpt4_failed'] += 1 + if gpt4_pred_idx == prob['answer']: + results['gpt4_correct'] += 1 + if our_pred_idx == prob['answer']: + results['gpt4_ourvisual_correct'] += 1 + elif gpt4_pred_idx == prob['answer']: + results['gpt4_correct'] += 1 + results['gpt4_ourvisual_correct'] += 1 + + if our_pred_idx == prob['answer']: + results['our_correct'] += 1 + + if requery_answer == 'FAILED': + sqa_results['results'][prob_id] = our_pred_idx + if our_pred_idx == prob['answer']: + results['requery_correct'] += 1 + else: + sqa_results['results'][prob_id] = requery_pred_idx + if requery_pred_idx == prob['answer']: + results['requery_correct'] += 1 + else: + print(f""" +Question ({args.options[prob['answer']]}): {our_predictions[prob_id]['prompt']} +Our ({our_answer}): {our_pred} +GPT-4 ({gpt4_answer}): {gpt4_pred} +Requery ({requery_answer}): {requery_pred} +print("=====================================") +""") + + if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']: + results['correct_upperbound'] += 1 + + total = results['total'] + print(f'Total: {total}, Our-Correct: {results["our_correct"]}, Accuracy: {results["our_correct"] / total * 100:.2f}%') + print(f'Total: {total}, GPT-4-Correct: {results["gpt4_correct"]}, Accuracy: {results["gpt4_correct"] / total * 100:.2f}%') + print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%') + print(f'Total: {total}, GPT-4-OursVisual-Correct: {results["gpt4_ourvisual_correct"]}, Accuracy: {results["gpt4_ourvisual_correct"] / total * 100:.2f}%') + print(f'Total: {total}, Requery-Correct: {results["requery_correct"]}, Accuracy: {results["requery_correct"] / total * 100:.2f}%') + print(f'Total: {total}, Correct upper: {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%') + + sqa_results['acc'] = results["requery_correct"] / total * 100 + sqa_results['correct'] = results["requery_correct"] + sqa_results['count'] = total + + with open(args.output_result, 'w') as f: + json.dump(sqa_results, f, indent=2) + diff --git a/MagicQuill/LLaVA/llava/eval/eval_textvqa.py b/MagicQuill/LLaVA/llava/eval/eval_textvqa.py new file mode 100644 index 0000000000000000000000000000000000000000..468f4bb120448a036bd5b5c7955464fe2e13892a --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/eval_textvqa.py @@ -0,0 +1,65 @@ +import os +import argparse +import json +import re + +from llava.eval.m4c_evaluator import TextVQAAccuracyEvaluator + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument('--annotation-file', type=str) + parser.add_argument('--result-file', type=str) + parser.add_argument('--result-dir', type=str) + return parser.parse_args() + + +def prompt_processor(prompt): + if prompt.startswith('OCR tokens: '): + pattern = r"Question: (.*?) Short answer:" + match = re.search(pattern, prompt, re.DOTALL) + question = match.group(1) + elif 'Reference OCR token: ' in prompt and len(prompt.split('\n')) == 3: + if prompt.startswith('Reference OCR token:'): + question = prompt.split('\n')[1] + else: + question = prompt.split('\n')[0] + elif len(prompt.split('\n')) == 2: + question = prompt.split('\n')[0] + else: + assert False + + return question.lower() + + +def eval_single(annotation_file, result_file): + experiment_name = os.path.splitext(os.path.basename(result_file))[0] + print(experiment_name) + annotations = json.load(open(annotation_file))['data'] + annotations = {(annotation['image_id'], annotation['question'].lower()): annotation for annotation in annotations} + results = [json.loads(line) for line in open(result_file)] + + pred_list = [] + for result in results: + annotation = annotations[(result['question_id'], prompt_processor(result['prompt']))] + pred_list.append({ + "pred_answer": result['text'], + "gt_answers": annotation['answers'], + }) + + evaluator = TextVQAAccuracyEvaluator() + print('Samples: {}\nAccuracy: {:.2f}%\n'.format(len(pred_list), 100. * evaluator.eval_pred_list(pred_list))) + + +if __name__ == "__main__": + args = get_args() + + if args.result_file is not None: + eval_single(args.annotation_file, args.result_file) + + if args.result_dir is not None: + for result_file in sorted(os.listdir(args.result_dir)): + if not result_file.endswith('.jsonl'): + print(f'Skipping {result_file}') + continue + eval_single(args.annotation_file, os.path.join(args.result_dir, result_file)) diff --git a/MagicQuill/LLaVA/llava/eval/generate_webpage_data_from_table.py b/MagicQuill/LLaVA/llava/eval/generate_webpage_data_from_table.py new file mode 100644 index 0000000000000000000000000000000000000000..92602258ccd953a1d7137056aaf15c8de8166e21 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/generate_webpage_data_from_table.py @@ -0,0 +1,111 @@ +"""Generate json file for webpage.""" +import json +import os +import re + +# models = ['llama', 'alpaca', 'gpt35', 'bard'] +models = ['vicuna'] + + +def read_jsonl(path: str, key: str=None): + data = [] + with open(os.path.expanduser(path)) as f: + for line in f: + if not line: + continue + data.append(json.loads(line)) + if key is not None: + data.sort(key=lambda x: x[key]) + data = {item[key]: item for item in data} + return data + + +def trim_hanging_lines(s: str, n: int) -> str: + s = s.strip() + for _ in range(n): + s = s.split('\n', 1)[1].strip() + return s + + +if __name__ == '__main__': + questions = read_jsonl('table/question.jsonl', key='question_id') + + # alpaca_answers = read_jsonl('table/answer/answer_alpaca-13b.jsonl', key='question_id') + # bard_answers = read_jsonl('table/answer/answer_bard.jsonl', key='question_id') + # gpt35_answers = read_jsonl('table/answer/answer_gpt35.jsonl', key='question_id') + # llama_answers = read_jsonl('table/answer/answer_llama-13b.jsonl', key='question_id') + vicuna_answers = read_jsonl('table/answer/answer_vicuna-13b.jsonl', key='question_id') + ours_answers = read_jsonl('table/results/llama-13b-hf-alpaca.jsonl', key='question_id') + + review_vicuna = read_jsonl('table/review/review_vicuna-13b_llama-13b-hf-alpaca.jsonl', key='question_id') + # review_alpaca = read_jsonl('table/review/review_alpaca-13b_vicuna-13b.jsonl', key='question_id') + # review_bard = read_jsonl('table/review/review_bard_vicuna-13b.jsonl', key='question_id') + # review_gpt35 = read_jsonl('table/review/review_gpt35_vicuna-13b.jsonl', key='question_id') + # review_llama = read_jsonl('table/review/review_llama-13b_vicuna-13b.jsonl', key='question_id') + + records = [] + for qid in questions.keys(): + r = { + 'id': qid, + 'category': questions[qid]['category'], + 'question': questions[qid]['text'], + 'answers': { + # 'alpaca': alpaca_answers[qid]['text'], + # 'llama': llama_answers[qid]['text'], + # 'bard': bard_answers[qid]['text'], + # 'gpt35': gpt35_answers[qid]['text'], + 'vicuna': vicuna_answers[qid]['text'], + 'ours': ours_answers[qid]['text'], + }, + 'evaluations': { + # 'alpaca': review_alpaca[qid]['text'], + # 'llama': review_llama[qid]['text'], + # 'bard': review_bard[qid]['text'], + 'vicuna': review_vicuna[qid]['content'], + # 'gpt35': review_gpt35[qid]['text'], + }, + 'scores': { + 'vicuna': review_vicuna[qid]['tuple'], + # 'alpaca': review_alpaca[qid]['score'], + # 'llama': review_llama[qid]['score'], + # 'bard': review_bard[qid]['score'], + # 'gpt35': review_gpt35[qid]['score'], + }, + } + + # cleanup data + cleaned_evals = {} + for k, v in r['evaluations'].items(): + v = v.strip() + lines = v.split('\n') + # trim the first line if it's a pair of numbers + if re.match(r'\d+[, ]+\d+', lines[0]): + lines = lines[1:] + v = '\n'.join(lines) + cleaned_evals[k] = v.replace('Assistant 1', "**Assistant 1**").replace('Assistant 2', '**Assistant 2**') + + r['evaluations'] = cleaned_evals + records.append(r) + + # Reorder the records, this is optional + for r in records: + if r['id'] <= 20: + r['id'] += 60 + else: + r['id'] -= 20 + for r in records: + if r['id'] <= 50: + r['id'] += 10 + elif 50 < r['id'] <= 60: + r['id'] -= 50 + for r in records: + if r['id'] == 7: + r['id'] = 1 + elif r['id'] < 7: + r['id'] += 1 + + records.sort(key=lambda x: x['id']) + + # Write to file + with open('webpage/data.json', 'w') as f: + json.dump({'questions': records, 'models': models}, f, indent=2) diff --git a/MagicQuill/LLaVA/llava/eval/m4c_evaluator.py b/MagicQuill/LLaVA/llava/eval/m4c_evaluator.py new file mode 100644 index 0000000000000000000000000000000000000000..e30e958da061a4f0a0bfe34b12d2fcaeba7ff2f4 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/m4c_evaluator.py @@ -0,0 +1,334 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +import re + +from tqdm import tqdm + + +class EvalAIAnswerProcessor: + """ + Processes an answer similar to Eval AI + copied from + https://github.com/facebookresearch/mmf/blob/c46b3b3391275b4181567db80943473a89ab98ab/pythia/tasks/processors.py#L897 + """ + + CONTRACTIONS = { + "aint": "ain't", + "arent": "aren't", + "cant": "can't", + "couldve": "could've", + "couldnt": "couldn't", + "couldn'tve": "couldn't've", + "couldnt've": "couldn't've", + "didnt": "didn't", + "doesnt": "doesn't", + "dont": "don't", + "hadnt": "hadn't", + "hadnt've": "hadn't've", + "hadn'tve": "hadn't've", + "hasnt": "hasn't", + "havent": "haven't", + "hed": "he'd", + "hed've": "he'd've", + "he'dve": "he'd've", + "hes": "he's", + "howd": "how'd", + "howll": "how'll", + "hows": "how's", + "Id've": "I'd've", + "I'dve": "I'd've", + "Im": "I'm", + "Ive": "I've", + "isnt": "isn't", + "itd": "it'd", + "itd've": "it'd've", + "it'dve": "it'd've", + "itll": "it'll", + "let's": "let's", + "maam": "ma'am", + "mightnt": "mightn't", + "mightnt've": "mightn't've", + "mightn'tve": "mightn't've", + "mightve": "might've", + "mustnt": "mustn't", + "mustve": "must've", + "neednt": "needn't", + "notve": "not've", + "oclock": "o'clock", + "oughtnt": "oughtn't", + "ow's'at": "'ow's'at", + "'ows'at": "'ow's'at", + "'ow'sat": "'ow's'at", + "shant": "shan't", + "shed've": "she'd've", + "she'dve": "she'd've", + "she's": "she's", + "shouldve": "should've", + "shouldnt": "shouldn't", + "shouldnt've": "shouldn't've", + "shouldn'tve": "shouldn't've", + "somebody'd": "somebodyd", + "somebodyd've": "somebody'd've", + "somebody'dve": "somebody'd've", + "somebodyll": "somebody'll", + "somebodys": "somebody's", + "someoned": "someone'd", + "someoned've": "someone'd've", + "someone'dve": "someone'd've", + "someonell": "someone'll", + "someones": "someone's", + "somethingd": "something'd", + "somethingd've": "something'd've", + "something'dve": "something'd've", + "somethingll": "something'll", + "thats": "that's", + "thered": "there'd", + "thered've": "there'd've", + "there'dve": "there'd've", + "therere": "there're", + "theres": "there's", + "theyd": "they'd", + "theyd've": "they'd've", + "they'dve": "they'd've", + "theyll": "they'll", + "theyre": "they're", + "theyve": "they've", + "twas": "'twas", + "wasnt": "wasn't", + "wed've": "we'd've", + "we'dve": "we'd've", + "weve": "we've", + "werent": "weren't", + "whatll": "what'll", + "whatre": "what're", + "whats": "what's", + "whatve": "what've", + "whens": "when's", + "whered": "where'd", + "wheres": "where's", + "whereve": "where've", + "whod": "who'd", + "whod've": "who'd've", + "who'dve": "who'd've", + "wholl": "who'll", + "whos": "who's", + "whove": "who've", + "whyll": "why'll", + "whyre": "why're", + "whys": "why's", + "wont": "won't", + "wouldve": "would've", + "wouldnt": "wouldn't", + "wouldnt've": "wouldn't've", + "wouldn'tve": "wouldn't've", + "yall": "y'all", + "yall'll": "y'all'll", + "y'allll": "y'all'll", + "yall'd've": "y'all'd've", + "y'alld've": "y'all'd've", + "y'all'dve": "y'all'd've", + "youd": "you'd", + "youd've": "you'd've", + "you'dve": "you'd've", + "youll": "you'll", + "youre": "you're", + "youve": "you've", + } + + NUMBER_MAP = { + "none": "0", + "zero": "0", + "one": "1", + "two": "2", + "three": "3", + "four": "4", + "five": "5", + "six": "6", + "seven": "7", + "eight": "8", + "nine": "9", + "ten": "10", + } + ARTICLES = ["a", "an", "the"] + PERIOD_STRIP = re.compile(r"(?!<=\d)(\.)(?!\d)") + COMMA_STRIP = re.compile(r"(?<=\d)(\,)+(?=\d)") + PUNCTUATIONS = [ + ";", + r"/", + "[", + "]", + '"', + "{", + "}", + "(", + ")", + "=", + "+", + "\\", + "_", + "-", + ">", + "<", + "@", + "`", + ",", + "?", + "!", + ] + + def __init__(self, *args, **kwargs): + pass + + def word_tokenize(self, word): + word = word.lower() + word = word.replace(",", "").replace("?", "").replace("'s", " 's") + return word.strip() + + def process_punctuation(self, in_text): + out_text = in_text + for p in self.PUNCTUATIONS: + if (p + " " in in_text or " " + p in in_text) or ( + re.search(self.COMMA_STRIP, in_text) is not None + ): + out_text = out_text.replace(p, "") + else: + out_text = out_text.replace(p, " ") + out_text = self.PERIOD_STRIP.sub("", out_text, re.UNICODE) + return out_text + + def process_digit_article(self, in_text): + out_text = [] + temp_text = in_text.lower().split() + for word in temp_text: + word = self.NUMBER_MAP.setdefault(word, word) + if word not in self.ARTICLES: + out_text.append(word) + else: + pass + for word_id, word in enumerate(out_text): + if word in self.CONTRACTIONS: + out_text[word_id] = self.CONTRACTIONS[word] + out_text = " ".join(out_text) + return out_text + + def __call__(self, item): + item = self.word_tokenize(item) + item = item.replace("\n", " ").replace("\t", " ").strip() + item = self.process_punctuation(item) + item = self.process_digit_article(item) + return item + + +class TextVQAAccuracyEvaluator: + def __init__(self): + self.answer_processor = EvalAIAnswerProcessor() + + def _compute_answer_scores(self, raw_answers): + """ + compute the accuracy (soft score) of human answers + """ + answers = [self.answer_processor(a) for a in raw_answers] + assert len(answers) == 10 + gt_answers = list(enumerate(answers)) + unique_answers = set(answers) + unique_answer_scores = {} + + for unique_answer in unique_answers: + accs = [] + for gt_answer in gt_answers: + other_answers = [item for item in gt_answers if item != gt_answer] + matching_answers = [ + item for item in other_answers if item[1] == unique_answer + ] + acc = min(1, float(len(matching_answers)) / 3) + accs.append(acc) + unique_answer_scores[unique_answer] = sum(accs) / len(accs) + + return unique_answer_scores + + def eval_pred_list(self, pred_list): + pred_scores = [] + for entry in tqdm(pred_list): + pred_answer = self.answer_processor(entry["pred_answer"]) + unique_answer_scores = self._compute_answer_scores(entry["gt_answers"]) + score = unique_answer_scores.get(pred_answer, 0.0) + pred_scores.append(score) + + accuracy = sum(pred_scores) / len(pred_scores) + return accuracy + + +class STVQAAccuracyEvaluator: + def __init__(self): + self.answer_processor = EvalAIAnswerProcessor() + + def eval_pred_list(self, pred_list): + pred_scores = [] + for entry in pred_list: + pred_answer = self.answer_processor(entry["pred_answer"]) + gts = [self.answer_processor(a) for a in entry["gt_answers"]] + score = 1.0 if pred_answer in gts else 0.0 + pred_scores.append(score) + + accuracy = sum(pred_scores) / len(pred_scores) + return accuracy + + +class STVQAANLSEvaluator: + def __init__(self): + import editdistance # install with `pip install editdistance` + + self.get_edit_distance = editdistance.eval + + def get_anls(self, s1, s2): + s1 = s1.lower().strip() + s2 = s2.lower().strip() + iou = 1 - self.get_edit_distance(s1, s2) / max(len(s1), len(s2)) + anls = iou if iou >= 0.5 else 0.0 + return anls + + def eval_pred_list(self, pred_list): + pred_scores = [] + for entry in pred_list: + anls = max( + self.get_anls(entry["pred_answer"], gt) for gt in entry["gt_answers"] + ) + pred_scores.append(anls) + + accuracy = sum(pred_scores) / len(pred_scores) + return accuracy + + +class TextCapsBleu4Evaluator: + def __init__(self): + # The following script requires Java 1.8.0 and pycocotools installed. + # The pycocoevalcap can be installed with pip as + # pip install git+https://github.com/ronghanghu/coco-caption.git@python23 + # Original pycocoevalcap code is at https://github.com/tylin/coco-caption + # but has no python3 support yet. + try: + from pycocoevalcap.bleu.bleu import Bleu + from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer + except ModuleNotFoundError: + print( + "Please install pycocoevalcap module using " + "pip install git+https://github.com/ronghanghu/coco-caption.git@python23" # noqa + ) + raise + + self.tokenizer = PTBTokenizer() + self.scorer = Bleu(4) + + def eval_pred_list(self, pred_list): + # Create reference and hypotheses captions. + gts = {} + res = {} + for idx, entry in enumerate(pred_list): + gts[idx] = [{"caption": a} for a in entry["gt_answers"]] + res[idx] = [{"caption": entry["pred_answer"]}] + + gts = self.tokenizer.tokenize(gts) + res = self.tokenizer.tokenize(res) + score, _ = self.scorer.compute_score(gts, res) + + bleu4 = score[3] # score is (Bleu-1, Bleu-2, Bleu-3, Bleu-4) + return bleu4 diff --git a/MagicQuill/LLaVA/llava/eval/model_qa.py b/MagicQuill/LLaVA/llava/eval/model_qa.py new file mode 100644 index 0000000000000000000000000000000000000000..2e254da152ac644ff54fb5fa57e625d9e6ba31d1 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/model_qa.py @@ -0,0 +1,64 @@ +import argparse +from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria +import torch +import os +import json +from tqdm import tqdm +import shortuuid + +from llava.conversation import default_conversation +from llava.utils import disable_torch_init + + +@torch.inference_mode() +def eval_model(model_name, questions_file, answers_file): + # Model + disable_torch_init() + model_name = os.path.expanduser(model_name) + tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) + model = AutoModelForCausalLM.from_pretrained(model_name, + torch_dtype=torch.float16).cuda() + + + ques_file = open(os.path.expanduser(questions_file), "r") + ans_file = open(os.path.expanduser(answers_file), "w") + for i, line in enumerate(tqdm(ques_file)): + idx = json.loads(line)["question_id"] + qs = json.loads(line)["text"] + cat = json.loads(line)["category"] + conv = default_conversation.copy() + conv.append_message(conv.roles[0], qs) + prompt = conv.get_prompt() + inputs = tokenizer([prompt]) + input_ids = torch.as_tensor(inputs.input_ids).cuda() + output_ids = model.generate( + input_ids, + do_sample=True, + use_cache=True, + temperature=0.7, + max_new_tokens=1024,) + outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] + try: + index = outputs.index(conv.sep, len(prompt)) + except ValueError: + outputs += conv.sep + index = outputs.index(conv.sep, len(prompt)) + + outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip() + ans_id = shortuuid.uuid() + ans_file.write(json.dumps({"question_id": idx, + "text": outputs, + "answer_id": ans_id, + "model_id": model_name, + "metadata": {}}) + "\n") + ans_file.flush() + ans_file.close() + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-name", type=str, default="facebook/opt-350m") + parser.add_argument("--question-file", type=str, default="tables/question.jsonl") + parser.add_argument("--answers-file", type=str, default="answer.jsonl") + args = parser.parse_args() + + eval_model(args.model_name, args.question_file, args.answers_file) diff --git a/MagicQuill/LLaVA/llava/eval/model_vqa.py b/MagicQuill/LLaVA/llava/eval/model_vqa.py new file mode 100644 index 0000000000000000000000000000000000000000..938706438b1d332505fdd0e9670df72c31eee1b2 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/model_vqa.py @@ -0,0 +1,101 @@ +import argparse +import torch +import os +import json +from tqdm import tqdm +import shortuuid + +from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from llava.conversation import conv_templates, SeparatorStyle +from llava.model.builder import load_pretrained_model +from llava.utils import disable_torch_init +from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path + +from PIL import Image +import math + + +def split_list(lst, n): + """Split a list into n (roughly) equal-sized chunks""" + chunk_size = math.ceil(len(lst) / n) # integer division + return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] + + +def get_chunk(lst, n, k): + chunks = split_list(lst, n) + return chunks[k] + + +def eval_model(args): + # Model + disable_torch_init() + model_path = os.path.expanduser(args.model_path) + model_name = get_model_name_from_path(model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) + + questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] + questions = get_chunk(questions, args.num_chunks, args.chunk_idx) + answers_file = os.path.expanduser(args.answers_file) + os.makedirs(os.path.dirname(answers_file), exist_ok=True) + ans_file = open(answers_file, "w") + for line in tqdm(questions): + idx = line["question_id"] + image_file = line["image"] + qs = line["text"] + cur_prompt = qs + if model.config.mm_use_im_start_end: + qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs + else: + qs = DEFAULT_IMAGE_TOKEN + '\n' + qs + + conv = conv_templates[args.conv_mode].copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() + + image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB') + image_tensor = process_images([image], image_processor, model.config)[0] + + with torch.inference_mode(): + output_ids = model.generate( + input_ids, + images=image_tensor.unsqueeze(0).half().cuda(), + image_sizes=[image.size], + do_sample=True if args.temperature > 0 else False, + temperature=args.temperature, + top_p=args.top_p, + num_beams=args.num_beams, + # no_repeat_ngram_size=3, + max_new_tokens=1024, + use_cache=True) + + outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() + + ans_id = shortuuid.uuid() + ans_file.write(json.dumps({"question_id": idx, + "prompt": cur_prompt, + "text": outputs, + "answer_id": ans_id, + "model_id": model_name, + "metadata": {}}) + "\n") + ans_file.flush() + ans_file.close() + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--image-folder", type=str, default="") + parser.add_argument("--question-file", type=str, default="tables/question.jsonl") + parser.add_argument("--answers-file", type=str, default="answer.jsonl") + parser.add_argument("--conv-mode", type=str, default="llava_v1") + parser.add_argument("--num-chunks", type=int, default=1) + parser.add_argument("--chunk-idx", type=int, default=0) + parser.add_argument("--temperature", type=float, default=0.2) + parser.add_argument("--top_p", type=float, default=None) + parser.add_argument("--num_beams", type=int, default=1) + args = parser.parse_args() + + eval_model(args) diff --git a/MagicQuill/LLaVA/llava/eval/model_vqa_loader.py b/MagicQuill/LLaVA/llava/eval/model_vqa_loader.py new file mode 100644 index 0000000000000000000000000000000000000000..d435b7d835bdfb2934e32a93f1e8eaab39420ad9 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/model_vqa_loader.py @@ -0,0 +1,144 @@ +import argparse +import torch +import os +import json +from tqdm import tqdm +import shortuuid + +from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from llava.conversation import conv_templates, SeparatorStyle +from llava.model.builder import load_pretrained_model +from llava.utils import disable_torch_init +from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path +from torch.utils.data import Dataset, DataLoader + +from PIL import Image +import math + + +def split_list(lst, n): + """Split a list into n (roughly) equal-sized chunks""" + chunk_size = math.ceil(len(lst) / n) # integer division + return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] + + +def get_chunk(lst, n, k): + chunks = split_list(lst, n) + return chunks[k] + + +# Custom dataset class +class CustomDataset(Dataset): + def __init__(self, questions, image_folder, tokenizer, image_processor, model_config): + self.questions = questions + self.image_folder = image_folder + self.tokenizer = tokenizer + self.image_processor = image_processor + self.model_config = model_config + + def __getitem__(self, index): + line = self.questions[index] + image_file = line["image"] + qs = line["text"] + if self.model_config.mm_use_im_start_end: + qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs + else: + qs = DEFAULT_IMAGE_TOKEN + '\n' + qs + + conv = conv_templates[args.conv_mode].copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB') + image_tensor = process_images([image], self.image_processor, self.model_config)[0] + + input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt') + + return input_ids, image_tensor, image.size + + def __len__(self): + return len(self.questions) + + +def collate_fn(batch): + input_ids, image_tensors, image_sizes = zip(*batch) + input_ids = torch.stack(input_ids, dim=0) + image_tensors = torch.stack(image_tensors, dim=0) + return input_ids, image_tensors, image_sizes + + +# DataLoader +def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4): + assert batch_size == 1, "batch_size must be 1" + dataset = CustomDataset(questions, image_folder, tokenizer, image_processor, model_config) + data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn) + return data_loader + + +def eval_model(args): + # Model + disable_torch_init() + model_path = os.path.expanduser(args.model_path) + model_name = get_model_name_from_path(model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) + + questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] + questions = get_chunk(questions, args.num_chunks, args.chunk_idx) + answers_file = os.path.expanduser(args.answers_file) + os.makedirs(os.path.dirname(answers_file), exist_ok=True) + ans_file = open(answers_file, "w") + + if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode: + args.conv_mode = args.conv_mode + '_mmtag' + print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.') + + data_loader = create_data_loader(questions, args.image_folder, tokenizer, image_processor, model.config) + + for (input_ids, image_tensor, image_sizes), line in tqdm(zip(data_loader, questions), total=len(questions)): + idx = line["question_id"] + cur_prompt = line["text"] + + input_ids = input_ids.to(device='cuda', non_blocking=True) + + with torch.inference_mode(): + output_ids = model.generate( + input_ids, + images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True), + image_sizes=image_sizes, + do_sample=True if args.temperature > 0 else False, + temperature=args.temperature, + top_p=args.top_p, + num_beams=args.num_beams, + max_new_tokens=args.max_new_tokens, + use_cache=True) + + outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() + + ans_id = shortuuid.uuid() + ans_file.write(json.dumps({"question_id": idx, + "prompt": cur_prompt, + "text": outputs, + "answer_id": ans_id, + "model_id": model_name, + "metadata": {}}) + "\n") + # ans_file.flush() + ans_file.close() + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--image-folder", type=str, default="") + parser.add_argument("--question-file", type=str, default="tables/question.jsonl") + parser.add_argument("--answers-file", type=str, default="answer.jsonl") + parser.add_argument("--conv-mode", type=str, default="llava_v1") + parser.add_argument("--num-chunks", type=int, default=1) + parser.add_argument("--chunk-idx", type=int, default=0) + parser.add_argument("--temperature", type=float, default=0.2) + parser.add_argument("--top_p", type=float, default=None) + parser.add_argument("--num_beams", type=int, default=1) + parser.add_argument("--max_new_tokens", type=int, default=128) + args = parser.parse_args() + + eval_model(args) diff --git a/MagicQuill/LLaVA/llava/eval/model_vqa_mmbench.py b/MagicQuill/LLaVA/llava/eval/model_vqa_mmbench.py new file mode 100644 index 0000000000000000000000000000000000000000..bd7a4c8085ddb7b237b17b054e5eaa0569018178 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/model_vqa_mmbench.py @@ -0,0 +1,160 @@ +import argparse +import torch +import os +import json +import pandas as pd +from tqdm import tqdm +import shortuuid + +from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from llava.conversation import conv_templates, SeparatorStyle +from llava.model.builder import load_pretrained_model +from llava.utils import disable_torch_init +from llava.mm_utils import tokenizer_image_token, process_images, load_image_from_base64, get_model_name_from_path + +from PIL import Image +import math + + +all_options = ['A', 'B', 'C', 'D'] + + +def split_list(lst, n): + """Split a list into n (roughly) equal-sized chunks""" + chunk_size = math.ceil(len(lst) / n) # integer division + return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] + + +def get_chunk(lst, n, k): + chunks = split_list(lst, n) + return chunks[k] + + +def is_none(value): + if value is None: + return True + if type(value) is float and math.isnan(value): + return True + if type(value) is str and value.lower() == 'nan': + return True + if type(value) is str and value.lower() == 'none': + return True + return False + +def get_options(row, options): + parsed_options = [] + for option in options: + option_value = row[option] + if is_none(option_value): + break + parsed_options.append(option_value) + return parsed_options + + +def eval_model(args): + # Model + disable_torch_init() + model_path = os.path.expanduser(args.model_path) + model_name = get_model_name_from_path(model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) + + questions = pd.read_table(os.path.expanduser(args.question_file)) + questions = get_chunk(questions, args.num_chunks, args.chunk_idx) + answers_file = os.path.expanduser(args.answers_file) + os.makedirs(os.path.dirname(answers_file), exist_ok=True) + ans_file = open(answers_file, "w") + + if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode: + args.conv_mode = args.conv_mode + '_mmtag' + print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.') + + for index, row in tqdm(questions.iterrows(), total=len(questions)): + options = get_options(row, all_options) + cur_option_char = all_options[:len(options)] + + if args.all_rounds: + num_rounds = len(options) + else: + num_rounds = 1 + + for round_idx in range(num_rounds): + idx = row['index'] + question = row['question'] + hint = row['hint'] + image = load_image_from_base64(row['image']) + if not is_none(hint): + question = hint + '\n' + question + for option_char, option in zip(all_options[:len(options)], options): + question = question + '\n' + option_char + '. ' + option + qs = cur_prompt = question + if model.config.mm_use_im_start_end: + qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs + else: + qs = DEFAULT_IMAGE_TOKEN + '\n' + qs + + if args.single_pred_prompt: + if args.lang == 'cn': + qs = qs + '\n' + "请直接回答选项字母。" + else: + qs = qs + '\n' + "Answer with the option's letter from the given choices directly." + + conv = conv_templates[args.conv_mode].copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() + + image_tensor = process_images([image], image_processor, model.config)[0] + + with torch.inference_mode(): + output_ids = model.generate( + input_ids, + images=image_tensor.unsqueeze(0).half().cuda(), + image_sizes=[image.size], + do_sample=True if args.temperature > 0 else False, + temperature=args.temperature, + top_p=args.top_p, + num_beams=args.num_beams, + # no_repeat_ngram_size=3, + max_new_tokens=1024, + use_cache=True) + + outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() + + ans_id = shortuuid.uuid() + ans_file.write(json.dumps({"question_id": idx, + "round_id": round_idx, + "prompt": cur_prompt, + "text": outputs, + "options": options, + "option_char": cur_option_char, + "answer_id": ans_id, + "model_id": model_name, + "metadata": {}}) + "\n") + ans_file.flush() + + # rotate options + options = options[1:] + options[:1] + cur_option_char = cur_option_char[1:] + cur_option_char[:1] + ans_file.close() + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--image-folder", type=str, default="") + parser.add_argument("--question-file", type=str, default="tables/question.jsonl") + parser.add_argument("--answers-file", type=str, default="answer.jsonl") + parser.add_argument("--conv-mode", type=str, default="llava_v1") + parser.add_argument("--num-chunks", type=int, default=1) + parser.add_argument("--chunk-idx", type=int, default=0) + parser.add_argument("--temperature", type=float, default=0.2) + parser.add_argument("--top_p", type=float, default=None) + parser.add_argument("--num_beams", type=int, default=1) + parser.add_argument("--all-rounds", action="store_true") + parser.add_argument("--single-pred-prompt", action="store_true") + parser.add_argument("--lang", type=str, default="en") + args = parser.parse_args() + + eval_model(args) diff --git a/MagicQuill/LLaVA/llava/eval/model_vqa_science.py b/MagicQuill/LLaVA/llava/eval/model_vqa_science.py new file mode 100644 index 0000000000000000000000000000000000000000..90fc681a20ee72131862772107f6be572f010c99 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/model_vqa_science.py @@ -0,0 +1,111 @@ +import argparse +import torch +import os +import json +from tqdm import tqdm +import shortuuid + +from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from llava.conversation import conv_templates, SeparatorStyle +from llava.model.builder import load_pretrained_model +from llava.utils import disable_torch_init +from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path + +from PIL import Image +import math + + +def split_list(lst, n): + """Split a list into n (roughly) equal-sized chunks""" + chunk_size = math.ceil(len(lst) / n) # integer division + return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] + + +def get_chunk(lst, n, k): + chunks = split_list(lst, n) + return chunks[k] + + +def eval_model(args): + # Model + disable_torch_init() + model_path = os.path.expanduser(args.model_path) + model_name = get_model_name_from_path(model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) + + questions = json.load(open(os.path.expanduser(args.question_file), "r")) + questions = get_chunk(questions, args.num_chunks, args.chunk_idx) + answers_file = os.path.expanduser(args.answers_file) + os.makedirs(os.path.dirname(answers_file), exist_ok=True) + ans_file = open(answers_file, "w") + for i, line in enumerate(tqdm(questions)): + idx = line["id"] + question = line['conversations'][0] + qs = question['value'].replace('', '').strip() + cur_prompt = qs + + if 'image' in line: + image_file = line["image"] + image = Image.open(os.path.join(args.image_folder, image_file)) + image_tensor = process_images([image], image_processor, model.config)[0] + images = image_tensor.unsqueeze(0).half().cuda() + image_sizes = [image.size] + if getattr(model.config, 'mm_use_im_start_end', False): + qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs + else: + qs = DEFAULT_IMAGE_TOKEN + '\n' + qs + cur_prompt = '' + '\n' + cur_prompt + else: + images = None + image_sizes = None + + if args.single_pred_prompt: + qs = qs + '\n' + "Answer with the option's letter from the given choices directly." + cur_prompt = cur_prompt + '\n' + "Answer with the option's letter from the given choices directly." + + conv = conv_templates[args.conv_mode].copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() + + with torch.inference_mode(): + output_ids = model.generate( + input_ids, + images=images, + image_sizes=image_sizes, + do_sample=True if args.temperature > 0 else False, + temperature=args.temperature, + max_new_tokens=1024, + use_cache=True, + ) + + outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() + + ans_id = shortuuid.uuid() + ans_file.write(json.dumps({"question_id": idx, + "prompt": cur_prompt, + "text": outputs, + "answer_id": ans_id, + "model_id": model_name, + "metadata": {}}) + "\n") + ans_file.flush() + ans_file.close() + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--image-folder", type=str, default="") + parser.add_argument("--question-file", type=str, default="tables/question.json") + parser.add_argument("--answers-file", type=str, default="answer.jsonl") + parser.add_argument("--conv-mode", type=str, default="llava_v0") + parser.add_argument("--num-chunks", type=int, default=1) + parser.add_argument("--chunk-idx", type=int, default=0) + parser.add_argument("--temperature", type=float, default=0.2) + parser.add_argument("--answer-prompter", action="store_true") + parser.add_argument("--single-pred-prompt", action="store_true") + args = parser.parse_args() + + eval_model(args) diff --git a/MagicQuill/LLaVA/llava/eval/qa_baseline_gpt35.py b/MagicQuill/LLaVA/llava/eval/qa_baseline_gpt35.py new file mode 100644 index 0000000000000000000000000000000000000000..babab6e12b4bb8cfa74a7edfa5e56cd1b3e2bf6c --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/qa_baseline_gpt35.py @@ -0,0 +1,74 @@ +"""Generate answers with GPT-3.5""" +# Note: you need to be using OpenAI Python v0.27.0 for the code below to work +import argparse +import json +import os +import time +import concurrent.futures + +import openai +import tqdm +import shortuuid + +MODEL = 'gpt-3.5-turbo' +MODEL_ID = 'gpt-3.5-turbo:20230327' + +def get_answer(question_id: int, question: str, max_tokens: int): + ans = { + 'answer_id': shortuuid.uuid(), + 'question_id': question_id, + 'model_id': MODEL_ID, + } + for _ in range(3): + try: + response = openai.ChatCompletion.create( + model=MODEL, + messages=[{ + 'role': 'system', + 'content': 'You are a helpful assistant.' + }, { + 'role': 'user', + 'content': question, + }], + max_tokens=max_tokens, + ) + ans['text'] = response['choices'][0]['message']['content'] + return ans + except Exception as e: + print('[ERROR]', e) + ans['text'] = '#ERROR#' + time.sleep(1) + return ans + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='ChatGPT answer generation.') + parser.add_argument('-q', '--question') + parser.add_argument('-o', '--output') + parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output') + args = parser.parse_args() + + questions_dict = {} + with open(os.path.expanduser(args.question)) as f: + for line in f: + if not line: + continue + q = json.loads(line) + questions_dict[q['question_id']] = q['text'] + + answers = [] + + with concurrent.futures.ThreadPoolExecutor(max_workers=32) as executor: + futures = [] + for qid, question in questions_dict.items(): + future = executor.submit(get_answer, qid, question, args.max_tokens) + futures.append(future) + + for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)): + answers.append(future.result()) + + answers.sort(key=lambda x: x['question_id']) + + with open(os.path.expanduser(args.output), 'w') as f: + table = [json.dumps(ans) for ans in answers] + f.write('\n'.join(table)) diff --git a/MagicQuill/LLaVA/llava/eval/run_llava.py b/MagicQuill/LLaVA/llava/eval/run_llava.py new file mode 100644 index 0000000000000000000000000000000000000000..24b0fffcc11a2045dfc7f5ac6cae4f057aaba6d6 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/run_llava.py @@ -0,0 +1,145 @@ +import argparse +import torch + +from llava.constants import ( + IMAGE_TOKEN_INDEX, + DEFAULT_IMAGE_TOKEN, + DEFAULT_IM_START_TOKEN, + DEFAULT_IM_END_TOKEN, + IMAGE_PLACEHOLDER, +) +from llava.conversation import conv_templates, SeparatorStyle +from llava.model.builder import load_pretrained_model +from llava.utils import disable_torch_init +from llava.mm_utils import ( + process_images, + tokenizer_image_token, + get_model_name_from_path, +) + +from PIL import Image + +import requests +from PIL import Image +from io import BytesIO +import re + + +def image_parser(args): + out = args.image_file.split(args.sep) + return out + + +def load_image(image_file): + if image_file.startswith("http") or image_file.startswith("https"): + response = requests.get(image_file) + image = Image.open(BytesIO(response.content)).convert("RGB") + else: + image = Image.open(image_file).convert("RGB") + return image + + +def load_images(image_files): + out = [] + for image_file in image_files: + image = load_image(image_file) + out.append(image) + return out + + +def eval_model(args): + # Model + disable_torch_init() + + model_name = get_model_name_from_path(args.model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model( + args.model_path, args.model_base, model_name + ) + + qs = args.query + image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + if IMAGE_PLACEHOLDER in qs: + if model.config.mm_use_im_start_end: + qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) + else: + qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) + else: + if model.config.mm_use_im_start_end: + qs = image_token_se + "\n" + qs + else: + qs = DEFAULT_IMAGE_TOKEN + "\n" + qs + + if "llama-2" in model_name.lower(): + conv_mode = "llava_llama_2" + elif "mistral" in model_name.lower(): + conv_mode = "mistral_instruct" + elif "v1.6-34b" in model_name.lower(): + conv_mode = "chatml_direct" + elif "v1" in model_name.lower(): + conv_mode = "llava_v1" + elif "mpt" in model_name.lower(): + conv_mode = "mpt" + else: + conv_mode = "llava_v0" + + if args.conv_mode is not None and conv_mode != args.conv_mode: + print( + "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( + conv_mode, args.conv_mode, args.conv_mode + ) + ) + else: + args.conv_mode = conv_mode + + conv = conv_templates[args.conv_mode].copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + image_files = image_parser(args) + images = load_images(image_files) + image_sizes = [x.size for x in images] + images_tensor = process_images( + images, + image_processor, + model.config + ).to(model.device, dtype=torch.float16) + + input_ids = ( + tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") + .unsqueeze(0) + .cuda() + ) + + with torch.inference_mode(): + output_ids = model.generate( + input_ids, + images=images_tensor, + image_sizes=image_sizes, + do_sample=True if args.temperature > 0 else False, + temperature=args.temperature, + top_p=args.top_p, + num_beams=args.num_beams, + max_new_tokens=args.max_new_tokens, + use_cache=True, + ) + + outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() + print(outputs) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--image-file", type=str, required=True) + parser.add_argument("--query", type=str, required=True) + parser.add_argument("--conv-mode", type=str, default=None) + parser.add_argument("--sep", type=str, default=",") + parser.add_argument("--temperature", type=float, default=0.2) + parser.add_argument("--top_p", type=float, default=None) + parser.add_argument("--num_beams", type=int, default=1) + parser.add_argument("--max_new_tokens", type=int, default=512) + args = parser.parse_args() + + eval_model(args) diff --git a/MagicQuill/LLaVA/llava/eval/summarize_gpt_review.py b/MagicQuill/LLaVA/llava/eval/summarize_gpt_review.py new file mode 100644 index 0000000000000000000000000000000000000000..0f796a3880341739677a5fe3bfbcc90515a0f324 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/summarize_gpt_review.py @@ -0,0 +1,60 @@ +import json +import os +from collections import defaultdict + +import numpy as np + +import argparse + +def parse_args(): + parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.') + parser.add_argument('-d', '--dir', default=None) + parser.add_argument('-v', '--version', default=None) + parser.add_argument('-s', '--select', nargs='*', default=None) + parser.add_argument('-f', '--files', nargs='*', default=[]) + parser.add_argument('-i', '--ignore', nargs='*', default=[]) + return parser.parse_args() + + +if __name__ == '__main__': + args = parse_args() + + if args.ignore is not None: + args.ignore = [int(x) for x in args.ignore] + + if len(args.files) > 0: + review_files = args.files + else: + review_files = [x for x in os.listdir(args.dir) if x.endswith('.jsonl') and (x.startswith('gpt4_text') or x.startswith('reviews_') or x.startswith('review_') or 'review' in args.dir)] + + for review_file in sorted(review_files): + config = os.path.basename(review_file).replace('gpt4_text_', '').replace('.jsonl', '') + if args.select is not None and any(x not in config for x in args.select): + continue + if '0613' in config: + version = '0613' + else: + version = '0314' + if args.version is not None and args.version != version: + continue + scores = defaultdict(list) + print(config) + with open(os.path.join(args.dir, review_file) if args.dir is not None else review_file) as f: + for review_str in f: + review = json.loads(review_str) + if review['question_id'] in args.ignore: + continue + if 'category' in review: + scores[review['category']].append(review['tuple']) + scores['all'].append(review['tuple']) + else: + if 'tuple' in review: + scores['all'].append(review['tuple']) + else: + scores['all'].append(review['score']) + for k, v in sorted(scores.items()): + stats = np.asarray(v).mean(0).tolist() + stats = [round(x, 3) for x in stats] + # print(k, stats, round(stats[1]/stats[0]*100, 1)) + print(k, round(stats[1]/stats[0]*100, 1), round(stats[0] * 10, 1), round(stats[1] * 10, 1)) + print('=================================') diff --git a/MagicQuill/LLaVA/llava/eval/webpage/figures/alpaca.png b/MagicQuill/LLaVA/llava/eval/webpage/figures/alpaca.png new file mode 100644 index 0000000000000000000000000000000000000000..497a702ab5efb88b8f67333eae81645eecea78cd Binary files /dev/null and b/MagicQuill/LLaVA/llava/eval/webpage/figures/alpaca.png differ diff --git a/MagicQuill/LLaVA/llava/eval/webpage/figures/bard.jpg b/MagicQuill/LLaVA/llava/eval/webpage/figures/bard.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5b32cb501799175e3829f92b014795ad1cbee79d Binary files /dev/null and b/MagicQuill/LLaVA/llava/eval/webpage/figures/bard.jpg differ diff --git a/MagicQuill/LLaVA/llava/eval/webpage/figures/chatgpt.svg b/MagicQuill/LLaVA/llava/eval/webpage/figures/chatgpt.svg new file mode 100644 index 0000000000000000000000000000000000000000..8147382a3152de03c24b4cd91f9870ced1a95d54 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/webpage/figures/chatgpt.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/MagicQuill/LLaVA/llava/eval/webpage/figures/llama.jpg b/MagicQuill/LLaVA/llava/eval/webpage/figures/llama.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7217e5dc1bb683453204a20890f01f5806ce12cf Binary files /dev/null and b/MagicQuill/LLaVA/llava/eval/webpage/figures/llama.jpg differ diff --git a/MagicQuill/LLaVA/llava/eval/webpage/figures/swords_FILL0_wght300_GRAD0_opsz48.svg b/MagicQuill/LLaVA/llava/eval/webpage/figures/swords_FILL0_wght300_GRAD0_opsz48.svg new file mode 100644 index 0000000000000000000000000000000000000000..3bee468d34515fdcbef1a8b8803c9fc4f7dc0b34 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/webpage/figures/swords_FILL0_wght300_GRAD0_opsz48.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/MagicQuill/LLaVA/llava/eval/webpage/figures/vicuna.jpeg b/MagicQuill/LLaVA/llava/eval/webpage/figures/vicuna.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..e7883dc886b96d078883e01aefd16792133e204a Binary files /dev/null and b/MagicQuill/LLaVA/llava/eval/webpage/figures/vicuna.jpeg differ diff --git a/MagicQuill/LLaVA/llava/eval/webpage/index.html b/MagicQuill/LLaVA/llava/eval/webpage/index.html new file mode 100644 index 0000000000000000000000000000000000000000..c2e3cf020ba7d8e064f2cd801788a5d2d50b97da --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/webpage/index.html @@ -0,0 +1,162 @@ + + + + + + Who's GPT-4's favorite? Battles between State-of-the-Art Chatbots + + + + + + + + +
+

Who's GPT-4's favorite? Battles between State-of-the-Art Chatbots

+ + +
+
+ + +
+
+ + +
+
+
+
+ + +
+
+
+ + +
+
+ +
+
+
+ other logo +
+
+
+
+ + +
+
+
+
+ vicuna logo +
+
+
+ +
+
+ + +
+
+
+ + +
+
+
+
+
+
+ +
+
+ +
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Assistant #2 (Vicuna, our model) +
+
+
+
+
+
+
+
+
+
+ + +
+
GPT-4 Evaluation
+
+
+
+
+
+
+
+
+ +
+
+ This website is co-authored with GPT-4. +
+
+ + + + + + + + + + + + + diff --git a/MagicQuill/LLaVA/llava/eval/webpage/script.js b/MagicQuill/LLaVA/llava/eval/webpage/script.js new file mode 100644 index 0000000000000000000000000000000000000000..4b71e3d5618a262e4746f58e5d10947b73370dca --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/webpage/script.js @@ -0,0 +1,245 @@ +// Description: Script for the evaluation webpage. + +let currentQuestionIndex = 1; + +// Store the model name mapping for later use. +modelNameMapping = { + "gpt35": "ChatGPT-3.5", + "gpt4": "GPT-4", + "alpaca": "Alpaca-13b", + "vicuna": "Vicuna-13b", + "llama": "LLaMA-13b", + "bard": "Bard", +}; + +modelFigureMapping = { + "vicuna": "figures/vicuna.jpeg", + // Image from: https://commons.wikimedia.org/wiki/File:ChatGPT_logo.svg + "gpt35": "figures/chatgpt.svg", + // Image from: https://www.reddit.com/r/logodesign/comments/1128aat/google_ai_bard_logo_design/ + "bard": "figures/bard.jpg", + // Image from: https://crfm.stanford.edu/2023/03/13/alpaca.html + "alpaca": "figures/alpaca.png", + // Image adapted from https://commons.wikimedia.org/wiki/File:Llama_on_Machu_Picchu.jpg + "llama": "figures/llama.jpg", +} + +// Store the question data in a mapping for later use. +questionMapping = {}; +// Store the question ids in a mapping for later use. +categoryMapping = {}; +// Store the number of questions for later use. +questionsCount = 0; + + +function text2Markdown(text) { + // Normalize the text for markdown rendering. + text = text.trim().replaceAll('\n\n', '\n').replaceAll('\n', '\n\n'); + return marked.parse(text); +} + +function capitalizeFirstChar(str) { + if (!str || str.length === 0) { + return str; + } + return str.charAt(0).toUpperCase() + str.slice(1); +} + +function updateQuestionSelect(question_id) { + const select = document.getElementById('question-select'); + // Clear the question select. + select.innerHTML = ''; + // Populate the question select. + category = questionMapping[question_id].category; + categoryMapping[category].forEach(question_id => { + const question = questionMapping[question_id]; + const option = document.createElement('option'); + option.value = question_id; + option.textContent = 'Q' + question_id.toString() + ': ' + question.question; + select.appendChild(option); + }); + select.value = question_id; +} + +function updateModelSelect() { + const select = document.getElementById('model-select'); + img_path = modelFigureMapping[select.value]; + document.getElementById('other-model-figure').src = img_path; +} + +function populateModels(models) { + const select = document.getElementById('model-select'); + models.forEach(model => { + const option = document.createElement('option'); + option.value = model; + option.textContent = modelNameMapping[model]; + select.appendChild(option); + }); + updateModelSelect(); +} + +function populateQuestions(questions) { + const category_select = document.getElementById('category-select'); + + questionsCount = questions.length; + questions.forEach(question => { + const option = document.createElement('option'); + // Store the question data in a mapping for later use. + questionMapping[question.id] = { + category: question.category, + question: question.question, + answers: question.answers, + evaluations: question.evaluations, + scores: question.scores, + }; + // Store the question id in the category mapping. + if (question.category in categoryMapping) { + categoryMapping[question.category].push(question.id); + } else { + categoryMapping[question.category] = [question.id]; + const category_option = document.createElement('option'); + category_option.value = question.category; + category_option.textContent = capitalizeFirstChar(question.category); + category_select.appendChild(category_option); + } + }); + // Set the default category. + updateQuestionSelect(currentQuestionIndex); +} + +function displayQuestion(index) { + const question = questionMapping[index].question; + document.getElementById('selected-question').innerHTML = text2Markdown('**Question:** ' + question); + displayAnswers(index); +} + +function displayAnswers(index) { + const question = questionMapping[index]; + const otherModel = document.getElementById('model-select').value; + // render the answers with markdown + document.getElementById('other-model-answer').innerHTML = text2Markdown(question.answers[otherModel]); + document.getElementById('our-model-answer').innerHTML = text2Markdown(question.answers.vicuna); + + // Display evaluation + score = question.scores[otherModel]; + score_text = modelNameMapping[otherModel] + " " + score[0] + "/10, Vicuna-13b " + score[1] + "/10"; + document.getElementById('evaluation-header').textContent = "GPT-4 Evaluation" + " (Score: " + score_text + ")"; + document.getElementById('evaluation-result').innerHTML = text2Markdown(question.evaluations[otherModel]); + + // Update model names + let assistant1_title = "Assistant #1"; // (" + modelNameMapping[otherModel] + ")"; + let assistant2_title = "Assistant #2 (Vicuna-13b, our model)"; + // Update scores/labels. + let assistant1_score_label = score[0].toString() + '/10'; + let assistant2_score_label = score[1].toString() + '/10'; + + const colorRed ='#fa9'; // '#eb978d'; + // const colorGreen = '#c9f2c9'; + const colorBlue = '#8ef'; // '#71dbf9'; + const colorYellow = '#fe7'; // '#fada57'; + let otherModelHeaderColor = ''; + let ourModelHeaderColor = ''; + // Update the winner. + if (score[0] == score[1]) { + assistant1_title = '🏆 ' + assistant1_title; + assistant1_score_label = '🏆 ' + assistant1_score_label; + assistant2_title = '🏆 ' + assistant2_title; + assistant2_score_label = '🏆 ' + assistant2_score_label; + otherModelHeaderColor = colorYellow; + ourModelHeaderColor = colorYellow; + } else if (score[0] > score[1]) { + assistant1_title = '🏆 ' + assistant1_title; + assistant1_score_label = '🏆 ' + assistant1_score_label; + otherModelHeaderColor = colorBlue; + ourModelHeaderColor = colorRed; + } else if (score[0] < score[1]) { + assistant2_title = '🏆 ' + assistant2_title; + assistant2_score_label = '🏆 ' + assistant2_score_label; + otherModelHeaderColor = colorRed; + ourModelHeaderColor = colorBlue; + } + + document.getElementById('other-model-header-bg').style.backgroundColor = otherModelHeaderColor; + document.getElementById('our-model-header').style.backgroundColor = ourModelHeaderColor; + + document.getElementById('other-model-header').textContent = assistant1_title; + document.getElementById('our-model-header').textContent = assistant2_title; + + document.getElementById('other-score-label').textContent = assistant1_score_label; + document.getElementById('our-score-label').textContent = assistant2_score_label; + + // Update expand buttons visibility for both cards after displaying answers + // Reset the expanded state and update expand buttons visibility for both cards after displaying answers + document.querySelectorAll('.expandable-card').forEach(card => { + card.classList.remove('expanded'); + updateExpandButtonVisibility(card); + const expandBtn = card.querySelector('.expand-btn'); + expandBtn.innerHTML = 'keyboard_arrow_down Show more'; // .textContent = 'Show more'; + }); +} + +document.getElementById('question-select').addEventListener('change', e => { + currentQuestionIndex = parseInt(e.target.value); + displayQuestion(currentQuestionIndex); +}); + +document.getElementById('category-select').addEventListener('change', e => { + let currentCategory = e.target.value; + const questionIds = categoryMapping[currentCategory]; + currentQuestionIndex = questionIds[0]; + updateQuestionSelect(currentQuestionIndex); + displayQuestion(currentQuestionIndex); +}); + +// Update expand buttons whenever the model is changed +document.getElementById('model-select').addEventListener('change', () => { + displayAnswers(currentQuestionIndex); + document.querySelectorAll('.expandable-card').forEach(card => { + updateExpandButtonVisibility(card); + }); + updateModelSelect(); +}); + +function switchQuestionAndCategory() { + document.getElementById('question-select').value = currentQuestionIndex; + old_category = document.getElementById('category-select').value; + new_category = questionMapping[currentQuestionIndex].category; + if (old_category != new_category) { + document.getElementById('category-select').value = new_category; + updateQuestionSelect(currentQuestionIndex); + } + displayQuestion(currentQuestionIndex); +} + +document.getElementById('prev-question').addEventListener('click', () => { + // Question index starts from 1. + currentQuestionIndex = Math.max(1, currentQuestionIndex - 1); + switchQuestionAndCategory(); +}); + +document.getElementById('next-question').addEventListener('click', () => { + // Question index starts from 1. + currentQuestionIndex = Math.min(questionsCount, currentQuestionIndex + 1); + switchQuestionAndCategory(); +}); + +function updateExpandButtonVisibility(card) { + const cardTextContainer = card.querySelector('.card-text-container'); + const expandBtn = card.querySelector('.expand-btn'); + if (cardTextContainer.scrollHeight > cardTextContainer.offsetHeight) { + expandBtn.style.display = 'flex'; + } else { + expandBtn.style.display = 'none'; + card.classList.add('expanded'); + } +} + +document.querySelectorAll('.expand-btn').forEach(btn => { + btn.addEventListener('click', e => { + const card = e.target.closest('.expandable-card'); + card.classList.toggle('expanded'); + const more = 'keyboard_arrow_down Show more'; + const less = 'keyboard_arrow_up Show less'; + e.target.innerHTML = card.classList.contains('expanded') ? less : more; + }); +}); diff --git a/MagicQuill/LLaVA/llava/eval/webpage/styles.css b/MagicQuill/LLaVA/llava/eval/webpage/styles.css new file mode 100644 index 0000000000000000000000000000000000000000..7b6d6fc69b336c0a5d103be9fb13a0e0897c76a3 --- /dev/null +++ b/MagicQuill/LLaVA/llava/eval/webpage/styles.css @@ -0,0 +1,105 @@ +body { + font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; + background-color: #f8f9fa; +} + +.navbar-dark .navbar-nav .nav-link { + color: #f1cf68; + font-size: 1.1rem; + padding: 0.5rem 0.6rem; +} + +.card-header { + font-weight: bold; +} + +.card { + box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); + transition: 0.3s; +} + +.card:hover { + box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2); +} + +button { + transition: background-color 0.3s; +} + +button:hover { + background-color: #007bff; +} + +@media (max-width: 767px) { + .form-row .form-group { + margin-bottom: 10px; + } +} + +/* Extra styles */ + +.expandable-card .card-text-container { + max-height: 200px; + overflow-y: hidden; + position: relative; +} + +.expandable-card.expanded .card-text-container { + max-height: none; +} + +.expand-btn { + position: relative; + display: none; + background-color: rgba(255, 255, 255, 0.8); + color: #510c75; + border-color: transparent; +} + +.expand-btn:hover { + background-color: rgba(200, 200, 200, 0.8); + text-decoration: none; + border-color: transparent; + color: #510c75; +} + +.expand-btn:focus { + outline: none; + text-decoration: none; +} + +.expandable-card:not(.expanded) .card-text-container:after { + content: ""; + position: absolute; + bottom: 0; + left: 0; + width: 100%; + height: 90px; + background: linear-gradient(rgba(255, 255, 255, 0.2), rgba(255, 255, 255, 1)); +} + +.expandable-card:not(.expanded) .expand-btn { + margin-top: -40px; +} + +.card-body { + padding-bottom: 5px; +} + +.vertical-flex-layout { + justify-content: center; + align-items: center; + height: 100%; + display: flex; + flex-direction: column; + gap: 5px; +} + +.figure-img { + max-width: 100%; + height: auto; +} + +.adjustable-font-size { + font-size: calc(0.5rem + 2vw); +} diff --git a/MagicQuill/LLaVA/llava/mm_utils.py b/MagicQuill/LLaVA/llava/mm_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..de97345cf424fe72cc90de30f42d127ff20b99ef --- /dev/null +++ b/MagicQuill/LLaVA/llava/mm_utils.py @@ -0,0 +1,247 @@ +from PIL import Image +from io import BytesIO +import base64 +import torch +import math +import ast + +from transformers import StoppingCriteria +from llava.constants import IMAGE_TOKEN_INDEX + + +def select_best_resolution(original_size, possible_resolutions): + """ + Selects the best resolution from a list of possible resolutions based on the original size. + + Args: + original_size (tuple): The original size of the image in the format (width, height). + possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. + + Returns: + tuple: The best fit resolution in the format (width, height). + """ + original_width, original_height = original_size + best_fit = None + max_effective_resolution = 0 + min_wasted_resolution = float('inf') + + for width, height in possible_resolutions: + scale = min(width / original_width, height / original_height) + downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) + effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) + wasted_resolution = (width * height) - effective_resolution + + if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): + max_effective_resolution = effective_resolution + min_wasted_resolution = wasted_resolution + best_fit = (width, height) + + return best_fit + + +def resize_and_pad_image(image, target_resolution): + """ + Resize and pad an image to a target resolution while maintaining aspect ratio. + + Args: + image (PIL.Image.Image): The input image. + target_resolution (tuple): The target resolution (width, height) of the image. + + Returns: + PIL.Image.Image: The resized and padded image. + """ + original_width, original_height = image.size + target_width, target_height = target_resolution + + scale_w = target_width / original_width + scale_h = target_height / original_height + + if scale_w < scale_h: + new_width = target_width + new_height = min(math.ceil(original_height * scale_w), target_height) + else: + new_height = target_height + new_width = min(math.ceil(original_width * scale_h), target_width) + + # Resize the image + resized_image = image.resize((new_width, new_height)) + + new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0)) + paste_x = (target_width - new_width) // 2 + paste_y = (target_height - new_height) // 2 + new_image.paste(resized_image, (paste_x, paste_y)) + + return new_image + + +def divide_to_patches(image, patch_size): + """ + Divides an image into patches of a specified size. + + Args: + image (PIL.Image.Image): The input image. + patch_size (int): The size of each patch. + + Returns: + list: A list of PIL.Image.Image objects representing the patches. + """ + patches = [] + width, height = image.size + for i in range(0, height, patch_size): + for j in range(0, width, patch_size): + box = (j, i, j + patch_size, i + patch_size) + patch = image.crop(box) + patches.append(patch) + + return patches + + +def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): + """ + Calculate the shape of the image patch grid after the preprocessing for images of any resolution. + + Args: + image_size (tuple): The size of the input image in the format (width, height). + grid_pinpoints (str): A string representation of a list of possible resolutions. + patch_size (int): The size of each image patch. + + Returns: + tuple: The shape of the image patch grid in the format (width, height). + """ + if type(grid_pinpoints) is list: + possible_resolutions = grid_pinpoints + else: + possible_resolutions = ast.literal_eval(grid_pinpoints) + width, height = select_best_resolution(image_size, possible_resolutions) + return width // patch_size, height // patch_size + + +def process_anyres_image(image, processor, grid_pinpoints): + """ + Process an image with variable resolutions. + + Args: + image (PIL.Image.Image): The input image to be processed. + processor: The image processor object. + grid_pinpoints (str): A string representation of a list of possible resolutions. + + Returns: + torch.Tensor: A tensor containing the processed image patches. + """ + if type(grid_pinpoints) is list: + possible_resolutions = grid_pinpoints + else: + possible_resolutions = ast.literal_eval(grid_pinpoints) + best_resolution = select_best_resolution(image.size, possible_resolutions) + image_padded = resize_and_pad_image(image, best_resolution) + + patches = divide_to_patches(image_padded, processor.crop_size['height']) + + image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge'])) + + image_patches = [image_original_resize] + patches + image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0] + for image_patch in image_patches] + return torch.stack(image_patches, dim=0) + + +def load_image_from_base64(image): + return Image.open(BytesIO(base64.b64decode(image))) + + +def expand2square(pil_img, background_color): + width, height = pil_img.size + if width == height: + return pil_img + elif width > height: + result = Image.new(pil_img.mode, (width, width), background_color) + result.paste(pil_img, (0, (width - height) // 2)) + return result + else: + result = Image.new(pil_img.mode, (height, height), background_color) + result.paste(pil_img, ((height - width) // 2, 0)) + return result + + +def process_images(images, image_processor, model_cfg): + image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) + new_images = [] + if image_aspect_ratio == 'pad': + for image in images: + image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) + image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] + new_images.append(image) + elif image_aspect_ratio == "anyres": + for image in images: + image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints) + new_images.append(image) + else: + return image_processor(images, return_tensors='pt')['pixel_values'] + if all(x.shape == new_images[0].shape for x in new_images): + new_images = torch.stack(new_images, dim=0) + return new_images + + +def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): + prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('')] + + def insert_separator(X, sep): + return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] + + input_ids = [] + offset = 0 + if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: + offset = 1 + input_ids.append(prompt_chunks[0][0]) + + for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): + input_ids.extend(x[offset:]) + + if return_tensors is not None: + if return_tensors == 'pt': + return torch.tensor(input_ids, dtype=torch.long) + raise ValueError(f'Unsupported tensor type: {return_tensors}') + return input_ids + + +def get_model_name_from_path(model_path): + model_path = model_path.strip("/") + model_paths = model_path.split("/") + if model_paths[-1].startswith('checkpoint-'): + return model_paths[-2] + "_" + model_paths[-1] + else: + return model_paths[-1] + +class KeywordsStoppingCriteria(StoppingCriteria): + def __init__(self, keywords, tokenizer, input_ids): + self.keywords = keywords + self.keyword_ids = [] + self.max_keyword_len = 0 + for keyword in keywords: + cur_keyword_ids = tokenizer(keyword).input_ids + if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: + cur_keyword_ids = cur_keyword_ids[1:] + if len(cur_keyword_ids) > self.max_keyword_len: + self.max_keyword_len = len(cur_keyword_ids) + self.keyword_ids.append(torch.tensor(cur_keyword_ids)) + self.tokenizer = tokenizer + self.start_len = input_ids.shape[1] + + def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: + offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) + self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] + for keyword_id in self.keyword_ids: + truncated_output_ids = output_ids[0, -keyword_id.shape[0]:] + if torch.equal(truncated_output_ids, keyword_id): + return True + outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] + for keyword in self.keywords: + if keyword in outputs: + return True + return False + + def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: + outputs = [] + for i in range(output_ids.shape[0]): + outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) + return all(outputs) diff --git a/MagicQuill/LLaVA/llava/model/__init__.py b/MagicQuill/LLaVA/llava/model/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..dbd91789f0cde61dd13a7f9a5f7a69488ad07279 --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/__init__.py @@ -0,0 +1,6 @@ +try: + from .language_model.llava_llama import LlavaLlamaForCausalLM, LlavaConfig + from .language_model.llava_mpt import LlavaMptForCausalLM, LlavaMptConfig + from .language_model.llava_mistral import LlavaMistralForCausalLM, LlavaMistralConfig +except: + pass diff --git a/MagicQuill/LLaVA/llava/model/apply_delta.py b/MagicQuill/LLaVA/llava/model/apply_delta.py new file mode 100644 index 0000000000000000000000000000000000000000..666dd9691bde7d54ddf2871e311d6f621e29f099 --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/apply_delta.py @@ -0,0 +1,48 @@ +""" +Usage: +python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta +""" +import argparse + +import torch +from tqdm import tqdm +from transformers import AutoTokenizer, AutoModelForCausalLM +from llava import LlavaLlamaForCausalLM + + +def apply_delta(base_model_path, target_model_path, delta_path): + print("Loading base model") + base = AutoModelForCausalLM.from_pretrained( + base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) + + print("Loading delta") + delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) + delta_tokenizer = AutoTokenizer.from_pretrained(delta_path) + + print("Applying delta") + for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"): + if name not in base.state_dict(): + assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model' + continue + if param.data.shape == base.state_dict()[name].shape: + param.data += base.state_dict()[name] + else: + assert name in ['model.embed_tokens.weight', 'lm_head.weight'], \ + f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}' + bparam = base.state_dict()[name] + param.data[:bparam.shape[0], :bparam.shape[1]] += bparam + + print("Saving target model") + delta.save_pretrained(target_model_path) + delta_tokenizer.save_pretrained(target_model_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--base-model-path", type=str, required=True) + parser.add_argument("--target-model-path", type=str, required=True) + parser.add_argument("--delta-path", type=str, required=True) + + args = parser.parse_args() + + apply_delta(args.base_model_path, args.target_model_path, args.delta_path) diff --git a/MagicQuill/LLaVA/llava/model/builder.py b/MagicQuill/LLaVA/llava/model/builder.py new file mode 100644 index 0000000000000000000000000000000000000000..e3d50829fb0fdc705f8792b42535461fd7140c5b --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/builder.py @@ -0,0 +1,167 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import os +import warnings +import shutil + +from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig +import torch +from llava.model import * +from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN + + +def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs): + kwargs = {"device_map": device_map, **kwargs} + + if device != "cuda": + kwargs['device_map'] = {"": device} + + if load_8bit: + kwargs['load_in_8bit'] = True + elif load_4bit: + kwargs['load_in_4bit'] = True + kwargs['quantization_config'] = BitsAndBytesConfig( + load_in_4bit=True, + bnb_4bit_compute_dtype=torch.float16, + bnb_4bit_use_double_quant=True, + bnb_4bit_quant_type='nf4' + ) + else: + kwargs['torch_dtype'] = torch.float16 + + if use_flash_attn: + kwargs['attn_implementation'] = 'flash_attention_2' + + if 'llava' in model_name.lower(): + # Load LLaVA model + if 'lora' in model_name.lower() and model_base is None: + warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.') + if 'lora' in model_name.lower() and model_base is not None: + from llava.model.language_model.llava_llama import LlavaConfig + lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path) + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) + print('Loading LLaVA from base model...') + model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) + token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features + if model.lm_head.weight.shape[0] != token_num: + model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) + model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) + + print('Loading additional LLaVA weights...') + if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): + non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') + else: + # this is probably from HF Hub + from huggingface_hub import hf_hub_download + def load_from_hf(repo_id, filename, subfolder=None): + cache_file = hf_hub_download( + repo_id=repo_id, + filename=filename, + subfolder=subfolder) + return torch.load(cache_file, map_location='cpu') + non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') + non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} + if any(k.startswith('model.model.') for k in non_lora_trainables): + non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} + model.load_state_dict(non_lora_trainables, strict=False) + + from peft import PeftModel + print('Loading LoRA weights...') + model = PeftModel.from_pretrained(model, model_path) + print('Merging LoRA weights...') + model = model.merge_and_unload() + print('Model is loaded...') + elif model_base is not None: + # this may be mm projector only + print('Loading LLaVA from base model...') + if 'mpt' in model_name.lower(): + if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')): + shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py')) + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) + cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True) + model = LlavaMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) + else: + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) + cfg_pretrained = AutoConfig.from_pretrained(model_path) + model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) + + mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') + mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} + model.load_state_dict(mm_projector_weights, strict=False) + else: + if 'mpt' in model_name.lower(): + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) + model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) + elif 'mistral' in model_name.lower(): + tokenizer = AutoTokenizer.from_pretrained(model_path) + model = LlavaMistralForCausalLM.from_pretrained( + model_path, + low_cpu_mem_usage=True, + **kwargs + ) + else: + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) + model = LlavaLlamaForCausalLM.from_pretrained( + model_path, + low_cpu_mem_usage=True, + **kwargs + ) + else: + # Load language model + if model_base is not None: + # PEFT model + from peft import PeftModel + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) + model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) + print(f"Loading LoRA weights from {model_path}") + model = PeftModel.from_pretrained(model, model_path) + print(f"Merging weights") + model = model.merge_and_unload() + print('Convert to FP16...') + model.to(torch.float16) + else: + use_fast = False + if 'mpt' in model_name.lower(): + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) + model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) + else: + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) + model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) + + image_processor = None + + if 'llava' in model_name.lower(): + mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) + mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) + if mm_use_im_patch_token: + tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) + if mm_use_im_start_end: + tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) + model.resize_token_embeddings(len(tokenizer)) + + vision_tower = model.get_vision_tower() + if not vision_tower.is_loaded: + vision_tower.load_model(device_map=device_map) + if device_map != 'auto': + vision_tower.to(device=device_map, dtype=torch.float16) + image_processor = vision_tower.image_processor + + if hasattr(model.config, "max_sequence_length"): + context_len = model.config.max_sequence_length + else: + context_len = 2048 + + return tokenizer, model, image_processor, context_len diff --git a/MagicQuill/LLaVA/llava/model/consolidate.py b/MagicQuill/LLaVA/llava/model/consolidate.py new file mode 100644 index 0000000000000000000000000000000000000000..1e324210e229eeba23b75791bba82df7c6e639eb --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/consolidate.py @@ -0,0 +1,29 @@ +""" +Usage: +python3 -m llava.model.consolidate --src ~/model_weights/llava-7b --dst ~/model_weights/llava-7b_consolidate +""" +import argparse + +import torch +from transformers import AutoTokenizer, AutoModelForCausalLM +from llava.model import * +from llava.model.utils import auto_upgrade + + +def consolidate_ckpt(src_path, dst_path): + print("Loading model") + auto_upgrade(src_path) + src_model = AutoModelForCausalLM.from_pretrained(src_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) + src_tokenizer = AutoTokenizer.from_pretrained(src_path, use_fast=False) + src_model.save_pretrained(dst_path) + src_tokenizer.save_pretrained(dst_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--src", type=str, required=True) + parser.add_argument("--dst", type=str, required=True) + + args = parser.parse_args() + + consolidate_ckpt(args.src, args.dst) diff --git a/MagicQuill/LLaVA/llava/model/language_model/llava_llama.py b/MagicQuill/LLaVA/llava/model/language_model/llava_llama.py new file mode 100644 index 0000000000000000000000000000000000000000..069d0d1c10da42f5d278598e8534f166d1f9f5ff --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/language_model/llava_llama.py @@ -0,0 +1,158 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from transformers import AutoConfig, AutoModelForCausalLM, \ + LlamaConfig, LlamaModel, LlamaForCausalLM + +from transformers.modeling_outputs import CausalLMOutputWithPast +from transformers.generation.utils import GenerateOutput + +from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM + + +class LlavaConfig(LlamaConfig): + model_type = "llava_llama" + + +class LlavaLlamaModel(LlavaMetaModel, LlamaModel): + config_class = LlavaConfig + + def __init__(self, config: LlamaConfig): + super(LlavaLlamaModel, self).__init__(config) + + +class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM): + config_class = LlavaConfig + + def __init__(self, config): + super(LlamaForCausalLM, self).__init__(config) + self.model = LlavaLlamaModel(config) + self.pretraining_tp = config.pretraining_tp + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_model(self): + return self.model + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + images: Optional[torch.FloatTensor] = None, + image_sizes: Optional[List[List[int]]] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + + if inputs_embeds is None: + ( + input_ids, + position_ids, + attention_mask, + past_key_values, + inputs_embeds, + labels + ) = self.prepare_inputs_labels_for_multimodal( + input_ids, + position_ids, + attention_mask, + past_key_values, + labels, + images, + image_sizes + ) + + return super().forward( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + labels=labels, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict + ) + + @torch.no_grad() + def generate( + self, + inputs: Optional[torch.Tensor] = None, + images: Optional[torch.Tensor] = None, + image_sizes: Optional[torch.Tensor] = None, + **kwargs, + ) -> Union[GenerateOutput, torch.LongTensor]: + position_ids = kwargs.pop("position_ids", None) + attention_mask = kwargs.pop("attention_mask", None) + if "inputs_embeds" in kwargs: + raise NotImplementedError("`inputs_embeds` is not supported") + + if images is not None: + ( + inputs, + position_ids, + attention_mask, + _, + inputs_embeds, + _ + ) = self.prepare_inputs_labels_for_multimodal( + inputs, + position_ids, + attention_mask, + None, + None, + images, + image_sizes=image_sizes + ) + else: + inputs_embeds = self.get_model().embed_tokens(inputs) + + return super().generate( + position_ids=position_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + **kwargs + ) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, + inputs_embeds=None, **kwargs): + images = kwargs.pop("images", None) + image_sizes = kwargs.pop("image_sizes", None) + inputs = super().prepare_inputs_for_generation( + input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs + ) + if images is not None: + inputs['images'] = images + if image_sizes is not None: + inputs['image_sizes'] = image_sizes + return inputs + +AutoConfig.register("llava_llama", LlavaConfig) +AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM) diff --git a/MagicQuill/LLaVA/llava/model/language_model/llava_mistral.py b/MagicQuill/LLaVA/llava/model/language_model/llava_mistral.py new file mode 100644 index 0000000000000000000000000000000000000000..0def682ea3c497e36aa85f1c53eb2cfab6e2fb87 --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/language_model/llava_mistral.py @@ -0,0 +1,158 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +from torch.nn import CrossEntropyLoss + +from transformers import AutoConfig, AutoModelForCausalLM, \ + MistralConfig, MistralModel, MistralForCausalLM + +from transformers.modeling_outputs import CausalLMOutputWithPast +from transformers.generation.utils import GenerateOutput + +from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM + + +class LlavaMistralConfig(MistralConfig): + model_type = "llava_mistral" + + +class LlavaMistralModel(LlavaMetaModel, MistralModel): + config_class = LlavaMistralConfig + + def __init__(self, config: MistralConfig): + super(LlavaMistralModel, self).__init__(config) + + +class LlavaMistralForCausalLM(MistralForCausalLM, LlavaMetaForCausalLM): + config_class = LlavaMistralConfig + + def __init__(self, config): + super(MistralForCausalLM, self).__init__(config) + self.model = LlavaMistralModel(config) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_model(self): + return self.model + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + images: Optional[torch.FloatTensor] = None, + image_sizes: Optional[List[List[int]]] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + + if inputs_embeds is None: + ( + input_ids, + position_ids, + attention_mask, + past_key_values, + inputs_embeds, + labels + ) = self.prepare_inputs_labels_for_multimodal( + input_ids, + position_ids, + attention_mask, + past_key_values, + labels, + images, + image_sizes + ) + + return super().forward( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + labels=labels, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict + ) + + @torch.no_grad() + def generate( + self, + inputs: Optional[torch.Tensor] = None, + images: Optional[torch.Tensor] = None, + image_sizes: Optional[torch.Tensor] = None, + **kwargs, + ) -> Union[GenerateOutput, torch.LongTensor]: + position_ids = kwargs.pop("position_ids", None) + attention_mask = kwargs.pop("attention_mask", None) + if "inputs_embeds" in kwargs: + raise NotImplementedError("`inputs_embeds` is not supported") + + if images is not None: + ( + inputs, + position_ids, + attention_mask, + _, + inputs_embeds, + _ + ) = self.prepare_inputs_labels_for_multimodal( + inputs, + position_ids, + attention_mask, + None, + None, + images, + image_sizes=image_sizes + ) + else: + inputs_embeds = self.get_model().embed_tokens(inputs) + + return super().generate( + position_ids=position_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + **kwargs + ) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, + inputs_embeds=None, **kwargs): + images = kwargs.pop("images", None) + image_sizes = kwargs.pop("image_sizes", None) + inputs = super().prepare_inputs_for_generation( + input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs + ) + if images is not None: + inputs['images'] = images + if image_sizes is not None: + inputs['image_sizes'] = image_sizes + return inputs + +AutoConfig.register("llava_mistral", LlavaMistralConfig) +AutoModelForCausalLM.register(LlavaMistralConfig, LlavaMistralForCausalLM) diff --git a/MagicQuill/LLaVA/llava/model/language_model/llava_mpt.py b/MagicQuill/LLaVA/llava/model/language_model/llava_mpt.py new file mode 100644 index 0000000000000000000000000000000000000000..02e5237ece031af23fcd76b5b4e0d9b0bc5f55cc --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/language_model/llava_mpt.py @@ -0,0 +1,97 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Optional, Tuple + +import torch + +from transformers import AutoConfig, AutoModelForCausalLM, \ + MptConfig, MptForCausalLM, MptModel +from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM + + +class LlavaMptConfig(MptConfig): + model_type = "llava_mpt" + + +class LlavaMptModel(LlavaMetaModel, MptModel): + config_class = LlavaMptConfig + + def __init__(self, config: MptConfig): + config.hidden_size = config.d_model + super(LlavaMptModel, self).__init__(config) + + def embed_tokens(self, x): + return self.wte(x) + + +class LlavaMptForCausalLM(MptForCausalLM, LlavaMetaForCausalLM): + config_class = LlavaMptConfig + supports_gradient_checkpointing = True + + def __init__(self, config): + super(MptForCausalLM, self).__init__(config) + + self.transformer = LlavaMptModel(config) + self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_model(self): + return self.transformer + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, LlavaMptModel): + module.gradient_checkpointing = value + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + images=None): + + input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) + + return super().forward( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + labels=labels, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): + images = kwargs.pop("images", None) + _inputs = super().prepare_inputs_for_generation( + input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs + ) + _inputs['images'] = images + return _inputs + + +AutoConfig.register("llava_mpt", LlavaMptConfig) +AutoModelForCausalLM.register(LlavaMptConfig, LlavaMptForCausalLM) diff --git a/MagicQuill/LLaVA/llava/model/llava_arch.py b/MagicQuill/LLaVA/llava/model/llava_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..ebec619aaa9ccfdeaeb0413e021e529a503e50dc --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/llava_arch.py @@ -0,0 +1,371 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from abc import ABC, abstractmethod + +import torch +import torch.nn as nn + +from .multimodal_encoder.builder import build_vision_tower +from .multimodal_projector.builder import build_vision_projector + +import sys +sys.path.append('/home/user/app/MagicQuill/LLaVA') + +from llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN + +from llava.mm_utils import get_anyres_image_grid_shape + + +class LlavaMetaModel: + + def __init__(self, config): + super(LlavaMetaModel, self).__init__(config) + + if hasattr(config, "mm_vision_tower"): + self.vision_tower = build_vision_tower(config, delay_load=True) + self.mm_projector = build_vision_projector(config) + + if 'unpad' in getattr(config, 'mm_patch_merge_type', ''): + self.image_newline = nn.Parameter( + torch.empty(config.hidden_size, dtype=self.dtype) + ) + + def get_vision_tower(self): + vision_tower = getattr(self, 'vision_tower', None) + if type(vision_tower) is list: + vision_tower = vision_tower[0] + return vision_tower + + def initialize_vision_modules(self, model_args, fsdp=None): + vision_tower = model_args.vision_tower + mm_vision_select_layer = model_args.mm_vision_select_layer + mm_vision_select_feature = model_args.mm_vision_select_feature + pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter + mm_patch_merge_type = model_args.mm_patch_merge_type + + self.config.mm_vision_tower = vision_tower + + if self.get_vision_tower() is None: + vision_tower = build_vision_tower(model_args) + + if fsdp is not None and len(fsdp) > 0: + self.vision_tower = [vision_tower] + else: + self.vision_tower = vision_tower + else: + if fsdp is not None and len(fsdp) > 0: + vision_tower = self.vision_tower[0] + else: + vision_tower = self.vision_tower + vision_tower.load_model() + + self.config.use_mm_proj = True + self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') + self.config.mm_hidden_size = vision_tower.hidden_size + self.config.mm_vision_select_layer = mm_vision_select_layer + self.config.mm_vision_select_feature = mm_vision_select_feature + self.config.mm_patch_merge_type = mm_patch_merge_type + + if getattr(self, 'mm_projector', None) is None: + self.mm_projector = build_vision_projector(self.config) + + if 'unpad' in mm_patch_merge_type: + embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype)) + self.image_newline = nn.Parameter( + torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std + ) + else: + # In case it is frozen by LoRA + for p in self.mm_projector.parameters(): + p.requires_grad = True + + if pretrain_mm_mlp_adapter is not None: + mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') + def get_w(weights, keyword): + return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} + + self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) + + +def unpad_image(tensor, original_size): + """ + Unpads a PyTorch tensor of a padded and resized image. + + Args: + tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format. + original_size (tuple): The original size of PIL image (width, height). + + Returns: + torch.Tensor: The unpadded image tensor. + """ + original_width, original_height = original_size + current_height, current_width = tensor.shape[1:] + + original_aspect_ratio = original_width / original_height + current_aspect_ratio = current_width / current_height + + if original_aspect_ratio > current_aspect_ratio: + scale_factor = current_width / original_width + new_height = int(original_height * scale_factor) + padding = (current_height - new_height) // 2 + unpadded_tensor = tensor[:, padding:current_height - padding, :] + else: + scale_factor = current_height / original_height + new_width = int(original_width * scale_factor) + padding = (current_width - new_width) // 2 + unpadded_tensor = tensor[:, :, padding:current_width - padding] + + return unpadded_tensor + + +class LlavaMetaForCausalLM(ABC): + + @abstractmethod + def get_model(self): + pass + + def get_vision_tower(self): + return self.get_model().get_vision_tower() + + def encode_images(self, images): + image_features = self.get_model().get_vision_tower()(images) + image_features = self.get_model().mm_projector(image_features) + return image_features + + def prepare_inputs_labels_for_multimodal( + self, input_ids, position_ids, attention_mask, past_key_values, labels, + images, image_sizes=None + ): + vision_tower = self.get_vision_tower() + if vision_tower is None or images is None or input_ids.shape[1] == 1: + return input_ids, position_ids, attention_mask, past_key_values, None, labels + + if type(images) is list or images.ndim == 5: + if type(images) is list: + images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images] + concat_images = torch.cat([image for image in images], dim=0) + image_features = self.encode_images(concat_images) + split_sizes = [image.shape[0] for image in images] + image_features = torch.split(image_features, split_sizes, dim=0) + mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat') + image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square') + if mm_patch_merge_type == 'flat': + image_features = [x.flatten(0, 1) for x in image_features] + elif mm_patch_merge_type.startswith('spatial'): + new_image_features = [] + for image_idx, image_feature in enumerate(image_features): + if image_feature.shape[0] > 1: + base_image_feature = image_feature[0] + image_feature = image_feature[1:] + height = width = self.get_vision_tower().num_patches_per_side + assert height * width == base_image_feature.shape[0] + if image_aspect_ratio == 'anyres': + num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size) + image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) + else: + raise NotImplementedError + if 'unpad' in mm_patch_merge_type: + image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() + image_feature = image_feature.flatten(1, 2).flatten(2, 3) + image_feature = unpad_image(image_feature, image_sizes[image_idx]) + image_feature = torch.cat(( + image_feature, + self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device) + ), dim=-1) + image_feature = image_feature.flatten(1, 2).transpose(0, 1) + else: + image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() + image_feature = image_feature.flatten(0, 3) + image_feature = torch.cat((base_image_feature, image_feature), dim=0) + else: + image_feature = image_feature[0] + if 'unpad' in mm_patch_merge_type: + image_feature = torch.cat(( + image_feature, + self.model.image_newline[None].to(image_feature.device) + ), dim=0) + new_image_features.append(image_feature) + image_features = new_image_features + else: + raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}") + else: + image_features = self.encode_images(images) + + # TODO: image start / end is not implemented here to support pretraining. + if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): + raise NotImplementedError + + # Let's just add dummy tensors if they do not exist, + # it is a headache to deal with None all the time. + # But it is not ideal, and if you have a better idea, + # please open an issue / submit a PR, thanks. + _labels = labels + _position_ids = position_ids + _attention_mask = attention_mask + if attention_mask is None: + attention_mask = torch.ones_like(input_ids, dtype=torch.bool) + else: + attention_mask = attention_mask.bool() + if position_ids is None: + position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) + if labels is None: + labels = torch.full_like(input_ids, IGNORE_INDEX) + + # remove the padding using attention_mask -- FIXME + _input_ids = input_ids + input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] + labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] + + new_input_embeds = [] + new_labels = [] + cur_image_idx = 0 + for batch_idx, cur_input_ids in enumerate(input_ids): + num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() + if num_images == 0: + cur_image_features = image_features[cur_image_idx] + cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) + cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) + new_input_embeds.append(cur_input_embeds) + new_labels.append(labels[batch_idx]) + cur_image_idx += 1 + continue + + image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] + cur_input_ids_noim = [] + cur_labels = labels[batch_idx] + cur_labels_noim = [] + for i in range(len(image_token_indices) - 1): + cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) + cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) + split_sizes = [x.shape[0] for x in cur_labels_noim] + cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) + cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) + cur_new_input_embeds = [] + cur_new_labels = [] + + for i in range(num_images + 1): + cur_new_input_embeds.append(cur_input_embeds_no_im[i]) + cur_new_labels.append(cur_labels_noim[i]) + if i < num_images: + cur_image_features = image_features[cur_image_idx] + cur_image_idx += 1 + cur_new_input_embeds.append(cur_image_features) + cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) + + cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] + + cur_new_input_embeds = torch.cat(cur_new_input_embeds) + cur_new_labels = torch.cat(cur_new_labels) + + new_input_embeds.append(cur_new_input_embeds) + new_labels.append(cur_new_labels) + + # Truncate sequences to max length as image embeddings can make the sequence longer + tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) + if tokenizer_model_max_length is not None: + new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] + new_labels = [x[:tokenizer_model_max_length] for x in new_labels] + + # Combine them + max_len = max(x.shape[0] for x in new_input_embeds) + batch_size = len(new_input_embeds) + + new_input_embeds_padded = [] + new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) + attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) + position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) + + for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): + cur_len = cur_new_embed.shape[0] + if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": + new_input_embeds_padded.append(torch.cat(( + torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), + cur_new_embed + ), dim=0)) + if cur_len > 0: + new_labels_padded[i, -cur_len:] = cur_new_labels + attention_mask[i, -cur_len:] = True + position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) + else: + new_input_embeds_padded.append(torch.cat(( + cur_new_embed, + torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) + ), dim=0)) + if cur_len > 0: + new_labels_padded[i, :cur_len] = cur_new_labels + attention_mask[i, :cur_len] = True + position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) + + new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) + + if _labels is None: + new_labels = None + else: + new_labels = new_labels_padded + + if _attention_mask is None: + attention_mask = None + else: + attention_mask = attention_mask.to(dtype=_attention_mask.dtype) + + if _position_ids is None: + position_ids = None + + return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels + + def initialize_vision_tokenizer(self, model_args, tokenizer): + if model_args.mm_use_im_patch_token: + tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) + self.resize_token_embeddings(len(tokenizer)) + + if model_args.mm_use_im_start_end: + num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) + self.resize_token_embeddings(len(tokenizer)) + + if num_new_tokens > 0: + input_embeddings = self.get_input_embeddings().weight.data + output_embeddings = self.get_output_embeddings().weight.data + + input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + + input_embeddings[-num_new_tokens:] = input_embeddings_avg + output_embeddings[-num_new_tokens:] = output_embeddings_avg + + if model_args.tune_mm_mlp_adapter: + for p in self.get_input_embeddings().parameters(): + p.requires_grad = True + for p in self.get_output_embeddings().parameters(): + p.requires_grad = False + + if model_args.pretrain_mm_mlp_adapter: + mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') + embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] + assert num_new_tokens == 2 + if input_embeddings.shape == embed_tokens_weight.shape: + input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] + elif embed_tokens_weight.shape[0] == num_new_tokens: + input_embeddings[-num_new_tokens:] = embed_tokens_weight + else: + raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") + elif model_args.mm_use_im_patch_token: + if model_args.tune_mm_mlp_adapter: + for p in self.get_input_embeddings().parameters(): + p.requires_grad = False + for p in self.get_output_embeddings().parameters(): + p.requires_grad = False diff --git a/MagicQuill/LLaVA/llava/model/make_delta.py b/MagicQuill/LLaVA/llava/model/make_delta.py new file mode 100644 index 0000000000000000000000000000000000000000..4ae55d59c2c8bab80299272314a41bbeb959d8ed --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/make_delta.py @@ -0,0 +1,52 @@ +""" +Usage: +python3 -m llava.model.make_delta --base ~/model_weights/llama-7b --target ~/model_weights/llava-7b --delta ~/model_weights/llava-7b-delta --hub-repo-id liuhaotian/llava-7b-delta +""" +import argparse + +import torch +from tqdm import tqdm +from transformers import AutoTokenizer, AutoModelForCausalLM +from llava.model.utils import auto_upgrade + + +def make_delta(base_model_path, target_model_path, delta_path, hub_repo_id): + print("Loading base model") + base = AutoModelForCausalLM.from_pretrained( + base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) + + print("Loading target model") + auto_upgrade(target_model_path) + target = AutoModelForCausalLM.from_pretrained(target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) + + print("Calculating delta") + for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"): + if name not in base.state_dict(): + assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model' + continue + if param.data.shape == base.state_dict()[name].shape: + param.data -= base.state_dict()[name] + else: + assert name in ['model.embed_tokens.weight', 'lm_head.weight'], f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}' + bparam = base.state_dict()[name] + param.data[:bparam.shape[0], :bparam.shape[1]] -= bparam + + print("Saving delta") + if hub_repo_id: + kwargs = {"push_to_hub": True, "repo_id": hub_repo_id} + else: + kwargs = {} + target.save_pretrained(delta_path, **kwargs) + target_tokenizer = AutoTokenizer.from_pretrained(target_model_path) + target_tokenizer.save_pretrained(delta_path, **kwargs) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--base-model-path", type=str, required=True) + parser.add_argument("--target-model-path", type=str, required=True) + parser.add_argument("--delta-path", type=str, required=True) + parser.add_argument("--hub-repo-id", type=str, default=None) + args = parser.parse_args() + + make_delta(args.base_model_path, args.target_model_path, args.delta_path, args.hub_repo_id) diff --git a/MagicQuill/LLaVA/llava/model/multimodal_encoder/builder.py b/MagicQuill/LLaVA/llava/model/multimodal_encoder/builder.py new file mode 100644 index 0000000000000000000000000000000000000000..29f63a26d5a4485a64bf235391d0f7593a96f3b6 --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/multimodal_encoder/builder.py @@ -0,0 +1,15 @@ +import os +from .clip_encoder import CLIPVisionTower, CLIPVisionTowerS2 + + +def build_vision_tower(vision_tower_cfg, **kwargs): + vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None)) + is_absolute_path_exists = os.path.exists(vision_tower) + use_s2 = getattr(vision_tower_cfg, 's2', False) + if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or "ShareGPT4V" in vision_tower: + if use_s2: + return CLIPVisionTowerS2(vision_tower, args=vision_tower_cfg, **kwargs) + else: + return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) + + raise ValueError(f'Unknown vision tower: {vision_tower}') diff --git a/MagicQuill/LLaVA/llava/model/multimodal_encoder/clip_encoder.py b/MagicQuill/LLaVA/llava/model/multimodal_encoder/clip_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..2c81415cd0f4ebbbe66385450236c427f5e8fb02 --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/multimodal_encoder/clip_encoder.py @@ -0,0 +1,147 @@ +import torch +import torch.nn as nn + +from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig + + +class CLIPVisionTower(nn.Module): + def __init__(self, vision_tower, args, delay_load=False): + super().__init__() + + self.is_loaded = False + + self.vision_tower_name = vision_tower + self.select_layer = args.mm_vision_select_layer + self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') + + if not delay_load: + self.load_model() + elif getattr(args, 'unfreeze_mm_vision_tower', False): + self.load_model() + else: + self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) + + def load_model(self, device_map=None): + if self.is_loaded: + print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) + return + + self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) + self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map) + self.vision_tower.requires_grad_(False) + + self.is_loaded = True + + def feature_select(self, image_forward_outs): + image_features = image_forward_outs.hidden_states[self.select_layer] + if self.select_feature == 'patch': + image_features = image_features[:, 1:] + elif self.select_feature == 'cls_patch': + image_features = image_features + else: + raise ValueError(f'Unexpected select feature: {self.select_feature}') + return image_features + + @torch.no_grad() + def forward(self, images): + if type(images) is list: + image_features = [] + for image in images: + image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) + image_feature = self.feature_select(image_forward_out).to(image.dtype) + image_features.append(image_feature) + else: + image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) + image_features = self.feature_select(image_forward_outs).to(images.dtype) + + return image_features + + @property + def dummy_feature(self): + return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) + + @property + def dtype(self): + return self.vision_tower.dtype + + @property + def device(self): + return self.vision_tower.device + + @property + def config(self): + if self.is_loaded: + return self.vision_tower.config + else: + return self.cfg_only + + @property + def hidden_size(self): + return self.config.hidden_size + + @property + def num_patches_per_side(self): + return self.config.image_size // self.config.patch_size + + @property + def num_patches(self): + return (self.config.image_size // self.config.patch_size) ** 2 + + + +class CLIPVisionTowerS2(CLIPVisionTower): + def __init__(self, vision_tower, args, delay_load=False): + super().__init__(vision_tower, args, delay_load) + + self.s2_scales = getattr(args, 's2_scales', '336,672,1008') + self.s2_scales = list(map(int, self.s2_scales.split(','))) + self.s2_scales.sort() + self.s2_split_size = self.s2_scales[0] + self.s2_image_size = self.s2_scales[-1] + + try: + from s2wrapper import forward as multiscale_forward + except ImportError: + raise ImportError('Package s2wrapper not found! Please install by running: \npip install git+https://github.com/bfshi/scaling_on_scales.git') + self.multiscale_forward = multiscale_forward + + # change resize/crop size in preprocessing to the largest image size in s2_scale + if not delay_load or getattr(args, 'unfreeze_mm_vision_tower', False): + self.image_processor.size['shortest_edge'] = self.s2_image_size + self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size + + def load_model(self, device_map=None): + if self.is_loaded: + print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) + return + + self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) + self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map) + self.vision_tower.requires_grad_(False) + + self.image_processor.size['shortest_edge'] = self.s2_image_size + self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size + + self.is_loaded = True + + @torch.no_grad() + def forward_feature(self, images): + image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) + image_features = self.feature_select(image_forward_outs).to(images.dtype) + return image_features + + @torch.no_grad() + def forward(self, images): + if type(images) is list: + image_features = [] + for image in images: + image_feature = self.multiscale_forward(self.forward_feature, image.unsqueeze(0), img_sizes=self.s2_scales, max_split_size=self.s2_split_size) + image_features.append(image_feature) + else: + image_features = self.multiscale_forward(self.forward_feature, images, img_sizes=self.s2_scales, max_split_size=self.s2_split_size) + + return image_features + + @property + def hidden_size(self): + return self.config.hidden_size * len(self.s2_scales) diff --git a/MagicQuill/LLaVA/llava/model/multimodal_projector/builder.py b/MagicQuill/LLaVA/llava/model/multimodal_projector/builder.py new file mode 100644 index 0000000000000000000000000000000000000000..31cd4f48e6055cd6d00a162af30b1c8139e26b57 --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/multimodal_projector/builder.py @@ -0,0 +1,51 @@ +import torch +import torch.nn as nn +import re + + +class IdentityMap(nn.Module): + def __init__(self): + super().__init__() + + def forward(self, x, *args, **kwargs): + return x + + @property + def config(self): + return {"mm_projector_type": 'identity'} + + +class SimpleResBlock(nn.Module): + def __init__(self, channels): + super().__init__() + self.pre_norm = nn.LayerNorm(channels) + + self.proj = nn.Sequential( + nn.Linear(channels, channels), + nn.GELU(), + nn.Linear(channels, channels) + ) + def forward(self, x): + x = self.pre_norm(x) + return x + self.proj(x) + + +def build_vision_projector(config, delay_load=False, **kwargs): + projector_type = getattr(config, 'mm_projector_type', 'linear') + + if projector_type == 'linear': + return nn.Linear(config.mm_hidden_size, config.hidden_size) + + mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) + if mlp_gelu_match: + mlp_depth = int(mlp_gelu_match.group(1)) + modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] + for _ in range(1, mlp_depth): + modules.append(nn.GELU()) + modules.append(nn.Linear(config.hidden_size, config.hidden_size)) + return nn.Sequential(*modules) + + if projector_type == 'identity': + return IdentityMap() + + raise ValueError(f'Unknown projector type: {projector_type}') diff --git a/MagicQuill/LLaVA/llava/model/utils.py b/MagicQuill/LLaVA/llava/model/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..2563f89c6cedf5e73508afec8f9979105df9b745 --- /dev/null +++ b/MagicQuill/LLaVA/llava/model/utils.py @@ -0,0 +1,20 @@ +from transformers import AutoConfig + + +def auto_upgrade(config): + cfg = AutoConfig.from_pretrained(config) + if 'llava' in config and 'llava' not in cfg.model_type: + assert cfg.model_type == 'llama' + print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.") + print("You must upgrade the checkpoint to the new code base (this can be done automatically).") + confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]") + if confirm.lower() in ["y", "yes"]: + print("Upgrading checkpoint...") + assert len(cfg.architectures) == 1 + setattr(cfg.__class__, "model_type", "llava") + cfg.architectures[0] = 'LlavaLlamaForCausalLM' + cfg.save_pretrained(config) + print("Checkpoint upgraded.") + else: + print("Checkpoint upgrade aborted.") + exit(1) diff --git a/MagicQuill/LLaVA/llava/serve/__init__.py b/MagicQuill/LLaVA/llava/serve/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MagicQuill/LLaVA/llava/serve/cli.py b/MagicQuill/LLaVA/llava/serve/cli.py new file mode 100644 index 0000000000000000000000000000000000000000..5ecb30d5654b6a3f7162bcc25d3b09a855cd7789 --- /dev/null +++ b/MagicQuill/LLaVA/llava/serve/cli.py @@ -0,0 +1,126 @@ +import argparse +import torch + +from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from llava.conversation import conv_templates, SeparatorStyle +from llava.model.builder import load_pretrained_model +from llava.utils import disable_torch_init +from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path + +from PIL import Image + +import requests +from PIL import Image +from io import BytesIO +from transformers import TextStreamer + + +def load_image(image_file): + if image_file.startswith('http://') or image_file.startswith('https://'): + response = requests.get(image_file) + image = Image.open(BytesIO(response.content)).convert('RGB') + else: + image = Image.open(image_file).convert('RGB') + return image + + +def main(args): + # Model + disable_torch_init() + + model_name = get_model_name_from_path(args.model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device) + + if "llama-2" in model_name.lower(): + conv_mode = "llava_llama_2" + elif "mistral" in model_name.lower(): + conv_mode = "mistral_instruct" + elif "v1.6-34b" in model_name.lower(): + conv_mode = "chatml_direct" + elif "v1" in model_name.lower(): + conv_mode = "llava_v1" + elif "mpt" in model_name.lower(): + conv_mode = "mpt" + else: + conv_mode = "llava_v0" + + if args.conv_mode is not None and conv_mode != args.conv_mode: + print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) + else: + args.conv_mode = conv_mode + + conv = conv_templates[args.conv_mode].copy() + if "mpt" in model_name.lower(): + roles = ('user', 'assistant') + else: + roles = conv.roles + + image = load_image(args.image_file) + image_size = image.size + # Similar operation in model_worker.py + image_tensor = process_images([image], image_processor, model.config) + if type(image_tensor) is list: + image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] + else: + image_tensor = image_tensor.to(model.device, dtype=torch.float16) + + while True: + try: + inp = input(f"{roles[0]}: ") + except EOFError: + inp = "" + if not inp: + print("exit...") + break + + print(f"{roles[1]}: ", end="") + + if image is not None: + # first message + if model.config.mm_use_im_start_end: + inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp + else: + inp = DEFAULT_IMAGE_TOKEN + '\n' + inp + image = None + + conv.append_message(conv.roles[0], inp) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) + stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 + keywords = [stop_str] + streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) + + with torch.inference_mode(): + output_ids = model.generate( + input_ids, + images=image_tensor, + image_sizes=[image_size], + do_sample=True if args.temperature > 0 else False, + temperature=args.temperature, + max_new_tokens=args.max_new_tokens, + streamer=streamer, + use_cache=True) + + outputs = tokenizer.decode(output_ids[0]).strip() + conv.messages[-1][-1] = outputs + + if args.debug: + print("\n", {"prompt": prompt, "outputs": outputs}, "\n") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--image-file", type=str, required=True) + parser.add_argument("--device", type=str, default="cuda") + parser.add_argument("--conv-mode", type=str, default=None) + parser.add_argument("--temperature", type=float, default=0.2) + parser.add_argument("--max-new-tokens", type=int, default=512) + parser.add_argument("--load-8bit", action="store_true") + parser.add_argument("--load-4bit", action="store_true") + parser.add_argument("--debug", action="store_true") + args = parser.parse_args() + main(args) diff --git a/MagicQuill/LLaVA/llava/serve/controller.py b/MagicQuill/LLaVA/llava/serve/controller.py new file mode 100644 index 0000000000000000000000000000000000000000..d4bf1b4c47ccdb1401b18f8397868ec016d1c43a --- /dev/null +++ b/MagicQuill/LLaVA/llava/serve/controller.py @@ -0,0 +1,298 @@ +""" +A controller manages distributed workers. +It sends worker addresses to clients. +""" +import argparse +import asyncio +import dataclasses +from enum import Enum, auto +import json +import logging +import time +from typing import List, Union +import threading + +from fastapi import FastAPI, Request +from fastapi.responses import StreamingResponse +import numpy as np +import requests +import uvicorn + +from llava.constants import CONTROLLER_HEART_BEAT_EXPIRATION +from llava.utils import build_logger, server_error_msg + + +logger = build_logger("controller", "controller.log") + + +class DispatchMethod(Enum): + LOTTERY = auto() + SHORTEST_QUEUE = auto() + + @classmethod + def from_str(cls, name): + if name == "lottery": + return cls.LOTTERY + elif name == "shortest_queue": + return cls.SHORTEST_QUEUE + else: + raise ValueError(f"Invalid dispatch method") + + +@dataclasses.dataclass +class WorkerInfo: + model_names: List[str] + speed: int + queue_length: int + check_heart_beat: bool + last_heart_beat: str + + +def heart_beat_controller(controller): + while True: + time.sleep(CONTROLLER_HEART_BEAT_EXPIRATION) + controller.remove_stable_workers_by_expiration() + + +class Controller: + def __init__(self, dispatch_method: str): + # Dict[str -> WorkerInfo] + self.worker_info = {} + self.dispatch_method = DispatchMethod.from_str(dispatch_method) + + self.heart_beat_thread = threading.Thread( + target=heart_beat_controller, args=(self,), daemon=True) + self.heart_beat_thread.start() + + logger.info("Init controller") + + def register_worker(self, worker_name: str, check_heart_beat: bool, + worker_status: dict): + if worker_name not in self.worker_info: + logger.info(f"Register a new worker: {worker_name}") + else: + logger.info(f"Register an existing worker: {worker_name}") + + if not worker_status: + worker_status = self.get_worker_status(worker_name) + if not worker_status: + return False + + self.worker_info[worker_name] = WorkerInfo( + worker_status["model_names"], worker_status["speed"], worker_status["queue_length"], + check_heart_beat, time.time()) + + logger.info(f"Register done: {worker_name}, {worker_status}") + return True + + def get_worker_status(self, worker_name: str): + try: + r = requests.post(worker_name + "/worker_get_status", timeout=5) + except requests.exceptions.RequestException as e: + logger.error(f"Get status fails: {worker_name}, {e}") + return None + + if r.status_code != 200: + logger.error(f"Get status fails: {worker_name}, {r}") + return None + + return r.json() + + def remove_worker(self, worker_name: str): + del self.worker_info[worker_name] + + def refresh_all_workers(self): + old_info = dict(self.worker_info) + self.worker_info = {} + + for w_name, w_info in old_info.items(): + if not self.register_worker(w_name, w_info.check_heart_beat, None): + logger.info(f"Remove stale worker: {w_name}") + + def list_models(self): + model_names = set() + + for w_name, w_info in self.worker_info.items(): + model_names.update(w_info.model_names) + + return list(model_names) + + def get_worker_address(self, model_name: str): + if self.dispatch_method == DispatchMethod.LOTTERY: + worker_names = [] + worker_speeds = [] + for w_name, w_info in self.worker_info.items(): + if model_name in w_info.model_names: + worker_names.append(w_name) + worker_speeds.append(w_info.speed) + worker_speeds = np.array(worker_speeds, dtype=np.float32) + norm = np.sum(worker_speeds) + if norm < 1e-4: + return "" + worker_speeds = worker_speeds / norm + if True: # Directly return address + pt = np.random.choice(np.arange(len(worker_names)), + p=worker_speeds) + worker_name = worker_names[pt] + return worker_name + + # Check status before returning + while True: + pt = np.random.choice(np.arange(len(worker_names)), + p=worker_speeds) + worker_name = worker_names[pt] + + if self.get_worker_status(worker_name): + break + else: + self.remove_worker(worker_name) + worker_speeds[pt] = 0 + norm = np.sum(worker_speeds) + if norm < 1e-4: + return "" + worker_speeds = worker_speeds / norm + continue + return worker_name + elif self.dispatch_method == DispatchMethod.SHORTEST_QUEUE: + worker_names = [] + worker_qlen = [] + for w_name, w_info in self.worker_info.items(): + if model_name in w_info.model_names: + worker_names.append(w_name) + worker_qlen.append(w_info.queue_length / w_info.speed) + if len(worker_names) == 0: + return "" + min_index = np.argmin(worker_qlen) + w_name = worker_names[min_index] + self.worker_info[w_name].queue_length += 1 + logger.info(f"names: {worker_names}, queue_lens: {worker_qlen}, ret: {w_name}") + return w_name + else: + raise ValueError(f"Invalid dispatch method: {self.dispatch_method}") + + def receive_heart_beat(self, worker_name: str, queue_length: int): + if worker_name not in self.worker_info: + logger.info(f"Receive unknown heart beat. {worker_name}") + return False + + self.worker_info[worker_name].queue_length = queue_length + self.worker_info[worker_name].last_heart_beat = time.time() + logger.info(f"Receive heart beat. {worker_name}") + return True + + def remove_stable_workers_by_expiration(self): + expire = time.time() - CONTROLLER_HEART_BEAT_EXPIRATION + to_delete = [] + for worker_name, w_info in self.worker_info.items(): + if w_info.check_heart_beat and w_info.last_heart_beat < expire: + to_delete.append(worker_name) + + for worker_name in to_delete: + self.remove_worker(worker_name) + + def worker_api_generate_stream(self, params): + worker_addr = self.get_worker_address(params["model"]) + if not worker_addr: + logger.info(f"no worker: {params['model']}") + ret = { + "text": server_error_msg, + "error_code": 2, + } + yield json.dumps(ret).encode() + b"\0" + + try: + response = requests.post(worker_addr + "/worker_generate_stream", + json=params, stream=True, timeout=5) + for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): + if chunk: + yield chunk + b"\0" + except requests.exceptions.RequestException as e: + logger.info(f"worker timeout: {worker_addr}") + ret = { + "text": server_error_msg, + "error_code": 3, + } + yield json.dumps(ret).encode() + b"\0" + + + # Let the controller act as a worker to achieve hierarchical + # management. This can be used to connect isolated sub networks. + def worker_api_get_status(self): + model_names = set() + speed = 0 + queue_length = 0 + + for w_name in self.worker_info: + worker_status = self.get_worker_status(w_name) + if worker_status is not None: + model_names.update(worker_status["model_names"]) + speed += worker_status["speed"] + queue_length += worker_status["queue_length"] + + return { + "model_names": list(model_names), + "speed": speed, + "queue_length": queue_length, + } + + +app = FastAPI() + + +@app.post("/register_worker") +async def register_worker(request: Request): + data = await request.json() + controller.register_worker( + data["worker_name"], data["check_heart_beat"], + data.get("worker_status", None)) + + +@app.post("/refresh_all_workers") +async def refresh_all_workers(): + models = controller.refresh_all_workers() + + +@app.post("/list_models") +async def list_models(): + models = controller.list_models() + return {"models": models} + + +@app.post("/get_worker_address") +async def get_worker_address(request: Request): + data = await request.json() + addr = controller.get_worker_address(data["model"]) + return {"address": addr} + + +@app.post("/receive_heart_beat") +async def receive_heart_beat(request: Request): + data = await request.json() + exist = controller.receive_heart_beat( + data["worker_name"], data["queue_length"]) + return {"exist": exist} + + +@app.post("/worker_generate_stream") +async def worker_api_generate_stream(request: Request): + params = await request.json() + generator = controller.worker_api_generate_stream(params) + return StreamingResponse(generator) + + +@app.post("/worker_get_status") +async def worker_api_get_status(request: Request): + return controller.worker_api_get_status() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--host", type=str, default="localhost") + parser.add_argument("--port", type=int, default=21001) + parser.add_argument("--dispatch-method", type=str, choices=[ + "lottery", "shortest_queue"], default="shortest_queue") + args = parser.parse_args() + logger.info(f"args: {args}") + + controller = Controller(args.dispatch_method) + uvicorn.run(app, host=args.host, port=args.port, log_level="info") diff --git a/MagicQuill/LLaVA/llava/serve/examples/extreme_ironing.jpg b/MagicQuill/LLaVA/llava/serve/examples/extreme_ironing.jpg new file mode 100644 index 0000000000000000000000000000000000000000..638b078837f175039b2db49a63821288d9681daa Binary files /dev/null and b/MagicQuill/LLaVA/llava/serve/examples/extreme_ironing.jpg differ diff --git a/MagicQuill/LLaVA/llava/serve/examples/waterview.jpg b/MagicQuill/LLaVA/llava/serve/examples/waterview.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6f44ebaba1aa493b8bab3baa4e827b76752b1869 Binary files /dev/null and b/MagicQuill/LLaVA/llava/serve/examples/waterview.jpg differ diff --git a/MagicQuill/LLaVA/llava/serve/gradio_web_server.py b/MagicQuill/LLaVA/llava/serve/gradio_web_server.py new file mode 100644 index 0000000000000000000000000000000000000000..c07efc122950da37455608b609dcf1f2b4103d56 --- /dev/null +++ b/MagicQuill/LLaVA/llava/serve/gradio_web_server.py @@ -0,0 +1,479 @@ +import argparse +import datetime +import json +import os +import time + +import gradio as gr +import requests + +from llava.conversation import (default_conversation, conv_templates, + SeparatorStyle) +from llava.constants import LOGDIR +from llava.utils import (build_logger, server_error_msg, + violates_moderation, moderation_msg) +import hashlib + + +logger = build_logger("gradio_web_server", "gradio_web_server.log") + +headers = {"User-Agent": "LLaVA Client"} + +no_change_btn = gr.Button() +enable_btn = gr.Button(interactive=True) +disable_btn = gr.Button(interactive=False) + +priority = { + "vicuna-13b": "aaaaaaa", + "koala-13b": "aaaaaab", +} + + +def get_conv_log_filename(): + t = datetime.datetime.now() + name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") + return name + + +def get_model_list(): + ret = requests.post(args.controller_url + "/refresh_all_workers") + assert ret.status_code == 200 + ret = requests.post(args.controller_url + "/list_models") + models = ret.json()["models"] + models.sort(key=lambda x: priority.get(x, x)) + logger.info(f"Models: {models}") + return models + + +get_window_url_params = """ +function() { + const params = new URLSearchParams(window.location.search); + url_params = Object.fromEntries(params); + console.log(url_params); + return url_params; + } +""" + + +def load_demo(url_params, request: gr.Request): + logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") + + dropdown_update = gr.Dropdown(visible=True) + if "model" in url_params: + model = url_params["model"] + if model in models: + dropdown_update = gr.Dropdown(value=model, visible=True) + + state = default_conversation.copy() + return state, dropdown_update + + +def load_demo_refresh_model_list(request: gr.Request): + logger.info(f"load_demo. ip: {request.client.host}") + models = get_model_list() + state = default_conversation.copy() + dropdown_update = gr.Dropdown( + choices=models, + value=models[0] if len(models) > 0 else "" + ) + return state, dropdown_update + + +def vote_last_response(state, vote_type, model_selector, request: gr.Request): + with open(get_conv_log_filename(), "a") as fout: + data = { + "tstamp": round(time.time(), 4), + "type": vote_type, + "model": model_selector, + "state": state.dict(), + "ip": request.client.host, + } + fout.write(json.dumps(data) + "\n") + + +def upvote_last_response(state, model_selector, request: gr.Request): + logger.info(f"upvote. ip: {request.client.host}") + vote_last_response(state, "upvote", model_selector, request) + return ("",) + (disable_btn,) * 3 + + +def downvote_last_response(state, model_selector, request: gr.Request): + logger.info(f"downvote. ip: {request.client.host}") + vote_last_response(state, "downvote", model_selector, request) + return ("",) + (disable_btn,) * 3 + + +def flag_last_response(state, model_selector, request: gr.Request): + logger.info(f"flag. ip: {request.client.host}") + vote_last_response(state, "flag", model_selector, request) + return ("",) + (disable_btn,) * 3 + + +def regenerate(state, image_process_mode, request: gr.Request): + logger.info(f"regenerate. ip: {request.client.host}") + state.messages[-1][-1] = None + prev_human_msg = state.messages[-2] + if type(prev_human_msg[1]) in (tuple, list): + prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) + state.skip_next = False + return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 + + +def clear_history(request: gr.Request): + logger.info(f"clear_history. ip: {request.client.host}") + state = default_conversation.copy() + return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 + + +def add_text(state, text, image, image_process_mode, request: gr.Request): + logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}") + if len(text) <= 0 and image is None: + state.skip_next = True + return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5 + if args.moderate: + flagged = violates_moderation(text) + if flagged: + state.skip_next = True + return (state, state.to_gradio_chatbot(), moderation_msg, None) + ( + no_change_btn,) * 5 + + text = text[:1536] # Hard cut-off + if image is not None: + text = text[:1200] # Hard cut-off for images + if '' not in text: + # text = '' + text + text = text + '\n' + text = (text, image, image_process_mode) + state = default_conversation.copy() + state.append_message(state.roles[0], text) + state.append_message(state.roles[1], None) + state.skip_next = False + return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 + + +def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request): + logger.info(f"http_bot. ip: {request.client.host}") + start_tstamp = time.time() + model_name = model_selector + + if state.skip_next: + # This generate call is skipped due to invalid inputs + yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 + return + + if len(state.messages) == state.offset + 2: + # First round of conversation + if "llava" in model_name.lower(): + if 'llama-2' in model_name.lower(): + template_name = "llava_llama_2" + elif "mistral" in model_name.lower() or "mixtral" in model_name.lower(): + if 'orca' in model_name.lower(): + template_name = "mistral_orca" + elif 'hermes' in model_name.lower(): + template_name = "chatml_direct" + else: + template_name = "mistral_instruct" + elif 'llava-v1.6-34b' in model_name.lower(): + template_name = "chatml_direct" + elif "v1" in model_name.lower(): + if 'mmtag' in model_name.lower(): + template_name = "v1_mmtag" + elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): + template_name = "v1_mmtag" + else: + template_name = "llava_v1" + elif "mpt" in model_name.lower(): + template_name = "mpt" + else: + if 'mmtag' in model_name.lower(): + template_name = "v0_mmtag" + elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): + template_name = "v0_mmtag" + else: + template_name = "llava_v0" + elif "mpt" in model_name: + template_name = "mpt_text" + elif "llama-2" in model_name: + template_name = "llama_2" + else: + template_name = "vicuna_v1" + new_state = conv_templates[template_name].copy() + new_state.append_message(new_state.roles[0], state.messages[-2][1]) + new_state.append_message(new_state.roles[1], None) + state = new_state + + # Query worker address + controller_url = args.controller_url + ret = requests.post(controller_url + "/get_worker_address", + json={"model": model_name}) + worker_addr = ret.json()["address"] + logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}") + + # No available worker + if worker_addr == "": + state.messages[-1][-1] = server_error_msg + yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) + return + + # Construct prompt + prompt = state.get_prompt() + + all_images = state.get_images(return_pil=True) + all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images] + for image, hash in zip(all_images, all_image_hash): + t = datetime.datetime.now() + filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg") + if not os.path.isfile(filename): + os.makedirs(os.path.dirname(filename), exist_ok=True) + image.save(filename) + + # Make requests + pload = { + "model": model_name, + "prompt": prompt, + "temperature": float(temperature), + "top_p": float(top_p), + "max_new_tokens": min(int(max_new_tokens), 1536), + "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2, + "images": f'List of {len(state.get_images())} images: {all_image_hash}', + } + logger.info(f"==== request ====\n{pload}") + + pload['images'] = state.get_images() + + state.messages[-1][-1] = "▌" + yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 + + try: + # Stream output + response = requests.post(worker_addr + "/worker_generate_stream", + headers=headers, json=pload, stream=True, timeout=10) + for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): + if chunk: + data = json.loads(chunk.decode()) + if data["error_code"] == 0: + output = data["text"][len(prompt):].strip() + state.messages[-1][-1] = output + "▌" + yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 + else: + output = data["text"] + f" (error_code: {data['error_code']})" + state.messages[-1][-1] = output + yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) + return + time.sleep(0.03) + except requests.exceptions.RequestException as e: + state.messages[-1][-1] = server_error_msg + yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) + return + + state.messages[-1][-1] = state.messages[-1][-1][:-1] + yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5 + + finish_tstamp = time.time() + logger.info(f"{output}") + + with open(get_conv_log_filename(), "a") as fout: + data = { + "tstamp": round(finish_tstamp, 4), + "type": "chat", + "model": model_name, + "start": round(start_tstamp, 4), + "finish": round(finish_tstamp, 4), + "state": state.dict(), + "images": all_image_hash, + "ip": request.client.host, + } + fout.write(json.dumps(data) + "\n") + +title_markdown = (""" +# 🌋 LLaVA: Large Language and Vision Assistant +[[Project Page](https://llava-vl.github.io)] [[Code](https://github.com/haotian-liu/LLaVA)] [[Model](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)] | 📚 [[LLaVA](https://arxiv.org/abs/2304.08485)] [[LLaVA-v1.5](https://arxiv.org/abs/2310.03744)] [[LLaVA-v1.6](https://llava-vl.github.io/blog/2024-01-30-llava-1-6/)] +""") + +tos_markdown = (""" +### Terms of use +By using this service, users are required to agree to the following terms: +The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. +Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. +For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. +""") + + +learn_more_markdown = (""" +### License +The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. +""") + +block_css = """ + +#buttons button { + min-width: min(120px,100%); +} + +""" + +def build_demo(embed_mode, cur_dir=None, concurrency_count=10): + textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False) + with gr.Blocks(title="LLaVA", theme=gr.themes.Default(), css=block_css) as demo: + state = gr.State() + + if not embed_mode: + gr.Markdown(title_markdown) + + with gr.Row(): + with gr.Column(scale=3): + with gr.Row(elem_id="model_selector_row"): + model_selector = gr.Dropdown( + choices=models, + value=models[0] if len(models) > 0 else "", + interactive=True, + show_label=False, + container=False) + + imagebox = gr.Image(type="pil") + image_process_mode = gr.Radio( + ["Crop", "Resize", "Pad", "Default"], + value="Default", + label="Preprocess for non-square image", visible=False) + + if cur_dir is None: + cur_dir = os.path.dirname(os.path.abspath(__file__)) + gr.Examples(examples=[ + [f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image?"], + [f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"], + ], inputs=[imagebox, textbox]) + + with gr.Accordion("Parameters", open=False) as parameter_row: + temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",) + top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",) + max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) + + with gr.Column(scale=8): + chatbot = gr.Chatbot( + elem_id="chatbot", + label="LLaVA Chatbot", + height=650, + layout="panel", + ) + with gr.Row(): + with gr.Column(scale=8): + textbox.render() + with gr.Column(scale=1, min_width=50): + submit_btn = gr.Button(value="Send", variant="primary") + with gr.Row(elem_id="buttons") as button_row: + upvote_btn = gr.Button(value="👍 Upvote", interactive=False) + downvote_btn = gr.Button(value="👎 Downvote", interactive=False) + flag_btn = gr.Button(value="⚠️ Flag", interactive=False) + #stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False) + regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) + clear_btn = gr.Button(value="🗑️ Clear", interactive=False) + + if not embed_mode: + gr.Markdown(tos_markdown) + gr.Markdown(learn_more_markdown) + url_params = gr.JSON(visible=False) + + # Register listeners + btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] + upvote_btn.click( + upvote_last_response, + [state, model_selector], + [textbox, upvote_btn, downvote_btn, flag_btn] + ) + downvote_btn.click( + downvote_last_response, + [state, model_selector], + [textbox, upvote_btn, downvote_btn, flag_btn] + ) + flag_btn.click( + flag_last_response, + [state, model_selector], + [textbox, upvote_btn, downvote_btn, flag_btn] + ) + + regenerate_btn.click( + regenerate, + [state, image_process_mode], + [state, chatbot, textbox, imagebox] + btn_list + ).then( + http_bot, + [state, model_selector, temperature, top_p, max_output_tokens], + [state, chatbot] + btn_list, + concurrency_limit=concurrency_count + ) + + clear_btn.click( + clear_history, + None, + [state, chatbot, textbox, imagebox] + btn_list, + queue=False + ) + + textbox.submit( + add_text, + [state, textbox, imagebox, image_process_mode], + [state, chatbot, textbox, imagebox] + btn_list, + queue=False + ).then( + http_bot, + [state, model_selector, temperature, top_p, max_output_tokens], + [state, chatbot] + btn_list, + concurrency_limit=concurrency_count + ) + + submit_btn.click( + add_text, + [state, textbox, imagebox, image_process_mode], + [state, chatbot, textbox, imagebox] + btn_list + ).then( + http_bot, + [state, model_selector, temperature, top_p, max_output_tokens], + [state, chatbot] + btn_list, + concurrency_limit=concurrency_count + ) + + if args.model_list_mode == "once": + demo.load( + load_demo, + [url_params], + [state, model_selector], + js=get_window_url_params + ) + elif args.model_list_mode == "reload": + demo.load( + load_demo_refresh_model_list, + None, + [state, model_selector], + queue=False + ) + else: + raise ValueError(f"Unknown model list mode: {args.model_list_mode}") + + return demo + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--host", type=str, default="0.0.0.0") + parser.add_argument("--port", type=int) + parser.add_argument("--controller-url", type=str, default="http://localhost:21001") + parser.add_argument("--concurrency-count", type=int, default=16) + parser.add_argument("--model-list-mode", type=str, default="once", + choices=["once", "reload"]) + parser.add_argument("--share", action="store_true") + parser.add_argument("--moderate", action="store_true") + parser.add_argument("--embed", action="store_true") + args = parser.parse_args() + logger.info(f"args: {args}") + + models = get_model_list() + + logger.info(args) + demo = build_demo(args.embed, concurrency_count=args.concurrency_count) + demo.queue( + api_open=False + ).launch( + server_name=args.host, + server_port=args.port, + share=args.share + ) diff --git a/MagicQuill/LLaVA/llava/serve/model_worker.py b/MagicQuill/LLaVA/llava/serve/model_worker.py new file mode 100644 index 0000000000000000000000000000000000000000..9144329893c51f402ff2e2f65d9fb7baf177bd52 --- /dev/null +++ b/MagicQuill/LLaVA/llava/serve/model_worker.py @@ -0,0 +1,288 @@ +""" +A model worker executes the model. +""" +import argparse +import asyncio +import json +import time +import threading +import uuid + +from fastapi import FastAPI, Request, BackgroundTasks +from fastapi.responses import StreamingResponse +import requests +import torch +import uvicorn +from functools import partial + +from llava.constants import WORKER_HEART_BEAT_INTERVAL +from llava.utils import (build_logger, server_error_msg, + pretty_print_semaphore) +from llava.model.builder import load_pretrained_model +from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token +from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from transformers import TextIteratorStreamer +from threading import Thread + + +GB = 1 << 30 + +worker_id = str(uuid.uuid4())[:6] +logger = build_logger("model_worker", f"model_worker_{worker_id}.log") +global_counter = 0 + +model_semaphore = None + + +def heart_beat_worker(controller): + + while True: + time.sleep(WORKER_HEART_BEAT_INTERVAL) + controller.send_heart_beat() + + +class ModelWorker: + def __init__(self, controller_addr, worker_addr, + worker_id, no_register, + model_path, model_base, model_name, + load_8bit, load_4bit, device, use_flash_attn=False): + self.controller_addr = controller_addr + self.worker_addr = worker_addr + self.worker_id = worker_id + if model_path.endswith("/"): + model_path = model_path[:-1] + if model_name is None: + model_paths = model_path.split("/") + if model_paths[-1].startswith('checkpoint-'): + self.model_name = model_paths[-2] + "_" + model_paths[-1] + else: + self.model_name = model_paths[-1] + else: + self.model_name = model_name + + self.device = device + logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") + self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model( + model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device, use_flash_attn=use_flash_attn) + self.is_multimodal = 'llava' in self.model_name.lower() + + if not no_register: + self.register_to_controller() + self.heart_beat_thread = threading.Thread( + target=heart_beat_worker, args=(self,), daemon=True) + self.heart_beat_thread.start() + + def register_to_controller(self): + logger.info("Register to controller") + + url = self.controller_addr + "/register_worker" + data = { + "worker_name": self.worker_addr, + "check_heart_beat": True, + "worker_status": self.get_status() + } + r = requests.post(url, json=data) + assert r.status_code == 200 + + def send_heart_beat(self): + logger.info(f"Send heart beat. Models: {[self.model_name]}. " + f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " + f"global_counter: {global_counter}") + + url = self.controller_addr + "/receive_heart_beat" + + while True: + try: + ret = requests.post(url, json={ + "worker_name": self.worker_addr, + "queue_length": self.get_queue_length()}, timeout=5) + exist = ret.json()["exist"] + break + except requests.exceptions.RequestException as e: + logger.error(f"heart beat error: {e}") + time.sleep(5) + + if not exist: + self.register_to_controller() + + def get_queue_length(self): + if model_semaphore is None: + return 0 + else: + return args.limit_model_concurrency - model_semaphore._value + (len( + model_semaphore._waiters) if model_semaphore._waiters is not None else 0) + + def get_status(self): + return { + "model_names": [self.model_name], + "speed": 1, + "queue_length": self.get_queue_length(), + } + + @torch.inference_mode() + def generate_stream(self, params): + tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor + + prompt = params["prompt"] + ori_prompt = prompt + images = params.get("images", None) + num_image_tokens = 0 + if images is not None and len(images) > 0 and self.is_multimodal: + if len(images) > 0: + if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): + raise ValueError("Number of images does not match number of tokens in prompt") + + images = [load_image_from_base64(image) for image in images] + image_sizes = [image.size for image in images] + images = process_images(images, image_processor, model.config) + + if type(images) is list: + images = [image.to(self.model.device, dtype=torch.float16) for image in images] + else: + images = images.to(self.model.device, dtype=torch.float16) + + replace_token = DEFAULT_IMAGE_TOKEN + if getattr(self.model.config, 'mm_use_im_start_end', False): + replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN + prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) + + num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches + else: + images = None + image_sizes = None + image_args = {"images": images, "image_sizes": image_sizes} + else: + images = None + image_args = {} + + temperature = float(params.get("temperature", 1.0)) + top_p = float(params.get("top_p", 1.0)) + max_context_length = getattr(model.config, 'max_position_embeddings', 2048) + max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) + stop_str = params.get("stop", None) + do_sample = True if temperature > 0.001 else False + + input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device) + keywords = [stop_str] + # stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) + streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) + + max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens) + + if max_new_tokens < 1: + yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0" + return + + thread = Thread(target=model.generate, kwargs=dict( + inputs=input_ids, + do_sample=do_sample, + temperature=temperature, + top_p=top_p, + max_new_tokens=max_new_tokens, + streamer=streamer, + use_cache=True, + **image_args + )) + thread.start() + + generated_text = ori_prompt + for new_text in streamer: + generated_text += new_text + if generated_text.endswith(stop_str): + generated_text = generated_text[:-len(stop_str)] + yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0" + + def generate_stream_gate(self, params): + try: + for x in self.generate_stream(params): + yield x + except ValueError as e: + print("Caught ValueError:", e) + ret = { + "text": server_error_msg, + "error_code": 1, + } + yield json.dumps(ret).encode() + b"\0" + except torch.cuda.CudaError as e: + print("Caught torch.cuda.CudaError:", e) + ret = { + "text": server_error_msg, + "error_code": 1, + } + yield json.dumps(ret).encode() + b"\0" + except Exception as e: + print("Caught Unknown Error", e) + ret = { + "text": server_error_msg, + "error_code": 1, + } + yield json.dumps(ret).encode() + b"\0" + + +app = FastAPI() + + +def release_model_semaphore(fn=None): + model_semaphore.release() + if fn is not None: + fn() + + +@app.post("/worker_generate_stream") +async def generate_stream(request: Request): + global model_semaphore, global_counter + global_counter += 1 + params = await request.json() + + if model_semaphore is None: + model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) + await model_semaphore.acquire() + worker.send_heart_beat() + generator = worker.generate_stream_gate(params) + background_tasks = BackgroundTasks() + background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) + return StreamingResponse(generator, background=background_tasks) + + +@app.post("/worker_get_status") +async def get_status(request: Request): + return worker.get_status() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--host", type=str, default="localhost") + parser.add_argument("--port", type=int, default=21002) + parser.add_argument("--worker-address", type=str, + default="http://localhost:21002") + parser.add_argument("--controller-address", type=str, + default="http://localhost:21001") + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--model-name", type=str) + parser.add_argument("--device", type=str, default="cuda") + parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") + parser.add_argument("--limit-model-concurrency", type=int, default=5) + parser.add_argument("--stream-interval", type=int, default=1) + parser.add_argument("--no-register", action="store_true") + parser.add_argument("--load-8bit", action="store_true") + parser.add_argument("--load-4bit", action="store_true") + parser.add_argument("--use-flash-attn", action="store_true") + args = parser.parse_args() + logger.info(f"args: {args}") + + if args.multi_modal: + logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") + + worker = ModelWorker(args.controller_address, + args.worker_address, + worker_id, + args.no_register, + args.model_path, + args.model_base, + args.model_name, + args.load_8bit, + args.load_4bit, + args.device, + use_flash_attn=args.use_flash_attn) + uvicorn.run(app, host=args.host, port=args.port, log_level="info") diff --git a/MagicQuill/LLaVA/llava/serve/register_worker.py b/MagicQuill/LLaVA/llava/serve/register_worker.py new file mode 100644 index 0000000000000000000000000000000000000000..2c2c40295e0351f25709ba25554c9329f15bf0d2 --- /dev/null +++ b/MagicQuill/LLaVA/llava/serve/register_worker.py @@ -0,0 +1,26 @@ +""" +Manually register workers. + +Usage: +python3 -m fastchat.serve.register_worker --controller http://localhost:21001 --worker-name http://localhost:21002 +""" + +import argparse + +import requests + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--controller-address", type=str) + parser.add_argument("--worker-name", type=str) + parser.add_argument("--check-heart-beat", action="store_true") + args = parser.parse_args() + + url = args.controller_address + "/register_worker" + data = { + "worker_name": args.worker_name, + "check_heart_beat": args.check_heart_beat, + "worker_status": None, + } + r = requests.post(url, json=data) + assert r.status_code == 200 diff --git a/MagicQuill/LLaVA/llava/serve/sglang_worker.py b/MagicQuill/LLaVA/llava/serve/sglang_worker.py new file mode 100644 index 0000000000000000000000000000000000000000..a3297b7c295abddedfaac7f6fbe882d7b672487d --- /dev/null +++ b/MagicQuill/LLaVA/llava/serve/sglang_worker.py @@ -0,0 +1,244 @@ +""" +A model worker executes the model. +""" +import argparse +import asyncio +from concurrent.futures import ThreadPoolExecutor +import json +import time +import threading +import uuid + +from fastapi import FastAPI, Request, BackgroundTasks +from fastapi.responses import StreamingResponse +import requests +import re +import uvicorn +from functools import partial + +from llava.constants import WORKER_HEART_BEAT_INTERVAL +from llava.utils import (build_logger, server_error_msg, + pretty_print_semaphore) +from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token, expand2square +from llava.constants import DEFAULT_IMAGE_TOKEN + +import sglang as sgl +from sglang.backend.runtime_endpoint import RuntimeEndpoint + + +GB = 1 << 30 + +worker_id = str(uuid.uuid4())[:6] +logger = build_logger("model_worker", f"model_worker_{worker_id}.log") +global_counter = 0 + +model_semaphore = None + + +def heart_beat_worker(controller): + while True: + time.sleep(WORKER_HEART_BEAT_INTERVAL) + controller.send_heart_beat() + + +@sgl.function +def pipeline(s, prompt, max_tokens): + for p in prompt: + if type(p) is str: + s += p + else: + s += sgl.image(p) + s += sgl.gen("response", max_tokens=max_tokens) + + +class ModelWorker: + def __init__(self, controller_addr, worker_addr, sgl_endpoint, + worker_id, no_register, model_name): + self.controller_addr = controller_addr + self.worker_addr = worker_addr + self.worker_id = worker_id + + # Select backend + backend = RuntimeEndpoint(sgl_endpoint) + sgl.set_default_backend(backend) + model_path = backend.model_info["model_path"] + + if model_path.endswith("/"): + model_path = model_path[:-1] + if model_name is None: + model_paths = model_path.split("/") + if model_paths[-1].startswith('checkpoint-'): + self.model_name = model_paths[-2] + "_" + model_paths[-1] + else: + self.model_name = model_paths[-1] + else: + self.model_name = model_name + + logger.info(f"Loading the SGLANG model {self.model_name} on worker {worker_id} ...") + + if not no_register: + self.register_to_controller() + self.heart_beat_thread = threading.Thread( + target=heart_beat_worker, args=(self,), daemon=True) + self.heart_beat_thread.start() + + def register_to_controller(self): + logger.info("Register to controller") + + url = self.controller_addr + "/register_worker" + data = { + "worker_name": self.worker_addr, + "check_heart_beat": True, + "worker_status": self.get_status() + } + r = requests.post(url, json=data) + assert r.status_code == 200 + + def send_heart_beat(self): + logger.info(f"Send heart beat. Models: {[self.model_name]}. " + f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " + f"global_counter: {global_counter}") + + url = self.controller_addr + "/receive_heart_beat" + + while True: + try: + ret = requests.post(url, json={ + "worker_name": self.worker_addr, + "queue_length": self.get_queue_length()}, timeout=5) + exist = ret.json()["exist"] + break + except requests.exceptions.RequestException as e: + logger.error(f"heart beat error: {e}") + time.sleep(5) + + if not exist: + self.register_to_controller() + + def get_queue_length(self): + if model_semaphore is None: + return 0 + else: + return args.limit_model_concurrency - model_semaphore._value + (len( + model_semaphore._waiters) if model_semaphore._waiters is not None else 0) + + def get_status(self): + return { + "model_names": [self.model_name], + "speed": 1, + "queue_length": self.get_queue_length(), + } + + async def generate_stream(self, params): + ori_prompt = prompt = params["prompt"] + images = params.get("images", None) + if images is not None and len(images) > 0: + if len(images) > 0: + if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): + raise ValueError("Number of images does not match number of tokens in prompt") + + images = [load_image_from_base64(image) for image in images] + + # FIXME: for image-start/end token + # replace_token = DEFAULT_IMAGE_TOKEN + # if getattr(self.model.config, 'mm_use_im_start_end', False): + # replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN + # prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) + prompt = prompt.replace(' ' + DEFAULT_IMAGE_TOKEN + '\n', DEFAULT_IMAGE_TOKEN) + prompt_split = prompt.split(DEFAULT_IMAGE_TOKEN) + prompt = [] + for i in range(len(prompt_split)): + prompt.append(prompt_split[i]) + if i < len(images): + prompt.append(images[i]) + else: + prompt = [prompt] + + temperature = float(params.get("temperature", 1.0)) + top_p = float(params.get("top_p", 1.0)) + # max_context_length = getattr(model.config, 'max_position_embeddings', 2048) + max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) + stop_str = params.get("stop", None) + stop_str = [stop_str] if stop_str is not None else None + + print({'prompt': prompt, 'max_new_tokens': max_new_tokens, 'temperature': temperature, 'top_p': top_p}) + state = pipeline.run(prompt, max_new_tokens, temperature=temperature, top_p=top_p, stream=True) + + generated_text = ori_prompt + async for text_outputs in state.text_async_iter(var_name="response"): + generated_text += text_outputs + yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0" + + async def generate_stream_gate(self, params): + try: + async for x in self.generate_stream(params): + yield x + except ValueError as e: + print("Caught ValueError:", e) + ret = { + "text": server_error_msg, + "error_code": 1, + } + yield json.dumps(ret).encode() + b"\0" + except Exception as e: + print("Caught Unknown Error", e) + ret = { + "text": server_error_msg, + "error_code": 1, + } + yield json.dumps(ret).encode() + b"\0" + + +app = FastAPI() + + +def release_model_semaphore(fn=None): + model_semaphore.release() + if fn is not None: + fn() + + +@app.post("/worker_generate_stream") +async def generate_stream(request: Request): + global model_semaphore, global_counter + global_counter += 1 + params = await request.json() + + if model_semaphore is None: + model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) + await model_semaphore.acquire() + worker.send_heart_beat() + generator = worker.generate_stream_gate(params) + background_tasks = BackgroundTasks() + background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) + return StreamingResponse(generator, background=background_tasks) + + +@app.post("/worker_get_status") +async def get_status(request: Request): + return worker.get_status() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--host", type=str, default="localhost") + parser.add_argument("--port", type=int, default=21002) + parser.add_argument("--worker-address", type=str, + default="http://localhost:21002") + parser.add_argument("--controller-address", type=str, + default="http://localhost:21001") + parser.add_argument("--model-name", type=str) + parser.add_argument("--sgl-endpoint", type=str) + parser.add_argument("--limit-model-concurrency", type=int, default=5) + parser.add_argument("--stream-interval", type=int, default=1) + parser.add_argument("--no-register", action="store_true") + args = parser.parse_args() + logger.info(f"args: {args}") + + worker = ModelWorker(args.controller_address, + args.worker_address, + args.sgl_endpoint, + worker_id, + args.no_register, + args.model_name) + uvicorn.run(app, host=args.host, port=args.port, log_level="info") diff --git a/MagicQuill/LLaVA/llava/serve/test_message.py b/MagicQuill/LLaVA/llava/serve/test_message.py new file mode 100644 index 0000000000000000000000000000000000000000..6b090faed0e630b03b2294545050f1f4f5032cad --- /dev/null +++ b/MagicQuill/LLaVA/llava/serve/test_message.py @@ -0,0 +1,62 @@ +import argparse +import json + +import requests + +from llava.conversation import default_conversation + + +def main(): + if args.worker_address: + worker_addr = args.worker_address + else: + controller_addr = args.controller_address + ret = requests.post(controller_addr + "/refresh_all_workers") + ret = requests.post(controller_addr + "/list_models") + models = ret.json()["models"] + models.sort() + print(f"Models: {models}") + + ret = requests.post(controller_addr + "/get_worker_address", + json={"model": args.model_name}) + worker_addr = ret.json()["address"] + print(f"worker_addr: {worker_addr}") + + if worker_addr == "": + return + + conv = default_conversation.copy() + conv.append_message(conv.roles[0], args.message) + prompt = conv.get_prompt() + + headers = {"User-Agent": "LLaVA Client"} + pload = { + "model": args.model_name, + "prompt": prompt, + "max_new_tokens": args.max_new_tokens, + "temperature": 0.7, + "stop": conv.sep, + } + response = requests.post(worker_addr + "/worker_generate_stream", headers=headers, + json=pload, stream=True) + + print(prompt.replace(conv.sep, "\n"), end="") + for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"): + if chunk: + data = json.loads(chunk.decode("utf-8")) + output = data["text"].split(conv.sep)[-1] + print(output, end="\r") + print("") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--controller-address", type=str, default="http://localhost:21001") + parser.add_argument("--worker-address", type=str) + parser.add_argument("--model-name", type=str, default="facebook/opt-350m") + parser.add_argument("--max-new-tokens", type=int, default=32) + parser.add_argument("--message", type=str, default= + "Tell me a story with more than 1000 words.") + args = parser.parse_args() + + main() diff --git a/MagicQuill/LLaVA/llava/train/llama_flash_attn_monkey_patch.py b/MagicQuill/LLaVA/llava/train/llama_flash_attn_monkey_patch.py new file mode 100644 index 0000000000000000000000000000000000000000..31db2eff8d1c4b3ae645583dfc5e156e818b6f1c --- /dev/null +++ b/MagicQuill/LLaVA/llava/train/llama_flash_attn_monkey_patch.py @@ -0,0 +1,115 @@ +from typing import Optional, Tuple +import warnings + +import torch + +import transformers +from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv + +try: + from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func +except ImportError: + from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func +from flash_attn.bert_padding import unpad_input, pad_input + + +def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if output_attentions: + warnings.warn( + "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead." + ) + + bsz, q_len, _ = hidden_states.size() + + query_states = ( + self.q_proj(hidden_states) + .view(bsz, q_len, self.num_heads, self.head_dim) + .transpose(1, 2) + ) + key_states = ( + self.k_proj(hidden_states) + .view(bsz, q_len, self.num_key_value_heads, self.head_dim) + .transpose(1, 2) + ) + value_states = ( + self.v_proj(hidden_states) + .view(bsz, q_len, self.num_key_value_heads, self.head_dim) + .transpose(1, 2) + ) # shape: (b, num_heads, s, head_dim) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb( + query_states, key_states, cos, sin, position_ids + ) + + if past_key_value is not None: + # reuse k, v + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + + past_key_value = (key_states, value_states) if use_cache else None + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + # Transform the data into the format required by flash attention + qkv = torch.stack([query_states, key_states, value_states], dim=2) + qkv = qkv.transpose(1, 3) # shape: [b, s, 3, num_heads, head_dim] + key_padding_mask = attention_mask + + if key_padding_mask is None: + qkv = qkv.reshape(-1, 3, self.num_heads, self.head_dim) + cu_q_lens = torch.arange( + 0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device + ) + max_s = q_len + output = flash_attn_unpadded_qkvpacked_func( + qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True + ) + output = output.view(bsz, q_len, -1) + else: + qkv = qkv.reshape(bsz, q_len, -1) + qkv, indices, cu_q_lens, max_s = unpad_input(qkv, key_padding_mask) + qkv = qkv.view(-1, 3, self.num_heads, self.head_dim) + output_unpad = flash_attn_unpadded_qkvpacked_func( + qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True + ) + output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim) + output = pad_input(output_unpad, indices, bsz, q_len) + + return self.o_proj(output), None, past_key_value + + +# Disable the transformation of the attention mask in LlamaModel as the flash attention +# requires the attention mask to be the same as the key_padding_mask +def _prepare_decoder_attention_mask( + self, attention_mask, input_shape, inputs_embeds, past_key_values_length +): + # [bsz, seq_len] + return attention_mask + + +def replace_llama_attn_with_flash_attn(): + cuda_major, cuda_minor = torch.cuda.get_device_capability() + if cuda_major < 8: + warnings.warn( + "Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward." + "ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593" + ) + transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = ( + _prepare_decoder_attention_mask + ) + transformers.models.llama.modeling_llama.LlamaAttention.forward = forward diff --git a/MagicQuill/LLaVA/llava/train/llama_xformers_attn_monkey_patch.py b/MagicQuill/LLaVA/llava/train/llama_xformers_attn_monkey_patch.py new file mode 100644 index 0000000000000000000000000000000000000000..f8351e41ccd4a64dca237bd8f8be0702b23989dc --- /dev/null +++ b/MagicQuill/LLaVA/llava/train/llama_xformers_attn_monkey_patch.py @@ -0,0 +1,129 @@ +""" +Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-generation-webui/main/modules/llama_attn_hijack.py and made some adjustments +""" + +import logging +import math +from typing import Optional, Tuple + +import torch +import transformers.models.llama.modeling_llama +from torch import nn + +try: + import xformers.ops +except ImportError: + logging.error("xformers not found! Please install it before trying to use it.") + + +def replace_llama_attn_with_xformers_attn(): + transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward + + +def xformers_forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + # pylint: disable=duplicate-code + bsz, q_len, _ = hidden_states.size() + + query_states = ( + self.q_proj(hidden_states) + .view(bsz, q_len, self.num_heads, self.head_dim) + .transpose(1, 2) + ) + key_states = ( + self.k_proj(hidden_states) + .view(bsz, q_len, self.num_heads, self.head_dim) + .transpose(1, 2) + ) + value_states = ( + self.v_proj(hidden_states) + .view(bsz, q_len, self.num_heads, self.head_dim) + .transpose(1, 2) + ) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + ( + query_states, + key_states, + ) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb( + query_states, key_states, cos, sin, position_ids + ) + # [bsz, nh, t, hd] + + if past_key_value is not None: + # reuse k, v, self_attention + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + + past_key_value = (key_states, value_states) if use_cache else None + + # We only apply xformers optimizations if we don't need to output the whole attention matrix + if not output_attentions: + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + # This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros. + # We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros. + if attention_mask is None or attention_mask[0, 0, 0, 1] == 0: + # input and output should be of form (bsz, q_len, num_heads, head_dim) + attn_output = xformers.ops.memory_efficient_attention( + query_states, key_states, value_states, attn_bias=None + ) + else: + # input and output should be of form (bsz, q_len, num_heads, head_dim) + attn_output = xformers.ops.memory_efficient_attention( + query_states, + key_states, + value_states, + attn_bias=xformers.ops.LowerTriangularMask(), + ) + attn_weights = None + else: + attn_weights = torch.matmul( + query_states, key_states.transpose(2, 3) + ) / math.sqrt(self.head_dim) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + attn_weights = torch.max( + attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min) + ) + + # upcast attention to fp32 + attn_weights = nn.functional.softmax( + attn_weights, dim=-1, dtype=torch.float32 + ).to(query_states.dtype) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2) + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + attn_output = self.o_proj(attn_output) + return attn_output, attn_weights, past_key_value diff --git a/MagicQuill/LLaVA/llava/train/llava_trainer.py b/MagicQuill/LLaVA/llava/train/llava_trainer.py new file mode 100644 index 0000000000000000000000000000000000000000..ce2853a41a1d232ff823bdd3afeb4823132b6672 --- /dev/null +++ b/MagicQuill/LLaVA/llava/train/llava_trainer.py @@ -0,0 +1,255 @@ +import os +import torch +import torch.nn as nn + +from torch.utils.data import Sampler + +from transformers import Trainer +from transformers.trainer import ( + is_sagemaker_mp_enabled, + get_parameter_names, + has_length, + ALL_LAYERNORM_LAYERS, + logger, +) +from typing import List, Optional + + +def maybe_zero_3(param, ignore_status=False, name=None): + from deepspeed import zero + from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus + if hasattr(param, "ds_id"): + if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: + if not ignore_status: + print(name, 'no ignore status') + with zero.GatheredParameters([param]): + param = param.data.detach().cpu().clone() + else: + param = param.detach().cpu().clone() + return param + + +def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): + to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} + to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()} + return to_return + + +def split_to_even_chunks(indices, lengths, num_chunks): + """ + Split a list of indices into `chunks` chunks of roughly equal lengths. + """ + + if len(indices) % num_chunks != 0: + return [indices[i::num_chunks] for i in range(num_chunks)] + + num_indices_per_chunk = len(indices) // num_chunks + + chunks = [[] for _ in range(num_chunks)] + chunks_lengths = [0 for _ in range(num_chunks)] + for index in indices: + shortest_chunk = chunks_lengths.index(min(chunks_lengths)) + chunks[shortest_chunk].append(index) + chunks_lengths[shortest_chunk] += lengths[index] + if len(chunks[shortest_chunk]) == num_indices_per_chunk: + chunks_lengths[shortest_chunk] = float("inf") + + return chunks + + +def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None): + # We need to use torch for the random part as a distributed sampler will set the random seed for torch. + assert all(l != 0 for l in lengths), "Should not have zero length." + if all(l > 0 for l in lengths) or all(l < 0 for l in lengths): + # all samples are in the same modality + return get_length_grouped_indices(lengths, batch_size, world_size, generator=generator) + mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0]) + lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0]) + + mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)] + lang_shuffle = [lang_indices[i] for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)] + megabatch_size = world_size * batch_size + mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)] + lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)] + + last_mm = mm_megabatches[-1] + last_lang = lang_megabatches[-1] + additional_batch = last_mm + last_lang + megabatches = mm_megabatches[:-1] + lang_megabatches[:-1] + megabatch_indices = torch.randperm(len(megabatches), generator=generator) + megabatches = [megabatches[i] for i in megabatch_indices] + + if len(additional_batch) > 0: + megabatches.append(sorted(additional_batch)) + + return [i for megabatch in megabatches for i in megabatch] + + +def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True): + # We need to use torch for the random part as a distributed sampler will set the random seed for torch. + indices = torch.randperm(len(lengths), generator=generator) + megabatch_size = world_size * batch_size + megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)] + megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches] + megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches] + + return [i for megabatch in megabatches for batch in megabatch for i in batch] + + +class LengthGroupedSampler(Sampler): + r""" + Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while + keeping a bit of randomness. + """ + + def __init__( + self, + batch_size: int, + world_size: int, + lengths: Optional[List[int]] = None, + generator=None, + group_by_modality: bool = False, + ): + if lengths is None: + raise ValueError("Lengths must be provided.") + + self.batch_size = batch_size + self.world_size = world_size + self.lengths = lengths + self.generator = generator + self.group_by_modality = group_by_modality + + def __len__(self): + return len(self.lengths) + + def __iter__(self): + if self.group_by_modality: + indices = get_modality_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator) + else: + indices = get_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator) + return iter(indices) + + +class LLaVATrainer(Trainer): + + def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: + if self.train_dataset is None or not has_length(self.train_dataset): + return None + + if self.args.group_by_modality_length: + lengths = self.train_dataset.modality_lengths + return LengthGroupedSampler( + self.args.train_batch_size, + world_size=self.args.world_size * self.args.gradient_accumulation_steps, + lengths=lengths, + group_by_modality=True, + ) + else: + return super()._get_train_sampler() + + def create_optimizer(self): + """ + Setup the optimizer. + + We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the + Trainer's init through `optimizers`, or subclass and override this method in a subclass. + """ + if is_sagemaker_mp_enabled(): + return super().create_optimizer() + + opt_model = self.model + + if self.optimizer is None: + decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS) + decay_parameters = [name for name in decay_parameters if "bias" not in name] + if self.args.mm_projector_lr is not None: + projector_parameters = [name for name, _ in opt_model.named_parameters() if "mm_projector" in name] + optimizer_grouped_parameters = [ + { + "params": [ + p for n, p in opt_model.named_parameters() if (n in decay_parameters and n not in projector_parameters and p.requires_grad) + ], + "weight_decay": self.args.weight_decay, + }, + { + "params": [ + p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n not in projector_parameters and p.requires_grad) + ], + "weight_decay": 0.0, + }, + { + "params": [ + p for n, p in opt_model.named_parameters() if (n in decay_parameters and n in projector_parameters and p.requires_grad) + ], + "weight_decay": self.args.weight_decay, + "lr": self.args.mm_projector_lr, + }, + { + "params": [ + p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n in projector_parameters and p.requires_grad) + ], + "weight_decay": 0.0, + "lr": self.args.mm_projector_lr, + }, + ] + else: + optimizer_grouped_parameters = [ + { + "params": [ + p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad) + ], + "weight_decay": self.args.weight_decay, + }, + { + "params": [ + p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad) + ], + "weight_decay": 0.0, + }, + ] + + optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args) + + self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) + if optimizer_cls.__name__ == "Adam8bit": + import bitsandbytes + + manager = bitsandbytes.optim.GlobalOptimManager.get_instance() + + skipped = 0 + for module in opt_model.modules(): + if isinstance(module, nn.Embedding): + skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values()) + logger.info(f"skipped {module}: {skipped/2**20}M params") + manager.register_module_override(module, "weight", {"optim_bits": 32}) + logger.debug(f"bitsandbytes: will optimize {module} in fp32") + logger.info(f"skipped: {skipped/2**20}M params") + + return self.optimizer + + def _save_checkpoint(self, model, trial, metrics=None): + if getattr(self.args, 'tune_mm_mlp_adapter', False): + from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR + checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" + + run_dir = self._get_output_dir(trial=trial) + output_dir = os.path.join(run_dir, checkpoint_folder) + + # Only save Adapter + keys_to_match = ['mm_projector', 'vision_resampler'] + if getattr(self.args, "use_im_start_end", False): + keys_to_match.extend(['embed_tokens', 'embed_in']) + + weight_to_save = get_mm_adapter_state_maybe_zero_3(self.model.named_parameters(), keys_to_match) + + if self.args.local_rank == 0 or self.args.local_rank == -1: + self.model.config.save_pretrained(output_dir) + torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) + else: + super(LLaVATrainer, self)._save_checkpoint(model, trial, metrics) + + def _save(self, output_dir: Optional[str] = None, state_dict=None): + if getattr(self.args, 'tune_mm_mlp_adapter', False): + pass + else: + super(LLaVATrainer, self)._save(output_dir, state_dict) diff --git a/MagicQuill/LLaVA/llava/train/train.py b/MagicQuill/LLaVA/llava/train/train.py new file mode 100644 index 0000000000000000000000000000000000000000..477c668b62a30da69a6efc630c736fe319970bae --- /dev/null +++ b/MagicQuill/LLaVA/llava/train/train.py @@ -0,0 +1,991 @@ +# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: +# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: +# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import copy +from dataclasses import dataclass, field +import json +import logging +import pathlib +from typing import Dict, Optional, Sequence, List + +import torch + +import transformers +import tokenizers + +from llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from torch.utils.data import Dataset +from llava.train.llava_trainer import LLaVATrainer + +from llava import conversation as conversation_lib +from llava.model import * +from llava.mm_utils import tokenizer_image_token + +from PIL import Image + + +local_rank = None + + +def rank0_print(*args): + if local_rank == 0: + print(*args) + + +from packaging import version +IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse('0.14') + + +@dataclass +class ModelArguments: + model_name_or_path: Optional[str] = field(default="facebook/opt-125m") + version: Optional[str] = field(default="v0") + freeze_backbone: bool = field(default=False) + tune_mm_mlp_adapter: bool = field(default=False) + vision_tower: Optional[str] = field(default=None) + mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer + pretrain_mm_mlp_adapter: Optional[str] = field(default=None) + mm_projector_type: Optional[str] = field(default='linear') + mm_use_im_start_end: bool = field(default=False) + mm_use_im_patch_token: bool = field(default=True) + mm_patch_merge_type: Optional[str] = field(default='flat') + mm_vision_select_feature: Optional[str] = field(default="patch") + + +@dataclass +class DataArguments: + data_path: str = field(default=None, + metadata={"help": "Path to the training data."}) + lazy_preprocess: bool = False + is_multimodal: bool = False + image_folder: Optional[str] = field(default=None) + image_aspect_ratio: str = 'square' + + +@dataclass +class TrainingArguments(transformers.TrainingArguments): + cache_dir: Optional[str] = field(default=None) + optim: str = field(default="adamw_torch") + remove_unused_columns: bool = field(default=False) + freeze_mm_mlp_adapter: bool = field(default=False) + mpt_attn_impl: Optional[str] = field(default="triton") + model_max_length: int = field( + default=512, + metadata={ + "help": + "Maximum sequence length. Sequences will be right padded (and possibly truncated)." + }, + ) + double_quant: bool = field( + default=True, + metadata={"help": "Compress the quantization statistics through double quantization."} + ) + quant_type: str = field( + default="nf4", + metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} + ) + bits: int = field( + default=16, + metadata={"help": "How many bits to use."} + ) + lora_enable: bool = False + lora_r: int = 64 + lora_alpha: int = 16 + lora_dropout: float = 0.05 + lora_weight_path: str = "" + lora_bias: str = "none" + mm_projector_lr: Optional[float] = None + group_by_modality_length: bool = field(default=False) + + +def maybe_zero_3(param, ignore_status=False, name=None): + from deepspeed import zero + from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus + if hasattr(param, "ds_id"): + if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: + if not ignore_status: + logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") + with zero.GatheredParameters([param]): + param = param.data.detach().cpu().clone() + else: + param = param.detach().cpu().clone() + return param + + +# Borrowed from peft.utils.get_peft_model_state_dict +def get_peft_state_maybe_zero_3(named_params, bias): + if bias == "none": + to_return = {k: t for k, t in named_params if "lora_" in k} + elif bias == "all": + to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} + elif bias == "lora_only": + to_return = {} + maybe_lora_bias = {} + lora_bias_names = set() + for k, t in named_params: + if "lora_" in k: + to_return[k] = t + bias_name = k.split("lora_")[0] + "bias" + lora_bias_names.add(bias_name) + elif "bias" in k: + maybe_lora_bias[k] = t + for k, t in maybe_lora_bias: + if bias_name in lora_bias_names: + to_return[bias_name] = t + else: + raise NotImplementedError + to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} + return to_return + + +def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): + to_return = {k: t for k, t in named_params if "lora_" not in k} + if require_grad_only: + to_return = {k: t for k, t in to_return.items() if t.requires_grad} + to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} + return to_return + + +def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): + to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} + to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} + return to_return + + +def find_all_linear_names(model): + cls = torch.nn.Linear + lora_module_names = set() + multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler'] + for name, module in model.named_modules(): + if any(mm_keyword in name for mm_keyword in multimodal_keywords): + continue + if isinstance(module, cls): + names = name.split('.') + lora_module_names.add(names[0] if len(names) == 1 else names[-1]) + + if 'lm_head' in lora_module_names: # needed for 16-bit + lora_module_names.remove('lm_head') + return list(lora_module_names) + + +def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, + output_dir: str): + """Collects the state dict and dump to disk.""" + + if getattr(trainer.args, "tune_mm_mlp_adapter", False): + # Only save Adapter + keys_to_match = ['mm_projector'] + if getattr(trainer.args, "use_im_start_end", False): + keys_to_match.extend(['embed_tokens', 'embed_in']) + + weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) + trainer.model.config.save_pretrained(output_dir) + + current_folder = output_dir.split('/')[-1] + parent_folder = os.path.dirname(output_dir) + if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: + if current_folder.startswith('checkpoint-'): + mm_projector_folder = os.path.join(parent_folder, "mm_projector") + os.makedirs(mm_projector_folder, exist_ok=True) + torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin')) + else: + torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) + return + + if trainer.deepspeed: + torch.cuda.synchronize() + trainer.save_model(output_dir) + return + + state_dict = trainer.model.state_dict() + if trainer.args.should_save: + cpu_state_dict = { + key: value.cpu() + for key, value in state_dict.items() + } + del state_dict + trainer._save(output_dir, state_dict=cpu_state_dict) # noqa + + +def smart_tokenizer_and_embedding_resize( + special_tokens_dict: Dict, + tokenizer: transformers.PreTrainedTokenizer, + model: transformers.PreTrainedModel, +): + """Resize tokenizer and embedding. + + Note: This is the unoptimized version that may make your embedding size not be divisible by 64. + """ + num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) + model.resize_token_embeddings(len(tokenizer)) + + if num_new_tokens > 0: + input_embeddings = model.get_input_embeddings().weight.data + output_embeddings = model.get_output_embeddings().weight.data + + input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + + input_embeddings[-num_new_tokens:] = input_embeddings_avg + output_embeddings[-num_new_tokens:] = output_embeddings_avg + + +def _tokenize_fn(strings: Sequence[str], + tokenizer: transformers.PreTrainedTokenizer) -> Dict: + """Tokenize a list of strings.""" + tokenized_list = [ + tokenizer( + text, + return_tensors="pt", + padding="longest", + max_length=tokenizer.model_max_length, + truncation=True, + ) for text in strings + ] + input_ids = labels = [ + tokenized.input_ids[0] for tokenized in tokenized_list + ] + input_ids_lens = labels_lens = [ + tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() + for tokenized in tokenized_list + ] + return dict( + input_ids=input_ids, + labels=labels, + input_ids_lens=input_ids_lens, + labels_lens=labels_lens, + ) + + +def _mask_targets(target, tokenized_lens, speakers): + # cur_idx = 0 + cur_idx = tokenized_lens[0] + tokenized_lens = tokenized_lens[1:] + target[:cur_idx] = IGNORE_INDEX + for tokenized_len, speaker in zip(tokenized_lens, speakers): + if speaker == "human": + target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX + cur_idx += tokenized_len + + +def _add_speaker_and_signal(header, source, get_conversation=True): + """Add speaker and start/end signal on each round.""" + BEGIN_SIGNAL = "### " + END_SIGNAL = "\n" + conversation = header + for sentence in source: + from_str = sentence["from"] + if from_str.lower() == "human": + from_str = conversation_lib.default_conversation.roles[0] + elif from_str.lower() == "gpt": + from_str = conversation_lib.default_conversation.roles[1] + else: + from_str = 'unknown' + sentence["value"] = (BEGIN_SIGNAL + from_str + ": " + + sentence["value"] + END_SIGNAL) + if get_conversation: + conversation += sentence["value"] + conversation += BEGIN_SIGNAL + return conversation + + +def preprocess_multimodal( + sources: Sequence[str], + data_args: DataArguments +) -> Dict: + is_multimodal = data_args.is_multimodal + if not is_multimodal: + return sources + + for source in sources: + for sentence in source: + if DEFAULT_IMAGE_TOKEN in sentence['value']: + sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() + sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value'] + sentence['value'] = sentence['value'].strip() + if "mmtag" in conversation_lib.default_conversation.version: + sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '' + DEFAULT_IMAGE_TOKEN + '') + replace_token = DEFAULT_IMAGE_TOKEN + if data_args.mm_use_im_start_end: + replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN + sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) + + return sources + + +def preprocess_llama_2( + sources, + tokenizer: transformers.PreTrainedTokenizer, + has_image: bool = False +) -> Dict: + conv = conversation_lib.default_conversation.copy() + roles = {"human": conv.roles[0], "gpt": conv.roles[1]} + + # Apply prompt templates + conversations = [] + for i, source in enumerate(sources): + if roles[source[0]["from"]] != conv.roles[0]: + # Skip the first one if it is not from human + source = source[1:] + + conv.messages = [] + for j, sentence in enumerate(source): + role = roles[sentence["from"]] + assert role == conv.roles[j % 2], f"{i}" + conv.append_message(role, sentence["value"]) + conversations.append(conv.get_prompt()) + + # Tokenize conversations + + if has_image: + input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) + else: + input_ids = tokenizer( + conversations, + return_tensors="pt", + padding="longest", + max_length=tokenizer.model_max_length, + truncation=True, + ).input_ids + + targets = input_ids.clone() + + assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 + + # Mask targets + sep = "[/INST] " + for conversation, target in zip(conversations, targets): + total_len = int(target.ne(tokenizer.pad_token_id).sum()) + + rounds = conversation.split(conv.sep2) + cur_len = 1 + target[:cur_len] = IGNORE_INDEX + for i, rou in enumerate(rounds): + if rou == "": + break + + parts = rou.split(sep) + if len(parts) != 2: + break + parts[0] += sep + + if has_image: + round_len = len(tokenizer_image_token(rou, tokenizer)) + instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 + else: + round_len = len(tokenizer(rou).input_ids) + instruction_len = len(tokenizer(parts[0]).input_ids) - 2 + + target[cur_len : cur_len + instruction_len] = IGNORE_INDEX + + cur_len += round_len + target[cur_len:] = IGNORE_INDEX + + if cur_len < tokenizer.model_max_length: + if cur_len != total_len: + target[:] = IGNORE_INDEX + print( + f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." + f" (ignored)" + ) + + return dict( + input_ids=input_ids, + labels=targets, + ) + + +def preprocess_v1( + sources, + tokenizer: transformers.PreTrainedTokenizer, + has_image: bool = False +) -> Dict: + conv = conversation_lib.default_conversation.copy() + roles = {"human": conv.roles[0], "gpt": conv.roles[1]} + + # Apply prompt templates + conversations = [] + for i, source in enumerate(sources): + if roles[source[0]["from"]] != conv.roles[0]: + # Skip the first one if it is not from human + source = source[1:] + + conv.messages = [] + for j, sentence in enumerate(source): + role = roles[sentence["from"]] + assert role == conv.roles[j % 2], f"{i}" + conv.append_message(role, sentence["value"]) + conversations.append(conv.get_prompt()) + + # Tokenize conversations + + if has_image: + input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) + else: + input_ids = tokenizer( + conversations, + return_tensors="pt", + padding="longest", + max_length=tokenizer.model_max_length, + truncation=True, + ).input_ids + + targets = input_ids.clone() + + assert conv.sep_style == conversation_lib.SeparatorStyle.TWO + + # Mask targets + sep = conv.sep + conv.roles[1] + ": " + for conversation, target in zip(conversations, targets): + total_len = int(target.ne(tokenizer.pad_token_id).sum()) + + rounds = conversation.split(conv.sep2) + cur_len = 1 + target[:cur_len] = IGNORE_INDEX + for i, rou in enumerate(rounds): + if rou == "": + break + + parts = rou.split(sep) + if len(parts) != 2: + break + parts[0] += sep + + if has_image: + round_len = len(tokenizer_image_token(rou, tokenizer)) + instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 + else: + round_len = len(tokenizer(rou).input_ids) + instruction_len = len(tokenizer(parts[0]).input_ids) - 2 + + if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14: + round_len -= 1 + instruction_len -= 1 + + target[cur_len : cur_len + instruction_len] = IGNORE_INDEX + + cur_len += round_len + target[cur_len:] = IGNORE_INDEX + + if cur_len < tokenizer.model_max_length: + if cur_len != total_len: + target[:] = IGNORE_INDEX + print( + f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." + f" (ignored)" + ) + + return dict( + input_ids=input_ids, + labels=targets, + ) + + +def preprocess_mpt( + sources, + tokenizer: transformers.PreTrainedTokenizer, + has_image: bool = False +) -> Dict: + conv = conversation_lib.default_conversation.copy() + roles = {"human": conv.roles[0], "gpt": conv.roles[1]} + + # Apply prompt templates + conversations = [] + for i, source in enumerate(sources): + if roles[source[0]["from"]] != conv.roles[0]: + # Skip the first one if it is not from human + source = source[1:] + + conv.messages = [] + for j, sentence in enumerate(source): + role = roles[sentence["from"]] + assert role == conv.roles[j % 2], f"{i}" + conv.append_message(role, sentence["value"]) + conversations.append(conv.get_prompt()) + + # Tokenize conversations + + if has_image: + input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) + else: + input_ids = tokenizer( + conversations, + return_tensors="pt", + padding="longest", + max_length=tokenizer.model_max_length, + truncation=True, + ).input_ids + + targets = input_ids.clone() + assert conv.sep_style == conversation_lib.SeparatorStyle.MPT + + # Mask targets + sep = conv.sep + conv.roles[1] + for conversation, target in zip(conversations, targets): + total_len = int(target.ne(tokenizer.pad_token_id).sum()) + + rounds = conversation.split(conv.sep) + re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt + for conv_idx in range(3, len(rounds), 2): + re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2])) # user + gpt + cur_len = 0 + target[:cur_len] = IGNORE_INDEX + for i, rou in enumerate(re_rounds): + if rou == "": + break + + parts = rou.split(sep) + if len(parts) != 2: + break + parts[0] += sep + + if has_image: + round_len = len(tokenizer_image_token(rou, tokenizer)) + instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 1 + else: + round_len = len(tokenizer(rou).input_ids) + instruction_len = len(tokenizer(parts[0]).input_ids) - 1 + + if i != 0 and getattr(tokenizer, 'legacy', False) and IS_TOKENIZER_GREATER_THAN_0_14: + round_len += 1 + instruction_len += 1 + + target[cur_len : cur_len + instruction_len] = IGNORE_INDEX + + cur_len += round_len + target[cur_len:] = IGNORE_INDEX + + if cur_len < tokenizer.model_max_length: + if cur_len != total_len: + target[:] = IGNORE_INDEX + print( + f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." + f" (ignored)" + ) + + return dict( + input_ids=input_ids, + labels=targets, + ) + + +def preprocess_plain( + sources: Sequence[str], + tokenizer: transformers.PreTrainedTokenizer, +) -> Dict: + # add end signal and concatenate together + conversations = [] + for source in sources: + assert len(source) == 2 + assert DEFAULT_IMAGE_TOKEN in source[0]['value'] + source[0]['value'] = DEFAULT_IMAGE_TOKEN + conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep + conversations.append(conversation) + # tokenize conversations + input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] + targets = copy.deepcopy(input_ids) + for target, source in zip(targets, sources): + tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer)) + target[:tokenized_len] = IGNORE_INDEX + + return dict(input_ids=input_ids, labels=targets) + + +def preprocess( + sources: Sequence[str], + tokenizer: transformers.PreTrainedTokenizer, + has_image: bool = False +) -> Dict: + """ + Given a list of sources, each is a conversation list. This transform: + 1. Add signal '### ' at the beginning each sentence, with end signal '\n'; + 2. Concatenate conversations together; + 3. Tokenize the concatenated conversation; + 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. + """ + if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: + return preprocess_plain(sources, tokenizer) + if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2: + return preprocess_llama_2(sources, tokenizer, has_image=has_image) + if conversation_lib.default_conversation.version.startswith("v1"): + return preprocess_v1(sources, tokenizer, has_image=has_image) + if conversation_lib.default_conversation.version == "mpt": + return preprocess_mpt(sources, tokenizer, has_image=has_image) + # add end signal and concatenate together + conversations = [] + for source in sources: + header = f"{conversation_lib.default_conversation.system}\n\n" + conversation = _add_speaker_and_signal(header, source) + conversations.append(conversation) + # tokenize conversations + def get_tokenize_len(prompts): + return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] + + if has_image: + input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] + else: + conversations_tokenized = _tokenize_fn(conversations, tokenizer) + input_ids = conversations_tokenized["input_ids"] + + targets = copy.deepcopy(input_ids) + for target, source in zip(targets, sources): + if has_image: + tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) + else: + tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"] + speakers = [sentence["from"] for sentence in source] + _mask_targets(target, tokenized_lens, speakers) + + return dict(input_ids=input_ids, labels=targets) + + +class LazySupervisedDataset(Dataset): + """Dataset for supervised fine-tuning.""" + + def __init__(self, data_path: str, + tokenizer: transformers.PreTrainedTokenizer, + data_args: DataArguments): + super(LazySupervisedDataset, self).__init__() + list_data_dict = json.load(open(data_path, "r")) + + rank0_print("Formatting inputs...Skip in lazy mode") + self.tokenizer = tokenizer + self.list_data_dict = list_data_dict + self.data_args = data_args + + def __len__(self): + return len(self.list_data_dict) + + @property + def lengths(self): + length_list = [] + for sample in self.list_data_dict: + img_tokens = 128 if 'image' in sample else 0 + length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens) + return length_list + + @property + def modality_lengths(self): + length_list = [] + for sample in self.list_data_dict: + cur_len = sum(len(conv['value'].split()) for conv in sample['conversations']) + cur_len = cur_len if 'image' in sample else -cur_len + length_list.append(cur_len) + return length_list + + def __getitem__(self, i) -> Dict[str, torch.Tensor]: + sources = self.list_data_dict[i] + if isinstance(i, int): + sources = [sources] + assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME + if 'image' in sources[0]: + image_file = self.list_data_dict[i]['image'] + image_folder = self.data_args.image_folder + processor = self.data_args.image_processor + image = Image.open(os.path.join(image_folder, image_file)).convert('RGB') + if self.data_args.image_aspect_ratio == 'pad': + def expand2square(pil_img, background_color): + width, height = pil_img.size + if width == height: + return pil_img + elif width > height: + result = Image.new(pil_img.mode, (width, width), background_color) + result.paste(pil_img, (0, (width - height) // 2)) + return result + else: + result = Image.new(pil_img.mode, (height, height), background_color) + result.paste(pil_img, ((height - width) // 2, 0)) + return result + image = expand2square(image, tuple(int(x*255) for x in processor.image_mean)) + image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] + else: + image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] + sources = preprocess_multimodal( + copy.deepcopy([e["conversations"] for e in sources]), + self.data_args) + else: + sources = copy.deepcopy([e["conversations"] for e in sources]) + data_dict = preprocess( + sources, + self.tokenizer, + has_image=('image' in self.list_data_dict[i])) + if isinstance(i, int): + data_dict = dict(input_ids=data_dict["input_ids"][0], + labels=data_dict["labels"][0]) + + # image exist in the data + if 'image' in self.list_data_dict[i]: + data_dict['image'] = image + elif self.data_args.is_multimodal: + # image does not exist in the data, but the model is multimodal + crop_size = self.data_args.image_processor.crop_size + data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width']) + return data_dict + + +@dataclass +class DataCollatorForSupervisedDataset(object): + """Collate examples for supervised fine-tuning.""" + + tokenizer: transformers.PreTrainedTokenizer + + def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: + input_ids, labels = tuple([instance[key] for instance in instances] + for key in ("input_ids", "labels")) + input_ids = torch.nn.utils.rnn.pad_sequence( + input_ids, + batch_first=True, + padding_value=self.tokenizer.pad_token_id) + labels = torch.nn.utils.rnn.pad_sequence(labels, + batch_first=True, + padding_value=IGNORE_INDEX) + input_ids = input_ids[:, :self.tokenizer.model_max_length] + labels = labels[:, :self.tokenizer.model_max_length] + batch = dict( + input_ids=input_ids, + labels=labels, + attention_mask=input_ids.ne(self.tokenizer.pad_token_id), + ) + + if 'image' in instances[0]: + images = [instance['image'] for instance in instances] + if all(x is not None and x.shape == images[0].shape for x in images): + batch['images'] = torch.stack(images) + else: + batch['images'] = images + + return batch + + +def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, + data_args) -> Dict: + """Make dataset and collator for supervised fine-tuning.""" + train_dataset = LazySupervisedDataset(tokenizer=tokenizer, + data_path=data_args.data_path, + data_args=data_args) + data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) + return dict(train_dataset=train_dataset, + eval_dataset=None, + data_collator=data_collator) + + +def train(attn_implementation=None): + global local_rank + + parser = transformers.HfArgumentParser( + (ModelArguments, DataArguments, TrainingArguments)) + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + local_rank = training_args.local_rank + compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) + + bnb_model_from_pretrained_args = {} + if training_args.bits in [4, 8]: + from transformers import BitsAndBytesConfig + bnb_model_from_pretrained_args.update(dict( + device_map={"": training_args.device}, + load_in_4bit=training_args.bits == 4, + load_in_8bit=training_args.bits == 8, + quantization_config=BitsAndBytesConfig( + load_in_4bit=training_args.bits == 4, + load_in_8bit=training_args.bits == 8, + llm_int8_skip_modules=["mm_projector"], + llm_int8_threshold=6.0, + llm_int8_has_fp16_weight=False, + bnb_4bit_compute_dtype=compute_dtype, + bnb_4bit_use_double_quant=training_args.double_quant, + bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'} + ) + )) + + if model_args.vision_tower is not None: + if 'mpt' in model_args.model_name_or_path: + config = transformers.AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True) + config.attn_config['attn_impl'] = training_args.mpt_attn_impl + model = LlavaMptForCausalLM.from_pretrained( + model_args.model_name_or_path, + config=config, + cache_dir=training_args.cache_dir, + **bnb_model_from_pretrained_args + ) + else: + model = LlavaLlamaForCausalLM.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + attn_implementation=attn_implementation, + torch_dtype=(torch.bfloat16 if training_args.bf16 else None), + **bnb_model_from_pretrained_args + ) + else: + model = transformers.LlamaForCausalLM.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + attn_implementation=attn_implementation, + torch_dtype=(torch.bfloat16 if training_args.bf16 else None), + **bnb_model_from_pretrained_args + ) + model.config.use_cache = False + + if model_args.freeze_backbone: + model.model.requires_grad_(False) + + if training_args.bits in [4, 8]: + from peft import prepare_model_for_kbit_training + model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) + model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) + + if training_args.gradient_checkpointing: + if hasattr(model, "enable_input_require_grads"): + model.enable_input_require_grads() + else: + def make_inputs_require_grad(module, input, output): + output.requires_grad_(True) + model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) + + if training_args.lora_enable: + from peft import LoraConfig, get_peft_model + lora_config = LoraConfig( + r=training_args.lora_r, + lora_alpha=training_args.lora_alpha, + target_modules=find_all_linear_names(model), + lora_dropout=training_args.lora_dropout, + bias=training_args.lora_bias, + task_type="CAUSAL_LM", + ) + if training_args.bits == 16: + if training_args.bf16: + model.to(torch.bfloat16) + if training_args.fp16: + model.to(torch.float16) + rank0_print("Adding LoRA adapters...") + model = get_peft_model(model, lora_config) + + if 'mpt' in model_args.model_name_or_path: + tokenizer = transformers.AutoTokenizer.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + model_max_length=training_args.model_max_length, + padding_side="right" + ) + else: + tokenizer = transformers.AutoTokenizer.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + model_max_length=training_args.model_max_length, + padding_side="right", + use_fast=False, + ) + + if model_args.version == "v0": + if tokenizer.pad_token is None: + smart_tokenizer_and_embedding_resize( + special_tokens_dict=dict(pad_token="[PAD]"), + tokenizer=tokenizer, + model=model, + ) + elif model_args.version == "v0.5": + tokenizer.pad_token = tokenizer.unk_token + else: + tokenizer.pad_token = tokenizer.unk_token + if model_args.version in conversation_lib.conv_templates: + conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] + else: + conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"] + + if model_args.vision_tower is not None: + model.get_model().initialize_vision_modules( + model_args=model_args, + fsdp=training_args.fsdp + ) + + vision_tower = model.get_vision_tower() + vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) + + data_args.image_processor = vision_tower.image_processor + data_args.is_multimodal = True + + model.config.image_aspect_ratio = data_args.image_aspect_ratio + model.config.tokenizer_padding_side = tokenizer.padding_side + model.config.tokenizer_model_max_length = tokenizer.model_max_length + + model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter + if model_args.tune_mm_mlp_adapter: + model.requires_grad_(False) + for p in model.get_model().mm_projector.parameters(): + p.requires_grad = True + + model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter + if training_args.freeze_mm_mlp_adapter: + for p in model.get_model().mm_projector.parameters(): + p.requires_grad = False + + if training_args.bits in [4, 8]: + model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device) + + model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end + model.config.mm_projector_lr = training_args.mm_projector_lr + training_args.use_im_start_end = model_args.mm_use_im_start_end + model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token + model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) + + if training_args.bits in [4, 8]: + from peft.tuners.lora import LoraLayer + for name, module in model.named_modules(): + if isinstance(module, LoraLayer): + if training_args.bf16: + module = module.to(torch.bfloat16) + if 'norm' in name: + module = module.to(torch.float32) + if 'lm_head' in name or 'embed_tokens' in name: + if hasattr(module, 'weight'): + if training_args.bf16 and module.weight.dtype == torch.float32: + module = module.to(torch.bfloat16) + + data_module = make_supervised_data_module(tokenizer=tokenizer, + data_args=data_args) + trainer = LLaVATrainer(model=model, + tokenizer=tokenizer, + args=training_args, + **data_module) + + if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): + trainer.train(resume_from_checkpoint=True) + else: + trainer.train() + trainer.save_state() + + model.config.use_cache = True + + if training_args.lora_enable: + state_dict = get_peft_state_maybe_zero_3( + model.named_parameters(), training_args.lora_bias + ) + non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( + model.named_parameters() + ) + if training_args.local_rank == 0 or training_args.local_rank == -1: + model.config.save_pretrained(training_args.output_dir) + model.save_pretrained(training_args.output_dir, state_dict=state_dict) + torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin')) + else: + safe_save_model_for_hf_trainer(trainer=trainer, + output_dir=training_args.output_dir) + + +if __name__ == "__main__": + train() diff --git a/MagicQuill/LLaVA/llava/train/train_mem.py b/MagicQuill/LLaVA/llava/train/train_mem.py new file mode 100644 index 0000000000000000000000000000000000000000..29ea06170f23a845627c7e3dd52d3a5bdb379767 --- /dev/null +++ b/MagicQuill/LLaVA/llava/train/train_mem.py @@ -0,0 +1,4 @@ +from llava.train.train import train + +if __name__ == "__main__": + train(attn_implementation="flash_attention_2") diff --git a/MagicQuill/LLaVA/llava/train/train_xformers.py b/MagicQuill/LLaVA/llava/train/train_xformers.py new file mode 100644 index 0000000000000000000000000000000000000000..23a59bf4ee0f365de9fbf3838836b170058126d6 --- /dev/null +++ b/MagicQuill/LLaVA/llava/train/train_xformers.py @@ -0,0 +1,13 @@ +# Make it more memory efficient by monkey patching the LLaMA model with xformers attention. + +# Need to call this before importing transformers. +from llava.train.llama_xformers_attn_monkey_patch import ( + replace_llama_attn_with_xformers_attn, +) + +replace_llama_attn_with_xformers_attn() + +from llava.train.train import train + +if __name__ == "__main__": + train() diff --git a/MagicQuill/LLaVA/llava/utils.py b/MagicQuill/LLaVA/llava/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..4006cf917e26c365080b0844c56fab78c48457c0 --- /dev/null +++ b/MagicQuill/LLaVA/llava/utils.py @@ -0,0 +1,126 @@ +import datetime +import logging +import logging.handlers +import os +import sys + +import requests + +from llava.constants import LOGDIR + +server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" +moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN." + +handler = None + + +def build_logger(logger_name, logger_filename): + global handler + + formatter = logging.Formatter( + fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", + datefmt="%Y-%m-%d %H:%M:%S", + ) + + # Set the format of root handlers + if not logging.getLogger().handlers: + logging.basicConfig(level=logging.INFO) + logging.getLogger().handlers[0].setFormatter(formatter) + + # Redirect stdout and stderr to loggers + stdout_logger = logging.getLogger("stdout") + stdout_logger.setLevel(logging.INFO) + sl = StreamToLogger(stdout_logger, logging.INFO) + sys.stdout = sl + + stderr_logger = logging.getLogger("stderr") + stderr_logger.setLevel(logging.ERROR) + sl = StreamToLogger(stderr_logger, logging.ERROR) + sys.stderr = sl + + # Get logger + logger = logging.getLogger(logger_name) + logger.setLevel(logging.INFO) + + # Add a file handler for all loggers + if handler is None: + os.makedirs(LOGDIR, exist_ok=True) + filename = os.path.join(LOGDIR, logger_filename) + handler = logging.handlers.TimedRotatingFileHandler( + filename, when='D', utc=True, encoding='UTF-8') + handler.setFormatter(formatter) + + for name, item in logging.root.manager.loggerDict.items(): + if isinstance(item, logging.Logger): + item.addHandler(handler) + + return logger + + +class StreamToLogger(object): + """ + Fake file-like stream object that redirects writes to a logger instance. + """ + def __init__(self, logger, log_level=logging.INFO): + self.terminal = sys.stdout + self.logger = logger + self.log_level = log_level + self.linebuf = '' + + def __getattr__(self, attr): + return getattr(self.terminal, attr) + + def write(self, buf): + temp_linebuf = self.linebuf + buf + self.linebuf = '' + for line in temp_linebuf.splitlines(True): + # From the io.TextIOWrapper docs: + # On output, if newline is None, any '\n' characters written + # are translated to the system default line separator. + # By default sys.stdout.write() expects '\n' newlines and then + # translates them so this is still cross platform. + if line[-1] == '\n': + self.logger.log(self.log_level, line.rstrip()) + else: + self.linebuf += line + + def flush(self): + if self.linebuf != '': + self.logger.log(self.log_level, self.linebuf.rstrip()) + self.linebuf = '' + + +def disable_torch_init(): + """ + Disable the redundant torch default initialization to accelerate model creation. + """ + import torch + setattr(torch.nn.Linear, "reset_parameters", lambda self: None) + setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) + + +def violates_moderation(text): + """ + Check whether the text violates OpenAI moderation API. + """ + url = "https://api.openai.com/v1/moderations" + headers = {"Content-Type": "application/json", + "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]} + text = text.replace("\n", "") + data = "{" + '"input": ' + f'"{text}"' + "}" + data = data.encode("utf-8") + try: + ret = requests.post(url, headers=headers, data=data, timeout=5) + flagged = ret.json()["results"][0]["flagged"] + except requests.exceptions.RequestException as e: + flagged = False + except KeyError as e: + flagged = False + + return flagged + + +def pretty_print_semaphore(semaphore): + if semaphore is None: + return "None" + return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})" diff --git a/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/000_caps.txt b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/000_caps.txt new file mode 100644 index 0000000000000000000000000000000000000000..358155c384a2d18e6927d62562ac3f12eef36a87 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/000_caps.txt @@ -0,0 +1,18 @@ +A man wearing multiple neck ties making a goofy face. +A man in a white shirt wearing very many ties. +a man with ties on poses for a picture +A man wearing multiple ties on his neck. +A young man smiles while wearing several ties. + +tie: [0.574, 0.298, 0.752, 0.704] +tie: [0.464, 0.339, 0.639, 0.789] +tie: [0.349, 0.363, 0.563, 0.732] +tie: [0.259, 0.255, 0.668, 0.805] +person: [0.019, 0.065, 0.962, 0.988] +person: [0.0, 0.24, 0.214, 1.0] +tie: [0.316, 0.778, 0.443, 0.867] +tie: [0.386, 0.707, 0.496, 0.801] +tie: [0.251, 0.354, 0.402, 0.747] +tie: [0.44, 0.318, 0.63, 0.397] +tie: [0.566, 0.33, 0.655, 0.543] +tie: [0.25, 0.409, 0.359, 0.556] \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/000_conv.txt b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/000_conv.txt new file mode 100644 index 0000000000000000000000000000000000000000..04f47a91a74af9ba5686107fb6a4441117494a56 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/000_conv.txt @@ -0,0 +1,5 @@ +Question: +What is unusual about this photo? +=== +Answer: +In the photo, the man is wearing a total of ten ties around his neck. This is considered unusual because it is not common for someone to wear multiple ties at once. In a typical setting, a person would wear only one tie. The man's goofy facial expression also adds to the unconventional and humorous nature of the image. \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/001_caps.txt b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/001_caps.txt new file mode 100644 index 0000000000000000000000000000000000000000..2065dfb20a6e40128749d507ecc27d01349e2ad9 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/001_caps.txt @@ -0,0 +1,18 @@ +A group of people standing outside of a black vehicle with various luggage. +Luggage surrounds a vehicle in an underground parking area +People try to fit all of their luggage in an SUV. +The sport utility vehicle is parked in the public garage, being packed for a trip +Some people with luggage near a van that is transporting it. + +person: [0.681, 0.242, 0.774, 0.694] +person: [0.63, 0.222, 0.686, 0.516] +person: [0.444, 0.233, 0.487, 0.34] +backpack: [0.384, 0.696, 0.485, 0.914] +backpack: [0.755, 0.413, 0.846, 0.692] +suitcase: [0.758, 0.413, 0.845, 0.69] +suitcase: [0.1, 0.497, 0.173, 0.579] +bicycle: [0.282, 0.363, 0.327, 0.442] +car: [0.786, 0.25, 0.848, 0.322] +car: [0.783, 0.27, 0.827, 0.335] +car: [0.86, 0.254, 0.891, 0.3] +car: [0.261, 0.101, 0.787, 0.626] \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/001_conv.txt b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/001_conv.txt new file mode 100644 index 0000000000000000000000000000000000000000..b293aecb87839015f8ab37943afe71c2f8904871 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/001_conv.txt @@ -0,0 +1,5 @@ +Question: +What challenges do these people face? +=== +Answer: +In the image, a group of people is standing outside a black SUV in a parking area, surrounded by various pieces of luggage, including suitcases and backpacks. They are facing the challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks to be packed, which suggests that the group has a significant amount of belongings to accommodate. They might have to strategize and arrange the luggage efficiently to ensure that everything fits properly into the vehicle. Additionally, they need to consider the comfort of the passengers and visibility while driving, so the placement of the luggage must not obstruct the driver's view or make the passengers uncomfortable during the trip. \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/002_caps.txt b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/002_caps.txt new file mode 100644 index 0000000000000000000000000000000000000000..8fb59f2eb46c7e0db50d2994b2e9102d46def656 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/002_caps.txt @@ -0,0 +1,7 @@ +There is a movie theater that displays the show times above the doors. +A red fire hydrant is deep in the snow. +The fire hydrant is in the snow near a recently plowed sidewalk. +This city has had a very hard winter with snow. +A hotel for dogs in the snow in winter. + +fire hydrant: [0.326, 0.612, 0.426, 0.72] \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/002_conv.txt b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/002_conv.txt new file mode 100644 index 0000000000000000000000000000000000000000..8a2c7f35b9fe3961f0d974ee4799fa517922df83 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/002_conv.txt @@ -0,0 +1,5 @@ +Question: +What challenges might this city face? +=== +Answer: +The city faces challenges due to the harsh winter conditions and heavy snowfall. In the image, a red fire hydrant is almost buried deep in the snow, which indicates the significant amount of snow the city has experienced. This can lead to various challenges such as difficulties in transportation, increased risk of accidents, and disruptions to daily life. For example, the recently plowed sidewalk near the fire hydrant shows that the city has to constantly clear snow from roads and sidewalks to maintain access and safety for pedestrians and vehicles. Moreover, emergency services, like firefighters, might face challenges accessing crucial equipment, such as fire hydrants, during emergencies due to the snow accumulation. This highlights the importance of effective snow management strategies and preparedness in such cities to minimize the impact of harsh winter conditions on residents and essential services. \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/system_message.txt b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/system_message.txt new file mode 100644 index 0000000000000000000000000000000000000000..a394efd653554ce687ab8f0c908238bef4f27dee --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/complex_reasoning/system_message.txt @@ -0,0 +1,10 @@ +You are an AI visual assistant that can analyze a single image. You receive five sentences, each describing the same image you are observing. In addition, specific object locations within the image are given, along with detailed coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y. + +The task is to use the provided caption and bounding box information, create a plausible question about the image, and provide the answer in detail. + +Create complex questions beyond describing the scene. +To answer such questions, one should require first understanding the visual content, then based on the background knowledge or reasoning, either explain why the things are happening that way, or provide guides and help to user's request. Make the question challenging by not including the visual content details in the question so that the user needs to reason about that first. + +Instead of directly mentioning the bounding box coordinates, utilize this data to explain the scene using natural language. Include details like object counts, position of the objects, relative position between the objects. + +When using the information from the caption and coordinates, directly explain the scene, and do not mention that the information source is the caption or the bounding box. Always answer as if you are directly looking at the image. \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/conversation/000_caps.txt b/MagicQuill/LLaVA/playground/data/prompts/conversation/000_caps.txt new file mode 100644 index 0000000000000000000000000000000000000000..3139b31b27e6e67b31b27cf0ac7bda317f46d6b8 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/conversation/000_caps.txt @@ -0,0 +1,5 @@ +There is a movie theater that displays the show times above the doors. +A red fire hydrant is deep in the snow. +The fire hydrant is in the snow near a recently plowed sidewalk. +This city has had a very hard winter with snow. +A hotel for dogs in the snow in winter. \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/conversation/000_conv.txt b/MagicQuill/LLaVA/playground/data/prompts/conversation/000_conv.txt new file mode 100644 index 0000000000000000000000000000000000000000..1300cd49992d8c342396cebfebc592909d6391e4 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/conversation/000_conv.txt @@ -0,0 +1,29 @@ +Question: +What color is the fire hydrant in the image? +=== +Answer: +The fire hydrant in the image is red. +=== +Question: +Is the fire hydrant fully covered by snow or partially visible? +=== +Answer: +The fire hydrant is partially visible, with a significant portion of it covered by the deep snow. +=== +Question: +What is the condition of the sidewalk near the fire hydrant? +=== +Answer: +The sidewalk near the fire hydrant has been recently plowed, so it is relatively clear of snow compared to the surrounding area. +=== +Question: +What does the image suggest about the winter season in the city? +=== +Answer: +The image suggests that the winter season in the city has been quite harsh and challenging. The significant snow accumulation seen in the image indicates that the city has experienced heavy snowfall, which can lead to various difficulties and disruptions for its residents. + +For instance, the deep snow covering the fire hydrant could potentially hinder its accessibility in case of emergencies, which poses safety concerns. The recently plowed sidewalk implies that the city's maintenance crews have been actively working to keep the walkways clear and safe for pedestrians, but the sheer amount of snowfall might make it difficult to keep up with the continuous snow removal efforts. + +Furthermore, such extreme winter conditions can impact transportation, leading to traffic issues, delays in public transit, and increased risks of accidents due to slippery roads. It can also cause problems for businesses and schools, as people might face challenges commuting to work or attending classes. Additionally, the heavy snow can put extra strain on infrastructure, such as roofs and power lines, increasing the likelihood of structural damage or power outages. + +In conclusion, the image of the red fire hydrant deep in the snow and the recently plowed sidewalk suggest that the city has faced a particularly severe winter season, with substantial snowfall that has likely caused various challenges and disruptions for its residents and infrastructure. \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/conversation/001_caps.txt b/MagicQuill/LLaVA/playground/data/prompts/conversation/001_caps.txt new file mode 100644 index 0000000000000000000000000000000000000000..02a8c6d8dda4f5ac338983251adcdc1d3a99a3f3 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/conversation/001_caps.txt @@ -0,0 +1,5 @@ +A man is skiing in the open snow covered hills +A skier is making his way into the snow. +A skier on the foothills of a huge mountain range. +A skier looks at mountains while standing near a trail sign. +a single person skiing by an area with a lot of bushes \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/conversation/001_conv.txt b/MagicQuill/LLaVA/playground/data/prompts/conversation/001_conv.txt new file mode 100644 index 0000000000000000000000000000000000000000..8dac93823203ead2af275b908f3b3c5e4ccbe631 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/conversation/001_conv.txt @@ -0,0 +1,37 @@ +Question: +What is the skier doing? +=== +Answer: +The skier is skiing in the snow-covered hills, making his way through the snow and enjoying the beautiful mountain scenery. They are also standing near a trail sign, which indicates their location on the mountain. +=== +Question: +Are there any other people or skiers visible in the image? +=== +Answer: +No, there is only a single person skiing in the image, and they are surrounded by an area with a lot of bushes. +=== +Question: +What kind of skiing is the person doing? Cross-country or downhill? +=== +Answer: +Based on what I can see in the photo, it is not possible to definitively determine whether the skier is doing cross-country or downhill skiing. However, given the presence of a trail sign and the fact that they are skiing in the foothills, it is more likely that the skier is engaged in cross-country skiing. Downhill skiing typically takes place on more steep slopes and involves ski lifts, whereas cross-country skiing often occurs on relatively flatter terrain with marked trails. +=== +Question: +Can you explain cross-country and downhill skiing a bit more? +=== +Answer: +Cross-country skiing and downhill skiing are two distinct types of skiing, each with its own techniques, equipment, and terrain preferences. + +1. Cross-Country Skiing: +Also known as Nordic skiing, cross-country skiing involves traversing relatively flat terrain or gentle slopes using skis and poles. It is a popular recreational and competitive sport that focuses on endurance, balance, and aerobic fitness. Cross-country skiers use their own locomotion to move across snow-covered terrain, rather than relying on ski lifts or other forms of assistance. +There are two main techniques in cross-country skiing: +- Classic: This technique involves skiing in parallel tracks, using a forward-and-backward gliding motion while keeping the skis parallel to each other. The skier uses their poles to propel themselves forward. +- Skate skiing: This technique is similar to ice skating, where the skier pushes off one ski at an angle and glides on the other. It requires a smooth, groomed surface and is typically faster than the classic technique. +Cross-country ski equipment consists of lightweight skis, boots, bindings, and poles. The boots are more flexible than those used in downhill skiing, allowing for better ankle movement and control. + +2. Downhill Skiing: +Also known as alpine skiing, downhill skiing involves descending slopes at high speeds using skis and poles for balance and control. This sport is more focused on speed, technique, and navigating challenging terrain, including steep slopes, moguls, and even jumps. +Downhill skiing can be further categorized into several disciplines, such as slalom, giant slalom, super-G, and downhill racing. Each discipline has its own set of rules, courses, and ski equipment. +Downhill ski equipment includes heavier and stiffer skis, boots, bindings, and poles than those used in cross-country skiing. The boots are more rigid to provide better support and control during high-speed descents and sharp turns. + +In summary, cross-country skiing is an endurance-based sport that involves traveling across flat or gently sloping terrain, while downhill skiing is focused on speed and technique as skiers navigate steeper slopes and challenging terrain. Both sports require specialized equipment and techniques, but they offer different experiences and challenges to participants. \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/conversation/system_message.txt b/MagicQuill/LLaVA/playground/data/prompts/conversation/system_message.txt new file mode 100644 index 0000000000000000000000000000000000000000..6eb89c0c1408299f1423064814d78c293acf9da2 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/conversation/system_message.txt @@ -0,0 +1,12 @@ +You are an AI visual assistant, and you are seeing a single image. What you see are provided with five sentences, describing the same image you are looking at. Answer all questions as you are seeing the image. + +Design a conversation between you and a person asking about this photo. The answers should be in a tone that a visual AI assistant is seeing the image and answering the question. +Ask diverse questions and give corresponding answers. + +Include questions asking about the visual content of the image, including the object types, counting the objects, object actions, object locations, relative positions between objects, etc. Only include questions that have definite answers: +(1) one can see the content in the image that the question asks about and can answer confidently; +(2) one can determine confidently from the image that it is not in the image. +Do not ask any question that cannot be answered confidently. + +Also include complex questions that are relevant to the content in the image, for example, asking about background knowledge of the objects in the image, asking to discuss about events happening in the image, etc. Again, do not ask about uncertain details. +Provide detailed answers when answering complex questions. For example, give detailed examples or reasoning steps to make the content more convincing and well-organized. You can include multiple paragraphs if necessary. \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/detail_description/000_caps.txt b/MagicQuill/LLaVA/playground/data/prompts/detail_description/000_caps.txt new file mode 100644 index 0000000000000000000000000000000000000000..c8c10e30e2d7f9bde33105715b04f5251d5c1950 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/detail_description/000_caps.txt @@ -0,0 +1,18 @@ +A harbor filled with lots of boats next to a building. +A bicycle parked in front of several boats at a dock. +A red bicycle in front of a line of docked white yachts +A bike sits before boats which sit before a long building. +A bicycle is a convenient means of land transportation when you live on a boat. + +bicycle: [0.287, 0.641, 0.507, 0.874] +bicycle: [0.566, 0.667, 0.63, 0.731] +boat: [0.318, 0.579, 0.575, 0.724] +boat: [0.704, 0.607, 0.818, 0.727] +boat: [0.818, 0.601, 0.942, 0.744] +boat: [0.002, 0.53, 0.243, 0.71] +boat: [0.541, 0.611, 0.668, 0.731] +person: [0.778, 0.527, 0.797, 0.57] +cup: [0.708, 0.733, 0.724, 0.758] +boat: [0.236, 0.532, 0.404, 0.64] +boat: [0.81, 0.632, 0.836, 0.676] +boat: [0.957, 0.526, 1.0, 0.752] \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/detail_description/000_conv.txt b/MagicQuill/LLaVA/playground/data/prompts/detail_description/000_conv.txt new file mode 100644 index 0000000000000000000000000000000000000000..d4a24572427098354f723fad5e737ff6dfe223fb --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/detail_description/000_conv.txt @@ -0,0 +1,3 @@ +It is a harbor filled with numerous boats of various sizes docked next to a long building. Among the boats, there are a few white yachts lined up, standing out from the rest. There is a red bicycle prominently parked in front of the line of docked boats, serving as a convenient means of land transportation for those living on the boats. Another bicycle can be seen further back in the scene, near the middle of the harbor. + +A person is visible near the right side of the harbor, possibly enjoying the view or attending to their boat. Additionally, there is a cup placed on a surface near the middle of the scene. \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/detail_description/001_caps.txt b/MagicQuill/LLaVA/playground/data/prompts/detail_description/001_caps.txt new file mode 100644 index 0000000000000000000000000000000000000000..2065dfb20a6e40128749d507ecc27d01349e2ad9 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/detail_description/001_caps.txt @@ -0,0 +1,18 @@ +A group of people standing outside of a black vehicle with various luggage. +Luggage surrounds a vehicle in an underground parking area +People try to fit all of their luggage in an SUV. +The sport utility vehicle is parked in the public garage, being packed for a trip +Some people with luggage near a van that is transporting it. + +person: [0.681, 0.242, 0.774, 0.694] +person: [0.63, 0.222, 0.686, 0.516] +person: [0.444, 0.233, 0.487, 0.34] +backpack: [0.384, 0.696, 0.485, 0.914] +backpack: [0.755, 0.413, 0.846, 0.692] +suitcase: [0.758, 0.413, 0.845, 0.69] +suitcase: [0.1, 0.497, 0.173, 0.579] +bicycle: [0.282, 0.363, 0.327, 0.442] +car: [0.786, 0.25, 0.848, 0.322] +car: [0.783, 0.27, 0.827, 0.335] +car: [0.86, 0.254, 0.891, 0.3] +car: [0.261, 0.101, 0.787, 0.626] \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/detail_description/001_conv.txt b/MagicQuill/LLaVA/playground/data/prompts/detail_description/001_conv.txt new file mode 100644 index 0000000000000000000000000000000000000000..d2eaef8ea3754d8ec0695e328907a8d62553de46 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/detail_description/001_conv.txt @@ -0,0 +1,5 @@ +The image is an underground parking area with a black sport utility vehicle (SUV) parked. There are three people in the scene, with one person standing closer to the left side of the vehicle, another person in the middle, and the third person on the right side. They are all working together to pack their luggage into the SUV for a trip. + +In the parking area, various luggage items are scattered around the vehicle. There are two backpacks, one located near the left rear wheel and the other closer to the right side of the vehicle. Additionally, there are two suitcases, one on the right side of the car and another further away near the center of the parking area. A bicycle can also be seen on the left side of the vehicle. + +Other cars are parked around the main SUV, with one car positioned behind it and slightly to the left, another behind and slightly to the right, and the third car further behind on the right side. \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/detail_description/002_caps.txt b/MagicQuill/LLaVA/playground/data/prompts/detail_description/002_caps.txt new file mode 100644 index 0000000000000000000000000000000000000000..70284585018497b091ba797a05d57c07e8bce3b6 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/detail_description/002_caps.txt @@ -0,0 +1,15 @@ +A man holds a Wii-mote above his head while another looks on. +A guy and his friend are playing Nintendo Wii. +A young man is holding a video game remote over his head. +two men standing in a room while one plays with a wii mote +Some guys standing and playing a video game. + +couch: [0.697, 0.759, 0.995, 1.0] +dining table: [0.426, 0.755, 1.0, 0.987] +person: [0.082, 0.252, 0.342, 1.0] +person: [0.399, 0.085, 0.742, 0.982] +remote: [0.477, 0.135, 0.516, 0.187] +sink: [0.016, 0.501, 0.063, 0.52] +potted plant: [0.798, 0.384, 0.888, 0.645] +refrigerator: [0.305, 0.389, 0.414, 0.547] +chair: [0.72, 0.509, 0.858, 0.725] \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/detail_description/002_conv.txt b/MagicQuill/LLaVA/playground/data/prompts/detail_description/002_conv.txt new file mode 100644 index 0000000000000000000000000000000000000000..56881c770ec5aca56bc2bf6c38cb6101ae58fa24 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/detail_description/002_conv.txt @@ -0,0 +1,3 @@ +The image shows two men standing in a room, engaged in playing a video game on a Nintendo Wii console. One of the men is holding a Wii remote above his head with enthusiasm, while the other man looks on, likely enjoying the friendly competition. + +The room appears to be a living space with a couch located in the background and a dining table nearby. A potted plant can be seen placed close to the couch, and a chair is situated in the middle of the room. The room also features a kitchen area with a sink and a refrigerator visible in the background. \ No newline at end of file diff --git a/MagicQuill/LLaVA/playground/data/prompts/detail_description/system_message.txt b/MagicQuill/LLaVA/playground/data/prompts/detail_description/system_message.txt new file mode 100644 index 0000000000000000000000000000000000000000..fa836ca4b4d836a539f7e6d0aa2a012e6996edf5 --- /dev/null +++ b/MagicQuill/LLaVA/playground/data/prompts/detail_description/system_message.txt @@ -0,0 +1,7 @@ +You are an AI visual assistant that can analyze a single image. You receive five sentences, each describing the same image you are observing. In addition, specific object locations within the image are given, along with detailed coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y. + +Using the provided caption and bounding box information, describe the scene in a detailed manner. + +Instead of directly mentioning the bounding box coordinates, utilize this data to explain the scene using natural language. Include details like object counts, position of the objects, relative position between the objects. + +When using the information from the caption and coordinates, directly explain the scene, and do not mention that the information source is the caption or the bounding box. Always answer as if you are directly looking at the image. \ No newline at end of file diff --git a/MagicQuill/LLaVA/predict.py b/MagicQuill/LLaVA/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..25367e95edb6a30db6627c7993b99d8c7e526a07 --- /dev/null +++ b/MagicQuill/LLaVA/predict.py @@ -0,0 +1,155 @@ +import torch + +from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN +from llava.conversation import conv_templates, SeparatorStyle +from llava.model.builder import load_pretrained_model +from llava.utils import disable_torch_init +from llava.mm_utils import tokenizer_image_token +from transformers.generation.streamers import TextIteratorStreamer + +from PIL import Image + +import requests +from io import BytesIO + +from cog import BasePredictor, Input, Path, ConcatenateIterator +import time +import subprocess +from threading import Thread + +import os +os.environ["HUGGINGFACE_HUB_CACHE"] = os.getcwd() + "/weights" + +# url for the weights mirror +REPLICATE_WEIGHTS_URL = "https://weights.replicate.delivery/default" +# files to download from the weights mirrors +weights = [ + { + "dest": "liuhaotian/llava-v1.5-13b", + # git commit hash from huggingface + "src": "llava-v1.5-13b/006818fc465ebda4c003c0998674d9141d8d95f8", + "files": [ + "config.json", + "generation_config.json", + "pytorch_model-00001-of-00003.bin", + "pytorch_model-00002-of-00003.bin", + "pytorch_model-00003-of-00003.bin", + "pytorch_model.bin.index.json", + "special_tokens_map.json", + "tokenizer.model", + "tokenizer_config.json", + ] + }, + { + "dest": "openai/clip-vit-large-patch14-336", + "src": "clip-vit-large-patch14-336/ce19dc912ca5cd21c8a653c79e251e808ccabcd1", + "files": [ + "config.json", + "preprocessor_config.json", + "pytorch_model.bin" + ], + } +] + +def download_json(url: str, dest: Path): + res = requests.get(url, allow_redirects=True) + if res.status_code == 200 and res.content: + with dest.open("wb") as f: + f.write(res.content) + else: + print(f"Failed to download {url}. Status code: {res.status_code}") + +def download_weights(baseurl: str, basedest: str, files: list[str]): + basedest = Path(basedest) + start = time.time() + print("downloading to: ", basedest) + basedest.mkdir(parents=True, exist_ok=True) + for f in files: + dest = basedest / f + url = os.path.join(REPLICATE_WEIGHTS_URL, baseurl, f) + if not dest.exists(): + print("downloading url: ", url) + if dest.suffix == ".json": + download_json(url, dest) + else: + subprocess.check_call(["pget", url, str(dest)], close_fds=False) + print("downloading took: ", time.time() - start) + +class Predictor(BasePredictor): + def setup(self) -> None: + """Load the model into memory to make running multiple predictions efficient""" + for weight in weights: + download_weights(weight["src"], weight["dest"], weight["files"]) + disable_torch_init() + + self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model("liuhaotian/llava-v1.5-13b", model_name="llava-v1.5-13b", model_base=None, load_8bit=False, load_4bit=False) + + def predict( + self, + image: Path = Input(description="Input image"), + prompt: str = Input(description="Prompt to use for text generation"), + top_p: float = Input(description="When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens", ge=0.0, le=1.0, default=1.0), + temperature: float = Input(description="Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic", default=0.2, ge=0.0), + max_tokens: int = Input(description="Maximum number of tokens to generate. A word is generally 2-3 tokens", default=1024, ge=0), + ) -> ConcatenateIterator[str]: + """Run a single prediction on the model""" + + conv_mode = "llava_v1" + conv = conv_templates[conv_mode].copy() + + image_data = load_image(str(image)) + image_tensor = self.image_processor.preprocess(image_data, return_tensors='pt')['pixel_values'].half().cuda() + + # loop start + + # just one turn, always prepend image token + inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt + conv.append_message(conv.roles[0], inp) + + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() + stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 + keywords = [stop_str] + streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, timeout=20.0) + + with torch.inference_mode(): + thread = Thread(target=self.model.generate, kwargs=dict( + inputs=input_ids, + images=image_tensor, + do_sample=True, + temperature=temperature, + top_p=top_p, + max_new_tokens=max_tokens, + streamer=streamer, + use_cache=True)) + thread.start() + # workaround: second-to-last token is always " " + # but we want to keep it if it's not the second-to-last token + prepend_space = False + for new_text in streamer: + if new_text == " ": + prepend_space = True + continue + if new_text.endswith(stop_str): + new_text = new_text[:-len(stop_str)].strip() + prepend_space = False + elif prepend_space: + new_text = " " + new_text + prepend_space = False + if len(new_text): + yield new_text + if prepend_space: + yield " " + thread.join() + + +def load_image(image_file): + if image_file.startswith('http') or image_file.startswith('https'): + response = requests.get(image_file) + image = Image.open(BytesIO(response.content)).convert('RGB') + else: + image = Image.open(image_file).convert('RGB') + return image + diff --git a/MagicQuill/LLaVA/pyproject.toml b/MagicQuill/LLaVA/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..732a72e2fdc6d79ba22ff18fbc67d3adceb6187f --- /dev/null +++ b/MagicQuill/LLaVA/pyproject.toml @@ -0,0 +1,37 @@ +[build-system] +requires = ["setuptools>=61.0"] +build-backend = "setuptools.build_meta" + +[project] +name = "llava" +version = "1.2.2.post1" +description = "Towards GPT-4 like large language and visual assistant." +readme = "README.md" +requires-python = ">=3.8" +classifiers = [ + "Programming Language :: Python :: 3", + "License :: OSI Approved :: Apache Software License", +] +dependencies = [ + "torch==2.1.2", "torchvision==0.16.2", + "transformers==4.37.2", "tokenizers==0.15.1", "sentencepiece==0.1.99", "shortuuid", + "accelerate==0.21.0", "peft", "bitsandbytes", + "pydantic", "markdown2[all]", "numpy", "scikit-learn==1.2.2", + "gradio==4.16.0", "gradio_client==0.8.1", + "requests", "httpx==0.24.0", "uvicorn", "fastapi", + "einops==0.6.1", "einops-exts==0.0.4", "timm==0.6.13", +] + +[project.optional-dependencies] +train = ["deepspeed==0.12.6", "ninja", "wandb"] +build = ["build", "twine"] + +[project.urls] +"Homepage" = "https://llava-vl.github.io" +"Bug Tracker" = "https://github.com/haotian-liu/LLaVA/issues" + +[tool.setuptools.packages.find] +exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"] + +[tool.wheel] +exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"] diff --git a/MagicQuill/LLaVA/scripts/convert_gqa_for_eval.py b/MagicQuill/LLaVA/scripts/convert_gqa_for_eval.py new file mode 100644 index 0000000000000000000000000000000000000000..4d46c8b876df618faac548e9b369109d541f4f23 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/convert_gqa_for_eval.py @@ -0,0 +1,18 @@ +import os +import json +import argparse + +parser = argparse.ArgumentParser() +parser.add_argument("--src", type=str) +parser.add_argument("--dst", type=str) +args = parser.parse_args() + +all_answers = [] +for line_idx, line in enumerate(open(args.src)): + res = json.loads(line) + question_id = res['question_id'] + text = res['text'].rstrip('.').lower() + all_answers.append({"questionId": question_id, "prediction": text}) + +with open(args.dst, 'w') as f: + json.dump(all_answers, f) diff --git a/MagicQuill/LLaVA/scripts/convert_mmbench_for_submission.py b/MagicQuill/LLaVA/scripts/convert_mmbench_for_submission.py new file mode 100644 index 0000000000000000000000000000000000000000..27baec12f9ef48d4e3df41e15b1d2644aab4174b --- /dev/null +++ b/MagicQuill/LLaVA/scripts/convert_mmbench_for_submission.py @@ -0,0 +1,27 @@ +import os +import json +import argparse +import pandas as pd + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument("--annotation-file", type=str, required=True) + parser.add_argument("--result-dir", type=str, required=True) + parser.add_argument("--upload-dir", type=str, required=True) + parser.add_argument("--experiment", type=str, required=True) + + return parser.parse_args() + +if __name__ == "__main__": + args = get_args() + + df = pd.read_table(args.annotation_file) + + cur_df = df.copy() + cur_df = cur_df.drop(columns=['hint', 'category', 'source', 'image', 'comment', 'l2-category']) + cur_df.insert(6, 'prediction', None) + for pred in open(os.path.join(args.result_dir, f"{args.experiment}.jsonl")): + pred = json.loads(pred) + cur_df.loc[df['index'] == pred['question_id'], 'prediction'] = pred['text'] + + cur_df.to_excel(os.path.join(args.upload_dir, f"{args.experiment}.xlsx"), index=False, engine='openpyxl') diff --git a/MagicQuill/LLaVA/scripts/convert_mmvet_for_eval.py b/MagicQuill/LLaVA/scripts/convert_mmvet_for_eval.py new file mode 100644 index 0000000000000000000000000000000000000000..97f5cfb7fb7691ef3921e3e6afc6d82ec54d4c6c --- /dev/null +++ b/MagicQuill/LLaVA/scripts/convert_mmvet_for_eval.py @@ -0,0 +1,18 @@ +import os +import json +import argparse + +parser = argparse.ArgumentParser() +parser.add_argument("--src", type=str) +parser.add_argument("--dst", type=str) +args = parser.parse_args() + +cur_result = {} + +for line in open(args.src): + data = json.loads(line) + qid = data['question_id'] + cur_result[f'v1_{qid}'] = data['text'] + +with open(args.dst, 'w') as f: + json.dump(cur_result, f, indent=2) diff --git a/MagicQuill/LLaVA/scripts/convert_seed_for_submission.py b/MagicQuill/LLaVA/scripts/convert_seed_for_submission.py new file mode 100644 index 0000000000000000000000000000000000000000..ae903e63087516bc8ae77142532196be6a85589c --- /dev/null +++ b/MagicQuill/LLaVA/scripts/convert_seed_for_submission.py @@ -0,0 +1,74 @@ +import os +import json +import argparse + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument("--annotation-file", type=str) + parser.add_argument("--result-file", type=str) + parser.add_argument("--result-upload-file", type=str) + return parser.parse_args() + + +def eval_single(result_file, eval_only_type=None): + results = {} + for line in open(result_file): + row = json.loads(line) + results[row['question_id']] = row + + type_counts = {} + correct_counts = {} + for question_data in data['questions']: + if eval_only_type is not None and question_data['data_type'] != eval_only_type: continue + data_type = question_data['question_type_id'] + type_counts[data_type] = type_counts.get(data_type, 0) + 1 + try: + question_id = int(question_data['question_id']) + except: + question_id = question_data['question_id'] + if question_id not in results: + correct_counts[data_type] = correct_counts.get(data_type, 0) + continue + row = results[question_id] + if row['text'] == question_data['answer']: + correct_counts[data_type] = correct_counts.get(data_type, 0) + 1 + + total_count = 0 + total_correct = 0 + for data_type in sorted(type_counts.keys()): + accuracy = correct_counts[data_type] / type_counts[data_type] * 100 + if eval_only_type is None: + print(f"{ques_type_id_to_name[data_type]}: {accuracy:.2f}%") + + total_count += type_counts[data_type] + total_correct += correct_counts[data_type] + + total_accuracy = total_correct / total_count * 100 + if eval_only_type is None: + print(f"Total accuracy: {total_accuracy:.2f}%") + else: + print(f"{eval_only_type} accuracy: {total_accuracy:.2f}%") + + return results + +if __name__ == "__main__": + args = get_args() + data = json.load(open(args.annotation_file)) + ques_type_id_to_name = {id:n for n,id in data['question_type'].items()} + + results = eval_single(args.result_file) + eval_single(args.result_file, eval_only_type='image') + eval_single(args.result_file, eval_only_type='video') + + with open(args.result_upload_file, 'w') as fp: + for question in data['questions']: + qid = question['question_id'] + if qid in results: + result = results[qid] + else: + result = results[int(qid)] + fp.write(json.dumps({ + 'question_id': qid, + 'prediction': result['text'] + }) + '\n') diff --git a/MagicQuill/LLaVA/scripts/convert_sqa_to_llava.py b/MagicQuill/LLaVA/scripts/convert_sqa_to_llava.py new file mode 100644 index 0000000000000000000000000000000000000000..26fe3002413a23b5029e540c8b338ebb14307bf6 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/convert_sqa_to_llava.py @@ -0,0 +1,88 @@ +import json +import os +import fire +import re +from convert_sqa_to_llava_base_prompt import build_prompt_chatbot + + +def convert_to_llava(base_dir, split, prompt_format="QCM-LEA"): + split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[split] + problems = json.load(open(os.path.join(base_dir, "problems.json"))) + + split_problems = build_prompt_chatbot( + problems, split_indices, prompt_format, + use_caption=False, is_test=False) + + target_format = [] + for prob_id, (input, output) in split_problems.items(): + if input.startswith('Question: '): + input = input.replace('Question: ', '') + if output.startswith('Answer: '): + output = output.replace('Answer: ', '') + + raw_prob_data = problems[prob_id] + if raw_prob_data['image'] is None: + target_format.append({ + "id": prob_id, + "conversations": [ + {'from': 'human', 'value': f"{input}"}, + {'from': 'gpt', 'value': f"{output}"}, + ], + }) + + else: + target_format.append({ + "id": prob_id, + "image": os.path.join(prob_id, raw_prob_data['image']), + "conversations": [ + {'from': 'human', 'value': f"{input}\n"}, + {'from': 'gpt', 'value': f"{output}"}, + ], + }) + + print(f'Number of samples: {len(target_format)}') + + with open(os.path.join(base_dir, f"llava_{split}_{prompt_format}.json"), "w") as f: + json.dump(target_format, f, indent=2) + + +def convert_to_jsonl(base_dir, split, prompt_format="QCM-LEPA"): + split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[split] + problems = json.load(open(os.path.join(base_dir, "problems.json"))) + + split_problems = build_prompt_chatbot( + problems, split_indices, prompt_format, + use_caption=False, is_test=False) + + writer = open(os.path.join(base_dir, f"scienceqa_{split}_{prompt_format}.jsonl"), "w") + for prob_id, (input, output) in split_problems.items(): + if input.startswith('Question: '): + input = input.replace('Question: ', '') + if output.startswith('Answer: '): + output = output.replace('Answer: ', '') + + raw_prob_data = problems[prob_id] + if raw_prob_data['image'] is None: + data = { + "id": prob_id, + "instruction": f"{input}", + "output": f"{output}", + } + + else: + data = { + "id": prob_id, + "image": os.path.join(prob_id, raw_prob_data['image']), + "instruction": f"{input}\n", + "output": f"{output}", + } + writer.write(json.dumps(data) + '\n') + writer.close() + + +def main(task, **kwargs): + globals()[task](**kwargs) + + +if __name__ == "__main__": + fire.Fire(main) diff --git a/MagicQuill/LLaVA/scripts/convert_sqa_to_llava_base_prompt.py b/MagicQuill/LLaVA/scripts/convert_sqa_to_llava_base_prompt.py new file mode 100644 index 0000000000000000000000000000000000000000..b327fcc29eb44d7fe68be35da25bafa0e1d6feba --- /dev/null +++ b/MagicQuill/LLaVA/scripts/convert_sqa_to_llava_base_prompt.py @@ -0,0 +1,334 @@ +def get_question_text(problem): + question = problem['question'] + return question + + +def get_context_text(problem, use_caption): + txt_context = problem['hint'] + img_context = problem['caption'] if use_caption else "" + context = " ".join([txt_context, img_context]).strip() + if context == "": + context = "N/A" + return context + + +def get_choice_text(probelm, options): + choices = probelm['choices'] + choice_list = [] + for i, c in enumerate(choices): + choice_list.append("({}) {}".format(options[i], c)) + choice_txt = " ".join(choice_list) + #print(choice_txt) + return choice_txt + + +def get_answer(problem, options): + return options[problem['answer']] + + +def get_lecture_text(problem): + # \\n: GPT-3 can generate the lecture with more tokens. + lecture = problem['lecture'].replace("\n", "\\n") + return lecture + + +def get_solution_text(problem): + # \\n: GPT-3 can generate the solution with more tokens + solution = problem['solution'].replace("\n", "\\n") + return solution + + +def create_one_example_chatbot(format, question, context, choice, answer, lecture, solution, test_example=True): + + input_format, output_format = format.split("-") + + ## Inputs + if input_format == "CQM": + input = f"Context: {context}\nQuestion: {question}\nOptions: {choice}\n" + elif input_format == "QCM": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\n" + # upper bound experiment + elif input_format == "QCML": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture}\n" + elif input_format == "QCME": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {solution}\n" + elif input_format == "QCMLE": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture} {solution}\n" + + elif input_format == "QCLM": + input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture}\nOptions: {choice}\n" + elif input_format == "QCEM": + input = f"Question: {question}\nContext: {context}\nBECAUSE: {solution}\nOptions: {choice}\n" + elif input_format == "QCLEM": + input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture} {solution}\nOptions: {choice}\n" + + # Outputs + if test_example: + output = "Answer:" + elif output_format == 'A': + output = f"Answer: The answer is {answer}." + + elif output_format == 'AL': + output = f"Answer: The answer is {answer}. BECAUSE: {solution}" + elif output_format == 'AE': + output = f"Answer: The answer is {answer}. BECAUSE: {lecture}" + elif output_format == 'ALE': + output = f"Answer: The answer is {answer}. BECAUSE: {lecture} {solution}" + elif output_format == 'AEL': + output = f"Answer: The answer is {answer}. BECAUSE: {solution} {lecture}" + + elif output_format == 'LA': + output = f"Answer: {lecture} The answer is {answer}." + elif output_format == 'EA': + output = f"Answer: {solution} The answer is {answer}." + elif output_format == 'LEA': + output = f"Answer: {lecture} {solution} The answer is {answer}." + elif output_format == 'ELA': + output = f"Answer: {solution} {lecture} The answer is {answer}." + elif output_format == 'LEPA': + output = '' + if len(lecture.strip()) > 0: + output += f"LECTURE: {lecture}\n" + if len(solution.strip()) > 0: + output += f"SOLUTION: {solution}\n" + output += '###\n' + output += f"ANSWER: {answer}." + + input = input.replace(" ", " ").strip() + output = output.replace(" ", " ").strip() + if input.endswith("BECAUSE:"): + input = input.replace("BECAUSE:", "").strip() + if output.endswith("BECAUSE:"): + output = output.replace("BECAUSE:", "").strip() + return input, output + + +def create_one_example(format, question, context, choice, answer, lecture, solution, test_example=True): + + input_format, output_format = format.split("-") + + ## Inputs + if input_format == "CQM": + input = f"Context: {context}\nQuestion: {question}\nOptions: {choice}\n" + elif input_format == "QCM": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\n" + # upper bound experiment + elif input_format == "QCML": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture}\n" + elif input_format == "QCME": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {solution}\n" + elif input_format == "QCMLE": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture} {solution}\n" + + elif input_format == "QCLM": + input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture}\nOptions: {choice}\n" + elif input_format == "QCEM": + input = f"Question: {question}\nContext: {context}\nBECAUSE: {solution}\nOptions: {choice}\n" + elif input_format == "QCLEM": + input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture} {solution}\nOptions: {choice}\n" + + # Outputs + if test_example: + output = "Answer:" + elif output_format == 'A': + output = f"Answer: The answer is {answer}." + + elif output_format == 'AL': + output = f"Answer: The answer is {answer}. BECAUSE: {solution}" + elif output_format == 'AE': + output = f"Answer: The answer is {answer}. BECAUSE: {lecture}" + elif output_format == 'ALE': + output = f"Answer: The answer is {answer}. BECAUSE: {lecture} {solution}" + elif output_format == 'AEL': + output = f"Answer: The answer is {answer}. BECAUSE: {solution} {lecture}" + + elif output_format == 'LA': + output = f"Answer: {lecture} The answer is {answer}." + elif output_format == 'EA': + output = f"Answer: {solution} The answer is {answer}." + elif output_format == 'LEA': + output = f"Answer: {lecture} {solution} The answer is {answer}." + elif output_format == 'ELA': + output = f"Answer: {solution} {lecture} The answer is {answer}." + + text = input + output + text = text.replace(" ", " ").strip() + if text.endswith("BECAUSE:"): + text = text.replace("BECAUSE:", "").strip() + return text + + + +def create_one_example_gpt4(format, question, context, choice, answer, lecture, solution, test_example=True): + + input_format, output_format = format.split("-") + + ## Inputs + if input_format == "CQM": + input = f"Context: {context}\nQuestion: {question}\nOptions: {choice}\n" + elif input_format == "QCM": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\n" + # upper bound experiment + elif input_format == "QCML": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture}\n" + elif input_format == "QCME": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {solution}\n" + elif input_format == "QCMLE": + input = f"Question: {question}\nContext: {context}\nOptions: {choice}\nBECAUSE: {lecture} {solution}\n" + + elif input_format == "QCLM": + input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture}\nOptions: {choice}\n" + elif input_format == "QCEM": + input = f"Question: {question}\nContext: {context}\nBECAUSE: {solution}\nOptions: {choice}\n" + elif input_format == "QCLEM": + input = f"Question: {question}\nContext: {context}\nBECAUSE: {lecture} {solution}\nOptions: {choice}\n" + + # Outputs + if test_example: + output = "Answer:" + elif output_format == 'A': + output = f"Answer: The answer is {answer}." + + elif output_format == 'AL': + output = f"Answer: The answer is {answer}. BECAUSE: {solution}" + elif output_format == 'AE': + output = f"Answer: The answer is {answer}. BECAUSE: {lecture}" + elif output_format == 'ALE': + output = f"Answer: The answer is {answer}. BECAUSE: {lecture} {solution}" + elif output_format == 'AEL': + output = f"Answer: The answer is {answer}. BECAUSE: {solution} {lecture}" + + elif output_format == 'LA': + output = f"Answer: {lecture} The answer is {answer}." + elif output_format == 'EA': + output = f"Answer: {solution} The answer is {answer}." + elif output_format == 'LEA': + output = f"Answer: {lecture} {solution} The answer is {answer}." + elif output_format == 'ELA': + output = f"Answer: {solution} {lecture} The answer is {answer}." + + input = input.replace(" ", " ").strip() + output = output.replace(" ", " ").strip() + if output.endswith("BECAUSE:"): + output = output.replace("BECAUSE:", "").strip() + + user_prompt = {"role": "user", "content": f"Can you explain {input}?"} + assistant_prompt = {"role": "assistant", "content": f"{output}"} + + return user_prompt, assistant_prompt + + +def build_prompt_chatbot(problems, shot_qids, prompt_format, use_caption=False, options=["A", "B", "C", "D", "E"], is_test=False): + examples = {} + + for qid in shot_qids: + question = get_question_text(problems[qid]) + context = get_context_text(problems[qid], use_caption) + choice = get_choice_text(problems[qid], options) + answer = get_answer(problems[qid], options) + lecture = get_lecture_text(problems[qid]).replace('\\n', '\n') + solution = get_solution_text(problems[qid]).replace('\\n', '\n') + + train_example = create_one_example_chatbot(prompt_format, + question, + context, + choice, + answer, + lecture, + solution, + test_example=is_test) + examples[qid] = train_example + return examples + + +def build_prompt(problems, shot_qids, test_qid, args): + + examples = [] + + # n-shot training examples + for qid in shot_qids: + question = get_question_text(problems[qid]) + context = get_context_text(problems[qid], args.use_caption) + choice = get_choice_text(problems[qid], args.options) + answer = get_answer(problems[qid], args.options) + lecture = get_lecture_text(problems[qid]) + solution = get_solution_text(problems[qid]) + + train_example = create_one_example(args.prompt_format, + question, + context, + choice, + answer, + lecture, + solution, + test_example=False) + examples.append(train_example) + + # test example + question = get_question_text(problems[test_qid]) + context = get_context_text(problems[test_qid], args.use_caption) + choice = get_choice_text(problems[test_qid], args.options) + answer = get_answer(problems[test_qid], args.options) + lecture = get_lecture_text(problems[test_qid]) + solution = get_solution_text(problems[test_qid]) + + test_example = create_one_example(args.prompt_format, + question, + context, + choice, + answer, + lecture, + solution, + test_example=True) + examples.append(test_example) + + # create the prompt input + prompt_input = '\n\n'.join(examples) + + return prompt_input + + +def build_prompt_gpt4(problems, shot_qids, test_qid, args): + + prompt_array = [{"role": "system", "content": "You are a helpful assistant."}] + + # n-shot training examples + for qid in shot_qids: + question = get_question_text(problems[qid]) + context = get_context_text(problems[qid], args.use_caption) + choice = get_choice_text(problems[qid], args.options) + answer = get_answer(problems[qid], args.options) + lecture = get_lecture_text(problems[qid]) + solution = get_solution_text(problems[qid]) + + user_prompt, assistant_prompt = create_one_example_gpt4(args.prompt_format, + question, + context, + choice, + answer, + lecture, + solution, + test_example=False) + prompt_array.append(user_prompt) + prompt_array.append(assistant_prompt) + + # test example + question = get_question_text(problems[test_qid]) + context = get_context_text(problems[test_qid], args.use_caption) + choice = get_choice_text(problems[test_qid], args.options) + answer = get_answer(problems[test_qid], args.options) + lecture = get_lecture_text(problems[test_qid]) + solution = get_solution_text(problems[test_qid]) + + user_prompt, assistant_prompt = create_one_example_gpt4(args.prompt_format, + question, + context, + choice, + answer, + lecture, + solution, + test_example=True) + prompt_array.append(user_prompt) + prompt_array.append(assistant_prompt) + + return prompt_array \ No newline at end of file diff --git a/MagicQuill/LLaVA/scripts/convert_vizwiz_for_submission.py b/MagicQuill/LLaVA/scripts/convert_vizwiz_for_submission.py new file mode 100644 index 0000000000000000000000000000000000000000..7836d19f573d30e4224f2f89a53104acf03efb91 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/convert_vizwiz_for_submission.py @@ -0,0 +1,47 @@ +import os +import argparse +import json + +from llava.eval.m4c_evaluator import EvalAIAnswerProcessor + + +def parse_args(): + parser = argparse.ArgumentParser() + parser.add_argument('--annotation-file', type=str, required=True) + parser.add_argument('--result-file', type=str, required=True) + parser.add_argument('--result-upload-file', type=str, required=True) + return parser.parse_args() + + +if __name__ == '__main__': + + args = parse_args() + + os.makedirs(os.path.dirname(args.result_upload_file), exist_ok=True) + + results = [] + error_line = 0 + for line_idx, line in enumerate(open(args.result_file)): + try: + results.append(json.loads(line)) + except: + error_line += 1 + results = {x['question_id']: x['text'] for x in results} + test_split = [json.loads(line) for line in open(args.annotation_file)] + split_ids = set([x['question_id'] for x in test_split]) + + print(f'total results: {len(results)}, total split: {len(test_split)}, error_line: {error_line}') + + all_answers = [] + + answer_processor = EvalAIAnswerProcessor() + + for x in test_split: + assert x['question_id'] in results + all_answers.append({ + 'image': x['image'], + 'answer': answer_processor(results[x['question_id']]) + }) + + with open(args.result_upload_file, 'w') as f: + json.dump(all_answers, f) diff --git a/MagicQuill/LLaVA/scripts/convert_vqav2_for_submission.py b/MagicQuill/LLaVA/scripts/convert_vqav2_for_submission.py new file mode 100644 index 0000000000000000000000000000000000000000..05f67b33a73e17c683dbf9c09f84bacd10f285f5 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/convert_vqav2_for_submission.py @@ -0,0 +1,56 @@ +import os +import argparse +import json + +from llava.eval.m4c_evaluator import EvalAIAnswerProcessor + + +def parse_args(): + parser = argparse.ArgumentParser() + parser.add_argument('--dir', type=str, default="./playground/data/eval/vqav2") + parser.add_argument('--ckpt', type=str, required=True) + parser.add_argument('--split', type=str, required=True) + return parser.parse_args() + + +if __name__ == '__main__': + + args = parse_args() + + src = os.path.join(args.dir, 'answers', args.split, args.ckpt, 'merge.jsonl') + test_split = os.path.join(args.dir, 'llava_vqav2_mscoco_test2015.jsonl') + dst = os.path.join(args.dir, 'answers_upload', args.split, f'{args.ckpt}.json') + os.makedirs(os.path.dirname(dst), exist_ok=True) + + results = [] + error_line = 0 + for line_idx, line in enumerate(open(src)): + try: + results.append(json.loads(line)) + except: + error_line += 1 + + results = {x['question_id']: x['text'] for x in results} + test_split = [json.loads(line) for line in open(test_split)] + split_ids = set([x['question_id'] for x in test_split]) + + print(f'total results: {len(results)}, total split: {len(test_split)}, error_line: {error_line}') + + all_answers = [] + + answer_processor = EvalAIAnswerProcessor() + + for x in test_split: + if x['question_id'] not in results: + all_answers.append({ + 'question_id': x['question_id'], + 'answer': '' + }) + else: + all_answers.append({ + 'question_id': x['question_id'], + 'answer': answer_processor(results[x['question_id']]) + }) + + with open(dst, 'w') as f: + json.dump(all_answers, open(dst, 'w')) diff --git a/MagicQuill/LLaVA/scripts/extract_mm_projector.py b/MagicQuill/LLaVA/scripts/extract_mm_projector.py new file mode 100644 index 0000000000000000000000000000000000000000..45be31e896e9c087093bd9bcb6d355ec6dfd11ab --- /dev/null +++ b/MagicQuill/LLaVA/scripts/extract_mm_projector.py @@ -0,0 +1,47 @@ +""" +This is just a utility that I use to extract the projector for quantized models. +It is NOT necessary at all to train, or run inference/serve demos. +Use this script ONLY if you fully understand its implications. +""" + + +import os +import argparse +import torch +import json +from collections import defaultdict + + +def parse_args(): + parser = argparse.ArgumentParser(description='Extract MMProjector weights') + parser.add_argument('--model-path', type=str, help='model folder') + parser.add_argument('--output', type=str, help='output file') + args = parser.parse_args() + return args + + +if __name__ == '__main__': + args = parse_args() + + keys_to_match = ['mm_projector'] + ckpt_to_key = defaultdict(list) + try: + model_indices = json.load(open(os.path.join(args.model_path, 'pytorch_model.bin.index.json'))) + for k, v in model_indices['weight_map'].items(): + if any(key_match in k for key_match in keys_to_match): + ckpt_to_key[v].append(k) + except FileNotFoundError: + # Smaller models or model checkpoints saved by DeepSpeed. + v = 'pytorch_model.bin' + for k in torch.load(os.path.join(args.model_path, v), map_location='cpu').keys(): + if any(key_match in k for key_match in keys_to_match): + ckpt_to_key[v].append(k) + + loaded_weights = {} + + for ckpt_name, weight_keys in ckpt_to_key.items(): + ckpt = torch.load(os.path.join(args.model_path, ckpt_name), map_location='cpu') + for k in weight_keys: + loaded_weights[k] = ckpt[k] + + torch.save(loaded_weights, args.output) diff --git a/MagicQuill/LLaVA/scripts/finetune.sh b/MagicQuill/LLaVA/scripts/finetune.sh new file mode 100644 index 0000000000000000000000000000000000000000..c14f770b481a548c978daca4b42fc0f74aeebe13 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/finetune.sh @@ -0,0 +1,48 @@ +#!/bin/bash + +# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! + +# Uncomment and set the following variables correspondingly to run this script: + +################## VICUNA ################## +# PROMPT_VERSION=v1 +# MODEL_VERSION="vicuna-v1-3-7b" +################## VICUNA ################## + +################## LLaMA-2 ################## +# PROMPT_VERSION="llava_llama_2" +# MODEL_VERSION="llama-2-7b-chat" +################## LLaMA-2 ################## + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --model_name_or_path ./checkpoints/$MODEL_VERSION \ + --version $PROMPT_VERSION \ + --data_path ./playground/data/llava_instruct_80k.json \ + --image_folder /path/to/coco/train2017 \ + --vision_tower openai/clip-vit-large-patch14 \ + --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune \ + --num_train_epochs 1 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/MagicQuill/LLaVA/scripts/finetune_full_schedule.sh b/MagicQuill/LLaVA/scripts/finetune_full_schedule.sh new file mode 100644 index 0000000000000000000000000000000000000000..59a0d4aa4d8f391c5b5e62452c4e9ef38934b4a9 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/finetune_full_schedule.sh @@ -0,0 +1,48 @@ +#!/bin/bash + +# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! + +# Uncomment and set the following variables correspondingly to run this script: + +################## VICUNA ################## +# PROMPT_VERSION=v1 +# MODEL_VERSION="vicuna-v1-3-7b" +################## VICUNA ################## + +################## LLaMA-2 ################## +# PROMPT_VERSION="llava_llama_2" +# MODEL_VERSION="llama-2-7b-chat" +################## LLaMA-2 ################## + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --model_name_or_path ./checkpoints/$MODEL_VERSION \ + --version $PROMPT_VERSION \ + --data_path ./playground/data/llava_instruct_158k.json \ + --image_folder /path/to/coco/train2017 \ + --vision_tower openai/clip-vit-large-patch14 \ + --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune \ + --num_train_epochs 3 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/MagicQuill/LLaVA/scripts/finetune_lora.sh b/MagicQuill/LLaVA/scripts/finetune_lora.sh new file mode 100644 index 0000000000000000000000000000000000000000..fc02e09d7792eb6a13ec32447b5e7f59ce141c8e --- /dev/null +++ b/MagicQuill/LLaVA/scripts/finetune_lora.sh @@ -0,0 +1,49 @@ +#!/bin/bash + +# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! + +# Uncomment and set the following variables correspondingly to run this script: + +################## VICUNA ################## +# PROMPT_VERSION=v1 +# MODEL_VERSION="vicuna-v1-3-7b" +################## VICUNA ################## + +################## LLaMA-2 ################## +# PROMPT_VERSION="llava_llama_2" +# MODEL_VERSION="llama-2-7b-chat" +################## LLaMA-2 ################## + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --lora_enable True \ + --model_name_or_path ./checkpoints/$MODEL_VERSION \ + --version $PROMPT_VERSION \ + --data_path ./playground/data/llava_instruct_80k.json \ + --image_folder /path/to/coco/train2017 \ + --vision_tower openai/clip-vit-large-patch14 \ + --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune_lora \ + --num_train_epochs 1 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --lazy_preprocess True \ + --dataloader_num_workers 4 \ + --report_to wandb diff --git a/MagicQuill/LLaVA/scripts/finetune_qlora.sh b/MagicQuill/LLaVA/scripts/finetune_qlora.sh new file mode 100644 index 0000000000000000000000000000000000000000..c2ed4c030cb7a3fff79f47a8e681f4df7c989100 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/finetune_qlora.sh @@ -0,0 +1,50 @@ +#!/bin/bash + +# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! + +# Uncomment and set the following variables correspondingly to run this script: + +################## VICUNA ################## +# PROMPT_VERSION=v1 +# MODEL_VERSION="vicuna-v1-3-7b" +################## VICUNA ################## + +################## LLaMA-2 ################## +# PROMPT_VERSION="llava_llama_2" +# MODEL_VERSION="llama-2-7b-chat" +################## LLaMA-2 ################## + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --lora_enable True \ + --bits 4 \ + --model_name_or_path ./checkpoints/$MODEL_VERSION \ + --version $PROMPT_VERSION \ + --data_path ./playground/data/llava_instruct_80k.json \ + --image_folder /path/to/coco/train2017 \ + --vision_tower openai/clip-vit-large-patch14 \ + --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune_lora \ + --num_train_epochs 1 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --lazy_preprocess True \ + --dataloader_num_workers 4 \ + --report_to wandb diff --git a/MagicQuill/LLaVA/scripts/finetune_sqa.sh b/MagicQuill/LLaVA/scripts/finetune_sqa.sh new file mode 100644 index 0000000000000000000000000000000000000000..3ed50288c31c118cab22312ad02a559d45725490 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/finetune_sqa.sh @@ -0,0 +1,36 @@ +#!/bin/bash + +# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --model_name_or_path lmsys/vicuna-13b-v1.3 \ + --version $PROMPT_VERSION \ + --data_path /Data/ScienceQA/data/scienceqa/llava_train_QCM-LEA.json \ + --image_folder /Data/ScienceQA/data/scienceqa/images/train \ + --vision_tower openai/clip-vit-large-patch14 \ + --pretrain_mm_mlp_adapter ./checkpoints/huggingface/liuhaotian/llava-pretrain-vicuna-13b-v1.3/mm_projector.bin \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-vicuna-13b-v1.3-pretrain_lcs558k_plain-ScienceQA_QCM_LEA-12e \ + --num_train_epochs 12 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/MagicQuill/LLaVA/scripts/merge_lora_weights.py b/MagicQuill/LLaVA/scripts/merge_lora_weights.py new file mode 100644 index 0000000000000000000000000000000000000000..3b39cc7beb12301379af7daebbb5553fa92093ea --- /dev/null +++ b/MagicQuill/LLaVA/scripts/merge_lora_weights.py @@ -0,0 +1,22 @@ +import argparse +from llava.model.builder import load_pretrained_model +from llava.mm_utils import get_model_name_from_path + + +def merge_lora(args): + model_name = get_model_name_from_path(args.model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, device_map='cpu') + + model.save_pretrained(args.save_model_path) + tokenizer.save_pretrained(args.save_model_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, required=True) + parser.add_argument("--model-base", type=str, required=True) + parser.add_argument("--save-model-path", type=str, required=True) + + args = parser.parse_args() + + merge_lora(args) diff --git a/MagicQuill/LLaVA/scripts/pretrain.sh b/MagicQuill/LLaVA/scripts/pretrain.sh new file mode 100644 index 0000000000000000000000000000000000000000..83f263dd570e447b3b009542d26688ce936436af --- /dev/null +++ b/MagicQuill/LLaVA/scripts/pretrain.sh @@ -0,0 +1,46 @@ +#!/bin/bash + +# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! + +# Uncomment and set the following variables correspondingly to run this script: + +# MODEL_VERSION=vicuna-v1-3-7b +# MODEL_VERSION=llama-2-7b-chat + +########### DO NOT CHANGE ########### +########### USE THIS FOR BOTH ########### +PROMPT_VERSION=plain +########### DO NOT CHANGE ########### + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --model_name_or_path ./checkpoints/$MODEL_VERSION \ + --version $PROMPT_VERSION \ + --data_path /path/to/pretrain_data.json \ + --image_folder /path/to/images \ + --vision_tower openai/clip-vit-large-patch14 \ + --tune_mm_mlp_adapter True \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-$MODEL_VERSION-pretrain \ + --num_train_epochs 1 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 24000 \ + --save_total_limit 1 \ + --learning_rate 2e-3 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/MagicQuill/LLaVA/scripts/pretrain_xformers.sh b/MagicQuill/LLaVA/scripts/pretrain_xformers.sh new file mode 100644 index 0000000000000000000000000000000000000000..ecba9c1ce714d481638e269ee4857fbe6a8de2fd --- /dev/null +++ b/MagicQuill/LLaVA/scripts/pretrain_xformers.sh @@ -0,0 +1,44 @@ +#!/bin/bash + +# Uncomment and set the following variables correspondingly to run this script: + +# MODEL_VERSION=vicuna-v1-3-7b +# MODEL_VERSION=llama-2-7b-chat + +########### DO NOT CHANGE ########### +########### USE THIS FOR BOTH ########### +PROMPT_VERSION=plain +########### DO NOT CHANGE ########### + +deepspeed llava/train/train_xformers.py \ + --deepspeed ./scripts/zero2.json \ + --model_name_or_path ./checkpoints/$MODEL_VERSION \ + --version $PROMPT_VERSION \ + --data_path /path/to/pretrain_data.json \ + --image_folder /path/to/images \ + --vision_tower openai/clip-vit-large-patch14 \ + --tune_mm_mlp_adapter True \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 False \ + --output_dir ./checkpoints/llava-$MODEL_VERSION-pretrain \ + --num_train_epochs 1 \ + --per_device_train_batch_size 4 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 4 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 24000 \ + --save_total_limit 1 \ + --learning_rate 2e-3 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 False \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/MagicQuill/LLaVA/scripts/sqa_eval_batch.sh b/MagicQuill/LLaVA/scripts/sqa_eval_batch.sh new file mode 100644 index 0000000000000000000000000000000000000000..adbf46ef7a6e86181b5927002597ef786add5bde --- /dev/null +++ b/MagicQuill/LLaVA/scripts/sqa_eval_batch.sh @@ -0,0 +1,13 @@ +#!/bin/bash + +CHUNKS=8 +for IDX in {0..7}; do + CUDA_VISIBLE_DEVICES=$IDX python -m llava.eval.model_vqa_science \ + --model-path liuhaotian/llava-lcs558k-scienceqa-vicuna-13b-v1.3 \ + --question-file ~/haotian/datasets/ScienceQA/data/scienceqa/llava_test_QCM-LEA.json \ + --image-folder ~/haotian/datasets/ScienceQA/data/scienceqa/images/test \ + --answers-file ./test_llava-13b-chunk$CHUNKS_$IDX.jsonl \ + --num-chunks $CHUNKS \ + --chunk-idx $IDX \ + --conv-mode llava_v1 & +done diff --git a/MagicQuill/LLaVA/scripts/sqa_eval_gather.sh b/MagicQuill/LLaVA/scripts/sqa_eval_gather.sh new file mode 100644 index 0000000000000000000000000000000000000000..525bd43b850e9f6a923158abd23bca6f8d15650e --- /dev/null +++ b/MagicQuill/LLaVA/scripts/sqa_eval_gather.sh @@ -0,0 +1,18 @@ +#!/bin/bash + +CHUNKS=8 +output_file="test_llava-13b.jsonl" + +# Clear out the output file if it exists. +> "$output_file" + +# Loop through the indices and concatenate each file. +for idx in $(seq 0 $((CHUNKS-1))); do + cat "./test_llava-13b-chunk${idx}.jsonl" >> "$output_file" +done + +python llava/eval/eval_science_qa.py \ + --base-dir ~/haotian/datasets/ScienceQA/data/scienceqa \ + --result-file ./test_llava-13b.jsonl \ + --output-file ./test_llava-13b_output.json \ + --output-result ./test_llava-13b_result.json diff --git a/MagicQuill/LLaVA/scripts/upload_pypi.sh b/MagicQuill/LLaVA/scripts/upload_pypi.sh new file mode 100644 index 0000000000000000000000000000000000000000..c46597a2cdf85da52b4b109ddf2a103bea72364b --- /dev/null +++ b/MagicQuill/LLaVA/scripts/upload_pypi.sh @@ -0,0 +1,16 @@ +#!/bin/bash + +# Step 0: Clean up +rm -rf dist + +# Step 1: Change the package name to "llava-torch" +sed -i 's/name = "llava"/name = "llava-torch"/' pyproject.toml + +# Step 2: Build the package +python -m build + +# Step 3: Revert the changes in pyproject.toml to the original +sed -i 's/name = "llava-torch"/name = "llava"/' pyproject.toml + +# Step 4: Upload to PyPI +python -m twine upload dist/* diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/gqa.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/gqa.sh new file mode 100644 index 0000000000000000000000000000000000000000..5c3c2c31fc35377a926739e8e4bfd4c23fb39e7f --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/gqa.sh @@ -0,0 +1,39 @@ +#!/bin/bash + +gpu_list="${CUDA_VISIBLE_DEVICES:-0}" +IFS=',' read -ra GPULIST <<< "$gpu_list" + +CHUNKS=${#GPULIST[@]} + +CKPT="llava-v1.5-13b" +SPLIT="llava_gqa_testdev_balanced" +GQADIR="./playground/data/eval/gqa/data" + +for IDX in $(seq 0 $((CHUNKS-1))); do + CUDA_VISIBLE_DEVICES=${GPULIST[$IDX]} python -m llava.eval.model_vqa_loader \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/gqa/$SPLIT.jsonl \ + --image-folder ./playground/data/eval/gqa/data/images \ + --answers-file ./playground/data/eval/gqa/answers/$SPLIT/$CKPT/${CHUNKS}_${IDX}.jsonl \ + --num-chunks $CHUNKS \ + --chunk-idx $IDX \ + --temperature 0 \ + --conv-mode vicuna_v1 & +done + +wait + +output_file=./playground/data/eval/gqa/answers/$SPLIT/$CKPT/merge.jsonl + +# Clear out the output file if it exists. +> "$output_file" + +# Loop through the indices and concatenate each file. +for IDX in $(seq 0 $((CHUNKS-1))); do + cat ./playground/data/eval/gqa/answers/$SPLIT/$CKPT/${CHUNKS}_${IDX}.jsonl >> "$output_file" +done + +python scripts/convert_gqa_for_eval.py --src $output_file --dst $GQADIR/testdev_balanced_predictions.json + +cd $GQADIR +python eval/eval.py --tier testdev_balanced diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/llavabench.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/llavabench.sh new file mode 100644 index 0000000000000000000000000000000000000000..ed236e4e3cee3105edd8d2c0bcee8e1ce22d4614 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/llavabench.sh @@ -0,0 +1,23 @@ +#!/bin/bash + +python -m llava.eval.model_vqa \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/llava-bench-in-the-wild/questions.jsonl \ + --image-folder ./playground/data/eval/llava-bench-in-the-wild/images \ + --answers-file ./playground/data/eval/llava-bench-in-the-wild/answers/llava-v1.5-13b.jsonl \ + --temperature 0 \ + --conv-mode vicuna_v1 + +mkdir -p playground/data/eval/llava-bench-in-the-wild/reviews + +python llava/eval/eval_gpt_review_bench.py \ + --question playground/data/eval/llava-bench-in-the-wild/questions.jsonl \ + --context playground/data/eval/llava-bench-in-the-wild/context.jsonl \ + --rule llava/eval/table/rule.json \ + --answer-list \ + playground/data/eval/llava-bench-in-the-wild/answers_gpt4.jsonl \ + playground/data/eval/llava-bench-in-the-wild/answers/llava-v1.5-13b.jsonl \ + --output \ + playground/data/eval/llava-bench-in-the-wild/reviews/llava-v1.5-13b.jsonl + +python llava/eval/summarize_gpt_review.py -f playground/data/eval/llava-bench-in-the-wild/reviews/llava-v1.5-13b.jsonl diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/mmbench.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/mmbench.sh new file mode 100644 index 0000000000000000000000000000000000000000..d0b3a5c63bc7c8bb022ea2be41275cb921e8755d --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/mmbench.sh @@ -0,0 +1,19 @@ +#!/bin/bash + +SPLIT="mmbench_dev_20230712" + +python -m llava.eval.model_vqa_mmbench \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/mmbench/$SPLIT.tsv \ + --answers-file ./playground/data/eval/mmbench/answers/$SPLIT/llava-v1.5-13b.jsonl \ + --single-pred-prompt \ + --temperature 0 \ + --conv-mode vicuna_v1 + +mkdir -p playground/data/eval/mmbench/answers_upload/$SPLIT + +python scripts/convert_mmbench_for_submission.py \ + --annotation-file ./playground/data/eval/mmbench/$SPLIT.tsv \ + --result-dir ./playground/data/eval/mmbench/answers/$SPLIT \ + --upload-dir ./playground/data/eval/mmbench/answers_upload/$SPLIT \ + --experiment llava-v1.5-13b diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/mmbench_cn.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/mmbench_cn.sh new file mode 100644 index 0000000000000000000000000000000000000000..ce27c93aa1ea8a667a4bdd894be6db1d352ad7f5 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/mmbench_cn.sh @@ -0,0 +1,20 @@ +#!/bin/bash + +SPLIT="mmbench_dev_cn_20231003" + +python -m llava.eval.model_vqa_mmbench \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/mmbench_cn/$SPLIT.tsv \ + --answers-file ./playground/data/eval/mmbench_cn/answers/$SPLIT/llava-v1.5-13b.jsonl \ + --lang cn \ + --single-pred-prompt \ + --temperature 0 \ + --conv-mode vicuna_v1 + +mkdir -p playground/data/eval/mmbench/answers_upload/$SPLIT + +python scripts/convert_mmbench_for_submission.py \ + --annotation-file ./playground/data/eval/mmbench_cn/$SPLIT.tsv \ + --result-dir ./playground/data/eval/mmbench_cn/answers/$SPLIT \ + --upload-dir ./playground/data/eval/mmbench_cn/answers_upload/$SPLIT \ + --experiment llava-v1.5-13b diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/mme.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/mme.sh new file mode 100644 index 0000000000000000000000000000000000000000..9b0f8ca657a429d92c233aaa404d9637d7500cc5 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/mme.sh @@ -0,0 +1,17 @@ +#!/bin/bash + +python -m llava.eval.model_vqa_loader \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/MME/llava_mme.jsonl \ + --image-folder ./playground/data/eval/MME/MME_Benchmark_release_version \ + --answers-file ./playground/data/eval/MME/answers/llava-v1.5-13b.jsonl \ + --temperature 0 \ + --conv-mode vicuna_v1 + +cd ./playground/data/eval/MME + +python convert_answer_to_mme.py --experiment llava-v1.5-13b + +cd eval_tool + +python calculation.py --results_dir answers/llava-v1.5-13b diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/mmvet.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/mmvet.sh new file mode 100644 index 0000000000000000000000000000000000000000..9ff31ed469bb95e40116e66ad249c38770ba3735 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/mmvet.sh @@ -0,0 +1,16 @@ +#!/bin/bash + +python -m llava.eval.model_vqa \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/mm-vet/llava-mm-vet.jsonl \ + --image-folder ./playground/data/eval/mm-vet/images \ + --answers-file ./playground/data/eval/mm-vet/answers/llava-v1.5-13b.jsonl \ + --temperature 0 \ + --conv-mode vicuna_v1 + +mkdir -p ./playground/data/eval/mm-vet/results + +python scripts/convert_mmvet_for_eval.py \ + --src ./playground/data/eval/mm-vet/answers/llava-v1.5-13b.jsonl \ + --dst ./playground/data/eval/mm-vet/results/llava-v1.5-13b.json + diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/pope.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/pope.sh new file mode 100644 index 0000000000000000000000000000000000000000..93fe449d943b36780341ce00638c94eba2e1f37b --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/pope.sh @@ -0,0 +1,14 @@ +#!/bin/bash + +python -m llava.eval.model_vqa_loader \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/pope/llava_pope_test.jsonl \ + --image-folder ./playground/data/eval/pope/val2014 \ + --answers-file ./playground/data/eval/pope/answers/llava-v1.5-13b.jsonl \ + --temperature 0 \ + --conv-mode vicuna_v1 + +python llava/eval/eval_pope.py \ + --annotation-dir ./playground/data/eval/pope/coco \ + --question-file ./playground/data/eval/pope/llava_pope_test.jsonl \ + --result-file ./playground/data/eval/pope/answers/llava-v1.5-13b.jsonl diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/qbench.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/qbench.sh new file mode 100644 index 0000000000000000000000000000000000000000..46b8e029bbb02ccaf8cae1a7025867553fbd6c6c --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/qbench.sh @@ -0,0 +1,18 @@ +#!/bin/bash + +if [ "$1" = "dev" ]; then + echo "Evaluating in 'dev' split." +elif [ "$1" = "test" ]; then + echo "Evaluating in 'test' split." +else + echo "Unknown split, please choose between 'dev' and 'test'." + exit 1 +fi + +python -m llava.eval.model_vqa_qbench \ + --model-path liuhaotian/llava-v1.5-13b \ + --image-folder ./playground/data/eval/qbench/images_llvisionqa/ \ + --questions-file ./playground/data/eval/qbench/llvisionqa_$1.json \ + --answers-file ./playground/data/eval/qbench/llvisionqa_$1_answers.jsonl \ + --conv-mode llava_v1 \ + --lang en diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/qbench_zh.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/qbench_zh.sh new file mode 100644 index 0000000000000000000000000000000000000000..7bfc17088cda577b6f25ec09b20ee8cb2664fec8 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/qbench_zh.sh @@ -0,0 +1,20 @@ +#!/bin/bash + +if [ "$1" = "dev" ]; then + ZH_SPLIT="验证集" + echo "Evaluating in 'dev' split." +elif [ "$1" = "test" ]; then + ZH_SPLIT="测试集" + echo "Evaluating in 'test' split." +else + echo "Unknown split, please choose between 'dev' and 'test'." + exit 1 +fi + +python -m llava.eval.model_vqa_qbench \ + --model-path liuhaotian/llava-v1.5-13b \ + --image-folder ./playground/data/eval/qbench/images_llvisionqa/ \ + --questions-file ./playground/data/eval/qbench/质衡-问答-$ZH_SPLIT.json \ + --answers-file ./playground/data/eval/qbench/llvisionqa_zh_$1_answers.jsonl \ + --conv-mode llava_v1 \ + --lang zh diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/seed.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/seed.sh new file mode 100644 index 0000000000000000000000000000000000000000..565e54d1d4d35791d5ed22ad4e60c43fbdd877ed --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/seed.sh @@ -0,0 +1,39 @@ +#!/bin/bash + +gpu_list="${CUDA_VISIBLE_DEVICES:-0}" +IFS=',' read -ra GPULIST <<< "$gpu_list" + +CHUNKS=${#GPULIST[@]} + +CKPT="llava-v1.5-13b" + +for IDX in $(seq 0 $((CHUNKS-1))); do + CUDA_VISIBLE_DEVICES=${GPULIST[$IDX]} python -m llava.eval.model_vqa_loader \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/seed_bench/llava-seed-bench.jsonl \ + --image-folder ./playground/data/eval/seed_bench \ + --answers-file ./playground/data/eval/seed_bench/answers/$CKPT/${CHUNKS}_${IDX}.jsonl \ + --num-chunks $CHUNKS \ + --chunk-idx $IDX \ + --temperature 0 \ + --conv-mode vicuna_v1 & +done + +wait + +output_file=./playground/data/eval/seed_bench/answers/$CKPT/merge.jsonl + +# Clear out the output file if it exists. +> "$output_file" + +# Loop through the indices and concatenate each file. +for IDX in $(seq 0 $((CHUNKS-1))); do + cat ./playground/data/eval/seed_bench/answers/$CKPT/${CHUNKS}_${IDX}.jsonl >> "$output_file" +done + +# Evaluate +python scripts/convert_seed_for_submission.py \ + --annotation-file ./playground/data/eval/seed_bench/SEED-Bench.json \ + --result-file $output_file \ + --result-upload-file ./playground/data/eval/seed_bench/answers_upload/llava-v1.5-13b.jsonl + diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/sqa.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/sqa.sh new file mode 100644 index 0000000000000000000000000000000000000000..8c82dbc256bd610c5ef2564ed2449b6a91857968 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/sqa.sh @@ -0,0 +1,16 @@ +#!/bin/bash + +python -m llava.eval.model_vqa_science \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/scienceqa/llava_test_CQM-A.json \ + --image-folder ./playground/data/eval/scienceqa/images/test \ + --answers-file ./playground/data/eval/scienceqa/answers/llava-v1.5-13b.jsonl \ + --single-pred-prompt \ + --temperature 0 \ + --conv-mode vicuna_v1 + +python llava/eval/eval_science_qa.py \ + --base-dir ./playground/data/eval/scienceqa \ + --result-file ./playground/data/eval/scienceqa/answers/llava-v1.5-13b.jsonl \ + --output-file ./playground/data/eval/scienceqa/answers/llava-v1.5-13b_output.jsonl \ + --output-result ./playground/data/eval/scienceqa/answers/llava-v1.5-13b_result.json diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/textvqa.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/textvqa.sh new file mode 100644 index 0000000000000000000000000000000000000000..12311c3ccc3511446298c8e829216266e702ec16 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/textvqa.sh @@ -0,0 +1,13 @@ +#!/bin/bash + +python -m llava.eval.model_vqa_loader \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/textvqa/llava_textvqa_val_v051_ocr.jsonl \ + --image-folder ./playground/data/eval/textvqa/train_images \ + --answers-file ./playground/data/eval/textvqa/answers/llava-v1.5-13b.jsonl \ + --temperature 0 \ + --conv-mode vicuna_v1 + +python -m llava.eval.eval_textvqa \ + --annotation-file ./playground/data/eval/textvqa/TextVQA_0.5.1_val.json \ + --result-file ./playground/data/eval/textvqa/answers/llava-v1.5-13b.jsonl diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/vizwiz.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/vizwiz.sh new file mode 100644 index 0000000000000000000000000000000000000000..16cf35ce1b77834d9d8888d53e6cd0f7c2c4ccc6 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/vizwiz.sh @@ -0,0 +1,14 @@ +#!/bin/bash + +python -m llava.eval.model_vqa_loader \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/vizwiz/llava_test.jsonl \ + --image-folder ./playground/data/eval/vizwiz/test \ + --answers-file ./playground/data/eval/vizwiz/answers/llava-v1.5-13b.jsonl \ + --temperature 0 \ + --conv-mode vicuna_v1 + +python scripts/convert_vizwiz_for_submission.py \ + --annotation-file ./playground/data/eval/vizwiz/llava_test.jsonl \ + --result-file ./playground/data/eval/vizwiz/answers/llava-v1.5-13b.jsonl \ + --result-upload-file ./playground/data/eval/vizwiz/answers_upload/llava-v1.5-13b.json diff --git a/MagicQuill/LLaVA/scripts/v1_5/eval/vqav2.sh b/MagicQuill/LLaVA/scripts/v1_5/eval/vqav2.sh new file mode 100644 index 0000000000000000000000000000000000000000..696efe53340f4abe5ad3ba8b9578df056e6c897d --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/eval/vqav2.sh @@ -0,0 +1,36 @@ +#!/bin/bash + +gpu_list="${CUDA_VISIBLE_DEVICES:-0}" +IFS=',' read -ra GPULIST <<< "$gpu_list" + +CHUNKS=${#GPULIST[@]} + +CKPT="llava-v1.5-13b" +SPLIT="llava_vqav2_mscoco_test-dev2015" + +for IDX in $(seq 0 $((CHUNKS-1))); do + CUDA_VISIBLE_DEVICES=${GPULIST[$IDX]} python -m llava.eval.model_vqa_loader \ + --model-path liuhaotian/llava-v1.5-13b \ + --question-file ./playground/data/eval/vqav2/$SPLIT.jsonl \ + --image-folder ./playground/data/eval/vqav2/test2015 \ + --answers-file ./playground/data/eval/vqav2/answers/$SPLIT/$CKPT/${CHUNKS}_${IDX}.jsonl \ + --num-chunks $CHUNKS \ + --chunk-idx $IDX \ + --temperature 0 \ + --conv-mode vicuna_v1 & +done + +wait + +output_file=./playground/data/eval/vqav2/answers/$SPLIT/$CKPT/merge.jsonl + +# Clear out the output file if it exists. +> "$output_file" + +# Loop through the indices and concatenate each file. +for IDX in $(seq 0 $((CHUNKS-1))); do + cat ./playground/data/eval/vqav2/answers/$SPLIT/$CKPT/${CHUNKS}_${IDX}.jsonl >> "$output_file" +done + +python scripts/convert_vqav2_for_submission.py --split $SPLIT --ckpt $CKPT + diff --git a/MagicQuill/LLaVA/scripts/v1_5/finetune.sh b/MagicQuill/LLaVA/scripts/v1_5/finetune.sh new file mode 100644 index 0000000000000000000000000000000000000000..435448394dfcef578ac478f499160fba4ceacd6c --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/finetune.sh @@ -0,0 +1,37 @@ +#!/bin/bash + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero3.json \ + --model_name_or_path lmsys/vicuna-13b-v1.5 \ + --version v1 \ + --data_path ./playground/data/llava_v1_5_mix665k.json \ + --image_folder ./playground/data \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --pretrain_mm_mlp_adapter ./checkpoints/llava-v1.5-13b-pretrain/mm_projector.bin \ + --mm_projector_type mlp2x_gelu \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --image_aspect_ratio pad \ + --group_by_modality_length True \ + --bf16 True \ + --output_dir ./checkpoints/llava-v1.5-13b \ + --num_train_epochs 1 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/MagicQuill/LLaVA/scripts/v1_5/finetune_lora.sh b/MagicQuill/LLaVA/scripts/v1_5/finetune_lora.sh new file mode 100644 index 0000000000000000000000000000000000000000..90f00707cf9c9ae499184f0135f7cc9d84327a21 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/finetune_lora.sh @@ -0,0 +1,38 @@ +#!/bin/bash + +deepspeed llava/train/train_mem.py \ + --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \ + --deepspeed ./scripts/zero3.json \ + --model_name_or_path lmsys/vicuna-13b-v1.5 \ + --version v1 \ + --data_path ./playground/data/llava_v1_5_mix665k.json \ + --image_folder ./playground/data \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --pretrain_mm_mlp_adapter ./checkpoints/llava-v1.5-13b-pretrain/mm_projector.bin \ + --mm_projector_type mlp2x_gelu \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --image_aspect_ratio pad \ + --group_by_modality_length True \ + --bf16 True \ + --output_dir ./checkpoints/llava-v1.5-13b-lora \ + --num_train_epochs 1 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-4 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/MagicQuill/LLaVA/scripts/v1_5/finetune_task.sh b/MagicQuill/LLaVA/scripts/v1_5/finetune_task.sh new file mode 100644 index 0000000000000000000000000000000000000000..063f3f13e119fdb7f6af358f50315e022f15f578 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/finetune_task.sh @@ -0,0 +1,36 @@ +#!/bin/bash + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero3.json \ + --model_name_or_path liuhaotian/llava-v1.5-13b \ + --version v1 \ + --data_path ./playground/data/llava_v1_5_mix665k.json \ + --image_folder ./playground/data \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --mm_projector_type mlp2x_gelu \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --image_aspect_ratio pad \ + --group_by_modality_length True \ + --bf16 True \ + --output_dir ./checkpoints/llava-v1.5-13b-task \ + --num_train_epochs 1 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/MagicQuill/LLaVA/scripts/v1_5/finetune_task_lora.sh b/MagicQuill/LLaVA/scripts/v1_5/finetune_task_lora.sh new file mode 100644 index 0000000000000000000000000000000000000000..f11303f299aeb675e23b0cb37ff4c881aec6f99e --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/finetune_task_lora.sh @@ -0,0 +1,37 @@ +#!/bin/bash + +deepspeed llava/train/train_mem.py \ + --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \ + --deepspeed ./scripts/zero3.json \ + --model_name_or_path liuhaotian/llava-v1.5-13b \ + --version v1 \ + --data_path ./playground/data/llava_v1_5_mix665k.json \ + --image_folder ./playground/data \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --mm_projector_type mlp2x_gelu \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --image_aspect_ratio pad \ + --group_by_modality_length True \ + --bf16 True \ + --output_dir ./checkpoints/llava-v1.5-13b-task-lora \ + --num_train_epochs 1 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-4 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/MagicQuill/LLaVA/scripts/v1_5/pretrain.sh b/MagicQuill/LLaVA/scripts/v1_5/pretrain.sh new file mode 100644 index 0000000000000000000000000000000000000000..9316eaa309ea8c12d9612a01d85958550357b9a7 --- /dev/null +++ b/MagicQuill/LLaVA/scripts/v1_5/pretrain.sh @@ -0,0 +1,35 @@ +#!/bin/bash + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --model_name_or_path lmsys/vicuna-13b-v1.5 \ + --version plain \ + --data_path ./playground/data/LLaVA-Pretrain/blip_laion_cc_sbu_558k.json \ + --image_folder ./playground/data/LLaVA-Pretrain/images \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --mm_projector_type mlp2x_gelu \ + --tune_mm_mlp_adapter True \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-v1.5-13b-pretrain \ + --num_train_epochs 1 \ + --per_device_train_batch_size 32 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 24000 \ + --save_total_limit 1 \ + --learning_rate 1e-3 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/MagicQuill/brushnet/brushnet.json b/MagicQuill/brushnet/brushnet.json new file mode 100644 index 0000000000000000000000000000000000000000..65713bfcd0113271496bd06fe6b57299822e0f76 --- /dev/null +++ b/MagicQuill/brushnet/brushnet.json @@ -0,0 +1,58 @@ +{ + "_class_name": "BrushNetModel", + "_diffusers_version": "0.27.0.dev0", + "_name_or_path": "runs/logs/brushnet_randommask/checkpoint-100000", + "act_fn": "silu", + "addition_embed_type": null, + "addition_embed_type_num_heads": 64, + "addition_time_embed_dim": null, + "attention_head_dim": 8, + "block_out_channels": [ + 320, + 640, + 1280, + 1280 + ], + "brushnet_conditioning_channel_order": "rgb", + "class_embed_type": null, + "conditioning_channels": 5, + "conditioning_embedding_out_channels": [ + 16, + 32, + 96, + 256 + ], + "cross_attention_dim": 768, + "down_block_types": [ + "DownBlock2D", + "DownBlock2D", + "DownBlock2D", + "DownBlock2D" + ], + "downsample_padding": 1, + "encoder_hid_dim": null, + "encoder_hid_dim_type": null, + "flip_sin_to_cos": true, + "freq_shift": 0, + "global_pool_conditions": false, + "in_channels": 4, + "layers_per_block": 2, + "mid_block_scale_factor": 1, + "mid_block_type": "MidBlock2D", + "norm_eps": 1e-05, + "norm_num_groups": 32, + "num_attention_heads": null, + "num_class_embeds": null, + "only_cross_attention": false, + "projection_class_embeddings_input_dim": null, + "resnet_time_scale_shift": "default", + "transformer_layers_per_block": 1, + "up_block_types": [ + "UpBlock2D", + "UpBlock2D", + "UpBlock2D", + "UpBlock2D" + ], + "upcast_attention": false, + "use_linear_projection": false +} diff --git a/MagicQuill/brushnet/brushnet.py b/MagicQuill/brushnet/brushnet.py new file mode 100644 index 0000000000000000000000000000000000000000..aed1cfde30b1ab27286066746058b7b1afcd8a84 --- /dev/null +++ b/MagicQuill/brushnet/brushnet.py @@ -0,0 +1,949 @@ +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import functional as F + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.utils import BaseOutput, logging +from diffusers.models.attention_processor import ( + ADDED_KV_ATTENTION_PROCESSORS, + CROSS_ATTENTION_PROCESSORS, + AttentionProcessor, + AttnAddedKVProcessor, + AttnProcessor, +) +from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps +from diffusers.models.modeling_utils import ModelMixin + +from .unet_2d_blocks import ( + CrossAttnDownBlock2D, + DownBlock2D, + UNetMidBlock2D, + UNetMidBlock2DCrossAttn, + get_down_block, + get_mid_block, + get_up_block, + MidBlock2D +) + +from .unet_2d_condition import UNet2DConditionModel + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class BrushNetOutput(BaseOutput): + """ + The output of [`BrushNetModel`]. + + Args: + up_block_res_samples (`tuple[torch.Tensor]`): + A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should + be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be + used to condition the original UNet's upsampling activations. + down_block_res_samples (`tuple[torch.Tensor]`): + A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should + be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be + used to condition the original UNet's downsampling activations. + mid_down_block_re_sample (`torch.Tensor`): + The activation of the midde block (the lowest sample resolution). Each tensor should be of shape + `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. + Output can be used to condition the original UNet's middle block activation. + """ + + up_block_res_samples: Tuple[torch.Tensor] + down_block_res_samples: Tuple[torch.Tensor] + mid_block_res_sample: torch.Tensor + + +class BrushNetModel(ModelMixin, ConfigMixin): + """ + A BrushNet model. + + Args: + in_channels (`int`, defaults to 4): + The number of channels in the input sample. + flip_sin_to_cos (`bool`, defaults to `True`): + Whether to flip the sin to cos in the time embedding. + freq_shift (`int`, defaults to 0): + The frequency shift to apply to the time embedding. + down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): + The tuple of downsample blocks to use. + mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): + Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or + `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. + up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): + The tuple of upsample blocks to use. + only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): + block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): + The tuple of output channels for each block. + layers_per_block (`int`, defaults to 2): + The number of layers per block. + downsample_padding (`int`, defaults to 1): + The padding to use for the downsampling convolution. + mid_block_scale_factor (`float`, defaults to 1): + The scale factor to use for the mid block. + act_fn (`str`, defaults to "silu"): + The activation function to use. + norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups to use for the normalization. If None, normalization and activation layers is skipped + in post-processing. + norm_eps (`float`, defaults to 1e-5): + The epsilon to use for the normalization. + cross_attention_dim (`int`, defaults to 1280): + The dimension of the cross attention features. + transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): + The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for + [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], + [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. + encoder_hid_dim (`int`, *optional*, defaults to None): + If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` + dimension to `cross_attention_dim`. + encoder_hid_dim_type (`str`, *optional*, defaults to `None`): + If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text + embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. + attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8): + The dimension of the attention heads. + use_linear_projection (`bool`, defaults to `False`): + class_embed_type (`str`, *optional*, defaults to `None`): + The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, + `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. + addition_embed_type (`str`, *optional*, defaults to `None`): + Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or + "text". "text" will use the `TextTimeEmbedding` layer. + num_class_embeds (`int`, *optional*, defaults to 0): + Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing + class conditioning with `class_embed_type` equal to `None`. + upcast_attention (`bool`, defaults to `False`): + resnet_time_scale_shift (`str`, defaults to `"default"`): + Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. + projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`): + The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when + `class_embed_type="projection"`. + brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`): + The channel order of conditional image. Will convert to `rgb` if it's `bgr`. + conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`): + The tuple of output channel for each block in the `conditioning_embedding` layer. + global_pool_conditions (`bool`, defaults to `False`): + TODO(Patrick) - unused parameter. + addition_embed_type_num_heads (`int`, defaults to 64): + The number of heads to use for the `TextTimeEmbedding` layer. + """ + + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + in_channels: int = 4, + conditioning_channels: int = 5, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + down_block_types: Tuple[str, ...] = ( + "DownBlock2D", + "DownBlock2D", + "DownBlock2D", + "DownBlock2D", + ), + mid_block_type: Optional[str] = "UNetMidBlock2D", + up_block_types: Tuple[str, ...] = ( + "UpBlock2D", + "UpBlock2D", + "UpBlock2D", + "UpBlock2D", + ), + only_cross_attention: Union[bool, Tuple[bool]] = False, + block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), + layers_per_block: int = 2, + downsample_padding: int = 1, + mid_block_scale_factor: float = 1, + act_fn: str = "silu", + norm_num_groups: Optional[int] = 32, + norm_eps: float = 1e-5, + cross_attention_dim: int = 1280, + transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, + encoder_hid_dim: Optional[int] = None, + encoder_hid_dim_type: Optional[str] = None, + attention_head_dim: Union[int, Tuple[int, ...]] = 8, + num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None, + use_linear_projection: bool = False, + class_embed_type: Optional[str] = None, + addition_embed_type: Optional[str] = None, + addition_time_embed_dim: Optional[int] = None, + num_class_embeds: Optional[int] = None, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + projection_class_embeddings_input_dim: Optional[int] = None, + brushnet_conditioning_channel_order: str = "rgb", + conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), + global_pool_conditions: bool = False, + addition_embed_type_num_heads: int = 64, + ): + super().__init__() + + # If `num_attention_heads` is not defined (which is the case for most models) + # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. + # The reason for this behavior is to correct for incorrectly named variables that were introduced + # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 + # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking + # which is why we correct for the naming here. + num_attention_heads = num_attention_heads or attention_head_dim + + # Check inputs + if len(down_block_types) != len(up_block_types): + raise ValueError( + f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." + ) + + if len(block_out_channels) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." + ) + + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + + # input + conv_in_kernel = 3 + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in_condition = nn.Conv2d( + in_channels+conditioning_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding + ) + + # time + time_embed_dim = block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + self.time_embedding = TimestepEmbedding( + timestep_input_dim, + time_embed_dim, + act_fn=act_fn, + ) + + if encoder_hid_dim_type is None and encoder_hid_dim is not None: + encoder_hid_dim_type = "text_proj" + self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) + logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") + + if encoder_hid_dim is None and encoder_hid_dim_type is not None: + raise ValueError( + f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." + ) + + if encoder_hid_dim_type == "text_proj": + self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) + elif encoder_hid_dim_type == "text_image_proj": + # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` + self.encoder_hid_proj = TextImageProjection( + text_embed_dim=encoder_hid_dim, + image_embed_dim=cross_attention_dim, + cross_attention_dim=cross_attention_dim, + ) + + elif encoder_hid_dim_type is not None: + raise ValueError( + f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." + ) + else: + self.encoder_hid_proj = None + + # class embedding + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == "timestep": + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) + elif class_embed_type == "identity": + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == "projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" + ) + # The projection `class_embed_type` is the same as the timestep `class_embed_type` except + # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings + # 2. it projects from an arbitrary input dimension. + # + # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. + # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. + # As a result, `TimestepEmbedding` can be passed arbitrary vectors. + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + + if addition_embed_type == "text": + if encoder_hid_dim is not None: + text_time_embedding_from_dim = encoder_hid_dim + else: + text_time_embedding_from_dim = cross_attention_dim + + self.add_embedding = TextTimeEmbedding( + text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads + ) + elif addition_embed_type == "text_image": + # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` + self.add_embedding = TextImageTimeEmbedding( + text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim + ) + elif addition_embed_type == "text_time": + self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + + elif addition_embed_type is not None: + raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") + + self.down_blocks = nn.ModuleList([]) + self.brushnet_down_blocks = nn.ModuleList([]) + + if isinstance(only_cross_attention, bool): + only_cross_attention = [only_cross_attention] * len(down_block_types) + + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + + # down + output_channel = block_out_channels[0] + + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_down_blocks.append(brushnet_block) + + for i, down_block_type in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = get_down_block( + down_block_type, + num_layers=layers_per_block, + transformer_layers_per_block=transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + temb_channels=time_embed_dim, + add_downsample=not is_final_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads[i], + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + downsample_padding=downsample_padding, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + self.down_blocks.append(down_block) + + for _ in range(layers_per_block): + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_down_blocks.append(brushnet_block) + + if not is_final_block: + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_down_blocks.append(brushnet_block) + + # mid + mid_block_channel = block_out_channels[-1] + + brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_mid_block = brushnet_block + + self.mid_block = get_mid_block( + mid_block_type, + transformer_layers_per_block=transformer_layers_per_block[-1], + in_channels=mid_block_channel, + temb_channels=time_embed_dim, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + output_scale_factor=mid_block_scale_factor, + resnet_time_scale_shift=resnet_time_scale_shift, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads[-1], + resnet_groups=norm_num_groups, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + ) + + # count how many layers upsample the images + self.num_upsamplers = 0 + + # up + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_transformer_layers_per_block = (list(reversed(transformer_layers_per_block))) + only_cross_attention = list(reversed(only_cross_attention)) + + output_channel = reversed_block_out_channels[0] + + self.up_blocks = nn.ModuleList([]) + self.brushnet_up_blocks = nn.ModuleList([]) + + for i, up_block_type in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + + # add upsample block for all BUT final layer + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + + up_block = get_up_block( + up_block_type, + num_layers=layers_per_block+1, + transformer_layers_per_block=reversed_transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + prev_output_channel=prev_output_channel, + temb_channels=time_embed_dim, + add_upsample=add_upsample, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resolution_idx=i, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + num_attention_heads=reversed_num_attention_heads[i], + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + ) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + + for _ in range(layers_per_block+1): + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_up_blocks.append(brushnet_block) + + if not is_final_block: + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_up_blocks.append(brushnet_block) + + + @classmethod + def from_unet( + cls, + unet: UNet2DConditionModel, + brushnet_conditioning_channel_order: str = "rgb", + conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), + load_weights_from_unet: bool = True, + conditioning_channels: int = 5, + ): + r""" + Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`]. + + Parameters: + unet (`UNet2DConditionModel`): + The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied + where applicable. + """ + transformer_layers_per_block = ( + unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1 + ) + encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None + encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None + addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None + addition_time_embed_dim = ( + unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None + ) + + brushnet = cls( + in_channels=unet.config.in_channels, + conditioning_channels=conditioning_channels, + flip_sin_to_cos=unet.config.flip_sin_to_cos, + freq_shift=unet.config.freq_shift, + down_block_types=["DownBlock2D" for block_name in unet.config.down_block_types], + mid_block_type='MidBlock2D', + up_block_types=["UpBlock2D" for block_name in unet.config.down_block_types], + only_cross_attention=unet.config.only_cross_attention, + block_out_channels=unet.config.block_out_channels, + layers_per_block=unet.config.layers_per_block, + downsample_padding=unet.config.downsample_padding, + mid_block_scale_factor=unet.config.mid_block_scale_factor, + act_fn=unet.config.act_fn, + norm_num_groups=unet.config.norm_num_groups, + norm_eps=unet.config.norm_eps, + cross_attention_dim=unet.config.cross_attention_dim, + transformer_layers_per_block=transformer_layers_per_block, + encoder_hid_dim=encoder_hid_dim, + encoder_hid_dim_type=encoder_hid_dim_type, + attention_head_dim=unet.config.attention_head_dim, + num_attention_heads=unet.config.num_attention_heads, + use_linear_projection=unet.config.use_linear_projection, + class_embed_type=unet.config.class_embed_type, + addition_embed_type=addition_embed_type, + addition_time_embed_dim=addition_time_embed_dim, + num_class_embeds=unet.config.num_class_embeds, + upcast_attention=unet.config.upcast_attention, + resnet_time_scale_shift=unet.config.resnet_time_scale_shift, + projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, + brushnet_conditioning_channel_order=brushnet_conditioning_channel_order, + conditioning_embedding_out_channels=conditioning_embedding_out_channels, + ) + + if load_weights_from_unet: + conv_in_condition_weight=torch.zeros_like(brushnet.conv_in_condition.weight) + conv_in_condition_weight[:,:4,...]=unet.conv_in.weight + conv_in_condition_weight[:,4:8,...]=unet.conv_in.weight + brushnet.conv_in_condition.weight=torch.nn.Parameter(conv_in_condition_weight) + brushnet.conv_in_condition.bias=unet.conv_in.bias + + brushnet.time_proj.load_state_dict(unet.time_proj.state_dict()) + brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) + + if brushnet.class_embedding: + brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict()) + + brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(),strict=False) + brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(),strict=False) + brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(),strict=False) + + return brushnet + + @property + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor + def set_default_attn_processor(self): + """ + Disables custom attention processors and sets the default attention implementation. + """ + if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): + processor = AttnAddedKVProcessor() + elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): + processor = AttnProcessor() + else: + raise ValueError( + f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" + ) + + self.set_attn_processor(processor) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice + def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: + r""" + Enable sliced attention computation. + + When this option is enabled, the attention module splits the input tensor in slices to compute attention in + several steps. This is useful for saving some memory in exchange for a small decrease in speed. + + Args: + slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): + When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If + `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is + provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` + must be a multiple of `slice_size`. + """ + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, "set_attention_slice"): + sliceable_head_dims.append(module.sliceable_head_dim) + + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + + # retrieve number of attention layers + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + + num_sliceable_layers = len(sliceable_head_dims) + + if slice_size == "auto": + # half the attention head size is usually a good trade-off between + # speed and memory + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == "max": + # make smallest slice possible + slice_size = num_sliceable_layers * [1] + + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + + if len(slice_size) != len(sliceable_head_dims): + raise ValueError( + f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" + f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." + ) + + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f"size {size} has to be smaller or equal to {dim}.") + + # Recursively walk through all the children. + # Any children which exposes the set_attention_slice method + # gets the message + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, "set_attention_slice"): + module.set_attention_slice(slice_size.pop()) + + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value: bool = False) -> None: + if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): + module.gradient_checkpointing = value + + def forward( + self, + sample: torch.FloatTensor, + encoder_hidden_states: torch.Tensor, + brushnet_cond: torch.FloatTensor, + timestep = None, + time_emb = None, + conditioning_scale: float = 1.0, + class_labels: Optional[torch.Tensor] = None, + timestep_cond: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guess_mode: bool = False, + return_dict: bool = True, + debug = False, + ) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]: + """ + The [`BrushNetModel`] forward method. + + Args: + sample (`torch.FloatTensor`): + The noisy input tensor. + timestep (`Union[torch.Tensor, float, int]`): + The number of timesteps to denoise an input. + encoder_hidden_states (`torch.Tensor`): + The encoder hidden states. + brushnet_cond (`torch.FloatTensor`): + The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. + conditioning_scale (`float`, defaults to `1.0`): + The scale factor for BrushNet outputs. + class_labels (`torch.Tensor`, *optional*, defaults to `None`): + Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. + timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): + Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the + timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep + embeddings. + attention_mask (`torch.Tensor`, *optional*, defaults to `None`): + An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask + is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large + negative values to the attention scores corresponding to "discard" tokens. + added_cond_kwargs (`dict`): + Additional conditions for the Stable Diffusion XL UNet. + cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): + A kwargs dictionary that if specified is passed along to the `AttnProcessor`. + guess_mode (`bool`, defaults to `False`): + In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if + you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. + return_dict (`bool`, defaults to `True`): + Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple. + + Returns: + [`~models.brushnet.BrushNetOutput`] **or** `tuple`: + If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is + returned where the first element is the sample tensor. + """ + + # check channel order + channel_order = self.config.brushnet_conditioning_channel_order + + if channel_order == "rgb": + # in rgb order by default + ... + elif channel_order == "bgr": + brushnet_cond = torch.flip(brushnet_cond, dims=[1]) + else: + raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}") + + # prepare attention_mask + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + if timestep is None and time_emb is None: + raise ValueError(f"`timestep` and `emb` are both None") + + #print("BN: sample.device", sample.device) + #print("BN: TE.device", self.time_embedding.linear_1.weight.device) + + if timestep is not None: + # 1. time + timesteps = timestep + if not torch.is_tensor(timesteps): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + + # timesteps does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=sample.dtype) + + #print("t_emb.device =",t_emb.device) + + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + + #print('emb.shape', emb.shape) + + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) + emb = emb + class_emb + + if self.config.addition_embed_type is not None: + if self.config.addition_embed_type == "text": + aug_emb = self.add_embedding(encoder_hidden_states) + + elif self.config.addition_embed_type == "text_time": + if "text_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" + ) + text_embeds = added_cond_kwargs.get("text_embeds") + if "time_ids" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" + ) + time_ids = added_cond_kwargs.get("time_ids") + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + + #print('text_embeds', text_embeds.shape, 'time_ids', time_ids.shape, 'time_embeds', time_embeds.shape, 'add__embeds', add_embeds.shape, 'aug_emb', aug_emb.shape) + + emb = emb + aug_emb if aug_emb is not None else emb + else: + emb = time_emb + + # 2. pre-process + + brushnet_cond=torch.concat([sample,brushnet_cond],1) + sample = self.conv_in_condition(brushnet_cond) + + # 3. down + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + ) + else: + sample, res_samples = downsample_block(hidden_states=sample, temb=emb) + + down_block_res_samples += res_samples + + # 4. PaintingNet down blocks + brushnet_down_block_res_samples = () + for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks): + down_block_res_sample = brushnet_down_block(down_block_res_sample) + brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,) + + + # 5. mid + if self.mid_block is not None: + if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: + sample = self.mid_block( + sample, + emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + ) + else: + sample = self.mid_block(sample, emb) + + # 6. BrushNet mid blocks + brushnet_mid_block_res_sample = self.brushnet_mid_block(sample) + + # 7. up + up_block_res_samples = () + for i, upsample_block in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + sample, up_res_samples = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + upsample_size=upsample_size, + attention_mask=attention_mask, + return_res_samples=True + ) + else: + sample, up_res_samples = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + upsample_size=upsample_size, + return_res_samples=True + ) + + up_block_res_samples += up_res_samples + + # 8. BrushNet up blocks + brushnet_up_block_res_samples = () + for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks): + up_block_res_sample = brushnet_up_block(up_block_res_sample) + brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,) + + # 6. scaling + if guess_mode and not self.config.global_pool_conditions: + scales = torch.logspace(-1, 0, len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples), device=sample.device) # 0.1 to 1.0 + scales = scales * conditioning_scale + + brushnet_down_block_res_samples = [sample * scale for sample, scale in zip(brushnet_down_block_res_samples, scales[:len(brushnet_down_block_res_samples)])] + brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)] + brushnet_up_block_res_samples = [sample * scale for sample, scale in zip(brushnet_up_block_res_samples, scales[len(brushnet_down_block_res_samples)+1:])] + else: + brushnet_down_block_res_samples = [sample * conditioning_scale for sample in brushnet_down_block_res_samples] + brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale + brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples] + + + if self.config.global_pool_conditions: + brushnet_down_block_res_samples = [ + torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples + ] + brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True) + brushnet_up_block_res_samples = [ + torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples + ] + + if not return_dict: + return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples) + + return BrushNetOutput( + down_block_res_samples=brushnet_down_block_res_samples, + mid_block_res_sample=brushnet_mid_block_res_sample, + up_block_res_samples=brushnet_up_block_res_samples + ) + + +def zero_module(module): + for p in module.parameters(): + nn.init.zeros_(p) + return module diff --git a/MagicQuill/brushnet/brushnet_ca.py b/MagicQuill/brushnet/brushnet_ca.py new file mode 100644 index 0000000000000000000000000000000000000000..780a87b23f30e2192a19469c506a22056ea52ba7 --- /dev/null +++ b/MagicQuill/brushnet/brushnet_ca.py @@ -0,0 +1,983 @@ +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +from torch import nn + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.utils import BaseOutput, logging +from diffusers.models.attention_processor import ( + ADDED_KV_ATTENTION_PROCESSORS, + CROSS_ATTENTION_PROCESSORS, + AttentionProcessor, + AttnAddedKVProcessor, + AttnProcessor, +) +from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps +from diffusers.models.modeling_utils import ModelMixin + +from .unet_2d_blocks import ( + CrossAttnDownBlock2D, + DownBlock2D, + UNetMidBlock2D, + UNetMidBlock2DCrossAttn, + get_down_block, + get_mid_block, + get_up_block, + MidBlock2D +) + +from .unet_2d_condition import UNet2DConditionModel + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class BrushNetOutput(BaseOutput): + """ + The output of [`BrushNetModel`]. + + Args: + up_block_res_samples (`tuple[torch.Tensor]`): + A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should + be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be + used to condition the original UNet's upsampling activations. + down_block_res_samples (`tuple[torch.Tensor]`): + A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should + be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be + used to condition the original UNet's downsampling activations. + mid_down_block_re_sample (`torch.Tensor`): + The activation of the midde block (the lowest sample resolution). Each tensor should be of shape + `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. + Output can be used to condition the original UNet's middle block activation. + """ + + up_block_res_samples: Tuple[torch.Tensor] + down_block_res_samples: Tuple[torch.Tensor] + mid_block_res_sample: torch.Tensor + + +class BrushNetModel(ModelMixin, ConfigMixin): + """ + A BrushNet model. + + Args: + in_channels (`int`, defaults to 4): + The number of channels in the input sample. + flip_sin_to_cos (`bool`, defaults to `True`): + Whether to flip the sin to cos in the time embedding. + freq_shift (`int`, defaults to 0): + The frequency shift to apply to the time embedding. + down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): + The tuple of downsample blocks to use. + mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): + Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or + `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. + up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): + The tuple of upsample blocks to use. + only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): + block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): + The tuple of output channels for each block. + layers_per_block (`int`, defaults to 2): + The number of layers per block. + downsample_padding (`int`, defaults to 1): + The padding to use for the downsampling convolution. + mid_block_scale_factor (`float`, defaults to 1): + The scale factor to use for the mid block. + act_fn (`str`, defaults to "silu"): + The activation function to use. + norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups to use for the normalization. If None, normalization and activation layers is skipped + in post-processing. + norm_eps (`float`, defaults to 1e-5): + The epsilon to use for the normalization. + cross_attention_dim (`int`, defaults to 1280): + The dimension of the cross attention features. + transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): + The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for + [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], + [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. + encoder_hid_dim (`int`, *optional*, defaults to None): + If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` + dimension to `cross_attention_dim`. + encoder_hid_dim_type (`str`, *optional*, defaults to `None`): + If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text + embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. + attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8): + The dimension of the attention heads. + use_linear_projection (`bool`, defaults to `False`): + class_embed_type (`str`, *optional*, defaults to `None`): + The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, + `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. + addition_embed_type (`str`, *optional*, defaults to `None`): + Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or + "text". "text" will use the `TextTimeEmbedding` layer. + num_class_embeds (`int`, *optional*, defaults to 0): + Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing + class conditioning with `class_embed_type` equal to `None`. + upcast_attention (`bool`, defaults to `False`): + resnet_time_scale_shift (`str`, defaults to `"default"`): + Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. + projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`): + The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when + `class_embed_type="projection"`. + brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`): + The channel order of conditional image. Will convert to `rgb` if it's `bgr`. + conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`): + The tuple of output channel for each block in the `conditioning_embedding` layer. + global_pool_conditions (`bool`, defaults to `False`): + TODO(Patrick) - unused parameter. + addition_embed_type_num_heads (`int`, defaults to 64): + The number of heads to use for the `TextTimeEmbedding` layer. + """ + + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + in_channels: int = 4, + conditioning_channels: int = 5, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + down_block_types: Tuple[str, ...] = ( + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D", + ), + mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", + up_block_types: Tuple[str, ...] = ( + "UpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D", + ), + only_cross_attention: Union[bool, Tuple[bool]] = False, + block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), + layers_per_block: int = 2, + downsample_padding: int = 1, + mid_block_scale_factor: float = 1, + act_fn: str = "silu", + norm_num_groups: Optional[int] = 32, + norm_eps: float = 1e-5, + cross_attention_dim: int = 1280, + transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, + encoder_hid_dim: Optional[int] = None, + encoder_hid_dim_type: Optional[str] = None, + attention_head_dim: Union[int, Tuple[int, ...]] = 8, + num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None, + use_linear_projection: bool = False, + class_embed_type: Optional[str] = None, + addition_embed_type: Optional[str] = None, + addition_time_embed_dim: Optional[int] = None, + num_class_embeds: Optional[int] = None, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + projection_class_embeddings_input_dim: Optional[int] = None, + brushnet_conditioning_channel_order: str = "rgb", + conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), + global_pool_conditions: bool = False, + addition_embed_type_num_heads: int = 64, + ): + super().__init__() + + # If `num_attention_heads` is not defined (which is the case for most models) + # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. + # The reason for this behavior is to correct for incorrectly named variables that were introduced + # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 + # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking + # which is why we correct for the naming here. + num_attention_heads = num_attention_heads or attention_head_dim + + # Check inputs + if len(down_block_types) != len(up_block_types): + raise ValueError( + f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." + ) + + if len(block_out_channels) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." + ) + + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + + # input + conv_in_kernel = 3 + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in_condition = nn.Conv2d( + in_channels + conditioning_channels, + block_out_channels[0], + kernel_size=conv_in_kernel, + padding=conv_in_padding, + ) + + # time + time_embed_dim = block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + self.time_embedding = TimestepEmbedding( + timestep_input_dim, + time_embed_dim, + act_fn=act_fn, + ) + + if encoder_hid_dim_type is None and encoder_hid_dim is not None: + encoder_hid_dim_type = "text_proj" + self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) + logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") + + if encoder_hid_dim is None and encoder_hid_dim_type is not None: + raise ValueError( + f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." + ) + + if encoder_hid_dim_type == "text_proj": + self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) + elif encoder_hid_dim_type == "text_image_proj": + # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` + self.encoder_hid_proj = TextImageProjection( + text_embed_dim=encoder_hid_dim, + image_embed_dim=cross_attention_dim, + cross_attention_dim=cross_attention_dim, + ) + + elif encoder_hid_dim_type is not None: + raise ValueError( + f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." + ) + else: + self.encoder_hid_proj = None + + # class embedding + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == "timestep": + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) + elif class_embed_type == "identity": + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == "projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" + ) + # The projection `class_embed_type` is the same as the timestep `class_embed_type` except + # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings + # 2. it projects from an arbitrary input dimension. + # + # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. + # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. + # As a result, `TimestepEmbedding` can be passed arbitrary vectors. + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + + if addition_embed_type == "text": + if encoder_hid_dim is not None: + text_time_embedding_from_dim = encoder_hid_dim + else: + text_time_embedding_from_dim = cross_attention_dim + + self.add_embedding = TextTimeEmbedding( + text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads + ) + elif addition_embed_type == "text_image": + # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` + self.add_embedding = TextImageTimeEmbedding( + text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim + ) + elif addition_embed_type == "text_time": + self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + + elif addition_embed_type is not None: + raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") + + self.down_blocks = nn.ModuleList([]) + self.brushnet_down_blocks = nn.ModuleList([]) + + if isinstance(only_cross_attention, bool): + only_cross_attention = [only_cross_attention] * len(down_block_types) + + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + + # down + output_channel = block_out_channels[0] + + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_down_blocks.append(brushnet_block) + + for i, down_block_type in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = get_down_block( + down_block_type, + num_layers=layers_per_block, + transformer_layers_per_block=transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + temb_channels=time_embed_dim, + add_downsample=not is_final_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads[i], + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + downsample_padding=downsample_padding, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + self.down_blocks.append(down_block) + + for _ in range(layers_per_block): + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_down_blocks.append(brushnet_block) + + if not is_final_block: + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_down_blocks.append(brushnet_block) + + # mid + mid_block_channel = block_out_channels[-1] + + brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_mid_block = brushnet_block + + self.mid_block = get_mid_block( + mid_block_type, + transformer_layers_per_block=transformer_layers_per_block[-1], + in_channels=mid_block_channel, + temb_channels=time_embed_dim, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + output_scale_factor=mid_block_scale_factor, + resnet_time_scale_shift=resnet_time_scale_shift, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads[-1], + resnet_groups=norm_num_groups, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + ) + + # count how many layers upsample the images + self.num_upsamplers = 0 + + # up + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) + only_cross_attention = list(reversed(only_cross_attention)) + + output_channel = reversed_block_out_channels[0] + + self.up_blocks = nn.ModuleList([]) + self.brushnet_up_blocks = nn.ModuleList([]) + + for i, up_block_type in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + + # add upsample block for all BUT final layer + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + + up_block = get_up_block( + up_block_type, + num_layers=layers_per_block + 1, + transformer_layers_per_block=reversed_transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + prev_output_channel=prev_output_channel, + temb_channels=time_embed_dim, + add_upsample=add_upsample, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resolution_idx=i, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + num_attention_heads=reversed_num_attention_heads[i], + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + ) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + + for _ in range(layers_per_block + 1): + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_up_blocks.append(brushnet_block) + + if not is_final_block: + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_up_blocks.append(brushnet_block) + + @classmethod + def from_unet( + cls, + unet: UNet2DConditionModel, + brushnet_conditioning_channel_order: str = "rgb", + conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), + load_weights_from_unet: bool = True, + conditioning_channels: int = 5, + ): + r""" + Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`]. + + Parameters: + unet (`UNet2DConditionModel`): + The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied + where applicable. + """ + transformer_layers_per_block = ( + unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1 + ) + encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None + encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None + addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None + addition_time_embed_dim = ( + unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None + ) + + brushnet = cls( + in_channels=unet.config.in_channels, + conditioning_channels=conditioning_channels, + flip_sin_to_cos=unet.config.flip_sin_to_cos, + freq_shift=unet.config.freq_shift, + # down_block_types=['DownBlock2D','DownBlock2D','DownBlock2D','DownBlock2D'], + down_block_types=[ + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D", + ], + # mid_block_type='MidBlock2D', + mid_block_type="UNetMidBlock2DCrossAttn", + # up_block_types=['UpBlock2D','UpBlock2D','UpBlock2D','UpBlock2D'], + up_block_types=["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"], + only_cross_attention=unet.config.only_cross_attention, + block_out_channels=unet.config.block_out_channels, + layers_per_block=unet.config.layers_per_block, + downsample_padding=unet.config.downsample_padding, + mid_block_scale_factor=unet.config.mid_block_scale_factor, + act_fn=unet.config.act_fn, + norm_num_groups=unet.config.norm_num_groups, + norm_eps=unet.config.norm_eps, + cross_attention_dim=unet.config.cross_attention_dim, + transformer_layers_per_block=transformer_layers_per_block, + encoder_hid_dim=encoder_hid_dim, + encoder_hid_dim_type=encoder_hid_dim_type, + attention_head_dim=unet.config.attention_head_dim, + num_attention_heads=unet.config.num_attention_heads, + use_linear_projection=unet.config.use_linear_projection, + class_embed_type=unet.config.class_embed_type, + addition_embed_type=addition_embed_type, + addition_time_embed_dim=addition_time_embed_dim, + num_class_embeds=unet.config.num_class_embeds, + upcast_attention=unet.config.upcast_attention, + resnet_time_scale_shift=unet.config.resnet_time_scale_shift, + projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, + brushnet_conditioning_channel_order=brushnet_conditioning_channel_order, + conditioning_embedding_out_channels=conditioning_embedding_out_channels, + ) + + if load_weights_from_unet: + conv_in_condition_weight = torch.zeros_like(brushnet.conv_in_condition.weight) + conv_in_condition_weight[:, :4, ...] = unet.conv_in.weight + conv_in_condition_weight[:, 4:8, ...] = unet.conv_in.weight + brushnet.conv_in_condition.weight = torch.nn.Parameter(conv_in_condition_weight) + brushnet.conv_in_condition.bias = unet.conv_in.bias + + brushnet.time_proj.load_state_dict(unet.time_proj.state_dict()) + brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) + + if brushnet.class_embedding: + brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict()) + + brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False) + brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False) + brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(), strict=False) + + return brushnet.to(unet.dtype) + + @property + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor + def set_default_attn_processor(self): + """ + Disables custom attention processors and sets the default attention implementation. + """ + if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): + processor = AttnAddedKVProcessor() + elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): + processor = AttnProcessor() + else: + raise ValueError( + f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" + ) + + self.set_attn_processor(processor) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice + def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: + r""" + Enable sliced attention computation. + + When this option is enabled, the attention module splits the input tensor in slices to compute attention in + several steps. This is useful for saving some memory in exchange for a small decrease in speed. + + Args: + slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): + When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If + `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is + provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` + must be a multiple of `slice_size`. + """ + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, "set_attention_slice"): + sliceable_head_dims.append(module.sliceable_head_dim) + + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + + # retrieve number of attention layers + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + + num_sliceable_layers = len(sliceable_head_dims) + + if slice_size == "auto": + # half the attention head size is usually a good trade-off between + # speed and memory + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == "max": + # make smallest slice possible + slice_size = num_sliceable_layers * [1] + + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + + if len(slice_size) != len(sliceable_head_dims): + raise ValueError( + f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" + f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." + ) + + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f"size {size} has to be smaller or equal to {dim}.") + + # Recursively walk through all the children. + # Any children which exposes the set_attention_slice method + # gets the message + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, "set_attention_slice"): + module.set_attention_slice(slice_size.pop()) + + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value: bool = False) -> None: + if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): + module.gradient_checkpointing = value + + def forward( + self, + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + brushnet_cond: torch.FloatTensor, + conditioning_scale: float = 1.0, + class_labels: Optional[torch.Tensor] = None, + timestep_cond: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guess_mode: bool = False, + return_dict: bool = True, + debug=False, + ) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]: + """ + The [`BrushNetModel`] forward method. + + Args: + sample (`torch.FloatTensor`): + The noisy input tensor. + timestep (`Union[torch.Tensor, float, int]`): + The number of timesteps to denoise an input. + encoder_hidden_states (`torch.Tensor`): + The encoder hidden states. + brushnet_cond (`torch.FloatTensor`): + The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. + conditioning_scale (`float`, defaults to `1.0`): + The scale factor for BrushNet outputs. + class_labels (`torch.Tensor`, *optional*, defaults to `None`): + Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. + timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): + Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the + timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep + embeddings. + attention_mask (`torch.Tensor`, *optional*, defaults to `None`): + An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask + is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large + negative values to the attention scores corresponding to "discard" tokens. + added_cond_kwargs (`dict`): + Additional conditions for the Stable Diffusion XL UNet. + cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): + A kwargs dictionary that if specified is passed along to the `AttnProcessor`. + guess_mode (`bool`, defaults to `False`): + In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if + you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. + return_dict (`bool`, defaults to `True`): + Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple. + + Returns: + [`~models.brushnet.BrushNetOutput`] **or** `tuple`: + If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is + returned where the first element is the sample tensor. + """ + # check channel order + channel_order = self.config.brushnet_conditioning_channel_order + + if channel_order == "rgb": + # in rgb order by default + ... + elif channel_order == "bgr": + brushnet_cond = torch.flip(brushnet_cond, dims=[1]) + else: + raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}") + + if debug: print('BrushNet CA: attn mask') + + # prepare attention_mask + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + if debug: print('BrushNet CA: time') + + # 1. time + timesteps = timestep + if not torch.is_tensor(timesteps): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + + # timesteps does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=sample.dtype) + + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) + emb = emb + class_emb + + if self.config.addition_embed_type is not None: + if self.config.addition_embed_type == "text": + aug_emb = self.add_embedding(encoder_hidden_states) + + elif self.config.addition_embed_type == "text_time": + if "text_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" + ) + text_embeds = added_cond_kwargs.get("text_embeds") + if "time_ids" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" + ) + time_ids = added_cond_kwargs.get("time_ids") + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + + emb = emb + aug_emb if aug_emb is not None else emb + + if debug: print('BrushNet CA: pre-process') + + + # 2. pre-process + brushnet_cond = torch.concat([sample, brushnet_cond], 1) + sample = self.conv_in_condition(brushnet_cond) + + if debug: print('BrushNet CA: down') + + # 3. down + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + if debug: print('BrushNet CA (down block with XA): ', type(downsample_block)) + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + debug=debug, + ) + else: + if debug: print('BrushNet CA (down block): ', type(downsample_block)) + sample, res_samples = downsample_block(hidden_states=sample, temb=emb, debug=debug) + + down_block_res_samples += res_samples + + if debug: print('BrushNet CA: PP down') + + # 4. PaintingNet down blocks + brushnet_down_block_res_samples = () + for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks): + down_block_res_sample = brushnet_down_block(down_block_res_sample) + brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,) + + if debug: print('BrushNet CA: PP mid') + + # 5. mid + if self.mid_block is not None: + if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: + sample = self.mid_block( + sample, + emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + ) + else: + sample = self.mid_block(sample, emb) + + if debug: print('BrushNet CA: mid') + + # 6. BrushNet mid blocks + brushnet_mid_block_res_sample = self.brushnet_mid_block(sample) + + if debug: print('BrushNet CA: PP up') + + # 7. up + up_block_res_samples = () + for i, upsample_block in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + sample, up_res_samples = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + upsample_size=upsample_size, + attention_mask=attention_mask, + return_res_samples=True, + ) + else: + sample, up_res_samples = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + upsample_size=upsample_size, + return_res_samples=True, + ) + + up_block_res_samples += up_res_samples + + if debug: print('BrushNet CA: up') + + # 8. BrushNet up blocks + brushnet_up_block_res_samples = () + for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks): + up_block_res_sample = brushnet_up_block(up_block_res_sample) + brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,) + + if debug: print('BrushNet CA: scaling') + + # 6. scaling + if guess_mode and not self.config.global_pool_conditions: + scales = torch.logspace( + -1, + 0, + len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples), + device=sample.device, + ) # 0.1 to 1.0 + scales = scales * conditioning_scale + + brushnet_down_block_res_samples = [ + sample * scale + for sample, scale in zip( + brushnet_down_block_res_samples, scales[: len(brushnet_down_block_res_samples)] + ) + ] + brushnet_mid_block_res_sample = ( + brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)] + ) + brushnet_up_block_res_samples = [ + sample * scale + for sample, scale in zip( + brushnet_up_block_res_samples, scales[len(brushnet_down_block_res_samples) + 1 :] + ) + ] + else: + brushnet_down_block_res_samples = [ + sample * conditioning_scale for sample in brushnet_down_block_res_samples + ] + brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale + brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples] + + if self.config.global_pool_conditions: + brushnet_down_block_res_samples = [ + torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples + ] + brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True) + brushnet_up_block_res_samples = [ + torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples + ] + + if debug: print('BrushNet CA: finish') + + if not return_dict: + return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples) + + return BrushNetOutput( + down_block_res_samples=brushnet_down_block_res_samples, + mid_block_res_sample=brushnet_mid_block_res_sample, + up_block_res_samples=brushnet_up_block_res_samples, + ) + + +def zero_module(module): + for p in module.parameters(): + nn.init.zeros_(p) + return module diff --git a/MagicQuill/brushnet/brushnet_xl.json b/MagicQuill/brushnet/brushnet_xl.json new file mode 100644 index 0000000000000000000000000000000000000000..c1a3c655549879fb2e9d7441ec71eef5167eac12 --- /dev/null +++ b/MagicQuill/brushnet/brushnet_xl.json @@ -0,0 +1,63 @@ +{ + "_class_name": "BrushNetModel", + "_diffusers_version": "0.27.0.dev0", + "_name_or_path": "runs/logs/brushnetsdxl_randommask/checkpoint-80000", + "act_fn": "silu", + "addition_embed_type": "text_time", + "addition_embed_type_num_heads": 64, + "addition_time_embed_dim": 256, + "attention_head_dim": [ + 5, + 10, + 20 + ], + "block_out_channels": [ + 320, + 640, + 1280 + ], + "brushnet_conditioning_channel_order": "rgb", + "class_embed_type": null, + "conditioning_channels": 5, + "conditioning_embedding_out_channels": [ + 16, + 32, + 96, + 256 + ], + "cross_attention_dim": 2048, + "down_block_types": [ + "DownBlock2D", + "DownBlock2D", + "DownBlock2D" + ], + "downsample_padding": 1, + "encoder_hid_dim": null, + "encoder_hid_dim_type": null, + "flip_sin_to_cos": true, + "freq_shift": 0, + "global_pool_conditions": false, + "in_channels": 4, + "layers_per_block": 2, + "mid_block_scale_factor": 1, + "mid_block_type": "MidBlock2D", + "norm_eps": 1e-05, + "norm_num_groups": 32, + "num_attention_heads": null, + "num_class_embeds": null, + "only_cross_attention": false, + "projection_class_embeddings_input_dim": 2816, + "resnet_time_scale_shift": "default", + "transformer_layers_per_block": [ + 1, + 2, + 10 + ], + "up_block_types": [ + "UpBlock2D", + "UpBlock2D", + "UpBlock2D" + ], + "upcast_attention": null, + "use_linear_projection": true +} diff --git a/MagicQuill/brushnet/powerpaint.json b/MagicQuill/brushnet/powerpaint.json new file mode 100644 index 0000000000000000000000000000000000000000..4d7c73e9f5654cd775db99a0d77234765f808e6c --- /dev/null +++ b/MagicQuill/brushnet/powerpaint.json @@ -0,0 +1,57 @@ +{ + "_class_name": "BrushNetModel", + "_diffusers_version": "0.27.2", + "act_fn": "silu", + "addition_embed_type": null, + "addition_embed_type_num_heads": 64, + "addition_time_embed_dim": null, + "attention_head_dim": 8, + "block_out_channels": [ + 320, + 640, + 1280, + 1280 + ], + "brushnet_conditioning_channel_order": "rgb", + "class_embed_type": null, + "conditioning_channels": 5, + "conditioning_embedding_out_channels": [ + 16, + 32, + 96, + 256 + ], + "cross_attention_dim": 768, + "down_block_types": [ + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D" + ], + "downsample_padding": 1, + "encoder_hid_dim": null, + "encoder_hid_dim_type": null, + "flip_sin_to_cos": true, + "freq_shift": 0, + "global_pool_conditions": false, + "in_channels": 4, + "layers_per_block": 2, + "mid_block_scale_factor": 1, + "mid_block_type": "UNetMidBlock2DCrossAttn", + "norm_eps": 1e-05, + "norm_num_groups": 32, + "num_attention_heads": null, + "num_class_embeds": null, + "only_cross_attention": false, + "projection_class_embeddings_input_dim": null, + "resnet_time_scale_shift": "default", + "transformer_layers_per_block": 1, + "up_block_types": [ + "UpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D" + ], + "upcast_attention": false, + "use_linear_projection": false +} diff --git a/MagicQuill/brushnet/powerpaint_utils.py b/MagicQuill/brushnet/powerpaint_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..bcbb1f715bd33ef79064361be41c99309a176424 --- /dev/null +++ b/MagicQuill/brushnet/powerpaint_utils.py @@ -0,0 +1,496 @@ +import copy +import random + +import torch +import torch.nn as nn +from transformers import CLIPTokenizer +from typing import Any, List, Optional, Union + +class TokenizerWrapper: + """Tokenizer wrapper for CLIPTokenizer. Only support CLIPTokenizer + currently. This wrapper is modified from https://github.com/huggingface/dif + fusers/blob/e51f19aee82c8dd874b715a09dbc521d88835d68/src/diffusers/loaders. + py#L358 # noqa. + + Args: + from_pretrained (Union[str, os.PathLike], optional): The *model id* + of a pretrained model or a path to a *directory* containing + model weights and config. Defaults to None. + from_config (Union[str, os.PathLike], optional): The *model id* + of a pretrained model or a path to a *directory* containing + model weights and config. Defaults to None. + + *args, **kwargs: If `from_pretrained` is passed, *args and **kwargs + will be passed to `from_pretrained` function. Otherwise, *args + and **kwargs will be used to initialize the model by + `self._module_cls(*args, **kwargs)`. + """ + + def __init__(self, tokenizer: CLIPTokenizer): + self.wrapped = tokenizer + self.token_map = {} + + def __getattr__(self, name: str) -> Any: + if name in self.__dict__: + return getattr(self, name) + #if name == "wrapped": + # return getattr(self, 'wrapped')#super().__getattr__("wrapped") + + try: + return getattr(self.wrapped, name) + except AttributeError: + raise AttributeError( + "'name' cannot be found in both " + f"'{self.__class__.__name__}' and " + f"'{self.__class__.__name__}.tokenizer'." + ) + + def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs): + """Attempt to add tokens to the tokenizer. + + Args: + tokens (Union[str, List[str]]): The tokens to be added. + """ + num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs) + assert num_added_tokens != 0, ( + f"The tokenizer already contains the token {tokens}. Please pass " + "a different `placeholder_token` that is not already in the " + "tokenizer." + ) + + def get_token_info(self, token: str) -> dict: + """Get the information of a token, including its start and end index in + the current tokenizer. + + Args: + token (str): The token to be queried. + + Returns: + dict: The information of the token, including its start and end + index in current tokenizer. + """ + token_ids = self.__call__(token).input_ids + start, end = token_ids[1], token_ids[-2] + 1 + return {"name": token, "start": start, "end": end} + + def add_placeholder_token(self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs): + """Add placeholder tokens to the tokenizer. + + Args: + placeholder_token (str): The placeholder token to be added. + num_vec_per_token (int, optional): The number of vectors of + the added placeholder token. + *args, **kwargs: The arguments for `self.wrapped.add_tokens`. + """ + output = [] + if num_vec_per_token == 1: + self.try_adding_tokens(placeholder_token, *args, **kwargs) + output.append(placeholder_token) + else: + output = [] + for i in range(num_vec_per_token): + ith_token = placeholder_token + f"_{i}" + self.try_adding_tokens(ith_token, *args, **kwargs) + output.append(ith_token) + + for token in self.token_map: + if token in placeholder_token: + raise ValueError( + f"The tokenizer already has placeholder token {token} " + f"that can get confused with {placeholder_token} " + "keep placeholder tokens independent" + ) + self.token_map[placeholder_token] = output + + def replace_placeholder_tokens_in_text( + self, text: Union[str, List[str]], vector_shuffle: bool = False, prop_tokens_to_load: float = 1.0 + ) -> Union[str, List[str]]: + """Replace the keywords in text with placeholder tokens. This function + will be called in `self.__call__` and `self.encode`. + + Args: + text (Union[str, List[str]]): The text to be processed. + vector_shuffle (bool, optional): Whether to shuffle the vectors. + Defaults to False. + prop_tokens_to_load (float, optional): The proportion of tokens to + be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0. + + Returns: + Union[str, List[str]]: The processed text. + """ + if isinstance(text, list): + output = [] + for i in range(len(text)): + output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=vector_shuffle)) + return output + + for placeholder_token in self.token_map: + if placeholder_token in text: + tokens = self.token_map[placeholder_token] + tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)] + if vector_shuffle: + tokens = copy.copy(tokens) + random.shuffle(tokens) + text = text.replace(placeholder_token, " ".join(tokens)) + return text + + def replace_text_with_placeholder_tokens(self, text: Union[str, List[str]]) -> Union[str, List[str]]: + """Replace the placeholder tokens in text with the original keywords. + This function will be called in `self.decode`. + + Args: + text (Union[str, List[str]]): The text to be processed. + + Returns: + Union[str, List[str]]: The processed text. + """ + if isinstance(text, list): + output = [] + for i in range(len(text)): + output.append(self.replace_text_with_placeholder_tokens(text[i])) + return output + + for placeholder_token, tokens in self.token_map.items(): + merged_tokens = " ".join(tokens) + if merged_tokens in text: + text = text.replace(merged_tokens, placeholder_token) + return text + + def __call__( + self, + text: Union[str, List[str]], + *args, + vector_shuffle: bool = False, + prop_tokens_to_load: float = 1.0, + **kwargs, + ): + """The call function of the wrapper. + + Args: + text (Union[str, List[str]]): The text to be tokenized. + vector_shuffle (bool, optional): Whether to shuffle the vectors. + Defaults to False. + prop_tokens_to_load (float, optional): The proportion of tokens to + be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0 + *args, **kwargs: The arguments for `self.wrapped.__call__`. + """ + replaced_text = self.replace_placeholder_tokens_in_text( + text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load + ) + + return self.wrapped.__call__(replaced_text, *args, **kwargs) + + def encode(self, text: Union[str, List[str]], *args, **kwargs): + """Encode the passed text to token index. + + Args: + text (Union[str, List[str]]): The text to be encode. + *args, **kwargs: The arguments for `self.wrapped.__call__`. + """ + replaced_text = self.replace_placeholder_tokens_in_text(text) + return self.wrapped(replaced_text, *args, **kwargs) + + def decode(self, token_ids, return_raw: bool = False, *args, **kwargs) -> Union[str, List[str]]: + """Decode the token index to text. + + Args: + token_ids: The token index to be decoded. + return_raw: Whether keep the placeholder token in the text. + Defaults to False. + *args, **kwargs: The arguments for `self.wrapped.decode`. + + Returns: + Union[str, List[str]]: The decoded text. + """ + text = self.wrapped.decode(token_ids, *args, **kwargs) + if return_raw: + return text + replaced_text = self.replace_text_with_placeholder_tokens(text) + return replaced_text + + def __repr__(self): + """The representation of the wrapper.""" + s = super().__repr__() + prefix = f"Wrapped Module Class: {self._module_cls}\n" + prefix += f"Wrapped Module Name: {self._module_name}\n" + if self._from_pretrained: + prefix += f"From Pretrained: {self._from_pretrained}\n" + s = prefix + s + return s + + +class EmbeddingLayerWithFixes(nn.Module): + """The revised embedding layer to support external embeddings. This design + of this class is inspired by https://github.com/AUTOMATIC1111/stable- + diffusion-webui/blob/22bcc7be428c94e9408f589966c2040187245d81/modules/sd_hi + jack.py#L224 # noqa. + + Args: + wrapped (nn.Emebdding): The embedding layer to be wrapped. + external_embeddings (Union[dict, List[dict]], optional): The external + embeddings added to this layer. Defaults to None. + """ + + def __init__(self, wrapped: nn.Embedding, external_embeddings: Optional[Union[dict, List[dict]]] = None): + super().__init__() + self.wrapped = wrapped + self.num_embeddings = wrapped.weight.shape[0] + + self.external_embeddings = [] + if external_embeddings: + self.add_embeddings(external_embeddings) + + self.trainable_embeddings = nn.ParameterDict() + + @property + def weight(self): + """Get the weight of wrapped embedding layer.""" + return self.wrapped.weight + + def check_duplicate_names(self, embeddings: List[dict]): + """Check whether duplicate names exist in list of 'external + embeddings'. + + Args: + embeddings (List[dict]): A list of embedding to be check. + """ + names = [emb["name"] for emb in embeddings] + assert len(names) == len(set(names)), ( + "Found duplicated names in 'external_embeddings'. Name list: " f"'{names}'" + ) + + def check_ids_overlap(self, embeddings): + """Check whether overlap exist in token ids of 'external_embeddings'. + + Args: + embeddings (List[dict]): A list of embedding to be check. + """ + ids_range = [[emb["start"], emb["end"], emb["name"]] for emb in embeddings] + ids_range.sort() # sort by 'start' + # check if 'end' has overlapping + for idx in range(len(ids_range) - 1): + name1, name2 = ids_range[idx][-1], ids_range[idx + 1][-1] + assert ids_range[idx][1] <= ids_range[idx + 1][0], ( + f"Found ids overlapping between embeddings '{name1}' " f"and '{name2}'." + ) + + def add_embeddings(self, embeddings: Optional[Union[dict, List[dict]]]): + """Add external embeddings to this layer. + + Use case: + + >>> 1. Add token to tokenizer and get the token id. + >>> tokenizer = TokenizerWrapper('openai/clip-vit-base-patch32') + >>> # 'how much' in kiswahili + >>> tokenizer.add_placeholder_tokens('ngapi', num_vec_per_token=4) + >>> + >>> 2. Add external embeddings to the model. + >>> new_embedding = { + >>> 'name': 'ngapi', # 'how much' in kiswahili + >>> 'embedding': torch.ones(1, 15) * 4, + >>> 'start': tokenizer.get_token_info('kwaheri')['start'], + >>> 'end': tokenizer.get_token_info('kwaheri')['end'], + >>> 'trainable': False # if True, will registry as a parameter + >>> } + >>> embedding_layer = nn.Embedding(10, 15) + >>> embedding_layer_wrapper = EmbeddingLayerWithFixes(embedding_layer) + >>> embedding_layer_wrapper.add_embeddings(new_embedding) + >>> + >>> 3. Forward tokenizer and embedding layer! + >>> input_text = ['hello, ngapi!', 'hello my friend, ngapi?'] + >>> input_ids = tokenizer( + >>> input_text, padding='max_length', truncation=True, + >>> return_tensors='pt')['input_ids'] + >>> out_feat = embedding_layer_wrapper(input_ids) + >>> + >>> 4. Let's validate the result! + >>> assert (out_feat[0, 3: 7] == 2.3).all() + >>> assert (out_feat[2, 5: 9] == 2.3).all() + + Args: + embeddings (Union[dict, list[dict]]): The external embeddings to + be added. Each dict must contain the following 4 fields: 'name' + (the name of this embedding), 'embedding' (the embedding + tensor), 'start' (the start token id of this embedding), 'end' + (the end token id of this embedding). For example: + `{name: NAME, start: START, end: END, embedding: torch.Tensor}` + """ + if isinstance(embeddings, dict): + embeddings = [embeddings] + + self.external_embeddings += embeddings + self.check_duplicate_names(self.external_embeddings) + self.check_ids_overlap(self.external_embeddings) + + # set for trainable + added_trainable_emb_info = [] + for embedding in embeddings: + trainable = embedding.get("trainable", False) + if trainable: + name = embedding["name"] + embedding["embedding"] = torch.nn.Parameter(embedding["embedding"]) + self.trainable_embeddings[name] = embedding["embedding"] + added_trainable_emb_info.append(name) + + added_emb_info = [emb["name"] for emb in embeddings] + added_emb_info = ", ".join(added_emb_info) + print(f"Successfully add external embeddings: {added_emb_info}.", "current") + + if added_trainable_emb_info: + added_trainable_emb_info = ", ".join(added_trainable_emb_info) + print("Successfully add trainable external embeddings: " f"{added_trainable_emb_info}", "current") + + def replace_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: + """Replace external input ids to 0. + + Args: + input_ids (torch.Tensor): The input ids to be replaced. + + Returns: + torch.Tensor: The replaced input ids. + """ + input_ids_fwd = input_ids.clone() + input_ids_fwd[input_ids_fwd >= self.num_embeddings] = 0 + return input_ids_fwd + + def replace_embeddings( + self, input_ids: torch.Tensor, embedding: torch.Tensor, external_embedding: dict + ) -> torch.Tensor: + """Replace external embedding to the embedding layer. Noted that, in + this function we use `torch.cat` to avoid inplace modification. + + Args: + input_ids (torch.Tensor): The original token ids. Shape like + [LENGTH, ]. + embedding (torch.Tensor): The embedding of token ids after + `replace_input_ids` function. + external_embedding (dict): The external embedding to be replaced. + + Returns: + torch.Tensor: The replaced embedding. + """ + new_embedding = [] + + name = external_embedding["name"] + start = external_embedding["start"] + end = external_embedding["end"] + target_ids_to_replace = [i for i in range(start, end)] + ext_emb = external_embedding["embedding"] + + # do not need to replace + if not (input_ids == start).any(): + return embedding + + # start replace + s_idx, e_idx = 0, 0 + while e_idx < len(input_ids): + if input_ids[e_idx] == start: + if e_idx != 0: + # add embedding do not need to replace + new_embedding.append(embedding[s_idx:e_idx]) + + # check if the next embedding need to replace is valid + actually_ids_to_replace = [int(i) for i in input_ids[e_idx : e_idx + end - start]] + assert actually_ids_to_replace == target_ids_to_replace, ( + f"Invalid 'input_ids' in position: {s_idx} to {e_idx}. " + f"Expect '{target_ids_to_replace}' for embedding " + f"'{name}' but found '{actually_ids_to_replace}'." + ) + + new_embedding.append(ext_emb) + + s_idx = e_idx + end - start + e_idx = s_idx + 1 + else: + e_idx += 1 + + if e_idx == len(input_ids): + new_embedding.append(embedding[s_idx:e_idx]) + + return torch.cat(new_embedding, dim=0) + + def forward(self, input_ids: torch.Tensor, external_embeddings: Optional[List[dict]] = None): + """The forward function. + + Args: + input_ids (torch.Tensor): The token ids shape like [bz, LENGTH] or + [LENGTH, ]. + external_embeddings (Optional[List[dict]]): The external + embeddings. If not passed, only `self.external_embeddings` + will be used. Defaults to None. + + input_ids: shape like [bz, LENGTH] or [LENGTH]. + """ + assert input_ids.ndim in [1, 2] + if input_ids.ndim == 1: + input_ids = input_ids.unsqueeze(0) + + if external_embeddings is None and not self.external_embeddings: + return self.wrapped(input_ids) + + input_ids_fwd = self.replace_input_ids(input_ids) + inputs_embeds = self.wrapped(input_ids_fwd) + + vecs = [] + + if external_embeddings is None: + external_embeddings = [] + elif isinstance(external_embeddings, dict): + external_embeddings = [external_embeddings] + embeddings = self.external_embeddings + external_embeddings + + for input_id, embedding in zip(input_ids, inputs_embeds): + new_embedding = embedding + for external_embedding in embeddings: + new_embedding = self.replace_embeddings(input_id, new_embedding, external_embedding) + vecs.append(new_embedding) + + return torch.stack(vecs) + + + +def add_tokens( + tokenizer, text_encoder, placeholder_tokens: list, initialize_tokens: list = None, num_vectors_per_token: int = 1 +): + """Add token for training. + + # TODO: support add tokens as dict, then we can load pretrained tokens. + """ + if initialize_tokens is not None: + assert len(initialize_tokens) == len( + placeholder_tokens + ), "placeholder_token should be the same length as initialize_token" + for ii in range(len(placeholder_tokens)): + tokenizer.add_placeholder_token(placeholder_tokens[ii], num_vec_per_token=num_vectors_per_token) + + # text_encoder.set_embedding_layer() + embedding_layer = text_encoder.text_model.embeddings.token_embedding + text_encoder.text_model.embeddings.token_embedding = EmbeddingLayerWithFixes(embedding_layer) + embedding_layer = text_encoder.text_model.embeddings.token_embedding + + assert embedding_layer is not None, ( + "Do not support get embedding layer for current text encoder. " "Please check your configuration." + ) + initialize_embedding = [] + if initialize_tokens is not None: + for ii in range(len(placeholder_tokens)): + init_id = tokenizer(initialize_tokens[ii]).input_ids[1] + temp_embedding = embedding_layer.weight[init_id] + initialize_embedding.append(temp_embedding[None, ...].repeat(num_vectors_per_token, 1)) + else: + for ii in range(len(placeholder_tokens)): + init_id = tokenizer("a").input_ids[1] + temp_embedding = embedding_layer.weight[init_id] + len_emb = temp_embedding.shape[0] + init_weight = (torch.rand(num_vectors_per_token, len_emb) - 0.5) / 2.0 + initialize_embedding.append(init_weight) + + # initialize_embedding = torch.cat(initialize_embedding,dim=0) + + token_info_all = [] + for ii in range(len(placeholder_tokens)): + token_info = tokenizer.get_token_info(placeholder_tokens[ii]) + token_info["embedding"] = initialize_embedding[ii] + token_info["trainable"] = True + token_info_all.append(token_info) + embedding_layer.add_embeddings(token_info_all) diff --git a/MagicQuill/brushnet/unet_2d_blocks.py b/MagicQuill/brushnet/unet_2d_blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..4a083673867f2568d499480f7dcec1480b20ead0 --- /dev/null +++ b/MagicQuill/brushnet/unet_2d_blocks.py @@ -0,0 +1,3907 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import Any, Dict, Optional, Tuple, Union + +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn + +from diffusers.utils import deprecate, is_torch_version, logging +from diffusers.utils.torch_utils import apply_freeu +from diffusers.models.activations import get_activation +from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0 +from diffusers.models.normalization import AdaGroupNorm +from diffusers.models.resnet import ( + Downsample2D, + FirDownsample2D, + FirUpsample2D, + KDownsample2D, + KUpsample2D, + ResnetBlock2D, + ResnetBlockCondNorm2D, + Upsample2D, +) +from diffusers.models.transformers.dual_transformer_2d import DualTransformer2DModel +from diffusers.models.transformers.transformer_2d import Transformer2DModel + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +def get_down_block( + down_block_type: str, + num_layers: int, + in_channels: int, + out_channels: int, + temb_channels: int, + add_downsample: bool, + resnet_eps: float, + resnet_act_fn: str, + transformer_layers_per_block: int = 1, + num_attention_heads: Optional[int] = None, + resnet_groups: Optional[int] = None, + cross_attention_dim: Optional[int] = None, + downsample_padding: Optional[int] = None, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + only_cross_attention: bool = False, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + attention_type: str = "default", + resnet_skip_time_act: bool = False, + resnet_out_scale_factor: float = 1.0, + cross_attention_norm: Optional[str] = None, + attention_head_dim: Optional[int] = None, + downsample_type: Optional[str] = None, + dropout: float = 0.0, +): + # If attn head dim is not defined, we default it to the number of heads + if attention_head_dim is None: + logger.warning( + f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." + ) + attention_head_dim = num_attention_heads + + down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type + if down_block_type == "DownBlock2D": + return DownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "ResnetDownsampleBlock2D": + return ResnetDownsampleBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + skip_time_act=resnet_skip_time_act, + output_scale_factor=resnet_out_scale_factor, + ) + elif down_block_type == "AttnDownBlock2D": + if add_downsample is False: + downsample_type = None + else: + downsample_type = downsample_type or "conv" # default to 'conv' + return AttnDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + downsample_type=downsample_type, + ) + elif down_block_type == "CrossAttnDownBlock2D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") + return CrossAttnDownBlock2D( + num_layers=num_layers, + transformer_layers_per_block=transformer_layers_per_block, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_type=attention_type, + ) + elif down_block_type == "SimpleCrossAttnDownBlock2D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D") + return SimpleCrossAttnDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + skip_time_act=resnet_skip_time_act, + output_scale_factor=resnet_out_scale_factor, + only_cross_attention=only_cross_attention, + cross_attention_norm=cross_attention_norm, + ) + elif down_block_type == "SkipDownBlock2D": + return SkipDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + downsample_padding=downsample_padding, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "AttnSkipDownBlock2D": + return AttnSkipDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "DownEncoderBlock2D": + return DownEncoderBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "AttnDownEncoderBlock2D": + return AttnDownEncoderBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "KDownBlock2D": + return KDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + ) + elif down_block_type == "KCrossAttnDownBlock2D": + return KCrossAttnDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + add_self_attention=True if not add_downsample else False, + ) + raise ValueError(f"{down_block_type} does not exist.") + + +def get_mid_block( + mid_block_type: str, + temb_channels: int, + in_channels: int, + resnet_eps: float, + resnet_act_fn: str, + resnet_groups: int, + output_scale_factor: float = 1.0, + transformer_layers_per_block: int = 1, + num_attention_heads: Optional[int] = None, + cross_attention_dim: Optional[int] = None, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + mid_block_only_cross_attention: bool = False, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + attention_type: str = "default", + resnet_skip_time_act: bool = False, + cross_attention_norm: Optional[str] = None, + attention_head_dim: Optional[int] = 1, + dropout: float = 0.0, +): + if mid_block_type == "UNetMidBlock2DCrossAttn": + return UNetMidBlock2DCrossAttn( + transformer_layers_per_block=transformer_layers_per_block, + in_channels=in_channels, + temb_channels=temb_channels, + dropout=dropout, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + output_scale_factor=output_scale_factor, + resnet_time_scale_shift=resnet_time_scale_shift, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads, + resnet_groups=resnet_groups, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + attention_type=attention_type, + ) + elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": + return UNetMidBlock2DSimpleCrossAttn( + in_channels=in_channels, + temb_channels=temb_channels, + dropout=dropout, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + output_scale_factor=output_scale_factor, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + skip_time_act=resnet_skip_time_act, + only_cross_attention=mid_block_only_cross_attention, + cross_attention_norm=cross_attention_norm, + ) + elif mid_block_type == "UNetMidBlock2D": + return UNetMidBlock2D( + in_channels=in_channels, + temb_channels=temb_channels, + dropout=dropout, + num_layers=0, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + output_scale_factor=output_scale_factor, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + add_attention=False, + ) + elif mid_block_type == "MidBlock2D": + return MidBlock2D( + in_channels=in_channels, + temb_channels=temb_channels, + dropout=dropout, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + output_scale_factor=output_scale_factor, + resnet_time_scale_shift=resnet_time_scale_shift, + resnet_groups=resnet_groups, + use_linear_projection=use_linear_projection, + ) + elif mid_block_type is None: + return None + else: + raise ValueError(f"unknown mid_block_type : {mid_block_type}") + + +def get_up_block( + up_block_type: str, + num_layers: int, + in_channels: int, + out_channels: int, + prev_output_channel: int, + temb_channels: int, + add_upsample: bool, + resnet_eps: float, + resnet_act_fn: str, + resolution_idx: Optional[int] = None, + transformer_layers_per_block: int = 1, + num_attention_heads: Optional[int] = None, + resnet_groups: Optional[int] = None, + cross_attention_dim: Optional[int] = None, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + only_cross_attention: bool = False, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + attention_type: str = "default", + resnet_skip_time_act: bool = False, + resnet_out_scale_factor: float = 1.0, + cross_attention_norm: Optional[str] = None, + attention_head_dim: Optional[int] = None, + upsample_type: Optional[str] = None, + dropout: float = 0.0, +) -> nn.Module: + # If attn head dim is not defined, we default it to the number of heads + if attention_head_dim is None: + logger.warning( + f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." + ) + attention_head_dim = num_attention_heads + + up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type + if up_block_type == "UpBlock2D": + return UpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif up_block_type == "ResnetUpsampleBlock2D": + return ResnetUpsampleBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + skip_time_act=resnet_skip_time_act, + output_scale_factor=resnet_out_scale_factor, + ) + elif up_block_type == "CrossAttnUpBlock2D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") + return CrossAttnUpBlock2D( + num_layers=num_layers, + transformer_layers_per_block=transformer_layers_per_block, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_type=attention_type, + ) + elif up_block_type == "SimpleCrossAttnUpBlock2D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D") + return SimpleCrossAttnUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + skip_time_act=resnet_skip_time_act, + output_scale_factor=resnet_out_scale_factor, + only_cross_attention=only_cross_attention, + cross_attention_norm=cross_attention_norm, + ) + elif up_block_type == "AttnUpBlock2D": + if add_upsample is False: + upsample_type = None + else: + upsample_type = upsample_type or "conv" # default to 'conv' + + return AttnUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + upsample_type=upsample_type, + ) + elif up_block_type == "SkipUpBlock2D": + return SkipUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif up_block_type == "AttnSkipUpBlock2D": + return AttnSkipUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif up_block_type == "UpDecoderBlock2D": + return UpDecoderBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + temb_channels=temb_channels, + ) + elif up_block_type == "AttnUpDecoderBlock2D": + return AttnUpDecoderBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + temb_channels=temb_channels, + ) + elif up_block_type == "KUpBlock2D": + return KUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + ) + elif up_block_type == "KCrossAttnUpBlock2D": + return KCrossAttnUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + ) + + raise ValueError(f"{up_block_type} does not exist.") + + +class AutoencoderTinyBlock(nn.Module): + """ + Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU + blocks. + + Args: + in_channels (`int`): The number of input channels. + out_channels (`int`): The number of output channels. + act_fn (`str`): + ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`. + + Returns: + `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to + `out_channels`. + """ + + def __init__(self, in_channels: int, out_channels: int, act_fn: str): + super().__init__() + act_fn = get_activation(act_fn) + self.conv = nn.Sequential( + nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), + act_fn, + nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), + act_fn, + nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), + ) + self.skip = ( + nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) + if in_channels != out_channels + else nn.Identity() + ) + self.fuse = nn.ReLU() + + def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: + return self.fuse(self.conv(x) + self.skip(x)) + + +class UNetMidBlock2D(nn.Module): + """ + A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. + + Args: + in_channels (`int`): The number of input channels. + temb_channels (`int`): The number of temporal embedding channels. + dropout (`float`, *optional*, defaults to 0.0): The dropout rate. + num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. + resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. + resnet_time_scale_shift (`str`, *optional*, defaults to `default`): + The type of normalization to apply to the time embeddings. This can help to improve the performance of the + model on tasks with long-range temporal dependencies. + resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. + resnet_groups (`int`, *optional*, defaults to 32): + The number of groups to use in the group normalization layers of the resnet blocks. + attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. + resnet_pre_norm (`bool`, *optional*, defaults to `True`): + Whether to use pre-normalization for the resnet blocks. + add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. + attention_head_dim (`int`, *optional*, defaults to 1): + Dimension of a single attention head. The number of attention heads is determined based on this value and + the number of input channels. + output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. + + Returns: + `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, + in_channels, height, width)`. + + """ + + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", # default, spatial + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + attn_groups: Optional[int] = None, + resnet_pre_norm: bool = True, + add_attention: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + ): + super().__init__() + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + self.add_attention = add_attention + + if attn_groups is None: + attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None + + # there is always at least one resnet + if resnet_time_scale_shift == "spatial": + resnets = [ + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ] + else: + resnets = [ + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ] + attentions = [] + + if attention_head_dim is None: + logger.warning( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." + ) + attention_head_dim = in_channels + + for _ in range(num_layers): + if self.add_attention: + attentions.append( + Attention( + in_channels, + heads=in_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=attn_groups, + spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + else: + attentions.append(None) + + if resnet_time_scale_shift == "spatial": + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ) + else: + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: + hidden_states = self.resnets[0](hidden_states, temb) + for attn, resnet in zip(self.attentions, self.resnets[1:]): + if attn is not None: + hidden_states = attn(hidden_states, temb=temb) + hidden_states = resnet(hidden_states, temb) + + return hidden_states + + +class UNetMidBlock2DCrossAttn(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: Union[int, Tuple[int]] = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads: int = 1, + output_scale_factor: float = 1.0, + cross_attention_dim: int = 1280, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + upcast_attention: bool = False, + attention_type: str = "default", + ): + super().__init__() + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + + # support for variable transformer layers per block + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + + # there is always at least one resnet + resnets = [ + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ] + attentions = [] + + for i in range(num_layers): + if not dual_cross_attention: + attentions.append( + Transformer2DModel( + num_attention_heads, + in_channels // num_attention_heads, + in_channels=in_channels, + num_layers=transformer_layers_per_block[i], + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + attention_type=attention_type, + ) + ) + else: + attentions.append( + DualTransformer2DModel( + num_attention_heads, + in_channels // num_attention_heads, + in_channels=in_channels, + num_layers=1, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + ) + ) + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get("scale", None) is not None: + logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") + + hidden_states = self.resnets[0](hidden_states, temb) + for attn, resnet in zip(self.attentions, self.resnets[1:]): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + else: + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + hidden_states = resnet(hidden_states, temb) + + return hidden_states + + +class UNetMidBlock2DSimpleCrossAttn(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + cross_attention_dim: int = 1280, + skip_time_act: bool = False, + only_cross_attention: bool = False, + cross_attention_norm: Optional[str] = None, + ): + super().__init__() + + self.has_cross_attention = True + + self.attention_head_dim = attention_head_dim + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + + self.num_heads = in_channels // self.attention_head_dim + + # there is always at least one resnet + resnets = [ + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ] + attentions = [] + + for _ in range(num_layers): + processor = ( + AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() + ) + + attentions.append( + Attention( + query_dim=in_channels, + cross_attention_dim=in_channels, + heads=self.num_heads, + dim_head=self.attention_head_dim, + added_kv_proj_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + bias=True, + upcast_softmax=True, + only_cross_attention=only_cross_attention, + cross_attention_norm=cross_attention_norm, + processor=processor, + ) + ) + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get("scale", None) is not None: + logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") + + if attention_mask is None: + # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. + mask = None if encoder_hidden_states is None else encoder_attention_mask + else: + # when attention_mask is defined: we don't even check for encoder_attention_mask. + # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. + # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. + # then we can simplify this whole if/else block to: + # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask + mask = attention_mask + + hidden_states = self.resnets[0](hidden_states, temb) + for attn, resnet in zip(self.attentions, self.resnets[1:]): + # attn + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=mask, + **cross_attention_kwargs, + ) + + # resnet + hidden_states = resnet(hidden_states, temb) + + return hidden_states + + +class MidBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + use_linear_projection: bool = False, + ): + super().__init__() + + self.has_cross_attention = False + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + + # there is always at least one resnet + resnets = [ + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ] + + for i in range(num_layers): + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + lora_scale = 1.0 + hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) + for resnet in self.resnets[1:]: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + else: + hidden_states = resnet(hidden_states, temb, scale=lora_scale) + + return hidden_states + + +class AttnDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + downsample_padding: int = 1, + downsample_type: str = "conv", + ): + super().__init__() + resnets = [] + attentions = [] + self.downsample_type = downsample_type + + if attention_head_dim is None: + logger.warning( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=resnet_groups, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if downsample_type == "conv": + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + elif downsample_type == "resnet": + self.downsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + down=True, + ) + ] + ) + else: + self.downsamplers = None + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get("scale", None) is not None: + logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") + + output_states = () + + for resnet, attn in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, **cross_attention_kwargs) + output_states = output_states + (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + if self.downsample_type == "resnet": + hidden_states = downsampler(hidden_states, temb=temb) + else: + hidden_states = downsampler(hidden_states) + + output_states += (hidden_states,) + + return hidden_states, output_states + + +class CrossAttnDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: Union[int, Tuple[int]] = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads: int = 1, + cross_attention_dim: int = 1280, + output_scale_factor: float = 1.0, + downsample_padding: int = 1, + add_downsample: bool = True, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + only_cross_attention: bool = False, + upcast_attention: bool = False, + attention_type: str = "default", + ): + super().__init__() + resnets = [] + attentions = [] + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + if not dual_cross_attention: + attentions.append( + Transformer2DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=transformer_layers_per_block[i], + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + attention_type=attention_type, + ) + ) + else: + attentions.append( + DualTransformer2DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=1, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + ) + ) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + additional_residuals: Optional[torch.FloatTensor] = None, + down_block_add_samples: Optional[torch.FloatTensor] = None, + debug = False, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + + if debug: print(' XAD2: forward') + + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get("scale", None) is not None: + logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") + + output_states = () + + blocks = list(zip(self.resnets, self.attentions)) + + for i, (resnet, attn) in enumerate(blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + else: + if debug: print(' XAD2: resnet hs #', i, hidden_states.shape) + if debug and temb is not None: print(' XAD2: resnet temb #', i, temb.shape) + + hidden_states = resnet(hidden_states, temb) + + if debug: print(' XAD2: attn hs #', i, hidden_states.shape) + if debug and encoder_hidden_states is not None: print(' XAD2: attn ehs #', i, encoder_hidden_states.shape) + + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + + # apply additional residuals to the output of the last pair of resnet and attention blocks + if i == len(blocks) - 1 and additional_residuals is not None: + + if debug: print(' XAD2: add res', additional_residuals.shape) + + hidden_states = hidden_states + additional_residuals + + if down_block_add_samples is not None: + + if debug: print(' XAD2: add samples', down_block_add_samples.shape) + + hidden_states = hidden_states + down_block_add_samples.pop(0) + + if debug: print(' XAD2: output', hidden_states.shape) + + output_states = output_states + (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + if down_block_add_samples is not None: + hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after + + output_states = output_states + (hidden_states,) + + if debug: + print(' XAD2: finish') + for st in output_states: + print(' XAD2: ',st.shape) + + return hidden_states, output_states + + +class DownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_downsample: bool = True, + downsample_padding: int = 1, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, + down_block_add_samples: Optional[torch.FloatTensor] = None, *args, **kwargs + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + output_states = () + + if kwargs.get("debug", False): print(' D2: forward', hidden_states.shape) + + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + + if kwargs.get("debug", False): print(' D2: resnet', hidden_states.shape) + + hidden_states = resnet(hidden_states, temb) + + if down_block_add_samples is not None: + hidden_states = hidden_states + down_block_add_samples.pop(0) + + output_states = output_states + (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + if down_block_add_samples is not None: + hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after + + output_states = output_states + (hidden_states,) + + if kwargs.get("debug", False): print(' D2: finish', hidden_states.shape) + + return hidden_states, output_states + + +class DownEncoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_downsample: bool = True, + downsample_padding: int = 1, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + if resnet_time_scale_shift == "spatial": + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ) + else: + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + def forward(self, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb=None) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + return hidden_states + + +class AttnDownEncoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + add_downsample: bool = True, + downsample_padding: int = 1, + ): + super().__init__() + resnets = [] + attentions = [] + + if attention_head_dim is None: + logger.warning( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + if resnet_time_scale_shift == "spatial": + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ) + else: + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=resnet_groups, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + def forward(self, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + for resnet, attn in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb=None) + hidden_states = attn(hidden_states) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + return hidden_states + + +class AttnSkipDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = np.sqrt(2.0), + add_downsample: bool = True, + ): + super().__init__() + self.attentions = nn.ModuleList([]) + self.resnets = nn.ModuleList([]) + + if attention_head_dim is None: + logger.warning( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + self.resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(in_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + self.attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=32, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + if add_downsample: + self.resnet_down = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + down=True, + kernel="fir", + ) + self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) + self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) + else: + self.resnet_down = None + self.downsamplers = None + self.skip_conv = None + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + skip_sample: Optional[torch.FloatTensor] = None, + *args, + **kwargs, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + output_states = () + + for resnet, attn in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states) + output_states += (hidden_states,) + + if self.downsamplers is not None: + hidden_states = self.resnet_down(hidden_states, temb) + for downsampler in self.downsamplers: + skip_sample = downsampler(skip_sample) + + hidden_states = self.skip_conv(skip_sample) + hidden_states + + output_states += (hidden_states,) + + return hidden_states, output_states, skip_sample + + +class SkipDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + output_scale_factor: float = np.sqrt(2.0), + add_downsample: bool = True, + downsample_padding: int = 1, + ): + super().__init__() + self.resnets = nn.ModuleList([]) + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + self.resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(in_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + if add_downsample: + self.resnet_down = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + down=True, + kernel="fir", + ) + self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) + self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) + else: + self.resnet_down = None + self.downsamplers = None + self.skip_conv = None + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + skip_sample: Optional[torch.FloatTensor] = None, + *args, + **kwargs, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + output_states = () + + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb) + output_states += (hidden_states,) + + if self.downsamplers is not None: + hidden_states = self.resnet_down(hidden_states, temb) + for downsampler in self.downsamplers: + skip_sample = downsampler(skip_sample) + + hidden_states = self.skip_conv(skip_sample) + hidden_states + + output_states += (hidden_states,) + + return hidden_states, output_states, skip_sample + + +class ResnetDownsampleBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_downsample: bool = True, + skip_time_act: bool = False, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + down=True, + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, *args, **kwargs + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + output_states = () + + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb) + + output_states = output_states + (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states, temb) + + output_states = output_states + (hidden_states,) + + return hidden_states, output_states + + +class SimpleCrossAttnDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + cross_attention_dim: int = 1280, + output_scale_factor: float = 1.0, + add_downsample: bool = True, + skip_time_act: bool = False, + only_cross_attention: bool = False, + cross_attention_norm: Optional[str] = None, + ): + super().__init__() + + self.has_cross_attention = True + + resnets = [] + attentions = [] + + self.attention_head_dim = attention_head_dim + self.num_heads = out_channels // self.attention_head_dim + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ) + + processor = ( + AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() + ) + + attentions.append( + Attention( + query_dim=out_channels, + cross_attention_dim=out_channels, + heads=self.num_heads, + dim_head=attention_head_dim, + added_kv_proj_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + bias=True, + upcast_softmax=True, + only_cross_attention=only_cross_attention, + cross_attention_norm=cross_attention_norm, + processor=processor, + ) + ) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + down=True, + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get("scale", None) is not None: + logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") + + output_states = () + + if attention_mask is None: + # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. + mask = None if encoder_hidden_states is None else encoder_attention_mask + else: + # when attention_mask is defined: we don't even check for encoder_attention_mask. + # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. + # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. + # then we can simplify this whole if/else block to: + # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask + mask = attention_mask + + for resnet, attn in zip(self.resnets, self.attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=mask, + **cross_attention_kwargs, + ) + else: + hidden_states = resnet(hidden_states, temb) + + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=mask, + **cross_attention_kwargs, + ) + + output_states = output_states + (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states, temb) + + output_states = output_states + (hidden_states,) + + return hidden_states, output_states + + +class KDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 4, + resnet_eps: float = 1e-5, + resnet_act_fn: str = "gelu", + resnet_group_size: int = 32, + add_downsample: bool = False, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=out_channels, + dropout=dropout, + temb_channels=temb_channels, + groups=groups, + groups_out=groups_out, + eps=resnet_eps, + non_linearity=resnet_act_fn, + time_embedding_norm="ada_group", + conv_shortcut_bias=False, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + # YiYi's comments- might be able to use FirDownsample2D, look into details later + self.downsamplers = nn.ModuleList([KDownsample2D()]) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, *args, **kwargs + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + output_states = () + + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb) + + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + return hidden_states, output_states + + +class KCrossAttnDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + cross_attention_dim: int, + dropout: float = 0.0, + num_layers: int = 4, + resnet_group_size: int = 32, + add_downsample: bool = True, + attention_head_dim: int = 64, + add_self_attention: bool = False, + resnet_eps: float = 1e-5, + resnet_act_fn: str = "gelu", + ): + super().__init__() + resnets = [] + attentions = [] + + self.has_cross_attention = True + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=out_channels, + dropout=dropout, + temb_channels=temb_channels, + groups=groups, + groups_out=groups_out, + eps=resnet_eps, + non_linearity=resnet_act_fn, + time_embedding_norm="ada_group", + conv_shortcut_bias=False, + ) + ) + attentions.append( + KAttentionBlock( + out_channels, + out_channels // attention_head_dim, + attention_head_dim, + cross_attention_dim=cross_attention_dim, + temb_channels=temb_channels, + attention_bias=True, + add_self_attention=add_self_attention, + cross_attention_norm="layer_norm", + group_size=resnet_group_size, + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.attentions = nn.ModuleList(attentions) + + if add_downsample: + self.downsamplers = nn.ModuleList([KDownsample2D()]) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get("scale", None) is not None: + logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") + + output_states = () + + for resnet, attn in zip(self.resnets, self.attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + emb=temb, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + emb=temb, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + + if self.downsamplers is None: + output_states += (None,) + else: + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + return hidden_states, output_states + + +class AttnUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + resolution_idx: int = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + upsample_type: str = "conv", + ): + super().__init__() + resnets = [] + attentions = [] + + self.upsample_type = upsample_type + + if attention_head_dim is None: + logger.warning( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=resnet_groups, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if upsample_type == "conv": + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + elif upsample_type == "resnet": + self.upsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + up=True, + ) + ] + ) + else: + self.upsamplers = None + + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + *args, + **kwargs, + ) -> torch.FloatTensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + for resnet, attn in zip(self.resnets, self.attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + if self.upsample_type == "resnet": + hidden_states = upsampler(hidden_states, temb=temb) + else: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class CrossAttnUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + prev_output_channel: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: Union[int, Tuple[int]] = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads: int = 1, + cross_attention_dim: int = 1280, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + only_cross_attention: bool = False, + upcast_attention: bool = False, + attention_type: str = "default", + ): + super().__init__() + resnets = [] + attentions = [] + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + if not dual_cross_attention: + attentions.append( + Transformer2DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=transformer_layers_per_block[i], + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + attention_type=attention_type, + ) + ) + else: + attentions.append( + DualTransformer2DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=1, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + ) + ) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + upsample_size: Optional[int] = None, + attention_mask: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + return_res_samples: Optional[bool]=False, + up_block_add_samples: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get("scale", None) is not None: + logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") + + is_freeu_enabled = ( + getattr(self, "s1", None) + and getattr(self, "s2", None) + and getattr(self, "b1", None) + and getattr(self, "b2", None) + ) + if return_res_samples: + output_states=() + + for resnet, attn in zip(self.resnets, self.attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + + # FreeU: Only operate on the first two stages + if is_freeu_enabled: + hidden_states, res_hidden_states = apply_freeu( + self.resolution_idx, + hidden_states, + res_hidden_states, + s1=self.s1, + s2=self.s2, + b1=self.b1, + b2=self.b2, + ) + + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + if return_res_samples: + output_states = output_states + (hidden_states,) + if up_block_add_samples is not None: + hidden_states = hidden_states + up_block_add_samples.pop(0) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + if return_res_samples: + output_states = output_states + (hidden_states,) + if up_block_add_samples is not None: + hidden_states = hidden_states + up_block_add_samples.pop(0) + + if return_res_samples: + return hidden_states, output_states + else: + return hidden_states + +class UpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + return_res_samples: Optional[bool]=False, + up_block_add_samples: Optional[torch.FloatTensor] = None, + *args, + **kwargs, + ) -> torch.FloatTensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + is_freeu_enabled = ( + getattr(self, "s1", None) + and getattr(self, "s2", None) + and getattr(self, "b1", None) + and getattr(self, "b2", None) + ) + if return_res_samples: + output_states = () + + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + + # FreeU: Only operate on the first two stages + if is_freeu_enabled: + hidden_states, res_hidden_states = apply_freeu( + self.resolution_idx, + hidden_states, + res_hidden_states, + s1=self.s1, + s2=self.s2, + b1=self.b1, + b2=self.b2, + ) + + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb) + + if return_res_samples: + output_states = output_states + (hidden_states,) + if up_block_add_samples is not None: + hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + + if return_res_samples: + output_states = output_states + (hidden_states,) + if up_block_add_samples is not None: + hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after + + if return_res_samples: + return hidden_states, output_states + else: + return hidden_states + + +class UpDecoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", # default, spatial + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + temb_channels: Optional[int] = None, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + + if resnet_time_scale_shift == "spatial": + resnets.append( + ResnetBlockCondNorm2D( + in_channels=input_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ) + else: + resnets.append( + ResnetBlock2D( + in_channels=input_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb=temb) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class AttnUpDecoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + temb_channels: Optional[int] = None, + ): + super().__init__() + resnets = [] + attentions = [] + + if attention_head_dim is None: + logger.warning( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + + if resnet_time_scale_shift == "spatial": + resnets.append( + ResnetBlockCondNorm2D( + in_channels=input_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ) + else: + resnets.append( + ResnetBlock2D( + in_channels=input_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None, + spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: + for resnet, attn in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb=temb) + hidden_states = attn(hidden_states, temb=temb) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class AttnSkipUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = np.sqrt(2.0), + add_upsample: bool = True, + ): + super().__init__() + self.attentions = nn.ModuleList([]) + self.resnets = nn.ModuleList([]) + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + self.resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(resnet_in_channels + res_skip_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + if attention_head_dim is None: + logger.warning( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + self.attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=32, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) + if add_upsample: + self.resnet_up = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + up=True, + kernel="fir", + ) + self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) + self.skip_norm = torch.nn.GroupNorm( + num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True + ) + self.act = nn.SiLU() + else: + self.resnet_up = None + self.skip_conv = None + self.skip_norm = None + self.act = None + + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + skip_sample=None, + *args, + **kwargs, + ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + hidden_states = resnet(hidden_states, temb) + + hidden_states = self.attentions[0](hidden_states) + + if skip_sample is not None: + skip_sample = self.upsampler(skip_sample) + else: + skip_sample = 0 + + if self.resnet_up is not None: + skip_sample_states = self.skip_norm(hidden_states) + skip_sample_states = self.act(skip_sample_states) + skip_sample_states = self.skip_conv(skip_sample_states) + + skip_sample = skip_sample + skip_sample_states + + hidden_states = self.resnet_up(hidden_states, temb) + + return hidden_states, skip_sample + + +class SkipUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + output_scale_factor: float = np.sqrt(2.0), + add_upsample: bool = True, + upsample_padding: int = 1, + ): + super().__init__() + self.resnets = nn.ModuleList([]) + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + self.resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min((resnet_in_channels + res_skip_channels) // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) + if add_upsample: + self.resnet_up = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + up=True, + kernel="fir", + ) + self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) + self.skip_norm = torch.nn.GroupNorm( + num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True + ) + self.act = nn.SiLU() + else: + self.resnet_up = None + self.skip_conv = None + self.skip_norm = None + self.act = None + + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + skip_sample=None, + *args, + **kwargs, + ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + hidden_states = resnet(hidden_states, temb) + + if skip_sample is not None: + skip_sample = self.upsampler(skip_sample) + else: + skip_sample = 0 + + if self.resnet_up is not None: + skip_sample_states = self.skip_norm(hidden_states) + skip_sample_states = self.act(skip_sample_states) + skip_sample_states = self.skip_conv(skip_sample_states) + + skip_sample = skip_sample + skip_sample_states + + hidden_states = self.resnet_up(hidden_states, temb) + + return hidden_states, skip_sample + + +class ResnetUpsampleBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + skip_time_act: bool = False, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + up=True, + ) + ] + ) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + *args, + **kwargs, + ) -> torch.FloatTensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, temb) + + return hidden_states + + +class SimpleCrossAttnUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + prev_output_channel: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + cross_attention_dim: int = 1280, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + skip_time_act: bool = False, + only_cross_attention: bool = False, + cross_attention_norm: Optional[str] = None, + ): + super().__init__() + resnets = [] + attentions = [] + + self.has_cross_attention = True + self.attention_head_dim = attention_head_dim + + self.num_heads = out_channels // self.attention_head_dim + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ) + + processor = ( + AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() + ) + + attentions.append( + Attention( + query_dim=out_channels, + cross_attention_dim=out_channels, + heads=self.num_heads, + dim_head=self.attention_head_dim, + added_kv_proj_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + bias=True, + upcast_softmax=True, + only_cross_attention=only_cross_attention, + cross_attention_norm=cross_attention_norm, + processor=processor, + ) + ) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + up=True, + ) + ] + ) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get("scale", None) is not None: + logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") + + if attention_mask is None: + # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. + mask = None if encoder_hidden_states is None else encoder_attention_mask + else: + # when attention_mask is defined: we don't even check for encoder_attention_mask. + # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. + # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. + # then we can simplify this whole if/else block to: + # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask + mask = attention_mask + + for resnet, attn in zip(self.resnets, self.attentions): + # resnet + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=mask, + **cross_attention_kwargs, + ) + else: + hidden_states = resnet(hidden_states, temb) + + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=mask, + **cross_attention_kwargs, + ) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, temb) + + return hidden_states + + +class KUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + resolution_idx: int, + dropout: float = 0.0, + num_layers: int = 5, + resnet_eps: float = 1e-5, + resnet_act_fn: str = "gelu", + resnet_group_size: Optional[int] = 32, + add_upsample: bool = True, + ): + super().__init__() + resnets = [] + k_in_channels = 2 * out_channels + k_out_channels = in_channels + num_layers = num_layers - 1 + + for i in range(num_layers): + in_channels = k_in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=k_out_channels if (i == num_layers - 1) else out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=groups, + groups_out=groups_out, + dropout=dropout, + non_linearity=resnet_act_fn, + time_embedding_norm="ada_group", + conv_shortcut_bias=False, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([KUpsample2D()]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + *args, + **kwargs, + ) -> torch.FloatTensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + res_hidden_states_tuple = res_hidden_states_tuple[-1] + if res_hidden_states_tuple is not None: + hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) + + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class KCrossAttnUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + resolution_idx: int, + dropout: float = 0.0, + num_layers: int = 4, + resnet_eps: float = 1e-5, + resnet_act_fn: str = "gelu", + resnet_group_size: int = 32, + attention_head_dim: int = 1, # attention dim_head + cross_attention_dim: int = 768, + add_upsample: bool = True, + upcast_attention: bool = False, + ): + super().__init__() + resnets = [] + attentions = [] + + is_first_block = in_channels == out_channels == temb_channels + is_middle_block = in_channels != out_channels + add_self_attention = True if is_first_block else False + + self.has_cross_attention = True + self.attention_head_dim = attention_head_dim + + # in_channels, and out_channels for the block (k-unet) + k_in_channels = out_channels if is_first_block else 2 * out_channels + k_out_channels = in_channels + + num_layers = num_layers - 1 + + for i in range(num_layers): + in_channels = k_in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + + if is_middle_block and (i == num_layers - 1): + conv_2d_out_channels = k_out_channels + else: + conv_2d_out_channels = None + + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=out_channels, + conv_2d_out_channels=conv_2d_out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=groups, + groups_out=groups_out, + dropout=dropout, + non_linearity=resnet_act_fn, + time_embedding_norm="ada_group", + conv_shortcut_bias=False, + ) + ) + attentions.append( + KAttentionBlock( + k_out_channels if (i == num_layers - 1) else out_channels, + k_out_channels // attention_head_dim + if (i == num_layers - 1) + else out_channels // attention_head_dim, + attention_head_dim, + cross_attention_dim=cross_attention_dim, + temb_channels=temb_channels, + attention_bias=True, + add_self_attention=add_self_attention, + cross_attention_norm="layer_norm", + upcast_attention=upcast_attention, + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.attentions = nn.ModuleList(attentions) + + if add_upsample: + self.upsamplers = nn.ModuleList([KUpsample2D()]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + upsample_size: Optional[int] = None, + attention_mask: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + res_hidden_states_tuple = res_hidden_states_tuple[-1] + if res_hidden_states_tuple is not None: + hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) + + for resnet, attn in zip(self.resnets, self.attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + emb=temb, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + emb=temb, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +# can potentially later be renamed to `No-feed-forward` attention +class KAttentionBlock(nn.Module): + r""" + A basic Transformer block. + + Parameters: + dim (`int`): The number of channels in the input and output. + num_attention_heads (`int`): The number of heads to use for multi-head attention. + attention_head_dim (`int`): The number of channels in each head. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. + attention_bias (`bool`, *optional*, defaults to `False`): + Configure if the attention layers should contain a bias parameter. + upcast_attention (`bool`, *optional*, defaults to `False`): + Set to `True` to upcast the attention computation to `float32`. + temb_channels (`int`, *optional*, defaults to 768): + The number of channels in the token embedding. + add_self_attention (`bool`, *optional*, defaults to `False`): + Set to `True` to add self-attention to the block. + cross_attention_norm (`str`, *optional*, defaults to `None`): + The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. + group_size (`int`, *optional*, defaults to 32): + The number of groups to separate the channels into for group normalization. + """ + + def __init__( + self, + dim: int, + num_attention_heads: int, + attention_head_dim: int, + dropout: float = 0.0, + cross_attention_dim: Optional[int] = None, + attention_bias: bool = False, + upcast_attention: bool = False, + temb_channels: int = 768, # for ada_group_norm + add_self_attention: bool = False, + cross_attention_norm: Optional[str] = None, + group_size: int = 32, + ): + super().__init__() + self.add_self_attention = add_self_attention + + # 1. Self-Attn + if add_self_attention: + self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) + self.attn1 = Attention( + query_dim=dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + cross_attention_dim=None, + cross_attention_norm=None, + ) + + # 2. Cross-Attn + self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) + self.attn2 = Attention( + query_dim=dim, + cross_attention_dim=cross_attention_dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + upcast_attention=upcast_attention, + cross_attention_norm=cross_attention_norm, + ) + + def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: + return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1) + + def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: + return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight) + + def forward( + self, + hidden_states: torch.FloatTensor, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + # TODO: mark emb as non-optional (self.norm2 requires it). + # requires assessing impact of change to positional param interface. + emb: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get("scale", None) is not None: + logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") + + # 1. Self-Attention + if self.add_self_attention: + norm_hidden_states = self.norm1(hidden_states, emb) + + height, weight = norm_hidden_states.shape[2:] + norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) + + attn_output = self.attn1( + norm_hidden_states, + encoder_hidden_states=None, + attention_mask=attention_mask, + **cross_attention_kwargs, + ) + attn_output = self._to_4d(attn_output, height, weight) + + hidden_states = attn_output + hidden_states + + # 2. Cross-Attention/None + norm_hidden_states = self.norm2(hidden_states, emb) + + height, weight = norm_hidden_states.shape[2:] + norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) + attn_output = self.attn2( + norm_hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask, + **cross_attention_kwargs, + ) + attn_output = self._to_4d(attn_output, height, weight) + + hidden_states = attn_output + hidden_states + + return hidden_states diff --git a/MagicQuill/brushnet/unet_2d_condition.py b/MagicQuill/brushnet/unet_2d_condition.py new file mode 100644 index 0000000000000000000000000000000000000000..088e0efdba9f481c57137e5413e795fcca74c6a5 --- /dev/null +++ b/MagicQuill/brushnet/unet_2d_condition.py @@ -0,0 +1,1355 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.utils.checkpoint + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin +from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers +from diffusers.models.activations import get_activation +from diffusers.models.attention_processor import ( + ADDED_KV_ATTENTION_PROCESSORS, + CROSS_ATTENTION_PROCESSORS, + Attention, + AttentionProcessor, + AttnAddedKVProcessor, + AttnProcessor, +) +from diffusers.models.embeddings import ( + GaussianFourierProjection, + GLIGENTextBoundingboxProjection, + ImageHintTimeEmbedding, + ImageProjection, + ImageTimeEmbedding, + TextImageProjection, + TextImageTimeEmbedding, + TextTimeEmbedding, + TimestepEmbedding, + Timesteps, +) +from diffusers.models.modeling_utils import ModelMixin +from .unet_2d_blocks import ( + get_down_block, + get_mid_block, + get_up_block, +) + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class UNet2DConditionOutput(BaseOutput): + """ + The output of [`UNet2DConditionModel`]. + + Args: + sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. + """ + + sample: torch.FloatTensor = None + + +class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): + r""" + A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample + shaped output. + + This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented + for all models (such as downloading or saving). + + Parameters: + sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): + Height and width of input/output sample. + in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample. + out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. + center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. + flip_sin_to_cos (`bool`, *optional*, defaults to `True`): + Whether to flip the sin to cos in the time embedding. + freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. + down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): + The tuple of downsample blocks to use. + mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): + Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or + `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. + up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): + The tuple of upsample blocks to use. + only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`): + Whether to include self-attention in the basic transformer blocks, see + [`~models.attention.BasicTransformerBlock`]. + block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): + The tuple of output channels for each block. + layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. + downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. + mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. + norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. + If `None`, normalization and activation layers is skipped in post-processing. + norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. + cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): + The dimension of the cross attention features. + transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): + The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for + [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], + [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. + reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None): + The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling + blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for + [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], + [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. + encoder_hid_dim (`int`, *optional*, defaults to None): + If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` + dimension to `cross_attention_dim`. + encoder_hid_dim_type (`str`, *optional*, defaults to `None`): + If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text + embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. + attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. + num_attention_heads (`int`, *optional*): + The number of attention heads. If not defined, defaults to `attention_head_dim` + resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config + for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`. + class_embed_type (`str`, *optional*, defaults to `None`): + The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, + `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. + addition_embed_type (`str`, *optional*, defaults to `None`): + Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or + "text". "text" will use the `TextTimeEmbedding` layer. + addition_time_embed_dim: (`int`, *optional*, defaults to `None`): + Dimension for the timestep embeddings. + num_class_embeds (`int`, *optional*, defaults to `None`): + Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing + class conditioning with `class_embed_type` equal to `None`. + time_embedding_type (`str`, *optional*, defaults to `positional`): + The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. + time_embedding_dim (`int`, *optional*, defaults to `None`): + An optional override for the dimension of the projected time embedding. + time_embedding_act_fn (`str`, *optional*, defaults to `None`): + Optional activation function to use only once on the time embeddings before they are passed to the rest of + the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`. + timestep_post_act (`str`, *optional*, defaults to `None`): + The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. + time_cond_proj_dim (`int`, *optional*, defaults to `None`): + The dimension of `cond_proj` layer in the timestep embedding. + conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. + conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer. + projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when + `class_embed_type="projection"`. Required when `class_embed_type="projection"`. + class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time + embeddings with the class embeddings. + mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`): + Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If + `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the + `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False` + otherwise. + """ + + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + sample_size: Optional[int] = None, + in_channels: int = 4, + out_channels: int = 4, + center_input_sample: bool = False, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + down_block_types: Tuple[str] = ( + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D", + ), + mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", + up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), + only_cross_attention: Union[bool, Tuple[bool]] = False, + block_out_channels: Tuple[int] = (320, 640, 1280, 1280), + layers_per_block: Union[int, Tuple[int]] = 2, + downsample_padding: int = 1, + mid_block_scale_factor: float = 1, + dropout: float = 0.0, + act_fn: str = "silu", + norm_num_groups: Optional[int] = 32, + norm_eps: float = 1e-5, + cross_attention_dim: Union[int, Tuple[int]] = 1280, + transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, + reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, + encoder_hid_dim: Optional[int] = None, + encoder_hid_dim_type: Optional[str] = None, + attention_head_dim: Union[int, Tuple[int]] = 8, + num_attention_heads: Optional[Union[int, Tuple[int]]] = None, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + class_embed_type: Optional[str] = None, + addition_embed_type: Optional[str] = None, + addition_time_embed_dim: Optional[int] = None, + num_class_embeds: Optional[int] = None, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + resnet_skip_time_act: bool = False, + resnet_out_scale_factor: float = 1.0, + time_embedding_type: str = "positional", + time_embedding_dim: Optional[int] = None, + time_embedding_act_fn: Optional[str] = None, + timestep_post_act: Optional[str] = None, + time_cond_proj_dim: Optional[int] = None, + conv_in_kernel: int = 3, + conv_out_kernel: int = 3, + projection_class_embeddings_input_dim: Optional[int] = None, + attention_type: str = "default", + class_embeddings_concat: bool = False, + mid_block_only_cross_attention: Optional[bool] = None, + cross_attention_norm: Optional[str] = None, + addition_embed_type_num_heads: int = 64, + ): + super().__init__() + + self.sample_size = sample_size + + if num_attention_heads is not None: + raise ValueError( + "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." + ) + + # If `num_attention_heads` is not defined (which is the case for most models) + # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. + # The reason for this behavior is to correct for incorrectly named variables that were introduced + # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 + # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking + # which is why we correct for the naming here. + num_attention_heads = num_attention_heads or attention_head_dim + + # Check inputs + self._check_config( + down_block_types=down_block_types, + up_block_types=up_block_types, + only_cross_attention=only_cross_attention, + block_out_channels=block_out_channels, + layers_per_block=layers_per_block, + cross_attention_dim=cross_attention_dim, + transformer_layers_per_block=transformer_layers_per_block, + reverse_transformer_layers_per_block=reverse_transformer_layers_per_block, + attention_head_dim=attention_head_dim, + num_attention_heads=num_attention_heads, + ) + + # input + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in = nn.Conv2d( + in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding + ) + + # time + time_embed_dim, timestep_input_dim = self._set_time_proj( + time_embedding_type, + block_out_channels=block_out_channels, + flip_sin_to_cos=flip_sin_to_cos, + freq_shift=freq_shift, + time_embedding_dim=time_embedding_dim, + ) + + self.time_embedding = TimestepEmbedding( + timestep_input_dim, + time_embed_dim, + act_fn=act_fn, + post_act_fn=timestep_post_act, + cond_proj_dim=time_cond_proj_dim, + ) + + self._set_encoder_hid_proj( + encoder_hid_dim_type, + cross_attention_dim=cross_attention_dim, + encoder_hid_dim=encoder_hid_dim, + ) + + # class embedding + self._set_class_embedding( + class_embed_type, + act_fn=act_fn, + num_class_embeds=num_class_embeds, + projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, + time_embed_dim=time_embed_dim, + timestep_input_dim=timestep_input_dim, + ) + + self._set_add_embedding( + addition_embed_type, + addition_embed_type_num_heads=addition_embed_type_num_heads, + addition_time_embed_dim=addition_time_embed_dim, + cross_attention_dim=cross_attention_dim, + encoder_hid_dim=encoder_hid_dim, + flip_sin_to_cos=flip_sin_to_cos, + freq_shift=freq_shift, + projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, + time_embed_dim=time_embed_dim, + ) + + if time_embedding_act_fn is None: + self.time_embed_act = None + else: + self.time_embed_act = get_activation(time_embedding_act_fn) + + self.down_blocks = nn.ModuleList([]) + self.up_blocks = nn.ModuleList([]) + + if isinstance(only_cross_attention, bool): + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = only_cross_attention + + only_cross_attention = [only_cross_attention] * len(down_block_types) + + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = False + + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) * len(down_block_types) + + if isinstance(layers_per_block, int): + layers_per_block = [layers_per_block] * len(down_block_types) + + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + + if class_embeddings_concat: + # The time embeddings are concatenated with the class embeddings. The dimension of the + # time embeddings passed to the down, middle, and up blocks is twice the dimension of the + # regular time embeddings + blocks_time_embed_dim = time_embed_dim * 2 + else: + blocks_time_embed_dim = time_embed_dim + + # down + output_channel = block_out_channels[0] + for i, down_block_type in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = get_down_block( + down_block_type, + num_layers=layers_per_block[i], + transformer_layers_per_block=transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + temb_channels=blocks_time_embed_dim, + add_downsample=not is_final_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim[i], + num_attention_heads=num_attention_heads[i], + downsample_padding=downsample_padding, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_type=attention_type, + resnet_skip_time_act=resnet_skip_time_act, + resnet_out_scale_factor=resnet_out_scale_factor, + cross_attention_norm=cross_attention_norm, + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + dropout=dropout, + ) + self.down_blocks.append(down_block) + + # mid + self.mid_block = get_mid_block( + mid_block_type, + temb_channels=blocks_time_embed_dim, + in_channels=block_out_channels[-1], + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + output_scale_factor=mid_block_scale_factor, + transformer_layers_per_block=transformer_layers_per_block[-1], + num_attention_heads=num_attention_heads[-1], + cross_attention_dim=cross_attention_dim[-1], + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + mid_block_only_cross_attention=mid_block_only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_type=attention_type, + resnet_skip_time_act=resnet_skip_time_act, + cross_attention_norm=cross_attention_norm, + attention_head_dim=attention_head_dim[-1], + dropout=dropout, + ) + + # count how many layers upsample the images + self.num_upsamplers = 0 + + # up + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_layers_per_block = list(reversed(layers_per_block)) + reversed_cross_attention_dim = list(reversed(cross_attention_dim)) + reversed_transformer_layers_per_block = ( + list(reversed(transformer_layers_per_block)) + if reverse_transformer_layers_per_block is None + else reverse_transformer_layers_per_block + ) + only_cross_attention = list(reversed(only_cross_attention)) + + output_channel = reversed_block_out_channels[0] + for i, up_block_type in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + + # add upsample block for all BUT final layer + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + + up_block = get_up_block( + up_block_type, + num_layers=reversed_layers_per_block[i] + 1, + transformer_layers_per_block=reversed_transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + prev_output_channel=prev_output_channel, + temb_channels=blocks_time_embed_dim, + add_upsample=add_upsample, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resolution_idx=i, + resnet_groups=norm_num_groups, + cross_attention_dim=reversed_cross_attention_dim[i], + num_attention_heads=reversed_num_attention_heads[i], + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_type=attention_type, + resnet_skip_time_act=resnet_skip_time_act, + resnet_out_scale_factor=resnet_out_scale_factor, + cross_attention_norm=cross_attention_norm, + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + dropout=dropout, + ) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + + # out + if norm_num_groups is not None: + self.conv_norm_out = nn.GroupNorm( + num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps + ) + + self.conv_act = get_activation(act_fn) + + else: + self.conv_norm_out = None + self.conv_act = None + + conv_out_padding = (conv_out_kernel - 1) // 2 + self.conv_out = nn.Conv2d( + block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding + ) + + self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim) + + def _check_config( + self, + down_block_types: Tuple[str], + up_block_types: Tuple[str], + only_cross_attention: Union[bool, Tuple[bool]], + block_out_channels: Tuple[int], + layers_per_block: Union[int, Tuple[int]], + cross_attention_dim: Union[int, Tuple[int]], + transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]], + reverse_transformer_layers_per_block: bool, + attention_head_dim: int, + num_attention_heads: Optional[Union[int, Tuple[int]]], + ): + if len(down_block_types) != len(up_block_types): + raise ValueError( + f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." + ) + + if len(block_out_channels) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." + ) + + if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." + ) + if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None: + for layer_number_per_block in transformer_layers_per_block: + if isinstance(layer_number_per_block, list): + raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.") + + def _set_time_proj( + self, + time_embedding_type: str, + block_out_channels: int, + flip_sin_to_cos: bool, + freq_shift: float, + time_embedding_dim: int, + ) -> Tuple[int, int]: + if time_embedding_type == "fourier": + time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 + if time_embed_dim % 2 != 0: + raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") + self.time_proj = GaussianFourierProjection( + time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos + ) + timestep_input_dim = time_embed_dim + elif time_embedding_type == "positional": + time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 + + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + else: + raise ValueError( + f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." + ) + + return time_embed_dim, timestep_input_dim + + def _set_encoder_hid_proj( + self, + encoder_hid_dim_type: Optional[str], + cross_attention_dim: Union[int, Tuple[int]], + encoder_hid_dim: Optional[int], + ): + if encoder_hid_dim_type is None and encoder_hid_dim is not None: + encoder_hid_dim_type = "text_proj" + self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) + logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") + + if encoder_hid_dim is None and encoder_hid_dim_type is not None: + raise ValueError( + f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." + ) + + if encoder_hid_dim_type == "text_proj": + self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) + elif encoder_hid_dim_type == "text_image_proj": + # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)` + self.encoder_hid_proj = TextImageProjection( + text_embed_dim=encoder_hid_dim, + image_embed_dim=cross_attention_dim, + cross_attention_dim=cross_attention_dim, + ) + elif encoder_hid_dim_type == "image_proj": + # Kandinsky 2.2 + self.encoder_hid_proj = ImageProjection( + image_embed_dim=encoder_hid_dim, + cross_attention_dim=cross_attention_dim, + ) + elif encoder_hid_dim_type is not None: + raise ValueError( + f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." + ) + else: + self.encoder_hid_proj = None + + def _set_class_embedding( + self, + class_embed_type: Optional[str], + act_fn: str, + num_class_embeds: Optional[int], + projection_class_embeddings_input_dim: Optional[int], + time_embed_dim: int, + timestep_input_dim: int, + ): + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == "timestep": + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) + elif class_embed_type == "identity": + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == "projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" + ) + # The projection `class_embed_type` is the same as the timestep `class_embed_type` except + # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings + # 2. it projects from an arbitrary input dimension. + # + # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. + # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. + # As a result, `TimestepEmbedding` can be passed arbitrary vectors. + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif class_embed_type == "simple_projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" + ) + self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + + def _set_add_embedding( + self, + addition_embed_type: str, + addition_embed_type_num_heads: int, + addition_time_embed_dim: Optional[int], + flip_sin_to_cos: bool, + freq_shift: float, + cross_attention_dim: Optional[int], + encoder_hid_dim: Optional[int], + projection_class_embeddings_input_dim: Optional[int], + time_embed_dim: int, + ): + if addition_embed_type == "text": + if encoder_hid_dim is not None: + text_time_embedding_from_dim = encoder_hid_dim + else: + text_time_embedding_from_dim = cross_attention_dim + + self.add_embedding = TextTimeEmbedding( + text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads + ) + elif addition_embed_type == "text_image": + # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)` + self.add_embedding = TextImageTimeEmbedding( + text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim + ) + elif addition_embed_type == "text_time": + self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif addition_embed_type == "image": + # Kandinsky 2.2 + self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type == "image_hint": + # Kandinsky 2.2 ControlNet + self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type is not None: + raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") + + def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int): + if attention_type in ["gated", "gated-text-image"]: + positive_len = 768 + if isinstance(cross_attention_dim, int): + positive_len = cross_attention_dim + elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list): + positive_len = cross_attention_dim[0] + + feature_type = "text-only" if attention_type == "gated" else "text-image" + self.position_net = GLIGENTextBoundingboxProjection( + positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type + ) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + """ + Disables custom attention processors and sets the default attention implementation. + """ + if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): + processor = AttnAddedKVProcessor() + elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): + processor = AttnProcessor() + else: + raise ValueError( + f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" + ) + + self.set_attn_processor(processor) + + def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"): + r""" + Enable sliced attention computation. + + When this option is enabled, the attention module splits the input tensor in slices to compute attention in + several steps. This is useful for saving some memory in exchange for a small decrease in speed. + + Args: + slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): + When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If + `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is + provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` + must be a multiple of `slice_size`. + """ + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, "set_attention_slice"): + sliceable_head_dims.append(module.sliceable_head_dim) + + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + + # retrieve number of attention layers + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + + num_sliceable_layers = len(sliceable_head_dims) + + if slice_size == "auto": + # half the attention head size is usually a good trade-off between + # speed and memory + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == "max": + # make smallest slice possible + slice_size = num_sliceable_layers * [1] + + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + + if len(slice_size) != len(sliceable_head_dims): + raise ValueError( + f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" + f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." + ) + + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f"size {size} has to be smaller or equal to {dim}.") + + # Recursively walk through all the children. + # Any children which exposes the set_attention_slice method + # gets the message + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, "set_attention_slice"): + module.set_attention_slice(slice_size.pop()) + + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, "gradient_checkpointing"): + module.gradient_checkpointing = value + + def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): + r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. + + The suffixes after the scaling factors represent the stage blocks where they are being applied. + + Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that + are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. + + Args: + s1 (`float`): + Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to + mitigate the "oversmoothing effect" in the enhanced denoising process. + s2 (`float`): + Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to + mitigate the "oversmoothing effect" in the enhanced denoising process. + b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. + b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. + """ + for i, upsample_block in enumerate(self.up_blocks): + setattr(upsample_block, "s1", s1) + setattr(upsample_block, "s2", s2) + setattr(upsample_block, "b1", b1) + setattr(upsample_block, "b2", b2) + + def disable_freeu(self): + """Disables the FreeU mechanism.""" + freeu_keys = {"s1", "s2", "b1", "b2"} + for i, upsample_block in enumerate(self.up_blocks): + for k in freeu_keys: + if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: + setattr(upsample_block, k, None) + + def fuse_qkv_projections(self): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) + are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + """ + self.original_attn_processors = None + + for _, attn_processor in self.attn_processors.items(): + if "Added" in str(attn_processor.__class__.__name__): + raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") + + self.original_attn_processors = self.attn_processors + + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + + def unfuse_qkv_projections(self): + """Disables the fused QKV projection if enabled. + + + + This API is 🧪 experimental. + + + + """ + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def unload_lora(self): + """Unloads LoRA weights.""" + deprecate( + "unload_lora", + "0.28.0", + "Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().", + ) + for module in self.modules(): + if hasattr(module, "set_lora_layer"): + module.set_lora_layer(None) + + def get_time_embed( + self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int] + ) -> Optional[torch.Tensor]: + timesteps = timestep + if not torch.is_tensor(timesteps): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + # `Timesteps` does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=sample.dtype) + return t_emb + + def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]: + class_emb = None + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + # `Timesteps` does not contain any weights and will always return f32 tensors + # there might be better ways to encapsulate this. + class_labels = class_labels.to(dtype=sample.dtype) + + class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) + return class_emb + + def get_aug_embed( + self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any] + ) -> Optional[torch.Tensor]: + aug_emb = None + if self.config.addition_embed_type == "text": + aug_emb = self.add_embedding(encoder_hidden_states) + elif self.config.addition_embed_type == "text_image": + # Kandinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + + image_embs = added_cond_kwargs.get("image_embeds") + text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) + aug_emb = self.add_embedding(text_embs, image_embs) + elif self.config.addition_embed_type == "text_time": + # SDXL - style + if "text_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" + ) + text_embeds = added_cond_kwargs.get("text_embeds") + if "time_ids" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" + ) + time_ids = added_cond_kwargs.get("time_ids") + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + elif self.config.addition_embed_type == "image": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + aug_emb = self.add_embedding(image_embs) + elif self.config.addition_embed_type == "image_hint": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + hint = added_cond_kwargs.get("hint") + aug_emb = self.add_embedding(image_embs, hint) + return aug_emb + + def process_encoder_hidden_states( + self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any] + ) -> torch.Tensor: + if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": + # Kandinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + image_embeds = added_cond_kwargs.get("image_embeds") + image_embeds = self.encoder_hid_proj(image_embeds) + encoder_hidden_states = (encoder_hidden_states, image_embeds) + return encoder_hidden_states + + def forward( + self, + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + class_labels: Optional[torch.Tensor] = None, + timestep_cond: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, + down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, + mid_block_additional_residual: Optional[torch.Tensor] = None, + down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + return_dict: bool = True, + down_block_add_samples: Optional[Tuple[torch.Tensor]] = None, + mid_block_add_sample: Optional[Tuple[torch.Tensor]] = None, + up_block_add_samples: Optional[Tuple[torch.Tensor]] = None, + ) -> Union[UNet2DConditionOutput, Tuple]: + r""" + The [`UNet2DConditionModel`] forward method. + + Args: + sample (`torch.FloatTensor`): + The noisy input tensor with the following shape `(batch, channel, height, width)`. + timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. + encoder_hidden_states (`torch.FloatTensor`): + The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. + class_labels (`torch.Tensor`, *optional*, defaults to `None`): + Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. + timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`): + Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed + through the `self.time_embedding` layer to obtain the timestep embeddings. + attention_mask (`torch.Tensor`, *optional*, defaults to `None`): + An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask + is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large + negative values to the attention scores corresponding to "discard" tokens. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + added_cond_kwargs: (`dict`, *optional*): + A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that + are passed along to the UNet blocks. + down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): + A tuple of tensors that if specified are added to the residuals of down unet blocks. + mid_block_additional_residual: (`torch.Tensor`, *optional*): + A tensor that if specified is added to the residual of the middle unet block. + down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*): + additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s) + encoder_attention_mask (`torch.Tensor`): + A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If + `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, + which adds large negative values to the attention scores corresponding to "discard" tokens. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain + tuple. + + Returns: + [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: + If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, + otherwise a `tuple` is returned where the first element is the sample tensor. + """ + # By default samples have to be AT least a multiple of the overall upsampling factor. + # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). + # However, the upsampling interpolation output size can be forced to fit any upsampling size + # on the fly if necessary. + default_overall_up_factor = 2**self.num_upsamplers + + # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` + forward_upsample_size = False + upsample_size = None + + for dim in sample.shape[-2:]: + if dim % default_overall_up_factor != 0: + # Forward upsample size to force interpolation output size. + forward_upsample_size = True + break + + # ensure attention_mask is a bias, and give it a singleton query_tokens dimension + # expects mask of shape: + # [batch, key_tokens] + # adds singleton query_tokens dimension: + # [batch, 1, key_tokens] + # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: + # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) + # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) + if attention_mask is not None: + # assume that mask is expressed as: + # (1 = keep, 0 = discard) + # convert mask into a bias that can be added to attention scores: + # (keep = +0, discard = -10000.0) + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # convert encoder_attention_mask to a bias the same way we do for attention_mask + if encoder_attention_mask is not None: + encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + + # 0. center input if necessary + if self.config.center_input_sample: + sample = 2 * sample - 1.0 + + # 1. time + t_emb = self.get_time_embed(sample=sample, timestep=timestep) + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + + class_emb = self.get_class_embed(sample=sample, class_labels=class_labels) + if class_emb is not None: + if self.config.class_embeddings_concat: + emb = torch.cat([emb, class_emb], dim=-1) + else: + emb = emb + class_emb + + aug_emb = self.get_aug_embed( + emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs + ) + if self.config.addition_embed_type == "image_hint": + aug_emb, hint = aug_emb + sample = torch.cat([sample, hint], dim=1) + + emb = emb + aug_emb if aug_emb is not None else emb + + if self.time_embed_act is not None: + emb = self.time_embed_act(emb) + + encoder_hidden_states = self.process_encoder_hidden_states( + encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs + ) + + # 2. pre-process + sample = self.conv_in(sample) + + # 2.5 GLIGEN position net + if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: + cross_attention_kwargs = cross_attention_kwargs.copy() + gligen_args = cross_attention_kwargs.pop("gligen") + cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} + + # 3. down + # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated + # to the internal blocks and will raise deprecation warnings. this will be confusing for our users. + if cross_attention_kwargs is not None: + cross_attention_kwargs = cross_attention_kwargs.copy() + lora_scale = cross_attention_kwargs.pop("scale", 1.0) + else: + lora_scale = 1.0 + + if USE_PEFT_BACKEND: + # weight the lora layers by setting `lora_scale` for each PEFT layer + scale_lora_layers(self, lora_scale) + + is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None + # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets + is_adapter = down_intrablock_additional_residuals is not None + # maintain backward compatibility for legacy usage, where + # T2I-Adapter and ControlNet both use down_block_additional_residuals arg + # but can only use one or the other + is_brushnet = down_block_add_samples is not None and mid_block_add_sample is not None and up_block_add_samples is not None + if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: + deprecate( + "T2I should not use down_block_additional_residuals", + "1.3.0", + "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ + and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ + for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", + standard_warn=False, + ) + down_intrablock_additional_residuals = down_block_additional_residuals + is_adapter = True + + down_block_res_samples = (sample,) + + if is_brushnet: + sample = sample + down_block_add_samples.pop(0) + + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + # For t2i-adapter CrossAttnDownBlock2D + additional_residuals = {} + if is_adapter and len(down_intrablock_additional_residuals) > 0: + additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) + + i = len(down_block_add_samples) + + if is_brushnet and len(down_block_add_samples)>0: + additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0) + for _ in range(len(downsample_block.resnets)+(downsample_block.downsamplers !=None))] + + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + **additional_residuals, + ) + else: + additional_residuals = {} + + i = len(down_block_add_samples) + + if is_brushnet and len(down_block_add_samples)>0: + additional_residuals["down_block_add_samples"] = [down_block_add_samples.pop(0) + for _ in range(len(downsample_block.resnets)+(downsample_block.downsamplers !=None))] + + sample, res_samples = downsample_block(hidden_states=sample, temb=emb, **additional_residuals) + if is_adapter and len(down_intrablock_additional_residuals) > 0: + sample += down_intrablock_additional_residuals.pop(0) + + down_block_res_samples += res_samples + + if is_controlnet: + new_down_block_res_samples = () + + for down_block_res_sample, down_block_additional_residual in zip( + down_block_res_samples, down_block_additional_residuals + ): + down_block_res_sample = down_block_res_sample + down_block_additional_residual + new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) + + down_block_res_samples = new_down_block_res_samples + + # 4. mid + if self.mid_block is not None: + if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: + sample = self.mid_block( + sample, + emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + else: + sample = self.mid_block(sample, emb) + + # To support T2I-Adapter-XL + if ( + is_adapter + and len(down_intrablock_additional_residuals) > 0 + and sample.shape == down_intrablock_additional_residuals[0].shape + ): + sample += down_intrablock_additional_residuals.pop(0) + + if is_controlnet: + sample = sample + mid_block_additional_residual + + if is_brushnet: + sample = sample + mid_block_add_sample + + # 5. up + for i, upsample_block in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + additional_residuals = {} + + i = len(up_block_add_samples) + + if is_brushnet and len(up_block_add_samples)>0: + additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0) + for _ in range(len(upsample_block.resnets)+(upsample_block.upsamplers !=None))] + + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + upsample_size=upsample_size, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + **additional_residuals, + ) + else: + additional_residuals = {} + + i = len(up_block_add_samples) + + if is_brushnet and len(up_block_add_samples)>0: + additional_residuals["up_block_add_samples"] = [up_block_add_samples.pop(0) + for _ in range(len(upsample_block.resnets)+(upsample_block.upsamplers !=None))] + + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + upsample_size=upsample_size, + **additional_residuals, + ) + + # 6. post-process + if self.conv_norm_out: + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + if USE_PEFT_BACKEND: + # remove `lora_scale` from each PEFT layer + unscale_lora_layers(self, lora_scale) + + if not return_dict: + return (sample,) + + return UNet2DConditionOutput(sample=sample) diff --git a/MagicQuill/brushnet_nodes.py b/MagicQuill/brushnet_nodes.py new file mode 100644 index 0000000000000000000000000000000000000000..1b7a4175380d7c3fbe6ae869a19c4b359161dc27 --- /dev/null +++ b/MagicQuill/brushnet_nodes.py @@ -0,0 +1,1094 @@ +import os +import types +from typing import Tuple + +import torch +import torchvision.transforms as T +import torch.nn.functional as F +from accelerate import init_empty_weights, load_checkpoint_and_dispatch +import sys + +import comfy.sd +import comfy.utils +import comfy.model_management +import comfy.sd1_clip +import comfy.ldm.models.autoencoder +import comfy.supported_models + +import folder_paths + +from .model_patch import add_model_patch_option, patch_model_function_wrapper +from .brushnet.brushnet import BrushNetModel +from .brushnet.brushnet_ca import BrushNetModel as PowerPaintModel +from .brushnet.powerpaint_utils import TokenizerWrapper, add_tokens + +current_directory = os.path.dirname(os.path.abspath(__file__)) +brushnet_config_file = os.path.join(current_directory, 'brushnet', 'brushnet.json') +brushnet_xl_config_file = os.path.join(current_directory, 'brushnet', 'brushnet_xl.json') +powerpaint_config_file = os.path.join(current_directory,'brushnet', 'powerpaint.json') + +sd15_scaling_factor = 0.18215 +sdxl_scaling_factor = 0.13025 + +print(sys.path) +ModelsToUnload = [comfy.sd1_clip.SD1ClipModel, + comfy.ldm.models.autoencoder.AutoencoderKL + ] + + +class BrushNetLoader: + @classmethod + def INPUT_TYPES(self): + self.inpaint_files = get_files_with_extension('inpaint') + return {"required": + { + "brushnet": ([file for file in self.inpaint_files], ), + "dtype": (['float16', 'bfloat16', 'float32', 'float64'], ), + }, + } + + CATEGORY = "inpaint" + RETURN_TYPES = ("BRMODEL",) + RETURN_NAMES = ("brushnet",) + + FUNCTION = "brushnet_loading" + + def brushnet_loading(self, brushnet, dtype): + brushnet_file = os.path.join(self.inpaint_files[brushnet], brushnet) + print('BrushNet model file:', brushnet_file) + is_SDXL = False + is_PP = False + sd = comfy.utils.load_torch_file(brushnet_file) + brushnet_down_block, brushnet_mid_block, brushnet_up_block, keys = brushnet_blocks(sd) + del sd + if brushnet_down_block == 24 and brushnet_mid_block == 2 and brushnet_up_block == 30: + is_SDXL = False + if keys == 322: + is_PP = False + print('BrushNet model type: SD1.5') + else: + is_PP = True + print('PowerPaint model type: SD1.5') + elif brushnet_down_block == 18 and brushnet_mid_block == 2 and brushnet_up_block == 22: + print('BrushNet model type: Loading SDXL') + is_SDXL = True + is_PP = False + else: + raise Exception("Unknown BrushNet model") + + with init_empty_weights(): + if is_SDXL: + brushnet_config = BrushNetModel.load_config(brushnet_xl_config_file) + brushnet_model = BrushNetModel.from_config(brushnet_config) + elif is_PP: + brushnet_config = PowerPaintModel.load_config(powerpaint_config_file) + brushnet_model = PowerPaintModel.from_config(brushnet_config) + else: + brushnet_config = BrushNetModel.load_config(brushnet_config_file) + brushnet_model = BrushNetModel.from_config(brushnet_config) + + if is_PP: + print("PowerPaint model file:", brushnet_file) + else: + print("BrushNet model file:", brushnet_file) + + if dtype == 'float16': + torch_dtype = torch.float16 + elif dtype == 'bfloat16': + torch_dtype = torch.bfloat16 + elif dtype == 'float32': + torch_dtype = torch.float32 + else: + torch_dtype = torch.float64 + + brushnet_model = load_checkpoint_and_dispatch( + brushnet_model, + brushnet_file, + device_map="sequential", + max_memory=None, + offload_folder=None, + offload_state_dict=False, + dtype=torch_dtype, + force_hooks=False, + ) + + if is_PP: + print("PowerPaint model is loaded") + elif is_SDXL: + print("BrushNet SDXL model is loaded") + else: + print("BrushNet SD1.5 model is loaded") + + return ({"brushnet": brushnet_model, "SDXL": is_SDXL, "PP": is_PP, "dtype": torch_dtype}, ) + + +class PowerPaintCLIPLoader: + + @classmethod + def INPUT_TYPES(self): + self.inpaint_files = get_files_with_extension('inpaint', ['.bin']) + self.clip_files = get_files_with_extension('clip') + return {"required": + { + "base": ([file for file in self.clip_files], ), + "powerpaint": ([file for file in self.inpaint_files], ), + }, + } + + CATEGORY = "inpaint" + RETURN_TYPES = ("CLIP",) + RETURN_NAMES = ("clip",) + + FUNCTION = "ppclip_loading" + + def ppclip_loading(self, base, powerpaint): + base_CLIP_file = os.path.join(self.clip_files[base], base) + pp_CLIP_file = os.path.join(self.inpaint_files[powerpaint], powerpaint) + + pp_clip = comfy.sd.load_clip(ckpt_paths=[base_CLIP_file]) + + print('PowerPaint base CLIP file: ', base_CLIP_file) + + pp_tokenizer = TokenizerWrapper(pp_clip.tokenizer.clip_l.tokenizer) + pp_text_encoder = pp_clip.patcher.model.clip_l.transformer + + add_tokens( + tokenizer = pp_tokenizer, + text_encoder = pp_text_encoder, + placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"], + initialize_tokens = ["a", "a", "a"], + num_vectors_per_token = 10, + ) + + pp_text_encoder.load_state_dict(comfy.utils.load_torch_file(pp_CLIP_file), strict=False) + + print('PowerPaint CLIP file: ', pp_CLIP_file) + + pp_clip.tokenizer.clip_l.tokenizer = pp_tokenizer + pp_clip.patcher.model.clip_l.transformer = pp_text_encoder + + return (pp_clip,) + + +class PowerPaint: + + @classmethod + def INPUT_TYPES(s): + return {"required": + { + "model": ("MODEL",), + "vae": ("VAE", ), + "image": ("IMAGE",), + "mask": ("MASK",), + "powerpaint": ("BRMODEL", ), + "clip": ("CLIP", ), + "positive": ("CONDITIONING", ), + "negative": ("CONDITIONING", ), + "fitting" : ("FLOAT", {"default": 1.0, "min": 0.3, "max": 1.0}), + "function": (['text guided', 'shape guided', 'object removal', 'context aware', 'image outpainting'], ), + "scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}), + "start_at": ("INT", {"default": 0, "min": 0, "max": 10000}), + "end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}), + "save_memory": (['none', 'auto', 'max'], ), + }, + } + + CATEGORY = "inpaint" + RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",) + RETURN_NAMES = ("model","positive","negative","latent",) + + FUNCTION = "model_update" + + def model_update(self, model, vae, image, mask, powerpaint, clip, positive, negative, fitting, function, scale, start_at, end_at, save_memory): + + is_SDXL, is_PP = check_compatibilty(model, powerpaint) + if not is_PP: + raise Exception("BrushNet model was loaded, please use BrushNet node") + + # Make a copy of the model so that we're not patching it everywhere in the workflow. + model = model.clone() + + # prepare image and mask + # no batches for original image and mask + masked_image, mask = prepare_image(image, mask) + + batch = masked_image.shape[0] + #width = masked_image.shape[2] + #height = masked_image.shape[1] + + if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'): + scaling_factor = model.model.model_config.latent_format.scale_factor + else: + scaling_factor = sd15_scaling_factor + + torch_dtype = powerpaint['dtype'] + + # prepare conditioning latents + conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor) + conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(powerpaint['brushnet'].device) + conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(powerpaint['brushnet'].device) + + # prepare embeddings + + if function == "object removal": + promptA = "P_ctxt" + promptB = "P_ctxt" + negative_promptA = "P_obj" + negative_promptB = "P_obj" + print('You should add to positive prompt: "empty scene blur"') + #positive = positive + " empty scene blur" + elif function == "context aware": + promptA = "P_ctxt" + promptB = "P_ctxt" + negative_promptA = "" + negative_promptB = "" + #positive = positive + " empty scene" + print('You should add to positive prompt: "empty scene"') + elif function == "shape guided": + promptA = "P_shape" + promptB = "P_ctxt" + negative_promptA = "P_shape" + negative_promptB = "P_ctxt" + elif function == "image outpainting": + promptA = "P_ctxt" + promptB = "P_ctxt" + negative_promptA = "P_obj" + negative_promptB = "P_obj" + #positive = positive + " empty scene" + print('You should add to positive prompt: "empty scene"') + else: + promptA = "P_obj" + promptB = "P_obj" + negative_promptA = "P_obj" + negative_promptB = "P_obj" + + tokens = clip.tokenize(promptA) + prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False) + + tokens = clip.tokenize(negative_promptA) + negative_prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False) + + tokens = clip.tokenize(promptB) + prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False) + + tokens = clip.tokenize(negative_promptB) + negative_prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False) + + prompt_embeds_pp = (prompt_embedsA * fitting + (1.0 - fitting) * prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device) + negative_prompt_embeds_pp = (negative_prompt_embedsA * fitting + (1.0 - fitting) * negative_prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device) + + # unload vae and CLIPs + del vae + del clip + for loaded_model in comfy.model_management.current_loaded_models: + if type(loaded_model.model.model) in ModelsToUnload: + comfy.model_management.current_loaded_models.remove(loaded_model) + loaded_model.model_unload() + del loaded_model + + # apply patch to model + + brushnet_conditioning_scale = scale + control_guidance_start = start_at + control_guidance_end = end_at + + if save_memory != 'none': + powerpaint['brushnet'].set_attention_slice(save_memory) + + add_brushnet_patch(model, + powerpaint['brushnet'], + torch_dtype, + conditioning_latents, + (brushnet_conditioning_scale, control_guidance_start, control_guidance_end), + negative_prompt_embeds_pp, prompt_embeds_pp, + None, None, None, + False) + + latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=powerpaint['brushnet'].device) + + return (model, positive, negative, {"samples":latent},) + + +class BrushNet: + + @classmethod + def INPUT_TYPES(s): + return {"required": + { + "model": ("MODEL",), + "vae": ("VAE", ), + "image": ("IMAGE",), + "mask": ("MASK",), + "brushnet": ("BRMODEL", ), + "positive": ("CONDITIONING", ), + "negative": ("CONDITIONING", ), + "scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}), + "start_at": ("INT", {"default": 0, "min": 0, "max": 10000}), + "end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}), + }, + } + + CATEGORY = "inpaint" + RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",) + RETURN_NAMES = ("model","positive","negative","latent",) + + FUNCTION = "model_update" + + def model_update(self, model, vae, image, mask, brushnet, positive, negative, scale, start_at, end_at): + + is_SDXL, is_PP = check_compatibilty(model, brushnet) + + if is_PP: + raise Exception("PowerPaint model was loaded, please use PowerPaint node") + + # Make a copy of the model so that we're not patching it everywhere in the workflow. + model = model.clone() + + # prepare image and mask + # no batches for original image and mask + masked_image, mask = prepare_image(image, mask) + + batch = masked_image.shape[0] + width = masked_image.shape[2] + height = masked_image.shape[1] + + if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'): + scaling_factor = model.model.model_config.latent_format.scale_factor + elif is_SDXL: + scaling_factor = sdxl_scaling_factor + else: + scaling_factor = sd15_scaling_factor + + torch_dtype = brushnet['dtype'] + + # prepare conditioning latents + conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor) + conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(brushnet['brushnet'].device) + conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(brushnet['brushnet'].device) + + # unload vae + del vae + for loaded_model in comfy.model_management.current_loaded_models: + if type(loaded_model.model.model) in ModelsToUnload: + comfy.model_management.current_loaded_models.remove(loaded_model) + loaded_model.model_unload() + del loaded_model + + # prepare embeddings + + prompt_embeds = positive[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device) + negative_prompt_embeds = negative[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device) + + max_tokens = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1]) + if prompt_embeds.shape[1] < max_tokens: + multiplier = max_tokens // 77 - prompt_embeds.shape[1] // 77 + prompt_embeds = torch.concat([prompt_embeds] + [prompt_embeds[:,-77:,:]] * multiplier, dim=1) + print('BrushNet: negative prompt more than 75 tokens:', negative_prompt_embeds.shape, 'multiplying prompt_embeds') + if negative_prompt_embeds.shape[1] < max_tokens: + multiplier = max_tokens // 77 - negative_prompt_embeds.shape[1] // 77 + negative_prompt_embeds = torch.concat([negative_prompt_embeds] + [negative_prompt_embeds[:,-77:,:]] * multiplier, dim=1) + print('BrushNet: positive prompt more than 75 tokens:', prompt_embeds.shape, 'multiplying negative_prompt_embeds') + + if len(positive[0]) > 1 and 'pooled_output' in positive[0][1] and positive[0][1]['pooled_output'] is not None: + pooled_prompt_embeds = positive[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device) + else: + print('BrushNet: positive conditioning has not pooled_output') + if is_SDXL: + print('BrushNet will not produce correct results') + pooled_prompt_embeds = torch.empty([2, 1280], device=brushnet['brushnet'].device).to(dtype=torch_dtype) + + if len(negative[0]) > 1 and 'pooled_output' in negative[0][1] and negative[0][1]['pooled_output'] is not None: + negative_pooled_prompt_embeds = negative[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device) + else: + print('BrushNet: negative conditioning has not pooled_output') + if is_SDXL: + print('BrushNet will not produce correct results') + negative_pooled_prompt_embeds = torch.empty([1, pooled_prompt_embeds.shape[1]], device=brushnet['brushnet'].device).to(dtype=torch_dtype) + + time_ids = torch.FloatTensor([[height, width, 0., 0., height, width]]).to(dtype=torch_dtype).to(brushnet['brushnet'].device) + + if not is_SDXL: + pooled_prompt_embeds = None + negative_pooled_prompt_embeds = None + time_ids = None + + # apply patch to model + + brushnet_conditioning_scale = scale + control_guidance_start = start_at + control_guidance_end = end_at + + add_brushnet_patch(model, + brushnet['brushnet'], + torch_dtype, + conditioning_latents, + (brushnet_conditioning_scale, control_guidance_start, control_guidance_end), + prompt_embeds, negative_prompt_embeds, + pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids, + False) + + latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=brushnet['brushnet'].device) + + return (model, positive, negative, {"samples":latent},) + + +class BlendInpaint: + + @classmethod + def INPUT_TYPES(s): + return {"required": + { + "inpaint": ("IMAGE",), + "original": ("IMAGE",), + "mask": ("MASK",), + "kernel": ("INT", {"default": 10, "min": 1, "max": 1000}), + "sigma": ("FLOAT", {"default": 10.0, "min": 0.01, "max": 1000}), + }, + "optional": + { + "origin": ("VECTOR",), + }, + } + + CATEGORY = "inpaint" + RETURN_TYPES = ("IMAGE","MASK",) + RETURN_NAMES = ("image","MASK",) + + FUNCTION = "blend_inpaint" + + def blend_inpaint(self, inpaint: torch.Tensor, original: torch.Tensor, mask, kernel: int, sigma:int, origin=None) -> Tuple[torch.Tensor]: + + original, mask = check_image_mask(original, mask, 'Blend Inpaint') + + if len(inpaint.shape) < 4: + # image tensor shape should be [B, H, W, C], but batch somehow is missing + inpaint = inpaint[None,:,:,:] + + if inpaint.shape[0] < original.shape[0]: + print("Blend Inpaint gets batch of original images (%d) but only (%d) inpaint images" % (original.shape[0], inpaint.shape[0])) + original= original[:inpaint.shape[0],:,:] + mask = mask[:inpaint.shape[0],:,:] + + if inpaint.shape[0] > original.shape[0]: + # batch over inpaint + count = 0 + original_list = [] + mask_list = [] + origin_list = [] + while (count < inpaint.shape[0]): + for i in range(original.shape[0]): + original_list.append(original[i][None,:,:,:]) + mask_list.append(mask[i][None,:,:]) + if origin is not None: + origin_list.append(origin[i][None,:]) + count += 1 + if count >= inpaint.shape[0]: + break + original = torch.concat(original_list, dim=0) + mask = torch.concat(mask_list, dim=0) + if origin is not None: + origin = torch.concat(origin_list, dim=0) + + if kernel % 2 == 0: + kernel += 1 + transform = T.GaussianBlur(kernel_size=(kernel, kernel), sigma=(sigma, sigma)) + + ret = [] + blurred = [] + for i in range(inpaint.shape[0]): + if origin is None: + blurred_mask = transform(mask[i][None,None,:,:]).to(original.device).to(original.dtype) + blurred.append(blurred_mask[0]) + + result = torch.nn.functional.interpolate( + inpaint[i][None,:,:,:].permute(0, 3, 1, 2), + size=( + original[i].shape[0], + original[i].shape[1], + ) + ).permute(0, 2, 3, 1).to(original.device).to(original.dtype) + else: + # got mask from CutForInpaint + height, width, _ = original[i].shape + x0 = origin[i][0].item() + y0 = origin[i][1].item() + + if mask[i].shape[0] < height or mask[i].shape[1] < width: + padded_mask = F.pad(input=mask[i], pad=(x0, width-x0-mask[i].shape[1], + y0, height-y0-mask[i].shape[0]), mode='constant', value=0) + else: + padded_mask = mask[i] + blurred_mask = transform(padded_mask[None,None,:,:]).to(original.device).to(original.dtype) + blurred.append(blurred_mask[0][0]) + + result = F.pad(input=inpaint[i], pad=(0, 0, x0, width-x0-inpaint[i].shape[1], + y0, height-y0-inpaint[i].shape[0]), mode='constant', value=0) + result = result[None,:,:,:].to(original.device).to(original.dtype) + + ret.append(original[i] * (1.0 - blurred_mask[0][0][:,:,None]) + result[0] * blurred_mask[0][0][:,:,None]) + + return (torch.stack(ret), torch.stack(blurred), ) + + +class CutForInpaint: + + @classmethod + def INPUT_TYPES(s): + return {"required": + { + "image": ("IMAGE",), + "mask": ("MASK",), + "width": ("INT", {"default": 512, "min": 64, "max": 2048}), + "height": ("INT", {"default": 512, "min": 64, "max": 2048}), + }, + } + + CATEGORY = "inpaint" + RETURN_TYPES = ("IMAGE","MASK","VECTOR",) + RETURN_NAMES = ("image","mask","origin",) + + FUNCTION = "cut_for_inpaint" + + def cut_for_inpaint(self, image: torch.Tensor, mask: torch.Tensor, width: int, height: int): + + image, mask = check_image_mask(image, mask, 'BrushNet') + + ret = [] + msk = [] + org = [] + for i in range(image.shape[0]): + x0, y0, w, h = cut_with_mask(mask[i], width, height) + ret.append((image[i][y0:y0+h,x0:x0+w,:])) + msk.append((mask[i][y0:y0+h,x0:x0+w])) + org.append(torch.IntTensor([x0,y0])) + + return (torch.stack(ret), torch.stack(msk), torch.stack(org), ) + + +#### Utility function + +def get_files_with_extension(folder_name, extension=['.safetensors']): + + try: + folders = folder_paths.get_folder_paths(folder_name) + except: + folders = [] + + if not folders: + folders = [os.path.join(folder_paths.models_dir, folder_name)] + if not os.path.isdir(folders[0]): + folders = [os.path.join(folder_paths.base_path, folder_name)] + if not os.path.isdir(folders[0]): + return {} + + filtered_folders = [] + for x in folders: + if not os.path.isdir(x): + continue + the_same = False + for y in filtered_folders: + if os.path.samefile(x, y): + the_same = True + break + if not the_same: + filtered_folders.append(x) + + if not filtered_folders: + return {} + + output = {} + for x in filtered_folders: + files, folders_all = folder_paths.recursive_search(x, excluded_dir_names=[".git"]) + filtered_files = folder_paths.filter_files_extensions(files, extension) + + for f in filtered_files: + output[f] = x + + return output + + +# get blocks from state_dict so we could know which model it is +def brushnet_blocks(sd): + brushnet_down_block = 0 + brushnet_mid_block = 0 + brushnet_up_block = 0 + for key in sd: + if 'brushnet_down_block' in key: + brushnet_down_block += 1 + if 'brushnet_mid_block' in key: + brushnet_mid_block += 1 + if 'brushnet_up_block' in key: + brushnet_up_block += 1 + return (brushnet_down_block, brushnet_mid_block, brushnet_up_block, len(sd)) + + +# Check models compatibility +def check_compatibilty(model, brushnet): + is_SDXL = False + is_PP = False + if isinstance(model.model.model_config, comfy.supported_models.SD15): + print('Base model type: SD1.5') + is_SDXL = False + if brushnet["SDXL"]: + raise Exception("Base model is SD15, but BrushNet is SDXL type") + if brushnet["PP"]: + is_PP = True + elif isinstance(model.model.model_config, comfy.supported_models.SDXL): + print('Base model type: SDXL') + is_SDXL = True + if not brushnet["SDXL"]: + raise Exception("Base model is SDXL, but BrushNet is SD15 type") + else: + print('Base model type: ', type(model.model.model_config)) + raise Exception("Unsupported model type: " + str(type(model.model.model_config))) + + return (is_SDXL, is_PP) + + +def check_image_mask(image, mask, name): + if len(image.shape) < 4: + # image tensor shape should be [B, H, W, C], but batch somehow is missing + image = image[None,:,:,:] + + if len(mask.shape) > 3: + # mask tensor shape should be [B, H, W] but we get [B, H, W, C], image may be? + # take first mask, red channel + mask = (mask[:,:,:,0])[:,:,:] + elif len(mask.shape) < 3: + # mask tensor shape should be [B, H, W] but batch somehow is missing + mask = mask[None,:,:] + + if image.shape[0] > mask.shape[0]: + print(name, "gets batch of images (%d) but only %d masks" % (image.shape[0], mask.shape[0])) + if mask.shape[0] == 1: + print(name, "will copy the mask to fill batch") + mask = torch.cat([mask] * image.shape[0], dim=0) + else: + print(name, "will add empty masks to fill batch") + empty_mask = torch.zeros([image.shape[0] - mask.shape[0], mask.shape[1], mask.shape[2]]) + mask = torch.cat([mask, empty_mask], dim=0) + elif image.shape[0] < mask.shape[0]: + print(name, "gets batch of images (%d) but too many (%d) masks" % (image.shape[0], mask.shape[0])) + mask = mask[:image.shape[0],:,:] + + return (image, mask) + + +# Prepare image and mask +def prepare_image(image, mask): + + image, mask = check_image_mask(image, mask, 'BrushNet') + + print("BrushNet image.shape =", image.shape, "mask.shape =", mask.shape) + + if mask.shape[2] != image.shape[2] or mask.shape[1] != image.shape[1]: + raise Exception("Image and mask should be the same size") + + # As a suggestion of inferno46n2 (https://github.com/nullquant/ComfyUI-BrushNet/issues/64) + mask = mask.round() + + masked_image = image * (1.0 - mask[:,:,:,None]) + + return (masked_image, mask) + + +# Get origin of the mask +def cut_with_mask(mask, width, height): + iy, ix = (mask == 1).nonzero(as_tuple=True) + + h0, w0 = mask.shape + + if iy.numel() == 0: + x_c = w0 / 2.0 + y_c = h0 / 2.0 + else: + x_min = ix.min().item() + x_max = ix.max().item() + y_min = iy.min().item() + y_max = iy.max().item() + + if x_max - x_min > width or y_max - y_min > height: + raise Exception("Masked area is bigger than provided dimensions") + + x_c = (x_min + x_max) / 2.0 + y_c = (y_min + y_max) / 2.0 + + width2 = width / 2.0 + height2 = height / 2.0 + + if w0 <= width: + x0 = 0 + w = w0 + else: + x0 = max(0, x_c - width2) + w = width + if x0 + width > w0: + x0 = w0 - width + + if h0 <= height: + y0 = 0 + h = h0 + else: + y0 = max(0, y_c - height2) + h = height + if y0 + height > h0: + y0 = h0 - height + + return (int(x0), int(y0), int(w), int(h)) + + +# Prepare conditioning_latents +@torch.inference_mode() +def get_image_latents(masked_image, mask, vae, scaling_factor): + processed_image = masked_image.to(vae.device) + image_latents = vae.encode(processed_image[:,:,:,:3]) * scaling_factor + processed_mask = 1. - mask[:,None,:,:] + interpolated_mask = torch.nn.functional.interpolate( + processed_mask, + size=( + image_latents.shape[-2], + image_latents.shape[-1] + ) + ) + interpolated_mask = interpolated_mask.to(image_latents.device) + + conditioning_latents = [image_latents, interpolated_mask] + + print('BrushNet CL: image_latents shape =', image_latents.shape, 'interpolated_mask shape =', interpolated_mask.shape) + + return conditioning_latents + + +# Main function where magic happens +@torch.inference_mode() +def brushnet_inference(x, timesteps, transformer_options, debug): + if 'model_patch' not in transformer_options: + print('BrushNet inference: there is no model_patch key in transformer_options') + return ([], 0, []) + mp = transformer_options['model_patch'] + if 'brushnet' not in mp: + print('BrushNet inference: there is no brushnet key in mdel_patch') + return ([], 0, []) + bo = mp['brushnet'] + if 'model' not in bo: + print('BrushNet inference: there is no model key in brushnet') + return ([], 0, []) + brushnet = bo['model'] + if not (isinstance(brushnet, BrushNetModel) or isinstance(brushnet, PowerPaintModel)): + print('BrushNet model is not a BrushNetModel class') + return ([], 0, []) + + torch_dtype = bo['dtype'] + cl_list = bo['latents'] + brushnet_conditioning_scale, control_guidance_start, control_guidance_end = bo['controls'] + pe = bo['prompt_embeds'] + npe = bo['negative_prompt_embeds'] + ppe, nppe, time_ids = bo['add_embeds'] + + #do_classifier_free_guidance = mp['free_guidance'] + do_classifier_free_guidance = len(transformer_options['cond_or_uncond']) > 1 + + x = x.detach().clone() + x = x.to(torch_dtype).to(brushnet.device) + + timesteps = timesteps.detach().clone() + timesteps = timesteps.to(torch_dtype).to(brushnet.device) + + total_steps = mp['total_steps'] + step = mp['step'] + + added_cond_kwargs = {} + + if do_classifier_free_guidance and step == 0: + print('BrushNet inference: do_classifier_free_guidance is True') + + sub_idx = None + if 'ad_params' in transformer_options and 'sub_idxs' in transformer_options['ad_params']: + sub_idx = transformer_options['ad_params']['sub_idxs'] + + # we have batch input images + batch = cl_list[0].shape[0] + # we have incoming latents + latents_incoming = x.shape[0] + # and we already got some + latents_got = bo['latent_id'] + if step == 0 or batch > 1: + print('BrushNet inference, step = %d: image batch = %d, got %d latents, starting from %d' \ + % (step, batch, latents_incoming, latents_got)) + + image_latents = [] + masks = [] + prompt_embeds = [] + negative_prompt_embeds = [] + pooled_prompt_embeds = [] + negative_pooled_prompt_embeds = [] + if sub_idx: + # AnimateDiff indexes detected + if step == 0: + print('BrushNet inference: AnimateDiff indexes detected and applied') + + batch = len(sub_idx) + + if do_classifier_free_guidance: + for i in sub_idx: + image_latents.append(cl_list[0][i][None,:,:,:]) + masks.append(cl_list[1][i][None,:,:,:]) + prompt_embeds.append(pe) + negative_prompt_embeds.append(npe) + pooled_prompt_embeds.append(ppe) + negative_pooled_prompt_embeds.append(nppe) + for i in sub_idx: + image_latents.append(cl_list[0][i][None,:,:,:]) + masks.append(cl_list[1][i][None,:,:,:]) + else: + for i in sub_idx: + image_latents.append(cl_list[0][i][None,:,:,:]) + masks.append(cl_list[1][i][None,:,:,:]) + prompt_embeds.append(pe) + pooled_prompt_embeds.append(ppe) + else: + # do_classifier_free_guidance = 2 passes, 1st pass is cond, 2nd is uncond + continue_batch = True + for i in range(latents_incoming): + number = latents_got + i + if number < batch: + # 1st pass, cond + image_latents.append(cl_list[0][number][None,:,:,:]) + masks.append(cl_list[1][number][None,:,:,:]) + prompt_embeds.append(pe) + pooled_prompt_embeds.append(ppe) + elif do_classifier_free_guidance and number < batch * 2: + # 2nd pass, uncond + image_latents.append(cl_list[0][number-batch][None,:,:,:]) + masks.append(cl_list[1][number-batch][None,:,:,:]) + negative_prompt_embeds.append(npe) + negative_pooled_prompt_embeds.append(nppe) + else: + # latent batch + image_latents.append(cl_list[0][0][None,:,:,:]) + masks.append(cl_list[1][0][None,:,:,:]) + prompt_embeds.append(pe) + pooled_prompt_embeds.append(ppe) + latents_got = -i + continue_batch = False + + if continue_batch: + # we don't have full batch yet + if do_classifier_free_guidance: + if number < batch * 2 - 1: + bo['latent_id'] = number + 1 + else: + bo['latent_id'] = 0 + else: + if number < batch - 1: + bo['latent_id'] = number + 1 + else: + bo['latent_id'] = 0 + else: + bo['latent_id'] = 0 + + cl = [] + for il, m in zip(image_latents, masks): + cl.append(torch.concat([il, m], dim=1)) + cl2apply = torch.concat(cl, dim=0) + + conditioning_latents = cl2apply.to(torch_dtype).to(brushnet.device) + + # print("BrushNet CL: conditioning_latents shape =", conditioning_latents.shape) + # print("BrushNet CL: x shape =", x.shape) + + prompt_embeds.extend(negative_prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device) + + if ppe is not None: + added_cond_kwargs = {} + added_cond_kwargs['time_ids'] = torch.concat([time_ids] * latents_incoming, dim = 0).to(torch_dtype).to(brushnet.device) + + pooled_prompt_embeds.extend(negative_pooled_prompt_embeds) + pooled_prompt_embeds = torch.concat(pooled_prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device) + added_cond_kwargs['text_embeds'] = pooled_prompt_embeds + else: + added_cond_kwargs = None + + if x.shape[2] != conditioning_latents.shape[2] or x.shape[3] != conditioning_latents.shape[3]: + if step == 0: + print('BrushNet inference: image', conditioning_latents.shape, 'and latent', x.shape, 'have different size, resizing image') + conditioning_latents = torch.nn.functional.interpolate( + conditioning_latents, size=( + x.shape[2], + x.shape[3], + ), mode='bicubic', + ).to(torch_dtype).to(brushnet.device) + + if step == 0: + print('BrushNet inference: sample', x.shape, ', CL', conditioning_latents.shape, 'dtype', torch_dtype) + + if debug: print('BrushNet: step =', step) + + if step < control_guidance_start or step > control_guidance_end: + cond_scale = 0.0 + else: + cond_scale = brushnet_conditioning_scale + + return brushnet(x, + encoder_hidden_states=prompt_embeds, + brushnet_cond=conditioning_latents, + timestep = timesteps, + conditioning_scale=cond_scale, + guess_mode=False, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + debug=debug, + ) + + +# This is main patch function +def add_brushnet_patch(model, brushnet, torch_dtype, conditioning_latents, + controls, + prompt_embeds, negative_prompt_embeds, + pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids, + debug): + + is_SDXL = isinstance(model.model.model_config, comfy.supported_models.SDXL) + + if is_SDXL: + input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d], + [1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], + [2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], + [3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], + [4, comfy.ldm.modules.attention.SpatialTransformer], + [5, comfy.ldm.modules.attention.SpatialTransformer], + [6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], + [7, comfy.ldm.modules.attention.SpatialTransformer], + [8, comfy.ldm.modules.attention.SpatialTransformer]] + middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock] + output_blocks = [[0, comfy.ldm.modules.attention.SpatialTransformer], + [1, comfy.ldm.modules.attention.SpatialTransformer], + [2, comfy.ldm.modules.attention.SpatialTransformer], + [2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], + [3, comfy.ldm.modules.attention.SpatialTransformer], + [4, comfy.ldm.modules.attention.SpatialTransformer], + [5, comfy.ldm.modules.attention.SpatialTransformer], + [5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], + [6, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], + [7, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], + [8, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]] + else: + input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d], + [1, comfy.ldm.modules.attention.SpatialTransformer], + [2, comfy.ldm.modules.attention.SpatialTransformer], + [3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], + [4, comfy.ldm.modules.attention.SpatialTransformer], + [5, comfy.ldm.modules.attention.SpatialTransformer], + [6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], + [7, comfy.ldm.modules.attention.SpatialTransformer], + [8, comfy.ldm.modules.attention.SpatialTransformer], + [9, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample], + [10, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], + [11, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]] + middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock] + output_blocks = [[0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], + [1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], + [2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock], + [2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], + [3, comfy.ldm.modules.attention.SpatialTransformer], + [4, comfy.ldm.modules.attention.SpatialTransformer], + [5, comfy.ldm.modules.attention.SpatialTransformer], + [5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], + [6, comfy.ldm.modules.attention.SpatialTransformer], + [7, comfy.ldm.modules.attention.SpatialTransformer], + [8, comfy.ldm.modules.attention.SpatialTransformer], + [8, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample], + [9, comfy.ldm.modules.attention.SpatialTransformer], + [10, comfy.ldm.modules.attention.SpatialTransformer], + [11, comfy.ldm.modules.attention.SpatialTransformer]] + + def last_layer_index(block, tp): + layer_list = [] + for layer in block: + layer_list.append(type(layer)) + layer_list.reverse() + if tp not in layer_list: + return -1, layer_list.reverse() + return len(layer_list) - 1 - layer_list.index(tp), layer_list + + def brushnet_forward(model, x, timesteps, transformer_options, control): + if 'brushnet' not in transformer_options['model_patch']: + input_samples = [] + mid_sample = 0 + output_samples = [] + else: + # brushnet inference + input_samples, mid_sample, output_samples = brushnet_inference(x, timesteps, transformer_options, debug) + + # give additional samples to blocks + for i, tp in input_blocks: + idx, layer_list = last_layer_index(model.input_blocks[i], tp) + if idx < 0: + print("BrushNet can't find", tp, "layer in", i,"input block:", layer_list) + continue + model.input_blocks[i][idx].add_sample_after = input_samples.pop(0) if input_samples else 0 + + idx, layer_list = last_layer_index(model.middle_block, middle_block[1]) + if idx < 0: + print("BrushNet can't find", middle_block[1], "layer in middle block", layer_list) + model.middle_block[idx].add_sample_after = mid_sample + + for i, tp in output_blocks: + idx, layer_list = last_layer_index(model.output_blocks[i], tp) + if idx < 0: + print("BrushNet can't find", tp, "layer in", i,"outnput block:", layer_list) + continue + model.output_blocks[i][idx].add_sample_after = output_samples.pop(0) if output_samples else 0 + + patch_model_function_wrapper(model, brushnet_forward) + + to = add_model_patch_option(model) + mp = to['model_patch'] + if 'brushnet' not in mp: + mp['brushnet'] = {} + bo = mp['brushnet'] + + bo['model'] = brushnet + bo['dtype'] = torch_dtype + bo['latents'] = conditioning_latents + bo['controls'] = controls + bo['prompt_embeds'] = prompt_embeds + bo['negative_prompt_embeds'] = negative_prompt_embeds + bo['add_embeds'] = (pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids) + bo['latent_id'] = 0 + + # patch layers `forward` so we can apply brushnet + def forward_patched_by_brushnet(self, x, *args, **kwargs): + h = self.original_forward(x, *args, **kwargs) + if hasattr(self, 'add_sample_after') and type(self): + to_add = self.add_sample_after + if torch.is_tensor(to_add): + # interpolate due to RAUNet + if h.shape[2] != to_add.shape[2] or h.shape[3] != to_add.shape[3]: + to_add = torch.nn.functional.interpolate(to_add, size=(h.shape[2], h.shape[3]), mode='bicubic') + h += to_add.to(h.dtype).to(h.device) + else: + h += self.add_sample_after + self.add_sample_after = 0 + return h + + for i, block in enumerate(model.model.diffusion_model.input_blocks): + for j, layer in enumerate(block): + if not hasattr(layer, 'original_forward'): + layer.original_forward = layer.forward + layer.forward = types.MethodType(forward_patched_by_brushnet, layer) + layer.add_sample_after = 0 + + for j, layer in enumerate(model.model.diffusion_model.middle_block): + if not hasattr(layer, 'original_forward'): + layer.original_forward = layer.forward + layer.forward = types.MethodType(forward_patched_by_brushnet, layer) + layer.add_sample_after = 0 + + for i, block in enumerate(model.model.diffusion_model.output_blocks): + for j, layer in enumerate(block): + if not hasattr(layer, 'original_forward'): + layer.original_forward = layer.forward + layer.forward = types.MethodType(forward_patched_by_brushnet, layer) + layer.add_sample_after = 0 diff --git a/MagicQuill/comfy/.DS_Store b/MagicQuill/comfy/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..6929da02147a717f7f4ec1fa0a6d2f0a967729d3 Binary files /dev/null and b/MagicQuill/comfy/.DS_Store differ diff --git a/MagicQuill/comfy/checkpoint_pickle.py b/MagicQuill/comfy/checkpoint_pickle.py new file mode 100644 index 0000000000000000000000000000000000000000..206551d3c1cf0d654c907534629a800196ba138b --- /dev/null +++ b/MagicQuill/comfy/checkpoint_pickle.py @@ -0,0 +1,13 @@ +import pickle + +load = pickle.load + +class Empty: + pass + +class Unpickler(pickle.Unpickler): + def find_class(self, module, name): + #TODO: safe unpickle + if module.startswith("pytorch_lightning"): + return Empty + return super().find_class(module, name) diff --git a/MagicQuill/comfy/cldm/__pycache__/cldm.cpython-310.pyc b/MagicQuill/comfy/cldm/__pycache__/cldm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9607a6650170ea6563fd708ba990c622b63f0e78 Binary files /dev/null and b/MagicQuill/comfy/cldm/__pycache__/cldm.cpython-310.pyc differ diff --git a/MagicQuill/comfy/cldm/cldm.py b/MagicQuill/comfy/cldm/cldm.py new file mode 100644 index 0000000000000000000000000000000000000000..28076dd9251e12f050a280337eaf3b7504710ce0 --- /dev/null +++ b/MagicQuill/comfy/cldm/cldm.py @@ -0,0 +1,313 @@ +#taken from: https://github.com/lllyasviel/ControlNet +#and modified + +import torch +import torch as th +import torch.nn as nn + +from ..ldm.modules.diffusionmodules.util import ( + zero_module, + timestep_embedding, +) + +from ..ldm.modules.attention import SpatialTransformer +from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample +from ..ldm.util import exists +import comfy.ops + +class ControlledUnetModel(UNetModel): + #implemented in the ldm unet + pass + +class ControlNet(nn.Module): + def __init__( + self, + image_size, + in_channels, + model_channels, + hint_channels, + num_res_blocks, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + num_classes=None, + use_checkpoint=False, + dtype=torch.float32, + num_heads=-1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + use_spatial_transformer=False, # custom transformer support + transformer_depth=1, # custom transformer support + context_dim=None, # custom transformer support + n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model + legacy=True, + disable_self_attentions=None, + num_attention_blocks=None, + disable_middle_self_attn=False, + use_linear_in_transformer=False, + adm_in_channels=None, + transformer_depth_middle=None, + transformer_depth_output=None, + attn_precision=None, + device=None, + operations=comfy.ops.disable_weight_init, + **kwargs, + ): + super().__init__() + assert use_spatial_transformer == True, "use_spatial_transformer has to be true" + if use_spatial_transformer: + assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' + + if context_dim is not None: + assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' + # from omegaconf.listconfig import ListConfig + # if type(context_dim) == ListConfig: + # context_dim = list(context_dim) + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + + self.dims = dims + self.image_size = image_size + self.in_channels = in_channels + self.model_channels = model_channels + + if isinstance(num_res_blocks, int): + self.num_res_blocks = len(channel_mult) * [num_res_blocks] + else: + if len(num_res_blocks) != len(channel_mult): + raise ValueError("provide num_res_blocks either as an int (globally constant) or " + "as a list/tuple (per-level) with the same length as channel_mult") + self.num_res_blocks = num_res_blocks + + if disable_self_attentions is not None: + # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not + assert len(disable_self_attentions) == len(channel_mult) + if num_attention_blocks is not None: + assert len(num_attention_blocks) == len(self.num_res_blocks) + assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) + + transformer_depth = transformer_depth[:] + + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.num_classes = num_classes + self.use_checkpoint = use_checkpoint + self.dtype = dtype + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + self.predict_codebook_ids = n_embed is not None + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), + nn.SiLU(), + operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), + ) + + if self.num_classes is not None: + if isinstance(self.num_classes, int): + self.label_emb = nn.Embedding(num_classes, time_embed_dim) + elif self.num_classes == "continuous": + print("setting up linear c_adm embedding layer") + self.label_emb = nn.Linear(1, time_embed_dim) + elif self.num_classes == "sequential": + assert adm_in_channels is not None + self.label_emb = nn.Sequential( + nn.Sequential( + operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), + nn.SiLU(), + operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), + ) + ) + else: + raise ValueError() + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) + ) + ] + ) + self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)]) + + self.input_hint_block = TimestepEmbedSequential( + operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device) + ) + + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for nr in range(self.num_res_blocks[level]): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations, + ) + ] + ch = mult * model_channels + num_transformers = transformer_depth.pop(0) + if num_transformers > 0: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + if exists(disable_self_attentions): + disabled_sa = disable_self_attentions[level] + else: + disabled_sa = False + + if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: + layers.append( + SpatialTransformer( + ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, + disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + dtype=self.dtype, + device=device, + operations=operations + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) + ds *= 2 + self._feature_size += ch + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + mid_block = [ + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations + )] + if transformer_depth_middle >= 0: + mid_block += [SpatialTransformer( # always uses a self-attn + ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, + disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations + )] + self.middle_block = TimestepEmbedSequential(*mid_block) + self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device) + self._feature_size += ch + + def make_zero_conv(self, channels, operations=None, dtype=None, device=None): + return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device)) + + def forward(self, x, hint, timesteps, context, y=None, **kwargs): + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) + emb = self.time_embed(t_emb) + + guided_hint = self.input_hint_block(hint, emb, context) + + outs = [] + + hs = [] + if self.num_classes is not None: + assert y.shape[0] == x.shape[0] + emb = emb + self.label_emb(y) + + h = x + for module, zero_conv in zip(self.input_blocks, self.zero_convs): + if guided_hint is not None: + h = module(h, emb, context) + h += guided_hint + guided_hint = None + else: + h = module(h, emb, context) + outs.append(zero_conv(h, emb, context)) + + h = self.middle_block(h, emb, context) + outs.append(self.middle_block_out(h, emb, context)) + + return outs + diff --git a/MagicQuill/comfy/cli_args.py b/MagicQuill/comfy/cli_args.py new file mode 100644 index 0000000000000000000000000000000000000000..fb0d37ce75081e3f4f38350cd6131c290a3fdd48 --- /dev/null +++ b/MagicQuill/comfy/cli_args.py @@ -0,0 +1,143 @@ +import argparse +import enum +import comfy.options + +class EnumAction(argparse.Action): + """ + Argparse action for handling Enums + """ + def __init__(self, **kwargs): + # Pop off the type value + enum_type = kwargs.pop("type", None) + + # Ensure an Enum subclass is provided + if enum_type is None: + raise ValueError("type must be assigned an Enum when using EnumAction") + if not issubclass(enum_type, enum.Enum): + raise TypeError("type must be an Enum when using EnumAction") + + # Generate choices from the Enum + choices = tuple(e.value for e in enum_type) + kwargs.setdefault("choices", choices) + kwargs.setdefault("metavar", f"[{','.join(list(choices))}]") + + super(EnumAction, self).__init__(**kwargs) + + self._enum = enum_type + + def __call__(self, parser, namespace, values, option_string=None): + # Convert value back into an Enum + value = self._enum(values) + setattr(namespace, self.dest, value) + + +parser = argparse.ArgumentParser() + +parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)") +parser.add_argument("--port", type=int, default=8188, help="Set the listen port.") +parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function") +parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function") +parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.") +parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.") + +parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.") +parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.") +parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).") +parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.") +parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.") +parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.") +parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.") +cm_group = parser.add_mutually_exclusive_group() +cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).") +cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.") + + +fp_group = parser.add_mutually_exclusive_group() +fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).") +fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.") + +fpunet_group = parser.add_mutually_exclusive_group() +fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.") +fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.") +fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.") +fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.") + +fpvae_group = parser.add_mutually_exclusive_group() +fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.") +fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.") +fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.") + +parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.") + +fpte_group = parser.add_mutually_exclusive_group() +fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).") +fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).") +fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.") +fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.") + +parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.") + +parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.") + +parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.") + +class LatentPreviewMethod(enum.Enum): + NoPreviews = "none" + Auto = "auto" + Latent2RGB = "latent2rgb" + TAESD = "taesd" + +parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction) + +attn_group = parser.add_mutually_exclusive_group() +attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.") +attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.") +attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.") + +parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.") + +upcast = parser.add_mutually_exclusive_group() +upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.") +upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.") + + +vram_group = parser.add_mutually_exclusive_group() +vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).") +vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.") +vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.") +vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.") +vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.") +vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).") + + +parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.") +parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.") + +parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.") +parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.") +parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).") + +parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.") + +parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.") + +parser.add_argument("--verbose", action="store_true", help="Enables more debug prints.") + + +if comfy.options.args_parsing: + args = parser.parse_args() +else: + args = parser.parse_args([]) + +if args.windows_standalone_build: + args.auto_launch = True + +if args.disable_auto_launch: + args.auto_launch = False + +import logging +logging_level = logging.INFO +if args.verbose: + logging_level = logging.DEBUG + +logging.basicConfig(format="%(message)s", level=logging_level) diff --git a/MagicQuill/comfy/clip_config_bigg.json b/MagicQuill/comfy/clip_config_bigg.json new file mode 100644 index 0000000000000000000000000000000000000000..32d82ff39ba66ba0be15ec101993e1c46cc3f7ab --- /dev/null +++ b/MagicQuill/comfy/clip_config_bigg.json @@ -0,0 +1,23 @@ +{ + "architectures": [ + "CLIPTextModel" + ], + "attention_dropout": 0.0, + "bos_token_id": 0, + "dropout": 0.0, + "eos_token_id": 2, + "hidden_act": "gelu", + "hidden_size": 1280, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 5120, + "layer_norm_eps": 1e-05, + "max_position_embeddings": 77, + "model_type": "clip_text_model", + "num_attention_heads": 20, + "num_hidden_layers": 32, + "pad_token_id": 1, + "projection_dim": 1280, + "torch_dtype": "float32", + "vocab_size": 49408 +} diff --git a/MagicQuill/comfy/clip_model.py b/MagicQuill/comfy/clip_model.py new file mode 100644 index 0000000000000000000000000000000000000000..14f43c5687cb19c62fbaea3481a66f11f3b186c6 --- /dev/null +++ b/MagicQuill/comfy/clip_model.py @@ -0,0 +1,194 @@ +import torch +from comfy.ldm.modules.attention import optimized_attention_for_device + +class CLIPAttention(torch.nn.Module): + def __init__(self, embed_dim, heads, dtype, device, operations): + super().__init__() + + self.heads = heads + self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) + self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) + self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) + + self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) + + def forward(self, x, mask=None, optimized_attention=None): + q = self.q_proj(x) + k = self.k_proj(x) + v = self.v_proj(x) + + out = optimized_attention(q, k, v, self.heads, mask) + return self.out_proj(out) + +ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a), + "gelu": torch.nn.functional.gelu, +} + +class CLIPMLP(torch.nn.Module): + def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations): + super().__init__() + self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device) + self.activation = ACTIVATIONS[activation] + self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device) + + def forward(self, x): + x = self.fc1(x) + x = self.activation(x) + x = self.fc2(x) + return x + +class CLIPLayer(torch.nn.Module): + def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations): + super().__init__() + self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device) + self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations) + self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device) + self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations) + + def forward(self, x, mask=None, optimized_attention=None): + x += self.self_attn(self.layer_norm1(x), mask, optimized_attention) + x += self.mlp(self.layer_norm2(x)) + return x + + +class CLIPEncoder(torch.nn.Module): + def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations): + super().__init__() + self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)]) + + def forward(self, x, mask=None, intermediate_output=None): + optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True) + + if intermediate_output is not None: + if intermediate_output < 0: + intermediate_output = len(self.layers) + intermediate_output + + intermediate = None + for i, l in enumerate(self.layers): + x = l(x, mask, optimized_attention) + if i == intermediate_output: + intermediate = x.clone() + return x, intermediate + +class CLIPEmbeddings(torch.nn.Module): + def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None): + super().__init__() + self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device) + self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) + + def forward(self, input_tokens): + return self.token_embedding(input_tokens) + self.position_embedding.weight + + +class CLIPTextModel_(torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + num_layers = config_dict["num_hidden_layers"] + embed_dim = config_dict["hidden_size"] + heads = config_dict["num_attention_heads"] + intermediate_size = config_dict["intermediate_size"] + intermediate_activation = config_dict["hidden_act"] + + super().__init__() + self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device) + self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) + self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device) + + def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): + x = self.embeddings(input_tokens) + mask = None + if attention_mask is not None: + mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) + mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) + + causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1) + if mask is not None: + mask += causal_mask + else: + mask = causal_mask + + x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output) + x = self.final_layer_norm(x) + if i is not None and final_layer_norm_intermediate: + i = self.final_layer_norm(i) + + pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),] + return x, i, pooled_output + +class CLIPTextModel(torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + self.num_layers = config_dict["num_hidden_layers"] + self.text_model = CLIPTextModel_(config_dict, dtype, device, operations) + embed_dim = config_dict["hidden_size"] + self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device) + self.text_projection.weight.copy_(torch.eye(embed_dim)) + self.dtype = dtype + + def get_input_embeddings(self): + return self.text_model.embeddings.token_embedding + + def set_input_embeddings(self, embeddings): + self.text_model.embeddings.token_embedding = embeddings + + def forward(self, *args, **kwargs): + x = self.text_model(*args, **kwargs) + out = self.text_projection(x[2]) + return (x[0], x[1], out, x[2]) + + +class CLIPVisionEmbeddings(torch.nn.Module): + def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None): + super().__init__() + self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device)) + + self.patch_embedding = operations.Conv2d( + in_channels=num_channels, + out_channels=embed_dim, + kernel_size=patch_size, + stride=patch_size, + bias=False, + dtype=dtype, + device=device + ) + + num_patches = (image_size // patch_size) ** 2 + num_positions = num_patches + 1 + self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) + + def forward(self, pixel_values): + embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2) + return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device) + + +class CLIPVision(torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + num_layers = config_dict["num_hidden_layers"] + embed_dim = config_dict["hidden_size"] + heads = config_dict["num_attention_heads"] + intermediate_size = config_dict["intermediate_size"] + intermediate_activation = config_dict["hidden_act"] + + self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations) + self.pre_layrnorm = operations.LayerNorm(embed_dim) + self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) + self.post_layernorm = operations.LayerNorm(embed_dim) + + def forward(self, pixel_values, attention_mask=None, intermediate_output=None): + x = self.embeddings(pixel_values) + x = self.pre_layrnorm(x) + #TODO: attention_mask? + x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output) + pooled_output = self.post_layernorm(x[:, 0, :]) + return x, i, pooled_output + +class CLIPVisionModelProjection(torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + self.vision_model = CLIPVision(config_dict, dtype, device, operations) + self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False) + + def forward(self, *args, **kwargs): + x = self.vision_model(*args, **kwargs) + out = self.visual_projection(x[2]) + return (x[0], x[1], out) diff --git a/MagicQuill/comfy/clip_vision.py b/MagicQuill/comfy/clip_vision.py new file mode 100644 index 0000000000000000000000000000000000000000..acc86be855667e2945d39d991783f4fcb707339d --- /dev/null +++ b/MagicQuill/comfy/clip_vision.py @@ -0,0 +1,117 @@ +from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace +import os +import torch +import json +import logging + +import comfy.ops +import comfy.model_patcher +import comfy.model_management +import comfy.utils +import comfy.clip_model + +class Output: + def __getitem__(self, key): + return getattr(self, key) + def __setitem__(self, key, item): + setattr(self, key, item) + +def clip_preprocess(image, size=224): + mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype) + std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype) + image = image.movedim(-1, 1) + if not (image.shape[2] == size and image.shape[3] == size): + scale = (size / min(image.shape[2], image.shape[3])) + image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True) + h = (image.shape[2] - size)//2 + w = (image.shape[3] - size)//2 + image = image[:,:,h:h+size,w:w+size] + image = torch.clip((255. * image), 0, 255).round() / 255.0 + return (image - mean.view([3,1,1])) / std.view([3,1,1]) + +class ClipVisionModel(): + def __init__(self, json_config): + with open(json_config) as f: + config = json.load(f) + + self.load_device = comfy.model_management.text_encoder_device() + offload_device = comfy.model_management.text_encoder_offload_device() + self.dtype = comfy.model_management.text_encoder_dtype(self.load_device) + self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast) + self.model.eval() + + self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) + + def load_sd(self, sd): + return self.model.load_state_dict(sd, strict=False) + + def get_sd(self): + return self.model.state_dict() + + def encode_image(self, image): + comfy.model_management.load_model_gpu(self.patcher) + pixel_values = clip_preprocess(image.to(self.load_device)).float() + out = self.model(pixel_values=pixel_values, intermediate_output=-2) + + outputs = Output() + outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device()) + outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device()) + outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device()) + return outputs + +def convert_to_transformers(sd, prefix): + sd_k = sd.keys() + if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k: + keys_to_replace = { + "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding", + "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight", + "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight", + "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias", + "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight", + "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias", + "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight", + } + + for x in keys_to_replace: + if x in sd_k: + sd[keys_to_replace[x]] = sd.pop(x) + + if "{}proj".format(prefix) in sd_k: + sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1) + + sd = transformers_convert(sd, prefix, "vision_model.", 48) + else: + replace_prefix = {prefix: ""} + sd = state_dict_prefix_replace(sd, replace_prefix) + return sd + +def load_clipvision_from_sd(sd, prefix="", convert_keys=False): + if convert_keys: + sd = convert_to_transformers(sd, prefix) + if "vision_model.encoder.layers.47.layer_norm1.weight" in sd: + json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json") + elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd: + json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") + elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd: + json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") + else: + return None + + clip = ClipVisionModel(json_config) + m, u = clip.load_sd(sd) + if len(m) > 0: + logging.warning("missing clip vision: {}".format(m)) + u = set(u) + keys = list(sd.keys()) + for k in keys: + if k not in u: + t = sd.pop(k) + del t + return clip + +def load(ckpt_path): + sd = load_torch_file(ckpt_path) + if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd: + return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True) + else: + return load_clipvision_from_sd(sd) diff --git a/MagicQuill/comfy/clip_vision_config_g.json b/MagicQuill/comfy/clip_vision_config_g.json new file mode 100644 index 0000000000000000000000000000000000000000..708e7e21ac3513a719d6a49e88e756f5ef7e2c8d --- /dev/null +++ b/MagicQuill/comfy/clip_vision_config_g.json @@ -0,0 +1,18 @@ +{ + "attention_dropout": 0.0, + "dropout": 0.0, + "hidden_act": "gelu", + "hidden_size": 1664, + "image_size": 224, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 8192, + "layer_norm_eps": 1e-05, + "model_type": "clip_vision_model", + "num_attention_heads": 16, + "num_channels": 3, + "num_hidden_layers": 48, + "patch_size": 14, + "projection_dim": 1280, + "torch_dtype": "float32" +} diff --git a/MagicQuill/comfy/clip_vision_config_h.json b/MagicQuill/comfy/clip_vision_config_h.json new file mode 100644 index 0000000000000000000000000000000000000000..bb71be419a4be0ad5c8c157850de032a65593cb9 --- /dev/null +++ b/MagicQuill/comfy/clip_vision_config_h.json @@ -0,0 +1,18 @@ +{ + "attention_dropout": 0.0, + "dropout": 0.0, + "hidden_act": "gelu", + "hidden_size": 1280, + "image_size": 224, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 5120, + "layer_norm_eps": 1e-05, + "model_type": "clip_vision_model", + "num_attention_heads": 16, + "num_channels": 3, + "num_hidden_layers": 32, + "patch_size": 14, + "projection_dim": 1024, + "torch_dtype": "float32" +} diff --git a/MagicQuill/comfy/clip_vision_config_vitl.json b/MagicQuill/comfy/clip_vision_config_vitl.json new file mode 100644 index 0000000000000000000000000000000000000000..c59b8ed5a4c1f41fbcc9e6811d2c7dfe44273de7 --- /dev/null +++ b/MagicQuill/comfy/clip_vision_config_vitl.json @@ -0,0 +1,18 @@ +{ + "attention_dropout": 0.0, + "dropout": 0.0, + "hidden_act": "quick_gelu", + "hidden_size": 1024, + "image_size": 224, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 4096, + "layer_norm_eps": 1e-05, + "model_type": "clip_vision_model", + "num_attention_heads": 16, + "num_channels": 3, + "num_hidden_layers": 24, + "patch_size": 14, + "projection_dim": 768, + "torch_dtype": "float32" +} diff --git a/MagicQuill/comfy/conds.py b/MagicQuill/comfy/conds.py new file mode 100644 index 0000000000000000000000000000000000000000..660690af8425209e6cc8d8b3e17185065e269a47 --- /dev/null +++ b/MagicQuill/comfy/conds.py @@ -0,0 +1,83 @@ +import torch +import math +import comfy.utils + + +def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9) + return abs(a*b) // math.gcd(a, b) + +class CONDRegular: + def __init__(self, cond): + self.cond = cond + + def _copy_with(self, cond): + return self.__class__(cond) + + def process_cond(self, batch_size, device, **kwargs): + return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device)) + + def can_concat(self, other): + if self.cond.shape != other.cond.shape: + return False + return True + + def concat(self, others): + conds = [self.cond] + for x in others: + conds.append(x.cond) + return torch.cat(conds) + +class CONDNoiseShape(CONDRegular): + def process_cond(self, batch_size, device, area, **kwargs): + data = self.cond + if area is not None: + dims = len(area) // 2 + for i in range(dims): + data = data.narrow(i + 2, area[i + dims], area[i]) + + return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device)) + + +class CONDCrossAttn(CONDRegular): + def can_concat(self, other): + s1 = self.cond.shape + s2 = other.cond.shape + if s1 != s2: + if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen + return False + + mult_min = lcm(s1[1], s2[1]) + diff = mult_min // min(s1[1], s2[1]) + if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much + return False + return True + + def concat(self, others): + conds = [self.cond] + crossattn_max_len = self.cond.shape[1] + for x in others: + c = x.cond + crossattn_max_len = lcm(crossattn_max_len, c.shape[1]) + conds.append(c) + + out = [] + for c in conds: + if c.shape[1] < crossattn_max_len: + c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result + out.append(c) + return torch.cat(out) + +class CONDConstant(CONDRegular): + def __init__(self, cond): + self.cond = cond + + def process_cond(self, batch_size, device, **kwargs): + return self._copy_with(self.cond) + + def can_concat(self, other): + if self.cond != other.cond: + return False + return True + + def concat(self, others): + return self.cond diff --git a/MagicQuill/comfy/controlnet.py b/MagicQuill/comfy/controlnet.py new file mode 100644 index 0000000000000000000000000000000000000000..8cf4a61a683392e51665a1d41906b3ab22885506 --- /dev/null +++ b/MagicQuill/comfy/controlnet.py @@ -0,0 +1,554 @@ +import torch +import math +import os +import logging +import comfy.utils +import comfy.model_management +import comfy.model_detection +import comfy.model_patcher +import comfy.ops + +import comfy.cldm.cldm +import comfy.t2i_adapter.adapter +import comfy.ldm.cascade.controlnet + + +def broadcast_image_to(tensor, target_batch_size, batched_number): + current_batch_size = tensor.shape[0] + #print(current_batch_size, target_batch_size) + if current_batch_size == 1: + return tensor + + per_batch = target_batch_size // batched_number + tensor = tensor[:per_batch] + + if per_batch > tensor.shape[0]: + tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0) + + current_batch_size = tensor.shape[0] + if current_batch_size == target_batch_size: + return tensor + else: + return torch.cat([tensor] * batched_number, dim=0) + +class ControlBase: + def __init__(self, device=None): + self.cond_hint_original = None + self.cond_hint = None + self.strength = 1.0 + self.timestep_percent_range = (0.0, 1.0) + self.global_average_pooling = False + self.timestep_range = None + self.compression_ratio = 8 + self.upscale_algorithm = 'nearest-exact' + + if device is None: + device = comfy.model_management.get_torch_device() + self.device = device + self.previous_controlnet = None + + def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)): + self.cond_hint_original = cond_hint + self.strength = strength + self.timestep_percent_range = timestep_percent_range + return self + + def pre_run(self, model, percent_to_timestep_function): + self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1])) + if self.previous_controlnet is not None: + self.previous_controlnet.pre_run(model, percent_to_timestep_function) + + def set_previous_controlnet(self, controlnet): + self.previous_controlnet = controlnet + return self + + def cleanup(self): + if self.previous_controlnet is not None: + self.previous_controlnet.cleanup() + if self.cond_hint is not None: + del self.cond_hint + self.cond_hint = None + self.timestep_range = None + + def get_models(self): + out = [] + if self.previous_controlnet is not None: + out += self.previous_controlnet.get_models() + return out + + def copy_to(self, c): + c.cond_hint_original = self.cond_hint_original + c.strength = self.strength + c.timestep_percent_range = self.timestep_percent_range + c.global_average_pooling = self.global_average_pooling + c.compression_ratio = self.compression_ratio + c.upscale_algorithm = self.upscale_algorithm + + def inference_memory_requirements(self, dtype): + if self.previous_controlnet is not None: + return self.previous_controlnet.inference_memory_requirements(dtype) + return 0 + + def control_merge(self, control_input, control_output, control_prev, output_dtype): + out = {'input':[], 'middle':[], 'output': []} + + if control_input is not None: + for i in range(len(control_input)): + key = 'input' + x = control_input[i] + if x is not None: + x *= self.strength + if x.dtype != output_dtype: + x = x.to(output_dtype) + out[key].insert(0, x) + + if control_output is not None: + for i in range(len(control_output)): + if i == (len(control_output) - 1): + key = 'middle' + index = 0 + else: + key = 'output' + index = i + x = control_output[i] + if x is not None: + if self.global_average_pooling: + x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3]) + + x *= self.strength + if x.dtype != output_dtype: + x = x.to(output_dtype) + + out[key].append(x) + if control_prev is not None: + for x in ['input', 'middle', 'output']: + o = out[x] + for i in range(len(control_prev[x])): + prev_val = control_prev[x][i] + if i >= len(o): + o.append(prev_val) + elif prev_val is not None: + if o[i] is None: + o[i] = prev_val + else: + if o[i].shape[0] < prev_val.shape[0]: + o[i] = prev_val + o[i] + else: + o[i] += prev_val + return out + +class ControlNet(ControlBase): + def __init__(self, control_model=None, global_average_pooling=False, device=None, load_device=None, manual_cast_dtype=None): + super().__init__(device) + self.control_model = control_model + self.load_device = load_device + if control_model is not None: + self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device()) + + self.global_average_pooling = global_average_pooling + self.model_sampling_current = None + self.manual_cast_dtype = manual_cast_dtype + + def get_control(self, x_noisy, t, cond, batched_number): + control_prev = None + if self.previous_controlnet is not None: + control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) + + if self.timestep_range is not None: + if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: + if control_prev is not None: + return control_prev + else: + return None + + dtype = self.control_model.dtype + if self.manual_cast_dtype is not None: + dtype = self.manual_cast_dtype + + output_dtype = x_noisy.dtype + if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]: + if self.cond_hint is not None: + del self.cond_hint + self.cond_hint = None + self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio, self.upscale_algorithm, "center").to(dtype).to(self.device) + if x_noisy.shape[0] != self.cond_hint.shape[0]: + self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) + + context = cond.get('crossattn_controlnet', cond['c_crossattn']) + y = cond.get('y', None) + if y is not None: + y = y.to(dtype) + timestep = self.model_sampling_current.timestep(t) + x_noisy = self.model_sampling_current.calculate_input(t, x_noisy) + + control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y) + return self.control_merge(None, control, control_prev, output_dtype) + + def copy(self): + c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype) + c.control_model = self.control_model + c.control_model_wrapped = self.control_model_wrapped + self.copy_to(c) + return c + + def get_models(self): + out = super().get_models() + out.append(self.control_model_wrapped) + return out + + def pre_run(self, model, percent_to_timestep_function): + super().pre_run(model, percent_to_timestep_function) + self.model_sampling_current = model.model_sampling + + def cleanup(self): + self.model_sampling_current = None + super().cleanup() + +class ControlLoraOps: + class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp): + def __init__(self, in_features: int, out_features: int, bias: bool = True, + device=None, dtype=None) -> None: + factory_kwargs = {'device': device, 'dtype': dtype} + super().__init__() + self.in_features = in_features + self.out_features = out_features + self.weight = None + self.up = None + self.down = None + self.bias = None + + def forward(self, input): + weight, bias = comfy.ops.cast_bias_weight(self, input) + if self.up is not None: + return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias) + else: + return torch.nn.functional.linear(input, weight, bias) + + class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp): + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + padding=0, + dilation=1, + groups=1, + bias=True, + padding_mode='zeros', + device=None, + dtype=None + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.stride = stride + self.padding = padding + self.dilation = dilation + self.transposed = False + self.output_padding = 0 + self.groups = groups + self.padding_mode = padding_mode + + self.weight = None + self.bias = None + self.up = None + self.down = None + + + def forward(self, input): + weight, bias = comfy.ops.cast_bias_weight(self, input) + if self.up is not None: + return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups) + else: + return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups) + + +class ControlLora(ControlNet): + def __init__(self, control_weights, global_average_pooling=False, device=None): + ControlBase.__init__(self, device) + self.control_weights = control_weights + self.global_average_pooling = global_average_pooling + + def pre_run(self, model, percent_to_timestep_function): + super().pre_run(model, percent_to_timestep_function) + controlnet_config = model.model_config.unet_config.copy() + controlnet_config.pop("out_channels") + controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1] + self.manual_cast_dtype = model.manual_cast_dtype + dtype = model.get_dtype() + if self.manual_cast_dtype is None: + class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init): + pass + else: + class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast): + pass + dtype = self.manual_cast_dtype + + controlnet_config["operations"] = control_lora_ops + controlnet_config["dtype"] = dtype + self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config) + self.control_model.to(comfy.model_management.get_torch_device()) + diffusion_model = model.diffusion_model + sd = diffusion_model.state_dict() + cm = self.control_model.state_dict() + + for k in sd: + weight = sd[k] + try: + comfy.utils.set_attr_param(self.control_model, k, weight) + except: + pass + + for k in self.control_weights: + if k not in {"lora_controlnet"}: + comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device())) + + def copy(self): + c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling) + self.copy_to(c) + return c + + def cleanup(self): + del self.control_model + self.control_model = None + super().cleanup() + + def get_models(self): + out = ControlBase.get_models(self) + return out + + def inference_memory_requirements(self, dtype): + return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype) + +def load_controlnet(ckpt_path, model=None): + controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) + if "lora_controlnet" in controlnet_data: + return ControlLora(controlnet_data) + + controlnet_config = None + supported_inference_dtypes = None + + if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format + controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data) + diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config) + diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" + diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" + + count = 0 + loop = True + while loop: + suffix = [".weight", ".bias"] + for s in suffix: + k_in = "controlnet_down_blocks.{}{}".format(count, s) + k_out = "zero_convs.{}.0{}".format(count, s) + if k_in not in controlnet_data: + loop = False + break + diffusers_keys[k_in] = k_out + count += 1 + + count = 0 + loop = True + while loop: + suffix = [".weight", ".bias"] + for s in suffix: + if count == 0: + k_in = "controlnet_cond_embedding.conv_in{}".format(s) + else: + k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s) + k_out = "input_hint_block.{}{}".format(count * 2, s) + if k_in not in controlnet_data: + k_in = "controlnet_cond_embedding.conv_out{}".format(s) + loop = False + diffusers_keys[k_in] = k_out + count += 1 + + new_sd = {} + for k in diffusers_keys: + if k in controlnet_data: + new_sd[diffusers_keys[k]] = controlnet_data.pop(k) + + leftover_keys = controlnet_data.keys() + if len(leftover_keys) > 0: + logging.warning("leftover keys: {}".format(leftover_keys)) + controlnet_data = new_sd + + pth_key = 'control_model.zero_convs.0.0.weight' + pth = False + key = 'zero_convs.0.0.weight' + if pth_key in controlnet_data: + pth = True + key = pth_key + prefix = "control_model." + elif key in controlnet_data: + prefix = "" + else: + net = load_t2i_adapter(controlnet_data) + if net is None: + logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path)) + return net + + if controlnet_config is None: + model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True) + supported_inference_dtypes = model_config.supported_inference_dtypes + controlnet_config = model_config.unet_config + + load_device = comfy.model_management.get_torch_device() + if supported_inference_dtypes is None: + unet_dtype = comfy.model_management.unet_dtype() + else: + unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes) + + manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device) + if manual_cast_dtype is not None: + controlnet_config["operations"] = comfy.ops.manual_cast + controlnet_config["dtype"] = unet_dtype + controlnet_config.pop("out_channels") + controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] + control_model = comfy.cldm.cldm.ControlNet(**controlnet_config) + + if pth: + if 'difference' in controlnet_data: + if model is not None: + comfy.model_management.load_models_gpu([model]) + model_sd = model.model_state_dict() + for x in controlnet_data: + c_m = "control_model." + if x.startswith(c_m): + sd_key = "diffusion_model.{}".format(x[len(c_m):]) + if sd_key in model_sd: + cd = controlnet_data[x] + cd += model_sd[sd_key].type(cd.dtype).to(cd.device) + else: + logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.") + + class WeightsLoader(torch.nn.Module): + pass + w = WeightsLoader() + w.control_model = control_model + missing, unexpected = w.load_state_dict(controlnet_data, strict=False) + else: + missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) + + if len(missing) > 0: + logging.warning("missing controlnet keys: {}".format(missing)) + + if len(unexpected) > 0: + logging.debug("unexpected controlnet keys: {}".format(unexpected)) + + global_average_pooling = False + filename = os.path.splitext(ckpt_path)[0] + if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling + global_average_pooling = True + + control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) + return control + +class T2IAdapter(ControlBase): + def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None): + super().__init__(device) + self.t2i_model = t2i_model + self.channels_in = channels_in + self.control_input = None + self.compression_ratio = compression_ratio + self.upscale_algorithm = upscale_algorithm + + def scale_image_to(self, width, height): + unshuffle_amount = self.t2i_model.unshuffle_amount + width = math.ceil(width / unshuffle_amount) * unshuffle_amount + height = math.ceil(height / unshuffle_amount) * unshuffle_amount + return width, height + + def get_control(self, x_noisy, t, cond, batched_number): + control_prev = None + if self.previous_controlnet is not None: + control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) + + if self.timestep_range is not None: + if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: + if control_prev is not None: + return control_prev + else: + return None + + if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]: + if self.cond_hint is not None: + del self.cond_hint + self.control_input = None + self.cond_hint = None + width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio) + self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device) + if self.channels_in == 1 and self.cond_hint.shape[1] > 1: + self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True) + if x_noisy.shape[0] != self.cond_hint.shape[0]: + self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) + if self.control_input is None: + self.t2i_model.to(x_noisy.dtype) + self.t2i_model.to(self.device) + self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype)) + self.t2i_model.cpu() + + control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input)) + mid = None + if self.t2i_model.xl == True: + mid = control_input[-1:] + control_input = control_input[:-1] + return self.control_merge(control_input, mid, control_prev, x_noisy.dtype) + + def copy(self): + c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm) + self.copy_to(c) + return c + +def load_t2i_adapter(t2i_data): + compression_ratio = 8 + upscale_algorithm = 'nearest-exact' + + if 'adapter' in t2i_data: + t2i_data = t2i_data['adapter'] + if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format + prefix_replace = {} + for i in range(4): + for j in range(2): + prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j) + prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2) + prefix_replace["adapter."] = "" + t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace) + keys = t2i_data.keys() + + if "body.0.in_conv.weight" in keys: + cin = t2i_data['body.0.in_conv.weight'].shape[1] + model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4) + elif 'conv_in.weight' in keys: + cin = t2i_data['conv_in.weight'].shape[1] + channel = t2i_data['conv_in.weight'].shape[0] + ksize = t2i_data['body.0.block2.weight'].shape[2] + use_conv = False + down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys)) + if len(down_opts) > 0: + use_conv = True + xl = False + if cin == 256 or cin == 768: + xl = True + model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl) + elif "backbone.0.0.weight" in keys: + model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63]) + compression_ratio = 32 + upscale_algorithm = 'bilinear' + elif "backbone.10.blocks.0.weight" in keys: + model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63]) + compression_ratio = 1 + upscale_algorithm = 'nearest-exact' + else: + return None + + missing, unexpected = model_ad.load_state_dict(t2i_data) + if len(missing) > 0: + logging.warning("t2i missing {}".format(missing)) + + if len(unexpected) > 0: + logging.debug("t2i unexpected {}".format(unexpected)) + + return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm) diff --git a/MagicQuill/comfy/diffusers_convert.py b/MagicQuill/comfy/diffusers_convert.py new file mode 100644 index 0000000000000000000000000000000000000000..ed2a45fea586284c7b881a2a7ab46983cd4baafb --- /dev/null +++ b/MagicQuill/comfy/diffusers_convert.py @@ -0,0 +1,281 @@ +import re +import torch +import logging + +# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py + +# =================# +# UNet Conversion # +# =================# + +unet_conversion_map = [ + # (stable-diffusion, HF Diffusers) + ("time_embed.0.weight", "time_embedding.linear_1.weight"), + ("time_embed.0.bias", "time_embedding.linear_1.bias"), + ("time_embed.2.weight", "time_embedding.linear_2.weight"), + ("time_embed.2.bias", "time_embedding.linear_2.bias"), + ("input_blocks.0.0.weight", "conv_in.weight"), + ("input_blocks.0.0.bias", "conv_in.bias"), + ("out.0.weight", "conv_norm_out.weight"), + ("out.0.bias", "conv_norm_out.bias"), + ("out.2.weight", "conv_out.weight"), + ("out.2.bias", "conv_out.bias"), +] + +unet_conversion_map_resnet = [ + # (stable-diffusion, HF Diffusers) + ("in_layers.0", "norm1"), + ("in_layers.2", "conv1"), + ("out_layers.0", "norm2"), + ("out_layers.3", "conv2"), + ("emb_layers.1", "time_emb_proj"), + ("skip_connection", "conv_shortcut"), +] + +unet_conversion_map_layer = [] +# hardcoded number of downblocks and resnets/attentions... +# would need smarter logic for other networks. +for i in range(4): + # loop over downblocks/upblocks + + for j in range(2): + # loop over resnets/attentions for downblocks + hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." + sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0." + unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) + + if i < 3: + # no attention layers in down_blocks.3 + hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." + sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1." + unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) + + for j in range(3): + # loop over resnets/attentions for upblocks + hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." + sd_up_res_prefix = f"output_blocks.{3 * i + j}.0." + unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) + + if i > 0: + # no attention layers in up_blocks.0 + hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." + sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1." + unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) + + if i < 3: + # no downsample in down_blocks.3 + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." + sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op." + unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) + + # no upsample in up_blocks.3 + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." + sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}." + unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) + +hf_mid_atn_prefix = "mid_block.attentions.0." +sd_mid_atn_prefix = "middle_block.1." +unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) + +for j in range(2): + hf_mid_res_prefix = f"mid_block.resnets.{j}." + sd_mid_res_prefix = f"middle_block.{2 * j}." + unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) + + +def convert_unet_state_dict(unet_state_dict): + # buyer beware: this is a *brittle* function, + # and correct output requires that all of these pieces interact in + # the exact order in which I have arranged them. + mapping = {k: k for k in unet_state_dict.keys()} + for sd_name, hf_name in unet_conversion_map: + mapping[hf_name] = sd_name + for k, v in mapping.items(): + if "resnets" in k: + for sd_part, hf_part in unet_conversion_map_resnet: + v = v.replace(hf_part, sd_part) + mapping[k] = v + for k, v in mapping.items(): + for sd_part, hf_part in unet_conversion_map_layer: + v = v.replace(hf_part, sd_part) + mapping[k] = v + new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} + return new_state_dict + + +# ================# +# VAE Conversion # +# ================# + +vae_conversion_map = [ + # (stable-diffusion, HF Diffusers) + ("nin_shortcut", "conv_shortcut"), + ("norm_out", "conv_norm_out"), + ("mid.attn_1.", "mid_block.attentions.0."), +] + +for i in range(4): + # down_blocks have two resnets + for j in range(2): + hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}." + sd_down_prefix = f"encoder.down.{i}.block.{j}." + vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) + + if i < 3: + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0." + sd_downsample_prefix = f"down.{i}.downsample." + vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) + + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." + sd_upsample_prefix = f"up.{3 - i}.upsample." + vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) + + # up_blocks have three resnets + # also, up blocks in hf are numbered in reverse from sd + for j in range(3): + hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}." + sd_up_prefix = f"decoder.up.{3 - i}.block.{j}." + vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) + +# this part accounts for mid blocks in both the encoder and the decoder +for i in range(2): + hf_mid_res_prefix = f"mid_block.resnets.{i}." + sd_mid_res_prefix = f"mid.block_{i + 1}." + vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) + +vae_conversion_map_attn = [ + # (stable-diffusion, HF Diffusers) + ("norm.", "group_norm."), + ("q.", "query."), + ("k.", "key."), + ("v.", "value."), + ("q.", "to_q."), + ("k.", "to_k."), + ("v.", "to_v."), + ("proj_out.", "to_out.0."), + ("proj_out.", "proj_attn."), +] + + +def reshape_weight_for_sd(w): + # convert HF linear weights to SD conv2d weights + return w.reshape(*w.shape, 1, 1) + + +def convert_vae_state_dict(vae_state_dict): + mapping = {k: k for k in vae_state_dict.keys()} + for k, v in mapping.items(): + for sd_part, hf_part in vae_conversion_map: + v = v.replace(hf_part, sd_part) + mapping[k] = v + for k, v in mapping.items(): + if "attentions" in k: + for sd_part, hf_part in vae_conversion_map_attn: + v = v.replace(hf_part, sd_part) + mapping[k] = v + new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} + weights_to_convert = ["q", "k", "v", "proj_out"] + for k, v in new_state_dict.items(): + for weight_name in weights_to_convert: + if f"mid.attn_1.{weight_name}.weight" in k: + logging.debug(f"Reshaping {k} for SD format") + new_state_dict[k] = reshape_weight_for_sd(v) + return new_state_dict + + +# =========================# +# Text Encoder Conversion # +# =========================# + + +textenc_conversion_lst = [ + # (stable-diffusion, HF Diffusers) + ("resblocks.", "text_model.encoder.layers."), + ("ln_1", "layer_norm1"), + ("ln_2", "layer_norm2"), + (".c_fc.", ".fc1."), + (".c_proj.", ".fc2."), + (".attn", ".self_attn"), + ("ln_final.", "transformer.text_model.final_layer_norm."), + ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), + ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), +] +protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} +textenc_pattern = re.compile("|".join(protected.keys())) + +# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp +code2idx = {"q": 0, "k": 1, "v": 2} + +# This function exists because at the time of writing torch.cat can't do fp8 with cuda +def cat_tensors(tensors): + x = 0 + for t in tensors: + x += t.shape[0] + + shape = [x] + list(tensors[0].shape)[1:] + out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype) + + x = 0 + for t in tensors: + out[x:x + t.shape[0]] = t + x += t.shape[0] + + return out + +def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""): + new_state_dict = {} + capture_qkv_weight = {} + capture_qkv_bias = {} + for k, v in text_enc_dict.items(): + if not k.startswith(prefix): + continue + if ( + k.endswith(".self_attn.q_proj.weight") + or k.endswith(".self_attn.k_proj.weight") + or k.endswith(".self_attn.v_proj.weight") + ): + k_pre = k[: -len(".q_proj.weight")] + k_code = k[-len("q_proj.weight")] + if k_pre not in capture_qkv_weight: + capture_qkv_weight[k_pre] = [None, None, None] + capture_qkv_weight[k_pre][code2idx[k_code]] = v + continue + + if ( + k.endswith(".self_attn.q_proj.bias") + or k.endswith(".self_attn.k_proj.bias") + or k.endswith(".self_attn.v_proj.bias") + ): + k_pre = k[: -len(".q_proj.bias")] + k_code = k[-len("q_proj.bias")] + if k_pre not in capture_qkv_bias: + capture_qkv_bias[k_pre] = [None, None, None] + capture_qkv_bias[k_pre][code2idx[k_code]] = v + continue + + text_proj = "transformer.text_projection.weight" + if k.endswith(text_proj): + new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous() + else: + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k) + new_state_dict[relabelled_key] = v + + for k_pre, tensors in capture_qkv_weight.items(): + if None in tensors: + raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) + new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors) + + for k_pre, tensors in capture_qkv_bias.items(): + if None in tensors: + raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) + new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors) + + return new_state_dict + + +def convert_text_enc_state_dict(text_enc_dict): + return text_enc_dict + + diff --git a/MagicQuill/comfy/diffusers_load.py b/MagicQuill/comfy/diffusers_load.py new file mode 100644 index 0000000000000000000000000000000000000000..98b888a19399d5ea847d90e443737c89c9787cce --- /dev/null +++ b/MagicQuill/comfy/diffusers_load.py @@ -0,0 +1,36 @@ +import os + +import comfy.sd + +def first_file(path, filenames): + for f in filenames: + p = os.path.join(path, f) + if os.path.exists(p): + return p + return None + +def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None): + diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"] + unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names) + vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names) + + text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"] + text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names) + text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names) + + text_encoder_paths = [text_encoder1_path] + if text_encoder2_path is not None: + text_encoder_paths.append(text_encoder2_path) + + unet = comfy.sd.load_unet(unet_path) + + clip = None + if output_clip: + clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory) + + vae = None + if output_vae: + sd = comfy.utils.load_torch_file(vae_path) + vae = comfy.sd.VAE(sd=sd) + + return (unet, clip, vae) diff --git a/MagicQuill/comfy/extra_samplers/__pycache__/uni_pc.cpython-310.pyc b/MagicQuill/comfy/extra_samplers/__pycache__/uni_pc.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aa06b36d34bc3c37015864c481aa43477d2f19ae Binary files /dev/null and b/MagicQuill/comfy/extra_samplers/__pycache__/uni_pc.cpython-310.pyc differ diff --git a/MagicQuill/comfy/extra_samplers/uni_pc.py b/MagicQuill/comfy/extra_samplers/uni_pc.py new file mode 100644 index 0000000000000000000000000000000000000000..a30d1d03f2e1001f462ce0fa2422a9a16ed279d8 --- /dev/null +++ b/MagicQuill/comfy/extra_samplers/uni_pc.py @@ -0,0 +1,875 @@ +#code taken from: https://github.com/wl-zhao/UniPC and modified + +import torch +import torch.nn.functional as F +import math + +from tqdm.auto import trange, tqdm + + +class NoiseScheduleVP: + def __init__( + self, + schedule='discrete', + betas=None, + alphas_cumprod=None, + continuous_beta_0=0.1, + continuous_beta_1=20., + ): + """Create a wrapper class for the forward SDE (VP type). + + *** + Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. + We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. + *** + + The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). + We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). + Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: + + log_alpha_t = self.marginal_log_mean_coeff(t) + sigma_t = self.marginal_std(t) + lambda_t = self.marginal_lambda(t) + + Moreover, as lambda(t) is an invertible function, we also support its inverse function: + + t = self.inverse_lambda(lambda_t) + + =============================================================== + + We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). + + 1. For discrete-time DPMs: + + For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: + t_i = (i + 1) / N + e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. + We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. + + Args: + betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) + alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) + + Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. + + **Important**: Please pay special attention for the args for `alphas_cumprod`: + The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that + q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). + Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have + alpha_{t_n} = \sqrt{\hat{alpha_n}}, + and + log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). + + + 2. For continuous-time DPMs: + + We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise + schedule are the default settings in DDPM and improved-DDPM: + + Args: + beta_min: A `float` number. The smallest beta for the linear schedule. + beta_max: A `float` number. The largest beta for the linear schedule. + cosine_s: A `float` number. The hyperparameter in the cosine schedule. + cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. + T: A `float` number. The ending time of the forward process. + + =============================================================== + + Args: + schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, + 'linear' or 'cosine' for continuous-time DPMs. + Returns: + A wrapper object of the forward SDE (VP type). + + =============================================================== + + Example: + + # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): + >>> ns = NoiseScheduleVP('discrete', betas=betas) + + # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): + >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) + + # For continuous-time DPMs (VPSDE), linear schedule: + >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) + + """ + + if schedule not in ['discrete', 'linear', 'cosine']: + raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule)) + + self.schedule = schedule + if schedule == 'discrete': + if betas is not None: + log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) + else: + assert alphas_cumprod is not None + log_alphas = 0.5 * torch.log(alphas_cumprod) + self.total_N = len(log_alphas) + self.T = 1. + self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)) + self.log_alpha_array = log_alphas.reshape((1, -1,)) + else: + self.total_N = 1000 + self.beta_0 = continuous_beta_0 + self.beta_1 = continuous_beta_1 + self.cosine_s = 0.008 + self.cosine_beta_max = 999. + self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s + self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) + self.schedule = schedule + if schedule == 'cosine': + # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. + # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. + self.T = 0.9946 + else: + self.T = 1. + + def marginal_log_mean_coeff(self, t): + """ + Compute log(alpha_t) of a given continuous-time label t in [0, T]. + """ + if self.schedule == 'discrete': + return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1)) + elif self.schedule == 'linear': + return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 + elif self.schedule == 'cosine': + log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) + log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 + return log_alpha_t + + def marginal_alpha(self, t): + """ + Compute alpha_t of a given continuous-time label t in [0, T]. + """ + return torch.exp(self.marginal_log_mean_coeff(t)) + + def marginal_std(self, t): + """ + Compute sigma_t of a given continuous-time label t in [0, T]. + """ + return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) + + def marginal_lambda(self, t): + """ + Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. + """ + log_mean_coeff = self.marginal_log_mean_coeff(t) + log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) + return log_mean_coeff - log_std + + def inverse_lambda(self, lamb): + """ + Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. + """ + if self.schedule == 'linear': + tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) + Delta = self.beta_0**2 + tmp + return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) + elif self.schedule == 'discrete': + log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) + t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1])) + return t.reshape((-1,)) + else: + log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) + t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s + t = t_fn(log_alpha) + return t + + +def model_wrapper( + model, + noise_schedule, + model_type="noise", + model_kwargs={}, + guidance_type="uncond", + condition=None, + unconditional_condition=None, + guidance_scale=1., + classifier_fn=None, + classifier_kwargs={}, +): + """Create a wrapper function for the noise prediction model. + + DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to + firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. + + We support four types of the diffusion model by setting `model_type`: + + 1. "noise": noise prediction model. (Trained by predicting noise). + + 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). + + 3. "v": velocity prediction model. (Trained by predicting the velocity). + The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. + + [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." + arXiv preprint arXiv:2202.00512 (2022). + [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." + arXiv preprint arXiv:2210.02303 (2022). + + 4. "score": marginal score function. (Trained by denoising score matching). + Note that the score function and the noise prediction model follows a simple relationship: + ``` + noise(x_t, t) = -sigma_t * score(x_t, t) + ``` + + We support three types of guided sampling by DPMs by setting `guidance_type`: + 1. "uncond": unconditional sampling by DPMs. + The input `model` has the following format: + `` + model(x, t_input, **model_kwargs) -> noise | x_start | v | score + `` + + 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. + The input `model` has the following format: + `` + model(x, t_input, **model_kwargs) -> noise | x_start | v | score + `` + + The input `classifier_fn` has the following format: + `` + classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) + `` + + [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," + in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. + + 3. "classifier-free": classifier-free guidance sampling by conditional DPMs. + The input `model` has the following format: + `` + model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score + `` + And if cond == `unconditional_condition`, the model output is the unconditional DPM output. + + [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." + arXiv preprint arXiv:2207.12598 (2022). + + + The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) + or continuous-time labels (i.e. epsilon to T). + + We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: + `` + def model_fn(x, t_continuous) -> noise: + t_input = get_model_input_time(t_continuous) + return noise_pred(model, x, t_input, **model_kwargs) + `` + where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. + + =============================================================== + + Args: + model: A diffusion model with the corresponding format described above. + noise_schedule: A noise schedule object, such as NoiseScheduleVP. + model_type: A `str`. The parameterization type of the diffusion model. + "noise" or "x_start" or "v" or "score". + model_kwargs: A `dict`. A dict for the other inputs of the model function. + guidance_type: A `str`. The type of the guidance for sampling. + "uncond" or "classifier" or "classifier-free". + condition: A pytorch tensor. The condition for the guided sampling. + Only used for "classifier" or "classifier-free" guidance type. + unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. + Only used for "classifier-free" guidance type. + guidance_scale: A `float`. The scale for the guided sampling. + classifier_fn: A classifier function. Only used for the classifier guidance. + classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. + Returns: + A noise prediction model that accepts the noised data and the continuous time as the inputs. + """ + + def get_model_input_time(t_continuous): + """ + Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. + For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. + For continuous-time DPMs, we just use `t_continuous`. + """ + if noise_schedule.schedule == 'discrete': + return (t_continuous - 1. / noise_schedule.total_N) * 1000. + else: + return t_continuous + + def noise_pred_fn(x, t_continuous, cond=None): + if t_continuous.reshape((-1,)).shape[0] == 1: + t_continuous = t_continuous.expand((x.shape[0])) + t_input = get_model_input_time(t_continuous) + output = model(x, t_input, **model_kwargs) + if model_type == "noise": + return output + elif model_type == "x_start": + alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) + dims = x.dim() + return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) + elif model_type == "v": + alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) + dims = x.dim() + return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x + elif model_type == "score": + sigma_t = noise_schedule.marginal_std(t_continuous) + dims = x.dim() + return -expand_dims(sigma_t, dims) * output + + def cond_grad_fn(x, t_input): + """ + Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). + """ + with torch.enable_grad(): + x_in = x.detach().requires_grad_(True) + log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) + return torch.autograd.grad(log_prob.sum(), x_in)[0] + + def model_fn(x, t_continuous): + """ + The noise predicition model function that is used for DPM-Solver. + """ + if t_continuous.reshape((-1,)).shape[0] == 1: + t_continuous = t_continuous.expand((x.shape[0])) + if guidance_type == "uncond": + return noise_pred_fn(x, t_continuous) + elif guidance_type == "classifier": + assert classifier_fn is not None + t_input = get_model_input_time(t_continuous) + cond_grad = cond_grad_fn(x, t_input) + sigma_t = noise_schedule.marginal_std(t_continuous) + noise = noise_pred_fn(x, t_continuous) + return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad + elif guidance_type == "classifier-free": + if guidance_scale == 1. or unconditional_condition is None: + return noise_pred_fn(x, t_continuous, cond=condition) + else: + x_in = torch.cat([x] * 2) + t_in = torch.cat([t_continuous] * 2) + c_in = torch.cat([unconditional_condition, condition]) + noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) + return noise_uncond + guidance_scale * (noise - noise_uncond) + + assert model_type in ["noise", "x_start", "v"] + assert guidance_type in ["uncond", "classifier", "classifier-free"] + return model_fn + + +class UniPC: + def __init__( + self, + model_fn, + noise_schedule, + predict_x0=True, + thresholding=False, + max_val=1., + variant='bh1', + ): + """Construct a UniPC. + + We support both data_prediction and noise_prediction. + """ + self.model = model_fn + self.noise_schedule = noise_schedule + self.variant = variant + self.predict_x0 = predict_x0 + self.thresholding = thresholding + self.max_val = max_val + + def dynamic_thresholding_fn(self, x0, t=None): + """ + The dynamic thresholding method. + """ + dims = x0.dim() + p = self.dynamic_thresholding_ratio + s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) + s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims) + x0 = torch.clamp(x0, -s, s) / s + return x0 + + def noise_prediction_fn(self, x, t): + """ + Return the noise prediction model. + """ + return self.model(x, t) + + def data_prediction_fn(self, x, t): + """ + Return the data prediction model (with thresholding). + """ + noise = self.noise_prediction_fn(x, t) + dims = x.dim() + alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) + x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) + if self.thresholding: + p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. + s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) + s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) + x0 = torch.clamp(x0, -s, s) / s + return x0 + + def model_fn(self, x, t): + """ + Convert the model to the noise prediction model or the data prediction model. + """ + if self.predict_x0: + return self.data_prediction_fn(x, t) + else: + return self.noise_prediction_fn(x, t) + + def get_time_steps(self, skip_type, t_T, t_0, N, device): + """Compute the intermediate time steps for sampling. + """ + if skip_type == 'logSNR': + lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) + lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) + logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) + return self.noise_schedule.inverse_lambda(logSNR_steps) + elif skip_type == 'time_uniform': + return torch.linspace(t_T, t_0, N + 1).to(device) + elif skip_type == 'time_quadratic': + t_order = 2 + t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device) + return t + else: + raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) + + def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): + """ + Get the order of each step for sampling by the singlestep DPM-Solver. + """ + if order == 3: + K = steps // 3 + 1 + if steps % 3 == 0: + orders = [3,] * (K - 2) + [2, 1] + elif steps % 3 == 1: + orders = [3,] * (K - 1) + [1] + else: + orders = [3,] * (K - 1) + [2] + elif order == 2: + if steps % 2 == 0: + K = steps // 2 + orders = [2,] * K + else: + K = steps // 2 + 1 + orders = [2,] * (K - 1) + [1] + elif order == 1: + K = steps + orders = [1,] * steps + else: + raise ValueError("'order' must be '1' or '2' or '3'.") + if skip_type == 'logSNR': + # To reproduce the results in DPM-Solver paper + timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) + else: + timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)] + return timesteps_outer, orders + + def denoise_to_zero_fn(self, x, s): + """ + Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. + """ + return self.data_prediction_fn(x, s) + + def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs): + if len(t.shape) == 0: + t = t.view(-1) + if 'bh' in self.variant: + return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs) + else: + assert self.variant == 'vary_coeff' + return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs) + + def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True): + print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)') + ns = self.noise_schedule + assert order <= len(model_prev_list) + + # first compute rks + t_prev_0 = t_prev_list[-1] + lambda_prev_0 = ns.marginal_lambda(t_prev_0) + lambda_t = ns.marginal_lambda(t) + model_prev_0 = model_prev_list[-1] + sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) + log_alpha_t = ns.marginal_log_mean_coeff(t) + alpha_t = torch.exp(log_alpha_t) + + h = lambda_t - lambda_prev_0 + + rks = [] + D1s = [] + for i in range(1, order): + t_prev_i = t_prev_list[-(i + 1)] + model_prev_i = model_prev_list[-(i + 1)] + lambda_prev_i = ns.marginal_lambda(t_prev_i) + rk = (lambda_prev_i - lambda_prev_0) / h + rks.append(rk) + D1s.append((model_prev_i - model_prev_0) / rk) + + rks.append(1.) + rks = torch.tensor(rks, device=x.device) + + K = len(rks) + # build C matrix + C = [] + + col = torch.ones_like(rks) + for k in range(1, K + 1): + C.append(col) + col = col * rks / (k + 1) + C = torch.stack(C, dim=1) + + if len(D1s) > 0: + D1s = torch.stack(D1s, dim=1) # (B, K) + C_inv_p = torch.linalg.inv(C[:-1, :-1]) + A_p = C_inv_p + + if use_corrector: + print('using corrector') + C_inv = torch.linalg.inv(C) + A_c = C_inv + + hh = -h if self.predict_x0 else h + h_phi_1 = torch.expm1(hh) + h_phi_ks = [] + factorial_k = 1 + h_phi_k = h_phi_1 + for k in range(1, K + 2): + h_phi_ks.append(h_phi_k) + h_phi_k = h_phi_k / hh - 1 / factorial_k + factorial_k *= (k + 1) + + model_t = None + if self.predict_x0: + x_t_ = ( + sigma_t / sigma_prev_0 * x + - alpha_t * h_phi_1 * model_prev_0 + ) + # now predictor + x_t = x_t_ + if len(D1s) > 0: + # compute the residuals for predictor + for k in range(K - 1): + x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k]) + # now corrector + if use_corrector: + model_t = self.model_fn(x_t, t) + D1_t = (model_t - model_prev_0) + x_t = x_t_ + k = 0 + for k in range(K - 1): + x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1]) + x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1]) + else: + log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) + x_t_ = ( + (torch.exp(log_alpha_t - log_alpha_prev_0)) * x + - (sigma_t * h_phi_1) * model_prev_0 + ) + # now predictor + x_t = x_t_ + if len(D1s) > 0: + # compute the residuals for predictor + for k in range(K - 1): + x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k]) + # now corrector + if use_corrector: + model_t = self.model_fn(x_t, t) + D1_t = (model_t - model_prev_0) + x_t = x_t_ + k = 0 + for k in range(K - 1): + x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1]) + x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1]) + return x_t, model_t + + def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True): + # print(f'using unified predictor-corrector with order {order} (solver type: B(h))') + ns = self.noise_schedule + assert order <= len(model_prev_list) + dims = x.dim() + + # first compute rks + t_prev_0 = t_prev_list[-1] + lambda_prev_0 = ns.marginal_lambda(t_prev_0) + lambda_t = ns.marginal_lambda(t) + model_prev_0 = model_prev_list[-1] + sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) + log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) + alpha_t = torch.exp(log_alpha_t) + + h = lambda_t - lambda_prev_0 + + rks = [] + D1s = [] + for i in range(1, order): + t_prev_i = t_prev_list[-(i + 1)] + model_prev_i = model_prev_list[-(i + 1)] + lambda_prev_i = ns.marginal_lambda(t_prev_i) + rk = ((lambda_prev_i - lambda_prev_0) / h)[0] + rks.append(rk) + D1s.append((model_prev_i - model_prev_0) / rk) + + rks.append(1.) + rks = torch.tensor(rks, device=x.device) + + R = [] + b = [] + + hh = -h[0] if self.predict_x0 else h[0] + h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 + h_phi_k = h_phi_1 / hh - 1 + + factorial_i = 1 + + if self.variant == 'bh1': + B_h = hh + elif self.variant == 'bh2': + B_h = torch.expm1(hh) + else: + raise NotImplementedError() + + for i in range(1, order + 1): + R.append(torch.pow(rks, i - 1)) + b.append(h_phi_k * factorial_i / B_h) + factorial_i *= (i + 1) + h_phi_k = h_phi_k / hh - 1 / factorial_i + + R = torch.stack(R) + b = torch.tensor(b, device=x.device) + + # now predictor + use_predictor = len(D1s) > 0 and x_t is None + if len(D1s) > 0: + D1s = torch.stack(D1s, dim=1) # (B, K) + if x_t is None: + # for order 2, we use a simplified version + if order == 2: + rhos_p = torch.tensor([0.5], device=b.device) + else: + rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) + else: + D1s = None + + if use_corrector: + # print('using corrector') + # for order 1, we use a simplified version + if order == 1: + rhos_c = torch.tensor([0.5], device=b.device) + else: + rhos_c = torch.linalg.solve(R, b) + + model_t = None + if self.predict_x0: + x_t_ = ( + expand_dims(sigma_t / sigma_prev_0, dims) * x + - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0 + ) + + if x_t is None: + if use_predictor: + pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) + else: + pred_res = 0 + x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res + + if use_corrector: + model_t = self.model_fn(x_t, t) + if D1s is not None: + corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) + else: + corr_res = 0 + D1_t = (model_t - model_prev_0) + x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) + else: + x_t_ = ( + expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x + - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0 + ) + if x_t is None: + if use_predictor: + pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) + else: + pred_res = 0 + x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res + + if use_corrector: + model_t = self.model_fn(x_t, t) + if D1s is not None: + corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) + else: + corr_res = 0 + D1_t = (model_t - model_prev_0) + x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) + return x_t, model_t + + + def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform', + method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver', + atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False + ): + # t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end + # t_T = self.noise_schedule.T if t_start is None else t_start + device = x.device + steps = len(timesteps) - 1 + if method == 'multistep': + assert steps >= order + # timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) + assert timesteps.shape[0] - 1 == steps + # with torch.no_grad(): + for step_index in trange(steps, disable=disable_pbar): + if step_index == 0: + vec_t = timesteps[0].expand((x.shape[0])) + model_prev_list = [self.model_fn(x, vec_t)] + t_prev_list = [vec_t] + elif step_index < order: + init_order = step_index + # Init the first `order` values by lower order multistep DPM-Solver. + # for init_order in range(1, order): + vec_t = timesteps[init_order].expand(x.shape[0]) + x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True) + if model_x is None: + model_x = self.model_fn(x, vec_t) + model_prev_list.append(model_x) + t_prev_list.append(vec_t) + else: + extra_final_step = 0 + if step_index == (steps - 1): + extra_final_step = 1 + for step in range(step_index, step_index + 1 + extra_final_step): + vec_t = timesteps[step].expand(x.shape[0]) + if lower_order_final: + step_order = min(order, steps + 1 - step) + else: + step_order = order + # print('this step order:', step_order) + if step == steps: + # print('do not run corrector at the last step') + use_corrector = False + else: + use_corrector = True + x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector) + for i in range(order - 1): + t_prev_list[i] = t_prev_list[i + 1] + model_prev_list[i] = model_prev_list[i + 1] + t_prev_list[-1] = vec_t + # We do not need to evaluate the final model value. + if step < steps: + if model_x is None: + model_x = self.model_fn(x, vec_t) + model_prev_list[-1] = model_x + if callback is not None: + callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]}) + else: + raise NotImplementedError() + # if denoise_to_zero: + # x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0) + return x + + +############################################################# +# other utility functions +############################################################# + +def interpolate_fn(x, xp, yp): + """ + A piecewise linear function y = f(x), using xp and yp as keypoints. + We implement f(x) in a differentiable way (i.e. applicable for autograd). + The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) + + Args: + x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). + xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. + yp: PyTorch tensor with shape [C, K]. + Returns: + The function values f(x), with shape [N, C]. + """ + N, K = x.shape[0], xp.shape[1] + all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) + sorted_all_x, x_indices = torch.sort(all_x, dim=2) + x_idx = torch.argmin(x_indices, dim=2) + cand_start_idx = x_idx - 1 + start_idx = torch.where( + torch.eq(x_idx, 0), + torch.tensor(1, device=x.device), + torch.where( + torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, + ), + ) + end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) + start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) + end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) + start_idx2 = torch.where( + torch.eq(x_idx, 0), + torch.tensor(0, device=x.device), + torch.where( + torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, + ), + ) + y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) + start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) + end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) + cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) + return cand + + +def expand_dims(v, dims): + """ + Expand the tensor `v` to the dim `dims`. + + Args: + `v`: a PyTorch tensor with shape [N]. + `dim`: a `int`. + Returns: + a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. + """ + return v[(...,) + (None,)*(dims - 1)] + + +class SigmaConvert: + schedule = "" + def marginal_log_mean_coeff(self, sigma): + return 0.5 * torch.log(1 / ((sigma * sigma) + 1)) + + def marginal_alpha(self, t): + return torch.exp(self.marginal_log_mean_coeff(t)) + + def marginal_std(self, t): + return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) + + def marginal_lambda(self, t): + """ + Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. + """ + log_mean_coeff = self.marginal_log_mean_coeff(t) + log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) + return log_mean_coeff - log_std + +def predict_eps_sigma(model, input, sigma_in, **kwargs): + sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1)) + input = input * ((sigma ** 2 + 1.0) ** 0.5) + return (input - model(input, sigma_in, **kwargs)) / sigma + + +def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'): + timesteps = sigmas.clone() + if sigmas[-1] == 0: + timesteps = sigmas[:] + timesteps[-1] = 0.001 + else: + timesteps = sigmas.clone() + ns = SigmaConvert() + + noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0) + model_type = "noise" + + model_fn = model_wrapper( + lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs), + ns, + model_type=model_type, + guidance_type="uncond", + model_kwargs=extra_args, + ) + + order = min(3, len(timesteps) - 2) + uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant) + x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable) + x /= ns.marginal_alpha(timesteps[-1]) + return x + +def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False): + return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2') \ No newline at end of file diff --git a/MagicQuill/comfy/gligen.py b/MagicQuill/comfy/gligen.py new file mode 100644 index 0000000000000000000000000000000000000000..592522767e98bbe11b6e5e9411b1f734cbf92b9b --- /dev/null +++ b/MagicQuill/comfy/gligen.py @@ -0,0 +1,343 @@ +import torch +from torch import nn +from .ldm.modules.attention import CrossAttention +from inspect import isfunction +import comfy.ops +ops = comfy.ops.manual_cast + +def exists(val): + return val is not None + + +def uniq(arr): + return{el: True for el in arr}.keys() + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +# feedforward +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = ops.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * torch.nn.functional.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = nn.Sequential( + ops.Linear(dim, inner_dim), + nn.GELU() + ) if not glu else GEGLU(dim, inner_dim) + + self.net = nn.Sequential( + project_in, + nn.Dropout(dropout), + ops.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +class GatedCrossAttentionDense(nn.Module): + def __init__(self, query_dim, context_dim, n_heads, d_head): + super().__init__() + + self.attn = CrossAttention( + query_dim=query_dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head, + operations=ops) + self.ff = FeedForward(query_dim, glu=True) + + self.norm1 = ops.LayerNorm(query_dim) + self.norm2 = ops.LayerNorm(query_dim) + + self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) + self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) + + # this can be useful: we can externally change magnitude of tanh(alpha) + # for example, when it is set to 0, then the entire model is same as + # original one + self.scale = 1 + + def forward(self, x, objs): + + x = x + self.scale * \ + torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs) + x = x + self.scale * \ + torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) + + return x + + +class GatedSelfAttentionDense(nn.Module): + def __init__(self, query_dim, context_dim, n_heads, d_head): + super().__init__() + + # we need a linear projection since we need cat visual feature and obj + # feature + self.linear = ops.Linear(context_dim, query_dim) + + self.attn = CrossAttention( + query_dim=query_dim, + context_dim=query_dim, + heads=n_heads, + dim_head=d_head, + operations=ops) + self.ff = FeedForward(query_dim, glu=True) + + self.norm1 = ops.LayerNorm(query_dim) + self.norm2 = ops.LayerNorm(query_dim) + + self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) + self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) + + # this can be useful: we can externally change magnitude of tanh(alpha) + # for example, when it is set to 0, then the entire model is same as + # original one + self.scale = 1 + + def forward(self, x, objs): + + N_visual = x.shape[1] + objs = self.linear(objs) + + x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn( + self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :] + x = x + self.scale * \ + torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) + + return x + + +class GatedSelfAttentionDense2(nn.Module): + def __init__(self, query_dim, context_dim, n_heads, d_head): + super().__init__() + + # we need a linear projection since we need cat visual feature and obj + # feature + self.linear = ops.Linear(context_dim, query_dim) + + self.attn = CrossAttention( + query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops) + self.ff = FeedForward(query_dim, glu=True) + + self.norm1 = ops.LayerNorm(query_dim) + self.norm2 = ops.LayerNorm(query_dim) + + self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) + self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) + + # this can be useful: we can externally change magnitude of tanh(alpha) + # for example, when it is set to 0, then the entire model is same as + # original one + self.scale = 1 + + def forward(self, x, objs): + + B, N_visual, _ = x.shape + B, N_ground, _ = objs.shape + + objs = self.linear(objs) + + # sanity check + size_v = math.sqrt(N_visual) + size_g = math.sqrt(N_ground) + assert int(size_v) == size_v, "Visual tokens must be square rootable" + assert int(size_g) == size_g, "Grounding tokens must be square rootable" + size_v = int(size_v) + size_g = int(size_g) + + # select grounding token and resize it to visual token size as residual + out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[ + :, N_visual:, :] + out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g) + out = torch.nn.functional.interpolate( + out, (size_v, size_v), mode='bicubic') + residual = out.reshape(B, -1, N_visual).permute(0, 2, 1) + + # add residual to visual feature + x = x + self.scale * torch.tanh(self.alpha_attn) * residual + x = x + self.scale * \ + torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) + + return x + + +class FourierEmbedder(): + def __init__(self, num_freqs=64, temperature=100): + + self.num_freqs = num_freqs + self.temperature = temperature + self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs) + + @torch.no_grad() + def __call__(self, x, cat_dim=-1): + "x: arbitrary shape of tensor. dim: cat dim" + out = [] + for freq in self.freq_bands: + out.append(torch.sin(freq * x)) + out.append(torch.cos(freq * x)) + return torch.cat(out, cat_dim) + + +class PositionNet(nn.Module): + def __init__(self, in_dim, out_dim, fourier_freqs=8): + super().__init__() + self.in_dim = in_dim + self.out_dim = out_dim + + self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs) + self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy + + self.linears = nn.Sequential( + ops.Linear(self.in_dim + self.position_dim, 512), + nn.SiLU(), + ops.Linear(512, 512), + nn.SiLU(), + ops.Linear(512, out_dim), + ) + + self.null_positive_feature = torch.nn.Parameter( + torch.zeros([self.in_dim])) + self.null_position_feature = torch.nn.Parameter( + torch.zeros([self.position_dim])) + + def forward(self, boxes, masks, positive_embeddings): + B, N, _ = boxes.shape + masks = masks.unsqueeze(-1) + positive_embeddings = positive_embeddings + + # embedding position (it may includes padding as placeholder) + xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C + + # learnable null embedding + positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1) + xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1) + + # replace padding with learnable null embedding + positive_embeddings = positive_embeddings * \ + masks + (1 - masks) * positive_null + xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null + + objs = self.linears( + torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) + assert objs.shape == torch.Size([B, N, self.out_dim]) + return objs + + +class Gligen(nn.Module): + def __init__(self, modules, position_net, key_dim): + super().__init__() + self.module_list = nn.ModuleList(modules) + self.position_net = position_net + self.key_dim = key_dim + self.max_objs = 30 + self.current_device = torch.device("cpu") + + def _set_position(self, boxes, masks, positive_embeddings): + objs = self.position_net(boxes, masks, positive_embeddings) + def func(x, extra_options): + key = extra_options["transformer_index"] + module = self.module_list[key] + return module(x, objs.to(device=x.device, dtype=x.dtype)) + return func + + def set_position(self, latent_image_shape, position_params, device): + batch, c, h, w = latent_image_shape + masks = torch.zeros([self.max_objs], device="cpu") + boxes = [] + positive_embeddings = [] + for p in position_params: + x1 = (p[4]) / w + y1 = (p[3]) / h + x2 = (p[4] + p[2]) / w + y2 = (p[3] + p[1]) / h + masks[len(boxes)] = 1.0 + boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)] + positive_embeddings += [p[0]] + append_boxes = [] + append_conds = [] + if len(boxes) < self.max_objs: + append_boxes = [torch.zeros( + [self.max_objs - len(boxes), 4], device="cpu")] + append_conds = [torch.zeros( + [self.max_objs - len(boxes), self.key_dim], device="cpu")] + + box_out = torch.cat( + boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1) + masks = masks.unsqueeze(0).repeat(batch, 1) + conds = torch.cat(positive_embeddings + + append_conds).unsqueeze(0).repeat(batch, 1, 1) + return self._set_position( + box_out.to(device), + masks.to(device), + conds.to(device)) + + def set_empty(self, latent_image_shape, device): + batch, c, h, w = latent_image_shape + masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1) + box_out = torch.zeros([self.max_objs, 4], + device="cpu").repeat(batch, 1, 1) + conds = torch.zeros([self.max_objs, self.key_dim], + device="cpu").repeat(batch, 1, 1) + return self._set_position( + box_out.to(device), + masks.to(device), + conds.to(device)) + + +def load_gligen(sd): + sd_k = sd.keys() + output_list = [] + key_dim = 768 + for a in ["input_blocks", "middle_block", "output_blocks"]: + for b in range(20): + k_temp = filter(lambda k: "{}.{}.".format(a, b) + in k and ".fuser." in k, sd_k) + k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp) + + n_sd = {} + for k in k_temp: + n_sd[k[1]] = sd[k[0]] + if len(n_sd) > 0: + query_dim = n_sd["linear.weight"].shape[0] + key_dim = n_sd["linear.weight"].shape[1] + + if key_dim == 768: # SD1.x + n_heads = 8 + d_head = query_dim // n_heads + else: + d_head = 64 + n_heads = query_dim // d_head + + gated = GatedSelfAttentionDense( + query_dim, key_dim, n_heads, d_head) + gated.load_state_dict(n_sd, strict=False) + output_list.append(gated) + + if "position_net.null_positive_feature" in sd_k: + in_dim = sd["position_net.null_positive_feature"].shape[0] + out_dim = sd["position_net.linears.4.weight"].shape[0] + + class WeightsLoader(torch.nn.Module): + pass + w = WeightsLoader() + w.position_net = PositionNet(in_dim, out_dim) + w.load_state_dict(sd, strict=False) + + gligen = Gligen(output_list, w.position_net, key_dim) + return gligen diff --git a/MagicQuill/comfy/k_diffusion/__pycache__/sampling.cpython-310.pyc b/MagicQuill/comfy/k_diffusion/__pycache__/sampling.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d73f59b875871a8131a0b5a885cc7db4ac962567 Binary files /dev/null and b/MagicQuill/comfy/k_diffusion/__pycache__/sampling.cpython-310.pyc differ diff --git a/MagicQuill/comfy/k_diffusion/__pycache__/utils.cpython-310.pyc b/MagicQuill/comfy/k_diffusion/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..43a20158030f452a5e5ba9c92b00d33f7d3c4aa0 Binary files /dev/null and b/MagicQuill/comfy/k_diffusion/__pycache__/utils.cpython-310.pyc differ diff --git a/MagicQuill/comfy/k_diffusion/sampling.py b/MagicQuill/comfy/k_diffusion/sampling.py new file mode 100644 index 0000000000000000000000000000000000000000..5bb991e76a35d49157464731d993772b2cdfb013 --- /dev/null +++ b/MagicQuill/comfy/k_diffusion/sampling.py @@ -0,0 +1,843 @@ +import math + +from scipy import integrate +import torch +from torch import nn +import torchsde +from tqdm.auto import trange, tqdm + +from . import utils + + +def append_zero(x): + return torch.cat([x, x.new_zeros([1])]) + + +def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'): + """Constructs the noise schedule of Karras et al. (2022).""" + ramp = torch.linspace(0, 1, n, device=device) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return append_zero(sigmas).to(device) + + +def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'): + """Constructs an exponential noise schedule.""" + sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp() + return append_zero(sigmas) + + +def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'): + """Constructs an polynomial in log sigma noise schedule.""" + ramp = torch.linspace(1, 0, n, device=device) ** rho + sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min)) + return append_zero(sigmas) + + +def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'): + """Constructs a continuous VP noise schedule.""" + t = torch.linspace(1, eps_s, n, device=device) + sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1) + return append_zero(sigmas) + + +def to_d(x, sigma, denoised): + """Converts a denoiser output to a Karras ODE derivative.""" + return (x - denoised) / utils.append_dims(sigma, x.ndim) + + +def get_ancestral_step(sigma_from, sigma_to, eta=1.): + """Calculates the noise level (sigma_down) to step down to and the amount + of noise to add (sigma_up) when doing an ancestral sampling step.""" + if not eta: + return sigma_to, 0. + sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5) + sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 + return sigma_down, sigma_up + + +def default_noise_sampler(x): + return lambda sigma, sigma_next: torch.randn_like(x) + + +class BatchedBrownianTree: + """A wrapper around torchsde.BrownianTree that enables batches of entropy.""" + + def __init__(self, x, t0, t1, seed=None, **kwargs): + self.cpu_tree = True + if "cpu" in kwargs: + self.cpu_tree = kwargs.pop("cpu") + t0, t1, self.sign = self.sort(t0, t1) + w0 = kwargs.get('w0', torch.zeros_like(x)) + if seed is None: + seed = torch.randint(0, 2 ** 63 - 1, []).item() + self.batched = True + try: + assert len(seed) == x.shape[0] + w0 = w0[0] + except TypeError: + seed = [seed] + self.batched = False + if self.cpu_tree: + self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed] + else: + self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed] + + @staticmethod + def sort(a, b): + return (a, b, 1) if a < b else (b, a, -1) + + def __call__(self, t0, t1): + t0, t1, sign = self.sort(t0, t1) + if self.cpu_tree: + w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign) + else: + w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign) + + return w if self.batched else w[0] + + +class BrownianTreeNoiseSampler: + """A noise sampler backed by a torchsde.BrownianTree. + + Args: + x (Tensor): The tensor whose shape, device and dtype to use to generate + random samples. + sigma_min (float): The low end of the valid interval. + sigma_max (float): The high end of the valid interval. + seed (int or List[int]): The random seed. If a list of seeds is + supplied instead of a single integer, then the noise sampler will + use one BrownianTree per batch item, each with its own seed. + transform (callable): A function that maps sigma to the sampler's + internal timestep. + """ + + def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False): + self.transform = transform + t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max)) + self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu) + + def __call__(self, sigma, sigma_next): + t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next)) + return self.tree(t0, t1) / (t1 - t0).abs().sqrt() + + +@torch.no_grad() +def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): + """Implements Algorithm 2 (Euler steps) from Karras et al. (2022).""" + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + if s_churn > 0: + gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. + sigma_hat = sigmas[i] * (gamma + 1) + else: + gamma = 0 + sigma_hat = sigmas[i] + + if gamma > 0: + eps = torch.randn_like(x) * s_noise + x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 + denoised = model(x, sigma_hat * s_in, **extra_args) + d = to_d(x, sigma_hat, denoised) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) + dt = sigmas[i + 1] - sigma_hat + # Euler method + x = x + d * dt + return x + + +@torch.no_grad() +def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + """Ancestral sampling with Euler method steps.""" + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + d = to_d(x, sigmas[i], denoised) + # Euler method + dt = sigma_down - sigmas[i] + x = x + d * dt + if sigmas[i + 1] > 0: + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up + return x + + +@torch.no_grad() +def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): + """Implements Algorithm 2 (Heun steps) from Karras et al. (2022).""" + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + if s_churn > 0: + gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. + sigma_hat = sigmas[i] * (gamma + 1) + else: + gamma = 0 + sigma_hat = sigmas[i] + + sigma_hat = sigmas[i] * (gamma + 1) + if gamma > 0: + eps = torch.randn_like(x) * s_noise + x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 + denoised = model(x, sigma_hat * s_in, **extra_args) + d = to_d(x, sigma_hat, denoised) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) + dt = sigmas[i + 1] - sigma_hat + if sigmas[i + 1] == 0: + # Euler method + x = x + d * dt + else: + # Heun's method + x_2 = x + d * dt + denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) + d_2 = to_d(x_2, sigmas[i + 1], denoised_2) + d_prime = (d + d_2) / 2 + x = x + d_prime * dt + return x + + +@torch.no_grad() +def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): + """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022).""" + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + if s_churn > 0: + gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. + sigma_hat = sigmas[i] * (gamma + 1) + else: + gamma = 0 + sigma_hat = sigmas[i] + + if gamma > 0: + eps = torch.randn_like(x) * s_noise + x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 + denoised = model(x, sigma_hat * s_in, **extra_args) + d = to_d(x, sigma_hat, denoised) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) + if sigmas[i + 1] == 0: + # Euler method + dt = sigmas[i + 1] - sigma_hat + x = x + d * dt + else: + # DPM-Solver-2 + sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() + dt_1 = sigma_mid - sigma_hat + dt_2 = sigmas[i + 1] - sigma_hat + x_2 = x + d * dt_1 + denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) + d_2 = to_d(x_2, sigma_mid, denoised_2) + x = x + d_2 * dt_2 + return x + + +@torch.no_grad() +def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + """Ancestral sampling with DPM-Solver second-order steps.""" + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + d = to_d(x, sigmas[i], denoised) + if sigma_down == 0: + # Euler method + dt = sigma_down - sigmas[i] + x = x + d * dt + else: + # DPM-Solver-2 + sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp() + dt_1 = sigma_mid - sigmas[i] + dt_2 = sigma_down - sigmas[i] + x_2 = x + d * dt_1 + denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) + d_2 = to_d(x_2, sigma_mid, denoised_2) + x = x + d_2 * dt_2 + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up + return x + + +def linear_multistep_coeff(order, t, i, j): + if order - 1 > i: + raise ValueError(f'Order {order} too high for step {i}') + def fn(tau): + prod = 1. + for k in range(order): + if j == k: + continue + prod *= (tau - t[i - k]) / (t[i - j] - t[i - k]) + return prod + return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0] + + +@torch.no_grad() +def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4): + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + sigmas_cpu = sigmas.detach().cpu().numpy() + ds = [] + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + d = to_d(x, sigmas[i], denoised) + ds.append(d) + if len(ds) > order: + ds.pop(0) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + cur_order = min(i + 1, order) + coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)] + x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds))) + return x + + +class PIDStepSizeController: + """A PID controller for ODE adaptive step size control.""" + def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8): + self.h = h + self.b1 = (pcoeff + icoeff + dcoeff) / order + self.b2 = -(pcoeff + 2 * dcoeff) / order + self.b3 = dcoeff / order + self.accept_safety = accept_safety + self.eps = eps + self.errs = [] + + def limiter(self, x): + return 1 + math.atan(x - 1) + + def propose_step(self, error): + inv_error = 1 / (float(error) + self.eps) + if not self.errs: + self.errs = [inv_error, inv_error, inv_error] + self.errs[0] = inv_error + factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3 + factor = self.limiter(factor) + accept = factor >= self.accept_safety + if accept: + self.errs[2] = self.errs[1] + self.errs[1] = self.errs[0] + self.h *= factor + return accept + + +class DPMSolver(nn.Module): + """DPM-Solver. See https://arxiv.org/abs/2206.00927.""" + + def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None): + super().__init__() + self.model = model + self.extra_args = {} if extra_args is None else extra_args + self.eps_callback = eps_callback + self.info_callback = info_callback + + def t(self, sigma): + return -sigma.log() + + def sigma(self, t): + return t.neg().exp() + + def eps(self, eps_cache, key, x, t, *args, **kwargs): + if key in eps_cache: + return eps_cache[key], eps_cache + sigma = self.sigma(t) * x.new_ones([x.shape[0]]) + eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t) + if self.eps_callback is not None: + self.eps_callback() + return eps, {key: eps, **eps_cache} + + def dpm_solver_1_step(self, x, t, t_next, eps_cache=None): + eps_cache = {} if eps_cache is None else eps_cache + h = t_next - t + eps, eps_cache = self.eps(eps_cache, 'eps', x, t) + x_1 = x - self.sigma(t_next) * h.expm1() * eps + return x_1, eps_cache + + def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None): + eps_cache = {} if eps_cache is None else eps_cache + h = t_next - t + eps, eps_cache = self.eps(eps_cache, 'eps', x, t) + s1 = t + r1 * h + u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps + eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1) + x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps) + return x_2, eps_cache + + def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None): + eps_cache = {} if eps_cache is None else eps_cache + h = t_next - t + eps, eps_cache = self.eps(eps_cache, 'eps', x, t) + s1 = t + r1 * h + s2 = t + r2 * h + u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps + eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1) + u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps) + eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2) + x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps) + return x_3, eps_cache + + def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None): + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + if not t_end > t_start and eta: + raise ValueError('eta must be 0 for reverse sampling') + + m = math.floor(nfe / 3) + 1 + ts = torch.linspace(t_start, t_end, m + 1, device=x.device) + + if nfe % 3 == 0: + orders = [3] * (m - 2) + [2, 1] + else: + orders = [3] * (m - 1) + [nfe % 3] + + for i in range(len(orders)): + eps_cache = {} + t, t_next = ts[i], ts[i + 1] + if eta: + sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta) + t_next_ = torch.minimum(t_end, self.t(sd)) + su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5 + else: + t_next_, su = t_next, 0. + + eps, eps_cache = self.eps(eps_cache, 'eps', x, t) + denoised = x - self.sigma(t) * eps + if self.info_callback is not None: + self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised}) + + if orders[i] == 1: + x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache) + elif orders[i] == 2: + x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache) + else: + x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache) + + x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next)) + + return x + + def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None): + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + if order not in {2, 3}: + raise ValueError('order should be 2 or 3') + forward = t_end > t_start + if not forward and eta: + raise ValueError('eta must be 0 for reverse sampling') + h_init = abs(h_init) * (1 if forward else -1) + atol = torch.tensor(atol) + rtol = torch.tensor(rtol) + s = t_start + x_prev = x + accept = True + pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety) + info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0} + + while s < t_end - 1e-5 if forward else s > t_end + 1e-5: + eps_cache = {} + t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h) + if eta: + sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta) + t_ = torch.minimum(t_end, self.t(sd)) + su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5 + else: + t_, su = t, 0. + + eps, eps_cache = self.eps(eps_cache, 'eps', x, s) + denoised = x - self.sigma(s) * eps + + if order == 2: + x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache) + x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache) + else: + x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache) + x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache) + delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs())) + error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5 + accept = pid.propose_step(error) + if accept: + x_prev = x_low + x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t)) + s = t + info['n_accept'] += 1 + else: + info['n_reject'] += 1 + info['nfe'] += order + info['steps'] += 1 + + if self.info_callback is not None: + self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info}) + + return x, info + + +@torch.no_grad() +def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None): + """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927.""" + if sigma_min <= 0 or sigma_max <= 0: + raise ValueError('sigma_min and sigma_max must not be 0') + with tqdm(total=n, disable=disable) as pbar: + dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update) + if callback is not None: + dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info}) + return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler) + + +@torch.no_grad() +def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False): + """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927.""" + if sigma_min <= 0 or sigma_max <= 0: + raise ValueError('sigma_min and sigma_max must not be 0') + with tqdm(disable=disable) as pbar: + dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update) + if callback is not None: + dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info}) + x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler) + if return_info: + return x, info + return x + + +@torch.no_grad() +def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + """Ancestral sampling with DPM-Solver++(2S) second-order steps.""" + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + s_in = x.new_ones([x.shape[0]]) + sigma_fn = lambda t: t.neg().exp() + t_fn = lambda sigma: sigma.log().neg() + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + if sigma_down == 0: + # Euler method + d = to_d(x, sigmas[i], denoised) + dt = sigma_down - sigmas[i] + x = x + d * dt + else: + # DPM-Solver++(2S) + t, t_next = t_fn(sigmas[i]), t_fn(sigma_down) + r = 1 / 2 + h = t_next - t + s = t + r * h + x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised + denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) + x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2 + # Noise addition + if sigmas[i + 1] > 0: + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up + return x + + +@torch.no_grad() +def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2): + """DPM-Solver++ (stochastic).""" + if len(sigmas) <= 1: + return x + + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + seed = extra_args.get("seed", None) + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + sigma_fn = lambda t: t.neg().exp() + t_fn = lambda sigma: sigma.log().neg() + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + if sigmas[i + 1] == 0: + # Euler method + d = to_d(x, sigmas[i], denoised) + dt = sigmas[i + 1] - sigmas[i] + x = x + d * dt + else: + # DPM-Solver++ + t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) + h = t_next - t + s = t + h * r + fac = 1 / (2 * r) + + # Step 1 + sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta) + s_ = t_fn(sd) + x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised + x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su + denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) + + # Step 2 + sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta) + t_next_ = t_fn(sd) + denoised_d = (1 - fac) * denoised + fac * denoised_2 + x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d + x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su + return x + + +@torch.no_grad() +def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None): + """DPM-Solver++(2M).""" + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + sigma_fn = lambda t: t.neg().exp() + t_fn = lambda sigma: sigma.log().neg() + old_denoised = None + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) + h = t_next - t + if old_denoised is None or sigmas[i + 1] == 0: + x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised + else: + h_last = t - t_fn(sigmas[i - 1]) + r = h_last / h + denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised + x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d + old_denoised = denoised + return x + +@torch.no_grad() +def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'): + """DPM-Solver++(2M) SDE.""" + if len(sigmas) <= 1: + return x + + if solver_type not in {'heun', 'midpoint'}: + raise ValueError('solver_type must be \'heun\' or \'midpoint\'') + + seed = extra_args.get("seed", None) + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + + old_denoised = None + h_last = None + h = None + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + if sigmas[i + 1] == 0: + # Denoising step + x = denoised + else: + # DPM-Solver++(2M) SDE + t, s = -sigmas[i].log(), -sigmas[i + 1].log() + h = s - t + eta_h = eta * h + + x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised + + if old_denoised is not None: + r = h_last / h + if solver_type == 'heun': + x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised) + elif solver_type == 'midpoint': + x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised) + + if eta: + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise + + old_denoised = denoised + h_last = h + return x + +@torch.no_grad() +def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + """DPM-Solver++(3M) SDE.""" + + if len(sigmas) <= 1: + return x + + seed = extra_args.get("seed", None) + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + + denoised_1, denoised_2 = None, None + h, h_1, h_2 = None, None, None + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + if sigmas[i + 1] == 0: + # Denoising step + x = denoised + else: + t, s = -sigmas[i].log(), -sigmas[i + 1].log() + h = s - t + h_eta = h * (eta + 1) + + x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised + + if h_2 is not None: + r0 = h_1 / h + r1 = h_2 / h + d1_0 = (denoised - denoised_1) / r0 + d1_1 = (denoised_1 - denoised_2) / r1 + d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1) + d2 = (d1_0 - d1_1) / (r0 + r1) + phi_2 = h_eta.neg().expm1() / h_eta + 1 + phi_3 = phi_2 / h_eta - 0.5 + x = x + phi_2 * d1 - phi_3 * d2 + elif h_1 is not None: + r = h_1 / h + d = (denoised - denoised_1) / r + phi_2 = h_eta.neg().expm1() / h_eta + 1 + x = x + phi_2 * d + + if eta: + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise + + denoised_1, denoised_2 = denoised, denoised_1 + h_1, h_2 = h, h_1 + return x + +@torch.no_grad() +def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + if len(sigmas) <= 1: + return x + + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler + return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler) + +@torch.no_grad() +def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'): + if len(sigmas) <= 1: + return x + + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler + return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type) + +@torch.no_grad() +def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2): + if len(sigmas) <= 1: + return x + + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler + return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r) + + +def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler): + alpha_cumprod = 1 / ((sigma * sigma) + 1) + alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1) + alpha = (alpha_cumprod / alpha_cumprod_prev) + + mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt()) + if sigma_prev > 0: + mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev) + return mu + +def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None): + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + s_in = x.new_ones([x.shape[0]]) + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler) + if sigmas[i + 1] != 0: + x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0) + return x + + +@torch.no_grad() +def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): + return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step) + +@torch.no_grad() +def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + + x = denoised + if sigmas[i + 1] > 0: + x = model.inner_model.inner_model.model_sampling.noise_scaling(sigmas[i + 1], noise_sampler(sigmas[i], sigmas[i + 1]), x) + return x + + + +@torch.no_grad() +def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): + # From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/ + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + s_end = sigmas[-1] + for i in trange(len(sigmas) - 1, disable=disable): + gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. + eps = torch.randn_like(x) * s_noise + sigma_hat = sigmas[i] * (gamma + 1) + if gamma > 0: + x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 + denoised = model(x, sigma_hat * s_in, **extra_args) + d = to_d(x, sigma_hat, denoised) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) + dt = sigmas[i + 1] - sigma_hat + if sigmas[i + 1] == s_end: + # Euler method + x = x + d * dt + elif sigmas[i + 2] == s_end: + + # Heun's method + x_2 = x + d * dt + denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) + d_2 = to_d(x_2, sigmas[i + 1], denoised_2) + + w = 2 * sigmas[0] + w2 = sigmas[i+1]/w + w1 = 1 - w2 + + d_prime = d * w1 + d_2 * w2 + + + x = x + d_prime * dt + + else: + # Heun++ + x_2 = x + d * dt + denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) + d_2 = to_d(x_2, sigmas[i + 1], denoised_2) + dt_2 = sigmas[i + 2] - sigmas[i + 1] + + x_3 = x_2 + d_2 * dt_2 + denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args) + d_3 = to_d(x_3, sigmas[i + 2], denoised_3) + + w = 3 * sigmas[0] + w2 = sigmas[i + 1] / w + w3 = sigmas[i + 2] / w + w1 = 1 - w2 - w3 + + d_prime = w1 * d + w2 * d_2 + w3 * d_3 + x = x + d_prime * dt + return x diff --git a/MagicQuill/comfy/k_diffusion/utils.py b/MagicQuill/comfy/k_diffusion/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..a644df2f3cf82b32ac6e9bf2cb7bfc70c95e05f9 --- /dev/null +++ b/MagicQuill/comfy/k_diffusion/utils.py @@ -0,0 +1,313 @@ +from contextlib import contextmanager +import hashlib +import math +from pathlib import Path +import shutil +import urllib +import warnings + +from PIL import Image +import torch +from torch import nn, optim +from torch.utils import data + + +def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'): + """Apply passed in transforms for HuggingFace Datasets.""" + images = [transform(image.convert(mode)) for image in examples[image_key]] + return {image_key: images} + + +def append_dims(x, target_dims): + """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" + dims_to_append = target_dims - x.ndim + if dims_to_append < 0: + raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') + expanded = x[(...,) + (None,) * dims_to_append] + # MPS will get inf values if it tries to index into the new axes, but detaching fixes this. + # https://github.com/pytorch/pytorch/issues/84364 + return expanded.detach().clone() if expanded.device.type == 'mps' else expanded + + +def n_params(module): + """Returns the number of trainable parameters in a module.""" + return sum(p.numel() for p in module.parameters()) + + +def download_file(path, url, digest=None): + """Downloads a file if it does not exist, optionally checking its SHA-256 hash.""" + path = Path(path) + path.parent.mkdir(parents=True, exist_ok=True) + if not path.exists(): + with urllib.request.urlopen(url) as response, open(path, 'wb') as f: + shutil.copyfileobj(response, f) + if digest is not None: + file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest() + if digest != file_digest: + raise OSError(f'hash of {path} (url: {url}) failed to validate') + return path + + +@contextmanager +def train_mode(model, mode=True): + """A context manager that places a model into training mode and restores + the previous mode on exit.""" + modes = [module.training for module in model.modules()] + try: + yield model.train(mode) + finally: + for i, module in enumerate(model.modules()): + module.training = modes[i] + + +def eval_mode(model): + """A context manager that places a model into evaluation mode and restores + the previous mode on exit.""" + return train_mode(model, False) + + +@torch.no_grad() +def ema_update(model, averaged_model, decay): + """Incorporates updated model parameters into an exponential moving averaged + version of a model. It should be called after each optimizer step.""" + model_params = dict(model.named_parameters()) + averaged_params = dict(averaged_model.named_parameters()) + assert model_params.keys() == averaged_params.keys() + + for name, param in model_params.items(): + averaged_params[name].mul_(decay).add_(param, alpha=1 - decay) + + model_buffers = dict(model.named_buffers()) + averaged_buffers = dict(averaged_model.named_buffers()) + assert model_buffers.keys() == averaged_buffers.keys() + + for name, buf in model_buffers.items(): + averaged_buffers[name].copy_(buf) + + +class EMAWarmup: + """Implements an EMA warmup using an inverse decay schedule. + If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are + good values for models you plan to train for a million or more steps (reaches decay + factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models + you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at + 215.4k steps). + Args: + inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1. + power (float): Exponential factor of EMA warmup. Default: 1. + min_value (float): The minimum EMA decay rate. Default: 0. + max_value (float): The maximum EMA decay rate. Default: 1. + start_at (int): The epoch to start averaging at. Default: 0. + last_epoch (int): The index of last epoch. Default: 0. + """ + + def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0, + last_epoch=0): + self.inv_gamma = inv_gamma + self.power = power + self.min_value = min_value + self.max_value = max_value + self.start_at = start_at + self.last_epoch = last_epoch + + def state_dict(self): + """Returns the state of the class as a :class:`dict`.""" + return dict(self.__dict__.items()) + + def load_state_dict(self, state_dict): + """Loads the class's state. + Args: + state_dict (dict): scaler state. Should be an object returned + from a call to :meth:`state_dict`. + """ + self.__dict__.update(state_dict) + + def get_value(self): + """Gets the current EMA decay rate.""" + epoch = max(0, self.last_epoch - self.start_at) + value = 1 - (1 + epoch / self.inv_gamma) ** -self.power + return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value)) + + def step(self): + """Updates the step count.""" + self.last_epoch += 1 + + +class InverseLR(optim.lr_scheduler._LRScheduler): + """Implements an inverse decay learning rate schedule with an optional exponential + warmup. When last_epoch=-1, sets initial lr as lr. + inv_gamma is the number of steps/epochs required for the learning rate to decay to + (1 / 2)**power of its original value. + Args: + optimizer (Optimizer): Wrapped optimizer. + inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1. + power (float): Exponential factor of learning rate decay. Default: 1. + warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable) + Default: 0. + min_lr (float): The minimum learning rate. Default: 0. + last_epoch (int): The index of last epoch. Default: -1. + verbose (bool): If ``True``, prints a message to stdout for + each update. Default: ``False``. + """ + + def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0., + last_epoch=-1, verbose=False): + self.inv_gamma = inv_gamma + self.power = power + if not 0. <= warmup < 1: + raise ValueError('Invalid value for warmup') + self.warmup = warmup + self.min_lr = min_lr + super().__init__(optimizer, last_epoch, verbose) + + def get_lr(self): + if not self._get_lr_called_within_step: + warnings.warn("To get the last learning rate computed by the scheduler, " + "please use `get_last_lr()`.") + + return self._get_closed_form_lr() + + def _get_closed_form_lr(self): + warmup = 1 - self.warmup ** (self.last_epoch + 1) + lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power + return [warmup * max(self.min_lr, base_lr * lr_mult) + for base_lr in self.base_lrs] + + +class ExponentialLR(optim.lr_scheduler._LRScheduler): + """Implements an exponential learning rate schedule with an optional exponential + warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate + continuously by decay (default 0.5) every num_steps steps. + Args: + optimizer (Optimizer): Wrapped optimizer. + num_steps (float): The number of steps to decay the learning rate by decay in. + decay (float): The factor by which to decay the learning rate every num_steps + steps. Default: 0.5. + warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable) + Default: 0. + min_lr (float): The minimum learning rate. Default: 0. + last_epoch (int): The index of last epoch. Default: -1. + verbose (bool): If ``True``, prints a message to stdout for + each update. Default: ``False``. + """ + + def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0., + last_epoch=-1, verbose=False): + self.num_steps = num_steps + self.decay = decay + if not 0. <= warmup < 1: + raise ValueError('Invalid value for warmup') + self.warmup = warmup + self.min_lr = min_lr + super().__init__(optimizer, last_epoch, verbose) + + def get_lr(self): + if not self._get_lr_called_within_step: + warnings.warn("To get the last learning rate computed by the scheduler, " + "please use `get_last_lr()`.") + + return self._get_closed_form_lr() + + def _get_closed_form_lr(self): + warmup = 1 - self.warmup ** (self.last_epoch + 1) + lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch + return [warmup * max(self.min_lr, base_lr * lr_mult) + for base_lr in self.base_lrs] + + +def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32): + """Draws samples from an lognormal distribution.""" + return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp() + + +def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32): + """Draws samples from an optionally truncated log-logistic distribution.""" + min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64) + max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64) + min_cdf = min_value.log().sub(loc).div(scale).sigmoid() + max_cdf = max_value.log().sub(loc).div(scale).sigmoid() + u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf + return u.logit().mul(scale).add(loc).exp().to(dtype) + + +def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32): + """Draws samples from an log-uniform distribution.""" + min_value = math.log(min_value) + max_value = math.log(max_value) + return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp() + + +def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32): + """Draws samples from a truncated v-diffusion training timestep distribution.""" + min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi + max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi + u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf + return torch.tan(u * math.pi / 2) * sigma_data + + +def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32): + """Draws samples from a split lognormal distribution.""" + n = torch.randn(shape, device=device, dtype=dtype).abs() + u = torch.rand(shape, device=device, dtype=dtype) + n_left = n * -scale_1 + loc + n_right = n * scale_2 + loc + ratio = scale_1 / (scale_1 + scale_2) + return torch.where(u < ratio, n_left, n_right).exp() + + +class FolderOfImages(data.Dataset): + """Recursively finds all images in a directory. It does not support + classes/targets.""" + + IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'} + + def __init__(self, root, transform=None): + super().__init__() + self.root = Path(root) + self.transform = nn.Identity() if transform is None else transform + self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS) + + def __repr__(self): + return f'FolderOfImages(root="{self.root}", len: {len(self)})' + + def __len__(self): + return len(self.paths) + + def __getitem__(self, key): + path = self.paths[key] + with open(path, 'rb') as f: + image = Image.open(f).convert('RGB') + image = self.transform(image) + return image, + + +class CSVLogger: + def __init__(self, filename, columns): + self.filename = Path(filename) + self.columns = columns + if self.filename.exists(): + self.file = open(self.filename, 'a') + else: + self.file = open(self.filename, 'w') + self.write(*self.columns) + + def write(self, *args): + print(*args, sep=',', file=self.file, flush=True) + + +@contextmanager +def tf32_mode(cudnn=None, matmul=None): + """A context manager that sets whether TF32 is allowed on cuDNN or matmul.""" + cudnn_old = torch.backends.cudnn.allow_tf32 + matmul_old = torch.backends.cuda.matmul.allow_tf32 + try: + if cudnn is not None: + torch.backends.cudnn.allow_tf32 = cudnn + if matmul is not None: + torch.backends.cuda.matmul.allow_tf32 = matmul + yield + finally: + if cudnn is not None: + torch.backends.cudnn.allow_tf32 = cudnn_old + if matmul is not None: + torch.backends.cuda.matmul.allow_tf32 = matmul_old diff --git a/MagicQuill/comfy/latent_formats.py b/MagicQuill/comfy/latent_formats.py new file mode 100644 index 0000000000000000000000000000000000000000..4b4a9eda2ca513adf3f6a55db063bb4289be96a3 --- /dev/null +++ b/MagicQuill/comfy/latent_formats.py @@ -0,0 +1,141 @@ +import torch + +class LatentFormat: + scale_factor = 1.0 + latent_channels = 4 + latent_rgb_factors = None + taesd_decoder_name = None + + def process_in(self, latent): + return latent * self.scale_factor + + def process_out(self, latent): + return latent / self.scale_factor + +class SD15(LatentFormat): + def __init__(self, scale_factor=0.18215): + self.scale_factor = scale_factor + self.latent_rgb_factors = [ + # R G B + [ 0.3512, 0.2297, 0.3227], + [ 0.3250, 0.4974, 0.2350], + [-0.2829, 0.1762, 0.2721], + [-0.2120, -0.2616, -0.7177] + ] + self.taesd_decoder_name = "taesd_decoder" + +class SDXL(LatentFormat): + scale_factor = 0.13025 + + def __init__(self): + self.latent_rgb_factors = [ + # R G B + [ 0.3920, 0.4054, 0.4549], + [-0.2634, -0.0196, 0.0653], + [ 0.0568, 0.1687, -0.0755], + [-0.3112, -0.2359, -0.2076] + ] + self.taesd_decoder_name = "taesdxl_decoder" + +class SDXL_Playground_2_5(LatentFormat): + def __init__(self): + self.scale_factor = 0.5 + self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1) + self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1) + + self.latent_rgb_factors = [ + # R G B + [ 0.3920, 0.4054, 0.4549], + [-0.2634, -0.0196, 0.0653], + [ 0.0568, 0.1687, -0.0755], + [-0.3112, -0.2359, -0.2076] + ] + self.taesd_decoder_name = "taesdxl_decoder" + + def process_in(self, latent): + latents_mean = self.latents_mean.to(latent.device, latent.dtype) + latents_std = self.latents_std.to(latent.device, latent.dtype) + return (latent - latents_mean) * self.scale_factor / latents_std + + def process_out(self, latent): + latents_mean = self.latents_mean.to(latent.device, latent.dtype) + latents_std = self.latents_std.to(latent.device, latent.dtype) + return latent * latents_std / self.scale_factor + latents_mean + + +class SD_X4(LatentFormat): + def __init__(self): + self.scale_factor = 0.08333 + self.latent_rgb_factors = [ + [-0.2340, -0.3863, -0.3257], + [ 0.0994, 0.0885, -0.0908], + [-0.2833, -0.2349, -0.3741], + [ 0.2523, -0.0055, -0.1651] + ] + +class SC_Prior(LatentFormat): + latent_channels = 16 + def __init__(self): + self.scale_factor = 1.0 + self.latent_rgb_factors = [ + [-0.0326, -0.0204, -0.0127], + [-0.1592, -0.0427, 0.0216], + [ 0.0873, 0.0638, -0.0020], + [-0.0602, 0.0442, 0.1304], + [ 0.0800, -0.0313, -0.1796], + [-0.0810, -0.0638, -0.1581], + [ 0.1791, 0.1180, 0.0967], + [ 0.0740, 0.1416, 0.0432], + [-0.1745, -0.1888, -0.1373], + [ 0.2412, 0.1577, 0.0928], + [ 0.1908, 0.0998, 0.0682], + [ 0.0209, 0.0365, -0.0092], + [ 0.0448, -0.0650, -0.1728], + [-0.1658, -0.1045, -0.1308], + [ 0.0542, 0.1545, 0.1325], + [-0.0352, -0.1672, -0.2541] + ] + +class SC_B(LatentFormat): + def __init__(self): + self.scale_factor = 1.0 / 0.43 + self.latent_rgb_factors = [ + [ 0.1121, 0.2006, 0.1023], + [-0.2093, -0.0222, -0.0195], + [-0.3087, -0.1535, 0.0366], + [ 0.0290, -0.1574, -0.4078] + ] + +class SD3(LatentFormat): + latent_channels = 16 + def __init__(self): + self.scale_factor = 1.5305 + self.shift_factor = 0.0609 + self.latent_rgb_factors = [ + [-0.0645, 0.0177, 0.1052], + [ 0.0028, 0.0312, 0.0650], + [ 0.1848, 0.0762, 0.0360], + [ 0.0944, 0.0360, 0.0889], + [ 0.0897, 0.0506, -0.0364], + [-0.0020, 0.1203, 0.0284], + [ 0.0855, 0.0118, 0.0283], + [-0.0539, 0.0658, 0.1047], + [-0.0057, 0.0116, 0.0700], + [-0.0412, 0.0281, -0.0039], + [ 0.1106, 0.1171, 0.1220], + [-0.0248, 0.0682, -0.0481], + [ 0.0815, 0.0846, 0.1207], + [-0.0120, -0.0055, -0.0867], + [-0.0749, -0.0634, -0.0456], + [-0.1418, -0.1457, -0.1259] + ] + self.taesd_decoder_name = "taesd3_decoder" + + def process_in(self, latent): + return (latent - self.shift_factor) * self.scale_factor + + def process_out(self, latent): + return (latent / self.scale_factor) + self.shift_factor + +class StableAudio1(LatentFormat): + latent_channels = 64 diff --git a/MagicQuill/comfy/ldm/.DS_Store b/MagicQuill/comfy/ldm/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..d0da439dffcc3253b60c3efbd08401ed8b1d1bf9 Binary files /dev/null and b/MagicQuill/comfy/ldm/.DS_Store differ diff --git a/MagicQuill/comfy/ldm/__pycache__/util.cpython-310.pyc b/MagicQuill/comfy/ldm/__pycache__/util.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4d31ebda5f4eae344a83438bacec2896e5d6c7b9 Binary files /dev/null and b/MagicQuill/comfy/ldm/__pycache__/util.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/audio/__pycache__/autoencoder.cpython-310.pyc b/MagicQuill/comfy/ldm/audio/__pycache__/autoencoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..597f928a2baedd77d407f298208acd1c321f97e1 Binary files /dev/null and b/MagicQuill/comfy/ldm/audio/__pycache__/autoencoder.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/audio/__pycache__/dit.cpython-310.pyc b/MagicQuill/comfy/ldm/audio/__pycache__/dit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1320d3d9a7caeaa211721822f32ee98ed9369ea6 Binary files /dev/null and b/MagicQuill/comfy/ldm/audio/__pycache__/dit.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/audio/__pycache__/embedders.cpython-310.pyc b/MagicQuill/comfy/ldm/audio/__pycache__/embedders.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0e6022d868f4f6a4b121fe3aa48d2c4c1582104e Binary files /dev/null and b/MagicQuill/comfy/ldm/audio/__pycache__/embedders.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/audio/autoencoder.py b/MagicQuill/comfy/ldm/audio/autoencoder.py new file mode 100644 index 0000000000000000000000000000000000000000..8123e66a50074d63bea45591f48e44723dbe5ebf --- /dev/null +++ b/MagicQuill/comfy/ldm/audio/autoencoder.py @@ -0,0 +1,282 @@ +# code adapted from: https://github.com/Stability-AI/stable-audio-tools + +import torch +from torch import nn +from typing import Literal, Dict, Any +import math +import comfy.ops +ops = comfy.ops.disable_weight_init + +def vae_sample(mean, scale): + stdev = nn.functional.softplus(scale) + 1e-4 + var = stdev * stdev + logvar = torch.log(var) + latents = torch.randn_like(mean) * stdev + mean + + kl = (mean * mean + var - logvar - 1).sum(1).mean() + + return latents, kl + +class VAEBottleneck(nn.Module): + def __init__(self): + super().__init__() + self.is_discrete = False + + def encode(self, x, return_info=False, **kwargs): + info = {} + + mean, scale = x.chunk(2, dim=1) + + x, kl = vae_sample(mean, scale) + + info["kl"] = kl + + if return_info: + return x, info + else: + return x + + def decode(self, x): + return x + + +def snake_beta(x, alpha, beta): + return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2) + +# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license +class SnakeBeta(nn.Module): + + def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True): + super(SnakeBeta, self).__init__() + self.in_features = in_features + + # initialize alpha + self.alpha_logscale = alpha_logscale + if self.alpha_logscale: # log scale alphas initialized to zeros + self.alpha = nn.Parameter(torch.zeros(in_features) * alpha) + self.beta = nn.Parameter(torch.zeros(in_features) * alpha) + else: # linear scale alphas initialized to ones + self.alpha = nn.Parameter(torch.ones(in_features) * alpha) + self.beta = nn.Parameter(torch.ones(in_features) * alpha) + + # self.alpha.requires_grad = alpha_trainable + # self.beta.requires_grad = alpha_trainable + + self.no_div_by_zero = 0.000000001 + + def forward(self, x): + alpha = self.alpha.unsqueeze(0).unsqueeze(-1).to(x.device) # line up with x to [B, C, T] + beta = self.beta.unsqueeze(0).unsqueeze(-1).to(x.device) + if self.alpha_logscale: + alpha = torch.exp(alpha) + beta = torch.exp(beta) + x = snake_beta(x, alpha, beta) + + return x + +def WNConv1d(*args, **kwargs): + try: + return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs)) + except: + return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older + +def WNConvTranspose1d(*args, **kwargs): + try: + return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) + except: + return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older + +def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module: + if activation == "elu": + act = torch.nn.ELU() + elif activation == "snake": + act = SnakeBeta(channels) + elif activation == "none": + act = torch.nn.Identity() + else: + raise ValueError(f"Unknown activation {activation}") + + if antialias: + act = Activation1d(act) + + return act + + +class ResidualUnit(nn.Module): + def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False): + super().__init__() + + self.dilation = dilation + + padding = (dilation * (7-1)) // 2 + + self.layers = nn.Sequential( + get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels), + WNConv1d(in_channels=in_channels, out_channels=out_channels, + kernel_size=7, dilation=dilation, padding=padding), + get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels), + WNConv1d(in_channels=out_channels, out_channels=out_channels, + kernel_size=1) + ) + + def forward(self, x): + res = x + + #x = checkpoint(self.layers, x) + x = self.layers(x) + + return x + res + +class EncoderBlock(nn.Module): + def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False): + super().__init__() + + self.layers = nn.Sequential( + ResidualUnit(in_channels=in_channels, + out_channels=in_channels, dilation=1, use_snake=use_snake), + ResidualUnit(in_channels=in_channels, + out_channels=in_channels, dilation=3, use_snake=use_snake), + ResidualUnit(in_channels=in_channels, + out_channels=in_channels, dilation=9, use_snake=use_snake), + get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels), + WNConv1d(in_channels=in_channels, out_channels=out_channels, + kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)), + ) + + def forward(self, x): + return self.layers(x) + +class DecoderBlock(nn.Module): + def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False): + super().__init__() + + if use_nearest_upsample: + upsample_layer = nn.Sequential( + nn.Upsample(scale_factor=stride, mode="nearest"), + WNConv1d(in_channels=in_channels, + out_channels=out_channels, + kernel_size=2*stride, + stride=1, + bias=False, + padding='same') + ) + else: + upsample_layer = WNConvTranspose1d(in_channels=in_channels, + out_channels=out_channels, + kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)) + + self.layers = nn.Sequential( + get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels), + upsample_layer, + ResidualUnit(in_channels=out_channels, out_channels=out_channels, + dilation=1, use_snake=use_snake), + ResidualUnit(in_channels=out_channels, out_channels=out_channels, + dilation=3, use_snake=use_snake), + ResidualUnit(in_channels=out_channels, out_channels=out_channels, + dilation=9, use_snake=use_snake), + ) + + def forward(self, x): + return self.layers(x) + +class OobleckEncoder(nn.Module): + def __init__(self, + in_channels=2, + channels=128, + latent_dim=32, + c_mults = [1, 2, 4, 8], + strides = [2, 4, 8, 8], + use_snake=False, + antialias_activation=False + ): + super().__init__() + + c_mults = [1] + c_mults + + self.depth = len(c_mults) + + layers = [ + WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3) + ] + + for i in range(self.depth-1): + layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)] + + layers += [ + get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels), + WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1) + ] + + self.layers = nn.Sequential(*layers) + + def forward(self, x): + return self.layers(x) + + +class OobleckDecoder(nn.Module): + def __init__(self, + out_channels=2, + channels=128, + latent_dim=32, + c_mults = [1, 2, 4, 8], + strides = [2, 4, 8, 8], + use_snake=False, + antialias_activation=False, + use_nearest_upsample=False, + final_tanh=True): + super().__init__() + + c_mults = [1] + c_mults + + self.depth = len(c_mults) + + layers = [ + WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3), + ] + + for i in range(self.depth-1, 0, -1): + layers += [DecoderBlock( + in_channels=c_mults[i]*channels, + out_channels=c_mults[i-1]*channels, + stride=strides[i-1], + use_snake=use_snake, + antialias_activation=antialias_activation, + use_nearest_upsample=use_nearest_upsample + ) + ] + + layers += [ + get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels), + WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False), + nn.Tanh() if final_tanh else nn.Identity() + ] + + self.layers = nn.Sequential(*layers) + + def forward(self, x): + return self.layers(x) + + +class AudioOobleckVAE(nn.Module): + def __init__(self, + in_channels=2, + channels=128, + latent_dim=64, + c_mults = [1, 2, 4, 8, 16], + strides = [2, 4, 4, 8, 8], + use_snake=True, + antialias_activation=False, + use_nearest_upsample=False, + final_tanh=False): + super().__init__() + self.encoder = OobleckEncoder(in_channels, channels, latent_dim * 2, c_mults, strides, use_snake, antialias_activation) + self.decoder = OobleckDecoder(in_channels, channels, latent_dim, c_mults, strides, use_snake, antialias_activation, + use_nearest_upsample=use_nearest_upsample, final_tanh=final_tanh) + self.bottleneck = VAEBottleneck() + + def encode(self, x): + return self.bottleneck.encode(self.encoder(x)) + + def decode(self, x): + return self.decoder(self.bottleneck.decode(x)) + diff --git a/MagicQuill/comfy/ldm/audio/dit.py b/MagicQuill/comfy/ldm/audio/dit.py new file mode 100644 index 0000000000000000000000000000000000000000..1c1112c5e562c7bdef8e8a795f26803a3d398dd1 --- /dev/null +++ b/MagicQuill/comfy/ldm/audio/dit.py @@ -0,0 +1,888 @@ +# code adapted from: https://github.com/Stability-AI/stable-audio-tools + +from comfy.ldm.modules.attention import optimized_attention +import typing as tp + +import torch + +from einops import rearrange +from torch import nn +from torch.nn import functional as F +import math + +class FourierFeatures(nn.Module): + def __init__(self, in_features, out_features, std=1., dtype=None, device=None): + super().__init__() + assert out_features % 2 == 0 + self.weight = nn.Parameter(torch.empty( + [out_features // 2, in_features], dtype=dtype, device=device)) + + def forward(self, input): + f = 2 * math.pi * input @ self.weight.T.to(dtype=input.dtype, device=input.device) + return torch.cat([f.cos(), f.sin()], dim=-1) + +# norms +class LayerNorm(nn.Module): + def __init__(self, dim, bias=False, fix_scale=False, dtype=None, device=None): + """ + bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less + """ + super().__init__() + + self.gamma = nn.Parameter(torch.empty(dim, dtype=dtype, device=device)) + + if bias: + self.beta = nn.Parameter(torch.empty(dim, dtype=dtype, device=device)) + else: + self.beta = None + + def forward(self, x): + beta = self.beta + if self.beta is not None: + beta = beta.to(dtype=x.dtype, device=x.device) + return F.layer_norm(x, x.shape[-1:], weight=self.gamma.to(dtype=x.dtype, device=x.device), bias=beta) + +class GLU(nn.Module): + def __init__( + self, + dim_in, + dim_out, + activation, + use_conv = False, + conv_kernel_size = 3, + dtype=None, + device=None, + operations=None, + ): + super().__init__() + self.act = activation + self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2), dtype=dtype, device=device) + self.use_conv = use_conv + + def forward(self, x): + if self.use_conv: + x = rearrange(x, 'b n d -> b d n') + x = self.proj(x) + x = rearrange(x, 'b d n -> b n d') + else: + x = self.proj(x) + + x, gate = x.chunk(2, dim = -1) + return x * self.act(gate) + +class AbsolutePositionalEmbedding(nn.Module): + def __init__(self, dim, max_seq_len): + super().__init__() + self.scale = dim ** -0.5 + self.max_seq_len = max_seq_len + self.emb = nn.Embedding(max_seq_len, dim) + + def forward(self, x, pos = None, seq_start_pos = None): + seq_len, device = x.shape[1], x.device + assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' + + if pos is None: + pos = torch.arange(seq_len, device = device) + + if seq_start_pos is not None: + pos = (pos - seq_start_pos[..., None]).clamp(min = 0) + + pos_emb = self.emb(pos) + pos_emb = pos_emb * self.scale + return pos_emb + +class ScaledSinusoidalEmbedding(nn.Module): + def __init__(self, dim, theta = 10000): + super().__init__() + assert (dim % 2) == 0, 'dimension must be divisible by 2' + self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) + + half_dim = dim // 2 + freq_seq = torch.arange(half_dim).float() / half_dim + inv_freq = theta ** -freq_seq + self.register_buffer('inv_freq', inv_freq, persistent = False) + + def forward(self, x, pos = None, seq_start_pos = None): + seq_len, device = x.shape[1], x.device + + if pos is None: + pos = torch.arange(seq_len, device = device) + + if seq_start_pos is not None: + pos = pos - seq_start_pos[..., None] + + emb = torch.einsum('i, j -> i j', pos, self.inv_freq) + emb = torch.cat((emb.sin(), emb.cos()), dim = -1) + return emb * self.scale + +class RotaryEmbedding(nn.Module): + def __init__( + self, + dim, + use_xpos = False, + scale_base = 512, + interpolation_factor = 1., + base = 10000, + base_rescale_factor = 1. + ): + super().__init__() + # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning + # has some connection to NTK literature + # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ + base *= base_rescale_factor ** (dim / (dim - 2)) + + inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) + self.register_buffer('inv_freq', inv_freq) + + assert interpolation_factor >= 1. + self.interpolation_factor = interpolation_factor + + if not use_xpos: + self.register_buffer('scale', None) + return + + scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) + + self.scale_base = scale_base + self.register_buffer('scale', scale) + + def forward_from_seq_len(self, seq_len, device, dtype): + # device = self.inv_freq.device + + t = torch.arange(seq_len, device=device, dtype=dtype) + return self.forward(t) + + def forward(self, t): + # device = self.inv_freq.device + device = t.device + dtype = t.dtype + + # t = t.to(torch.float32) + + t = t / self.interpolation_factor + + freqs = torch.einsum('i , j -> i j', t, self.inv_freq.to(dtype=dtype, device=device)) + freqs = torch.cat((freqs, freqs), dim = -1) + + if self.scale is None: + return freqs, 1. + + power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base + scale = self.scale.to(dtype=dtype, device=device) ** rearrange(power, 'n -> n 1') + scale = torch.cat((scale, scale), dim = -1) + + return freqs, scale + +def rotate_half(x): + x = rearrange(x, '... (j d) -> ... j d', j = 2) + x1, x2 = x.unbind(dim = -2) + return torch.cat((-x2, x1), dim = -1) + +def apply_rotary_pos_emb(t, freqs, scale = 1): + out_dtype = t.dtype + + # cast to float32 if necessary for numerical stability + dtype = t.dtype #reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32)) + rot_dim, seq_len = freqs.shape[-1], t.shape[-2] + freqs, t = freqs.to(dtype), t.to(dtype) + freqs = freqs[-seq_len:, :] + + if t.ndim == 4 and freqs.ndim == 3: + freqs = rearrange(freqs, 'b n d -> b 1 n d') + + # partial rotary embeddings, Wang et al. GPT-J + t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] + t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) + + t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype) + + return torch.cat((t, t_unrotated), dim = -1) + +class FeedForward(nn.Module): + def __init__( + self, + dim, + dim_out = None, + mult = 4, + no_bias = False, + glu = True, + use_conv = False, + conv_kernel_size = 3, + zero_init_output = True, + dtype=None, + device=None, + operations=None, + ): + super().__init__() + inner_dim = int(dim * mult) + + # Default to SwiGLU + + activation = nn.SiLU() + + dim_out = dim if dim_out is None else dim_out + + if glu: + linear_in = GLU(dim, inner_dim, activation, dtype=dtype, device=device, operations=operations) + else: + linear_in = nn.Sequential( + Rearrange('b n d -> b d n') if use_conv else nn.Identity(), + operations.Linear(dim, inner_dim, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device), + Rearrange('b n d -> b d n') if use_conv else nn.Identity(), + activation + ) + + linear_out = operations.Linear(inner_dim, dim_out, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device) + + # # init last linear layer to 0 + # if zero_init_output: + # nn.init.zeros_(linear_out.weight) + # if not no_bias: + # nn.init.zeros_(linear_out.bias) + + + self.ff = nn.Sequential( + linear_in, + Rearrange('b d n -> b n d') if use_conv else nn.Identity(), + linear_out, + Rearrange('b n d -> b d n') if use_conv else nn.Identity(), + ) + + def forward(self, x): + return self.ff(x) + +class Attention(nn.Module): + def __init__( + self, + dim, + dim_heads = 64, + dim_context = None, + causal = False, + zero_init_output=True, + qk_norm = False, + natten_kernel_size = None, + dtype=None, + device=None, + operations=None, + ): + super().__init__() + self.dim = dim + self.dim_heads = dim_heads + self.causal = causal + + dim_kv = dim_context if dim_context is not None else dim + + self.num_heads = dim // dim_heads + self.kv_heads = dim_kv // dim_heads + + if dim_context is not None: + self.to_q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) + self.to_kv = operations.Linear(dim_kv, dim_kv * 2, bias=False, dtype=dtype, device=device) + else: + self.to_qkv = operations.Linear(dim, dim * 3, bias=False, dtype=dtype, device=device) + + self.to_out = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) + + # if zero_init_output: + # nn.init.zeros_(self.to_out.weight) + + self.qk_norm = qk_norm + + + def forward( + self, + x, + context = None, + mask = None, + context_mask = None, + rotary_pos_emb = None, + causal = None + ): + h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None + + kv_input = context if has_context else x + + if hasattr(self, 'to_q'): + # Use separate linear projections for q and k/v + q = self.to_q(x) + q = rearrange(q, 'b n (h d) -> b h n d', h = h) + + k, v = self.to_kv(kv_input).chunk(2, dim=-1) + + k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v)) + else: + # Use fused linear projection + q, k, v = self.to_qkv(x).chunk(3, dim=-1) + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) + + # Normalize q and k for cosine sim attention + if self.qk_norm: + q = F.normalize(q, dim=-1) + k = F.normalize(k, dim=-1) + + if rotary_pos_emb is not None and not has_context: + freqs, _ = rotary_pos_emb + + q_dtype = q.dtype + k_dtype = k.dtype + + q = q.to(torch.float32) + k = k.to(torch.float32) + freqs = freqs.to(torch.float32) + + q = apply_rotary_pos_emb(q, freqs) + k = apply_rotary_pos_emb(k, freqs) + + q = q.to(q_dtype) + k = k.to(k_dtype) + + input_mask = context_mask + + if input_mask is None and not has_context: + input_mask = mask + + # determine masking + masks = [] + final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account + + if input_mask is not None: + input_mask = rearrange(input_mask, 'b j -> b 1 1 j') + masks.append(~input_mask) + + # Other masks will be added here later + + if len(masks) > 0: + final_attn_mask = ~or_reduce(masks) + + n, device = q.shape[-2], q.device + + causal = self.causal if causal is None else causal + + if n == 1 and causal: + causal = False + + if h != kv_h: + # Repeat interleave kv_heads to match q_heads + heads_per_kv_head = h // kv_h + k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v)) + + out = optimized_attention(q, k, v, h, skip_reshape=True) + out = self.to_out(out) + + if mask is not None: + mask = rearrange(mask, 'b n -> b n 1') + out = out.masked_fill(~mask, 0.) + + return out + +class ConformerModule(nn.Module): + def __init__( + self, + dim, + norm_kwargs = {}, + ): + + super().__init__() + + self.dim = dim + + self.in_norm = LayerNorm(dim, **norm_kwargs) + self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False) + self.glu = GLU(dim, dim, nn.SiLU()) + self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False) + self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm + self.swish = nn.SiLU() + self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False) + + def forward(self, x): + x = self.in_norm(x) + x = rearrange(x, 'b n d -> b d n') + x = self.pointwise_conv(x) + x = rearrange(x, 'b d n -> b n d') + x = self.glu(x) + x = rearrange(x, 'b n d -> b d n') + x = self.depthwise_conv(x) + x = rearrange(x, 'b d n -> b n d') + x = self.mid_norm(x) + x = self.swish(x) + x = rearrange(x, 'b n d -> b d n') + x = self.pointwise_conv_2(x) + x = rearrange(x, 'b d n -> b n d') + + return x + +class TransformerBlock(nn.Module): + def __init__( + self, + dim, + dim_heads = 64, + cross_attend = False, + dim_context = None, + global_cond_dim = None, + causal = False, + zero_init_branch_outputs = True, + conformer = False, + layer_ix = -1, + remove_norms = False, + attn_kwargs = {}, + ff_kwargs = {}, + norm_kwargs = {}, + dtype=None, + device=None, + operations=None, + ): + + super().__init__() + self.dim = dim + self.dim_heads = dim_heads + self.cross_attend = cross_attend + self.dim_context = dim_context + self.causal = causal + + self.pre_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity() + + self.self_attn = Attention( + dim, + dim_heads = dim_heads, + causal = causal, + zero_init_output=zero_init_branch_outputs, + dtype=dtype, + device=device, + operations=operations, + **attn_kwargs + ) + + if cross_attend: + self.cross_attend_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity() + self.cross_attn = Attention( + dim, + dim_heads = dim_heads, + dim_context=dim_context, + causal = causal, + zero_init_output=zero_init_branch_outputs, + dtype=dtype, + device=device, + operations=operations, + **attn_kwargs + ) + + self.ff_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity() + self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, dtype=dtype, device=device, operations=operations,**ff_kwargs) + + self.layer_ix = layer_ix + + self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None + + self.global_cond_dim = global_cond_dim + + if global_cond_dim is not None: + self.to_scale_shift_gate = nn.Sequential( + nn.SiLU(), + nn.Linear(global_cond_dim, dim * 6, bias=False) + ) + + nn.init.zeros_(self.to_scale_shift_gate[1].weight) + #nn.init.zeros_(self.to_scale_shift_gate_self[1].bias) + + def forward( + self, + x, + context = None, + global_cond=None, + mask = None, + context_mask = None, + rotary_pos_emb = None + ): + if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None: + + scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1) + + # self-attention with adaLN + residual = x + x = self.pre_norm(x) + x = x * (1 + scale_self) + shift_self + x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb) + x = x * torch.sigmoid(1 - gate_self) + x = x + residual + + if context is not None: + x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask) + + if self.conformer is not None: + x = x + self.conformer(x) + + # feedforward with adaLN + residual = x + x = self.ff_norm(x) + x = x * (1 + scale_ff) + shift_ff + x = self.ff(x) + x = x * torch.sigmoid(1 - gate_ff) + x = x + residual + + else: + x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb) + + if context is not None: + x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask) + + if self.conformer is not None: + x = x + self.conformer(x) + + x = x + self.ff(self.ff_norm(x)) + + return x + +class ContinuousTransformer(nn.Module): + def __init__( + self, + dim, + depth, + *, + dim_in = None, + dim_out = None, + dim_heads = 64, + cross_attend=False, + cond_token_dim=None, + global_cond_dim=None, + causal=False, + rotary_pos_emb=True, + zero_init_branch_outputs=True, + conformer=False, + use_sinusoidal_emb=False, + use_abs_pos_emb=False, + abs_pos_emb_max_length=10000, + dtype=None, + device=None, + operations=None, + **kwargs + ): + + super().__init__() + + self.dim = dim + self.depth = depth + self.causal = causal + self.layers = nn.ModuleList([]) + + self.project_in = operations.Linear(dim_in, dim, bias=False, dtype=dtype, device=device) if dim_in is not None else nn.Identity() + self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity() + + if rotary_pos_emb: + self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32)) + else: + self.rotary_pos_emb = None + + self.use_sinusoidal_emb = use_sinusoidal_emb + if use_sinusoidal_emb: + self.pos_emb = ScaledSinusoidalEmbedding(dim) + + self.use_abs_pos_emb = use_abs_pos_emb + if use_abs_pos_emb: + self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length) + + for i in range(depth): + self.layers.append( + TransformerBlock( + dim, + dim_heads = dim_heads, + cross_attend = cross_attend, + dim_context = cond_token_dim, + global_cond_dim = global_cond_dim, + causal = causal, + zero_init_branch_outputs = zero_init_branch_outputs, + conformer=conformer, + layer_ix=i, + dtype=dtype, + device=device, + operations=operations, + **kwargs + ) + ) + + def forward( + self, + x, + mask = None, + prepend_embeds = None, + prepend_mask = None, + global_cond = None, + return_info = False, + **kwargs + ): + batch, seq, device = *x.shape[:2], x.device + + info = { + "hidden_states": [], + } + + x = self.project_in(x) + + if prepend_embeds is not None: + prepend_length, prepend_dim = prepend_embeds.shape[1:] + + assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension' + + x = torch.cat((prepend_embeds, x), dim = -2) + + if prepend_mask is not None or mask is not None: + mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool) + prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool) + + mask = torch.cat((prepend_mask, mask), dim = -1) + + # Attention layers + + if self.rotary_pos_emb is not None: + rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device) + else: + rotary_pos_emb = None + + if self.use_sinusoidal_emb or self.use_abs_pos_emb: + x = x + self.pos_emb(x) + + # Iterate over the transformer layers + for layer in self.layers: + x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs) + # x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs) + + if return_info: + info["hidden_states"].append(x) + + x = self.project_out(x) + + if return_info: + return x, info + + return x + +class AudioDiffusionTransformer(nn.Module): + def __init__(self, + io_channels=64, + patch_size=1, + embed_dim=1536, + cond_token_dim=768, + project_cond_tokens=False, + global_cond_dim=1536, + project_global_cond=True, + input_concat_dim=0, + prepend_cond_dim=0, + depth=24, + num_heads=24, + transformer_type: tp.Literal["continuous_transformer"] = "continuous_transformer", + global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend", + audio_model="", + dtype=None, + device=None, + operations=None, + **kwargs): + + super().__init__() + + self.dtype = dtype + self.cond_token_dim = cond_token_dim + + # Timestep embeddings + timestep_features_dim = 256 + + self.timestep_features = FourierFeatures(1, timestep_features_dim, dtype=dtype, device=device) + + self.to_timestep_embed = nn.Sequential( + operations.Linear(timestep_features_dim, embed_dim, bias=True, dtype=dtype, device=device), + nn.SiLU(), + operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device), + ) + + if cond_token_dim > 0: + # Conditioning tokens + + cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim + self.to_cond_embed = nn.Sequential( + operations.Linear(cond_token_dim, cond_embed_dim, bias=False, dtype=dtype, device=device), + nn.SiLU(), + operations.Linear(cond_embed_dim, cond_embed_dim, bias=False, dtype=dtype, device=device) + ) + else: + cond_embed_dim = 0 + + if global_cond_dim > 0: + # Global conditioning + global_embed_dim = global_cond_dim if not project_global_cond else embed_dim + self.to_global_embed = nn.Sequential( + operations.Linear(global_cond_dim, global_embed_dim, bias=False, dtype=dtype, device=device), + nn.SiLU(), + operations.Linear(global_embed_dim, global_embed_dim, bias=False, dtype=dtype, device=device) + ) + + if prepend_cond_dim > 0: + # Prepend conditioning + self.to_prepend_embed = nn.Sequential( + operations.Linear(prepend_cond_dim, embed_dim, bias=False, dtype=dtype, device=device), + nn.SiLU(), + operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device) + ) + + self.input_concat_dim = input_concat_dim + + dim_in = io_channels + self.input_concat_dim + + self.patch_size = patch_size + + # Transformer + + self.transformer_type = transformer_type + + self.global_cond_type = global_cond_type + + if self.transformer_type == "continuous_transformer": + + global_dim = None + + if self.global_cond_type == "adaLN": + # The global conditioning is projected to the embed_dim already at this point + global_dim = embed_dim + + self.transformer = ContinuousTransformer( + dim=embed_dim, + depth=depth, + dim_heads=embed_dim // num_heads, + dim_in=dim_in * patch_size, + dim_out=io_channels * patch_size, + cross_attend = cond_token_dim > 0, + cond_token_dim = cond_embed_dim, + global_cond_dim=global_dim, + dtype=dtype, + device=device, + operations=operations, + **kwargs + ) + else: + raise ValueError(f"Unknown transformer type: {self.transformer_type}") + + self.preprocess_conv = operations.Conv1d(dim_in, dim_in, 1, bias=False, dtype=dtype, device=device) + self.postprocess_conv = operations.Conv1d(io_channels, io_channels, 1, bias=False, dtype=dtype, device=device) + + def _forward( + self, + x, + t, + mask=None, + cross_attn_cond=None, + cross_attn_cond_mask=None, + input_concat_cond=None, + global_embed=None, + prepend_cond=None, + prepend_cond_mask=None, + return_info=False, + **kwargs): + + if cross_attn_cond is not None: + cross_attn_cond = self.to_cond_embed(cross_attn_cond) + + if global_embed is not None: + # Project the global conditioning to the embedding dimension + global_embed = self.to_global_embed(global_embed) + + prepend_inputs = None + prepend_mask = None + prepend_length = 0 + if prepend_cond is not None: + # Project the prepend conditioning to the embedding dimension + prepend_cond = self.to_prepend_embed(prepend_cond) + + prepend_inputs = prepend_cond + if prepend_cond_mask is not None: + prepend_mask = prepend_cond_mask + + if input_concat_cond is not None: + + # Interpolate input_concat_cond to the same length as x + if input_concat_cond.shape[2] != x.shape[2]: + input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest') + + x = torch.cat([x, input_concat_cond], dim=1) + + # Get the batch of timestep embeddings + timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None]).to(x.dtype)) # (b, embed_dim) + + # Timestep embedding is considered a global embedding. Add to the global conditioning if it exists + if global_embed is not None: + global_embed = global_embed + timestep_embed + else: + global_embed = timestep_embed + + # Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer + if self.global_cond_type == "prepend": + if prepend_inputs is None: + # Prepend inputs are just the global embed, and the mask is all ones + prepend_inputs = global_embed.unsqueeze(1) + prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool) + else: + # Prepend inputs are the prepend conditioning + the global embed + prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1) + prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1) + + prepend_length = prepend_inputs.shape[1] + + x = self.preprocess_conv(x) + x + + x = rearrange(x, "b c t -> b t c") + + extra_args = {} + + if self.global_cond_type == "adaLN": + extra_args["global_cond"] = global_embed + + if self.patch_size > 1: + x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size) + + if self.transformer_type == "x-transformers": + output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, **extra_args, **kwargs) + elif self.transformer_type == "continuous_transformer": + output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, return_info=return_info, **extra_args, **kwargs) + + if return_info: + output, info = output + elif self.transformer_type == "mm_transformer": + output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, **extra_args, **kwargs) + + output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:] + + if self.patch_size > 1: + output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size) + + output = self.postprocess_conv(output) + output + + if return_info: + return output, info + + return output + + def forward( + self, + x, + timestep, + context=None, + context_mask=None, + input_concat_cond=None, + global_embed=None, + negative_global_embed=None, + prepend_cond=None, + prepend_cond_mask=None, + mask=None, + return_info=False, + control=None, + transformer_options={}, + **kwargs): + return self._forward( + x, + timestep, + cross_attn_cond=context, + cross_attn_cond_mask=context_mask, + input_concat_cond=input_concat_cond, + global_embed=global_embed, + prepend_cond=prepend_cond, + prepend_cond_mask=prepend_cond_mask, + mask=mask, + return_info=return_info, + **kwargs + ) diff --git a/MagicQuill/comfy/ldm/audio/embedders.py b/MagicQuill/comfy/ldm/audio/embedders.py new file mode 100644 index 0000000000000000000000000000000000000000..82a3210c60de10b4294335cd0001cb3e72b68bd6 --- /dev/null +++ b/MagicQuill/comfy/ldm/audio/embedders.py @@ -0,0 +1,108 @@ +# code adapted from: https://github.com/Stability-AI/stable-audio-tools + +import torch +import torch.nn as nn +from torch import Tensor, einsum +from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union +from einops import rearrange +import math +import comfy.ops + +class LearnedPositionalEmbedding(nn.Module): + """Used for continuous time""" + + def __init__(self, dim: int): + super().__init__() + assert (dim % 2) == 0 + half_dim = dim // 2 + self.weights = nn.Parameter(torch.empty(half_dim)) + + def forward(self, x: Tensor) -> Tensor: + x = rearrange(x, "b -> b 1") + freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * math.pi + fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) + fouriered = torch.cat((x, fouriered), dim=-1) + return fouriered + +def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module: + return nn.Sequential( + LearnedPositionalEmbedding(dim), + comfy.ops.manual_cast.Linear(in_features=dim + 1, out_features=out_features), + ) + + +class NumberEmbedder(nn.Module): + def __init__( + self, + features: int, + dim: int = 256, + ): + super().__init__() + self.features = features + self.embedding = TimePositionalEmbedding(dim=dim, out_features=features) + + def forward(self, x: Union[List[float], Tensor]) -> Tensor: + if not torch.is_tensor(x): + device = next(self.embedding.parameters()).device + x = torch.tensor(x, device=device) + assert isinstance(x, Tensor) + shape = x.shape + x = rearrange(x, "... -> (...)") + embedding = self.embedding(x) + x = embedding.view(*shape, self.features) + return x # type: ignore + + +class Conditioner(nn.Module): + def __init__( + self, + dim: int, + output_dim: int, + project_out: bool = False + ): + + super().__init__() + + self.dim = dim + self.output_dim = output_dim + self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity() + + def forward(self, x): + raise NotImplementedError() + +class NumberConditioner(Conditioner): + ''' + Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings + ''' + def __init__(self, + output_dim: int, + min_val: float=0, + max_val: float=1 + ): + super().__init__(output_dim, output_dim) + + self.min_val = min_val + self.max_val = max_val + + self.embedder = NumberEmbedder(features=output_dim) + + def forward(self, floats, device=None): + # Cast the inputs to floats + floats = [float(x) for x in floats] + + if device is None: + device = next(self.embedder.parameters()).device + + floats = torch.tensor(floats).to(device) + + floats = floats.clamp(self.min_val, self.max_val) + + normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val) + + # Cast floats to same type as embedder + embedder_dtype = next(self.embedder.parameters()).dtype + normalized_floats = normalized_floats.to(embedder_dtype) + + float_embeds = self.embedder(normalized_floats).unsqueeze(1) + + return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)] diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/common.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/common.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3a9ea796d0c4086f3ebb206a54854854753acbfa Binary files /dev/null and b/MagicQuill/comfy/ldm/cascade/__pycache__/common.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/controlnet.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/controlnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c8f72c9827aba12665b962386139aeee28c951c Binary files /dev/null and b/MagicQuill/comfy/ldm/cascade/__pycache__/controlnet.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_a.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_a.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7eed682b6a5f0bde97d31a7b300f630b7d5bbd78 Binary files /dev/null and b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_a.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_b.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_b.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..91226e7ab8aabee452a15165b1a37cc686a5e539 Binary files /dev/null and b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_b.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0daa227d63a708765dd499be35082dcef1212d56 Binary files /dev/null and b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c_coder.cpython-310.pyc b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c_coder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1a556f78558b85c7299efc4575c471d1e076ceef Binary files /dev/null and b/MagicQuill/comfy/ldm/cascade/__pycache__/stage_c_coder.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/cascade/common.py b/MagicQuill/comfy/ldm/cascade/common.py new file mode 100644 index 0000000000000000000000000000000000000000..124902c09a4599e97a4e4c80f9d83b9d44eab22e --- /dev/null +++ b/MagicQuill/comfy/ldm/cascade/common.py @@ -0,0 +1,161 @@ +""" + This file is part of ComfyUI. + Copyright (C) 2024 Stability AI + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +""" + +import torch +import torch.nn as nn +from comfy.ldm.modules.attention import optimized_attention + +class Linear(torch.nn.Linear): + def reset_parameters(self): + return None + +class Conv2d(torch.nn.Conv2d): + def reset_parameters(self): + return None + +class OptimizedAttention(nn.Module): + def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None): + super().__init__() + self.heads = nhead + + self.to_q = operations.Linear(c, c, bias=True, dtype=dtype, device=device) + self.to_k = operations.Linear(c, c, bias=True, dtype=dtype, device=device) + self.to_v = operations.Linear(c, c, bias=True, dtype=dtype, device=device) + + self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device) + + def forward(self, q, k, v): + q = self.to_q(q) + k = self.to_k(k) + v = self.to_v(v) + + out = optimized_attention(q, k, v, self.heads) + + return self.out_proj(out) + +class Attention2D(nn.Module): + def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None): + super().__init__() + self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations) + # self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device) + + def forward(self, x, kv, self_attn=False): + orig_shape = x.shape + x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4 + if self_attn: + kv = torch.cat([x, kv], dim=1) + # x = self.attn(x, kv, kv, need_weights=False)[0] + x = self.attn(x, kv, kv) + x = x.permute(0, 2, 1).view(*orig_shape) + return x + + +def LayerNorm2d_op(operations): + class LayerNorm2d(operations.LayerNorm): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def forward(self, x): + return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + return LayerNorm2d + +class GlobalResponseNorm(nn.Module): + "from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105" + def __init__(self, dim, dtype=None, device=None): + super().__init__() + self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device)) + self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device)) + + def forward(self, x): + Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) + Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) + return self.gamma.to(device=x.device, dtype=x.dtype) * (x * Nx) + self.beta.to(device=x.device, dtype=x.dtype) + x + + +class ResBlock(nn.Module): + def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, dtype=None, device=None, operations=None): # , num_heads=4, expansion=2): + super().__init__() + self.depthwise = operations.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c, dtype=dtype, device=device) + # self.depthwise = SAMBlock(c, num_heads, expansion) + self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.channelwise = nn.Sequential( + operations.Linear(c + c_skip, c * 4, dtype=dtype, device=device), + nn.GELU(), + GlobalResponseNorm(c * 4, dtype=dtype, device=device), + nn.Dropout(dropout), + operations.Linear(c * 4, c, dtype=dtype, device=device) + ) + + def forward(self, x, x_skip=None): + x_res = x + x = self.norm(self.depthwise(x)) + if x_skip is not None: + x = torch.cat([x, x_skip], dim=1) + x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + return x + x_res + + +class AttnBlock(nn.Module): + def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, dtype=None, device=None, operations=None): + super().__init__() + self.self_attn = self_attn + self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.attention = Attention2D(c, nhead, dropout, dtype=dtype, device=device, operations=operations) + self.kv_mapper = nn.Sequential( + nn.SiLU(), + operations.Linear(c_cond, c, dtype=dtype, device=device) + ) + + def forward(self, x, kv): + kv = self.kv_mapper(kv) + x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn) + return x + + +class FeedForwardBlock(nn.Module): + def __init__(self, c, dropout=0.0, dtype=None, device=None, operations=None): + super().__init__() + self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.channelwise = nn.Sequential( + operations.Linear(c, c * 4, dtype=dtype, device=device), + nn.GELU(), + GlobalResponseNorm(c * 4, dtype=dtype, device=device), + nn.Dropout(dropout), + operations.Linear(c * 4, c, dtype=dtype, device=device) + ) + + def forward(self, x): + x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + return x + + +class TimestepBlock(nn.Module): + def __init__(self, c, c_timestep, conds=['sca'], dtype=None, device=None, operations=None): + super().__init__() + self.mapper = operations.Linear(c_timestep, c * 2, dtype=dtype, device=device) + self.conds = conds + for cname in conds: + setattr(self, f"mapper_{cname}", operations.Linear(c_timestep, c * 2, dtype=dtype, device=device)) + + def forward(self, x, t): + t = t.chunk(len(self.conds) + 1, dim=1) + a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1) + for i, c in enumerate(self.conds): + ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1) + a, b = a + ac, b + bc + return x * (1 + a) + b diff --git a/MagicQuill/comfy/ldm/cascade/controlnet.py b/MagicQuill/comfy/ldm/cascade/controlnet.py new file mode 100644 index 0000000000000000000000000000000000000000..5dac5939409a3c9851e768f412eb42a97a9a4381 --- /dev/null +++ b/MagicQuill/comfy/ldm/cascade/controlnet.py @@ -0,0 +1,93 @@ +""" + This file is part of ComfyUI. + Copyright (C) 2024 Stability AI + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +""" + +import torch +import torchvision +from torch import nn +from .common import LayerNorm2d_op + + +class CNetResBlock(nn.Module): + def __init__(self, c, dtype=None, device=None, operations=None): + super().__init__() + self.blocks = nn.Sequential( + LayerNorm2d_op(operations)(c, dtype=dtype, device=device), + nn.GELU(), + operations.Conv2d(c, c, kernel_size=3, padding=1), + LayerNorm2d_op(operations)(c, dtype=dtype, device=device), + nn.GELU(), + operations.Conv2d(c, c, kernel_size=3, padding=1), + ) + + def forward(self, x): + return x + self.blocks(x) + + +class ControlNet(nn.Module): + def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None, dtype=None, device=None, operations=nn): + super().__init__() + if bottleneck_mode is None: + bottleneck_mode = 'effnet' + self.proj_blocks = proj_blocks + if bottleneck_mode == 'effnet': + embd_channels = 1280 + self.backbone = torchvision.models.efficientnet_v2_s().features.eval() + if c_in != 3: + in_weights = self.backbone[0][0].weight.data + self.backbone[0][0] = operations.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False, dtype=dtype, device=device) + if c_in > 3: + # nn.init.constant_(self.backbone[0][0].weight, 0) + self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone() + else: + self.backbone[0][0].weight.data = in_weights[:, :c_in].clone() + elif bottleneck_mode == 'simple': + embd_channels = c_in + self.backbone = nn.Sequential( + operations.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1, dtype=dtype, device=device), + nn.LeakyReLU(0.2, inplace=True), + operations.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1, dtype=dtype, device=device), + ) + elif bottleneck_mode == 'large': + self.backbone = nn.Sequential( + operations.Conv2d(c_in, 4096 * 4, kernel_size=1, dtype=dtype, device=device), + nn.LeakyReLU(0.2, inplace=True), + operations.Conv2d(4096 * 4, 1024, kernel_size=1, dtype=dtype, device=device), + *[CNetResBlock(1024, dtype=dtype, device=device, operations=operations) for _ in range(8)], + operations.Conv2d(1024, 1280, kernel_size=1, dtype=dtype, device=device), + ) + embd_channels = 1280 + else: + raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}') + self.projections = nn.ModuleList() + for _ in range(len(proj_blocks)): + self.projections.append(nn.Sequential( + operations.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False, dtype=dtype, device=device), + nn.LeakyReLU(0.2, inplace=True), + operations.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False, dtype=dtype, device=device), + )) + # nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection + self.xl = False + self.input_channels = c_in + self.unshuffle_amount = 8 + + def forward(self, x): + x = self.backbone(x) + proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)] + for i, idx in enumerate(self.proj_blocks): + proj_outputs[idx] = self.projections[i](x) + return proj_outputs diff --git a/MagicQuill/comfy/ldm/cascade/stage_a.py b/MagicQuill/comfy/ldm/cascade/stage_a.py new file mode 100644 index 0000000000000000000000000000000000000000..ca8867eaf35cbc57eb5d925082b7e2bb7b36932d --- /dev/null +++ b/MagicQuill/comfy/ldm/cascade/stage_a.py @@ -0,0 +1,255 @@ +""" + This file is part of ComfyUI. + Copyright (C) 2024 Stability AI + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +""" + +import torch +from torch import nn +from torch.autograd import Function + +class vector_quantize(Function): + @staticmethod + def forward(ctx, x, codebook): + with torch.no_grad(): + codebook_sqr = torch.sum(codebook ** 2, dim=1) + x_sqr = torch.sum(x ** 2, dim=1, keepdim=True) + + dist = torch.addmm(codebook_sqr + x_sqr, x, codebook.t(), alpha=-2.0, beta=1.0) + _, indices = dist.min(dim=1) + + ctx.save_for_backward(indices, codebook) + ctx.mark_non_differentiable(indices) + + nn = torch.index_select(codebook, 0, indices) + return nn, indices + + @staticmethod + def backward(ctx, grad_output, grad_indices): + grad_inputs, grad_codebook = None, None + + if ctx.needs_input_grad[0]: + grad_inputs = grad_output.clone() + if ctx.needs_input_grad[1]: + # Gradient wrt. the codebook + indices, codebook = ctx.saved_tensors + + grad_codebook = torch.zeros_like(codebook) + grad_codebook.index_add_(0, indices, grad_output) + + return (grad_inputs, grad_codebook) + + +class VectorQuantize(nn.Module): + def __init__(self, embedding_size, k, ema_decay=0.99, ema_loss=False): + """ + Takes an input of variable size (as long as the last dimension matches the embedding size). + Returns one tensor containing the nearest neigbour embeddings to each of the inputs, + with the same size as the input, vq and commitment components for the loss as a touple + in the second output and the indices of the quantized vectors in the third: + quantized, (vq_loss, commit_loss), indices + """ + super(VectorQuantize, self).__init__() + + self.codebook = nn.Embedding(k, embedding_size) + self.codebook.weight.data.uniform_(-1./k, 1./k) + self.vq = vector_quantize.apply + + self.ema_decay = ema_decay + self.ema_loss = ema_loss + if ema_loss: + self.register_buffer('ema_element_count', torch.ones(k)) + self.register_buffer('ema_weight_sum', torch.zeros_like(self.codebook.weight)) + + def _laplace_smoothing(self, x, epsilon): + n = torch.sum(x) + return ((x + epsilon) / (n + x.size(0) * epsilon) * n) + + def _updateEMA(self, z_e_x, indices): + mask = nn.functional.one_hot(indices, self.ema_element_count.size(0)).float() + elem_count = mask.sum(dim=0) + weight_sum = torch.mm(mask.t(), z_e_x) + + self.ema_element_count = (self.ema_decay * self.ema_element_count) + ((1-self.ema_decay) * elem_count) + self.ema_element_count = self._laplace_smoothing(self.ema_element_count, 1e-5) + self.ema_weight_sum = (self.ema_decay * self.ema_weight_sum) + ((1-self.ema_decay) * weight_sum) + + self.codebook.weight.data = self.ema_weight_sum / self.ema_element_count.unsqueeze(-1) + + def idx2vq(self, idx, dim=-1): + q_idx = self.codebook(idx) + if dim != -1: + q_idx = q_idx.movedim(-1, dim) + return q_idx + + def forward(self, x, get_losses=True, dim=-1): + if dim != -1: + x = x.movedim(dim, -1) + z_e_x = x.contiguous().view(-1, x.size(-1)) if len(x.shape) > 2 else x + z_q_x, indices = self.vq(z_e_x, self.codebook.weight.detach()) + vq_loss, commit_loss = None, None + if self.ema_loss and self.training: + self._updateEMA(z_e_x.detach(), indices.detach()) + # pick the graded embeddings after updating the codebook in order to have a more accurate commitment loss + z_q_x_grd = torch.index_select(self.codebook.weight, dim=0, index=indices) + if get_losses: + vq_loss = (z_q_x_grd - z_e_x.detach()).pow(2).mean() + commit_loss = (z_e_x - z_q_x_grd.detach()).pow(2).mean() + + z_q_x = z_q_x.view(x.shape) + if dim != -1: + z_q_x = z_q_x.movedim(-1, dim) + return z_q_x, (vq_loss, commit_loss), indices.view(x.shape[:-1]) + + +class ResBlock(nn.Module): + def __init__(self, c, c_hidden): + super().__init__() + # depthwise/attention + self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6) + self.depthwise = nn.Sequential( + nn.ReplicationPad2d(1), + nn.Conv2d(c, c, kernel_size=3, groups=c) + ) + + # channelwise + self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6) + self.channelwise = nn.Sequential( + nn.Linear(c, c_hidden), + nn.GELU(), + nn.Linear(c_hidden, c), + ) + + self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True) + + # Init weights + def _basic_init(module): + if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): + torch.nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + nn.init.constant_(module.bias, 0) + + self.apply(_basic_init) + + def _norm(self, x, norm): + return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + + def forward(self, x): + mods = self.gammas + + x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1] + try: + x = x + self.depthwise(x_temp) * mods[2] + except: #operation not implemented for bf16 + x_temp = self.depthwise[0](x_temp.float()).to(x.dtype) + x = x + self.depthwise[1](x_temp) * mods[2] + + x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4] + x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5] + + return x + + +class StageA(nn.Module): + def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192): + super().__init__() + self.c_latent = c_latent + c_levels = [c_hidden // (2 ** i) for i in reversed(range(levels))] + + # Encoder blocks + self.in_block = nn.Sequential( + nn.PixelUnshuffle(2), + nn.Conv2d(3 * 4, c_levels[0], kernel_size=1) + ) + down_blocks = [] + for i in range(levels): + if i > 0: + down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1)) + block = ResBlock(c_levels[i], c_levels[i] * 4) + down_blocks.append(block) + down_blocks.append(nn.Sequential( + nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False), + nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1 + )) + self.down_blocks = nn.Sequential(*down_blocks) + self.down_blocks[0] + + self.codebook_size = codebook_size + self.vquantizer = VectorQuantize(c_latent, k=codebook_size) + + # Decoder blocks + up_blocks = [nn.Sequential( + nn.Conv2d(c_latent, c_levels[-1], kernel_size=1) + )] + for i in range(levels): + for j in range(bottleneck_blocks if i == 0 else 1): + block = ResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4) + up_blocks.append(block) + if i < levels - 1: + up_blocks.append( + nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, + padding=1)) + self.up_blocks = nn.Sequential(*up_blocks) + self.out_block = nn.Sequential( + nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1), + nn.PixelShuffle(2), + ) + + def encode(self, x, quantize=False): + x = self.in_block(x) + x = self.down_blocks(x) + if quantize: + qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1) + return qe, x, indices, vq_loss + commit_loss * 0.25 + else: + return x + + def decode(self, x): + x = self.up_blocks(x) + x = self.out_block(x) + return x + + def forward(self, x, quantize=False): + qe, x, _, vq_loss = self.encode(x, quantize) + x = self.decode(qe) + return x, vq_loss + + +class Discriminator(nn.Module): + def __init__(self, c_in=3, c_cond=0, c_hidden=512, depth=6): + super().__init__() + d = max(depth - 3, 3) + layers = [ + nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)), + nn.LeakyReLU(0.2), + ] + for i in range(depth - 1): + c_in = c_hidden // (2 ** max((d - i), 0)) + c_out = c_hidden // (2 ** max((d - 1 - i), 0)) + layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1))) + layers.append(nn.InstanceNorm2d(c_out)) + layers.append(nn.LeakyReLU(0.2)) + self.encoder = nn.Sequential(*layers) + self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1) + self.logits = nn.Sigmoid() + + def forward(self, x, cond=None): + x = self.encoder(x) + if cond is not None: + cond = cond.view(cond.size(0), cond.size(1), 1, 1, ).expand(-1, -1, x.size(-2), x.size(-1)) + x = torch.cat([x, cond], dim=1) + x = self.shuffle(x) + x = self.logits(x) + return x diff --git a/MagicQuill/comfy/ldm/cascade/stage_b.py b/MagicQuill/comfy/ldm/cascade/stage_b.py new file mode 100644 index 0000000000000000000000000000000000000000..7c3d8feabd826accc702b6e6e598b61b4a739194 --- /dev/null +++ b/MagicQuill/comfy/ldm/cascade/stage_b.py @@ -0,0 +1,256 @@ +""" + This file is part of ComfyUI. + Copyright (C) 2024 Stability AI + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +""" + +import math +import torch +from torch import nn +from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock + +class StageB(nn.Module): + def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1280, c_hidden=[320, 640, 1280, 1280], + nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]], + block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]], level_config=['CT', 'CT', 'CTA', 'CTA'], c_clip=1280, + c_clip_seq=4, c_effnet=16, c_pixels=3, kernel_size=3, dropout=[0, 0, 0.0, 0.0], self_attn=True, + t_conds=['sca'], stable_cascade_stage=None, dtype=None, device=None, operations=None): + super().__init__() + self.dtype = dtype + self.c_r = c_r + self.t_conds = t_conds + self.c_clip_seq = c_clip_seq + if not isinstance(dropout, list): + dropout = [dropout] * len(c_hidden) + if not isinstance(self_attn, list): + self_attn = [self_attn] * len(c_hidden) + + # CONDITIONING + self.effnet_mapper = nn.Sequential( + operations.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device), + nn.GELU(), + operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device), + LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + ) + self.pixels_mapper = nn.Sequential( + operations.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device), + nn.GELU(), + operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device), + LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + ) + self.clip_mapper = operations.Linear(c_clip, c_cond * c_clip_seq, dtype=dtype, device=device) + self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + + self.embedding = nn.Sequential( + nn.PixelUnshuffle(patch_size), + operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device), + LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + ) + + def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True): + if block_type == 'C': + return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations) + elif block_type == 'A': + return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations) + elif block_type == 'F': + return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations) + elif block_type == 'T': + return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations) + else: + raise Exception(f'Block type {block_type} not supported') + + # BLOCKS + # -- down blocks + self.down_blocks = nn.ModuleList() + self.down_downscalers = nn.ModuleList() + self.down_repeat_mappers = nn.ModuleList() + for i in range(len(c_hidden)): + if i > 0: + self.down_downscalers.append(nn.Sequential( + LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device), + operations.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2, dtype=dtype, device=device), + )) + else: + self.down_downscalers.append(nn.Identity()) + down_block = nn.ModuleList() + for _ in range(blocks[0][i]): + for block_type in level_config[i]: + block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i]) + down_block.append(block) + self.down_blocks.append(down_block) + if block_repeat is not None: + block_repeat_mappers = nn.ModuleList() + for _ in range(block_repeat[0][i] - 1): + block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device)) + self.down_repeat_mappers.append(block_repeat_mappers) + + # -- up blocks + self.up_blocks = nn.ModuleList() + self.up_upscalers = nn.ModuleList() + self.up_repeat_mappers = nn.ModuleList() + for i in reversed(range(len(c_hidden))): + if i > 0: + self.up_upscalers.append(nn.Sequential( + LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device), + operations.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2, dtype=dtype, device=device), + )) + else: + self.up_upscalers.append(nn.Identity()) + up_block = nn.ModuleList() + for j in range(blocks[1][::-1][i]): + for k, block_type in enumerate(level_config[i]): + c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0 + block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i], + self_attn=self_attn[i]) + up_block.append(block) + self.up_blocks.append(up_block) + if block_repeat is not None: + block_repeat_mappers = nn.ModuleList() + for _ in range(block_repeat[1][::-1][i] - 1): + block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device)) + self.up_repeat_mappers.append(block_repeat_mappers) + + # OUTPUT + self.clf = nn.Sequential( + LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device), + operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device), + nn.PixelShuffle(patch_size), + ) + + # --- WEIGHT INIT --- + # self.apply(self._init_weights) # General init + # nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings + # nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings + # nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings + # nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings + # nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings + # torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs + # nn.init.constant_(self.clf[1].weight, 0) # outputs + # + # # blocks + # for level_block in self.down_blocks + self.up_blocks: + # for block in level_block: + # if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock): + # block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0])) + # elif isinstance(block, TimestepBlock): + # for layer in block.modules(): + # if isinstance(layer, nn.Linear): + # nn.init.constant_(layer.weight, 0) + # + # def _init_weights(self, m): + # if isinstance(m, (nn.Conv2d, nn.Linear)): + # torch.nn.init.xavier_uniform_(m.weight) + # if m.bias is not None: + # nn.init.constant_(m.bias, 0) + + def gen_r_embedding(self, r, max_positions=10000): + r = r * max_positions + half_dim = self.c_r // 2 + emb = math.log(max_positions) / (half_dim - 1) + emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() + emb = r[:, None] * emb[None, :] + emb = torch.cat([emb.sin(), emb.cos()], dim=1) + if self.c_r % 2 == 1: # zero pad + emb = nn.functional.pad(emb, (0, 1), mode='constant') + return emb + + def gen_c_embeddings(self, clip): + if len(clip.shape) == 2: + clip = clip.unsqueeze(1) + clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1) + clip = self.clip_norm(clip) + return clip + + def _down_encode(self, x, r_embed, clip): + level_outputs = [] + block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers) + for down_block, downscaler, repmap in block_group: + x = downscaler(x) + for i in range(len(repmap) + 1): + for block in down_block: + if isinstance(block, ResBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + ResBlock)): + x = block(x) + elif isinstance(block, AttnBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + AttnBlock)): + x = block(x, clip) + elif isinstance(block, TimestepBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + TimestepBlock)): + x = block(x, r_embed) + else: + x = block(x) + if i < len(repmap): + x = repmap[i](x) + level_outputs.insert(0, x) + return level_outputs + + def _up_decode(self, level_outputs, r_embed, clip): + x = level_outputs[0] + block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers) + for i, (up_block, upscaler, repmap) in enumerate(block_group): + for j in range(len(repmap) + 1): + for k, block in enumerate(up_block): + if isinstance(block, ResBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + ResBlock)): + skip = level_outputs[i] if k == 0 and i > 0 else None + if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): + x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear', + align_corners=True) + x = block(x, skip) + elif isinstance(block, AttnBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + AttnBlock)): + x = block(x, clip) + elif isinstance(block, TimestepBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + TimestepBlock)): + x = block(x, r_embed) + else: + x = block(x) + if j < len(repmap): + x = repmap[j](x) + x = upscaler(x) + return x + + def forward(self, x, r, effnet, clip, pixels=None, **kwargs): + if pixels is None: + pixels = x.new_zeros(x.size(0), 3, 8, 8) + + # Process the conditioning embeddings + r_embed = self.gen_r_embedding(r).to(dtype=x.dtype) + for c in self.t_conds: + t_cond = kwargs.get(c, torch.zeros_like(r)) + r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1) + clip = self.gen_c_embeddings(clip) + + # Model Blocks + x = self.embedding(x) + x = x + self.effnet_mapper( + nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True)) + x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear', + align_corners=True) + level_outputs = self._down_encode(x, r_embed, clip) + x = self._up_decode(level_outputs, r_embed, clip) + return self.clf(x) + + def update_weights_ema(self, src_model, beta=0.999): + for self_params, src_params in zip(self.parameters(), src_model.parameters()): + self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta) + for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()): + self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta) diff --git a/MagicQuill/comfy/ldm/cascade/stage_c.py b/MagicQuill/comfy/ldm/cascade/stage_c.py new file mode 100644 index 0000000000000000000000000000000000000000..c85da1f01c1d862de5906e73fc746fc92eb51304 --- /dev/null +++ b/MagicQuill/comfy/ldm/cascade/stage_c.py @@ -0,0 +1,273 @@ +""" + This file is part of ComfyUI. + Copyright (C) 2024 Stability AI + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +""" + +import torch +from torch import nn +import math +from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock +# from .controlnet import ControlNetDeliverer + +class UpDownBlock2d(nn.Module): + def __init__(self, c_in, c_out, mode, enabled=True, dtype=None, device=None, operations=None): + super().__init__() + assert mode in ['up', 'down'] + interpolation = nn.Upsample(scale_factor=2 if mode == 'up' else 0.5, mode='bilinear', + align_corners=True) if enabled else nn.Identity() + mapping = operations.Conv2d(c_in, c_out, kernel_size=1, dtype=dtype, device=device) + self.blocks = nn.ModuleList([interpolation, mapping] if mode == 'up' else [mapping, interpolation]) + + def forward(self, x): + for block in self.blocks: + x = block(x) + return x + + +class StageC(nn.Module): + def __init__(self, c_in=16, c_out=16, c_r=64, patch_size=1, c_cond=2048, c_hidden=[2048, 2048], nhead=[32, 32], + blocks=[[8, 24], [24, 8]], block_repeat=[[1, 1], [1, 1]], level_config=['CTA', 'CTA'], + c_clip_text=1280, c_clip_text_pooled=1280, c_clip_img=768, c_clip_seq=4, kernel_size=3, + dropout=[0.0, 0.0], self_attn=True, t_conds=['sca', 'crp'], switch_level=[False], stable_cascade_stage=None, + dtype=None, device=None, operations=None): + super().__init__() + self.dtype = dtype + self.c_r = c_r + self.t_conds = t_conds + self.c_clip_seq = c_clip_seq + if not isinstance(dropout, list): + dropout = [dropout] * len(c_hidden) + if not isinstance(self_attn, list): + self_attn = [self_attn] * len(c_hidden) + + # CONDITIONING + self.clip_txt_mapper = operations.Linear(c_clip_text, c_cond, dtype=dtype, device=device) + self.clip_txt_pooled_mapper = operations.Linear(c_clip_text_pooled, c_cond * c_clip_seq, dtype=dtype, device=device) + self.clip_img_mapper = operations.Linear(c_clip_img, c_cond * c_clip_seq, dtype=dtype, device=device) + self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + + self.embedding = nn.Sequential( + nn.PixelUnshuffle(patch_size), + operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device), + LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6) + ) + + def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True): + if block_type == 'C': + return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations) + elif block_type == 'A': + return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations) + elif block_type == 'F': + return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations) + elif block_type == 'T': + return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations) + else: + raise Exception(f'Block type {block_type} not supported') + + # BLOCKS + # -- down blocks + self.down_blocks = nn.ModuleList() + self.down_downscalers = nn.ModuleList() + self.down_repeat_mappers = nn.ModuleList() + for i in range(len(c_hidden)): + if i > 0: + self.down_downscalers.append(nn.Sequential( + LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6), + UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode='down', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations) + )) + else: + self.down_downscalers.append(nn.Identity()) + down_block = nn.ModuleList() + for _ in range(blocks[0][i]): + for block_type in level_config[i]: + block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i]) + down_block.append(block) + self.down_blocks.append(down_block) + if block_repeat is not None: + block_repeat_mappers = nn.ModuleList() + for _ in range(block_repeat[0][i] - 1): + block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device)) + self.down_repeat_mappers.append(block_repeat_mappers) + + # -- up blocks + self.up_blocks = nn.ModuleList() + self.up_upscalers = nn.ModuleList() + self.up_repeat_mappers = nn.ModuleList() + for i in reversed(range(len(c_hidden))): + if i > 0: + self.up_upscalers.append(nn.Sequential( + LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6), + UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode='up', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations) + )) + else: + self.up_upscalers.append(nn.Identity()) + up_block = nn.ModuleList() + for j in range(blocks[1][::-1][i]): + for k, block_type in enumerate(level_config[i]): + c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0 + block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i], + self_attn=self_attn[i]) + up_block.append(block) + self.up_blocks.append(up_block) + if block_repeat is not None: + block_repeat_mappers = nn.ModuleList() + for _ in range(block_repeat[1][::-1][i] - 1): + block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device)) + self.up_repeat_mappers.append(block_repeat_mappers) + + # OUTPUT + self.clf = nn.Sequential( + LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device), + operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device), + nn.PixelShuffle(patch_size), + ) + + # --- WEIGHT INIT --- + # self.apply(self._init_weights) # General init + # nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) # conditionings + # nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) # conditionings + # nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings + # torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs + # nn.init.constant_(self.clf[1].weight, 0) # outputs + # + # # blocks + # for level_block in self.down_blocks + self.up_blocks: + # for block in level_block: + # if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock): + # block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0])) + # elif isinstance(block, TimestepBlock): + # for layer in block.modules(): + # if isinstance(layer, nn.Linear): + # nn.init.constant_(layer.weight, 0) + # + # def _init_weights(self, m): + # if isinstance(m, (nn.Conv2d, nn.Linear)): + # torch.nn.init.xavier_uniform_(m.weight) + # if m.bias is not None: + # nn.init.constant_(m.bias, 0) + + def gen_r_embedding(self, r, max_positions=10000): + r = r * max_positions + half_dim = self.c_r // 2 + emb = math.log(max_positions) / (half_dim - 1) + emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() + emb = r[:, None] * emb[None, :] + emb = torch.cat([emb.sin(), emb.cos()], dim=1) + if self.c_r % 2 == 1: # zero pad + emb = nn.functional.pad(emb, (0, 1), mode='constant') + return emb + + def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img): + clip_txt = self.clip_txt_mapper(clip_txt) + if len(clip_txt_pooled.shape) == 2: + clip_txt_pooled = clip_txt_pooled.unsqueeze(1) + if len(clip_img.shape) == 2: + clip_img = clip_img.unsqueeze(1) + clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1) + clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1) + clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1) + clip = self.clip_norm(clip) + return clip + + def _down_encode(self, x, r_embed, clip, cnet=None): + level_outputs = [] + block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers) + for down_block, downscaler, repmap in block_group: + x = downscaler(x) + for i in range(len(repmap) + 1): + for block in down_block: + if isinstance(block, ResBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + ResBlock)): + if cnet is not None: + next_cnet = cnet.pop() + if next_cnet is not None: + x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear', + align_corners=True).to(x.dtype) + x = block(x) + elif isinstance(block, AttnBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + AttnBlock)): + x = block(x, clip) + elif isinstance(block, TimestepBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + TimestepBlock)): + x = block(x, r_embed) + else: + x = block(x) + if i < len(repmap): + x = repmap[i](x) + level_outputs.insert(0, x) + return level_outputs + + def _up_decode(self, level_outputs, r_embed, clip, cnet=None): + x = level_outputs[0] + block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers) + for i, (up_block, upscaler, repmap) in enumerate(block_group): + for j in range(len(repmap) + 1): + for k, block in enumerate(up_block): + if isinstance(block, ResBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + ResBlock)): + skip = level_outputs[i] if k == 0 and i > 0 else None + if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): + x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear', + align_corners=True) + if cnet is not None: + next_cnet = cnet.pop() + if next_cnet is not None: + x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear', + align_corners=True).to(x.dtype) + x = block(x, skip) + elif isinstance(block, AttnBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + AttnBlock)): + x = block(x, clip) + elif isinstance(block, TimestepBlock) or ( + hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, + TimestepBlock)): + x = block(x, r_embed) + else: + x = block(x) + if j < len(repmap): + x = repmap[j](x) + x = upscaler(x) + return x + + def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, **kwargs): + # Process the conditioning embeddings + r_embed = self.gen_r_embedding(r).to(dtype=x.dtype) + for c in self.t_conds: + t_cond = kwargs.get(c, torch.zeros_like(r)) + r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1) + clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img) + + if control is not None: + cnet = control.get("input") + else: + cnet = None + + # Model Blocks + x = self.embedding(x) + level_outputs = self._down_encode(x, r_embed, clip, cnet) + x = self._up_decode(level_outputs, r_embed, clip, cnet) + return self.clf(x) + + def update_weights_ema(self, src_model, beta=0.999): + for self_params, src_params in zip(self.parameters(), src_model.parameters()): + self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta) + for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()): + self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta) diff --git a/MagicQuill/comfy/ldm/cascade/stage_c_coder.py b/MagicQuill/comfy/ldm/cascade/stage_c_coder.py new file mode 100644 index 0000000000000000000000000000000000000000..0cb7c49fc90c434553954772cbf522e1f4a88955 --- /dev/null +++ b/MagicQuill/comfy/ldm/cascade/stage_c_coder.py @@ -0,0 +1,95 @@ +""" + This file is part of ComfyUI. + Copyright (C) 2024 Stability AI + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +""" +import torch +import torchvision +from torch import nn + + +# EfficientNet +class EfficientNetEncoder(nn.Module): + def __init__(self, c_latent=16): + super().__init__() + self.backbone = torchvision.models.efficientnet_v2_s().features.eval() + self.mapper = nn.Sequential( + nn.Conv2d(1280, c_latent, kernel_size=1, bias=False), + nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1 + ) + self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406])) + self.std = nn.Parameter(torch.tensor([0.229, 0.224, 0.225])) + + def forward(self, x): + x = x * 0.5 + 0.5 + x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1]) + o = self.mapper(self.backbone(x)) + return o + + +# Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192 +class Previewer(nn.Module): + def __init__(self, c_in=16, c_hidden=512, c_out=3): + super().__init__() + self.blocks = nn.Sequential( + nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels + nn.GELU(), + nn.BatchNorm2d(c_hidden), + + nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1), + nn.GELU(), + nn.BatchNorm2d(c_hidden), + + nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32 + nn.GELU(), + nn.BatchNorm2d(c_hidden // 2), + + nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1), + nn.GELU(), + nn.BatchNorm2d(c_hidden // 2), + + nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64 + nn.GELU(), + nn.BatchNorm2d(c_hidden // 4), + + nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1), + nn.GELU(), + nn.BatchNorm2d(c_hidden // 4), + + nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128 + nn.GELU(), + nn.BatchNorm2d(c_hidden // 4), + + nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1), + nn.GELU(), + nn.BatchNorm2d(c_hidden // 4), + + nn.Conv2d(c_hidden // 4, c_out, kernel_size=1), + ) + + def forward(self, x): + return (self.blocks(x) - 0.5) * 2.0 + +class StageC_coder(nn.Module): + def __init__(self): + super().__init__() + self.previewer = Previewer() + self.encoder = EfficientNetEncoder() + + def encode(self, x): + return self.encoder(x) + + def decode(self, x): + return self.previewer(x) diff --git a/MagicQuill/comfy/ldm/modules/__pycache__/attention.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/__pycache__/attention.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a44f34018795428c0803f163f12305f415c521d4 Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/__pycache__/attention.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/__pycache__/ema.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/__pycache__/ema.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9493eaf691ef0d4ad636b42cdeecb41fdc9019cf Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/__pycache__/ema.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/__pycache__/sub_quadratic_attention.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/__pycache__/sub_quadratic_attention.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..916aeaa3d201ae74b5e06ece945c57697af20981 Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/__pycache__/sub_quadratic_attention.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/attention.py b/MagicQuill/comfy/ldm/modules/attention.py new file mode 100644 index 0000000000000000000000000000000000000000..65a8bcf42b81c318e87f4ed19b4f9a43d8f4d610 --- /dev/null +++ b/MagicQuill/comfy/ldm/modules/attention.py @@ -0,0 +1,865 @@ +import math +import torch +import torch.nn.functional as F +from torch import nn, einsum +from einops import rearrange, repeat +from typing import Optional +import logging + +from .diffusionmodules.util import AlphaBlender, timestep_embedding +from .sub_quadratic_attention import efficient_dot_product_attention + +from comfy import model_management + +if model_management.xformers_enabled(): + import xformers + import xformers.ops + +from comfy.cli_args import args +import comfy.ops +ops = comfy.ops.disable_weight_init + +FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype() + +def get_attn_precision(attn_precision): + if args.dont_upcast_attention: + return None + if FORCE_UPCAST_ATTENTION_DTYPE is not None: + return FORCE_UPCAST_ATTENTION_DTYPE + return attn_precision + +def exists(val): + return val is not None + + +def uniq(arr): + return{el: True for el in arr}.keys() + + +def default(val, d): + if exists(val): + return val + return d + + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + + +def init_(tensor): + dim = tensor.shape[-1] + std = 1 / math.sqrt(dim) + tensor.uniform_(-std, std) + return tensor + + +# feedforward +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops): + super().__init__() + self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = nn.Sequential( + operations.Linear(dim, inner_dim, dtype=dtype, device=device), + nn.GELU() + ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations) + + self.net = nn.Sequential( + project_in, + nn.Dropout(dropout), + operations.Linear(inner_dim, dim_out, dtype=dtype, device=device) + ) + + def forward(self, x): + return self.net(x) + +def Normalize(in_channels, dtype=None, device=None): + return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) + +def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): + attn_precision = get_attn_precision(attn_precision) + + if skip_reshape: + b, _, _, dim_head = q.shape + else: + b, _, dim_head = q.shape + dim_head //= heads + + scale = dim_head ** -0.5 + + h = heads + if skip_reshape: + q, k, v = map( + lambda t: t.reshape(b * heads, -1, dim_head), + (q, k, v), + ) + else: + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, -1, heads, dim_head) + .permute(0, 2, 1, 3) + .reshape(b * heads, -1, dim_head) + .contiguous(), + (q, k, v), + ) + + # force cast to fp32 to avoid overflowing + if attn_precision == torch.float32: + sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale + else: + sim = einsum('b i d, b j d -> b i j', q, k) * scale + + del q, k + + if exists(mask): + if mask.dtype == torch.bool: + mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + else: + if len(mask.shape) == 2: + bs = 1 + else: + bs = mask.shape[0] + mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) + sim.add_(mask) + + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) + + out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v) + out = ( + out.unsqueeze(0) + .reshape(b, heads, -1, dim_head) + .permute(0, 2, 1, 3) + .reshape(b, -1, heads * dim_head) + ) + return out + + +def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False): + attn_precision = get_attn_precision(attn_precision) + + if skip_reshape: + b, _, _, dim_head = query.shape + else: + b, _, dim_head = query.shape + dim_head //= heads + + scale = dim_head ** -0.5 + + if skip_reshape: + query = query.reshape(b * heads, -1, dim_head) + value = value.reshape(b * heads, -1, dim_head) + key = key.reshape(b * heads, -1, dim_head).movedim(1, 2) + else: + query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) + value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) + key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1) + + + dtype = query.dtype + upcast_attention = attn_precision == torch.float32 and query.dtype != torch.float32 + if upcast_attention: + bytes_per_token = torch.finfo(torch.float32).bits//8 + else: + bytes_per_token = torch.finfo(query.dtype).bits//8 + batch_x_heads, q_tokens, _ = query.shape + _, _, k_tokens = key.shape + qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens + + mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True) + + kv_chunk_size_min = None + kv_chunk_size = None + query_chunk_size = None + + for x in [4096, 2048, 1024, 512, 256]: + count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0) + if count >= k_tokens: + kv_chunk_size = k_tokens + query_chunk_size = x + break + + if query_chunk_size is None: + query_chunk_size = 512 + + if mask is not None: + if len(mask.shape) == 2: + bs = 1 + else: + bs = mask.shape[0] + mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) + + hidden_states = efficient_dot_product_attention( + query, + key, + value, + query_chunk_size=query_chunk_size, + kv_chunk_size=kv_chunk_size, + kv_chunk_size_min=kv_chunk_size_min, + use_checkpoint=False, + upcast_attention=upcast_attention, + mask=mask, + ) + + hidden_states = hidden_states.to(dtype) + + hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2) + return hidden_states + +def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): + attn_precision = get_attn_precision(attn_precision) + + if skip_reshape: + b, _, _, dim_head = q.shape + else: + b, _, dim_head = q.shape + dim_head //= heads + + scale = dim_head ** -0.5 + + h = heads + if skip_reshape: + q, k, v = map( + lambda t: t.reshape(b * heads, -1, dim_head), + (q, k, v), + ) + else: + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, -1, heads, dim_head) + .permute(0, 2, 1, 3) + .reshape(b * heads, -1, dim_head) + .contiguous(), + (q, k, v), + ) + + r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) + + mem_free_total = model_management.get_free_memory(q.device) + + if attn_precision == torch.float32: + element_size = 4 + upcast = True + else: + element_size = q.element_size() + upcast = False + + gb = 1024 ** 3 + tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size + modifier = 3 + mem_required = tensor_size * modifier + steps = 1 + + + if mem_required > mem_free_total: + steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) + # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " + # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") + + if steps > 64: + max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 + raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' + f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free') + + if mask is not None: + if len(mask.shape) == 2: + bs = 1 + else: + bs = mask.shape[0] + mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) + + # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size) + first_op_done = False + cleared_cache = False + while True: + try: + slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] + for i in range(0, q.shape[1], slice_size): + end = i + slice_size + if upcast: + with torch.autocast(enabled=False, device_type = 'cuda'): + s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale + else: + s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale + + if mask is not None: + if len(mask.shape) == 2: + s1 += mask[i:end] + else: + s1 += mask[:, i:end] + + s2 = s1.softmax(dim=-1).to(v.dtype) + del s1 + first_op_done = True + + r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) + del s2 + break + except model_management.OOM_EXCEPTION as e: + if first_op_done == False: + model_management.soft_empty_cache(True) + if cleared_cache == False: + cleared_cache = True + logging.warning("out of memory error, emptying cache and trying again") + continue + steps *= 2 + if steps > 64: + raise e + logging.warning("out of memory error, increasing steps and trying again {}".format(steps)) + else: + raise e + + del q, k, v + + r1 = ( + r1.unsqueeze(0) + .reshape(b, heads, -1, dim_head) + .permute(0, 2, 1, 3) + .reshape(b, -1, heads * dim_head) + ) + return r1 + +BROKEN_XFORMERS = False +try: + x_vers = xformers.__version__ + # XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error) + BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20") +except: + pass + +def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): + if skip_reshape: + b, _, _, dim_head = q.shape + else: + b, _, dim_head = q.shape + dim_head //= heads + + disabled_xformers = False + + if BROKEN_XFORMERS: + if b * heads > 65535: + disabled_xformers = True + + if not disabled_xformers: + if torch.jit.is_tracing() or torch.jit.is_scripting(): + disabled_xformers = True + + if disabled_xformers: + return attention_pytorch(q, k, v, heads, mask) + + if skip_reshape: + q, k, v = map( + lambda t: t.reshape(b * heads, -1, dim_head), + (q, k, v), + ) + else: + q, k, v = map( + lambda t: t.reshape(b, -1, heads, dim_head), + (q, k, v), + ) + + if mask is not None: + pad = 8 - q.shape[1] % 8 + mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device) + mask_out[:, :, :mask.shape[-1]] = mask + mask = mask_out[:, :, :mask.shape[-1]] + + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask) + + if skip_reshape: + out = ( + out.unsqueeze(0) + .reshape(b, heads, -1, dim_head) + .permute(0, 2, 1, 3) + .reshape(b, -1, heads * dim_head) + ) + else: + out = ( + out.reshape(b, -1, heads * dim_head) + ) + + return out + +def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): + if skip_reshape: + b, _, _, dim_head = q.shape + else: + b, _, dim_head = q.shape + dim_head //= heads + q, k, v = map( + lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), + (q, k, v), + ) + + out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) + out = ( + out.transpose(1, 2).reshape(b, -1, heads * dim_head) + ) + return out + + +optimized_attention = attention_basic + +if model_management.xformers_enabled(): + logging.info("Using xformers cross attention") + optimized_attention = attention_xformers +elif model_management.pytorch_attention_enabled(): + logging.info("Using pytorch cross attention") + optimized_attention = attention_pytorch +else: + if args.use_split_cross_attention: + logging.info("Using split optimization for cross attention") + optimized_attention = attention_split + else: + logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention") + optimized_attention = attention_sub_quad + +optimized_attention_masked = optimized_attention + +def optimized_attention_for_device(device, mask=False, small_input=False): + if small_input: + if model_management.pytorch_attention_enabled(): + return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases + else: + return attention_basic + + if device == torch.device("cpu"): + return attention_sub_quad + + if mask: + return optimized_attention_masked + + return optimized_attention + + +class CrossAttention(nn.Module): + def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=ops): + super().__init__() + inner_dim = dim_head * heads + context_dim = default(context_dim, query_dim) + self.attn_precision = attn_precision + + self.heads = heads + self.dim_head = dim_head + + self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) + self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) + self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) + + self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) + + def forward(self, x, context=None, value=None, mask=None): + q = self.to_q(x) + context = default(context, x) + k = self.to_k(context) + if value is not None: + v = self.to_v(value) + del value + else: + v = self.to_v(context) + + if mask is None: + out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision) + else: + out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision) + return self.to_out(out) + + +class BasicTransformerBlock(nn.Module): + def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None, + disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, attn_precision=None, dtype=None, device=None, operations=ops): + super().__init__() + + self.ff_in = ff_in or inner_dim is not None + if inner_dim is None: + inner_dim = dim + + self.is_res = inner_dim == dim + self.attn_precision = attn_precision + + if self.ff_in: + self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device) + self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) + + self.disable_self_attn = disable_self_attn + self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout, + context_dim=context_dim if self.disable_self_attn else None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn + self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) + + if disable_temporal_crossattention: + if switch_temporal_ca_to_sa: + raise ValueError + else: + self.attn2 = None + else: + context_dim_attn2 = None + if not switch_temporal_ca_to_sa: + context_dim_attn2 = context_dim + + self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2, + heads=n_heads, dim_head=d_head, dropout=dropout, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is self-attn if context is none + self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) + + self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) + self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) + self.n_heads = n_heads + self.d_head = d_head + self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa + + def forward(self, x, context=None, transformer_options={}): + extra_options = {} + block = transformer_options.get("block", None) + block_index = transformer_options.get("block_index", 0) + transformer_patches = {} + transformer_patches_replace = {} + + for k in transformer_options: + if k == "patches": + transformer_patches = transformer_options[k] + elif k == "patches_replace": + transformer_patches_replace = transformer_options[k] + else: + extra_options[k] = transformer_options[k] + + extra_options["n_heads"] = self.n_heads + extra_options["dim_head"] = self.d_head + extra_options["attn_precision"] = self.attn_precision + + if self.ff_in: + x_skip = x + x = self.ff_in(self.norm_in(x)) + if self.is_res: + x += x_skip + + n = self.norm1(x) + if self.disable_self_attn: + context_attn1 = context + else: + context_attn1 = None + value_attn1 = None + + if "attn1_patch" in transformer_patches: + patch = transformer_patches["attn1_patch"] + if context_attn1 is None: + context_attn1 = n + value_attn1 = context_attn1 + for p in patch: + n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options) + + if block is not None: + transformer_block = (block[0], block[1], block_index) + else: + transformer_block = None + attn1_replace_patch = transformer_patches_replace.get("attn1", {}) + block_attn1 = transformer_block + if block_attn1 not in attn1_replace_patch: + block_attn1 = block + + if block_attn1 in attn1_replace_patch: + if context_attn1 is None: + context_attn1 = n + value_attn1 = n + n = self.attn1.to_q(n) + context_attn1 = self.attn1.to_k(context_attn1) + value_attn1 = self.attn1.to_v(value_attn1) + n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options) + n = self.attn1.to_out(n) + else: + n = self.attn1(n, context=context_attn1, value=value_attn1) + + if "attn1_output_patch" in transformer_patches: + patch = transformer_patches["attn1_output_patch"] + for p in patch: + n = p(n, extra_options) + + x += n + if "middle_patch" in transformer_patches: + patch = transformer_patches["middle_patch"] + for p in patch: + x = p(x, extra_options) + + if self.attn2 is not None: + n = self.norm2(x) + if self.switch_temporal_ca_to_sa: + context_attn2 = n + else: + context_attn2 = context + value_attn2 = None + if "attn2_patch" in transformer_patches: + patch = transformer_patches["attn2_patch"] + value_attn2 = context_attn2 + for p in patch: + n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) + + attn2_replace_patch = transformer_patches_replace.get("attn2", {}) + block_attn2 = transformer_block + if block_attn2 not in attn2_replace_patch: + block_attn2 = block + + if block_attn2 in attn2_replace_patch: + if value_attn2 is None: + value_attn2 = context_attn2 + n = self.attn2.to_q(n) + context_attn2 = self.attn2.to_k(context_attn2) + value_attn2 = self.attn2.to_v(value_attn2) + n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) + n = self.attn2.to_out(n) + else: + n = self.attn2(n, context=context_attn2, value=value_attn2) + + if "attn2_output_patch" in transformer_patches: + patch = transformer_patches["attn2_output_patch"] + for p in patch: + n = p(n, extra_options) + + x += n + if self.is_res: + x_skip = x + x = self.ff(self.norm3(x)) + if self.is_res: + x += x_skip + + return x + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data. + First, project the input (aka embedding) + and reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + NEW: use_linear for more efficiency instead of the 1x1 convs + """ + def __init__(self, in_channels, n_heads, d_head, + depth=1, dropout=0., context_dim=None, + disable_self_attn=False, use_linear=False, + use_checkpoint=True, attn_precision=None, dtype=None, device=None, operations=ops): + super().__init__() + if exists(context_dim) and not isinstance(context_dim, list): + context_dim = [context_dim] * depth + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) + if not use_linear: + self.proj_in = operations.Conv2d(in_channels, + inner_dim, + kernel_size=1, + stride=1, + padding=0, dtype=dtype, device=device) + else: + self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) + + self.transformer_blocks = nn.ModuleList( + [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], + disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations) + for d in range(depth)] + ) + if not use_linear: + self.proj_out = operations.Conv2d(inner_dim,in_channels, + kernel_size=1, + stride=1, + padding=0, dtype=dtype, device=device) + else: + self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) + self.use_linear = use_linear + + def forward(self, x, context=None, transformer_options={}): + # note: if no context is given, cross-attention defaults to self-attention + if not isinstance(context, list): + context = [context] * len(self.transformer_blocks) + b, c, h, w = x.shape + x_in = x + x = self.norm(x) + if not self.use_linear: + x = self.proj_in(x) + x = x.movedim(1, 3).flatten(1, 2).contiguous() + if self.use_linear: + x = self.proj_in(x) + for i, block in enumerate(self.transformer_blocks): + transformer_options["block_index"] = i + x = block(x, context=context[i], transformer_options=transformer_options) + if self.use_linear: + x = self.proj_out(x) + x = x.reshape(x.shape[0], h, w, x.shape[-1]).movedim(3, 1).contiguous() + if not self.use_linear: + x = self.proj_out(x) + return x + x_in + + +class SpatialVideoTransformer(SpatialTransformer): + def __init__( + self, + in_channels, + n_heads, + d_head, + depth=1, + dropout=0.0, + use_linear=False, + context_dim=None, + use_spatial_context=False, + timesteps=None, + merge_strategy: str = "fixed", + merge_factor: float = 0.5, + time_context_dim=None, + ff_in=False, + checkpoint=False, + time_depth=1, + disable_self_attn=False, + disable_temporal_crossattention=False, + max_time_embed_period: int = 10000, + attn_precision=None, + dtype=None, device=None, operations=ops + ): + super().__init__( + in_channels, + n_heads, + d_head, + depth=depth, + dropout=dropout, + use_checkpoint=checkpoint, + context_dim=context_dim, + use_linear=use_linear, + disable_self_attn=disable_self_attn, + attn_precision=attn_precision, + dtype=dtype, device=device, operations=operations + ) + self.time_depth = time_depth + self.depth = depth + self.max_time_embed_period = max_time_embed_period + + time_mix_d_head = d_head + n_time_mix_heads = n_heads + + time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads) + + inner_dim = n_heads * d_head + if use_spatial_context: + time_context_dim = context_dim + + self.time_stack = nn.ModuleList( + [ + BasicTransformerBlock( + inner_dim, + n_time_mix_heads, + time_mix_d_head, + dropout=dropout, + context_dim=time_context_dim, + # timesteps=timesteps, + checkpoint=checkpoint, + ff_in=ff_in, + inner_dim=time_mix_inner_dim, + disable_self_attn=disable_self_attn, + disable_temporal_crossattention=disable_temporal_crossattention, + attn_precision=attn_precision, + dtype=dtype, device=device, operations=operations + ) + for _ in range(self.depth) + ] + ) + + assert len(self.time_stack) == len(self.transformer_blocks) + + self.use_spatial_context = use_spatial_context + self.in_channels = in_channels + + time_embed_dim = self.in_channels * 4 + self.time_pos_embed = nn.Sequential( + operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device), + nn.SiLU(), + operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device), + ) + + self.time_mixer = AlphaBlender( + alpha=merge_factor, merge_strategy=merge_strategy + ) + + def forward( + self, + x: torch.Tensor, + context: Optional[torch.Tensor] = None, + time_context: Optional[torch.Tensor] = None, + timesteps: Optional[int] = None, + image_only_indicator: Optional[torch.Tensor] = None, + transformer_options={} + ) -> torch.Tensor: + _, _, h, w = x.shape + x_in = x + spatial_context = None + if exists(context): + spatial_context = context + + if self.use_spatial_context: + assert ( + context.ndim == 3 + ), f"n dims of spatial context should be 3 but are {context.ndim}" + + if time_context is None: + time_context = context + time_context_first_timestep = time_context[::timesteps] + time_context = repeat( + time_context_first_timestep, "b ... -> (b n) ...", n=h * w + ) + elif time_context is not None and not self.use_spatial_context: + time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w) + if time_context.ndim == 2: + time_context = rearrange(time_context, "b c -> b 1 c") + + x = self.norm(x) + if not self.use_linear: + x = self.proj_in(x) + x = rearrange(x, "b c h w -> b (h w) c") + if self.use_linear: + x = self.proj_in(x) + + num_frames = torch.arange(timesteps, device=x.device) + num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) + num_frames = rearrange(num_frames, "b t -> (b t)") + t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype) + emb = self.time_pos_embed(t_emb) + emb = emb[:, None, :] + + for it_, (block, mix_block) in enumerate( + zip(self.transformer_blocks, self.time_stack) + ): + transformer_options["block_index"] = it_ + x = block( + x, + context=spatial_context, + transformer_options=transformer_options, + ) + + x_mix = x + x_mix = x_mix + emb + + B, S, C = x_mix.shape + x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps) + x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options + x_mix = rearrange( + x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps + ) + + x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator) + + if self.use_linear: + x = self.proj_out(x) + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) + if not self.use_linear: + x = self.proj_out(x) + out = x + x_in + return out + + diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__init__.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e7c31affcb019acd38bbc538a44747fad8231bc8 Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/mmdit.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/mmdit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f3c8582fa5c185ebccd289c3687b04917e7111ff Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/mmdit.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6f91913a653281d8642a907da39f9681fcde0c51 Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5162ad8678d12de4dc426b24543352bf01285156 Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5e8398c7590e2c08b248b2693d27a87dbb04a647 Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/upscaling.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bbaaa651179daa5ae5f0908873ddeb1587b88572 Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/mmdit.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/mmdit.py new file mode 100644 index 0000000000000000000000000000000000000000..20d3a321a02ae36943022ba0b831c45d49f6b15d --- /dev/null +++ b/MagicQuill/comfy/ldm/modules/diffusionmodules/mmdit.py @@ -0,0 +1,962 @@ +import logging +import math +from typing import Dict, Optional + +import numpy as np +import torch +import torch.nn as nn +from .. import attention +from einops import rearrange, repeat + +def default(x, y): + if x is not None: + return x + return y + +class Mlp(nn.Module): + """ MLP as used in Vision Transformer, MLP-Mixer and related networks + """ + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + norm_layer=None, + bias=True, + drop=0., + use_conv=False, + dtype=None, + device=None, + operations=None, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + drop_probs = drop + linear_layer = partial(operations.Conv2d, kernel_size=1) if use_conv else operations.Linear + + self.fc1 = linear_layer(in_features, hidden_features, bias=bias, dtype=dtype, device=device) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs) + self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() + self.fc2 = linear_layer(hidden_features, out_features, bias=bias, dtype=dtype, device=device) + self.drop2 = nn.Dropout(drop_probs) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.norm(x) + x = self.fc2(x) + x = self.drop2(x) + return x + +class PatchEmbed(nn.Module): + """ 2D Image to Patch Embedding + """ + dynamic_img_pad: torch.jit.Final[bool] + + def __init__( + self, + img_size: Optional[int] = 224, + patch_size: int = 16, + in_chans: int = 3, + embed_dim: int = 768, + norm_layer = None, + flatten: bool = True, + bias: bool = True, + strict_img_size: bool = True, + dynamic_img_pad: bool = True, + dtype=None, + device=None, + operations=None, + ): + super().__init__() + self.patch_size = (patch_size, patch_size) + if img_size is not None: + self.img_size = (img_size, img_size) + self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + else: + self.img_size = None + self.grid_size = None + self.num_patches = None + + # flatten spatial dim and transpose to channels last, kept for bwd compat + self.flatten = flatten + self.strict_img_size = strict_img_size + self.dynamic_img_pad = dynamic_img_pad + + self.proj = operations.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, dtype=dtype, device=device) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + def forward(self, x): + B, C, H, W = x.shape + # if self.img_size is not None: + # if self.strict_img_size: + # _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).") + # _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).") + # elif not self.dynamic_img_pad: + # _assert( + # H % self.patch_size[0] == 0, + # f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})." + # ) + # _assert( + # W % self.patch_size[1] == 0, + # f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})." + # ) + if self.dynamic_img_pad: + pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] + pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] + x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode='reflect') + x = self.proj(x) + if self.flatten: + x = x.flatten(2).transpose(1, 2) # NCHW -> NLC + x = self.norm(x) + return x + +def modulate(x, shift, scale): + if shift is None: + shift = torch.zeros_like(scale) + return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) + + +################################################################################# +# Sine/Cosine Positional Embedding Functions # +################################################################################# + + +def get_2d_sincos_pos_embed( + embed_dim, + grid_size, + cls_token=False, + extra_tokens=0, + scaling_factor=None, + offset=None, +): + """ + grid_size: int of the grid height and width + return: + pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) + """ + grid_h = np.arange(grid_size, dtype=np.float32) + grid_w = np.arange(grid_size, dtype=np.float32) + grid = np.meshgrid(grid_w, grid_h) # here w goes first + grid = np.stack(grid, axis=0) + if scaling_factor is not None: + grid = grid / scaling_factor + if offset is not None: + grid = grid - offset + + grid = grid.reshape([2, 1, grid_size, grid_size]) + pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) + if cls_token and extra_tokens > 0: + pos_embed = np.concatenate( + [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0 + ) + return pos_embed + + +def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): + assert embed_dim % 2 == 0 + + # use half of dimensions to encode grid_h + emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) + emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) + + emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) + return emb + + +def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): + """ + embed_dim: output dimension for each position + pos: a list of positions to be encoded: size (M,) + out: (M, D) + """ + assert embed_dim % 2 == 0 + omega = np.arange(embed_dim // 2, dtype=np.float64) + omega /= embed_dim / 2.0 + omega = 1.0 / 10000**omega # (D/2,) + + pos = pos.reshape(-1) # (M,) + out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product + + emb_sin = np.sin(out) # (M, D/2) + emb_cos = np.cos(out) # (M, D/2) + + emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) + return emb + +def get_1d_sincos_pos_embed_from_grid_torch(embed_dim, pos, device=None, dtype=torch.float32): + omega = torch.arange(embed_dim // 2, device=device, dtype=dtype) + omega /= embed_dim / 2.0 + omega = 1.0 / 10000**omega # (D/2,) + pos = pos.reshape(-1) # (M,) + out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product + emb_sin = torch.sin(out) # (M, D/2) + emb_cos = torch.cos(out) # (M, D/2) + emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D) + return emb + +def get_2d_sincos_pos_embed_torch(embed_dim, w, h, val_center=7.5, val_magnitude=7.5, device=None, dtype=torch.float32): + small = min(h, w) + val_h = (h / small) * val_magnitude + val_w = (w / small) * val_magnitude + grid_h, grid_w = torch.meshgrid(torch.linspace(-val_h + val_center, val_h + val_center, h, device=device, dtype=dtype), torch.linspace(-val_w + val_center, val_w + val_center, w, device=device, dtype=dtype), indexing='ij') + emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype) + emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype) + emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D) + return emb + + +################################################################################# +# Embedding Layers for Timesteps and Class Labels # +################################################################################# + + +class TimestepEmbedder(nn.Module): + """ + Embeds scalar timesteps into vector representations. + """ + + def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None): + super().__init__() + self.mlp = nn.Sequential( + operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device), + nn.SiLU(), + operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), + ) + self.frequency_embedding_size = frequency_embedding_size + + @staticmethod + def timestep_embedding(t, dim, max_period=10000): + """ + Create sinusoidal timestep embeddings. + :param t: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an (N, D) Tensor of positional embeddings. + """ + half = dim // 2 + freqs = torch.exp( + -math.log(max_period) + * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) + / half + ) + args = t[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat( + [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 + ) + if torch.is_floating_point(t): + embedding = embedding.to(dtype=t.dtype) + return embedding + + def forward(self, t, dtype, **kwargs): + t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype) + t_emb = self.mlp(t_freq) + return t_emb + + +class VectorEmbedder(nn.Module): + """ + Embeds a flat vector of dimension input_dim + """ + + def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None, operations=None): + super().__init__() + self.mlp = nn.Sequential( + operations.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device), + nn.SiLU(), + operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + emb = self.mlp(x) + return emb + + +################################################################################# +# Core DiT Model # +################################################################################# + + +def split_qkv(qkv, head_dim): + qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0) + return qkv[0], qkv[1], qkv[2] + +def optimized_attention(qkv, num_heads): + return attention.optimized_attention(qkv[0], qkv[1], qkv[2], num_heads) + +class SelfAttention(nn.Module): + ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") + + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = False, + qk_scale: Optional[float] = None, + proj_drop: float = 0.0, + attn_mode: str = "xformers", + pre_only: bool = False, + qk_norm: Optional[str] = None, + rmsnorm: bool = False, + dtype=None, + device=None, + operations=None, + ): + super().__init__() + self.num_heads = num_heads + self.head_dim = dim // num_heads + + self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) + if not pre_only: + self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) + self.proj_drop = nn.Dropout(proj_drop) + assert attn_mode in self.ATTENTION_MODES + self.attn_mode = attn_mode + self.pre_only = pre_only + + if qk_norm == "rms": + self.ln_q = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) + self.ln_k = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) + elif qk_norm == "ln": + self.ln_q = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) + self.ln_k = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) + elif qk_norm is None: + self.ln_q = nn.Identity() + self.ln_k = nn.Identity() + else: + raise ValueError(qk_norm) + + def pre_attention(self, x: torch.Tensor) -> torch.Tensor: + B, L, C = x.shape + qkv = self.qkv(x) + q, k, v = split_qkv(qkv, self.head_dim) + q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1) + k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1) + return (q, k, v) + + def post_attention(self, x: torch.Tensor) -> torch.Tensor: + assert not self.pre_only + x = self.proj(x) + x = self.proj_drop(x) + return x + + def forward(self, x: torch.Tensor) -> torch.Tensor: + qkv = self.pre_attention(x) + x = optimized_attention( + qkv, num_heads=self.num_heads + ) + x = self.post_attention(x) + return x + + +class RMSNorm(torch.nn.Module): + def __init__( + self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6, device=None, dtype=None + ): + """ + Initialize the RMSNorm normalization layer. + Args: + dim (int): The dimension of the input tensor. + eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. + Attributes: + eps (float): A small value added to the denominator for numerical stability. + weight (nn.Parameter): Learnable scaling parameter. + """ + super().__init__() + self.eps = eps + self.learnable_scale = elementwise_affine + if self.learnable_scale: + self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype)) + else: + self.register_parameter("weight", None) + + def _norm(self, x): + """ + Apply the RMSNorm normalization to the input tensor. + Args: + x (torch.Tensor): The input tensor. + Returns: + torch.Tensor: The normalized tensor. + """ + return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) + + def forward(self, x): + """ + Forward pass through the RMSNorm layer. + Args: + x (torch.Tensor): The input tensor. + Returns: + torch.Tensor: The output tensor after applying RMSNorm. + """ + x = self._norm(x) + if self.learnable_scale: + return x * self.weight.to(device=x.device, dtype=x.dtype) + else: + return x + + +class SwiGLUFeedForward(nn.Module): + def __init__( + self, + dim: int, + hidden_dim: int, + multiple_of: int, + ffn_dim_multiplier: Optional[float] = None, + ): + """ + Initialize the FeedForward module. + + Args: + dim (int): Input dimension. + hidden_dim (int): Hidden dimension of the feedforward layer. + multiple_of (int): Value to ensure hidden dimension is a multiple of this value. + ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. + + Attributes: + w1 (ColumnParallelLinear): Linear transformation for the first layer. + w2 (RowParallelLinear): Linear transformation for the second layer. + w3 (ColumnParallelLinear): Linear transformation for the third layer. + + """ + super().__init__() + hidden_dim = int(2 * hidden_dim / 3) + # custom dim factor multiplier + if ffn_dim_multiplier is not None: + hidden_dim = int(ffn_dim_multiplier * hidden_dim) + hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) + + self.w1 = nn.Linear(dim, hidden_dim, bias=False) + self.w2 = nn.Linear(hidden_dim, dim, bias=False) + self.w3 = nn.Linear(dim, hidden_dim, bias=False) + + def forward(self, x): + return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x)) + + +class DismantledBlock(nn.Module): + """ + A DiT block with gated adaptive layer norm (adaLN) conditioning. + """ + + ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") + + def __init__( + self, + hidden_size: int, + num_heads: int, + mlp_ratio: float = 4.0, + attn_mode: str = "xformers", + qkv_bias: bool = False, + pre_only: bool = False, + rmsnorm: bool = False, + scale_mod_only: bool = False, + swiglu: bool = False, + qk_norm: Optional[str] = None, + dtype=None, + device=None, + operations=None, + **block_kwargs, + ): + super().__init__() + assert attn_mode in self.ATTENTION_MODES + if not rmsnorm: + self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + else: + self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) + self.attn = SelfAttention( + dim=hidden_size, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_mode=attn_mode, + pre_only=pre_only, + qk_norm=qk_norm, + rmsnorm=rmsnorm, + dtype=dtype, + device=device, + operations=operations + ) + if not pre_only: + if not rmsnorm: + self.norm2 = operations.LayerNorm( + hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device + ) + else: + self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) + mlp_hidden_dim = int(hidden_size * mlp_ratio) + if not pre_only: + if not swiglu: + self.mlp = Mlp( + in_features=hidden_size, + hidden_features=mlp_hidden_dim, + act_layer=lambda: nn.GELU(approximate="tanh"), + drop=0, + dtype=dtype, + device=device, + operations=operations + ) + else: + self.mlp = SwiGLUFeedForward( + dim=hidden_size, + hidden_dim=mlp_hidden_dim, + multiple_of=256, + ) + self.scale_mod_only = scale_mod_only + if not scale_mod_only: + n_mods = 6 if not pre_only else 2 + else: + n_mods = 4 if not pre_only else 1 + self.adaLN_modulation = nn.Sequential( + nn.SiLU(), operations.Linear(hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device) + ) + self.pre_only = pre_only + + def pre_attention(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: + if not self.pre_only: + if not self.scale_mod_only: + ( + shift_msa, + scale_msa, + gate_msa, + shift_mlp, + scale_mlp, + gate_mlp, + ) = self.adaLN_modulation(c).chunk(6, dim=1) + else: + shift_msa = None + shift_mlp = None + ( + scale_msa, + gate_msa, + scale_mlp, + gate_mlp, + ) = self.adaLN_modulation( + c + ).chunk(4, dim=1) + qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) + return qkv, ( + x, + gate_msa, + shift_mlp, + scale_mlp, + gate_mlp, + ) + else: + if not self.scale_mod_only: + ( + shift_msa, + scale_msa, + ) = self.adaLN_modulation( + c + ).chunk(2, dim=1) + else: + shift_msa = None + scale_msa = self.adaLN_modulation(c) + qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) + return qkv, None + + def post_attention(self, attn, x, gate_msa, shift_mlp, scale_mlp, gate_mlp): + assert not self.pre_only + x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn) + x = x + gate_mlp.unsqueeze(1) * self.mlp( + modulate(self.norm2(x), shift_mlp, scale_mlp) + ) + return x + + def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: + assert not self.pre_only + qkv, intermediates = self.pre_attention(x, c) + attn = optimized_attention( + qkv, + num_heads=self.attn.num_heads, + ) + return self.post_attention(attn, *intermediates) + + +def block_mixing(*args, use_checkpoint=True, **kwargs): + if use_checkpoint: + return torch.utils.checkpoint.checkpoint( + _block_mixing, *args, use_reentrant=False, **kwargs + ) + else: + return _block_mixing(*args, **kwargs) + + +def _block_mixing(context, x, context_block, x_block, c): + context_qkv, context_intermediates = context_block.pre_attention(context, c) + + x_qkv, x_intermediates = x_block.pre_attention(x, c) + + o = [] + for t in range(3): + o.append(torch.cat((context_qkv[t], x_qkv[t]), dim=1)) + qkv = tuple(o) + + attn = optimized_attention( + qkv, + num_heads=x_block.attn.num_heads, + ) + context_attn, x_attn = ( + attn[:, : context_qkv[0].shape[1]], + attn[:, context_qkv[0].shape[1] :], + ) + + if not context_block.pre_only: + context = context_block.post_attention(context_attn, *context_intermediates) + + else: + context = None + x = x_block.post_attention(x_attn, *x_intermediates) + return context, x + + +class JointBlock(nn.Module): + """just a small wrapper to serve as a fsdp unit""" + + def __init__( + self, + *args, + **kwargs, + ): + super().__init__() + pre_only = kwargs.pop("pre_only") + qk_norm = kwargs.pop("qk_norm", None) + self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs) + self.x_block = DismantledBlock(*args, pre_only=False, qk_norm=qk_norm, **kwargs) + + def forward(self, *args, **kwargs): + return block_mixing( + *args, context_block=self.context_block, x_block=self.x_block, **kwargs + ) + + +class FinalLayer(nn.Module): + """ + The final layer of DiT. + """ + + def __init__( + self, + hidden_size: int, + patch_size: int, + out_channels: int, + total_out_channels: Optional[int] = None, + dtype=None, + device=None, + operations=None, + ): + super().__init__() + self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.linear = ( + operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) + if (total_out_channels is None) + else operations.Linear(hidden_size, total_out_channels, bias=True, dtype=dtype, device=device) + ) + self.adaLN_modulation = nn.Sequential( + nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device) + ) + + def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: + shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) + x = modulate(self.norm_final(x), shift, scale) + x = self.linear(x) + return x + +class SelfAttentionContext(nn.Module): + def __init__(self, dim, heads=8, dim_head=64, dtype=None, device=None, operations=None): + super().__init__() + dim_head = dim // heads + inner_dim = dim + + self.heads = heads + self.dim_head = dim_head + + self.qkv = operations.Linear(dim, dim * 3, bias=True, dtype=dtype, device=device) + + self.proj = operations.Linear(inner_dim, dim, dtype=dtype, device=device) + + def forward(self, x): + qkv = self.qkv(x) + q, k, v = split_qkv(qkv, self.dim_head) + x = optimized_attention((q.reshape(q.shape[0], q.shape[1], -1), k, v), self.heads) + return self.proj(x) + +class ContextProcessorBlock(nn.Module): + def __init__(self, context_size, dtype=None, device=None, operations=None): + super().__init__() + self.norm1 = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.attn = SelfAttentionContext(context_size, dtype=dtype, device=device, operations=operations) + self.norm2 = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.mlp = Mlp(in_features=context_size, hidden_features=(context_size * 4), act_layer=lambda: nn.GELU(approximate="tanh"), drop=0, dtype=dtype, device=device, operations=operations) + + def forward(self, x): + x += self.attn(self.norm1(x)) + x += self.mlp(self.norm2(x)) + return x + +class ContextProcessor(nn.Module): + def __init__(self, context_size, num_layers, dtype=None, device=None, operations=None): + super().__init__() + self.layers = torch.nn.ModuleList([ContextProcessorBlock(context_size, dtype=dtype, device=device, operations=operations) for i in range(num_layers)]) + self.norm = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + + def forward(self, x): + for i, l in enumerate(self.layers): + x = l(x) + return self.norm(x) + +class MMDiT(nn.Module): + """ + Diffusion model with a Transformer backbone. + """ + + def __init__( + self, + input_size: int = 32, + patch_size: int = 2, + in_channels: int = 4, + depth: int = 28, + # hidden_size: Optional[int] = None, + # num_heads: Optional[int] = None, + mlp_ratio: float = 4.0, + learn_sigma: bool = False, + adm_in_channels: Optional[int] = None, + context_embedder_config: Optional[Dict] = None, + compile_core: bool = False, + use_checkpoint: bool = False, + register_length: int = 0, + attn_mode: str = "torch", + rmsnorm: bool = False, + scale_mod_only: bool = False, + swiglu: bool = False, + out_channels: Optional[int] = None, + pos_embed_scaling_factor: Optional[float] = None, + pos_embed_offset: Optional[float] = None, + pos_embed_max_size: Optional[int] = None, + num_patches = None, + qk_norm: Optional[str] = None, + qkv_bias: bool = True, + context_processor_layers = None, + context_size = 4096, + dtype = None, #TODO + device = None, + operations = None, + ): + super().__init__() + self.dtype = dtype + self.learn_sigma = learn_sigma + self.in_channels = in_channels + default_out_channels = in_channels * 2 if learn_sigma else in_channels + self.out_channels = default(out_channels, default_out_channels) + self.patch_size = patch_size + self.pos_embed_scaling_factor = pos_embed_scaling_factor + self.pos_embed_offset = pos_embed_offset + self.pos_embed_max_size = pos_embed_max_size + + # hidden_size = default(hidden_size, 64 * depth) + # num_heads = default(num_heads, hidden_size // 64) + + # apply magic --> this defines a head_size of 64 + self.hidden_size = 64 * depth + num_heads = depth + + self.num_heads = num_heads + + self.x_embedder = PatchEmbed( + input_size, + patch_size, + in_channels, + self.hidden_size, + bias=True, + strict_img_size=self.pos_embed_max_size is None, + dtype=dtype, + device=device, + operations=operations + ) + self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations) + + self.y_embedder = None + if adm_in_channels is not None: + assert isinstance(adm_in_channels, int) + self.y_embedder = VectorEmbedder(adm_in_channels, self.hidden_size, dtype=dtype, device=device, operations=operations) + + if context_processor_layers is not None: + self.context_processor = ContextProcessor(context_size, context_processor_layers, dtype=dtype, device=device, operations=operations) + else: + self.context_processor = None + + self.context_embedder = nn.Identity() + if context_embedder_config is not None: + if context_embedder_config["target"] == "torch.nn.Linear": + self.context_embedder = operations.Linear(**context_embedder_config["params"], dtype=dtype, device=device) + + self.register_length = register_length + if self.register_length > 0: + self.register = nn.Parameter(torch.randn(1, register_length, self.hidden_size, dtype=dtype, device=device)) + + # num_patches = self.x_embedder.num_patches + # Will use fixed sin-cos embedding: + # just use a buffer already + if num_patches is not None: + self.register_buffer( + "pos_embed", + torch.empty(1, num_patches, self.hidden_size, dtype=dtype, device=device), + ) + else: + self.pos_embed = None + + self.use_checkpoint = use_checkpoint + self.joint_blocks = nn.ModuleList( + [ + JointBlock( + self.hidden_size, + num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + attn_mode=attn_mode, + pre_only=i == depth - 1, + rmsnorm=rmsnorm, + scale_mod_only=scale_mod_only, + swiglu=swiglu, + qk_norm=qk_norm, + dtype=dtype, + device=device, + operations=operations + ) + for i in range(depth) + ] + ) + + self.final_layer = FinalLayer(self.hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations) + + if compile_core: + assert False + self.forward_core_with_concat = torch.compile(self.forward_core_with_concat) + + def cropped_pos_embed(self, hw, device=None): + p = self.x_embedder.patch_size[0] + h, w = hw + # patched size + h = (h + 1) // p + w = (w + 1) // p + if self.pos_embed is None: + return get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=device) + assert self.pos_embed_max_size is not None + assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size) + assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size) + top = (self.pos_embed_max_size - h) // 2 + left = (self.pos_embed_max_size - w) // 2 + spatial_pos_embed = rearrange( + self.pos_embed, + "1 (h w) c -> 1 h w c", + h=self.pos_embed_max_size, + w=self.pos_embed_max_size, + ) + spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :] + spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c") + # print(spatial_pos_embed, top, left, h, w) + # # t = get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, 7.875, 7.875, device=device) #matches exactly for 1024 res + # t = get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, 7.5, 7.5, device=device) #scales better + # # print(t) + # return t + return spatial_pos_embed + + def unpatchify(self, x, hw=None): + """ + x: (N, T, patch_size**2 * C) + imgs: (N, H, W, C) + """ + c = self.out_channels + p = self.x_embedder.patch_size[0] + if hw is None: + h = w = int(x.shape[1] ** 0.5) + else: + h, w = hw + h = (h + 1) // p + w = (w + 1) // p + assert h * w == x.shape[1] + + x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) + x = torch.einsum("nhwpqc->nchpwq", x) + imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) + return imgs + + def forward_core_with_concat( + self, + x: torch.Tensor, + c_mod: torch.Tensor, + context: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + if self.register_length > 0: + context = torch.cat( + ( + repeat(self.register, "1 ... -> b ...", b=x.shape[0]), + default(context, torch.Tensor([]).type_as(x)), + ), + 1, + ) + + # context is B, L', D + # x is B, L, D + for block in self.joint_blocks: + context, x = block( + context, + x, + c=c_mod, + use_checkpoint=self.use_checkpoint, + ) + + x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels) + return x + + def forward( + self, + x: torch.Tensor, + t: torch.Tensor, + y: Optional[torch.Tensor] = None, + context: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + """ + Forward pass of DiT. + x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) + t: (N,) tensor of diffusion timesteps + y: (N,) tensor of class labels + """ + + if self.context_processor is not None: + context = self.context_processor(context) + + hw = x.shape[-2:] + x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device) + c = self.t_embedder(t, dtype=x.dtype) # (N, D) + if y is not None and self.y_embedder is not None: + y = self.y_embedder(y) # (N, D) + c = c + y # (N, D) + + if context is not None: + context = self.context_embedder(context) + + x = self.forward_core_with_concat(x, c, context) + + x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W) + return x[:,:,:hw[-2],:hw[-1]] + + +class OpenAISignatureMMDITWrapper(MMDiT): + def forward( + self, + x: torch.Tensor, + timesteps: torch.Tensor, + context: Optional[torch.Tensor] = None, + y: Optional[torch.Tensor] = None, + **kwargs, + ) -> torch.Tensor: + return super().forward(x, timesteps, context=context, y=y) + diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/model.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/model.py new file mode 100644 index 0000000000000000000000000000000000000000..04eb83b2181253e3a88f7945f75e017060e02ebf --- /dev/null +++ b/MagicQuill/comfy/ldm/modules/diffusionmodules/model.py @@ -0,0 +1,650 @@ +# pytorch_diffusion + derived encoder decoder +import math +import torch +import torch.nn as nn +import numpy as np +from typing import Optional, Any +import logging + +from comfy import model_management +import comfy.ops +ops = comfy.ops.disable_weight_init + +if model_management.xformers_enabled_vae(): + import xformers + import xformers.ops + +def get_timestep_embedding(timesteps, embedding_dim): + """ + This matches the implementation in Denoising Diffusion Probabilistic Models: + From Fairseq. + Build sinusoidal embeddings. + This matches the implementation in tensor2tensor, but differs slightly + from the description in Section 3.5 of "Attention Is All You Need". + """ + assert len(timesteps.shape) == 1 + + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) + emb = emb.to(device=timesteps.device) + emb = timesteps.float()[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0,1,0,0)) + return emb + + +def nonlinearity(x): + # swish + return x*torch.sigmoid(x) + + +def Normalize(in_channels, num_groups=32): + return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) + + +class Upsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + self.conv = ops.Conv2d(in_channels, + in_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x): + try: + x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + except: #operation not implemented for bf16 + b, c, h, w = x.shape + out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device) + split = 8 + l = out.shape[1] // split + for i in range(0, out.shape[1], l): + out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype) + del x + x = out + + if self.with_conv: + x = self.conv(x) + return x + + +class Downsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + # no asymmetric padding in torch conv, must do it ourselves + self.conv = ops.Conv2d(in_channels, + in_channels, + kernel_size=3, + stride=2, + padding=0) + + def forward(self, x): + if self.with_conv: + pad = (0,1,0,1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) + return x + + +class ResnetBlock(nn.Module): + def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, + dropout, temb_channels=512): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.swish = torch.nn.SiLU(inplace=True) + self.norm1 = Normalize(in_channels) + self.conv1 = ops.Conv2d(in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + if temb_channels > 0: + self.temb_proj = ops.Linear(temb_channels, + out_channels) + self.norm2 = Normalize(out_channels) + self.dropout = torch.nn.Dropout(dropout, inplace=True) + self.conv2 = ops.Conv2d(out_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = ops.Conv2d(in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + else: + self.nin_shortcut = ops.Conv2d(in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = self.swish(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(self.swish(temb))[:,:,None,None] + + h = self.norm2(h) + h = self.swish(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x+h + +def slice_attention(q, k, v): + r1 = torch.zeros_like(k, device=q.device) + scale = (int(q.shape[-1])**(-0.5)) + + mem_free_total = model_management.get_free_memory(q.device) + + gb = 1024 ** 3 + tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() + modifier = 3 if q.element_size() == 2 else 2.5 + mem_required = tensor_size * modifier + steps = 1 + + if mem_required > mem_free_total: + steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) + + while True: + try: + slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] + for i in range(0, q.shape[1], slice_size): + end = i + slice_size + s1 = torch.bmm(q[:, i:end], k) * scale + + s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1) + del s1 + + r1[:, :, i:end] = torch.bmm(v, s2) + del s2 + break + except model_management.OOM_EXCEPTION as e: + model_management.soft_empty_cache(True) + steps *= 2 + if steps > 128: + raise e + logging.warning("out of memory error, increasing steps and trying again {}".format(steps)) + + return r1 + +def normal_attention(q, k, v): + # compute attention + b,c,h,w = q.shape + + q = q.reshape(b,c,h*w) + q = q.permute(0,2,1) # b,hw,c + k = k.reshape(b,c,h*w) # b,c,hw + v = v.reshape(b,c,h*w) + + r1 = slice_attention(q, k, v) + h_ = r1.reshape(b,c,h,w) + del r1 + return h_ + +def xformers_attention(q, k, v): + # compute attention + B, C, H, W = q.shape + q, k, v = map( + lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(), + (q, k, v), + ) + + try: + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) + out = out.transpose(1, 2).reshape(B, C, H, W) + except NotImplementedError as e: + out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) + return out + +def pytorch_attention(q, k, v): + # compute attention + B, C, H, W = q.shape + q, k, v = map( + lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), + (q, k, v), + ) + + try: + out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) + out = out.transpose(2, 3).reshape(B, C, H, W) + except model_management.OOM_EXCEPTION as e: + logging.warning("scaled_dot_product_attention OOMed: switched to slice attention") + out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) + return out + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = ops.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.k = ops.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.v = ops.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.proj_out = ops.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + + if model_management.xformers_enabled_vae(): + logging.info("Using xformers attention in VAE") + self.optimized_attention = xformers_attention + elif model_management.pytorch_attention_enabled(): + logging.info("Using pytorch attention in VAE") + self.optimized_attention = pytorch_attention + else: + logging.info("Using split attention in VAE") + self.optimized_attention = normal_attention + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + h_ = self.optimized_attention(q, k, v) + + h_ = self.proj_out(h_) + + return x+h_ + + +def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): + return AttnBlock(in_channels) + + +class Model(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): + super().__init__() + if use_linear_attn: attn_type = "linear" + self.ch = ch + self.temb_ch = self.ch*4 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + self.use_timestep = use_timestep + if self.use_timestep: + # timestep embedding + self.temb = nn.Module() + self.temb.dense = nn.ModuleList([ + ops.Linear(self.ch, + self.temb_ch), + ops.Linear(self.temb_ch, + self.temb_ch), + ]) + + # downsampling + self.conv_in = ops.Conv2d(in_channels, + self.ch, + kernel_size=3, + stride=1, + padding=1) + + curr_res = resolution + in_ch_mult = (1,)+tuple(ch_mult) + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch*in_ch_mult[i_level] + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions-1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch*ch_mult[i_level] + skip_in = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks+1): + if i_block == self.num_res_blocks: + skip_in = ch*in_ch_mult[i_level] + block.append(ResnetBlock(in_channels=block_in+skip_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = ops.Conv2d(block_in, + out_ch, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x, t=None, context=None): + #assert x.shape[2] == x.shape[3] == self.resolution + if context is not None: + # assume aligned context, cat along channel axis + x = torch.cat((x, context), dim=1) + if self.use_timestep: + # timestep embedding + assert t is not None + temb = get_timestep_embedding(t, self.ch) + temb = self.temb.dense[0](temb) + temb = nonlinearity(temb) + temb = self.temb.dense[1](temb) + else: + temb = None + + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions-1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks+1): + h = self.up[i_level].block[i_block]( + torch.cat([h, hs.pop()], dim=1), temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + def get_last_layer(self): + return self.conv_out.weight + + +class Encoder(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", + **ignore_kwargs): + super().__init__() + if use_linear_attn: attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + # downsampling + self.conv_in = ops.Conv2d(in_channels, + self.ch, + kernel_size=3, + stride=1, + padding=1) + + curr_res = resolution + in_ch_mult = (1,)+tuple(ch_mult) + self.in_ch_mult = in_ch_mult + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch*in_ch_mult[i_level] + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions-1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # end + self.norm_out = Normalize(block_in) + self.conv_out = ops.Conv2d(block_in, + 2*z_channels if double_z else z_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x): + # timestep embedding + temb = None + # downsampling + h = self.conv_in(x) + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](h, temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + if i_level != self.num_resolutions-1: + h = self.down[i_level].downsample(h) + + # middle + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class Decoder(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, + conv_out_op=ops.Conv2d, + resnet_op=ResnetBlock, + attn_op=AttnBlock, + **ignorekwargs): + super().__init__() + if use_linear_attn: attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.give_pre_end = give_pre_end + self.tanh_out = tanh_out + + # compute in_ch_mult, block_in and curr_res at lowest res + in_ch_mult = (1,)+tuple(ch_mult) + block_in = ch*ch_mult[self.num_resolutions-1] + curr_res = resolution // 2**(self.num_resolutions-1) + self.z_shape = (1,z_channels,curr_res,curr_res) + logging.debug("Working with z of shape {} = {} dimensions.".format( + self.z_shape, np.prod(self.z_shape))) + + # z to block_in + self.conv_in = ops.Conv2d(z_channels, + block_in, + kernel_size=3, + stride=1, + padding=1) + + # middle + self.mid = nn.Module() + self.mid.block_1 = resnet_op(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = attn_op(block_in) + self.mid.block_2 = resnet_op(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks+1): + block.append(resnet_op(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(attn_op(block_in)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = conv_out_op(block_in, + out_ch, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, z, **kwargs): + #assert z.shape[1:] == self.z_shape[1:] + self.last_z_shape = z.shape + + # timestep embedding + temb = None + + # z to block_in + h = self.conv_in(z) + + # middle + h = self.mid.block_1(h, temb, **kwargs) + h = self.mid.attn_1(h, **kwargs) + h = self.mid.block_2(h, temb, **kwargs) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks+1): + h = self.up[i_level].block[i_block](h, temb, **kwargs) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h, **kwargs) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + if self.give_pre_end: + return h + + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h, **kwargs) + if self.tanh_out: + h = torch.tanh(h) + return h diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/openaimodel.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/openaimodel.py new file mode 100644 index 0000000000000000000000000000000000000000..ba8fc2c4a0626456256b474049580f597f4e9ca6 --- /dev/null +++ b/MagicQuill/comfy/ldm/modules/diffusionmodules/openaimodel.py @@ -0,0 +1,892 @@ +from abc import abstractmethod + +import torch as th +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange +import logging + +from .util import ( + checkpoint, + avg_pool_nd, + zero_module, + timestep_embedding, + AlphaBlender, +) +from ..attention import SpatialTransformer, SpatialVideoTransformer, default +from comfy.ldm.util import exists +import comfy.ops +ops = comfy.ops.disable_weight_init + +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + +#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index" +def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None): + for layer in ts: + if isinstance(layer, VideoResBlock): + x = layer(x, emb, num_video_frames, image_only_indicator) + elif isinstance(layer, TimestepBlock): + x = layer(x, emb) + elif isinstance(layer, SpatialVideoTransformer): + x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options) + if "transformer_index" in transformer_options: + transformer_options["transformer_index"] += 1 + elif isinstance(layer, SpatialTransformer): + x = layer(x, context, transformer_options) + if "transformer_index" in transformer_options: + transformer_options["transformer_index"] += 1 + elif isinstance(layer, Upsample): + x = layer(x, output_shape=output_shape) + else: + x = layer(x) + return x + +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + """ + A sequential module that passes timestep embeddings to the children that + support it as an extra input. + """ + + def forward(self, *args, **kwargs): + return forward_timestep_embed(self, *args, **kwargs) + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + if use_conv: + self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device) + + def forward(self, x, output_shape=None): + assert x.shape[1] == self.channels + if self.dims == 3: + shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2] + if output_shape is not None: + shape[1] = output_shape[3] + shape[2] = output_shape[4] + else: + shape = [x.shape[2] * 2, x.shape[3] * 2] + if output_shape is not None: + shape[0] = output_shape[2] + shape[1] = output_shape[3] + + x = F.interpolate(x, size=shape, mode="nearest") + if self.use_conv: + x = self.conv(x) + return x + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = operations.conv_nd( + dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + return self.op(x) + + +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + :param channels: the number of input channels. + :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. + :param out_channels: if specified, the number of out channels. + :param use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the + channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param use_checkpoint: if True, use gradient checkpointing on this module. + :param up: if True, use this block for upsampling. + :param down: if True, use this block for downsampling. + """ + + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + use_conv=False, + use_scale_shift_norm=False, + dims=2, + use_checkpoint=False, + up=False, + down=False, + kernel_size=3, + exchange_temb_dims=False, + skip_t_emb=False, + dtype=None, + device=None, + operations=ops + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_scale_shift_norm = use_scale_shift_norm + self.exchange_temb_dims = exchange_temb_dims + + if isinstance(kernel_size, list): + padding = [k // 2 for k in kernel_size] + else: + padding = kernel_size // 2 + + self.in_layers = nn.Sequential( + operations.GroupNorm(32, channels, dtype=dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device) + self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device) + elif down: + self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device) + self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.skip_t_emb = skip_t_emb + if self.skip_t_emb: + self.emb_layers = None + self.exchange_temb_dims = False + else: + self.emb_layers = nn.Sequential( + nn.SiLU(), + operations.Linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device + ), + ) + self.out_layers = nn.Sequential( + operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device), + nn.SiLU(), + nn.Dropout(p=dropout), + operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device) + , + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = operations.conv_nd( + dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device + ) + else: + self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device) + + def forward(self, x, emb): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + :param x: an [N x C x ...] Tensor of features. + :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + return checkpoint( + self._forward, (x, emb), self.parameters(), self.use_checkpoint + ) + + + def _forward(self, x, emb): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + + emb_out = None + if not self.skip_t_emb: + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + h = out_norm(h) + if emb_out is not None: + scale, shift = th.chunk(emb_out, 2, dim=1) + h *= (1 + scale) + h += shift + h = out_rest(h) + else: + if emb_out is not None: + if self.exchange_temb_dims: + emb_out = emb_out.movedim(1, 2) + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class VideoResBlock(ResBlock): + def __init__( + self, + channels: int, + emb_channels: int, + dropout: float, + video_kernel_size=3, + merge_strategy: str = "fixed", + merge_factor: float = 0.5, + out_channels=None, + use_conv: bool = False, + use_scale_shift_norm: bool = False, + dims: int = 2, + use_checkpoint: bool = False, + up: bool = False, + down: bool = False, + dtype=None, + device=None, + operations=ops + ): + super().__init__( + channels, + emb_channels, + dropout, + out_channels=out_channels, + use_conv=use_conv, + use_scale_shift_norm=use_scale_shift_norm, + dims=dims, + use_checkpoint=use_checkpoint, + up=up, + down=down, + dtype=dtype, + device=device, + operations=operations + ) + + self.time_stack = ResBlock( + default(out_channels, channels), + emb_channels, + dropout=dropout, + dims=3, + out_channels=default(out_channels, channels), + use_scale_shift_norm=False, + use_conv=False, + up=False, + down=False, + kernel_size=video_kernel_size, + use_checkpoint=use_checkpoint, + exchange_temb_dims=True, + dtype=dtype, + device=device, + operations=operations + ) + self.time_mixer = AlphaBlender( + alpha=merge_factor, + merge_strategy=merge_strategy, + rearrange_pattern="b t -> b 1 t 1 1", + ) + + def forward( + self, + x: th.Tensor, + emb: th.Tensor, + num_video_frames: int, + image_only_indicator = None, + ) -> th.Tensor: + x = super().forward(x, emb) + + x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) + x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) + + x = self.time_stack( + x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames) + ) + x = self.time_mixer( + x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator + ) + x = rearrange(x, "b c t h w -> (b t) c h w") + return x + + +class Timestep(nn.Module): + def __init__(self, dim): + super().__init__() + self.dim = dim + + def forward(self, t): + return timestep_embedding(t, self.dim) + +def apply_control(h, control, name): + if control is not None and name in control and len(control[name]) > 0: + ctrl = control[name].pop() + if ctrl is not None: + try: + h += ctrl + except: + logging.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape)) + return h + +class UNetModel(nn.Module): + """ + The full UNet model with attention and timestep embedding. + :param in_channels: channels in the input Tensor. + :param model_channels: base channel count for the model. + :param out_channels: channels in the output Tensor. + :param num_res_blocks: number of residual blocks per downsample. + :param dropout: the dropout probability. + :param channel_mult: channel multiplier for each level of the UNet. + :param conv_resample: if True, use learned convolutions for upsampling and + downsampling. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param num_classes: if specified (as an int), then this model will be + class-conditional with `num_classes` classes. + :param use_checkpoint: use gradient checkpointing to reduce memory usage. + :param num_heads: the number of attention heads in each attention layer. + :param num_heads_channels: if specified, ignore num_heads and instead use + a fixed channel width per attention head. + :param num_heads_upsample: works with num_heads to set a different number + of heads for upsampling. Deprecated. + :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. + :param resblock_updown: use residual blocks for up/downsampling. + :param use_new_attention_order: use a different attention pattern for potentially + increased efficiency. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + num_classes=None, + use_checkpoint=False, + dtype=th.float32, + num_heads=-1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + use_spatial_transformer=False, # custom transformer support + transformer_depth=1, # custom transformer support + context_dim=None, # custom transformer support + n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model + legacy=True, + disable_self_attentions=None, + num_attention_blocks=None, + disable_middle_self_attn=False, + use_linear_in_transformer=False, + adm_in_channels=None, + transformer_depth_middle=None, + transformer_depth_output=None, + use_temporal_resblock=False, + use_temporal_attention=False, + time_context_dim=None, + extra_ff_mix_layer=False, + use_spatial_context=False, + merge_strategy=None, + merge_factor=0.0, + video_kernel_size=None, + disable_temporal_crossattention=False, + max_ddpm_temb_period=10000, + attn_precision=None, + device=None, + operations=ops, + ): + super().__init__() + + if context_dim is not None: + assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' + # from omegaconf.listconfig import ListConfig + # if type(context_dim) == ListConfig: + # context_dim = list(context_dim) + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + + if isinstance(num_res_blocks, int): + self.num_res_blocks = len(channel_mult) * [num_res_blocks] + else: + if len(num_res_blocks) != len(channel_mult): + raise ValueError("provide num_res_blocks either as an int (globally constant) or " + "as a list/tuple (per-level) with the same length as channel_mult") + self.num_res_blocks = num_res_blocks + + if disable_self_attentions is not None: + # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not + assert len(disable_self_attentions) == len(channel_mult) + if num_attention_blocks is not None: + assert len(num_attention_blocks) == len(self.num_res_blocks) + + transformer_depth = transformer_depth[:] + transformer_depth_output = transformer_depth_output[:] + + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.num_classes = num_classes + self.use_checkpoint = use_checkpoint + self.dtype = dtype + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + self.use_temporal_resblocks = use_temporal_resblock + self.predict_codebook_ids = n_embed is not None + + self.default_num_video_frames = None + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), + nn.SiLU(), + operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), + ) + + if self.num_classes is not None: + if isinstance(self.num_classes, int): + self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device) + elif self.num_classes == "continuous": + logging.debug("setting up linear c_adm embedding layer") + self.label_emb = nn.Linear(1, time_embed_dim) + elif self.num_classes == "sequential": + assert adm_in_channels is not None + self.label_emb = nn.Sequential( + nn.Sequential( + operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), + nn.SiLU(), + operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), + ) + ) + else: + raise ValueError() + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + + def get_attention_layer( + ch, + num_heads, + dim_head, + depth=1, + context_dim=None, + use_checkpoint=False, + disable_self_attn=False, + ): + if use_temporal_attention: + return SpatialVideoTransformer( + ch, + num_heads, + dim_head, + depth=depth, + context_dim=context_dim, + time_context_dim=time_context_dim, + dropout=dropout, + ff_in=extra_ff_mix_layer, + use_spatial_context=use_spatial_context, + merge_strategy=merge_strategy, + merge_factor=merge_factor, + checkpoint=use_checkpoint, + use_linear=use_linear_in_transformer, + disable_self_attn=disable_self_attn, + disable_temporal_crossattention=disable_temporal_crossattention, + max_time_embed_period=max_ddpm_temb_period, + attn_precision=attn_precision, + dtype=self.dtype, device=device, operations=operations + ) + else: + return SpatialTransformer( + ch, num_heads, dim_head, depth=depth, context_dim=context_dim, + disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations + ) + + def get_resblock( + merge_factor, + merge_strategy, + video_kernel_size, + ch, + time_embed_dim, + dropout, + out_channels, + dims, + use_checkpoint, + use_scale_shift_norm, + down=False, + up=False, + dtype=None, + device=None, + operations=ops + ): + if self.use_temporal_resblocks: + return VideoResBlock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + channels=ch, + emb_channels=time_embed_dim, + dropout=dropout, + out_channels=out_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=down, + up=up, + dtype=dtype, + device=device, + operations=operations + ) + else: + return ResBlock( + channels=ch, + emb_channels=time_embed_dim, + dropout=dropout, + out_channels=out_channels, + use_checkpoint=use_checkpoint, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + down=down, + up=up, + dtype=dtype, + device=device, + operations=operations + ) + + for level, mult in enumerate(channel_mult): + for nr in range(self.num_res_blocks[level]): + layers = [ + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations, + ) + ] + ch = mult * model_channels + num_transformers = transformer_depth.pop(0) + if num_transformers > 0: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + if exists(disable_self_attentions): + disabled_sa = disable_self_attentions[level] + else: + disabled_sa = False + + if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: + layers.append(get_attention_layer( + ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, + disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + dtype=self.dtype, + device=device, + operations=operations + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + mid_block = [ + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=None, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations + )] + + self.middle_block = None + if transformer_depth_middle >= -1: + if transformer_depth_middle >= 0: + mid_block += [get_attention_layer( # always uses a self-attn + ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, + disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint + ), + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=None, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations + )] + self.middle_block = TimestepEmbedSequential(*mid_block) + self._feature_size += ch + + self.output_blocks = nn.ModuleList([]) + for level, mult in list(enumerate(channel_mult))[::-1]: + for i in range(self.num_res_blocks[level] + 1): + ich = input_block_chans.pop() + layers = [ + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch + ich, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=model_channels * mult, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations + ) + ] + ch = model_channels * mult + num_transformers = transformer_depth_output.pop() + if num_transformers > 0: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + if exists(disable_self_attentions): + disabled_sa = disable_self_attentions[level] + else: + disabled_sa = False + + if not exists(num_attention_blocks) or i < num_attention_blocks[level]: + layers.append( + get_attention_layer( + ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, + disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint + ) + ) + if level and i == self.num_res_blocks[level]: + out_ch = ch + layers.append( + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + up=True, + dtype=self.dtype, + device=device, + operations=operations + ) + if resblock_updown + else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations) + ) + ds //= 2 + self.output_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + + self.out = nn.Sequential( + operations.GroupNorm(32, ch, dtype=self.dtype, device=device), + nn.SiLU(), + zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)), + ) + if self.predict_codebook_ids: + self.id_predictor = nn.Sequential( + operations.GroupNorm(32, ch, dtype=self.dtype, device=device), + operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device), + #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits + ) + + def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :param context: conditioning plugged in via crossattn + :param y: an [N] Tensor of labels, if class-conditional. + :return: an [N x C x ...] Tensor of outputs. + """ + transformer_options["original_shape"] = list(x.shape) + transformer_options["transformer_index"] = 0 + transformer_patches = transformer_options.get("patches", {}) + + num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames) + image_only_indicator = kwargs.get("image_only_indicator", None) + time_context = kwargs.get("time_context", None) + + assert (y is not None) == ( + self.num_classes is not None + ), "must specify y if and only if the model is class-conditional" + hs = [] + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) + emb = self.time_embed(t_emb) + + if self.num_classes is not None: + assert y.shape[0] == x.shape[0] + emb = emb + self.label_emb(y) + + h = x + for id, module in enumerate(self.input_blocks): + transformer_options["block"] = ("input", id) + h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) + h = apply_control(h, control, 'input') + if "input_block_patch" in transformer_patches: + patch = transformer_patches["input_block_patch"] + for p in patch: + h = p(h, transformer_options) + + hs.append(h) + if "input_block_patch_after_skip" in transformer_patches: + patch = transformer_patches["input_block_patch_after_skip"] + for p in patch: + h = p(h, transformer_options) + + transformer_options["block"] = ("middle", 0) + if self.middle_block is not None: + h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) + h = apply_control(h, control, 'middle') + + + for id, module in enumerate(self.output_blocks): + transformer_options["block"] = ("output", id) + hsp = hs.pop() + hsp = apply_control(hsp, control, 'output') + + if "output_block_patch" in transformer_patches: + patch = transformer_patches["output_block_patch"] + for p in patch: + h, hsp = p(h, hsp, transformer_options) + + h = th.cat([h, hsp], dim=1) + del hsp + if len(hs) > 0: + output_shape = hs[-1].shape + else: + output_shape = None + h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) + h = h.type(x.dtype) + if self.predict_codebook_ids: + return self.id_predictor(h) + else: + return self.out(h) diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/upscaling.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/upscaling.py new file mode 100644 index 0000000000000000000000000000000000000000..f5ac7c2f9138d6d34cda735d2201225d46831154 --- /dev/null +++ b/MagicQuill/comfy/ldm/modules/diffusionmodules/upscaling.py @@ -0,0 +1,85 @@ +import torch +import torch.nn as nn +import numpy as np +from functools import partial + +from .util import extract_into_tensor, make_beta_schedule +from comfy.ldm.util import default + + +class AbstractLowScaleModel(nn.Module): + # for concatenating a downsampled image to the latent representation + def __init__(self, noise_schedule_config=None): + super(AbstractLowScaleModel, self).__init__() + if noise_schedule_config is not None: + self.register_schedule(**noise_schedule_config) + + def register_schedule(self, beta_schedule="linear", timesteps=1000, + linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, + cosine_s=cosine_s) + alphas = 1. - betas + alphas_cumprod = np.cumprod(alphas, axis=0) + alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) + + timesteps, = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' + + to_torch = partial(torch.tensor, dtype=torch.float32) + + self.register_buffer('betas', to_torch(betas)) + self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) + self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) + self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) + self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) + self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) + self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) + + def q_sample(self, x_start, t, noise=None, seed=None): + if noise is None: + if seed is None: + noise = torch.randn_like(x_start) + else: + noise = torch.randn(x_start.size(), dtype=x_start.dtype, layout=x_start.layout, generator=torch.manual_seed(seed)).to(x_start.device) + return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise) + + def forward(self, x): + return x, None + + def decode(self, x): + return x + + +class SimpleImageConcat(AbstractLowScaleModel): + # no noise level conditioning + def __init__(self): + super(SimpleImageConcat, self).__init__(noise_schedule_config=None) + self.max_noise_level = 0 + + def forward(self, x): + # fix to constant noise level + return x, torch.zeros(x.shape[0], device=x.device).long() + + +class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel): + def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False): + super().__init__(noise_schedule_config=noise_schedule_config) + self.max_noise_level = max_noise_level + + def forward(self, x, noise_level=None, seed=None): + if noise_level is None: + noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() + else: + assert isinstance(noise_level, torch.Tensor) + z = self.q_sample(x, noise_level, seed=seed) + return z, noise_level + + + diff --git a/MagicQuill/comfy/ldm/modules/diffusionmodules/util.py b/MagicQuill/comfy/ldm/modules/diffusionmodules/util.py new file mode 100644 index 0000000000000000000000000000000000000000..ce14ad5e18cf1c8f821878f395cc1bab50fad476 --- /dev/null +++ b/MagicQuill/comfy/ldm/modules/diffusionmodules/util.py @@ -0,0 +1,306 @@ +# adopted from +# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py +# and +# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +# and +# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py +# +# thanks! + + +import os +import math +import torch +import torch.nn as nn +import numpy as np +from einops import repeat, rearrange + +from comfy.ldm.util import instantiate_from_config + +class AlphaBlender(nn.Module): + strategies = ["learned", "fixed", "learned_with_images"] + + def __init__( + self, + alpha: float, + merge_strategy: str = "learned_with_images", + rearrange_pattern: str = "b t -> (b t) 1 1", + ): + super().__init__() + self.merge_strategy = merge_strategy + self.rearrange_pattern = rearrange_pattern + + assert ( + merge_strategy in self.strategies + ), f"merge_strategy needs to be in {self.strategies}" + + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif ( + self.merge_strategy == "learned" + or self.merge_strategy == "learned_with_images" + ): + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def get_alpha(self, image_only_indicator: torch.Tensor, device) -> torch.Tensor: + # skip_time_mix = rearrange(repeat(skip_time_mix, 'b -> (b t) () () ()', t=t), '(b t) 1 ... -> b 1 t ...', t=t) + if self.merge_strategy == "fixed": + # make shape compatible + # alpha = repeat(self.mix_factor, '1 -> b () t () ()', t=t, b=bs) + alpha = self.mix_factor.to(device) + elif self.merge_strategy == "learned": + alpha = torch.sigmoid(self.mix_factor.to(device)) + # make shape compatible + # alpha = repeat(alpha, '1 -> s () ()', s = t * bs) + elif self.merge_strategy == "learned_with_images": + if image_only_indicator is None: + alpha = rearrange(torch.sigmoid(self.mix_factor.to(device)), "... -> ... 1") + else: + alpha = torch.where( + image_only_indicator.bool(), + torch.ones(1, 1, device=image_only_indicator.device), + rearrange(torch.sigmoid(self.mix_factor.to(image_only_indicator.device)), "... -> ... 1"), + ) + alpha = rearrange(alpha, self.rearrange_pattern) + # make shape compatible + # alpha = repeat(alpha, '1 -> s () ()', s = t * bs) + else: + raise NotImplementedError() + return alpha + + def forward( + self, + x_spatial, + x_temporal, + image_only_indicator=None, + ) -> torch.Tensor: + alpha = self.get_alpha(image_only_indicator, x_spatial.device) + x = ( + alpha.to(x_spatial.dtype) * x_spatial + + (1.0 - alpha).to(x_spatial.dtype) * x_temporal + ) + return x + + +def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + if schedule == "linear": + betas = ( + torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 + ) + + elif schedule == "cosine": + timesteps = ( + torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s + ) + alphas = timesteps / (1 + cosine_s) * np.pi / 2 + alphas = torch.cos(alphas).pow(2) + alphas = alphas / alphas[0] + betas = 1 - alphas[1:] / alphas[:-1] + betas = torch.clamp(betas, min=0, max=0.999) + + elif schedule == "squaredcos_cap_v2": # used for karlo prior + # return early + return betas_for_alpha_bar( + n_timestep, + lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, + ) + + elif schedule == "sqrt_linear": + betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) + elif schedule == "sqrt": + betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 + else: + raise ValueError(f"schedule '{schedule}' unknown.") + return betas + + +def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): + if ddim_discr_method == 'uniform': + c = num_ddpm_timesteps // num_ddim_timesteps + ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) + elif ddim_discr_method == 'quad': + ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) + else: + raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') + + # assert ddim_timesteps.shape[0] == num_ddim_timesteps + # add one to get the final alpha values right (the ones from first scale to data during sampling) + steps_out = ddim_timesteps + 1 + if verbose: + print(f'Selected timesteps for ddim sampler: {steps_out}') + return steps_out + + +def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): + # select alphas for computing the variance schedule + alphas = alphacums[ddim_timesteps] + alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) + + # according the the formula provided in https://arxiv.org/abs/2010.02502 + sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) + if verbose: + print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') + print(f'For the chosen value of eta, which is {eta}, ' + f'this results in the following sigma_t schedule for ddim sampler {sigmas}') + return sigmas, alphas, alphas_prev + + +def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, + which defines the cumulative product of (1-beta) over time from t = [0,1]. + :param num_diffusion_timesteps: the number of betas to produce. + :param alpha_bar: a lambda that takes an argument t from 0 to 1 and + produces the cumulative product of (1-beta) up to that + part of the diffusion process. + :param max_beta: the maximum beta to use; use values lower than 1 to + prevent singularities. + """ + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return np.array(betas) + + +def extract_into_tensor(a, t, x_shape): + b, *_ = t.shape + out = a.gather(-1, t) + return out.reshape(b, *((1,) * (len(x_shape) - 1))) + + +def checkpoint(func, inputs, params, flag): + """ + Evaluate a function without caching intermediate activations, allowing for + reduced memory at the expense of extra compute in the backward pass. + :param func: the function to evaluate. + :param inputs: the argument sequence to pass to `func`. + :param params: a sequence of parameters `func` depends on but does not + explicitly take as arguments. + :param flag: if False, disable gradient checkpointing. + """ + if flag: + args = tuple(inputs) + tuple(params) + return CheckpointFunction.apply(func, len(inputs), *args) + else: + return func(*inputs) + + +class CheckpointFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, run_function, length, *args): + ctx.run_function = run_function + ctx.input_tensors = list(args[:length]) + ctx.input_params = list(args[length:]) + ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(), + "dtype": torch.get_autocast_gpu_dtype(), + "cache_enabled": torch.is_autocast_cache_enabled()} + with torch.no_grad(): + output_tensors = ctx.run_function(*ctx.input_tensors) + return output_tensors + + @staticmethod + def backward(ctx, *output_grads): + ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] + with torch.enable_grad(), \ + torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): + # Fixes a bug where the first op in run_function modifies the + # Tensor storage in place, which is not allowed for detach()'d + # Tensors. + shallow_copies = [x.view_as(x) for x in ctx.input_tensors] + output_tensors = ctx.run_function(*shallow_copies) + input_grads = torch.autograd.grad( + output_tensors, + ctx.input_tensors + ctx.input_params, + output_grads, + allow_unused=True, + ) + del ctx.input_tensors + del ctx.input_params + del output_tensors + return (None, None) + input_grads + + +def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): + """ + Create sinusoidal timestep embeddings. + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an [N x dim] Tensor of positional embeddings. + """ + if not repeat_only: + half = dim // 2 + freqs = torch.exp( + -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half + ) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) + else: + embedding = repeat(timesteps, 'b -> b d', d=dim) + return embedding + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def scale_module(module, scale): + """ + Scale the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().mul_(scale) + return module + + +def mean_flat(tensor): + """ + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +class HybridConditioner(nn.Module): + + def __init__(self, c_concat_config, c_crossattn_config): + super().__init__() + self.concat_conditioner = instantiate_from_config(c_concat_config) + self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) + + def forward(self, c_concat, c_crossattn): + c_concat = self.concat_conditioner(c_concat) + c_crossattn = self.crossattn_conditioner(c_crossattn) + return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} + + +def noise_like(shape, device, repeat=False): + repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) + noise = lambda: torch.randn(shape, device=device) + return repeat_noise() if repeat else noise() diff --git a/MagicQuill/comfy/ldm/modules/distributions/__init__.py b/MagicQuill/comfy/ldm/modules/distributions/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MagicQuill/comfy/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6d1e54b91ddc4820f3d7ff25864bd0c77a9ed401 Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ec2f27d8b30129ef1b7ff9967ee0ecfcfa4ac82 Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/distributions/distributions.py b/MagicQuill/comfy/ldm/modules/distributions/distributions.py new file mode 100644 index 0000000000000000000000000000000000000000..f2b8ef901130efc171aa69742ca0244d94d3f2e9 --- /dev/null +++ b/MagicQuill/comfy/ldm/modules/distributions/distributions.py @@ -0,0 +1,92 @@ +import torch +import numpy as np + + +class AbstractDistribution: + def sample(self): + raise NotImplementedError() + + def mode(self): + raise NotImplementedError() + + +class DiracDistribution(AbstractDistribution): + def __init__(self, value): + self.value = value + + def sample(self): + return self.value + + def mode(self): + return self.value + + +class DiagonalGaussianDistribution(object): + def __init__(self, parameters, deterministic=False): + self.parameters = parameters + self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) + self.logvar = torch.clamp(self.logvar, -30.0, 20.0) + self.deterministic = deterministic + self.std = torch.exp(0.5 * self.logvar) + self.var = torch.exp(self.logvar) + if self.deterministic: + self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) + + def sample(self): + x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) + return x + + def kl(self, other=None): + if self.deterministic: + return torch.Tensor([0.]) + else: + if other is None: + return 0.5 * torch.sum(torch.pow(self.mean, 2) + + self.var - 1.0 - self.logvar, + dim=[1, 2, 3]) + else: + return 0.5 * torch.sum( + torch.pow(self.mean - other.mean, 2) / other.var + + self.var / other.var - 1.0 - self.logvar + other.logvar, + dim=[1, 2, 3]) + + def nll(self, sample, dims=[1,2,3]): + if self.deterministic: + return torch.Tensor([0.]) + logtwopi = np.log(2.0 * np.pi) + return 0.5 * torch.sum( + logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, + dim=dims) + + def mode(self): + return self.mean + + +def normal_kl(mean1, logvar1, mean2, logvar2): + """ + source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 + Compute the KL divergence between two gaussians. + Shapes are automatically broadcasted, so batches can be compared to + scalars, among other use cases. + """ + tensor = None + for obj in (mean1, logvar1, mean2, logvar2): + if isinstance(obj, torch.Tensor): + tensor = obj + break + assert tensor is not None, "at least one argument must be a Tensor" + + # Force variances to be Tensors. Broadcasting helps convert scalars to + # Tensors, but it does not work for torch.exp(). + logvar1, logvar2 = [ + x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) + for x in (logvar1, logvar2) + ] + + return 0.5 * ( + -1.0 + + logvar2 + - logvar1 + + torch.exp(logvar1 - logvar2) + + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) + ) diff --git a/MagicQuill/comfy/ldm/modules/ema.py b/MagicQuill/comfy/ldm/modules/ema.py new file mode 100644 index 0000000000000000000000000000000000000000..bded25019b9bcbcd0260f0b8185f8c7859ca58c4 --- /dev/null +++ b/MagicQuill/comfy/ldm/modules/ema.py @@ -0,0 +1,80 @@ +import torch +from torch import nn + + +class LitEma(nn.Module): + def __init__(self, model, decay=0.9999, use_num_upates=True): + super().__init__() + if decay < 0.0 or decay > 1.0: + raise ValueError('Decay must be between 0 and 1') + + self.m_name2s_name = {} + self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) + self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates + else torch.tensor(-1, dtype=torch.int)) + + for name, p in model.named_parameters(): + if p.requires_grad: + # remove as '.'-character is not allowed in buffers + s_name = name.replace('.', '') + self.m_name2s_name.update({name: s_name}) + self.register_buffer(s_name, p.clone().detach().data) + + self.collected_params = [] + + def reset_num_updates(self): + del self.num_updates + self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int)) + + def forward(self, model): + decay = self.decay + + if self.num_updates >= 0: + self.num_updates += 1 + decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates)) + + one_minus_decay = 1.0 - decay + + with torch.no_grad(): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + + for key in m_param: + if m_param[key].requires_grad: + sname = self.m_name2s_name[key] + shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) + shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) + else: + assert not key in self.m_name2s_name + + def copy_to(self, model): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + for key in m_param: + if m_param[key].requires_grad: + m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) + else: + assert not key in self.m_name2s_name + + def store(self, parameters): + """ + Save the current parameters for restoring later. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + temporarily stored. + """ + self.collected_params = [param.clone() for param in parameters] + + def restore(self, parameters): + """ + Restore the parameters stored with the `store` method. + Useful to validate the model with EMA parameters without affecting the + original optimization process. Store the parameters before the + `copy_to` method. After validation (or model saving), use this to + restore the former parameters. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + updated with the stored parameters. + """ + for c_param, param in zip(self.collected_params, parameters): + param.data.copy_(c_param.data) diff --git a/MagicQuill/comfy/ldm/modules/encoders/__init__.py b/MagicQuill/comfy/ldm/modules/encoders/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/MagicQuill/comfy/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a566ac9a9493be54bc741558ef231673d52b1e0c Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/encoders/__pycache__/noise_aug_modules.cpython-310.pyc b/MagicQuill/comfy/ldm/modules/encoders/__pycache__/noise_aug_modules.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..48a940aead8f17d74a707a5b918592276ae4dbb9 Binary files /dev/null and b/MagicQuill/comfy/ldm/modules/encoders/__pycache__/noise_aug_modules.cpython-310.pyc differ diff --git a/MagicQuill/comfy/ldm/modules/encoders/noise_aug_modules.py b/MagicQuill/comfy/ldm/modules/encoders/noise_aug_modules.py new file mode 100644 index 0000000000000000000000000000000000000000..a5d8660301636fde75808cba50afa539cf1162e0 --- /dev/null +++ b/MagicQuill/comfy/ldm/modules/encoders/noise_aug_modules.py @@ -0,0 +1,35 @@ +from ..diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation +from ..diffusionmodules.openaimodel import Timestep +import torch + +class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation): + def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs): + super().__init__(*args, **kwargs) + if clip_stats_path is None: + clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim) + else: + clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu") + self.register_buffer("data_mean", clip_mean[None, :], persistent=False) + self.register_buffer("data_std", clip_std[None, :], persistent=False) + self.time_embed = Timestep(timestep_dim) + + def scale(self, x): + # re-normalize to centered mean and unit variance + x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device) + return x + + def unscale(self, x): + # back to original data stats + x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device) + return x + + def forward(self, x, noise_level=None, seed=None): + if noise_level is None: + noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() + else: + assert isinstance(noise_level, torch.Tensor) + x = self.scale(x) + z = self.q_sample(x, noise_level, seed=seed) + z = self.unscale(z) + noise_level = self.time_embed(noise_level) + return z, noise_level diff --git a/MagicQuill/comfy/ldm/modules/sub_quadratic_attention.py b/MagicQuill/comfy/ldm/modules/sub_quadratic_attention.py new file mode 100644 index 0000000000000000000000000000000000000000..1bc4138c318125047bf7a58237fd8cbf45f2ed72 --- /dev/null +++ b/MagicQuill/comfy/ldm/modules/sub_quadratic_attention.py @@ -0,0 +1,274 @@ +# original source: +# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py +# license: +# MIT +# credit: +# Amin Rezaei (original author) +# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks) +# implementation of: +# Self-attention Does Not Need O(n2) Memory": +# https://arxiv.org/abs/2112.05682v2 + +from functools import partial +import torch +from torch import Tensor +from torch.utils.checkpoint import checkpoint +import math +import logging + +try: + from typing import Optional, NamedTuple, List, Protocol +except ImportError: + from typing import Optional, NamedTuple, List + from typing_extensions import Protocol + +from torch import Tensor +from typing import List + +from comfy import model_management + +def dynamic_slice( + x: Tensor, + starts: List[int], + sizes: List[int], +) -> Tensor: + slicing = [slice(start, start + size) for start, size in zip(starts, sizes)] + return x[slicing] + +class AttnChunk(NamedTuple): + exp_values: Tensor + exp_weights_sum: Tensor + max_score: Tensor + +class SummarizeChunk(Protocol): + @staticmethod + def __call__( + query: Tensor, + key_t: Tensor, + value: Tensor, + ) -> AttnChunk: ... + +class ComputeQueryChunkAttn(Protocol): + @staticmethod + def __call__( + query: Tensor, + key_t: Tensor, + value: Tensor, + ) -> Tensor: ... + +def _summarize_chunk( + query: Tensor, + key_t: Tensor, + value: Tensor, + scale: float, + upcast_attention: bool, + mask, +) -> AttnChunk: + if upcast_attention: + with torch.autocast(enabled=False, device_type = 'cuda'): + query = query.float() + key_t = key_t.float() + attn_weights = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key_t, + alpha=scale, + beta=0, + ) + else: + attn_weights = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key_t, + alpha=scale, + beta=0, + ) + max_score, _ = torch.max(attn_weights, -1, keepdim=True) + max_score = max_score.detach() + attn_weights -= max_score + if mask is not None: + attn_weights += mask + torch.exp(attn_weights, out=attn_weights) + exp_weights = attn_weights.to(value.dtype) + exp_values = torch.bmm(exp_weights, value) + max_score = max_score.squeeze(-1) + return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score) + +def _query_chunk_attention( + query: Tensor, + key_t: Tensor, + value: Tensor, + summarize_chunk: SummarizeChunk, + kv_chunk_size: int, + mask, +) -> Tensor: + batch_x_heads, k_channels_per_head, k_tokens = key_t.shape + _, _, v_channels_per_head = value.shape + + def chunk_scanner(chunk_idx: int, mask) -> AttnChunk: + key_chunk = dynamic_slice( + key_t, + (0, 0, chunk_idx), + (batch_x_heads, k_channels_per_head, kv_chunk_size) + ) + value_chunk = dynamic_slice( + value, + (0, chunk_idx, 0), + (batch_x_heads, kv_chunk_size, v_channels_per_head) + ) + if mask is not None: + mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size] + + return summarize_chunk(query, key_chunk, value_chunk, mask=mask) + + chunks: List[AttnChunk] = [ + chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size) + ] + acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks))) + chunk_values, chunk_weights, chunk_max = acc_chunk + + global_max, _ = torch.max(chunk_max, 0, keepdim=True) + max_diffs = torch.exp(chunk_max - global_max) + chunk_values *= torch.unsqueeze(max_diffs, -1) + chunk_weights *= max_diffs + + all_values = chunk_values.sum(dim=0) + all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0) + return all_values / all_weights + +# TODO: refactor CrossAttention#get_attention_scores to share code with this +def _get_attention_scores_no_kv_chunking( + query: Tensor, + key_t: Tensor, + value: Tensor, + scale: float, + upcast_attention: bool, + mask, +) -> Tensor: + if upcast_attention: + with torch.autocast(enabled=False, device_type = 'cuda'): + query = query.float() + key_t = key_t.float() + attn_scores = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key_t, + alpha=scale, + beta=0, + ) + else: + attn_scores = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key_t, + alpha=scale, + beta=0, + ) + + if mask is not None: + attn_scores += mask + try: + attn_probs = attn_scores.softmax(dim=-1) + del attn_scores + except model_management.OOM_EXCEPTION: + logging.warning("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead") + attn_scores -= attn_scores.max(dim=-1, keepdim=True).values + torch.exp(attn_scores, out=attn_scores) + summed = torch.sum(attn_scores, dim=-1, keepdim=True) + attn_scores /= summed + attn_probs = attn_scores + + hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value) + return hidden_states_slice + +class ScannedChunk(NamedTuple): + chunk_idx: int + attn_chunk: AttnChunk + +def efficient_dot_product_attention( + query: Tensor, + key_t: Tensor, + value: Tensor, + query_chunk_size=1024, + kv_chunk_size: Optional[int] = None, + kv_chunk_size_min: Optional[int] = None, + use_checkpoint=True, + upcast_attention=False, + mask = None, +): + """Computes efficient dot-product attention given query, transposed key, and value. + This is efficient version of attention presented in + https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements. + Args: + query: queries for calculating attention with shape of + `[batch * num_heads, tokens, channels_per_head]`. + key_t: keys for calculating attention with shape of + `[batch * num_heads, channels_per_head, tokens]`. + value: values to be used in attention with shape of + `[batch * num_heads, tokens, channels_per_head]`. + query_chunk_size: int: query chunks size + kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens) + kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done). + use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference) + Returns: + Output of shape `[batch * num_heads, query_tokens, channels_per_head]`. + """ + batch_x_heads, q_tokens, q_channels_per_head = query.shape + _, _, k_tokens = key_t.shape + scale = q_channels_per_head ** -0.5 + + kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens) + if kv_chunk_size_min is not None: + kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min) + + if mask is not None and len(mask.shape) == 2: + mask = mask.unsqueeze(0) + + def get_query_chunk(chunk_idx: int) -> Tensor: + return dynamic_slice( + query, + (0, chunk_idx, 0), + (batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head) + ) + + def get_mask_chunk(chunk_idx: int) -> Tensor: + if mask is None: + return None + chunk = min(query_chunk_size, q_tokens) + return mask[:,chunk_idx:chunk_idx + chunk] + + summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention) + summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk + compute_query_chunk_attn: ComputeQueryChunkAttn = partial( + _get_attention_scores_no_kv_chunking, + scale=scale, + upcast_attention=upcast_attention + ) if k_tokens <= kv_chunk_size else ( + # fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw) + partial( + _query_chunk_attention, + kv_chunk_size=kv_chunk_size, + summarize_chunk=summarize_chunk, + ) + ) + + if q_tokens <= query_chunk_size: + # fast-path for when there's just 1 query chunk + return compute_query_chunk_attn( + query=query, + key_t=key_t, + value=value, + mask=mask, + ) + + # TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance, + # and pass slices to be mutated, instead of torch.cat()ing the returned slices + res = torch.cat([ + compute_query_chunk_attn( + query=get_query_chunk(i * query_chunk_size), + key_t=key_t, + value=value, + mask=get_mask_chunk(i * query_chunk_size) + ) for i in range(math.ceil(q_tokens / query_chunk_size)) + ], dim=1) + return res diff --git a/MagicQuill/comfy/ldm/modules/temporal_ae.py b/MagicQuill/comfy/ldm/modules/temporal_ae.py new file mode 100644 index 0000000000000000000000000000000000000000..2992aeafc35ae8ca9e4ecac236810fa5a1fb84ad --- /dev/null +++ b/MagicQuill/comfy/ldm/modules/temporal_ae.py @@ -0,0 +1,245 @@ +import functools +from typing import Callable, Iterable, Union + +import torch +from einops import rearrange, repeat + +import comfy.ops +ops = comfy.ops.disable_weight_init + +from .diffusionmodules.model import ( + AttnBlock, + Decoder, + ResnetBlock, +) +from .diffusionmodules.openaimodel import ResBlock, timestep_embedding +from .attention import BasicTransformerBlock + +def partialclass(cls, *args, **kwargs): + class NewCls(cls): + __init__ = functools.partialmethod(cls.__init__, *args, **kwargs) + + return NewCls + + +class VideoResBlock(ResnetBlock): + def __init__( + self, + out_channels, + *args, + dropout=0.0, + video_kernel_size=3, + alpha=0.0, + merge_strategy="learned", + **kwargs, + ): + super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs) + if video_kernel_size is None: + video_kernel_size = [3, 1, 1] + self.time_stack = ResBlock( + channels=out_channels, + emb_channels=0, + dropout=dropout, + dims=3, + use_scale_shift_norm=False, + use_conv=False, + up=False, + down=False, + kernel_size=video_kernel_size, + use_checkpoint=False, + skip_t_emb=True, + ) + + self.merge_strategy = merge_strategy + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif self.merge_strategy == "learned": + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def get_alpha(self, bs): + if self.merge_strategy == "fixed": + return self.mix_factor + elif self.merge_strategy == "learned": + return torch.sigmoid(self.mix_factor) + else: + raise NotImplementedError() + + def forward(self, x, temb, skip_video=False, timesteps=None): + b, c, h, w = x.shape + if timesteps is None: + timesteps = b + + x = super().forward(x, temb) + + if not skip_video: + x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + + x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + + x = self.time_stack(x, temb) + + alpha = self.get_alpha(bs=b // timesteps).to(x.device) + x = alpha * x + (1.0 - alpha) * x_mix + + x = rearrange(x, "b c t h w -> (b t) c h w") + return x + + +class AE3DConv(ops.Conv2d): + def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs): + super().__init__(in_channels, out_channels, *args, **kwargs) + if isinstance(video_kernel_size, Iterable): + padding = [int(k // 2) for k in video_kernel_size] + else: + padding = int(video_kernel_size // 2) + + self.time_mix_conv = ops.Conv3d( + in_channels=out_channels, + out_channels=out_channels, + kernel_size=video_kernel_size, + padding=padding, + ) + + def forward(self, input, timesteps=None, skip_video=False): + if timesteps is None: + timesteps = input.shape[0] + x = super().forward(input) + if skip_video: + return x + x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + x = self.time_mix_conv(x) + return rearrange(x, "b c t h w -> (b t) c h w") + + +class AttnVideoBlock(AttnBlock): + def __init__( + self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned" + ): + super().__init__(in_channels) + # no context, single headed, as in base class + self.time_mix_block = BasicTransformerBlock( + dim=in_channels, + n_heads=1, + d_head=in_channels, + checkpoint=False, + ff_in=True, + ) + + time_embed_dim = self.in_channels * 4 + self.video_time_embed = torch.nn.Sequential( + ops.Linear(self.in_channels, time_embed_dim), + torch.nn.SiLU(), + ops.Linear(time_embed_dim, self.in_channels), + ) + + self.merge_strategy = merge_strategy + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif self.merge_strategy == "learned": + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def forward(self, x, timesteps=None, skip_time_block=False): + if skip_time_block: + return super().forward(x) + + if timesteps is None: + timesteps = x.shape[0] + + x_in = x + x = self.attention(x) + h, w = x.shape[2:] + x = rearrange(x, "b c h w -> b (h w) c") + + x_mix = x + num_frames = torch.arange(timesteps, device=x.device) + num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) + num_frames = rearrange(num_frames, "b t -> (b t)") + t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False) + emb = self.video_time_embed(t_emb) # b, n_channels + emb = emb[:, None, :] + x_mix = x_mix + emb + + alpha = self.get_alpha().to(x.device) + x_mix = self.time_mix_block(x_mix, timesteps=timesteps) + x = alpha * x + (1.0 - alpha) * x_mix # alpha merge + + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) + x = self.proj_out(x) + + return x_in + x + + def get_alpha( + self, + ): + if self.merge_strategy == "fixed": + return self.mix_factor + elif self.merge_strategy == "learned": + return torch.sigmoid(self.mix_factor) + else: + raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}") + + + +def make_time_attn( + in_channels, + attn_type="vanilla", + attn_kwargs=None, + alpha: float = 0, + merge_strategy: str = "learned", +): + return partialclass( + AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy + ) + + +class Conv2DWrapper(torch.nn.Conv2d): + def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor: + return super().forward(input) + + +class VideoDecoder(Decoder): + available_time_modes = ["all", "conv-only", "attn-only"] + + def __init__( + self, + *args, + video_kernel_size: Union[int, list] = 3, + alpha: float = 0.0, + merge_strategy: str = "learned", + time_mode: str = "conv-only", + **kwargs, + ): + self.video_kernel_size = video_kernel_size + self.alpha = alpha + self.merge_strategy = merge_strategy + self.time_mode = time_mode + assert ( + self.time_mode in self.available_time_modes + ), f"time_mode parameter has to be in {self.available_time_modes}" + + if self.time_mode != "attn-only": + kwargs["conv_out_op"] = partialclass(AE3DConv, video_kernel_size=self.video_kernel_size) + if self.time_mode not in ["conv-only", "only-last-conv"]: + kwargs["attn_op"] = partialclass(make_time_attn, alpha=self.alpha, merge_strategy=self.merge_strategy) + if self.time_mode not in ["attn-only", "only-last-conv"]: + kwargs["resnet_op"] = partialclass(VideoResBlock, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy) + + super().__init__(*args, **kwargs) + + def get_last_layer(self, skip_time_mix=False, **kwargs): + if self.time_mode == "attn-only": + raise NotImplementedError("TODO") + else: + return ( + self.conv_out.time_mix_conv.weight + if not skip_time_mix + else self.conv_out.weight + ) diff --git a/MagicQuill/comfy/ldm/util.py b/MagicQuill/comfy/ldm/util.py new file mode 100644 index 0000000000000000000000000000000000000000..8c09ca1c72f7ceb3f9d7f9546aae5561baf62b13 --- /dev/null +++ b/MagicQuill/comfy/ldm/util.py @@ -0,0 +1,197 @@ +import importlib + +import torch +from torch import optim +import numpy as np + +from inspect import isfunction +from PIL import Image, ImageDraw, ImageFont + + +def log_txt_as_img(wh, xc, size=10): + # wh a tuple of (width, height) + # xc a list of captions to plot + b = len(xc) + txts = list() + for bi in range(b): + txt = Image.new("RGB", wh, color="white") + draw = ImageDraw.Draw(txt) + font = ImageFont.truetype('data/DejaVuSans.ttf', size=size) + nc = int(40 * (wh[0] / 256)) + lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) + + try: + draw.text((0, 0), lines, fill="black", font=font) + except UnicodeEncodeError: + print("Cant encode string for logging. Skipping.") + + txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 + txts.append(txt) + txts = np.stack(txts) + txts = torch.tensor(txts) + return txts + + +def ismap(x): + if not isinstance(x, torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] > 3) + + +def isimage(x): + if not isinstance(x,torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) + + +def exists(x): + return x is not None + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def mean_flat(tensor): + """ + https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def count_params(model, verbose=False): + total_params = sum(p.numel() for p in model.parameters()) + if verbose: + print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") + return total_params + + +def instantiate_from_config(config): + if not "target" in config: + if config == '__is_first_stage__': + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +class AdamWwithEMAandWings(optim.Optimizer): + # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298 + def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using + weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code + ema_power=1., param_names=()): + """AdamW that saves EMA versions of the parameters.""" + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + if not 0.0 <= weight_decay: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + if not 0.0 <= ema_decay <= 1.0: + raise ValueError("Invalid ema_decay value: {}".format(ema_decay)) + defaults = dict(lr=lr, betas=betas, eps=eps, + weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay, + ema_power=ema_power, param_names=param_names) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('amsgrad', False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + Args: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad = [] + grads = [] + exp_avgs = [] + exp_avg_sqs = [] + ema_params_with_grad = [] + state_sums = [] + max_exp_avg_sqs = [] + state_steps = [] + amsgrad = group['amsgrad'] + beta1, beta2 = group['betas'] + ema_decay = group['ema_decay'] + ema_power = group['ema_power'] + + for p in group['params']: + if p.grad is None: + continue + params_with_grad.append(p) + if p.grad.is_sparse: + raise RuntimeError('AdamW does not support sparse gradients') + grads.append(p.grad) + + state = self.state[p] + + # State initialization + if len(state) == 0: + state['step'] = 0 + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) + # Exponential moving average of squared gradient values + state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) + if amsgrad: + # Maintains max of all exp. moving avg. of sq. grad. values + state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) + # Exponential moving average of parameter values + state['param_exp_avg'] = p.detach().float().clone() + + exp_avgs.append(state['exp_avg']) + exp_avg_sqs.append(state['exp_avg_sq']) + ema_params_with_grad.append(state['param_exp_avg']) + + if amsgrad: + max_exp_avg_sqs.append(state['max_exp_avg_sq']) + + # update the steps for each param group update + state['step'] += 1 + # record the step after step update + state_steps.append(state['step']) + + optim._functional.adamw(params_with_grad, + grads, + exp_avgs, + exp_avg_sqs, + max_exp_avg_sqs, + state_steps, + amsgrad=amsgrad, + beta1=beta1, + beta2=beta2, + lr=group['lr'], + weight_decay=group['weight_decay'], + eps=group['eps'], + maximize=False) + + cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power) + for param, ema_param in zip(params_with_grad, ema_params_with_grad): + ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay) + + return loss \ No newline at end of file diff --git a/MagicQuill/comfy/lora.py b/MagicQuill/comfy/lora.py new file mode 100644 index 0000000000000000000000000000000000000000..082a8b3cba49572b6360539a3ac4fa3660fb7725 --- /dev/null +++ b/MagicQuill/comfy/lora.py @@ -0,0 +1,266 @@ +import comfy.utils +import logging + +LORA_CLIP_MAP = { + "mlp.fc1": "mlp_fc1", + "mlp.fc2": "mlp_fc2", + "self_attn.k_proj": "self_attn_k_proj", + "self_attn.q_proj": "self_attn_q_proj", + "self_attn.v_proj": "self_attn_v_proj", + "self_attn.out_proj": "self_attn_out_proj", +} + + +def load_lora(lora, to_load): + patch_dict = {} + loaded_keys = set() + for x in to_load: + alpha_name = "{}.alpha".format(x) + alpha = None + if alpha_name in lora.keys(): + alpha = lora[alpha_name].item() + loaded_keys.add(alpha_name) + + dora_scale_name = "{}.dora_scale".format(x) + dora_scale = None + if dora_scale_name in lora.keys(): + dora_scale = lora[dora_scale_name] + loaded_keys.add(dora_scale_name) + + regular_lora = "{}.lora_up.weight".format(x) + diffusers_lora = "{}_lora.up.weight".format(x) + diffusers2_lora = "{}.lora_B.weight".format(x) + diffusers3_lora = "{}.lora.up.weight".format(x) + transformers_lora = "{}.lora_linear_layer.up.weight".format(x) + A_name = None + + if regular_lora in lora.keys(): + A_name = regular_lora + B_name = "{}.lora_down.weight".format(x) + mid_name = "{}.lora_mid.weight".format(x) + elif diffusers_lora in lora.keys(): + A_name = diffusers_lora + B_name = "{}_lora.down.weight".format(x) + mid_name = None + elif diffusers2_lora in lora.keys(): + A_name = diffusers2_lora + B_name = "{}.lora_A.weight".format(x) + mid_name = None + elif diffusers3_lora in lora.keys(): + A_name = diffusers3_lora + B_name = "{}.lora.down.weight".format(x) + mid_name = None + elif transformers_lora in lora.keys(): + A_name = transformers_lora + B_name ="{}.lora_linear_layer.down.weight".format(x) + mid_name = None + + if A_name is not None: + mid = None + if mid_name is not None and mid_name in lora.keys(): + mid = lora[mid_name] + loaded_keys.add(mid_name) + patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale)) + loaded_keys.add(A_name) + loaded_keys.add(B_name) + + + ######## loha + hada_w1_a_name = "{}.hada_w1_a".format(x) + hada_w1_b_name = "{}.hada_w1_b".format(x) + hada_w2_a_name = "{}.hada_w2_a".format(x) + hada_w2_b_name = "{}.hada_w2_b".format(x) + hada_t1_name = "{}.hada_t1".format(x) + hada_t2_name = "{}.hada_t2".format(x) + if hada_w1_a_name in lora.keys(): + hada_t1 = None + hada_t2 = None + if hada_t1_name in lora.keys(): + hada_t1 = lora[hada_t1_name] + hada_t2 = lora[hada_t2_name] + loaded_keys.add(hada_t1_name) + loaded_keys.add(hada_t2_name) + + patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)) + loaded_keys.add(hada_w1_a_name) + loaded_keys.add(hada_w1_b_name) + loaded_keys.add(hada_w2_a_name) + loaded_keys.add(hada_w2_b_name) + + + ######## lokr + lokr_w1_name = "{}.lokr_w1".format(x) + lokr_w2_name = "{}.lokr_w2".format(x) + lokr_w1_a_name = "{}.lokr_w1_a".format(x) + lokr_w1_b_name = "{}.lokr_w1_b".format(x) + lokr_t2_name = "{}.lokr_t2".format(x) + lokr_w2_a_name = "{}.lokr_w2_a".format(x) + lokr_w2_b_name = "{}.lokr_w2_b".format(x) + + lokr_w1 = None + if lokr_w1_name in lora.keys(): + lokr_w1 = lora[lokr_w1_name] + loaded_keys.add(lokr_w1_name) + + lokr_w2 = None + if lokr_w2_name in lora.keys(): + lokr_w2 = lora[lokr_w2_name] + loaded_keys.add(lokr_w2_name) + + lokr_w1_a = None + if lokr_w1_a_name in lora.keys(): + lokr_w1_a = lora[lokr_w1_a_name] + loaded_keys.add(lokr_w1_a_name) + + lokr_w1_b = None + if lokr_w1_b_name in lora.keys(): + lokr_w1_b = lora[lokr_w1_b_name] + loaded_keys.add(lokr_w1_b_name) + + lokr_w2_a = None + if lokr_w2_a_name in lora.keys(): + lokr_w2_a = lora[lokr_w2_a_name] + loaded_keys.add(lokr_w2_a_name) + + lokr_w2_b = None + if lokr_w2_b_name in lora.keys(): + lokr_w2_b = lora[lokr_w2_b_name] + loaded_keys.add(lokr_w2_b_name) + + lokr_t2 = None + if lokr_t2_name in lora.keys(): + lokr_t2 = lora[lokr_t2_name] + loaded_keys.add(lokr_t2_name) + + if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None): + patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale)) + + #glora + a1_name = "{}.a1.weight".format(x) + a2_name = "{}.a2.weight".format(x) + b1_name = "{}.b1.weight".format(x) + b2_name = "{}.b2.weight".format(x) + if a1_name in lora: + patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale)) + loaded_keys.add(a1_name) + loaded_keys.add(a2_name) + loaded_keys.add(b1_name) + loaded_keys.add(b2_name) + + w_norm_name = "{}.w_norm".format(x) + b_norm_name = "{}.b_norm".format(x) + w_norm = lora.get(w_norm_name, None) + b_norm = lora.get(b_norm_name, None) + + if w_norm is not None: + loaded_keys.add(w_norm_name) + patch_dict[to_load[x]] = ("diff", (w_norm,)) + if b_norm is not None: + loaded_keys.add(b_norm_name) + patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,)) + + diff_name = "{}.diff".format(x) + diff_weight = lora.get(diff_name, None) + if diff_weight is not None: + patch_dict[to_load[x]] = ("diff", (diff_weight,)) + loaded_keys.add(diff_name) + + diff_bias_name = "{}.diff_b".format(x) + diff_bias = lora.get(diff_bias_name, None) + if diff_bias is not None: + patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,)) + loaded_keys.add(diff_bias_name) + + for x in lora.keys(): + if x not in loaded_keys: + logging.warning("lora key not loaded: {}".format(x)) + + return patch_dict + +def model_lora_keys_clip(model, key_map={}): + sdk = model.state_dict().keys() + + text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}" + clip_l_present = False + for b in range(32): #TODO: clean up + for c in LORA_CLIP_MAP: + k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) + if k in sdk: + lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) + key_map[lora_key] = k + lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) + key_map[lora_key] = k + lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora + key_map[lora_key] = k + + k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) + if k in sdk: + lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) + key_map[lora_key] = k + lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base + key_map[lora_key] = k + clip_l_present = True + lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora + key_map[lora_key] = k + + k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) + if k in sdk: + if clip_l_present: + lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base + key_map[lora_key] = k + lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora + key_map[lora_key] = k + else: + lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner + key_map[lora_key] = k + lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora + key_map[lora_key] = k + lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config + key_map[lora_key] = k + + + k = "clip_g.transformer.text_projection.weight" + if k in sdk: + key_map["lora_prior_te_text_projection"] = k #cascade lora? + # key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too + # key_map["lora_te_text_projection"] = k + + return key_map + +def model_lora_keys_unet(model, key_map={}): + sd = model.state_dict() + sdk = sd.keys() + + for k in sdk: + if k.startswith("diffusion_model.") and k.endswith(".weight"): + key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") + key_map["lora_unet_{}".format(key_lora)] = k + key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config + + diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config) + for k in diffusers_keys: + if k.endswith(".weight"): + unet_key = "diffusion_model.{}".format(diffusers_keys[k]) + key_lora = k[:-len(".weight")].replace(".", "_") + key_map["lora_unet_{}".format(key_lora)] = unet_key + + diffusers_lora_prefix = ["", "unet."] + for p in diffusers_lora_prefix: + diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_")) + if diffusers_lora_key.endswith(".to_out.0"): + diffusers_lora_key = diffusers_lora_key[:-2] + key_map[diffusers_lora_key] = unet_key + + if isinstance(model, comfy.model_base.SD3): #Diffusers lora SD3 + for i in range(model.model_config.unet_config.get("depth", 0)): + k = "transformer.transformer_blocks.{}.attn.".format(i) + qkv = "diffusion_model.joint_blocks.{}.x_block.attn.qkv.weight".format(i) + proj = "diffusion_model.joint_blocks.{}.x_block.attn.proj.weight".format(i) + if qkv in sd: + offset = sd[qkv].shape[0] // 3 + key_map["{}to_q".format(k)] = (qkv, (0, 0, offset)) + key_map["{}to_k".format(k)] = (qkv, (0, offset, offset)) + key_map["{}to_v".format(k)] = (qkv, (0, offset * 2, offset)) + key_map["{}to_out.0".format(k)] = proj + + return key_map diff --git a/MagicQuill/comfy/model_base.py b/MagicQuill/comfy/model_base.py new file mode 100644 index 0000000000000000000000000000000000000000..f45b375dee5aac1475686828acfada038799b046 --- /dev/null +++ b/MagicQuill/comfy/model_base.py @@ -0,0 +1,629 @@ +import torch +import logging +from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep +from comfy.ldm.cascade.stage_c import StageC +from comfy.ldm.cascade.stage_b import StageB +from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation +from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation +from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper +import comfy.ldm.audio.dit +import comfy.ldm.audio.embedders +import comfy.model_management +import comfy.conds +import comfy.ops +from enum import Enum +from . import utils +import comfy.latent_formats +import math + +class ModelType(Enum): + EPS = 1 + V_PREDICTION = 2 + V_PREDICTION_EDM = 3 + STABLE_CASCADE = 4 + EDM = 5 + FLOW = 6 + V_PREDICTION_CONTINUOUS = 7 + + +from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV + + +def model_sampling(model_config, model_type): + s = ModelSamplingDiscrete + + if model_type == ModelType.EPS: + c = EPS + elif model_type == ModelType.V_PREDICTION: + c = V_PREDICTION + elif model_type == ModelType.V_PREDICTION_EDM: + c = V_PREDICTION + s = ModelSamplingContinuousEDM + elif model_type == ModelType.FLOW: + c = comfy.model_sampling.CONST + s = comfy.model_sampling.ModelSamplingDiscreteFlow + elif model_type == ModelType.STABLE_CASCADE: + c = EPS + s = StableCascadeSampling + elif model_type == ModelType.EDM: + c = EDM + s = ModelSamplingContinuousEDM + elif model_type == ModelType.V_PREDICTION_CONTINUOUS: + c = V_PREDICTION + s = ModelSamplingContinuousV + + class ModelSampling(s, c): + pass + + return ModelSampling(model_config) + + +class BaseModel(torch.nn.Module): + def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel): + super().__init__() + + unet_config = model_config.unet_config + self.latent_format = model_config.latent_format + self.model_config = model_config + self.manual_cast_dtype = model_config.manual_cast_dtype + + if not unet_config.get("disable_unet_model_creation", False): + if self.manual_cast_dtype is not None: + operations = comfy.ops.manual_cast + else: + operations = comfy.ops.disable_weight_init + self.diffusion_model = unet_model(**unet_config, device=device, operations=operations) + if comfy.model_management.force_channels_last(): + self.diffusion_model.to(memory_format=torch.channels_last) + logging.debug("using channels last mode for diffusion model") + self.model_type = model_type + self.model_sampling = model_sampling(model_config, model_type) + + self.adm_channels = unet_config.get("adm_in_channels", None) + if self.adm_channels is None: + self.adm_channels = 0 + + self.concat_keys = () + logging.info("model_type {}".format(model_type.name)) + logging.debug("adm {}".format(self.adm_channels)) + + def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): + sigma = t + xc = self.model_sampling.calculate_input(sigma, x) + if c_concat is not None: + xc = torch.cat([xc] + [c_concat], dim=1) + + context = c_crossattn + dtype = self.get_dtype() + + if self.manual_cast_dtype is not None: + dtype = self.manual_cast_dtype + + xc = xc.to(dtype) + t = self.model_sampling.timestep(t).float() + context = context.to(dtype) + extra_conds = {} + for o in kwargs: + extra = kwargs[o] + if hasattr(extra, "dtype"): + if extra.dtype != torch.int and extra.dtype != torch.long: + extra = extra.to(dtype) + extra_conds[o] = extra + + model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() + return self.model_sampling.calculate_denoised(sigma, model_output, x) + + def get_dtype(self): + return self.diffusion_model.dtype + + def is_adm(self): + return self.adm_channels > 0 + + def encode_adm(self, **kwargs): + return None + + def extra_conds(self, **kwargs): + out = {} + if len(self.concat_keys) > 0: + cond_concat = [] + denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) + concat_latent_image = kwargs.get("concat_latent_image", None) + if concat_latent_image is None: + concat_latent_image = kwargs.get("latent_image", None) + else: + concat_latent_image = self.process_latent_in(concat_latent_image) + + noise = kwargs.get("noise", None) + device = kwargs["device"] + + if concat_latent_image.shape[1:] != noise.shape[1:]: + concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") + + concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0]) + + if denoise_mask is not None: + if len(denoise_mask.shape) == len(noise.shape): + denoise_mask = denoise_mask[:,:1] + + denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1])) + if denoise_mask.shape[-2:] != noise.shape[-2:]: + denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center") + denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0]) + + for ck in self.concat_keys: + if denoise_mask is not None: + if ck == "mask": + cond_concat.append(denoise_mask.to(device)) + elif ck == "masked_image": + cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space + else: + if ck == "mask": + cond_concat.append(torch.ones_like(noise)[:,:1]) + elif ck == "masked_image": + cond_concat.append(self.blank_inpaint_image_like(noise)) + data = torch.cat(cond_concat, dim=1) + out['c_concat'] = comfy.conds.CONDNoiseShape(data) + + adm = self.encode_adm(**kwargs) + if adm is not None: + out['y'] = comfy.conds.CONDRegular(adm) + + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) + + cross_attn_cnet = kwargs.get("cross_attn_controlnet", None) + if cross_attn_cnet is not None: + out['crossattn_controlnet'] = comfy.conds.CONDCrossAttn(cross_attn_cnet) + + c_concat = kwargs.get("noise_concat", None) + if c_concat is not None: + out['c_concat'] = comfy.conds.CONDNoiseShape(c_concat) + + return out + + def load_model_weights(self, sd, unet_prefix=""): + to_load = {} + keys = list(sd.keys()) + for k in keys: + if k.startswith(unet_prefix): + to_load[k[len(unet_prefix):]] = sd.pop(k) + + to_load = self.model_config.process_unet_state_dict(to_load) + m, u = self.diffusion_model.load_state_dict(to_load, strict=False) + if len(m) > 0: + logging.warning("unet missing: {}".format(m)) + + if len(u) > 0: + logging.warning("unet unexpected: {}".format(u)) + del to_load + return self + + def process_latent_in(self, latent): + return self.latent_format.process_in(latent) + + def process_latent_out(self, latent): + return self.latent_format.process_out(latent) + + def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): + extra_sds = [] + if clip_state_dict is not None: + extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict)) + if vae_state_dict is not None: + extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict)) + if clip_vision_state_dict is not None: + extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict)) + + unet_state_dict = self.diffusion_model.state_dict() + unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) + + if self.model_type == ModelType.V_PREDICTION: + unet_state_dict["v_pred"] = torch.tensor([]) + + for sd in extra_sds: + unet_state_dict.update(sd) + + return unet_state_dict + + def set_inpaint(self): + self.concat_keys = ("mask", "masked_image") + def blank_inpaint_image_like(latent_image): + blank_image = torch.ones_like(latent_image) + # these are the values for "zero" in pixel space translated to latent space + blank_image[:,0] *= 0.8223 + blank_image[:,1] *= -0.6876 + blank_image[:,2] *= 0.6364 + blank_image[:,3] *= 0.1380 + return blank_image + self.blank_inpaint_image_like = blank_inpaint_image_like + + def memory_required(self, input_shape): + if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention(): + dtype = self.get_dtype() + if self.manual_cast_dtype is not None: + dtype = self.manual_cast_dtype + #TODO: this needs to be tweaked + area = input_shape[0] * math.prod(input_shape[2:]) + return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024) + else: + #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory. + area = input_shape[0] * math.prod(input_shape[2:]) + return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024) + + +def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None): + adm_inputs = [] + weights = [] + noise_aug = [] + for unclip_cond in unclip_conditioning: + for adm_cond in unclip_cond["clip_vision_output"].image_embeds: + weight = unclip_cond["strength"] + noise_augment = unclip_cond["noise_augmentation"] + noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) + c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed) + adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight + weights.append(weight) + noise_aug.append(noise_augment) + adm_inputs.append(adm_out) + + if len(noise_aug) > 1: + adm_out = torch.stack(adm_inputs).sum(0) + noise_augment = noise_augment_merge + noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) + c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device)) + adm_out = torch.cat((c_adm, noise_level_emb), 1) + + return adm_out + +class SD21UNCLIP(BaseModel): + def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None): + super().__init__(model_config, model_type, device=device) + self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config) + + def encode_adm(self, **kwargs): + unclip_conditioning = kwargs.get("unclip_conditioning", None) + device = kwargs["device"] + if unclip_conditioning is None: + return torch.zeros((1, self.adm_channels)) + else: + return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10) + +def sdxl_pooled(args, noise_augmentor): + if "unclip_conditioning" in args: + return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280] + else: + return args["pooled_output"] + +class SDXLRefiner(BaseModel): + def __init__(self, model_config, model_type=ModelType.EPS, device=None): + super().__init__(model_config, model_type, device=device) + self.embedder = Timestep(256) + self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) + + def encode_adm(self, **kwargs): + clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) + width = kwargs.get("width", 768) + height = kwargs.get("height", 768) + crop_w = kwargs.get("crop_w", 0) + crop_h = kwargs.get("crop_h", 0) + + if kwargs.get("prompt_type", "") == "negative": + aesthetic_score = kwargs.get("aesthetic_score", 2.5) + else: + aesthetic_score = kwargs.get("aesthetic_score", 6) + + out = [] + out.append(self.embedder(torch.Tensor([height]))) + out.append(self.embedder(torch.Tensor([width]))) + out.append(self.embedder(torch.Tensor([crop_h]))) + out.append(self.embedder(torch.Tensor([crop_w]))) + out.append(self.embedder(torch.Tensor([aesthetic_score]))) + flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) + return torch.cat((clip_pooled.to(flat.device), flat), dim=1) + +class SDXL(BaseModel): + def __init__(self, model_config, model_type=ModelType.EPS, device=None): + super().__init__(model_config, model_type, device=device) + self.embedder = Timestep(256) + self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) + + def encode_adm(self, **kwargs): + clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) + width = kwargs.get("width", 768) + height = kwargs.get("height", 768) + crop_w = kwargs.get("crop_w", 0) + crop_h = kwargs.get("crop_h", 0) + target_width = kwargs.get("target_width", width) + target_height = kwargs.get("target_height", height) + + out = [] + out.append(self.embedder(torch.Tensor([height]))) + out.append(self.embedder(torch.Tensor([width]))) + out.append(self.embedder(torch.Tensor([crop_h]))) + out.append(self.embedder(torch.Tensor([crop_w]))) + out.append(self.embedder(torch.Tensor([target_height]))) + out.append(self.embedder(torch.Tensor([target_width]))) + flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) + return torch.cat((clip_pooled.to(flat.device), flat), dim=1) + +class SVD_img2vid(BaseModel): + def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None): + super().__init__(model_config, model_type, device=device) + self.embedder = Timestep(256) + + def encode_adm(self, **kwargs): + fps_id = kwargs.get("fps", 6) - 1 + motion_bucket_id = kwargs.get("motion_bucket_id", 127) + augmentation = kwargs.get("augmentation_level", 0) + + out = [] + out.append(self.embedder(torch.Tensor([fps_id]))) + out.append(self.embedder(torch.Tensor([motion_bucket_id]))) + out.append(self.embedder(torch.Tensor([augmentation]))) + + flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0) + return flat + + def extra_conds(self, **kwargs): + out = {} + adm = self.encode_adm(**kwargs) + if adm is not None: + out['y'] = comfy.conds.CONDRegular(adm) + + latent_image = kwargs.get("concat_latent_image", None) + noise = kwargs.get("noise", None) + device = kwargs["device"] + + if latent_image is None: + latent_image = torch.zeros_like(noise) + + if latent_image.shape[1:] != noise.shape[1:]: + latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") + + latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0]) + + out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image) + + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) + + if "time_conditioning" in kwargs: + out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"]) + + out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0]) + return out + +class SV3D_u(SVD_img2vid): + def encode_adm(self, **kwargs): + augmentation = kwargs.get("augmentation_level", 0) + + out = [] + out.append(self.embedder(torch.flatten(torch.Tensor([augmentation])))) + + flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0) + return flat + +class SV3D_p(SVD_img2vid): + def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None): + super().__init__(model_config, model_type, device=device) + self.embedder_512 = Timestep(512) + + def encode_adm(self, **kwargs): + augmentation = kwargs.get("augmentation_level", 0) + elevation = kwargs.get("elevation", 0) #elevation and azimuth are in degrees here + azimuth = kwargs.get("azimuth", 0) + noise = kwargs.get("noise", None) + + out = [] + out.append(self.embedder(torch.flatten(torch.Tensor([augmentation])))) + out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(90 - torch.Tensor([elevation])), 360.0)))) + out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(torch.Tensor([azimuth])), 360.0)))) + + out = list(map(lambda a: utils.resize_to_batch_size(a, noise.shape[0]), out)) + return torch.cat(out, dim=1) + + +class Stable_Zero123(BaseModel): + def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None): + super().__init__(model_config, model_type, device=device) + self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device) + self.cc_projection.weight.copy_(cc_projection_weight) + self.cc_projection.bias.copy_(cc_projection_bias) + + def extra_conds(self, **kwargs): + out = {} + + latent_image = kwargs.get("concat_latent_image", None) + noise = kwargs.get("noise", None) + + if latent_image is None: + latent_image = torch.zeros_like(noise) + + if latent_image.shape[1:] != noise.shape[1:]: + latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") + + latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0]) + + out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image) + + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + if cross_attn.shape[-1] != 768: + cross_attn = self.cc_projection(cross_attn) + out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) + return out + +class SD_X4Upscaler(BaseModel): + def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None): + super().__init__(model_config, model_type, device=device) + self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350) + + def extra_conds(self, **kwargs): + out = {} + + image = kwargs.get("concat_image", None) + noise = kwargs.get("noise", None) + noise_augment = kwargs.get("noise_augmentation", 0.0) + device = kwargs["device"] + seed = kwargs["seed"] - 10 + + noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment) + + if image is None: + image = torch.zeros_like(noise)[:,:3] + + if image.shape[1:] != noise.shape[1:]: + image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + + noise_level = torch.tensor([noise_level], device=device) + if noise_augment > 0: + image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed) + + image = utils.resize_to_batch_size(image, noise.shape[0]) + + out['c_concat'] = comfy.conds.CONDNoiseShape(image) + out['y'] = comfy.conds.CONDRegular(noise_level) + return out + +class IP2P: + def extra_conds(self, **kwargs): + out = {} + + image = kwargs.get("concat_latent_image", None) + noise = kwargs.get("noise", None) + device = kwargs["device"] + + if image is None: + image = torch.zeros_like(noise) + + if image.shape[1:] != noise.shape[1:]: + image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + + image = utils.resize_to_batch_size(image, noise.shape[0]) + + out['c_concat'] = comfy.conds.CONDNoiseShape(self.process_ip2p_image_in(image)) + adm = self.encode_adm(**kwargs) + if adm is not None: + out['y'] = comfy.conds.CONDRegular(adm) + return out + +class SD15_instructpix2pix(IP2P, BaseModel): + def __init__(self, model_config, model_type=ModelType.EPS, device=None): + super().__init__(model_config, model_type, device=device) + self.process_ip2p_image_in = lambda image: image + +class SDXL_instructpix2pix(IP2P, SDXL): + def __init__(self, model_config, model_type=ModelType.EPS, device=None): + super().__init__(model_config, model_type, device=device) + if model_type == ModelType.V_PREDICTION_EDM: + self.process_ip2p_image_in = lambda image: comfy.latent_formats.SDXL().process_in(image) #cosxl ip2p + else: + self.process_ip2p_image_in = lambda image: image #diffusers ip2p + + +class StableCascade_C(BaseModel): + def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None): + super().__init__(model_config, model_type, device=device, unet_model=StageC) + self.diffusion_model.eval().requires_grad_(False) + + def extra_conds(self, **kwargs): + out = {} + clip_text_pooled = kwargs["pooled_output"] + if clip_text_pooled is not None: + out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled) + + if "unclip_conditioning" in kwargs: + embeds = [] + for unclip_cond in kwargs["unclip_conditioning"]: + weight = unclip_cond["strength"] + embeds.append(unclip_cond["clip_vision_output"].image_embeds.unsqueeze(0) * weight) + clip_img = torch.cat(embeds, dim=1) + else: + clip_img = torch.zeros((1, 1, 768)) + out["clip_img"] = comfy.conds.CONDRegular(clip_img) + out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,))) + out["crp"] = comfy.conds.CONDRegular(torch.zeros((1,))) + + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['clip_text'] = comfy.conds.CONDCrossAttn(cross_attn) + return out + + +class StableCascade_B(BaseModel): + def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None): + super().__init__(model_config, model_type, device=device, unet_model=StageB) + self.diffusion_model.eval().requires_grad_(False) + + def extra_conds(self, **kwargs): + out = {} + noise = kwargs.get("noise", None) + + clip_text_pooled = kwargs["pooled_output"] + if clip_text_pooled is not None: + out['clip'] = comfy.conds.CONDRegular(clip_text_pooled) + + #size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched + prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device)) + + out["effnet"] = comfy.conds.CONDRegular(prior) + out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,))) + return out + + +class SD3(BaseModel): + def __init__(self, model_config, model_type=ModelType.FLOW, device=None): + super().__init__(model_config, model_type, device=device, unet_model=OpenAISignatureMMDITWrapper) + + def encode_adm(self, **kwargs): + return kwargs["pooled_output"] + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + return out + + def memory_required(self, input_shape): + if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention(): + dtype = self.get_dtype() + if self.manual_cast_dtype is not None: + dtype = self.manual_cast_dtype + #TODO: this probably needs to be tweaked + area = input_shape[0] * input_shape[2] * input_shape[3] + return (area * comfy.model_management.dtype_size(dtype) * 0.012) * (1024 * 1024) + else: + area = input_shape[0] * input_shape[2] * input_shape[3] + return (area * 0.3) * (1024 * 1024) + + +class StableAudio1(BaseModel): + def __init__(self, model_config, seconds_start_embedder_weights, seconds_total_embedder_weights, model_type=ModelType.V_PREDICTION_CONTINUOUS, device=None): + super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.audio.dit.AudioDiffusionTransformer) + self.seconds_start_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512) + self.seconds_total_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512) + self.seconds_start_embedder.load_state_dict(seconds_start_embedder_weights) + self.seconds_total_embedder.load_state_dict(seconds_total_embedder_weights) + + def extra_conds(self, **kwargs): + out = {} + + noise = kwargs.get("noise", None) + device = kwargs["device"] + + seconds_start = kwargs.get("seconds_start", 0) + seconds_total = kwargs.get("seconds_total", int(noise.shape[-1] / 21.53)) + + seconds_start_embed = self.seconds_start_embedder([seconds_start])[0].to(device) + seconds_total_embed = self.seconds_total_embedder([seconds_total])[0].to(device) + + global_embed = torch.cat([seconds_start_embed, seconds_total_embed], dim=-1).reshape((1, -1)) + out['global_embed'] = comfy.conds.CONDRegular(global_embed) + + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + cross_attn = torch.cat([cross_attn.to(device), seconds_start_embed.repeat((cross_attn.shape[0], 1, 1)), seconds_total_embed.repeat((cross_attn.shape[0], 1, 1))], dim=1) + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + return out diff --git a/MagicQuill/comfy/model_detection.py b/MagicQuill/comfy/model_detection.py new file mode 100644 index 0000000000000000000000000000000000000000..4843e6a4a27409fe31b5a3758961169124ed0dfe --- /dev/null +++ b/MagicQuill/comfy/model_detection.py @@ -0,0 +1,433 @@ +import comfy.supported_models +import comfy.supported_models_base +import math +import logging + +def count_blocks(state_dict_keys, prefix_string): + count = 0 + while True: + c = False + for k in state_dict_keys: + if k.startswith(prefix_string.format(count)): + c = True + break + if c == False: + break + count += 1 + return count + +def calculate_transformer_depth(prefix, state_dict_keys, state_dict): + context_dim = None + use_linear_in_transformer = False + + transformer_prefix = prefix + "1.transformer_blocks." + transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))) + if len(transformer_keys) > 0: + last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}') + context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] + use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 + time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict + time_stack_cross = '{}1.time_stack.0.attn2.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn2.to_q.weight'.format(prefix) in state_dict + return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross + return None + +def detect_unet_config(state_dict, key_prefix): + state_dict_keys = list(state_dict.keys()) + + if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model + unet_config = {} + unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1] + patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2] + unet_config["patch_size"] = patch_size + unet_config["out_channels"] = state_dict['{}final_layer.linear.weight'.format(key_prefix)].shape[0] // (patch_size * patch_size) + + unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64 + unet_config["input_size"] = None + y_key = '{}y_embedder.mlp.0.weight'.format(key_prefix) + if y_key in state_dict_keys: + unet_config["adm_in_channels"] = state_dict[y_key].shape[1] + + context_key = '{}context_embedder.weight'.format(key_prefix) + if context_key in state_dict_keys: + in_features = state_dict[context_key].shape[1] + out_features = state_dict[context_key].shape[0] + unet_config["context_embedder_config"] = {"target": "torch.nn.Linear", "params": {"in_features": in_features, "out_features": out_features}} + num_patches_key = '{}pos_embed'.format(key_prefix) + if num_patches_key in state_dict_keys: + num_patches = state_dict[num_patches_key].shape[1] + unet_config["num_patches"] = num_patches + unet_config["pos_embed_max_size"] = round(math.sqrt(num_patches)) + + rms_qk = '{}joint_blocks.0.context_block.attn.ln_q.weight'.format(key_prefix) + if rms_qk in state_dict_keys: + unet_config["qk_norm"] = "rms" + + unet_config["pos_embed_scaling_factor"] = None #unused for inference + context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix) + if context_processor in state_dict_keys: + unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.') + return unet_config + + if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade + unet_config = {} + text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix) + if text_mapper_name in state_dict_keys: + unet_config['stable_cascade_stage'] = 'c' + w = state_dict[text_mapper_name] + if w.shape[0] == 1536: #stage c lite + unet_config['c_cond'] = 1536 + unet_config['c_hidden'] = [1536, 1536] + unet_config['nhead'] = [24, 24] + unet_config['blocks'] = [[4, 12], [12, 4]] + elif w.shape[0] == 2048: #stage c full + unet_config['c_cond'] = 2048 + elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys: + unet_config['stable_cascade_stage'] = 'b' + w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)] + if w.shape[-1] == 640: + unet_config['c_hidden'] = [320, 640, 1280, 1280] + unet_config['nhead'] = [-1, -1, 20, 20] + unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]] + unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]] + elif w.shape[-1] == 576: #stage b lite + unet_config['c_hidden'] = [320, 576, 1152, 1152] + unet_config['nhead'] = [-1, 9, 18, 18] + unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]] + unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]] + return unet_config + + if '{}transformer.rotary_pos_emb.inv_freq'.format(key_prefix) in state_dict_keys: #stable audio dit + unet_config = {} + unet_config["audio_model"] = "dit1.0" + return unet_config + + unet_config = { + "use_checkpoint": False, + "image_size": 32, + "use_spatial_transformer": True, + "legacy": False + } + + y_input = '{}label_emb.0.0.weight'.format(key_prefix) + if y_input in state_dict_keys: + unet_config["num_classes"] = "sequential" + unet_config["adm_in_channels"] = state_dict[y_input].shape[1] + else: + unet_config["adm_in_channels"] = None + + model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0] + in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1] + + out_key = '{}out.2.weight'.format(key_prefix) + if out_key in state_dict: + out_channels = state_dict[out_key].shape[0] + else: + out_channels = 4 + + num_res_blocks = [] + channel_mult = [] + attention_resolutions = [] + transformer_depth = [] + transformer_depth_output = [] + context_dim = None + use_linear_in_transformer = False + + video_model = False + video_model_cross = False + + current_res = 1 + count = 0 + + last_res_blocks = 0 + last_channel_mult = 0 + + input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.') + for count in range(input_block_count): + prefix = '{}input_blocks.{}.'.format(key_prefix, count) + prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1) + + block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys))) + if len(block_keys) == 0: + break + + block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys))) + + if "{}0.op.weight".format(prefix) in block_keys: #new layer + num_res_blocks.append(last_res_blocks) + channel_mult.append(last_channel_mult) + + current_res *= 2 + last_res_blocks = 0 + last_channel_mult = 0 + out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) + if out is not None: + transformer_depth_output.append(out[0]) + else: + transformer_depth_output.append(0) + else: + res_block_prefix = "{}0.in_layers.0.weight".format(prefix) + if res_block_prefix in block_keys: + last_res_blocks += 1 + last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels + + out = calculate_transformer_depth(prefix, state_dict_keys, state_dict) + if out is not None: + transformer_depth.append(out[0]) + if context_dim is None: + context_dim = out[1] + use_linear_in_transformer = out[2] + video_model = out[3] + video_model_cross = out[4] + else: + transformer_depth.append(0) + + res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output) + if res_block_prefix in block_keys_output: + out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) + if out is not None: + transformer_depth_output.append(out[0]) + else: + transformer_depth_output.append(0) + + + num_res_blocks.append(last_res_blocks) + channel_mult.append(last_channel_mult) + if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys: + transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}') + elif "{}middle_block.0.in_layers.0.weight".format(key_prefix) in state_dict_keys: + transformer_depth_middle = -1 + else: + transformer_depth_middle = -2 + + unet_config["in_channels"] = in_channels + unet_config["out_channels"] = out_channels + unet_config["model_channels"] = model_channels + unet_config["num_res_blocks"] = num_res_blocks + unet_config["transformer_depth"] = transformer_depth + unet_config["transformer_depth_output"] = transformer_depth_output + unet_config["channel_mult"] = channel_mult + unet_config["transformer_depth_middle"] = transformer_depth_middle + unet_config['use_linear_in_transformer'] = use_linear_in_transformer + unet_config["context_dim"] = context_dim + + if video_model: + unet_config["extra_ff_mix_layer"] = True + unet_config["use_spatial_context"] = True + unet_config["merge_strategy"] = "learned_with_images" + unet_config["merge_factor"] = 0.0 + unet_config["video_kernel_size"] = [3, 1, 1] + unet_config["use_temporal_resblock"] = True + unet_config["use_temporal_attention"] = True + unet_config["disable_temporal_crossattention"] = not video_model_cross + else: + unet_config["use_temporal_resblock"] = False + unet_config["use_temporal_attention"] = False + + return unet_config + +def model_config_from_unet_config(unet_config, state_dict=None): + for model_config in comfy.supported_models.models: + if model_config.matches(unet_config, state_dict): + return model_config(unet_config) + + logging.error("no match {}".format(unet_config)) + return None + +def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False): + unet_config = detect_unet_config(state_dict, unet_key_prefix) + model_config = model_config_from_unet_config(unet_config, state_dict) + if model_config is None and use_base_if_no_match: + return comfy.supported_models_base.BASE(unet_config) + else: + return model_config + +def unet_prefix_from_state_dict(state_dict): + if "model.model.postprocess_conv.weight" in state_dict: #audio models + unet_key_prefix = "model.model." + else: + unet_key_prefix = "model.diffusion_model." + return unet_key_prefix + +def convert_config(unet_config): + new_config = unet_config.copy() + num_res_blocks = new_config.get("num_res_blocks", None) + channel_mult = new_config.get("channel_mult", None) + + if isinstance(num_res_blocks, int): + num_res_blocks = len(channel_mult) * [num_res_blocks] + + if "attention_resolutions" in new_config: + attention_resolutions = new_config.pop("attention_resolutions") + transformer_depth = new_config.get("transformer_depth", None) + transformer_depth_middle = new_config.get("transformer_depth_middle", None) + + if isinstance(transformer_depth, int): + transformer_depth = len(channel_mult) * [transformer_depth] + if transformer_depth_middle is None: + transformer_depth_middle = transformer_depth[-1] + t_in = [] + t_out = [] + s = 1 + for i in range(len(num_res_blocks)): + res = num_res_blocks[i] + d = 0 + if s in attention_resolutions: + d = transformer_depth[i] + + t_in += [d] * res + t_out += [d] * (res + 1) + s *= 2 + transformer_depth = t_in + transformer_depth_output = t_out + new_config["transformer_depth"] = t_in + new_config["transformer_depth_output"] = t_out + new_config["transformer_depth_middle"] = transformer_depth_middle + + new_config["num_res_blocks"] = num_res_blocks + return new_config + + +def unet_config_from_diffusers_unet(state_dict, dtype=None): + match = {} + transformer_depth = [] + + attn_res = 1 + down_blocks = count_blocks(state_dict, "down_blocks.{}") + for i in range(down_blocks): + attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}') + res_blocks = count_blocks(state_dict, "down_blocks.{}.resnets.".format(i) + '{}') + for ab in range(attn_blocks): + transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}') + transformer_depth.append(transformer_count) + if transformer_count > 0: + match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1] + + attn_res *= 2 + if attn_blocks == 0: + for i in range(res_blocks): + transformer_depth.append(0) + + match["transformer_depth"] = transformer_depth + + match["model_channels"] = state_dict["conv_in.weight"].shape[0] + match["in_channels"] = state_dict["conv_in.weight"].shape[1] + match["adm_in_channels"] = None + if "class_embedding.linear_1.weight" in state_dict: + match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1] + elif "add_embedding.linear_1.weight" in state_dict: + match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1] + + SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, + 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384, + 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4, + 'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], + 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, + 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, + 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, + 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, + 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], + 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8, + 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1, + 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0, + 'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, + 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SDXL_diffusers_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 8, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, + 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4], + 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2], + 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + KOALA_700M = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 5], 'transformer_depth_output': [0, 0, 2, 2, 5, 5], + 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + KOALA_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 6], 'transformer_depth_output': [0, 0, 2, 2, 6, 6], + 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SD09_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], + 'transformer_depth': [1, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, + 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1], + 'use_temporal_attention': False, 'use_temporal_resblock': False, 'disable_self_attentions': [True, False, False]} + + SD_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], + 'transformer_depth': [0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': False, + 'context_dim': 768, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 1, 1, 1, 1], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + + supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p] + + for unet_config in supported_models: + matches = True + for k in match: + if match[k] != unet_config[k]: + matches = False + break + if matches: + return convert_config(unet_config) + return None + +def model_config_from_diffusers_unet(state_dict): + unet_config = unet_config_from_diffusers_unet(state_dict) + if unet_config is not None: + return model_config_from_unet_config(unet_config) + return None diff --git a/MagicQuill/comfy/model_management.py b/MagicQuill/comfy/model_management.py new file mode 100644 index 0000000000000000000000000000000000000000..047193290fa27199431300679b1dcfc64383ab85 --- /dev/null +++ b/MagicQuill/comfy/model_management.py @@ -0,0 +1,957 @@ +import psutil +import logging +from enum import Enum +from comfy.cli_args import args +import torch +import sys +import platform + +class VRAMState(Enum): + DISABLED = 0 #No vram present: no need to move models to vram + NO_VRAM = 1 #Very low vram: enable all the options to save vram + LOW_VRAM = 2 + NORMAL_VRAM = 3 + HIGH_VRAM = 4 + SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. + +class CPUState(Enum): + GPU = 0 + CPU = 1 + MPS = 2 + +# Determine VRAM State +vram_state = VRAMState.NORMAL_VRAM +set_vram_to = VRAMState.NORMAL_VRAM +cpu_state = CPUState.GPU + +total_vram = 0 + +lowvram_available = True +xpu_available = False + +if args.deterministic: + logging.info("Using deterministic algorithms for pytorch") + torch.use_deterministic_algorithms(True, warn_only=True) + +directml_enabled = False +if args.directml is not None: + import torch_directml + directml_enabled = True + device_index = args.directml + if device_index < 0: + directml_device = torch_directml.device() + else: + directml_device = torch_directml.device(device_index) + logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index))) + # torch_directml.disable_tiled_resources(True) + lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default. + +try: + import intel_extension_for_pytorch as ipex + if torch.xpu.is_available(): + xpu_available = True +except: + pass + +try: + if torch.backends.mps.is_available(): + cpu_state = CPUState.MPS + import torch.mps +except: + pass + +if args.cpu: + cpu_state = CPUState.CPU + +def is_intel_xpu(): + global cpu_state + global xpu_available + if cpu_state == CPUState.GPU: + if xpu_available: + return True + return False + +def get_torch_device(): + global directml_enabled + global cpu_state + if directml_enabled: + global directml_device + return directml_device + if cpu_state == CPUState.MPS: + return torch.device("mps") + if cpu_state == CPUState.CPU: + return torch.device("cpu") + else: + if is_intel_xpu(): + return torch.device("xpu", torch.xpu.current_device()) + else: + return torch.device(torch.cuda.current_device()) + +def get_total_memory(dev=None, torch_total_too=False): + global directml_enabled + if dev is None: + dev = get_torch_device() + + if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): + mem_total = psutil.virtual_memory().total + mem_total_torch = mem_total + else: + if directml_enabled: + mem_total = 1024 * 1024 * 1024 #TODO + mem_total_torch = mem_total + elif is_intel_xpu(): + stats = torch.xpu.memory_stats(dev) + mem_reserved = stats['reserved_bytes.all.current'] + mem_total_torch = mem_reserved + mem_total = torch.xpu.get_device_properties(dev).total_memory + else: + stats = torch.cuda.memory_stats(dev) + mem_reserved = stats['reserved_bytes.all.current'] + _, mem_total_cuda = torch.cuda.mem_get_info(dev) + mem_total_torch = mem_reserved + mem_total = mem_total_cuda + + if torch_total_too: + return (mem_total, mem_total_torch) + else: + return mem_total + +total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) +total_ram = psutil.virtual_memory().total / (1024 * 1024) +logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) + +try: + logging.info("pytorch version: {}".format(torch.version.__version__)) +except: + pass + +try: + OOM_EXCEPTION = torch.cuda.OutOfMemoryError +except: + OOM_EXCEPTION = Exception + +XFORMERS_VERSION = "" +XFORMERS_ENABLED_VAE = True +if args.disable_xformers: + XFORMERS_IS_AVAILABLE = False +else: + try: + import xformers + import xformers.ops + XFORMERS_IS_AVAILABLE = True + try: + XFORMERS_IS_AVAILABLE = xformers._has_cpp_library + except: + pass + try: + XFORMERS_VERSION = xformers.version.__version__ + logging.info("xformers version: {}".format(XFORMERS_VERSION)) + if XFORMERS_VERSION.startswith("0.0.18"): + logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") + logging.warning("Please downgrade or upgrade xformers to a different version.\n") + XFORMERS_ENABLED_VAE = False + except: + pass + except: + XFORMERS_IS_AVAILABLE = False + +def is_nvidia(): + global cpu_state + if cpu_state == CPUState.GPU: + if torch.version.cuda: + return True + return False + +ENABLE_PYTORCH_ATTENTION = False +if args.use_pytorch_cross_attention: + ENABLE_PYTORCH_ATTENTION = True + XFORMERS_IS_AVAILABLE = False + +VAE_DTYPES = [torch.float32] + +try: + if is_nvidia(): + torch_version = torch.version.__version__ + if int(torch_version[0]) >= 2: + if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: + ENABLE_PYTORCH_ATTENTION = True + if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8: + VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES + if is_intel_xpu(): + if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: + ENABLE_PYTORCH_ATTENTION = True +except: + pass + +if is_intel_xpu(): + VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES + +if args.cpu_vae: + VAE_DTYPES = [torch.float32] + + +if ENABLE_PYTORCH_ATTENTION: + torch.backends.cuda.enable_math_sdp(True) + torch.backends.cuda.enable_flash_sdp(True) + torch.backends.cuda.enable_mem_efficient_sdp(True) + +if args.lowvram: + set_vram_to = VRAMState.LOW_VRAM + lowvram_available = True +elif args.novram: + set_vram_to = VRAMState.NO_VRAM +elif args.highvram or args.gpu_only: + vram_state = VRAMState.HIGH_VRAM + +FORCE_FP32 = False +FORCE_FP16 = False +if args.force_fp32: + logging.info("Forcing FP32, if this improves things please report it.") + FORCE_FP32 = True + +if args.force_fp16: + logging.info("Forcing FP16.") + FORCE_FP16 = True + +if lowvram_available: + if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): + vram_state = set_vram_to + + +if cpu_state != CPUState.GPU: + vram_state = VRAMState.DISABLED + +if cpu_state == CPUState.MPS: + vram_state = VRAMState.SHARED + +logging.info(f"Set vram state to: {vram_state.name}") + +DISABLE_SMART_MEMORY = args.disable_smart_memory + +if DISABLE_SMART_MEMORY: + logging.info("Disabling smart memory management") + +def get_torch_device_name(device): + if hasattr(device, 'type'): + if device.type == "cuda": + try: + allocator_backend = torch.cuda.get_allocator_backend() + except: + allocator_backend = "" + return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) + else: + return "{}".format(device.type) + elif is_intel_xpu(): + return "{} {}".format(device, torch.xpu.get_device_name(device)) + else: + return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) + +try: + logging.info("Device: {}".format(get_torch_device_name(get_torch_device()))) +except: + logging.warning("Could not pick default device.") + + +current_loaded_models = [] + +def module_size(module): + module_mem = 0 + sd = module.state_dict() + for k in sd: + t = sd[k] + module_mem += t.nelement() * t.element_size() + return module_mem + +class LoadedModel: + def __init__(self, model): + self.model = model + self.device = model.load_device + self.weights_loaded = False + self.real_model = None + self.currently_used = True + + def model_memory(self): + return self.model.model_size() + + def model_memory_required(self, device): + if device == self.model.current_device: + return 0 + else: + return self.model_memory() + + def model_load(self, lowvram_model_memory=0, force_patch_weights=False): + patch_model_to = self.device + + self.model.model_patches_to(self.device) + self.model.model_patches_to(self.model.model_dtype()) + + load_weights = not self.weights_loaded + + try: + if lowvram_model_memory > 0 and load_weights: + self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights) + else: + self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights) + except Exception as e: + self.model.unpatch_model(self.model.offload_device) + self.model_unload() + raise e + + if is_intel_xpu() and not args.disable_ipex_optimize: + self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True) + + self.weights_loaded = True + return self.real_model + + def should_reload_model(self, force_patch_weights=False): + if force_patch_weights and self.model.lowvram_patch_counter > 0: + return True + return False + + def model_unload(self, unpatch_weights=True): + self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights) + self.model.model_patches_to(self.model.offload_device) + self.weights_loaded = self.weights_loaded and not unpatch_weights + self.real_model = None + + def __eq__(self, other): + return self.model is other.model + +def minimum_inference_memory(): + return (1024 * 1024 * 1024) + +def unload_model_clones(model, unload_weights_only=True, force_unload=True): + to_unload = [] + for i in range(len(current_loaded_models)): + if model.is_clone(current_loaded_models[i].model): + to_unload = [i] + to_unload + + if len(to_unload) == 0: + return True + + same_weights = 0 + for i in to_unload: + if model.clone_has_same_weights(current_loaded_models[i].model): + same_weights += 1 + + if same_weights == len(to_unload): + unload_weight = False + else: + unload_weight = True + + if not force_unload: + if unload_weights_only and unload_weight == False: + return None + + for i in to_unload: + logging.debug("unload clone {} {}".format(i, unload_weight)) + current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight) + + return unload_weight + +def free_memory(memory_required, device, keep_loaded=[]): + unloaded_model = [] + can_unload = [] + + for i in range(len(current_loaded_models) -1, -1, -1): + shift_model = current_loaded_models[i] + if shift_model.device == device: + if shift_model not in keep_loaded: + can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i)) + shift_model.currently_used = False + + for x in sorted(can_unload): + i = x[-1] + if not DISABLE_SMART_MEMORY: + if get_free_memory(device) > memory_required: + break + current_loaded_models[i].model_unload() + unloaded_model.append(i) + + for i in sorted(unloaded_model, reverse=True): + current_loaded_models.pop(i) + + if len(unloaded_model) > 0: + soft_empty_cache() + else: + if vram_state != VRAMState.HIGH_VRAM: + mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) + if mem_free_torch > mem_free_total * 0.25: + soft_empty_cache() + +def load_models_gpu(models, memory_required=0, force_patch_weights=False): + global vram_state + + inference_memory = minimum_inference_memory() + extra_mem = max(inference_memory, memory_required) + + models = set(models) + + models_to_load = [] + models_already_loaded = [] + for x in models: + loaded_model = LoadedModel(x) + loaded = None + + try: + loaded_model_index = current_loaded_models.index(loaded_model) + except: + loaded_model_index = None + + if loaded_model_index is not None: + loaded = current_loaded_models[loaded_model_index] + if loaded.should_reload_model(force_patch_weights=force_patch_weights): #TODO: cleanup this model reload logic + current_loaded_models.pop(loaded_model_index).model_unload(unpatch_weights=True) + loaded = None + else: + loaded.currently_used = True + models_already_loaded.append(loaded) + + if loaded is None: + if hasattr(x, "model"): + logging.info(f"Requested to load {x.model.__class__.__name__}") + models_to_load.append(loaded_model) + + if len(models_to_load) == 0: + devs = set(map(lambda a: a.device, models_already_loaded)) + for d in devs: + if d != torch.device("cpu"): + free_memory(extra_mem, d, models_already_loaded) + return + + logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}") + + total_memory_required = {} + for loaded_model in models_to_load: + if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different + total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) + + for device in total_memory_required: + if device != torch.device("cpu"): + free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded) + + for loaded_model in models_to_load: + weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded + if weights_unloaded is not None: + loaded_model.weights_loaded = not weights_unloaded + + for loaded_model in models_to_load: + model = loaded_model.model + torch_dev = model.load_device + if is_device_cpu(torch_dev): + vram_set_state = VRAMState.DISABLED + else: + vram_set_state = vram_state + lowvram_model_memory = 0 + if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): + model_size = loaded_model.model_memory_required(torch_dev) + current_free_mem = get_free_memory(torch_dev) + lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 )) + if model_size <= (current_free_mem - inference_memory): #only switch to lowvram if really necessary + lowvram_model_memory = 0 + + if vram_set_state == VRAMState.NO_VRAM: + lowvram_model_memory = 64 * 1024 * 1024 + + cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights) + current_loaded_models.insert(0, loaded_model) + return + + +def load_model_gpu(model): + return load_models_gpu([model]) + +def loaded_models(only_currently_used=False): + output = [] + for m in current_loaded_models: + if only_currently_used: + if not m.currently_used: + continue + + output.append(m.model) + return output + +def cleanup_models(keep_clone_weights_loaded=False): + to_delete = [] + for i in range(len(current_loaded_models)): + if sys.getrefcount(current_loaded_models[i].model) <= 2: + if not keep_clone_weights_loaded: + to_delete = [i] + to_delete + #TODO: find a less fragile way to do this. + elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model + to_delete = [i] + to_delete + + for i in to_delete: + x = current_loaded_models.pop(i) + x.model_unload() + del x + +def dtype_size(dtype): + dtype_size = 4 + if dtype == torch.float16 or dtype == torch.bfloat16: + dtype_size = 2 + elif dtype == torch.float32: + dtype_size = 4 + else: + try: + dtype_size = dtype.itemsize + except: #Old pytorch doesn't have .itemsize + pass + return dtype_size + +def unet_offload_device(): + if vram_state == VRAMState.HIGH_VRAM: + return get_torch_device() + else: + return torch.device("cpu") + +def unet_inital_load_device(parameters, dtype): + torch_dev = get_torch_device() + if vram_state == VRAMState.HIGH_VRAM: + return torch_dev + + cpu_dev = torch.device("cpu") + if DISABLE_SMART_MEMORY: + return cpu_dev + + model_size = dtype_size(dtype) * parameters + + mem_dev = get_free_memory(torch_dev) + mem_cpu = get_free_memory(cpu_dev) + if mem_dev > mem_cpu and model_size < mem_dev: + return torch_dev + else: + return cpu_dev + +def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): + if args.bf16_unet: + return torch.bfloat16 + if args.fp16_unet: + return torch.float16 + if args.fp8_e4m3fn_unet: + return torch.float8_e4m3fn + if args.fp8_e5m2_unet: + return torch.float8_e5m2 + if should_use_fp16(device=device, model_params=model_params, manual_cast=True): + if torch.float16 in supported_dtypes: + return torch.float16 + if should_use_bf16(device, model_params=model_params, manual_cast=True): + if torch.bfloat16 in supported_dtypes: + return torch.bfloat16 + return torch.float32 + +# None means no manual cast +def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): + if weight_dtype == torch.float32: + return None + + fp16_supported = should_use_fp16(inference_device, prioritize_performance=False) + if fp16_supported and weight_dtype == torch.float16: + return None + + bf16_supported = should_use_bf16(inference_device) + if bf16_supported and weight_dtype == torch.bfloat16: + return None + + if fp16_supported and torch.float16 in supported_dtypes: + return torch.float16 + + elif bf16_supported and torch.bfloat16 in supported_dtypes: + return torch.bfloat16 + else: + return torch.float32 + +def text_encoder_offload_device(): + if args.gpu_only: + return get_torch_device() + else: + return torch.device("cpu") + +def text_encoder_device(): + if args.gpu_only: + return get_torch_device() + elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: + if should_use_fp16(prioritize_performance=False): + return get_torch_device() + else: + return torch.device("cpu") + else: + return torch.device("cpu") + +def text_encoder_dtype(device=None): + if args.fp8_e4m3fn_text_enc: + return torch.float8_e4m3fn + elif args.fp8_e5m2_text_enc: + return torch.float8_e5m2 + elif args.fp16_text_enc: + return torch.float16 + elif args.fp32_text_enc: + return torch.float32 + + if is_device_cpu(device): + return torch.float16 + + return torch.float16 + + +def intermediate_device(): + if args.gpu_only: + return get_torch_device() + else: + return torch.device("cpu") + +def vae_device(): + if args.cpu_vae: + return torch.device("cpu") + return get_torch_device() + +def vae_offload_device(): + if args.gpu_only: + return get_torch_device() + else: + return torch.device("cpu") + +def vae_dtype(device=None, allowed_dtypes=[]): + global VAE_DTYPES + if args.fp16_vae: + return torch.float16 + elif args.bf16_vae: + return torch.bfloat16 + elif args.fp32_vae: + return torch.float32 + + for d in allowed_dtypes: + if d == torch.float16 and should_use_fp16(device, prioritize_performance=False): + return d + if d in VAE_DTYPES: + return d + + return VAE_DTYPES[0] + +def get_autocast_device(dev): + if hasattr(dev, 'type'): + return dev.type + return "cuda" + +def supports_dtype(device, dtype): #TODO + if dtype == torch.float32: + return True + if is_device_cpu(device): + return False + if dtype == torch.float16: + return True + if dtype == torch.bfloat16: + return True + return False + +def supports_cast(device, dtype): #TODO + if dtype == torch.float32: + return True + if dtype == torch.float16: + return True + if is_device_mps(device): + return False + if directml_enabled: #TODO: test this + return False + if dtype == torch.bfloat16: + return True + if dtype == torch.float8_e4m3fn: + return True + if dtype == torch.float8_e5m2: + return True + return False + +def device_supports_non_blocking(device): + if is_device_mps(device): + return False #pytorch bug? mps doesn't support non blocking + if is_intel_xpu(): + return False + if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews) + return False + if directml_enabled: + return False + return True + +def device_should_use_non_blocking(device): + if not device_supports_non_blocking(device): + return False + return False + # return True #TODO: figure out why this causes memory issues on Nvidia and possibly others + +def force_channels_last(): + if args.force_channels_last: + return True + + #TODO + return False + +def cast_to_device(tensor, device, dtype, copy=False): + device_supports_cast = False + if tensor.dtype == torch.float32 or tensor.dtype == torch.float16: + device_supports_cast = True + elif tensor.dtype == torch.bfloat16: + if hasattr(device, 'type') and device.type.startswith("cuda"): + device_supports_cast = True + elif is_intel_xpu(): + device_supports_cast = True + + non_blocking = device_should_use_non_blocking(device) + + if device_supports_cast: + if copy: + if tensor.device == device: + return tensor.to(dtype, copy=copy, non_blocking=non_blocking) + return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) + else: + return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) + else: + return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking) + +def xformers_enabled(): + global directml_enabled + global cpu_state + if cpu_state != CPUState.GPU: + return False + if is_intel_xpu(): + return False + if directml_enabled: + return False + return XFORMERS_IS_AVAILABLE + + +def xformers_enabled_vae(): + enabled = xformers_enabled() + if not enabled: + return False + + return XFORMERS_ENABLED_VAE + +def pytorch_attention_enabled(): + global ENABLE_PYTORCH_ATTENTION + return ENABLE_PYTORCH_ATTENTION + +def pytorch_attention_flash_attention(): + global ENABLE_PYTORCH_ATTENTION + if ENABLE_PYTORCH_ATTENTION: + #TODO: more reliable way of checking for flash attention? + if is_nvidia(): #pytorch flash attention only works on Nvidia + return True + if is_intel_xpu(): + return True + return False + +def force_upcast_attention_dtype(): + upcast = args.force_upcast_attention + try: + if platform.mac_ver()[0] in ['14.5']: #black image bug on OSX Sonoma 14.5 + upcast = True + except: + pass + if upcast: + return torch.float32 + else: + return None + +def get_free_memory(dev=None, torch_free_too=False): + global directml_enabled + if dev is None: + dev = get_torch_device() + + if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): + mem_free_total = psutil.virtual_memory().available + mem_free_torch = mem_free_total + else: + if directml_enabled: + mem_free_total = 1024 * 1024 * 1024 #TODO + mem_free_torch = mem_free_total + elif is_intel_xpu(): + stats = torch.xpu.memory_stats(dev) + mem_active = stats['active_bytes.all.current'] + mem_reserved = stats['reserved_bytes.all.current'] + mem_free_torch = mem_reserved - mem_active + mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved + mem_free_total = mem_free_xpu + mem_free_torch + else: + stats = torch.cuda.memory_stats(dev) + mem_active = stats['active_bytes.all.current'] + mem_reserved = stats['reserved_bytes.all.current'] + mem_free_cuda, _ = torch.cuda.mem_get_info(dev) + mem_free_torch = mem_reserved - mem_active + mem_free_total = mem_free_cuda + mem_free_torch + + if torch_free_too: + return (mem_free_total, mem_free_torch) + else: + return mem_free_total + +def cpu_mode(): + global cpu_state + return cpu_state == CPUState.CPU + +def mps_mode(): + global cpu_state + return cpu_state == CPUState.MPS + +def is_device_type(device, type): + if hasattr(device, 'type'): + if (device.type == type): + return True + return False + +def is_device_cpu(device): + return is_device_type(device, 'cpu') + +def is_device_mps(device): + return is_device_type(device, 'mps') + +def is_device_cuda(device): + return is_device_type(device, 'cuda') + +def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): + global directml_enabled + + if device is not None: + if is_device_cpu(device): + return False + + if FORCE_FP16: + return True + + if device is not None: + if is_device_mps(device): + return True + + if FORCE_FP32: + return False + + if directml_enabled: + return False + + if mps_mode(): + return True + + if cpu_mode(): + return False + + if is_intel_xpu(): + return True + + if torch.version.hip: + return True + + props = torch.cuda.get_device_properties("cuda") + if props.major >= 8: + return True + + if props.major < 6: + return False + + fp16_works = False + #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled + #when the model doesn't actually fit on the card + #TODO: actually test if GP106 and others have the same type of behavior + nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"] + for x in nvidia_10_series: + if x in props.name.lower(): + fp16_works = True + + if fp16_works or manual_cast: + free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) + if (not prioritize_performance) or model_params * 4 > free_model_memory: + return True + + if props.major < 7: + return False + + #FP16 is just broken on these cards + nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] + for x in nvidia_16_series: + if x in props.name: + return False + + return True + +def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): + if device is not None: + if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow + return False + + if device is not None: #TODO not sure about mps bf16 support + if is_device_mps(device): + return False + + if FORCE_FP32: + return False + + if directml_enabled: + return False + + if cpu_mode() or mps_mode(): + return False + + if is_intel_xpu(): + return True + + if device is None: + device = torch.device("cuda") + + props = torch.cuda.get_device_properties(device) + if props.major >= 8: + return True + + bf16_works = torch.cuda.is_bf16_supported() + + if bf16_works or manual_cast: + free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) + if (not prioritize_performance) or model_params * 4 > free_model_memory: + return True + + return False + +def soft_empty_cache(force=False): + global cpu_state + if cpu_state == CPUState.MPS: + torch.mps.empty_cache() + elif is_intel_xpu(): + torch.xpu.empty_cache() + elif torch.cuda.is_available(): + if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda + torch.cuda.empty_cache() + torch.cuda.ipc_collect() + +def unload_all_models(): + free_memory(1e30, get_torch_device()) + + +def resolve_lowvram_weight(weight, model, key): #TODO: remove + print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.") + return weight + +#TODO: might be cleaner to put this somewhere else +import threading + +class InterruptProcessingException(Exception): + pass + +interrupt_processing_mutex = threading.RLock() + +interrupt_processing = False +def interrupt_current_processing(value=True): + global interrupt_processing + global interrupt_processing_mutex + with interrupt_processing_mutex: + interrupt_processing = value + +def processing_interrupted(): + global interrupt_processing + global interrupt_processing_mutex + with interrupt_processing_mutex: + return interrupt_processing + +def throw_exception_if_processing_interrupted(): + global interrupt_processing + global interrupt_processing_mutex + with interrupt_processing_mutex: + if interrupt_processing: + interrupt_processing = False + raise InterruptProcessingException() diff --git a/MagicQuill/comfy/model_patcher.py b/MagicQuill/comfy/model_patcher.py new file mode 100644 index 0000000000000000000000000000000000000000..44b82795f3000afe134cdbafb3e8ab918982ae0c --- /dev/null +++ b/MagicQuill/comfy/model_patcher.py @@ -0,0 +1,541 @@ +import torch +import copy +import inspect +import logging +import uuid + +import comfy.utils +import comfy.model_management +from comfy.types import UnetWrapperFunction + + +def weight_decompose(dora_scale, weight, lora_diff, alpha, strength): + dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32) + lora_diff *= alpha + weight_calc = weight + lora_diff.type(weight.dtype) + weight_norm = ( + weight_calc.transpose(0, 1) + .reshape(weight_calc.shape[1], -1) + .norm(dim=1, keepdim=True) + .reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1)) + .transpose(0, 1) + ) + + weight_calc *= (dora_scale / weight_norm).type(weight.dtype) + if strength != 1.0: + weight_calc -= weight + weight += strength * (weight_calc) + else: + weight[:] = weight_calc + return weight + + +def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None): + to = model_options["transformer_options"].copy() + + if "patches_replace" not in to: + to["patches_replace"] = {} + else: + to["patches_replace"] = to["patches_replace"].copy() + + if name not in to["patches_replace"]: + to["patches_replace"][name] = {} + else: + to["patches_replace"][name] = to["patches_replace"][name].copy() + + if transformer_index is not None: + block = (block_name, number, transformer_index) + else: + block = (block_name, number) + to["patches_replace"][name][block] = patch + model_options["transformer_options"] = to + return model_options + +class ModelPatcher: + def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False): + self.size = size + self.model = model + self.patches = {} + self.backup = {} + self.object_patches = {} + self.object_patches_backup = {} + self.model_options = {"transformer_options":{}} + self.model_size() + self.load_device = load_device + self.offload_device = offload_device + if current_device is None: + self.current_device = self.offload_device + else: + self.current_device = current_device + + self.weight_inplace_update = weight_inplace_update + self.model_lowvram = False + self.lowvram_patch_counter = 0 + self.patches_uuid = uuid.uuid4() + + def model_size(self): + if self.size > 0: + return self.size + self.size = comfy.model_management.module_size(self.model) + return self.size + + def clone(self): + n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update) + n.patches = {} + for k in self.patches: + n.patches[k] = self.patches[k][:] + n.patches_uuid = self.patches_uuid + + n.object_patches = self.object_patches.copy() + n.model_options = copy.deepcopy(self.model_options) + n.backup = self.backup + n.object_patches_backup = self.object_patches_backup + return n + + def is_clone(self, other): + if hasattr(other, 'model') and self.model is other.model: + return True + return False + + def clone_has_same_weights(self, clone): + if not self.is_clone(clone): + return False + + if len(self.patches) == 0 and len(clone.patches) == 0: + return True + + if self.patches_uuid == clone.patches_uuid: + if len(self.patches) != len(clone.patches): + logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.") + else: + return True + + def memory_required(self, input_shape): + return self.model.memory_required(input_shape=input_shape) + + def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False): + if len(inspect.signature(sampler_cfg_function).parameters) == 3: + self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way + else: + self.model_options["sampler_cfg_function"] = sampler_cfg_function + if disable_cfg1_optimization: + self.model_options["disable_cfg1_optimization"] = True + + def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False): + self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function] + if disable_cfg1_optimization: + self.model_options["disable_cfg1_optimization"] = True + + def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction): + self.model_options["model_function_wrapper"] = unet_wrapper_function + + def set_model_denoise_mask_function(self, denoise_mask_function): + self.model_options["denoise_mask_function"] = denoise_mask_function + + def set_model_patch(self, patch, name): + to = self.model_options["transformer_options"] + if "patches" not in to: + to["patches"] = {} + to["patches"][name] = to["patches"].get(name, []) + [patch] + + def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None): + self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index) + + def set_model_attn1_patch(self, patch): + self.set_model_patch(patch, "attn1_patch") + + def set_model_attn2_patch(self, patch): + self.set_model_patch(patch, "attn2_patch") + + def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None): + self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index) + + def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None): + self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index) + + def set_model_attn1_output_patch(self, patch): + self.set_model_patch(patch, "attn1_output_patch") + + def set_model_attn2_output_patch(self, patch): + self.set_model_patch(patch, "attn2_output_patch") + + def set_model_input_block_patch(self, patch): + self.set_model_patch(patch, "input_block_patch") + + def set_model_input_block_patch_after_skip(self, patch): + self.set_model_patch(patch, "input_block_patch_after_skip") + + def set_model_output_block_patch(self, patch): + self.set_model_patch(patch, "output_block_patch") + + def add_object_patch(self, name, obj): + self.object_patches[name] = obj + + def get_model_object(self, name): + if name in self.object_patches: + return self.object_patches[name] + else: + if name in self.object_patches_backup: + return self.object_patches_backup[name] + else: + return comfy.utils.get_attr(self.model, name) + + def model_patches_to(self, device): + to = self.model_options["transformer_options"] + if "patches" in to: + patches = to["patches"] + for name in patches: + patch_list = patches[name] + for i in range(len(patch_list)): + if hasattr(patch_list[i], "to"): + patch_list[i] = patch_list[i].to(device) + if "patches_replace" in to: + patches = to["patches_replace"] + for name in patches: + patch_list = patches[name] + for k in patch_list: + if hasattr(patch_list[k], "to"): + patch_list[k] = patch_list[k].to(device) + if "model_function_wrapper" in self.model_options: + wrap_func = self.model_options["model_function_wrapper"] + if hasattr(wrap_func, "to"): + self.model_options["model_function_wrapper"] = wrap_func.to(device) + + def model_dtype(self): + if hasattr(self.model, "get_dtype"): + return self.model.get_dtype() + + def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): + p = set() + model_sd = self.model.state_dict() + for k in patches: + offset = None + if isinstance(k, str): + key = k + else: + offset = k[1] + key = k[0] + + if key in model_sd: + p.add(k) + current_patches = self.patches.get(key, []) + current_patches.append((strength_patch, patches[k], strength_model, offset)) + self.patches[key] = current_patches + + self.patches_uuid = uuid.uuid4() + return list(p) + + def get_key_patches(self, filter_prefix=None): + comfy.model_management.unload_model_clones(self) + model_sd = self.model_state_dict() + p = {} + for k in model_sd: + if filter_prefix is not None: + if not k.startswith(filter_prefix): + continue + if k in self.patches: + p[k] = [model_sd[k]] + self.patches[k] + else: + p[k] = (model_sd[k],) + return p + + def model_state_dict(self, filter_prefix=None): + sd = self.model.state_dict() + keys = list(sd.keys()) + if filter_prefix is not None: + for k in keys: + if not k.startswith(filter_prefix): + sd.pop(k) + return sd + + def patch_weight_to_device(self, key, device_to=None): + if key not in self.patches: + return + + weight = comfy.utils.get_attr(self.model, key) + + inplace_update = self.weight_inplace_update + + if key not in self.backup: + self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update) + + if device_to is not None: + temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) + else: + temp_weight = weight.to(torch.float32, copy=True) + out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype) + if inplace_update: + comfy.utils.copy_to_param(self.model, key, out_weight) + else: + comfy.utils.set_attr_param(self.model, key, out_weight) + + def patch_model(self, device_to=None, patch_weights=True): + for k in self.object_patches: + old = comfy.utils.set_attr(self.model, k, self.object_patches[k]) + if k not in self.object_patches_backup: + self.object_patches_backup[k] = old + + if patch_weights: + model_sd = self.model_state_dict() + for key in self.patches: + if key not in model_sd: + logging.warning("could not patch. key doesn't exist in model: {}".format(key)) + continue + + self.patch_weight_to_device(key, device_to) + + if device_to is not None: + self.model.to(device_to) + self.current_device = device_to + + return self.model + + def patch_model_lowvram(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False): + self.patch_model(device_to, patch_weights=False) + + logging.info("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024))) + class LowVramPatch: + def __init__(self, key, model_patcher): + self.key = key + self.model_patcher = model_patcher + def __call__(self, weight): + return self.model_patcher.calculate_weight(self.model_patcher.patches[self.key], weight, self.key) + + mem_counter = 0 + patch_counter = 0 + for n, m in self.model.named_modules(): + lowvram_weight = False + if hasattr(m, "comfy_cast_weights"): + module_mem = comfy.model_management.module_size(m) + if mem_counter + module_mem >= lowvram_model_memory: + lowvram_weight = True + + weight_key = "{}.weight".format(n) + bias_key = "{}.bias".format(n) + + if lowvram_weight: + if weight_key in self.patches: + if force_patch_weights: + self.patch_weight_to_device(weight_key) + else: + m.weight_function = LowVramPatch(weight_key, self) + patch_counter += 1 + if bias_key in self.patches: + if force_patch_weights: + self.patch_weight_to_device(bias_key) + else: + m.bias_function = LowVramPatch(bias_key, self) + patch_counter += 1 + + m.prev_comfy_cast_weights = m.comfy_cast_weights + m.comfy_cast_weights = True + else: + if hasattr(m, "weight"): + self.patch_weight_to_device(weight_key, device_to) + self.patch_weight_to_device(bias_key, device_to) + m.to(device_to) + mem_counter += comfy.model_management.module_size(m) + logging.debug("lowvram: loaded module regularly {} {}".format(n, m)) + + self.model_lowvram = True + self.lowvram_patch_counter = patch_counter + return self.model + + def calculate_weight(self, patches, weight, key): + for p in patches: + strength = p[0] + v = p[1] + strength_model = p[2] + offset = p[3] + + old_weight = None + if offset is not None: + old_weight = weight + weight = weight.narrow(offset[0], offset[1], offset[2]) + + if strength_model != 1.0: + weight *= strength_model + + if isinstance(v, list): + v = (self.calculate_weight(v[1:], v[0].clone(), key), ) + + if len(v) == 1: + patch_type = "diff" + elif len(v) == 2: + patch_type = v[0] + v = v[1] + + if patch_type == "diff": + w1 = v[0] + if strength != 0.0: + if w1.shape != weight.shape: + logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) + else: + weight += strength * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype) + elif patch_type == "lora": #lora/locon + mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32) + mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32) + dora_scale = v[4] + if v[2] is not None: + alpha = v[2] / mat2.shape[0] + else: + alpha = 1.0 + + if v[3] is not None: + #locon mid weights, hopefully the math is fine because I didn't properly test it + mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32) + final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] + mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) + try: + lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape) + if dora_scale is not None: + weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength) + else: + weight += ((strength * alpha) * lora_diff).type(weight.dtype) + except Exception as e: + logging.error("ERROR {} {} {}".format(patch_type, key, e)) + elif patch_type == "lokr": + w1 = v[0] + w2 = v[1] + w1_a = v[3] + w1_b = v[4] + w2_a = v[5] + w2_b = v[6] + t2 = v[7] + dora_scale = v[8] + dim = None + + if w1 is None: + dim = w1_b.shape[0] + w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32), + comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32)) + else: + w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32) + + if w2 is None: + dim = w2_b.shape[0] + if t2 is None: + w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32)) + else: + w2 = torch.einsum('i j k l, j r, i p -> p r k l', + comfy.model_management.cast_to_device(t2, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32)) + else: + w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32) + + if len(w2.shape) == 4: + w1 = w1.unsqueeze(2).unsqueeze(2) + if v[2] is not None and dim is not None: + alpha = v[2] / dim + else: + alpha = 1.0 + + try: + lora_diff = torch.kron(w1, w2).reshape(weight.shape) + if dora_scale is not None: + weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength) + else: + weight += ((strength * alpha) * lora_diff).type(weight.dtype) + except Exception as e: + logging.error("ERROR {} {} {}".format(patch_type, key, e)) + elif patch_type == "loha": + w1a = v[0] + w1b = v[1] + if v[2] is not None: + alpha = v[2] / w1b.shape[0] + else: + alpha = 1.0 + + w2a = v[3] + w2b = v[4] + dora_scale = v[7] + if v[5] is not None: #cp decomposition + t1 = v[5] + t2 = v[6] + m1 = torch.einsum('i j k l, j r, i p -> p r k l', + comfy.model_management.cast_to_device(t1, weight.device, torch.float32), + comfy.model_management.cast_to_device(w1b, weight.device, torch.float32), + comfy.model_management.cast_to_device(w1a, weight.device, torch.float32)) + + m2 = torch.einsum('i j k l, j r, i p -> p r k l', + comfy.model_management.cast_to_device(t2, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2b, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2a, weight.device, torch.float32)) + else: + m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32), + comfy.model_management.cast_to_device(w1b, weight.device, torch.float32)) + m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2b, weight.device, torch.float32)) + + try: + lora_diff = (m1 * m2).reshape(weight.shape) + if dora_scale is not None: + weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength) + else: + weight += ((strength * alpha) * lora_diff).type(weight.dtype) + except Exception as e: + logging.error("ERROR {} {} {}".format(patch_type, key, e)) + elif patch_type == "glora": + if v[4] is not None: + alpha = v[4] / v[0].shape[0] + else: + alpha = 1.0 + + dora_scale = v[5] + + a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32) + a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32) + b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32) + b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32) + + try: + lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape) + if dora_scale is not None: + weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength) + else: + weight += ((strength * alpha) * lora_diff).type(weight.dtype) + except Exception as e: + logging.error("ERROR {} {} {}".format(patch_type, key, e)) + else: + logging.warning("patch type not recognized {} {}".format(patch_type, key)) + + if old_weight is not None: + weight = old_weight + + return weight + + def unpatch_model(self, device_to=None, unpatch_weights=True): + if unpatch_weights: + if self.model_lowvram: + for m in self.model.modules(): + if hasattr(m, "prev_comfy_cast_weights"): + m.comfy_cast_weights = m.prev_comfy_cast_weights + del m.prev_comfy_cast_weights + m.weight_function = None + m.bias_function = None + + self.model_lowvram = False + self.lowvram_patch_counter = 0 + + keys = list(self.backup.keys()) + + if self.weight_inplace_update: + for k in keys: + comfy.utils.copy_to_param(self.model, k, self.backup[k]) + else: + for k in keys: + comfy.utils.set_attr_param(self.model, k, self.backup[k]) + + self.backup.clear() + + if device_to is not None: + self.model.to(device_to) + self.current_device = device_to + + keys = list(self.object_patches_backup.keys()) + for k in keys: + comfy.utils.set_attr(self.model, k, self.object_patches_backup[k]) + + self.object_patches_backup.clear() diff --git a/MagicQuill/comfy/model_sampling.py b/MagicQuill/comfy/model_sampling.py new file mode 100644 index 0000000000000000000000000000000000000000..6bd3a5d79a5ad466d31fcae278d4f1a94a1b6645 --- /dev/null +++ b/MagicQuill/comfy/model_sampling.py @@ -0,0 +1,272 @@ +import torch +from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule +import math + +class EPS: + def calculate_input(self, sigma, noise): + sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) + return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 + + def calculate_denoised(self, sigma, model_output, model_input): + sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + return model_input - model_output * sigma + + def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): + if max_denoise: + noise = noise * torch.sqrt(1.0 + sigma ** 2.0) + else: + noise = noise * sigma + + noise += latent_image + return noise + + def inverse_noise_scaling(self, sigma, latent): + return latent + +class V_PREDICTION(EPS): + def calculate_denoised(self, sigma, model_output, model_input): + sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 + +class EDM(V_PREDICTION): + def calculate_denoised(self, sigma, model_output, model_input): + sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 + +class CONST: + def calculate_input(self, sigma, noise): + return noise + + def calculate_denoised(self, sigma, model_output, model_input): + sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + return model_input - model_output * sigma + + def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): + return sigma * noise + (1.0 - sigma) * latent_image + + def inverse_noise_scaling(self, sigma, latent): + return latent / (1.0 - sigma) + +class ModelSamplingDiscrete(torch.nn.Module): + def __init__(self, model_config=None): + super().__init__() + + if model_config is not None: + sampling_settings = model_config.sampling_settings + else: + sampling_settings = {} + + beta_schedule = sampling_settings.get("beta_schedule", "linear") + linear_start = sampling_settings.get("linear_start", 0.00085) + linear_end = sampling_settings.get("linear_end", 0.012) + + self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3) + self.sigma_data = 1.0 + + def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, + linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + if given_betas is not None: + betas = given_betas + else: + betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) + alphas = 1. - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + + timesteps, = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + + # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32)) + # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32)) + # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32)) + + sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 + self.set_sigmas(sigmas) + + def set_sigmas(self, sigmas): + self.register_buffer('sigmas', sigmas.float()) + self.register_buffer('log_sigmas', sigmas.log().float()) + + @property + def sigma_min(self): + return self.sigmas[0] + + @property + def sigma_max(self): + return self.sigmas[-1] + + def timestep(self, sigma): + log_sigma = sigma.log() + dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] + return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) + + def sigma(self, timestep): + t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1)) + low_idx = t.floor().long() + high_idx = t.ceil().long() + w = t.frac() + log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] + return log_sigma.exp().to(timestep.device) + + def percent_to_sigma(self, percent): + if percent <= 0.0: + return 999999999.9 + if percent >= 1.0: + return 0.0 + percent = 1.0 - percent + return self.sigma(torch.tensor(percent * 999.0)).item() + +class ModelSamplingDiscreteEDM(ModelSamplingDiscrete): + def timestep(self, sigma): + return 0.25 * sigma.log() + + def sigma(self, timestep): + return (timestep / 0.25).exp() + +class ModelSamplingContinuousEDM(torch.nn.Module): + def __init__(self, model_config=None): + super().__init__() + if model_config is not None: + sampling_settings = model_config.sampling_settings + else: + sampling_settings = {} + + sigma_min = sampling_settings.get("sigma_min", 0.002) + sigma_max = sampling_settings.get("sigma_max", 120.0) + sigma_data = sampling_settings.get("sigma_data", 1.0) + self.set_parameters(sigma_min, sigma_max, sigma_data) + + def set_parameters(self, sigma_min, sigma_max, sigma_data): + self.sigma_data = sigma_data + sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp() + + self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers + self.register_buffer('log_sigmas', sigmas.log()) + + @property + def sigma_min(self): + return self.sigmas[0] + + @property + def sigma_max(self): + return self.sigmas[-1] + + def timestep(self, sigma): + return 0.25 * sigma.log() + + def sigma(self, timestep): + return (timestep / 0.25).exp() + + def percent_to_sigma(self, percent): + if percent <= 0.0: + return 999999999.9 + if percent >= 1.0: + return 0.0 + percent = 1.0 - percent + + log_sigma_min = math.log(self.sigma_min) + return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min) + + +class ModelSamplingContinuousV(ModelSamplingContinuousEDM): + def timestep(self, sigma): + return sigma.atan() / math.pi * 2 + + def sigma(self, timestep): + return (timestep * math.pi / 2).tan() + + +def time_snr_shift(alpha, t): + if alpha == 1.0: + return t + return alpha * t / (1 + (alpha - 1) * t) + +class ModelSamplingDiscreteFlow(torch.nn.Module): + def __init__(self, model_config=None): + super().__init__() + if model_config is not None: + sampling_settings = model_config.sampling_settings + else: + sampling_settings = {} + + self.set_parameters(shift=sampling_settings.get("shift", 1.0)) + + def set_parameters(self, shift=1.0, timesteps=1000): + self.shift = shift + ts = self.sigma(torch.arange(1, timesteps + 1, 1)) + self.register_buffer('sigmas', ts) + + @property + def sigma_min(self): + return self.sigmas[0] + + @property + def sigma_max(self): + return self.sigmas[-1] + + def timestep(self, sigma): + return sigma * 1000 + + def sigma(self, timestep): + return time_snr_shift(self.shift, timestep / 1000) + + def percent_to_sigma(self, percent): + if percent <= 0.0: + return 1.0 + if percent >= 1.0: + return 0.0 + return 1.0 - percent + +class StableCascadeSampling(ModelSamplingDiscrete): + def __init__(self, model_config=None): + super().__init__() + + if model_config is not None: + sampling_settings = model_config.sampling_settings + else: + sampling_settings = {} + + self.set_parameters(sampling_settings.get("shift", 1.0)) + + def set_parameters(self, shift=1.0, cosine_s=8e-3): + self.shift = shift + self.cosine_s = torch.tensor(cosine_s) + self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 + + #This part is just for compatibility with some schedulers in the codebase + self.num_timesteps = 10000 + sigmas = torch.empty((self.num_timesteps), dtype=torch.float32) + for x in range(self.num_timesteps): + t = (x + 1) / self.num_timesteps + sigmas[x] = self.sigma(t) + + self.set_sigmas(sigmas) + + def sigma(self, timestep): + alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod) + + if self.shift != 1.0: + var = alpha_cumprod + logSNR = (var/(1-var)).log() + logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift)) + alpha_cumprod = logSNR.sigmoid() + + alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999) + return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5 + + def timestep(self, sigma): + var = 1 / ((sigma * sigma) + 1) + var = var.clamp(0, 1.0) + s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device) + t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s + return t + + def percent_to_sigma(self, percent): + if percent <= 0.0: + return 999999999.9 + if percent >= 1.0: + return 0.0 + + percent = 1.0 - percent + return self.sigma(torch.tensor(percent)) diff --git a/MagicQuill/comfy/ops.py b/MagicQuill/comfy/ops.py new file mode 100644 index 0000000000000000000000000000000000000000..0f1ceb5746356a2c7cc3cd6107449a2ee65fe820 --- /dev/null +++ b/MagicQuill/comfy/ops.py @@ -0,0 +1,204 @@ +""" + This file is part of ComfyUI. + Copyright (C) 2024 Stability AI + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +""" + +import torch +import comfy.model_management + +def cast_bias_weight(s, input): + bias = None + non_blocking = comfy.model_management.device_should_use_non_blocking(input.device) + if s.bias is not None: + bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) + if s.bias_function is not None: + bias = s.bias_function(bias) + weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) + if s.weight_function is not None: + weight = s.weight_function(weight) + return weight, bias + +class CastWeightBiasOp: + comfy_cast_weights = False + weight_function = None + bias_function = None + +class disable_weight_init: + class Linear(torch.nn.Linear, CastWeightBiasOp): + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input): + weight, bias = cast_bias_weight(self, input) + return torch.nn.functional.linear(input, weight, bias) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + class Conv1d(torch.nn.Conv1d, CastWeightBiasOp): + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input): + weight, bias = cast_bias_weight(self, input) + return self._conv_forward(input, weight, bias) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + class Conv2d(torch.nn.Conv2d, CastWeightBiasOp): + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input): + weight, bias = cast_bias_weight(self, input) + return self._conv_forward(input, weight, bias) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + class Conv3d(torch.nn.Conv3d, CastWeightBiasOp): + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input): + weight, bias = cast_bias_weight(self, input) + return self._conv_forward(input, weight, bias) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp): + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input): + weight, bias = cast_bias_weight(self, input) + return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + + class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp): + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input): + if self.weight is not None: + weight, bias = cast_bias_weight(self, input) + else: + weight = None + bias = None + return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp): + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input, output_size=None): + num_spatial_dims = 2 + output_padding = self._output_padding( + input, output_size, self.stride, self.padding, self.kernel_size, + num_spatial_dims, self.dilation) + + weight, bias = cast_bias_weight(self, input) + return torch.nn.functional.conv_transpose2d( + input, weight, bias, self.stride, self.padding, + output_padding, self.groups, self.dilation) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp): + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input, output_size=None): + num_spatial_dims = 1 + output_padding = self._output_padding( + input, output_size, self.stride, self.padding, self.kernel_size, + num_spatial_dims, self.dilation) + + weight, bias = cast_bias_weight(self, input) + return torch.nn.functional.conv_transpose1d( + input, weight, bias, self.stride, self.padding, + output_padding, self.groups, self.dilation) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + @classmethod + def conv_nd(s, dims, *args, **kwargs): + if dims == 2: + return s.Conv2d(*args, **kwargs) + elif dims == 3: + return s.Conv3d(*args, **kwargs) + else: + raise ValueError(f"unsupported dimensions: {dims}") + + +class manual_cast(disable_weight_init): + class Linear(disable_weight_init.Linear): + comfy_cast_weights = True + + class Conv1d(disable_weight_init.Conv1d): + comfy_cast_weights = True + + class Conv2d(disable_weight_init.Conv2d): + comfy_cast_weights = True + + class Conv3d(disable_weight_init.Conv3d): + comfy_cast_weights = True + + class GroupNorm(disable_weight_init.GroupNorm): + comfy_cast_weights = True + + class LayerNorm(disable_weight_init.LayerNorm): + comfy_cast_weights = True + + class ConvTranspose2d(disable_weight_init.ConvTranspose2d): + comfy_cast_weights = True + + class ConvTranspose1d(disable_weight_init.ConvTranspose1d): + comfy_cast_weights = True diff --git a/MagicQuill/comfy/options.py b/MagicQuill/comfy/options.py new file mode 100644 index 0000000000000000000000000000000000000000..f7f8af41ebd8b9669ef0ef21827ea6195bcb4752 --- /dev/null +++ b/MagicQuill/comfy/options.py @@ -0,0 +1,6 @@ + +args_parsing = False + +def enable_args_parsing(enable=True): + global args_parsing + args_parsing = enable diff --git a/MagicQuill/comfy/sa_t5.py b/MagicQuill/comfy/sa_t5.py new file mode 100644 index 0000000000000000000000000000000000000000..37be5287e22d6e9c458f543beaaba5729a775d13 --- /dev/null +++ b/MagicQuill/comfy/sa_t5.py @@ -0,0 +1,22 @@ +from comfy import sd1_clip +from transformers import T5TokenizerFast +import comfy.t5 +import os + +class T5BaseModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None): + textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_base.json") + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.t5.T5, enable_attention_masks=True, zero_out_masked=True) + +class T5BaseTokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None): + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") + super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128) + +class SAT5Tokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None): + super().__init__(embedding_directory=embedding_directory, clip_name="t5base", tokenizer=T5BaseTokenizer) + +class SAT5Model(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, **kwargs): + super().__init__(device=device, dtype=dtype, clip_name="t5base", clip_model=T5BaseModel, **kwargs) diff --git a/MagicQuill/comfy/sample.py b/MagicQuill/comfy/sample.py new file mode 100644 index 0000000000000000000000000000000000000000..98dcaca7f38e76754bdce7fffaccf620fd0ba497 --- /dev/null +++ b/MagicQuill/comfy/sample.py @@ -0,0 +1,50 @@ +import torch +import comfy.model_management +import comfy.samplers +import comfy.utils +import numpy as np +import logging + +def prepare_noise(latent_image, seed, noise_inds=None): + """ + creates random noise given a latent image and a seed. + optional arg skip can be used to skip and discard x number of noise generations for a given seed + """ + generator = torch.manual_seed(seed) + if noise_inds is None: + return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") + + unique_inds, inverse = np.unique(noise_inds, return_inverse=True) + noises = [] + for i in range(unique_inds[-1]+1): + noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") + if i in unique_inds: + noises.append(noise) + noises = [noises[i] for i in inverse] + noises = torch.cat(noises, axis=0) + return noises + +def fix_empty_latent_channels(model, latent_image): + latent_channels = model.get_model_object("latent_format").latent_channels #Resize the empty latent image so it has the right number of channels + if latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0: + latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_channels, dim=1) + return latent_image + +def prepare_sampling(model, noise_shape, positive, negative, noise_mask): + logging.warning("Warning: comfy.sample.prepare_sampling isn't used anymore and can be removed") + return model, positive, negative, noise_mask, [] + +def cleanup_additional_models(models): + logging.warning("Warning: comfy.sample.cleanup_additional_models isn't used anymore and can be removed") + +def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): + sampler = comfy.samplers.KSampler(model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) + + samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed) + samples = samples.to(comfy.model_management.intermediate_device()) + return samples + +def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None): + samples = comfy.samplers.sample(model, noise, positive, negative, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) + samples = samples.to(comfy.model_management.intermediate_device()) + return samples diff --git a/MagicQuill/comfy/sampler_helpers.py b/MagicQuill/comfy/sampler_helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..a18abd9e9c7e82ad3e3b0ca014b2dadcb2127e92 --- /dev/null +++ b/MagicQuill/comfy/sampler_helpers.py @@ -0,0 +1,76 @@ +import torch +import comfy.model_management +import comfy.conds + +def prepare_mask(noise_mask, shape, device): + """ensures noise mask is of proper dimensions""" + noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") + noise_mask = torch.cat([noise_mask] * shape[1], dim=1) + noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0]) + noise_mask = noise_mask.to(device) + return noise_mask + +def get_models_from_cond(cond, model_type): + models = [] + for c in cond: + if model_type in c: + models += [c[model_type]] + return models + +def convert_cond(cond): + out = [] + for c in cond: + temp = c[1].copy() + model_conds = temp.get("model_conds", {}) + if c[0] is not None: + model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) #TODO: remove + temp["cross_attn"] = c[0] + temp["model_conds"] = model_conds + out.append(temp) + return out + +def get_additional_models(conds, dtype): + """loads additional models in conditioning""" + cnets = [] + gligen = [] + + for k in conds: + cnets += get_models_from_cond(conds[k], "control") + gligen += get_models_from_cond(conds[k], "gligen") + + control_nets = set(cnets) + + inference_memory = 0 + control_models = [] + for m in control_nets: + control_models += m.get_models() + inference_memory += m.inference_memory_requirements(dtype) + + gligen = [x[1] for x in gligen] + models = control_models + gligen + return models, inference_memory + +def cleanup_additional_models(models): + """cleanup additional models that were loaded""" + for m in models: + if hasattr(m, 'cleanup'): + m.cleanup() + + +def prepare_sampling(model, noise_shape, conds): + device = model.load_device + real_model = None + models, inference_memory = get_additional_models(conds, model.model_dtype()) + comfy.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory) + real_model = model.model + + return real_model, conds, models + +def cleanup_models(conds, models): + cleanup_additional_models(models) + + control_cleanup = [] + for k in conds: + control_cleanup += get_models_from_cond(conds[k], "control") + + cleanup_additional_models(set(control_cleanup)) diff --git a/MagicQuill/comfy/samplers.py b/MagicQuill/comfy/samplers.py new file mode 100644 index 0000000000000000000000000000000000000000..656e0a28f4a41406420b4182220ec9d7055dd185 --- /dev/null +++ b/MagicQuill/comfy/samplers.py @@ -0,0 +1,794 @@ +from .k_diffusion import sampling as k_diffusion_sampling +from .extra_samplers import uni_pc +import torch +import collections +from comfy import model_management +import math +import logging +import comfy.sampler_helpers + +def get_area_and_mult(conds, x_in, timestep_in): + dims = tuple(x_in.shape[2:]) + area = None + strength = 1.0 + + if 'timestep_start' in conds: + timestep_start = conds['timestep_start'] + if timestep_in[0] > timestep_start: + return None + if 'timestep_end' in conds: + timestep_end = conds['timestep_end'] + if timestep_in[0] < timestep_end: + return None + if 'area' in conds: + area = list(conds['area']) + if 'strength' in conds: + strength = conds['strength'] + + input_x = x_in + if area is not None: + for i in range(len(dims)): + area[i] = min(input_x.shape[i + 2] - area[len(dims) + i], area[i]) + input_x = input_x.narrow(i + 2, area[len(dims) + i], area[i]) + + if 'mask' in conds: + # Scale the mask to the size of the input + # The mask should have been resized as we began the sampling process + mask_strength = 1.0 + if "mask_strength" in conds: + mask_strength = conds["mask_strength"] + mask = conds['mask'] + assert(mask.shape[1:] == x_in.shape[2:]) + + mask = mask[:input_x.shape[0]] + if area is not None: + for i in range(len(dims)): + mask = mask.narrow(i + 1, area[len(dims) + i], area[i]) + + mask = mask * mask_strength + mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) + else: + mask = torch.ones_like(input_x) + mult = mask * strength + + if 'mask' not in conds and area is not None: + rr = 8 + for i in range(len(dims)): + if area[len(dims) + i] != 0: + for t in range(rr): + m = mult.narrow(i + 2, t, 1) + m *= ((1.0/rr) * (t + 1)) + if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]: + for t in range(rr): + m = mult.narrow(i + 2, area[i] - 1 - t, 1) + m *= ((1.0/rr) * (t + 1)) + + conditioning = {} + model_conds = conds["model_conds"] + for c in model_conds: + conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area) + + control = conds.get('control', None) + + patches = None + if 'gligen' in conds: + gligen = conds['gligen'] + patches = {} + gligen_type = gligen[0] + gligen_model = gligen[1] + if gligen_type == "position": + gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device) + else: + gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device) + + patches['middle_patch'] = [gligen_patch] + + cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches']) + return cond_obj(input_x, mult, conditioning, area, control, patches) + +def cond_equal_size(c1, c2): + if c1 is c2: + return True + if c1.keys() != c2.keys(): + return False + for k in c1: + if not c1[k].can_concat(c2[k]): + return False + return True + +def can_concat_cond(c1, c2): + if c1.input_x.shape != c2.input_x.shape: + return False + + def objects_concatable(obj1, obj2): + if (obj1 is None) != (obj2 is None): + return False + if obj1 is not None: + if obj1 is not obj2: + return False + return True + + if not objects_concatable(c1.control, c2.control): + return False + + if not objects_concatable(c1.patches, c2.patches): + return False + + return cond_equal_size(c1.conditioning, c2.conditioning) + +def cond_cat(c_list): + c_crossattn = [] + c_concat = [] + c_adm = [] + crossattn_max_len = 0 + + temp = {} + for x in c_list: + for k in x: + cur = temp.get(k, []) + cur.append(x[k]) + temp[k] = cur + + out = {} + for k in temp: + conds = temp[k] + out[k] = conds[0].concat(conds[1:]) + + return out + +def calc_cond_batch(model, conds, x_in, timestep, model_options): + out_conds = [] + out_counts = [] + to_run = [] + + for i in range(len(conds)): + out_conds.append(torch.zeros_like(x_in)) + out_counts.append(torch.ones_like(x_in) * 1e-37) + + cond = conds[i] + if cond is not None: + for x in cond: + p = get_area_and_mult(x, x_in, timestep) + if p is None: + continue + + to_run += [(p, i)] + + while len(to_run) > 0: + first = to_run[0] + first_shape = first[0][0].shape + to_batch_temp = [] + for x in range(len(to_run)): + if can_concat_cond(to_run[x][0], first[0]): + to_batch_temp += [x] + + to_batch_temp.reverse() + to_batch = to_batch_temp[:1] + + free_memory = model_management.get_free_memory(x_in.device) + for i in range(1, len(to_batch_temp) + 1): + batch_amount = to_batch_temp[:len(to_batch_temp)//i] + input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:] + if model.memory_required(input_shape) < free_memory: + to_batch = batch_amount + break + + input_x = [] + mult = [] + c = [] + cond_or_uncond = [] + area = [] + control = None + patches = None + for x in to_batch: + o = to_run.pop(x) + p = o[0] + input_x.append(p.input_x) + mult.append(p.mult) + c.append(p.conditioning) + area.append(p.area) + cond_or_uncond.append(o[1]) + control = p.control + patches = p.patches + + batch_chunks = len(cond_or_uncond) + input_x = torch.cat(input_x) + c = cond_cat(c) + timestep_ = torch.cat([timestep] * batch_chunks) + + if control is not None: + c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond)) + + transformer_options = {} + if 'transformer_options' in model_options: + transformer_options = model_options['transformer_options'].copy() + + if patches is not None: + if "patches" in transformer_options: + cur_patches = transformer_options["patches"].copy() + for p in patches: + if p in cur_patches: + cur_patches[p] = cur_patches[p] + patches[p] + else: + cur_patches[p] = patches[p] + transformer_options["patches"] = cur_patches + else: + transformer_options["patches"] = patches + + transformer_options["cond_or_uncond"] = cond_or_uncond[:] + transformer_options["sigmas"] = timestep + + c['transformer_options'] = transformer_options + + if 'model_function_wrapper' in model_options: + output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) + else: + output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks) + + for o in range(batch_chunks): + cond_index = cond_or_uncond[o] + a = area[o] + if a is None: + out_conds[cond_index] += output[o] * mult[o] + out_counts[cond_index] += mult[o] + else: + out_c = out_conds[cond_index] + out_cts = out_counts[cond_index] + dims = len(a) // 2 + for i in range(dims): + out_c = out_c.narrow(i + 2, a[i + dims], a[i]) + out_cts = out_cts.narrow(i + 2, a[i + dims], a[i]) + out_c += output[o] * mult[o] + out_cts += mult[o] + + for i in range(len(out_conds)): + out_conds[i] /= out_counts[i] + + return out_conds + +def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove + logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.") + return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options)) + +def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None): + if "sampler_cfg_function" in model_options: + args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep, + "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options} + cfg_result = x - model_options["sampler_cfg_function"](args) + else: + cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale + + for fn in model_options.get("sampler_post_cfg_function", []): + args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred, + "sigma": timestep, "model_options": model_options, "input": x} + cfg_result = fn(args) + + return cfg_result + +#The main sampling function shared by all the samplers +#Returns denoised +def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None): + if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False: + uncond_ = None + else: + uncond_ = uncond + + conds = [cond, uncond_] + out = calc_cond_batch(model, conds, x, timestep, model_options) + return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_) + + +class KSamplerX0Inpaint: + def __init__(self, model, sigmas): + self.inner_model = model + self.sigmas = sigmas + def __call__(self, x, sigma, denoise_mask, model_options={}, seed=None): + if denoise_mask is not None: + if "denoise_mask_function" in model_options: + denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas}) + latent_mask = 1. - denoise_mask + x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask + out = self.inner_model(x, sigma, model_options=model_options, seed=seed) + if denoise_mask is not None: + out = out * denoise_mask + self.latent_image * latent_mask + return out + +def simple_scheduler(model_sampling, steps): + s = model_sampling + sigs = [] + ss = len(s.sigmas) / steps + for x in range(steps): + sigs += [float(s.sigmas[-(1 + int(x * ss))])] + sigs += [0.0] + return torch.FloatTensor(sigs) + +def ddim_scheduler(model_sampling, steps): + s = model_sampling + sigs = [] + ss = max(len(s.sigmas) // steps, 1) + x = 1 + while x < len(s.sigmas): + sigs += [float(s.sigmas[x])] + x += ss + sigs = sigs[::-1] + sigs += [0.0] + return torch.FloatTensor(sigs) + +def normal_scheduler(model_sampling, steps, sgm=False, floor=False): + s = model_sampling + start = s.timestep(s.sigma_max) + end = s.timestep(s.sigma_min) + + if sgm: + timesteps = torch.linspace(start, end, steps + 1)[:-1] + else: + timesteps = torch.linspace(start, end, steps) + + sigs = [] + for x in range(len(timesteps)): + ts = timesteps[x] + sigs.append(s.sigma(ts)) + sigs += [0.0] + return torch.FloatTensor(sigs) + +def get_mask_aabb(masks): + if masks.numel() == 0: + return torch.zeros((0, 4), device=masks.device, dtype=torch.int) + + b = masks.shape[0] + + bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int) + is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool) + for i in range(b): + mask = masks[i] + if mask.numel() == 0: + continue + if torch.max(mask != 0) == False: + is_empty[i] = True + continue + y, x = torch.where(mask) + bounding_boxes[i, 0] = torch.min(x) + bounding_boxes[i, 1] = torch.min(y) + bounding_boxes[i, 2] = torch.max(x) + bounding_boxes[i, 3] = torch.max(y) + + return bounding_boxes, is_empty + +def resolve_areas_and_cond_masks_multidim(conditions, dims, device): + # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes. + # While we're doing this, we can also resolve the mask device and scaling for performance reasons + for i in range(len(conditions)): + c = conditions[i] + if 'area' in c: + area = c['area'] + if area[0] == "percentage": + modified = c.copy() + a = area[1:] + a_len = len(a) // 2 + area = () + for d in range(len(dims)): + area += (max(1, round(a[d] * dims[d])),) + for d in range(len(dims)): + area += (round(a[d + a_len] * dims[d]),) + + modified['area'] = area + c = modified + conditions[i] = c + + if 'mask' in c: + mask = c['mask'] + mask = mask.to(device=device) + modified = c.copy() + if len(mask.shape) == len(dims): + mask = mask.unsqueeze(0) + if mask.shape[1:] != dims: + mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1) + + if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2 + bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0) + boxes, is_empty = get_mask_aabb(bounds) + if is_empty[0]: + # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway) + modified['area'] = (8, 8, 0, 0) + else: + box = boxes[0] + H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0]) + H = max(8, H) + W = max(8, W) + area = (int(H), int(W), int(Y), int(X)) + modified['area'] = area + + modified['mask'] = mask + conditions[i] = modified + +def resolve_areas_and_cond_masks(conditions, h, w, device): + logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.") + return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device) + +def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2 + if 'area' not in c: + return + + c_area = c['area'] + smallest = None + for x in conds: + if 'area' in x: + a = x['area'] + if c_area[2] >= a[2] and c_area[3] >= a[3]: + if a[0] + a[2] >= c_area[0] + c_area[2]: + if a[1] + a[3] >= c_area[1] + c_area[3]: + if smallest is None: + smallest = x + elif 'area' not in smallest: + smallest = x + else: + if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]: + smallest = x + else: + if smallest is None: + smallest = x + if smallest is None: + return + if 'area' in smallest: + if smallest['area'] == c_area: + return + + out = c.copy() + out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied? + conds += [out] + +def calculate_start_end_timesteps(model, conds): + s = model.model_sampling + for t in range(len(conds)): + x = conds[t] + + timestep_start = None + timestep_end = None + if 'start_percent' in x: + timestep_start = s.percent_to_sigma(x['start_percent']) + if 'end_percent' in x: + timestep_end = s.percent_to_sigma(x['end_percent']) + + if (timestep_start is not None) or (timestep_end is not None): + n = x.copy() + if (timestep_start is not None): + n['timestep_start'] = timestep_start + if (timestep_end is not None): + n['timestep_end'] = timestep_end + conds[t] = n + +def pre_run_control(model, conds): + s = model.model_sampling + for t in range(len(conds)): + x = conds[t] + + timestep_start = None + timestep_end = None + percent_to_timestep_function = lambda a: s.percent_to_sigma(a) + if 'control' in x: + x['control'].pre_run(model, percent_to_timestep_function) + +def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): + cond_cnets = [] + cond_other = [] + uncond_cnets = [] + uncond_other = [] + for t in range(len(conds)): + x = conds[t] + if 'area' not in x: + if name in x and x[name] is not None: + cond_cnets.append(x[name]) + else: + cond_other.append((x, t)) + for t in range(len(uncond)): + x = uncond[t] + if 'area' not in x: + if name in x and x[name] is not None: + uncond_cnets.append(x[name]) + else: + uncond_other.append((x, t)) + + if len(uncond_cnets) > 0: + return + + for x in range(len(cond_cnets)): + temp = uncond_other[x % len(uncond_other)] + o = temp[0] + if name in o and o[name] is not None: + n = o.copy() + n[name] = uncond_fill_func(cond_cnets, x) + uncond += [n] + else: + n = o.copy() + n[name] = uncond_fill_func(cond_cnets, x) + uncond[temp[1]] = n + +def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs): + for t in range(len(conds)): + x = conds[t] + params = x.copy() + params["device"] = device + params["noise"] = noise + default_width = None + if len(noise.shape) >= 4: #TODO: 8 multiple should be set by the model + default_width = noise.shape[3] * 8 + params["width"] = params.get("width", default_width) + params["height"] = params.get("height", noise.shape[2] * 8) + params["prompt_type"] = params.get("prompt_type", prompt_type) + for k in kwargs: + if k not in params: + params[k] = kwargs[k] + + out = model_function(**params) + x = x.copy() + model_conds = x['model_conds'].copy() + for k in out: + model_conds[k] = out[k] + x['model_conds'] = model_conds + conds[t] = x + return conds + +class Sampler: + def sample(self): + pass + + def max_denoise(self, model_wrap, sigmas): + max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max) + sigma = float(sigmas[0]) + return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma + +KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", + "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", + "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"] + +class KSAMPLER(Sampler): + def __init__(self, sampler_function, extra_options={}, inpaint_options={}): + self.sampler_function = sampler_function + self.extra_options = extra_options + self.inpaint_options = inpaint_options + + def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): + extra_args["denoise_mask"] = denoise_mask + model_k = KSamplerX0Inpaint(model_wrap, sigmas) + model_k.latent_image = latent_image + if self.inpaint_options.get("random", False): #TODO: Should this be the default? + generator = torch.manual_seed(extra_args.get("seed", 41) + 1) + model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device) + else: + model_k.noise = noise + + noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas)) + + k_callback = None + total_steps = len(sigmas) - 1 + if callback is not None: + k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) + + samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options) + samples = model_wrap.inner_model.model_sampling.inverse_noise_scaling(sigmas[-1], samples) + return samples + + +def ksampler(sampler_name, extra_options={}, inpaint_options={}): + if sampler_name == "dpm_fast": + def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable): + if len(sigmas) <= 1: + return noise + + sigma_min = sigmas[-1] + if sigma_min == 0: + sigma_min = sigmas[-2] + total_steps = len(sigmas) - 1 + return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable) + sampler_function = dpm_fast_function + elif sampler_name == "dpm_adaptive": + def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options): + if len(sigmas) <= 1: + return noise + + sigma_min = sigmas[-1] + if sigma_min == 0: + sigma_min = sigmas[-2] + return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options) + sampler_function = dpm_adaptive_function + else: + sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name)) + + return KSAMPLER(sampler_function, extra_options, inpaint_options) + + +def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None): + for k in conds: + conds[k] = conds[k][:] + resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device) + + for k in conds: + calculate_start_end_timesteps(model, conds[k]) + + if hasattr(model, 'extra_conds'): + for k in conds: + conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed) + + #make sure each cond area has an opposite one with the same area + for k in conds: + for c in conds[k]: + for kk in conds: + if k != kk: + create_cond_with_same_area_if_none(conds[kk], c) + + for k in conds: + pre_run_control(model, conds[k]) + + if "positive" in conds: + positive = conds["positive"] + for k in conds: + if k != "positive": + apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), conds[k], 'control', lambda cond_cnets, x: cond_cnets[x]) + apply_empty_x_to_equal_area(positive, conds[k], 'gligen', lambda cond_cnets, x: cond_cnets[x]) + + return conds + +class CFGGuider: + def __init__(self, model_patcher): + self.model_patcher = model_patcher + self.model_options = model_patcher.model_options + self.original_conds = {} + self.cfg = 1.0 + + def set_conds(self, positive, negative): + self.inner_set_conds({"positive": positive, "negative": negative}) + + def set_cfg(self, cfg): + self.cfg = cfg + + def inner_set_conds(self, conds): + for k in conds: + self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k]) + + def __call__(self, *args, **kwargs): + return self.predict_noise(*args, **kwargs) + + def predict_noise(self, x, timestep, model_options={}, seed=None): + return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed) + + def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed): + if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image. + latent_image = self.inner_model.process_latent_in(latent_image) + + self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed) + + extra_args = {"model_options": self.model_options, "seed":seed} + + samples = sampler.sample(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar) + return self.inner_model.process_latent_out(samples.to(torch.float32)) + + def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None): + if sigmas.shape[-1] == 0: + return latent_image + + self.conds = {} + for k in self.original_conds: + self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k])) + + self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds) + device = self.model_patcher.load_device + + if denoise_mask is not None: + denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device) + + noise = noise.to(device) + latent_image = latent_image.to(device) + sigmas = sigmas.to(device) + + output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) + + comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models) + del self.inner_model + del self.conds + del self.loaded_models + return output + + +def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): + cfg_guider = CFGGuider(model) + cfg_guider.set_conds(positive, negative) + cfg_guider.set_cfg(cfg) + return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) + + +SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"] +SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"] + +def calculate_sigmas(model_sampling, scheduler_name, steps): + if scheduler_name == "karras": + sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max)) + elif scheduler_name == "exponential": + sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max)) + elif scheduler_name == "normal": + sigmas = normal_scheduler(model_sampling, steps) + elif scheduler_name == "simple": + sigmas = simple_scheduler(model_sampling, steps) + elif scheduler_name == "ddim_uniform": + sigmas = ddim_scheduler(model_sampling, steps) + elif scheduler_name == "sgm_uniform": + sigmas = normal_scheduler(model_sampling, steps, sgm=True) + else: + logging.error("error invalid scheduler {}".format(scheduler_name)) + return sigmas + +def sampler_object(name): + if name == "uni_pc": + sampler = KSAMPLER(uni_pc.sample_unipc) + elif name == "uni_pc_bh2": + sampler = KSAMPLER(uni_pc.sample_unipc_bh2) + elif name == "ddim": + sampler = ksampler("euler", inpaint_options={"random": True}) + else: + sampler = ksampler(name) + return sampler + +class KSampler: + SCHEDULERS = SCHEDULER_NAMES + SAMPLERS = SAMPLER_NAMES + DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2')) + + def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): + self.model = model + self.device = device + if scheduler not in self.SCHEDULERS: + scheduler = self.SCHEDULERS[0] + if sampler not in self.SAMPLERS: + sampler = self.SAMPLERS[0] + self.scheduler = scheduler + self.sampler = sampler + self.set_steps(steps, denoise) + self.denoise = denoise + self.model_options = model_options + + def calculate_sigmas(self, steps): + sigmas = None + + discard_penultimate_sigma = False + if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS: + steps += 1 + discard_penultimate_sigma = True + + sigmas = calculate_sigmas(self.model.get_model_object("model_sampling"), self.scheduler, steps) + + if discard_penultimate_sigma: + sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) + return sigmas + + def set_steps(self, steps, denoise=None): + self.steps = steps + if denoise is None or denoise > 0.9999: + self.sigmas = self.calculate_sigmas(steps).to(self.device) + else: + if denoise <= 0.0: + self.sigmas = torch.FloatTensor([]) + else: + new_steps = int(steps/denoise) + sigmas = self.calculate_sigmas(new_steps).to(self.device) + self.sigmas = sigmas[-(steps + 1):] + + def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): + if sigmas is None: + sigmas = self.sigmas + + if last_step is not None and last_step < (len(sigmas) - 1): + sigmas = sigmas[:last_step + 1] + if force_full_denoise: + sigmas[-1] = 0 + + if start_step is not None: + if start_step < (len(sigmas) - 1): + sigmas = sigmas[start_step:] + else: + if latent_image is not None: + return latent_image + else: + return torch.zeros_like(noise) + + sampler = sampler_object(self.sampler) + + return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) diff --git a/MagicQuill/comfy/sd.py b/MagicQuill/comfy/sd.py new file mode 100644 index 0000000000000000000000000000000000000000..cfbf8fa4d201cee3f8ee04b662fe35a99d60677b --- /dev/null +++ b/MagicQuill/comfy/sd.py @@ -0,0 +1,624 @@ +import torch +from enum import Enum +import logging + +from comfy import model_management +from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine +from .ldm.cascade.stage_a import StageA +from .ldm.cascade.stage_c_coder import StageC_coder +from .ldm.audio.autoencoder import AudioOobleckVAE +import yaml + +import comfy.utils + +from . import clip_vision +from . import gligen +from . import diffusers_convert +from . import model_detection + +from . import sd1_clip +from . import sd2_clip +from . import sdxl_clip +from . import sd3_clip +from . import sa_t5 + +import comfy.model_patcher +import comfy.lora +import comfy.t2i_adapter.adapter +import comfy.supported_models_base +import comfy.taesd.taesd + +def load_model_weights(model, sd): + m, u = model.load_state_dict(sd, strict=False) + m = set(m) + unexpected_keys = set(u) + + k = list(sd.keys()) + for x in k: + if x not in unexpected_keys: + w = sd.pop(x) + del w + if len(m) > 0: + logging.warning("missing {}".format(m)) + return model + +def load_clip_weights(model, sd): + k = list(sd.keys()) + for x in k: + if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): + y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") + sd[y] = sd.pop(x) + + if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd: + ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] + if ids.dtype == torch.float32: + sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() + + sd = comfy.utils.clip_text_transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.") + return load_model_weights(model, sd) + + +def load_lora_for_models(model, clip, lora, strength_model, strength_clip): + key_map = {} + if model is not None: + key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) + if clip is not None: + key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map) + + loaded = comfy.lora.load_lora(lora, key_map) + if model is not None: + new_modelpatcher = model.clone() + k = new_modelpatcher.add_patches(loaded, strength_model) + else: + k = () + new_modelpatcher = None + + if clip is not None: + new_clip = clip.clone() + k1 = new_clip.add_patches(loaded, strength_clip) + else: + k1 = () + new_clip = None + k = set(k) + k1 = set(k1) + for x in loaded: + if (x not in k) and (x not in k1): + logging.warning("NOT LOADED {}".format(x)) + + return (new_modelpatcher, new_clip) + + +class CLIP: + def __init__(self, target=None, embedding_directory=None, no_init=False): + if no_init: + return + params = target.params.copy() + clip = target.clip + tokenizer = target.tokenizer + + load_device = model_management.text_encoder_device() + offload_device = model_management.text_encoder_offload_device() + params['device'] = offload_device + dtype = model_management.text_encoder_dtype(load_device) + params['dtype'] = dtype + + self.cond_stage_model = clip(**(params)) + + for dt in self.cond_stage_model.dtypes: + if not model_management.supports_cast(load_device, dt): + load_device = offload_device + + self.tokenizer = tokenizer(embedding_directory=embedding_directory) + self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device) + self.layer_idx = None + logging.debug("CLIP model load device: {}, offload device: {}".format(load_device, offload_device)) + + def clone(self): + n = CLIP(no_init=True) + n.patcher = self.patcher.clone() + n.cond_stage_model = self.cond_stage_model + n.tokenizer = self.tokenizer + n.layer_idx = self.layer_idx + return n + + def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): + return self.patcher.add_patches(patches, strength_patch, strength_model) + + def clip_layer(self, layer_idx): + self.layer_idx = layer_idx + + def tokenize(self, text, return_word_ids=False): + return self.tokenizer.tokenize_with_weights(text, return_word_ids) + + def encode_from_tokens(self, tokens, return_pooled=False): + self.cond_stage_model.reset_clip_options() + + if self.layer_idx is not None: + self.cond_stage_model.set_clip_options({"layer": self.layer_idx}) + + if return_pooled == "unprojected": + self.cond_stage_model.set_clip_options({"projected_pooled": False}) + + self.load_model() + cond, pooled = self.cond_stage_model.encode_token_weights(tokens) + if return_pooled: + return cond, pooled + return cond + + def encode(self, text): + tokens = self.tokenize(text) + return self.encode_from_tokens(tokens) + + def load_sd(self, sd, full_model=False): + if full_model: + return self.cond_stage_model.load_state_dict(sd, strict=False) + else: + return self.cond_stage_model.load_sd(sd) + + def get_sd(self): + return self.cond_stage_model.state_dict() + + def load_model(self): + model_management.load_model_gpu(self.patcher) + return self.patcher + + def get_key_patches(self): + return self.patcher.get_key_patches() + +class VAE: + def __init__(self, sd=None, device=None, config=None, dtype=None): + if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format + sd = diffusers_convert.convert_vae_state_dict(sd) + + self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower) + self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) + self.downscale_ratio = 8 + self.upscale_ratio = 8 + self.latent_channels = 4 + self.output_channels = 3 + self.process_input = lambda image: image * 2.0 - 1.0 + self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0) + self.working_dtypes = [torch.bfloat16, torch.float32] + + if config is None: + if "decoder.mid.block_1.mix_factor" in sd: + encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} + decoder_config = encoder_config.copy() + decoder_config["video_kernel_size"] = [3, 1, 1] + decoder_config["alpha"] = 0.0 + self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"}, + encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config}, + decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config}) + elif "taesd_decoder.1.weight" in sd: + self.latent_channels = sd["taesd_decoder.1.weight"].shape[1] + self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels) + elif "vquantizer.codebook.weight" in sd: #VQGan: stage a of stable cascade + self.first_stage_model = StageA() + self.downscale_ratio = 4 + self.upscale_ratio = 4 + #TODO + #self.memory_used_encode + #self.memory_used_decode + self.process_input = lambda image: image + self.process_output = lambda image: image + elif "backbone.1.0.block.0.1.num_batches_tracked" in sd: #effnet: encoder for stage c latent of stable cascade + self.first_stage_model = StageC_coder() + self.downscale_ratio = 32 + self.latent_channels = 16 + new_sd = {} + for k in sd: + new_sd["encoder.{}".format(k)] = sd[k] + sd = new_sd + elif "blocks.11.num_batches_tracked" in sd: #previewer: decoder for stage c latent of stable cascade + self.first_stage_model = StageC_coder() + self.latent_channels = 16 + new_sd = {} + for k in sd: + new_sd["previewer.{}".format(k)] = sd[k] + sd = new_sd + elif "encoder.backbone.1.0.block.0.1.num_batches_tracked" in sd: #combined effnet and previewer for stable cascade + self.first_stage_model = StageC_coder() + self.downscale_ratio = 32 + self.latent_channels = 16 + elif "decoder.conv_in.weight" in sd: + #default SD1.x/SD2.x VAE parameters + ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} + + if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE + ddconfig['ch_mult'] = [1, 2, 4] + self.downscale_ratio = 4 + self.upscale_ratio = 4 + + self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1] + if 'quant_conv.weight' in sd: + self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4) + else: + self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"}, + encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig}, + decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig}) + elif "decoder.layers.0.weight_v" in sd: + self.first_stage_model = AudioOobleckVAE() + self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) + self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype) + self.latent_channels = 64 + self.output_channels = 2 + self.upscale_ratio = 2048 + self.downscale_ratio = 2048 + self.process_output = lambda audio: audio + self.process_input = lambda audio: audio + self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32] + else: + logging.warning("WARNING: No VAE weights detected, VAE not initalized.") + self.first_stage_model = None + return + else: + self.first_stage_model = AutoencoderKL(**(config['params'])) + self.first_stage_model = self.first_stage_model.eval() + + m, u = self.first_stage_model.load_state_dict(sd, strict=False) + if len(m) > 0: + logging.warning("Missing VAE keys {}".format(m)) + + if len(u) > 0: + logging.debug("Leftover VAE keys {}".format(u)) + + if device is None: + device = model_management.vae_device() + self.device = device + offload_device = model_management.vae_offload_device() + if dtype is None: + dtype = model_management.vae_dtype(self.device, self.working_dtypes) + self.vae_dtype = dtype + self.first_stage_model.to(self.vae_dtype) + self.output_device = model_management.intermediate_device() + + self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device) + logging.debug("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype)) + + def vae_encode_crop_pixels(self, pixels): + dims = pixels.shape[1:-1] + for d in range(len(dims)): + x = (dims[d] // self.downscale_ratio) * self.downscale_ratio + x_offset = (dims[d] % self.downscale_ratio) // 2 + if x != dims[d]: + pixels = pixels.narrow(d + 1, x_offset, x) + return pixels + + def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16): + steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap) + steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap) + steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap) + pbar = comfy.utils.ProgressBar(steps) + + decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float() + output = self.process_output( + (comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) + + comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) + + comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar)) + / 3.0) + return output + + def decode_tiled_1d(self, samples, tile_x=128, overlap=64): + output = torch.empty((samples.shape[0], self.output_channels) + tuple(map(lambda a: a * self.upscale_ratio, samples.shape[2:])), device=self.output_device) + + for j in range(samples.shape[0]): + for i in range(0, samples.shape[-1], tile_x - overlap): + f = i + t = i + tile_x + output[j:j+1,:,f * self.upscale_ratio:t * self.upscale_ratio] = self.first_stage_model.decode(samples[j:j+1,:,f:t].to(self.vae_dtype).to(self.device)).float() + + return output + + def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): + steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap) + steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap) + steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap) + pbar = comfy.utils.ProgressBar(steps) + + encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float() + samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) + samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) + samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) + samples /= 3.0 + return samples + + def decode(self, samples_in): + try: + memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) + model_management.load_models_gpu([self.patcher], memory_required=memory_used) + free_memory = model_management.get_free_memory(self.device) + batch_number = int(free_memory / memory_used) + batch_number = max(1, batch_number) + + pixel_samples = torch.empty((samples_in.shape[0], self.output_channels) + tuple(map(lambda a: a * self.upscale_ratio, samples_in.shape[2:])), device=self.output_device) + for x in range(0, samples_in.shape[0], batch_number): + samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device) + pixel_samples[x:x+batch_number] = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float()) + except model_management.OOM_EXCEPTION as e: + logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") + if len(samples_in.shape) == 3: + pixel_samples = self.decode_tiled_1d(samples_in) + else: + pixel_samples = self.decode_tiled_(samples_in) + + pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1) + return pixel_samples + + def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16): + model_management.load_model_gpu(self.patcher) + output = self.decode_tiled_(samples, tile_x, tile_y, overlap) + return output.movedim(1,-1) + + def encode(self, pixel_samples): + pixel_samples = self.vae_encode_crop_pixels(pixel_samples) + pixel_samples = pixel_samples.movedim(-1,1) + try: + memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) + model_management.load_models_gpu([self.patcher], memory_required=memory_used) + free_memory = model_management.get_free_memory(self.device) + batch_number = int(free_memory / memory_used) + batch_number = max(1, batch_number) + samples = torch.empty((pixel_samples.shape[0], self.latent_channels) + tuple(map(lambda a: a // self.downscale_ratio, pixel_samples.shape[2:])), device=self.output_device) + for x in range(0, pixel_samples.shape[0], batch_number): + pixels_in = self.process_input(pixel_samples[x:x+batch_number]).to(self.vae_dtype).to(self.device) + samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float() + + except model_management.OOM_EXCEPTION as e: + logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.") + samples = self.encode_tiled_(pixel_samples) + + return samples + + def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): + pixel_samples = self.vae_encode_crop_pixels(pixel_samples) + model_management.load_model_gpu(self.patcher) + pixel_samples = pixel_samples.movedim(-1,1) + samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap) + return samples + + def get_sd(self): + return self.first_stage_model.state_dict() + +class StyleModel: + def __init__(self, model, device="cpu"): + self.model = model + + def get_cond(self, input): + return self.model(input.last_hidden_state) + + +def load_style_model(ckpt_path): + model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) + keys = model_data.keys() + if "style_embedding" in keys: + model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8) + else: + raise Exception("invalid style model {}".format(ckpt_path)) + model.load_state_dict(model_data) + return StyleModel(model) + +class CLIPType(Enum): + STABLE_DIFFUSION = 1 + STABLE_CASCADE = 2 + SD3 = 3 + STABLE_AUDIO = 4 + +def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION): + clip_data = [] + for p in ckpt_paths: + clip_data.append(comfy.utils.load_torch_file(p, safe_load=True)) + + class EmptyClass: + pass + + for i in range(len(clip_data)): + if "transformer.resblocks.0.ln_1.weight" in clip_data[i]: + clip_data[i] = comfy.utils.clip_text_transformers_convert(clip_data[i], "", "") + else: + if "text_projection" in clip_data[i]: + clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) #old models saved with the CLIPSave node + + clip_target = EmptyClass() + clip_target.params = {} + if len(clip_data) == 1: + if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]: + if clip_type == CLIPType.STABLE_CASCADE: + clip_target.clip = sdxl_clip.StableCascadeClipModel + clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer + else: + clip_target.clip = sdxl_clip.SDXLRefinerClipModel + clip_target.tokenizer = sdxl_clip.SDXLTokenizer + elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]: + clip_target.clip = sd2_clip.SD2ClipModel + clip_target.tokenizer = sd2_clip.SD2Tokenizer + elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in clip_data[0]: + dtype_t5 = clip_data[0]["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"].dtype + clip_target.clip = sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=dtype_t5) + clip_target.tokenizer = sd3_clip.SD3Tokenizer + elif "encoder.block.0.layer.0.SelfAttention.k.weight" in clip_data[0]: + clip_target.clip = sa_t5.SAT5Model + clip_target.tokenizer = sa_t5.SAT5Tokenizer + else: + clip_target.clip = sd1_clip.SD1ClipModel + clip_target.tokenizer = sd1_clip.SD1Tokenizer + elif len(clip_data) == 2: + if clip_type == CLIPType.SD3: + clip_target.clip = sd3_clip.sd3_clip(clip_l=True, clip_g=True, t5=False) + clip_target.tokenizer = sd3_clip.SD3Tokenizer + else: + clip_target.clip = sdxl_clip.SDXLClipModel + clip_target.tokenizer = sdxl_clip.SDXLTokenizer + elif len(clip_data) == 3: + clip_target.clip = sd3_clip.SD3ClipModel + clip_target.tokenizer = sd3_clip.SD3Tokenizer + + clip = CLIP(clip_target, embedding_directory=embedding_directory) + for c in clip_data: + m, u = clip.load_sd(c) + if len(m) > 0: + logging.warning("clip missing: {}".format(m)) + + if len(u) > 0: + logging.debug("clip unexpected: {}".format(u)) + return clip + +def load_gligen(ckpt_path): + data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) + model = gligen.load_gligen(data) + if model_management.should_use_fp16(): + model = model.half() + return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device()) + +def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None): + logging.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.") + model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True) + #TODO: this function is a mess and should be removed eventually + if config is None: + with open(config_path, 'r') as stream: + config = yaml.safe_load(stream) + model_config_params = config['model']['params'] + clip_config = model_config_params['cond_stage_config'] + scale_factor = model_config_params['scale_factor'] + + if "parameterization" in model_config_params: + if model_config_params["parameterization"] == "v": + m = model.clone() + class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingDiscrete, comfy.model_sampling.V_PREDICTION): + pass + m.add_object_patch("model_sampling", ModelSamplingAdvanced(model.model.model_config)) + model = m + + layer_idx = clip_config.get("params", {}).get("layer_idx", None) + if layer_idx is not None: + clip.clip_layer(layer_idx) + + return (model, clip, vae) + +def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True): + sd = comfy.utils.load_torch_file(ckpt_path) + sd_keys = sd.keys() + clip = None + clipvision = None + vae = None + model = None + model_patcher = None + clip_target = None + + diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd) + parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix) + load_device = model_management.get_torch_device() + + model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix) + unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes) + manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) + model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) + + if model_config is None: + raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) + + if model_config.clip_vision_prefix is not None: + if output_clipvision: + clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True) + + if output_model: + inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype) + offload_device = model_management.unet_offload_device() + model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device) + model.load_model_weights(sd, diffusion_model_prefix) + + if output_vae: + vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True) + vae_sd = model_config.process_vae_state_dict(vae_sd) + vae = VAE(sd=vae_sd) + + if output_clip: + clip_target = model_config.clip_target(state_dict=sd) + if clip_target is not None: + clip_sd = model_config.process_clip_state_dict(sd) + if len(clip_sd) > 0: + clip = CLIP(clip_target, embedding_directory=embedding_directory) + m, u = clip.load_sd(clip_sd, full_model=True) + if len(m) > 0: + m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m)) + if len(m_filter) > 0: + logging.warning("clip missing: {}".format(m)) + else: + logging.debug("clip missing: {}".format(m)) + + if len(u) > 0: + logging.debug("clip unexpected {}:".format(u)) + else: + logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.") + + left_over = sd.keys() + if len(left_over) > 0: + logging.debug("left over keys: {}".format(left_over)) + + if output_model: + model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device) + if inital_load_device != torch.device("cpu"): + logging.info("loaded straight to GPU") + model_management.load_model_gpu(model_patcher) + + return (model_patcher, clip, vae, clipvision) + + +def load_unet_state_dict(sd): #load unet in diffusers format + parameters = comfy.utils.calculate_parameters(sd) + unet_dtype = model_management.unet_dtype(model_params=parameters) + load_device = model_management.get_torch_device() + + if "input_blocks.0.0.weight" in sd or 'clf.1.weight' in sd: #ldm or stable cascade + model_config = model_detection.model_config_from_unet(sd, "") + if model_config is None: + return None + new_sd = sd + + else: #diffusers + model_config = model_detection.model_config_from_diffusers_unet(sd) + if model_config is None: + return None + + diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config) + + new_sd = {} + for k in diffusers_keys: + if k in sd: + new_sd[diffusers_keys[k]] = sd.pop(k) + else: + logging.warning("{} {}".format(diffusers_keys[k], k)) + + offload_device = model_management.unet_offload_device() + unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes) + manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) + model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) + model = model_config.get_model(new_sd, "") + model = model.to(offload_device) + model.load_model_weights(new_sd, "") + left_over = sd.keys() + if len(left_over) > 0: + logging.info("left over keys in unet: {}".format(left_over)) + return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device) + +def load_unet(unet_path): + sd = comfy.utils.load_torch_file(unet_path) + model = load_unet_state_dict(sd) + if model is None: + logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path)) + raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path)) + return model + +def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}): + clip_sd = None + load_models = [model] + if clip is not None: + load_models.append(clip.load_model()) + clip_sd = clip.get_sd() + + model_management.load_models_gpu(load_models, force_patch_weights=True) + clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None + sd = model.model.state_dict_for_saving(clip_sd, vae.get_sd(), clip_vision_sd) + for k in extra_keys: + sd[k] = extra_keys[k] + + comfy.utils.save_torch_file(sd, output_path, metadata=metadata) diff --git a/MagicQuill/comfy/sd1_clip.py b/MagicQuill/comfy/sd1_clip.py new file mode 100644 index 0000000000000000000000000000000000000000..911af0a7e8c4501cbb9d55d1b43debd43a21ccbd --- /dev/null +++ b/MagicQuill/comfy/sd1_clip.py @@ -0,0 +1,530 @@ +import os + +from transformers import CLIPTokenizer +import comfy.ops +import torch +import traceback +import zipfile +from . import model_management +import comfy.clip_model +import json +import logging + +def gen_empty_tokens(special_tokens, length): + start_token = special_tokens.get("start", None) + end_token = special_tokens.get("end", None) + pad_token = special_tokens.get("pad") + output = [] + if start_token is not None: + output.append(start_token) + if end_token is not None: + output.append(end_token) + output += [pad_token] * (length - len(output)) + return output + +class ClipTokenWeightEncoder: + def encode_token_weights(self, token_weight_pairs): + to_encode = list() + max_token_len = 0 + has_weights = False + for x in token_weight_pairs: + tokens = list(map(lambda a: a[0], x)) + max_token_len = max(len(tokens), max_token_len) + has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x)) + to_encode.append(tokens) + + sections = len(to_encode) + if has_weights or sections == 0: + to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len)) + + out, pooled = self.encode(to_encode) + if pooled is not None: + first_pooled = pooled[0:1].to(model_management.intermediate_device()) + else: + first_pooled = pooled + + output = [] + for k in range(0, sections): + z = out[k:k+1] + if has_weights: + z_empty = out[-1] + for i in range(len(z)): + for j in range(len(z[i])): + weight = token_weight_pairs[k][j][1] + if weight != 1.0: + z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j] + output.append(z) + + if (len(output) == 0): + return out[-1:].to(model_management.intermediate_device()), first_pooled + return torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled + +class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): + """Uses the CLIP transformer encoder for text (from huggingface)""" + LAYERS = [ + "last", + "pooled", + "hidden" + ] + def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77, + freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel, + special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False, + return_projected_pooled=True): # clip-vit-base-patch32 + super().__init__() + assert layer in self.LAYERS + + if textmodel_json_config is None: + textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json") + + with open(textmodel_json_config) as f: + config = json.load(f) + + self.transformer = model_class(config, dtype, device, comfy.ops.manual_cast) + self.num_layers = self.transformer.num_layers + + self.max_length = max_length + if freeze: + self.freeze() + self.layer = layer + self.layer_idx = None + self.special_tokens = special_tokens + + self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055)) + self.enable_attention_masks = enable_attention_masks + self.zero_out_masked = zero_out_masked + + self.layer_norm_hidden_state = layer_norm_hidden_state + self.return_projected_pooled = return_projected_pooled + + if layer == "hidden": + assert layer_idx is not None + assert abs(layer_idx) < self.num_layers + self.set_clip_options({"layer": layer_idx}) + self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled) + + def freeze(self): + self.transformer = self.transformer.eval() + #self.train = disabled_train + for param in self.parameters(): + param.requires_grad = False + + def set_clip_options(self, options): + layer_idx = options.get("layer", self.layer_idx) + self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled) + if layer_idx is None or abs(layer_idx) > self.num_layers: + self.layer = "last" + else: + self.layer = "hidden" + self.layer_idx = layer_idx + + def reset_clip_options(self): + self.layer = self.options_default[0] + self.layer_idx = self.options_default[1] + self.return_projected_pooled = self.options_default[2] + + def set_up_textual_embeddings(self, tokens, current_embeds): + out_tokens = [] + next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1 + embedding_weights = [] + + for x in tokens: + tokens_temp = [] + for y in x: + if isinstance(y, int): + if y == token_dict_size: #EOS token + y = -1 + tokens_temp += [y] + else: + if y.shape[0] == current_embeds.weight.shape[1]: + embedding_weights += [y] + tokens_temp += [next_new_token] + next_new_token += 1 + else: + logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1])) + while len(tokens_temp) < len(x): + tokens_temp += [self.special_tokens["pad"]] + out_tokens += [tokens_temp] + + n = token_dict_size + if len(embedding_weights) > 0: + new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype) + new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1] + for x in embedding_weights: + new_embedding.weight[n] = x + n += 1 + new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding + self.transformer.set_input_embeddings(new_embedding) + + processed_tokens = [] + for x in out_tokens: + processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one + + return processed_tokens + + def forward(self, tokens): + backup_embeds = self.transformer.get_input_embeddings() + device = backup_embeds.weight.device + tokens = self.set_up_textual_embeddings(tokens, backup_embeds) + tokens = torch.LongTensor(tokens).to(device) + + attention_mask = None + if self.enable_attention_masks: + attention_mask = torch.zeros_like(tokens) + end_token = self.special_tokens.get("end", -1) + for x in range(attention_mask.shape[0]): + for y in range(attention_mask.shape[1]): + attention_mask[x, y] = 1 + if tokens[x, y] == end_token: + break + + outputs = self.transformer(tokens, attention_mask, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state) + self.transformer.set_input_embeddings(backup_embeds) + + if self.layer == "last": + z = outputs[0].float() + else: + z = outputs[1].float() + + if self.zero_out_masked and attention_mask is not None: + z *= attention_mask.unsqueeze(-1).float() + + pooled_output = None + if len(outputs) >= 3: + if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None: + pooled_output = outputs[3].float() + elif outputs[2] is not None: + pooled_output = outputs[2].float() + + return z, pooled_output + + def encode(self, tokens): + return self(tokens) + + def load_sd(self, sd): + return self.transformer.load_state_dict(sd, strict=False) + +def parse_parentheses(string): + result = [] + current_item = "" + nesting_level = 0 + for char in string: + if char == "(": + if nesting_level == 0: + if current_item: + result.append(current_item) + current_item = "(" + else: + current_item = "(" + else: + current_item += char + nesting_level += 1 + elif char == ")": + nesting_level -= 1 + if nesting_level == 0: + result.append(current_item + ")") + current_item = "" + else: + current_item += char + else: + current_item += char + if current_item: + result.append(current_item) + return result + +def token_weights(string, current_weight): + a = parse_parentheses(string) + out = [] + for x in a: + weight = current_weight + if len(x) >= 2 and x[-1] == ')' and x[0] == '(': + x = x[1:-1] + xx = x.rfind(":") + weight *= 1.1 + if xx > 0: + try: + weight = float(x[xx+1:]) + x = x[:xx] + except: + pass + out += token_weights(x, weight) + else: + out += [(x, current_weight)] + return out + +def escape_important(text): + text = text.replace("\\)", "\0\1") + text = text.replace("\\(", "\0\2") + return text + +def unescape_important(text): + text = text.replace("\0\1", ")") + text = text.replace("\0\2", "(") + return text + +def safe_load_embed_zip(embed_path): + with zipfile.ZipFile(embed_path) as myzip: + names = list(filter(lambda a: "data/" in a, myzip.namelist())) + names.reverse() + for n in names: + with myzip.open(n) as myfile: + data = myfile.read() + number = len(data) // 4 + length_embed = 1024 #sd2.x + if number < 768: + continue + if number % 768 == 0: + length_embed = 768 #sd1.x + num_embeds = number // length_embed + embed = torch.frombuffer(data, dtype=torch.float) + out = embed.reshape((num_embeds, length_embed)).clone() + del embed + return out + +def expand_directory_list(directories): + dirs = set() + for x in directories: + dirs.add(x) + for root, subdir, file in os.walk(x, followlinks=True): + dirs.add(root) + return list(dirs) + +def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None): + if isinstance(embedding_directory, str): + embedding_directory = [embedding_directory] + + embedding_directory = expand_directory_list(embedding_directory) + + valid_file = None + for embed_dir in embedding_directory: + embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name)) + embed_dir = os.path.abspath(embed_dir) + try: + if os.path.commonpath((embed_dir, embed_path)) != embed_dir: + continue + except: + continue + if not os.path.isfile(embed_path): + extensions = ['.safetensors', '.pt', '.bin'] + for x in extensions: + t = embed_path + x + if os.path.isfile(t): + valid_file = t + break + else: + valid_file = embed_path + if valid_file is not None: + break + + if valid_file is None: + return None + + embed_path = valid_file + + embed_out = None + + try: + if embed_path.lower().endswith(".safetensors"): + import safetensors.torch + embed = safetensors.torch.load_file(embed_path, device="cpu") + else: + if 'weights_only' in torch.load.__code__.co_varnames: + try: + embed = torch.load(embed_path, weights_only=True, map_location="cpu") + except: + embed_out = safe_load_embed_zip(embed_path) + else: + embed = torch.load(embed_path, map_location="cpu") + except Exception as e: + logging.warning("{}\n\nerror loading embedding, skipping loading: {}".format(traceback.format_exc(), embedding_name)) + return None + + if embed_out is None: + if 'string_to_param' in embed: + values = embed['string_to_param'].values() + embed_out = next(iter(values)) + elif isinstance(embed, list): + out_list = [] + for x in range(len(embed)): + for k in embed[x]: + t = embed[x][k] + if t.shape[-1] != embedding_size: + continue + out_list.append(t.reshape(-1, t.shape[-1])) + embed_out = torch.cat(out_list, dim=0) + elif embed_key is not None and embed_key in embed: + embed_out = embed[embed_key] + else: + values = embed.values() + embed_out = next(iter(values)) + return embed_out + +class SDTokenizer: + def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True, min_length=None): + if tokenizer_path is None: + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") + self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path) + self.max_length = max_length + self.min_length = min_length + + empty = self.tokenizer('')["input_ids"] + if has_start_token: + self.tokens_start = 1 + self.start_token = empty[0] + self.end_token = empty[1] + else: + self.tokens_start = 0 + self.start_token = None + self.end_token = empty[0] + self.pad_with_end = pad_with_end + self.pad_to_max_length = pad_to_max_length + + vocab = self.tokenizer.get_vocab() + self.inv_vocab = {v: k for k, v in vocab.items()} + self.embedding_directory = embedding_directory + self.max_word_length = 8 + self.embedding_identifier = "embedding:" + self.embedding_size = embedding_size + self.embedding_key = embedding_key + + def _try_get_embedding(self, embedding_name:str): + ''' + Takes a potential embedding name and tries to retrieve it. + Returns a Tuple consisting of the embedding and any leftover string, embedding can be None. + ''' + embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key) + if embed is None: + stripped = embedding_name.strip(',') + if len(stripped) < len(embedding_name): + embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key) + return (embed, embedding_name[len(stripped):]) + return (embed, "") + + + def tokenize_with_weights(self, text:str, return_word_ids=False): + ''' + Takes a prompt and converts it to a list of (token, weight, word id) elements. + Tokens can both be integer tokens and pre computed CLIP tensors. + Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens. + Returned list has the dimensions NxM where M is the input size of CLIP + ''' + if self.pad_with_end: + pad_token = self.end_token + else: + pad_token = 0 + + text = escape_important(text) + parsed_weights = token_weights(text, 1.0) + + #tokenize words + tokens = [] + for weighted_segment, weight in parsed_weights: + to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ') + to_tokenize = [x for x in to_tokenize if x != ""] + for word in to_tokenize: + #if we find an embedding, deal with the embedding + if word.startswith(self.embedding_identifier) and self.embedding_directory is not None: + embedding_name = word[len(self.embedding_identifier):].strip('\n') + embed, leftover = self._try_get_embedding(embedding_name) + if embed is None: + logging.warning(f"warning, embedding:{embedding_name} does not exist, ignoring") + else: + if len(embed.shape) == 1: + tokens.append([(embed, weight)]) + else: + tokens.append([(embed[x], weight) for x in range(embed.shape[0])]) + #if we accidentally have leftover text, continue parsing using leftover, else move on to next word + if leftover != "": + word = leftover + else: + continue + #parse word + tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]]) + + #reshape token array to CLIP input size + batched_tokens = [] + batch = [] + if self.start_token is not None: + batch.append((self.start_token, 1.0, 0)) + batched_tokens.append(batch) + for i, t_group in enumerate(tokens): + #determine if we're going to try and keep the tokens in a single batch + is_large = len(t_group) >= self.max_word_length + + while len(t_group) > 0: + if len(t_group) + len(batch) > self.max_length - 1: + remaining_length = self.max_length - len(batch) - 1 + #break word in two and add end token + if is_large: + batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]]) + batch.append((self.end_token, 1.0, 0)) + t_group = t_group[remaining_length:] + #add end token and pad + else: + batch.append((self.end_token, 1.0, 0)) + if self.pad_to_max_length: + batch.extend([(pad_token, 1.0, 0)] * (remaining_length)) + #start new batch + batch = [] + if self.start_token is not None: + batch.append((self.start_token, 1.0, 0)) + batched_tokens.append(batch) + else: + batch.extend([(t,w,i+1) for t,w in t_group]) + t_group = [] + + #fill last batch + batch.append((self.end_token, 1.0, 0)) + if self.pad_to_max_length: + batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch))) + if self.min_length is not None and len(batch) < self.min_length: + batch.extend([(pad_token, 1.0, 0)] * (self.min_length - len(batch))) + + if not return_word_ids: + batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens] + + return batched_tokens + + + def untokenize(self, token_weight_pair): + return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair)) + + +class SD1Tokenizer: + def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer): + self.clip_name = clip_name + self.clip = "clip_{}".format(self.clip_name) + setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory)) + + def tokenize_with_weights(self, text:str, return_word_ids=False): + out = {} + out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids) + return out + + def untokenize(self, token_weight_pair): + return getattr(self, self.clip).untokenize(token_weight_pair) + + +class SD1ClipModel(torch.nn.Module): + def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs): + super().__init__() + self.clip_name = clip_name + self.clip = "clip_{}".format(self.clip_name) + setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs)) + + self.dtypes = set() + if dtype is not None: + self.dtypes.add(dtype) + + def set_clip_options(self, options): + getattr(self, self.clip).set_clip_options(options) + + def reset_clip_options(self): + getattr(self, self.clip).reset_clip_options() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs = token_weight_pairs[self.clip_name] + out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs) + return out, pooled + + def load_sd(self, sd): + return getattr(self, self.clip).load_sd(sd) diff --git a/MagicQuill/comfy/sd1_clip_config.json b/MagicQuill/comfy/sd1_clip_config.json new file mode 100644 index 0000000000000000000000000000000000000000..0158a1fd52727adf22359238285afafb150f66f2 --- /dev/null +++ b/MagicQuill/comfy/sd1_clip_config.json @@ -0,0 +1,25 @@ +{ + "_name_or_path": "openai/clip-vit-large-patch14", + "architectures": [ + "CLIPTextModel" + ], + "attention_dropout": 0.0, + "bos_token_id": 0, + "dropout": 0.0, + "eos_token_id": 2, + "hidden_act": "quick_gelu", + "hidden_size": 768, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 3072, + "layer_norm_eps": 1e-05, + "max_position_embeddings": 77, + "model_type": "clip_text_model", + "num_attention_heads": 12, + "num_hidden_layers": 12, + "pad_token_id": 1, + "projection_dim": 768, + "torch_dtype": "float32", + "transformers_version": "4.24.0", + "vocab_size": 49408 +} diff --git a/MagicQuill/comfy/sd1_tokenizer/merges.txt b/MagicQuill/comfy/sd1_tokenizer/merges.txt new file mode 100644 index 0000000000000000000000000000000000000000..76e821f1b6f0a9709293c3b6b51ed90980b3166b --- /dev/null +++ b/MagicQuill/comfy/sd1_tokenizer/merges.txt @@ -0,0 +1,48895 @@ +#version: 0.2 +i n +t h +a n +r e +a r +e r +th e +in g +o u +o n +s t +o r +e n +o n +a l +a t +e r +i t +i n +t o +r o +i s +l e +i c +a t +an d +e d +o f +c h +o r +e s +i l +e l +s t +a c +o m +a m +l o +a n +a y +s h +r i +l i +t i +f or +n e +ð Ł +r a +h a +d e +o l +v e +s i +u r +a l +s e +' s +u n +d i +b e +l a +w h +o o +d ay +e n +m a +n o +l e +t o +ou r +i r +g h +w it +i t +y o +a s +s p +th is +t s +at i +yo u +wit h +a d +i s +a b +l y +w e +th e +t e +a s +a g +v i +p p +s u +h o +m y +. . +b u +c om +s e +er s +m e +m e +al l +c on +m o +k e +g e +ou t +en t +c o +f e +v er +a r +f ro +a u +p o +c e +gh t +ar e +s s +fro m +c h +t r +ou n +on e +b y +d o +t h +w or +er e +k e +p ro +f or +d s +b o +t a +w e +g o +h e +t er +in g +d e +b e +ati on +m or +a y +e x +il l +p e +k s +s c +l u +f u +q u +v er +ðŁ ĺ +j u +m u +at e +an d +v e +k ing +m ar +o p +h i +.. . +p re +a d +r u +th at +j o +o f +c e +ne w +a m +a p +g re +s s +d u +no w +y e +t ing +y our +it y +n i +c i +p ar +g u +f i +a f +p er +t er +u p +s o +g i +on s +g r +g e +b r +p l +' t +m i +in e +we e +b i +u s +sh o +ha ve +to day +a v +m an +en t +ac k +ur e +ou r +â Ģ +c u +l d +lo o +i m +ic e +s om +f in +re d +re n +oo d +w as +ti on +p i +i r +th er +t y +p h +ar d +e c +! ! +m on +mor e +w ill +t ra +c an +c ol +p u +t e +w n +m b +s o +it i +ju st +n ing +h ere +t u +p a +p r +bu t +wh at +al ly +f ir +m in +c a +an t +s a +t ed +e v +m ent +f a +ge t +am e +ab out +g ra +no t +ha pp +ay s +m an +h is +ti me +li ke +g h +ha s +th an +lo ve +ar t +st e +d ing +h e +c re +w s +w at +d er +it e +s er +ac e +ag e +en d +st r +a w +st or +r e +c ar +el l +al l +p s +f ri +p ho +p or +d o +a k +w i +f re +wh o +sh i +b oo +s on +el l +wh en +il l +ho w +gre at +w in +e l +b l +s si +al i +som e +ðŁ Ĵ +t on +d er +le s +p la +ï ¸ +e d +s ch +h u +on g +d on +k i +s h +an n +c or +. . +oun d +a z +in e +ar y +fu l +st u +ou ld +st i +g o +se e +ab le +ar s +l l +m is +b er +c k +w a +en ts +n o +si g +f e +fir st +e t +sp e +ac k +i f +ou s +' m +st er +a pp +an g +an ce +an s +g ood +b re +e ver +the y +t ic +com e +of f +b ack +as e +ing s +ol d +i ght +f o +h er +happ y +p ic +it s +v ing +u s +m at +h om +d y +e m +s k +y ing +the ir +le d +r y +u l +h ar +c k +t on +on al +h el +r ic +b ir +vi e +w ay +t ri +d a +p le +b ro +st o +oo l +ni ght +tr u +b a +re ad +re s +ye ar +f r +t or +al s +c oun +c la +t ure +v el +at ed +le c +en d +th ing +v o +ic i +be st +c an +wor k +la st +af ter +en ce +p ri +p e +e s +i l +âĢ ¦ +d re +y s +o ver +i es +ðŁ ij +com m +t w +in k +s un +c l +li fe +t t +a ch +l and +s y +t re +t al +p ol +s m +du c +s al +f t +' re +ch e +w ar +t ur +ati ons +ac h +m s +il e +p m +ou gh +at e +st ar +wee k +! !! +c lu +th ere +n er +t om +s el +ï¸ ı +wor ld +v es +c am +go t +in ter +of f +u m +ton ight +o ther +h ou +loo k +j e +i d +si on +be au +at t +el i +or t +re c +f f +st er +su pp +g en +be en +il y +te am +m m +i c +pe op +it t +at s +on ly +mb er +en g +b ri +m p +k now +b ur +b ar +in s +lo w +sh e +ro w +â Ŀ +t ro +peop le +vi a +lo w +ag a +be t +x t +f ac +ch ar +e ar +w al +s en +f am +b le +n ati +is h +n or +g ame +li ve +s co +le y +d on +ic k +b all +ver y +the se +p an +i a +at ing +c r +a re +g ir +ma ke +st re +sho w +. " +f l +u p +d r +than ks +il li +w om +st s +i g +s ur +ever y +c ur +vie w +le t +in to +mo st +n a +in di +g ar +ha d +s ou +v ed +an t +iti on +ma de +f ol +un i +it ed +ðŁ ı +ic al +th r +read y +ch ec +d ra +k es +boo k +e p +si c +mor ning +ne ws +c au +c t +w ell +an c +pho to +th an +or s +bir th +g g +ou t +ne xt +som e +en ing +stor y +ch ri +do wn +hom e +f fe +fre e +d a +b or +f il +ci al +than k +si de +le ar +qu e +l ine +t en +at es +ye ars +m y +pho to +beau ti +ri ght +n u +for m +shi p +b an +th er +d ays +g am +as on +g y +ðŁ İ +birth day +se t +ic k +e t +st ill +com ing +ta ke +ðŁ ĩ +b b +s ol +s on +d en +e p +mu sic +the m +de n +wh y +f oo +c ra +am az +w n +h ol +t ting +w r +u e +ma g +c ro +l an +c lo +b ra +a k +s ing +c al +re ad +' ve +jo h +b ab +d ri +b lo +bi g +er ic +in t +t or +tr y +l a +le g +hou se +m ic +v al +beauti ful +l itt +chec k +ne w +ver s +s w +ar i +pla y +h er +âĢ ĵ +w in +m a +con gr +sch ool +f un +. @ +he al +ic h +d el +wh ere +l on +ke t +tw o +mu ch +wat ch +v en +d ed +a st +k ed +b as +go ing +m p +e ver +w ays +ro o +de sig +l y +s ed +to p +l in +ch an +to o +it ing +d ent +gh ts +t y +sp o +ne ed +b lu +in st +be ing +âĿ ¤ +w el +l s +hi m +m ay +st ing +n a +el y +litt le +g a +n at +tom or +m c +h on +w ant +a ir +pi c +am eric +p er +le ss +wee k +ve l +a h +c ap +ch am +g er +ti m +tomor row +ne ss +st ate +h al +ser v +z e +o s +p at +v is +ex c +s in +f f +c ity +c en +an y +b el +su mm +t in +w ould +loo king +k o +ce le +fam ily +m er +po w +hel p +bu s +c o +c le +sel f +en s +ic s +th o +an i +ch o +le ad +b s +t wee +th ink +for e +ch il +vi de +di d +al e +ch i +v il +en ds +w ing +p as +' ll +v ol +s a +g s +man y +j ec +be fore +gra ph +n y +ur ing +w il +d d +bu il +f av +st ed +tr an +l ing +ou d +d ge +fi el +nati onal +st a +c er +w ere +in a +se ason +c ou +n ed +amaz ing +ti ons +cele br +n s +a th +he ad +s day +d ar +lo c +v in +an other +g oo +s at +n y +jo in +pre s +s es +s ing +an a +in ing +.. .. +c our +ï¸ ı +ac t +cau se +li ght +am s +t a +b al +f c +hi gh +off ici +t t +chri st +d ic +d ay +ra l +h or +: ) +vi si +n am +o b +ma s +gh t +re ally +t un +fin d +thr ough +por t +u t +ti ve +st y +n e +or e +ðŁĺ Ĥ +supp ort +ne ver +ev en +ðŁ Ķ +h a +y a +l d +u k +r an +j am +wi th +me di +d es +ne y +ch ing +al e +h y +k in +! ! +d y +pl ace +al so +b le +wh ich +bl ack +b li +s ay +par k +pl ay +ir e +vide o +week end +a il +ke y +p t +w ard +fri day +d in +ine ss +g ro +b en +al ways +t ball +ag o +m il +c y +pro duc +di sc +un der +ple ase +sp or +fu ll +e y +ðŁ Ļ +is e +iti es +c at +k no +u se +fo re +k er +ar t +hi gh +op en +s an +e f +our s +sh ed +st ri +d ro +aga in +i m +ðŁ ĵ +en jo +fu n +ge tting +p en +g er +c li +an y +ever y +e u +wom en +â ľ +e st +c ould +r y +" @ +th ou +sh a +comm un +b er +d ents +di s +wh ile +aw ay +di o +h am +g la +d ate +k a +mis s +un ch +w on +in f +roo m +g a +re al +ex per +di rec +sh ould +sp r +g ol +l ong +bet ter +or i +e y +i ence +il s +z z +h an +f ound +v s +â Ļ +po st +ti c +par t +m en +ren ce +ce ss +v ic +s il +sho p +ðŁĺ Ĥ +f ood +v al +sti c +y ou +s ays +e lec +st ar +o c +l and +i d +c tion +fiel d +s of +st art +wat er +fri ends +on es +ðŁ Į +f la +f ar +wh ite +par ty +in st +gr ou +t v +every one +m ent +j a +ch a +pr in +an ts +d uring +l at +l ar +we st +th en +k a +y oun +in sp +in te +we en +visi t +aga inst +re le +he ad +c es +to wn +loo ks +th re +re gi +ren t +pro jec +gir l +se ar +w o +m om +c ar +h un +pu bli +d i +p le +c all +c ri +u m +for d +per fe +fri end +h ard +ssi on +te st +pla ying +ar ound +be cause +ke ts +me et +sat ur +ar ti +wor k +j un +v en +r un +me mber +por t +su per +t wit +s am +el s +t ly +ad v +ati ve +at h +s ure +av ail +la r +s qu +ar ds +ev ent +m en +l l +o ver +lo gy +it al +tim es +m al +b ack +c oo +ma king +st ru +â ģ +it u +sh ar +g an +c as +s n +summ er +pic ture +f an +h in +christ mas +c y +pr oud +cham pi +desig n +pp ing +ho pe +c a +avail able +ma y +we d +photo graph +spe cial +sal e +sto p +er y +a we +al ity +hi story +am a +pre si +b ru +wor king +d one +d r +k en +fe at +w ood +ate st +sun day +mo vi +vel y +s le +f ace +sp ec +stu dents +b y +ha m +sp on +bus iness +d at +i e +i p +so ci +g lo +h and +re cor +r s +me e +ke ep +p ur +heal th +sh e +com ple +go d +da vi +col lec +li st +r a +clu b +t ers +in clu +th ings +pl an +â ĺ +joh n +sh ing +at ul +so on +blu e +g or +satur day +w on +congr atul +se e +âĿ¤ ï¸ı +tho se +ðŁĺ į +fin al +d ou +it h +o wn +ro ad +t our +a st +indi a +ti l +n d +f er +fav or +su l +lear n +fir e +ju st +grou p +a h +r ac +bo dy +u r +c are +à ¸ +p lo +o h +po s +gi ve +te ch +su b +c ent +er ing +y m +il ity +f ic +lon don +v ir +gu ys +b a +ðŁ ¤ +bab y +sc re +ðŁĺ į +tru mp +un der +chan ge +i an +col le +ss es +l er +ss ed +n ice +ann oun +pow er +s ar +a king +min i +s li +s wee +k ar +fu l +c ru +ac tion +a ther +) . +st and +de vel +a a +g an +le ft +lo l +re l +tran s +m ents +in t +e f +man ag +di g +gen er +do wn +p au +ti v +k u +th ur +k en +st on +f ans +tal k +twee t +t oo +sty le +pro te +se con +fr on +awe some +g l +p al +ne t +s or +la u +g on +sin ce +t ty +ser ies +me mor +b eli +fil m +di d +di es +o t +congratul ations +p ra +e ve +w oo +offici al +su c +in cre +b on +par t +pp ed +cla ss +si ve +bo y +cu l +perfe ct +t ou +d am +wel come +foo tball +h i +p ap +wa it +ad a +congr ats +youn g +exc ited +re ce +j an +v a +re d +st ra +medi a +' d +do es +le t +mu l +ill s +gre en +m el +to ge +fu ture +ye ster +vers ity +for m +ta in +i de +ch es +ki ds +qu i +ha ha +de ta +bi g +favor ite +gir ls +con tin +do m +sear ch +u al +a ir +d ers +mon th +c er +yester day +commun ity +ad e +do g +vil le +ic es +d eli +sy ste +ru n +is m +he art +c up +en ti +fe w +presi dent +e ds +un til +fe sti +o k +f lo +sa id +ol e +me d +tra vel + £ +ph one +toge ther +fa st +lo t +gam es +sh ir +bet ween +y es +th ers +do ing +m ac +at or +b and +fol low +projec t +devel op +di ffe +con fe +spe ci +ca st +y s +bo ard +r d +i al +sh oo +r am +ha ving +sh are +fol low +on e +n ame +m r +pu t +disc u +or y +c ame +ou s +s ite +twit ter +t b +t it +fin ally +z ed +su per +com pan +us ing +all s +li st +r is +sho t +g al +t ar +de l +joh n +âĢ Ķ +some thing +ra m +inte re +wh e +b it +ðŁ į +stre et +oun d +a i +tic kets +movi e +re al +k y +ta king +o pp +c c +l am +m oun +in ve +bl ack +us ed +on line +y or +loc al +gu e +c ks +o w +ge st +bo ys +illi on +con t +re ci +in ed +eu ro +no w +se en +p h +te ach +de f +sou th +su ch +aw ard +mu st +is su +ca re +fe el +p lu +l atest +spor ts +we b +te x +e ment +s k +fi c +w an +te ch +o t +bo x +n er +fre e +t al +a sh +c ase +ho t +won der +mee ting +er a +ch all +ðŁ IJ +jo b +il i +c ool +j our +th s +m o +f el +di e +mic ha +e le +te am +serv ice +st and +ma kes +p ing +ear ly +com es +e k +ho li +v ers +ag ue +s au +thre e +mon day +fa shi +some one +th ro +se a +b ad +supp or +tur n +ur y +m ing +photograph y +n ic +mar k +pre tty +ss ing +wat ching +me mb +ar ri +coun ty +be ach +fr an +cen ter +pol ice +b at +publi c +t an +pre ss +s af +s y +ge ts +ro y +n ers +y our +bu y +st ers +sho w +as ed +chil dre +af ric +in es +sp ace +sc ri +h all +pa in +ar ing +hom e +m ur +heal th +ch ed +s and +rece i +gu y +e a +americ an +re si +childre n +- - +i ri +ing ton +coun try +ro ss +le n +ann a +boo ks +b c +e ce +d om +lo vely +k h +pe t +g y +g ri +st age +off ice +ro ck +m on +b ay +t able +su n +m ed +th in +l or +f low +( @ +uni versity +stor e +fron t +goo d +z a +vo te +nor th +he y +an im +or der +mi d +with out +a de +re member +mar ket +? ? +mu s +tra ining +e duc +bu t +co ver +st an +sc en +b la +bre ak +l ou +s ame +g old +a in +o s +bo th +l it +ver n +a i +al bu +p a +enjo y +be g +ell ing +thur sday +inf o +s an +americ a +ha ir +te l +mar ch +con cer +colle ge +confe rence +ap p +h our +ch ang +â ļ +s our +ol s +we ather +w ar +p hi +festi val +secon d +cu te +pr ac +en er +str y +le a +pol it +s av +se n +o w +m i +ne ar +ou ght +z e +co ffe +w illi +d an +se y +davi d +e se +f an +de ci +the at +no v +ati on +tr ac +sc i +re view +c el +e m +u n +ju ly +or ig +ti on +d ru +form er +st ay +af ter +in v +too k +dat a +b al +tu es +d an +ev ening +ðŁĺĤ ðŁĺĤ +d ol +u res +pro vi +t s +e st +sig n +j ac +u k +s ong +ye t +bo w +in du +j ap +h oo +po int +any one +z y +i st +h ur +it al +buil ding +wom an +ch ur +j er +per for +co ach +le ague +ce ss +ne t +i mag +nati on +br it +qu e +aw ards +ag es +wor ks +c ed +man ce +l ate +ig n +mon ey +tru e +i i +t ell +pl ac +p ac +as y +wor ld +be hin +im port +read ing +gra m +gi ving +me t +h it +for ward +st om +pres ent +jun e +so cial +no on +mar t +hal f +s we +go vern +k er +deta ils +li sh +_ _ +ac y +si a +ber t +f all +! !!! +) , +th i +d iti +sp ort +k ing +f it +st af +c at +mu se +cen tr +y er +con tro +b loo +wal k +ac tu +did n +li m +lear ning +re search +wed ne +au th +h ours +k y +f ar +h en +.. .. +it ch +ri l +str ong +sk y +que sti +jam es +r on +d g +f ur +c in +do es +app ro +mar ke +tu res +ful ly +ch at +behin d +te m +fin i +mis sion +b att +fe el +he av +every thing +b ar +w ish +pre mi +i ma +exper ience +e ach +re port +swee t +tic s +spr ing +re spon +syste m +vic tor +l in +sa w +al ready +gh ter +f le +ã ĥ +br ing +albu m +- - +ell s +st an +to m +inter national +w ent +an ni +mat ch +pp er +st one +sm all +ra in +fashi on +are a +v an +ag ram +k o +thou ght +wor th +v an +m er +coffe e +it es +g n +arti st +c on +ar ch +c ir +se cre +gr ound +is o +h and +co m +bri dge +h s +x i +l ink +pu l +sp l +r ace +f li +ri ver +g as +di sco +d al +play er +f it +photo s +it y +o k +j or +tr a +ap ril +ad s +a di +sol u +beau ty +do or +me ss +up date +ali a +sch o +en ed +mom ent +sco t +sc ience +i or +ti es +ac ross +ous ly +sh es +does n +p age +wat er +m illion +cla ssi +l ic +ca st +form ation +micha el +ell o +s mo +in ts +vi sion +op ening +ld n +au str +tues day +win ner +po ssi +r ound +shir t +di t +b o +u es +il led +al ong +tri p +star ting +im pro +k an +per son +no t +re co +ne eds +c le +li e +re st +r ing +win ter +si mp +mo m +be er +fac e +tor s +us a +collec tion +ge or +se ssion +tr ying +la s +la ke +j en +orig in +stu dent +se cur +v in +pic s +ex pe +com p +gon na +e qu +b ad +le y +a u +memb ers +bre ak +w all +gi c +din ner +bu l +insp ir +r i +min d +ic a +win ning +tal king +t ren +s is +t en +wonder ful +s now +he ar +th om +no thing +gu i +st in +blo g +fe st +b un +le e +war ds +ch ance +dre ss +re n +pau l +p es +tech no +ru ssi +c ard +e ast +mar i +w ine +t i +la w +str ic +k i +ap e +au gu +pro fe +as h +cour se +ma il +ren tly +d un +m un +lo ve +is land +dri ve +s l +end ed +ma in +lo st +nat ure +âĿ¤ ï¸ı +ch ic +re por +p in +pr o +st ation +ce p +ta kes +compan y +go es +on d +ma ch +ra dio +d ad +ro ck +j a +p ay +champi on +e e +in de +tt a +ati c +t ab +beli eve +ener gy +z i +t at +wor d +on ce +re sul +y l +and re +an o +inst agram +clo se +t am +cu stom +w a +con om +sho ws +li fe +k in +ro b +t age +n ation +al most +list en +sa ve +re li +ac e +mar y +tre e +for get +j ack +wa iting +direc tor +h ill +bor n +te mp +f l +st e +on a +sing le +wedne sday +un ited +in o +@ _ +ne l +celebr ate +en ding +de al +j i +can ada +hu ge +tr ack +âĢ ¢ +f y +fan ta +an g +yor k +rele ase +p un +ep iso +wor ds +t our +p ack +i gh +classi c +perfor mance +ke t +after noon +recor d +win s +pro ble +âĿ ¤ +f our +b ed +ban k +d ance +s la +cal led +mi ght +a p +pa st +ðŁ ļ +diffe rent +it e +gi ft +ssi ve +chur ch +c us +pro gram +ho tel +ic e +ma d +secur ity +en ge +d c +en ough +st a +e ty +de ad +g un +he ar +m ir +hu man +gre ss +oun ds +pi ece +bre aking +gar den +fi ght +vie ws +f ish +star ted +run ning +gre en +ser i +s m +as k +d or +de ath +e conom +er i +ir d +s er +l unch +âģ ¦ +bo x +nat u +ba se +b an +f al +glo bal +wil d +wo w +out side +mo ve +le ad +an al +muse um +on g +ha w +pow er +than k +b ac +char ac +cam pa +dig ital +r o +op er +de v +w ol +p ati +f a +m ale +pap er +ill ing +c s +â ĥ +educ ation +ta ken +e ffe +m ou +s ad +" . +bas ed +staf f +inclu ding +li ving +a c +ch ina +mo b +stor m +lu ck +ph il +o o +y n +tra vel +k el +ti al +pr ice +boo k +import ant +bi o +p ool +ny c +f ab +lo ad +? ! +chall enge +cr y +ser ve +we ar +bu s +ta in +nu mber +ro r +k at +i z +th ough +ho sp +m m +fa ir +ut es +ho t +po p +fi ed +cam p +develop ment +li br +c ali +em s +âģ¦ @ +b ol +is ed +stand ing +mo del +it a +g le +bro wn +ima ge +ve red +for ce +o il +par tic +sh u +da ily +la w +se c +cla ss +cam p +holi day +cl in +k ers +pres ent +gam e +incre di +er ship +inter view +b ill +du e +and y +ab o +in nov +ke y +ac ade +p il +mo der +st ars +br and +f er +wee ks +con si +pr e +sa fe +wr it +di um +la unch +marke ting +ann ual +as si +cour t +la dy +c ted +and a +in side +chil d +opp or +sm ith +centr e +gu e +âģ © +f ren +st y +for t +ent ly +is n +ke ep +to ber +on y +bo y +al d +col la +de mo +le vel +com pet +ad o +b our +fanta stic +m ate +s u +sou th +oppor tun +vers ary +lat er +bu d +face book +la un +ster n +p it +! " +ma j +gr am +tb t +fi re +happ y +a ks +wh ole +actu ally +ill er +ell a +lo ts +al ex +an ge +lan ds +ðŁĺ Ń +en ter +r ou +episo de +p ed +in ten +sh ire +wh o +pl an +h o +ca ke +we st +mag az +fre sh +c c +n ar +ch ris +wr iting +w er +n om +l o +mi dd +dre am +o l +ti onal +de b +> > +be come +s i +gr and +all ing +hi stor +ri de +i red +saf e +que en +ci l +in tro +vi l +d ani +.. . +ar tic +st at +sh ort +or ing +sel fi +mis si +do c +b it +g all +b om +i re +se lec +d ition +ðŁĶ ¥ +fri end +be at +gh ting +ðŁĺ Ĭ +pe ace +ex hi +ant a +ab ility +il lu +j on +qu ality +tri bu +m es +play ers +fa ir +cu t +c ab +suc cess +b i +su s +pro mo +sch e +an ge +ic o +comm it +cat ch +ill a +kin d +feel ing +qu o +s ay +anni versary +spo t +mo ther +an e +p end +your self +op s +app le +min utes +p o +gr and +ri es +ha ha +care er +ed ition +de c +ric k +am i +concer t +iti ve +ge ous +d ly +t te +adv ent +i g +li ghts +ak er +sk y +âĥ £ +r ay +fini shed +w ay +s d +ac coun +ðŁĴ ķ +ck y +ch el +lit er +pain ting +lo s +st un +techno logy +n as +ma r +b il +afric a +ki e +ey es +gol f +plu s +ni a +it ec +serv ices +wed ding +kno wn +te le +.. ... +star ts +pa ren +w ants +ati onal +mon ths +win do +fav our +er t +magaz ine +ex clu +re ve +b c +origin al +e ss +n al +an ti +st ro +t ice +stu dy +à ¤ +v ac +nation al +fi ve +ra in +ve ment +u te +ver se +em er +ar my +possi ble +gue ss +val ley +ther n +cro w +m r +col or +on to +pic k +cle ar +dar k +t ac +wan ted +it ting +can cer +govern ment +di e +ri se +z ing +col d +f oun +stu dio +str ation +bro ther +a head +sh el +mic ro +ic ally +d au +sig ned +vi ol +a x +as se +i o +w re +spl ay +ch ick +augu st +pl at +ti ps +sp i +hu man +e asy +lo gi +mi ke +gro w +ag re +w w +sh ad +mo tiv +wi de +tur ns +om g +v ar +de fin +su g +j im +ðŁĶ ¥ +t d +campa ign +nam ed +re tweet +co p +t v +le av +k is +dou ble +s mar +issu e +vil la +in formation +li es +sto ck +n t +di stric +sh or +mi x +er o +se p +me x +see ing +li ve +re min +co de +g ur +s c +wil d +l un +h ood +spo t +fa ther +fore ver +up d +tra f +f ly +ne ed +gra du +tra in +ma ke +s ab +be y +si ze +lead er +tal ks +e u +lo g +fo x +gor geous +le ss +le ts +sur pri +my self +no te +li ves +f ru +lo ved +se ver +de m +j i +so c +h old +do gs +n i +â ŀ +lea ve +air port +ben ef +ex pl +shi ps +comple te +ach i +gre at +vin tage +j ack +ro c +woo d +pri v +off er +ey e +ver sion +te a +co ach +off ic +w ell +g en +s at +h h +you th +o x +? " +m t +mi x +g g +d le +natu ral +buil d +break fast +thin king +theat re +mo on +ber g +go als +geor ge +en e +exc ell +il ing +tun e +y ed +g ate +m it +net work +jo e +h ello +f b +tu be +we aring +ath le +stru c +har d +gla ss +g ers +thro w +g es +b t +indu stry +manag ement +ali st +go al +stre am +y el +a vi +ici ous +o thers +s ki +chri sti +bir d +e sc +m in +tr o +l t +j an +im p +ri ghts +sh a +or gan +cent ral +ar a +ro ll +favour ite +che ster +el se +p ay +car s +m ine +ste p +prac tice +maj or +h ang +ðŁĺ ĺ +n on +v ari +eng ine +vol un +di a +i led +arch itec +p ink +d s +th y +wa sh +web site +ba g +contro l +el li +f ra +an sw +d ence +y u +r on +ol a +g in +dr in +li c +cou ple +sp ar +g on +cre ate +c t +celebr ating +de ep +e at +te e +vo ice +dro p +vis it +at ors +sta dium +f t +w is +ro l +gra de +fam il +po ints +re pre +w as +traf fic +jap an +or g +hon or +tex as +man u +âĻ ¥ +safe ty +re r +b ag +em plo +rele ased +re gu +ak a +n av +ro le +sen ior +spec t +cro ss +lin es +be st +p ack +s in +ti e +mis sing +sun set +li ber +is ing +j ay +sk i +champion ship +ac tiv +la dies +play ed +y y +pu bl +al o +pri de +s r +pa ki +lu x +sur vi +ck ed +e ts +cho col +austr alia +par is +mi les +h at +ment al +al a +me an +mob ile +en a +in si +f ound +chi ef +t ag +incredi ble +re turn +à © +goo gle +fren ch +cre w +hal lo +ali an +j az +ch er +sil ver +nor th +eng lish +base ball +c af +lim ited +follow ing +app reci +ear th +k ir +ve mber +w ed +p tion +g ed +oc tober +fl ori +c r +en cy +ga ve +lor d +stu ff +ber ry +po st +sm ile +bro ad +st ate +gg er +me ans +ic y +gu n +y o +ma ster +bur g +han ds +ni e +/ / +uni on +brit ish +big gest +distric t +am ing +h il +o ce +per son +pas s +en vir +scho ols +arri ved +anc es +insp ired +ex pla +be n +libr ary +bo tt +am p +ste ph +cont act +b ang +m s +cali for +t old +batt le +b b +chic ago +âľ ¨ +str ate +sh i +de ce +- ) +ad d +la b +j ones +leg end +cast le +ing er +st ance +be l +ur a +re fu +lead ers +po t +se x +h ic +artic le +ki d +fr ance +x x +ex e +gui de +volun te +pr int +al i +ce o +twee ts +w x +scen e +vol u +ant i +h an +as soci +shar ing +ro se +mini ster +sh er +in ste +cle an +demo cr +po ster +sk in +p sy +pro per +cra zy +i am +o re +in i +any thing +po d +mo ving +cl ick +ex plo +com b +cra ft +f i +bloo d +is ra +publ ic +d ent +ol ym +eng land +a si +ch er +fac t +envir on +har ry +g one +me dic +enjo ying +just ice +j r +indi an +wi fe +s ound +t es +dra wing +p al +ide a +cr it +ju li +il er +war m +cl ar +thou ghts +def en +coun cil +intro duc +di ed +jan u +an i +s end +li er +m l +intere sting +tra de +win d +b ay +s ac +anc y +sour ce +b es +org ani +ar ly +lar ge +ff ici +ta g +u t +de sp +o es +tit le +sy m +pic tures +op en +wom en +sho wing +ri a +le ast +lead ership +cur rent +elec tr +val ent +list ening +c key +gener al +de ser +du ce +; ) +c ent +ðŁĺį ðŁĺį +sco tt +po or +selfi e +ev ents +i on +wr ong +de v +h ill +sep te +cul ture +l ine +sor ry +s ent +si ster +ce pt +k ri +no vember +ar i +announ ce +z ation +br an +g ent +d u +l en +per s +f m +mart in +o p +e mb +om e +midd le +suc cess +pe ter +janu ary +f lu +rac ing +d av +bi ke +ðŁı » +pe t +shoo t +profe ssi +feat uring +septe mber +now playing +sta ur +z a +on ic +qu ick +bas ke +spe aking +mil it +z er +chick en +b ell +s ad +co ast +lo ving +y ers +d j +pan el +ver age +s wit +ic ks +b ou +califor nia +s am +paren ts +er o +k illed +ph ys +jo bs +mi gr +an th +e mo +hallo ween +and er +c m +compet ition +e ag +s ket +sp ir +may be +exclu sive +app e +jour ney +scre en +for d +i o +h ate +u g +sou l +her o +soci ety +sy n +gu it +n h +d j +as es +im pre +ti me +sal es +d d +f ts +summ it +stun ning +om s +tur ned +cle an +sof t +be at +re staur +de red +en ces +ma gic +di o +sh ine +gu est +health y +exhi b +stor ies +po pu +n is +el a +bel ow +fun ny +resul ts +s ne +cur rently +ar d +down load +f light +m al +f ine +p ad +ch u +ent ed +h at +ðŁij ı +ste ve +j o +mar k +r at +b all +p c +p on +b by +o li +ar ts +as ure +bow l +att ack +mi c +de ar +ran ge +en ter +chocol ate +br illi +ac cess +, " +? ?? +ch ap +con st +t n +mat ter +blu e +gall ery +em p +work shop +lead ing +y ours +baske tball +w anna +th u +_ _ +mar ri +sle ep +bi a +ch e +ma d +imp act +o wn +si r +chan nel +euro pe +e sp +k itch +hosp ital +w ra +roy al +f s +ne u +qu ar +ne y +ac ks +ch ase +pp y +st al +at ely +ti m +dece mber +r are +per form +cre am +we ight +ch oo +ni ght +ha ven +fr anc +kh an +buil t +hel ping +tru st +ty pe +gol den +ta x +s now +s wi +di sa +questi ons +ve y +li ght +c n +cl oud +thom as +ag ed +sh ou +te ams +gr an +re ason +a a +you tube +v p +pi zz +manag er +bur y +cre dit +tre at +ma x +i k +ma in +g ing +de ad +pro bab +ye ah +ã Ĥ +br and +so li +pl ant +ta yl +gir l +ðŁĺ Ń +nam ent +au to +mess age +ko re +n ur +ter r +ag u +ma p +sen ting +lo ves +gi ves +g ab +z en +ro bert +con fir +w ars +o m +sta in +cam era +and er +won der +a b +ca p +s old +su it +wal king +contin ue +effe c +dau ghter +d anc +cha in +mul ti +ki d +y an +champi on +v o +ta ins +ho st +min i +mis sed +re sc +ly n +fin ish +del icious +s as +tayl or +i b +pro mis +produc ts +moun tain +flori da +regi ster +tre at +rec ent +fe male +boo th +mat t +ve hic +s op +mo tor +suppor ting +phi c +ex tre +dr ink +lan e +th ird +p s +con stru +ce re +far m +ðŁİ ī +tu red +ðŁij ī +c ats +a j +gi e +shoo ting +as ked +paki stan +am e +m b +g il +leg al +squ are +in vol +dra w +oo oo +!! !! +opportun ity +p y +e i +b ts +teach er +charac ter +john son +br on +ly wood +ch ine +c ing +c ine +d ge +gam ing +russi a +ci a +quo te +ric h +go v +flow ers +sp iri +st in +grow th +ðŁı ¼ +comm er +j uni +mu m +r an +s na +a ren +c b +ac tor +col or +si t +pa ir +ch i +bo w +acade my +hel d +r ang +me tal +y l +ac tive +probab ly +t ch +need ed +spe e +cho ice +ital y +ry an +ðŁĩ º +flow er +v it +m n +found ation +b ak +si ons +ne igh +f loo +he ard +re mo +fre sh +ing ing +re f +to wn +cl ou +je sus +spiri t +cou ldn +z es +ðŁĴ Ļ +willi ams +pro ce +moder n +pro cess +sho es +cre ated +tri c +issu es +ann e +att en +de but +h r +n it +sti g +a po +e ps +z u +ã Ģ +si x +car ds +lan gu +fam ous +tour nament +se l +e bay +y n +st on +k ick +announ ced +k am +vo c +brilli ant +hou se +che ese +war ri +mus ic +ho ckey +ðŁĺĤ ðŁĺĤ +sk ills +au tom +smar t +med ical +mon y +e x +gu ar +gi ve +pers onal +ven tion +al li +pre ss +flo or +m c +victor y +hi m +simp le +th or +ðŁĩº ðŁĩ +ta il +lu cky +ale x +qu ite +bo t +ssi ons +chall eng +c ann +amaz on +h ell +b ought +) : +ed y +secre t +produc tion +inde pend +de fe +ad ded +p r +p ag +be d +gre atest +with in +j ay +ðŁ ¥ +ire land +re ly +s d +te xt +dri ving +pro gram +spe ed +col um +str on +à © +fore st +â ĸ +mach ine +co in +sc ar +oun t +bi e +¡ ï¸ı +por tra +comm on +wre st +recei ved +kno w +inve st +pl ans +ac cor +ad op +ter y +re ali +p p +k al +art work +me an +go d +inste ad +an ci +motiv ation +as ing +inspir ation +up coming +polit ical +euro pe +m ers +heav y +ðŁij į +fe bru +scot land +ou gh +b t +bo ss +sche du +spe ak +n ick +u red +in o +e k +ri sk +tor y +pres ents +b on +ru g +st ates +exhib ition +il o +m ill +br ought +: -) +tou ri +com e +offici ally +champi ons +do ors +re p +po se +ex tra +k ings +soc cer +squ ad +app lic +at a +some times +t ari +excell ent +ðŁĺ ĺ +stra ight +car ol +ri p +âĢ į +gra phic +m ol +elec tion +febru ary +as ons +l i +di r +m t +n ick +u su +m rs +com ics +inst itu +cor por +v i +ðŁĻ ı +tu ral +di se +ac ci +we are +am ong +sho pping +t ill +wh at +cha ir +sp an +chine se +innov ation +jo y +k it +cent ury +ob ama +ph ili +f c +re ach +c iti +ul ous +n on +d ang +happ ening +bur n +p el +or ange +d v +k ick +cla im +ing ham +ph y +no v +pod cast +wh i +ni ghts +ear lier +be ar +la h +exc iting +or a +gi ven +s lo +memor ies +contin ues +produc t +gh o +c d +kno ws +ðŁİ ī +publi shed +discu ss +y ard +i phone +tri es +w all +fe b +are n +tru th +win ners +tu re +diti onal +milit ary +proble m +m and +do g +lo ss +c ric +can adi +ve ter +villa ge +" , +y r +un g +don ald +ag ing +bir ds +sci enti +le s +th is +regi on +tic al +itt en +il a +ðŁĺ İ +d ad +di am +abo ve +st ren +li t +p ir +la b +fo cus +bus y +d ur +app ly +s ma +auth or +ac i +exe cu +dom in +re la +jack son +at o +wash ington +ðŁĻ Į +k ill +popu lar +ce ment +ro ad +e ating +loc ation +v ent +ar re +n an +cu sto +advent ure +or din +spor t +ul t +lo ck +questi on +dri ver +land sc +on i +k ins +p d +jor dan +te red +k k +a f +chil d +s p +just in +en i +s elling +z o +wh it +bo ston +partic ip +sig ning +happ ened +he at +m am +dre ams +lo ws +gra ph +the day +head ing +br o +ble ssed +vi c +ve gas +h d +in ning +ro man +and ro +den ti +u se +c it +pro gress +writ er +bo b +ff s +gro wing +b ly +aw are +ex am +sp ent +be t +sc ore +bey ond +do cu +ad el +s f +cou ra +colla bor +in c +priv ate +bo at +* * +z one +p ha +b ill +to tal +plan ning +to wards +plac es +pre view +cre ative +dam n +ide as +se ems +po ten +say ing +di splay +s w +a qu +lou is +by e +li l +e mail +we stern +ger many +ell er +re s +f ant +ment ary +de als +ric hard +jer sey +stren g +ra d +pizz a +mon d +w are +l ac +g i +ar chi +c d +yel low +rec ently +re ach +à ¹ +kitch en +desig ned +tr y +g al +restaur ant +at ure +w w +j as +l ma +ðŁij Į +pa in +av o +min ute +sch ol +ther ap +tic ket +d ry +jap an +diti ons +ter ri +sel ves +happ en +t up +ma g +cop y +sh er +free dom +f ile +speci ally +tor onto +lo ad +g ary +re y +answ er +lo y +cau ght +pri ze +u ne +fic ation +ni ger +sy d +tou ch +feat ure +jaz z +recor ds +him self +di sh +ro ber +spot ted +ma ster +wa ve +fin als +bu ll +for um +al d +re comm +ch a +a e +d oo +inst ru +tru ly +l g +in k +bro thers +de st +j im +m it +clo sed +is on +tri ed +s anta +af fe +w an +hor se +g row +camp us +rel ation +nati ve +jour n +go v +o ct +k it +b ound +part ner +re ma +crow d +! ) +c alls +ra il +qu ali +solu tion +con test +con vers +sn ap +b ase +in iti +ta x +y e +ent repre +it or +constru ction +foo d +present ed +n ings +cli mate +k m +mo del +b j +blo ck +present ation +dre am +fi x +c alling +bus ine +con gress +under stand +we b +val ue +ï¸ı âĥ£ +mex ico +it ely +ki m +char ity +ref lec +bl an +fl ying +anal y +famil ies +b and +reci pe +celebr ation +ac cep +ar y +to t +g b +intere sted +cap tain +âĻ ¥ +ti p +ab sol +bra z +inve stig +o logy +de c +tru ck +ver ing +c lear +don t +go tta +ad vis +beg ins +ma ss +de scri +blo ck +k im +davi d +son gs +memor ial +feat ures +su stain +' . +gra b +jo se +v a +con serv +se ts +man chester +fi ghting +de gre +ag a +in d +sle ep +pos ition +ha ir +sig ns +pol icy +it o +al ert +st am +sp end +w y +absol ut +d m +anim al +my ster +success ful +proble ms +ro bo +k ay +gar den +p d +may or +d ale +t ol +off ers +vis iting +friend ly +tre es +offic er +accoun t +ke vin +ðŁij į +gi ant +contin u +con su +tr act +n fl +ðŁĺ Ĭ +h q +b ility +a ar +dis ney +te en +on ed +wh ite +tra iler +de dic +al one +absolut ely +dig ital +willi am +in ation +s wa +e e +enti re +ger man +ro ll +h its +co st +st ay +th a +ali ve +accor ding +co t +liter ally +her it +re ti +haha ha +exper i +li kes +g t +ste el +__ __ +ch air +christi an +to wer +diffe rence +m d +tre ss +mi d +prin ce +afric an +fe der +foo t +car ri +ser ved +r ice +sh all +feat ured +ck er +rec ru +po e +sen se +ni fic +com edy +cont ent +f at +po sted +con tribu +tim ate +li ver +mb le +inter net +ag e +europe an +cl ing +gla d +ff ic +sc o +ak es +el le +ter min +ton y +p ale +col our +seri ous +pat ri +movi es +b m +professi onal +ad o +al u +br inging +f alls +isra el +ter m +langu age +bro ok +man n +commun ic +can not +ac ti +p he +y an +entrepre ne +tur key +log ical +lon g +ar m +ur s +work ers +ing ly +gg s +ri c +tu al +recei ve +op ens +ge ar +soci al +fe et +c king +ad ver +fin an +fe els +sp la +h r +ea ster +bra in +ã ģ +fi g +le dge +ne arly +prote ct +ma ssive +e th +aw a +ðŁĺ ģ +y rs +aware ness +defin itely +k n +imag ine +k u +syste ms +ðŁij ı +f as +li k +provi de +am o +disco ver +inf lu +ma ker +g az +fit ness +stre et +er s +te d +w c +ys is +pos itive +hel ped +que st +andre w +bra d +b in +hang ing +l ing +bri ght +se ction +ma ss +ðŁĻ Į +follow ers +ho sting +tem por +fla g +a ve +let ter +k ur +re qui +of ten +cry p +su ff +âļ ½ +russi an +treat ment +al le +ha y +l an +keep ing +hol y +power ful +pre dic +fun d +e specially +windo w +je wel +il y +ðŁĴ ľ +gener ation +app a +seri ously +o d +ðŁĺĤðŁĺĤ ðŁĺĤ +cer ti +iri sh +ðŁij Į +mi ami +be th +v ity +se cu +che f +cri me +graph y +ma x +arti sts +re volu +gu ard +spee ch +u c +upd ates +fac es +st ant +chang ed +repor ts +low er +pe ar +n c +k il +loo ked +spe aker +s f +re spect +ok ay +oce an +s itting +architec ture +tra il +se at +i ra +le g +japan ese +d am +u lar +sw im +polit ics +finan cial +ol d +mou th +at temp +de stin +fi shing +atten tion +me m +chang es +deci ded +reli gi +g in +c av +z z +ad am +ma c +wr ite +beg in +sc ul +al ter +is s +ath on +imag es +m oo +jo ined +ðŁĺ ī +âŀ ¡ï¸ı +pas sed +mu sli +h ir +lar gest +cam er +com ic +gh ted +rug by +bur gh +gg ing +te sting +pre par +lau gh +al ed +impro ve +beli ev +adv ice +sha res +he art +tur ning +s b +t el +caf e +n es +dani el +pat ter +t z +se tt +par k +c and +st ick +happ ens +bri an +ne west +e pic +ad or +ki es +war ning +anim als +custo m +ar c +di an +gol d +cor e +t f +c ity +pan ts +re ality +con fi +in ju +fo x +gu il +k new +âĺ º +cor rec +itu de +d den +. # +re duc +pas s +f on +y a +ow ner +re turns +n c +e ast +ap ol +in sur +th o +si m +juni or +be e +ang el +att le +elec tric +hor ror +cra sh +e ye +pat h +sou thern +emplo ye +ge o +t an +ha z +r ally +ðŁı » +proper ty +was n +enjo yed +gre y +g as +bre w +nor thern +hol ding +g p +ta ke +ch art +ly n +dr ama +z o +pa id +throw back +cu p +discu ssion +down town +w ill +le w +b is +t ary +bre ad +up on +r ate +teach ers +it ation +anc ed +cy cle +choo se +d c +ir an +co w +da ve +ra ise +prin cess +fa ith +- > +indu stri +sp ain +guit ar +fac ts +m n +sp en +cour te +go tt +projec ts +au di +o sc +pe ter +s and +intere st +happ iness +ven ue +sol di +surpri se +poten tial +per io +custom er +i i +g ni +manu fac +e co +bro ken +sing er +vel s +wal es +hu s +in j +f our +tal ent +d ying +mat the +fil m +jo ining +s ell +j ar +lma o +sur ger +bb c +sour ces +au stin +ni k +char les +f am +prin ci +ange l +cas h +lo t +o red +pla ys +pl ate +don e +memor y +br ings +n ba +solu tions +teach ing +gr ace +cir cu +hel ps +foun der +mar y +expl ore +de cor +par ts +ch o +inte gr +ha u +is es +pu tting +in er +r it +v y +mic hel +blu es +every day +for ms +bi o +ye ar +p in +t ter +spr ing +) ) +po t +al ing +perform ing +sh an +plan et +mus ical +head s +it alian +stru gg +âĢį âĻ +w ings +pu mp +h h +tr ou +a id +pri me +ear th +pa int +mon t +am y +bb c +fab ulous +fru it +andro id +bour ne +cere mony +enti al +? ? +deb ate +on ing +dra ft +sol ar +t x +j am +cor n +!! !!! +bro o +mil k +po sed +o hi +mo vement +b ren +part ner +p g +et te +ar ies +sh out +n g +leav ing +t ells +sen s +ta ste +kel ly +wor l +gy m +ric h +e gy +pi d +ma s +â Ĥ +courte sy +fran k +incre ase +wr itten +pp ers +re l +ha i +s as +s ound +tt i +w ich +ri ver +.. ." +a g +fel low +ro me +sm all +gen cy +ic an +lux ury +pro of +me t +wild life +mom ents +ra ther +cor ner +com pe +canadi an +lik ely +therap y +li am +econom ic +indi e +rou te +fi ght +ho pe +se tting +ant ly +cro ss +fant asy +de e +sket ch +comp li +ym i +ru les +engine ering +fig ure +ro w +. , +f w +syd ney +w ou +t ation +dre w +us es +the re +sp read +struc ture +pat rick +appa rently +ro s +h ills +w we +ann y +com mission +di v +f ying +con sul +anal ysis +ex i +ten nis +vehic le +ðŁĺŃ ðŁĺŃ +as s +high ly +op ened +b ann +ðŁĴ Ļ +mp h +wi shing +v or +fi f +give away +r r +ra y +je ss +g at +ic ymi +x it +high est +yor k +pi e +invol ved +high er +ri e +mal ay +int elli +desp ite +che e +sar ah +be an +reco gni +ar sen +tal ented +pas sion +ic h +ab c +lead s +dise ase +v is +se c +pre senting +m illi +hol e +sho ts +de part +surger y +gov t +b in +du al +e vi +lon ger +ev ol +scre en +portra it +et c +lo se +ch at +p en +p i +om a +s ick +er c +compan ies +en try +plan e +gr y +ven e +liver pool +premi ere +sha red +a red +fil ms +ir a +holi days +cric ket +ici an +v ing +. ) +ul timate +di vision +con duc +se pt +for ces +mon t +s mart +disa pp +sun shine +in d +b less +ma de +col ors +fran k +ir on +bott le +s go +m ood +j ason +er ic +bir th +te en +respon se +tar get +state ment +fe ar +th el +al um +ar ab +bl in +direc tion +ste ps +er ial +wor ked +at l +ðŁĴ ķ +fel t +pol i +scen es +hom es +b ell +e at +ate ful +t in +l ace +fol ks +p se +an n +wis dom +fa v +but ter +s r +are as +sm oo +bi z +dg es +app o +mo re +the m +effe ct +windo ws +sun ny +cap ital +tot ally +c ities +gr ant +mb ers +s low +au tu +il ities +w ro +ri sing +st ics +viol ence +i gh +qu ot +h it +t c +herit age +bu ff +ne s +z ar +den tial +ex ac +ed ge +de ep +aren a +be came +benef its +mar ks +mb er +a z +am es +pre ci +dra gon +re g +d ings +do s +ðŁĴ ª +n el +s ity +me al +di st +leg end +pur chase +pic al +st ick +f at +du ba +profe ss +car to +pro f +coun tries +respon si +se qu +fa b +tribu te +hon ored +prac tic +pur ple +an ton +pa red +t ough +summ er +environ ment +s ons +ðŁĻ ı +m ps +gi es +her oes +t elling +hen ry +f en +know ledge +Ģ ï¸ı +f r +ne g +u re +ac king +hear ts +s oo +hol lywood +ju mp +sau ce +schedu le +tur n +yo ga +cre ating +c ket +cre ek +â Ń +custom ers +ma dri +gu l +asse mb +moun t +c ell +to p +st al +dav is +t wi +sig n +premi er +iti ons +he aring +un k +pati ents +app ear +heav en +al ty +doc tor +a e +plat form +je ff +ðŁĵ · +regi onal +bi d +box ing +ex ten +or ity +a w +w ise +il le +sever al +bi e +s itu +sy ria +âľ ħ +remin der +enter tain +li on +part ners +in n +ph ar +f au +pl s +expe cted +sug ar +deci sion +s b +ch ron +associ ation +leav es +vis ited +sh ap +ðŁĴ ĸ +fur ther +h ann +w i +run s +l er +fun ding +fil led +.. .... +tin y +han g +or g +co ol +se min +ðŁı Ĩ +spon s +nav y +sa int +dru g +d al +r oun +co vered +tra ditional +invest ment +de te +al ism +f low +n is +sun rise +fe at +f ted +we ird +je re +ve gan +medic ine +an o +ac cu +deli very +temp le +chang ing +wil son +phili pp +re fe +n d +is er +g ay +r and +ati ves +t ely +p and +intelli g +g are +am bas +de mon +commit tee +strate gy +refu ge +bud get +prote c +pi er +ex press +nom in +econom y +al low +ic on +gal ax +o h +indi vi +dem and +vir gin +lu ke +ali sts +man i +s mi +ju dge +ent y +mic hi +resul t +am ed +spe aks +' , +hou ston +sh in +b ing +fl y +ch em +au to +v as +ge t +ar m +thank s +d in +gan g +x x +si on +loc ated +p l +jo sh +in fo +jo ins +adver ti +ot d +el d +si e +re asons +v ent +ðŁĩºðŁĩ ¸ +â ł +convers ation +stu di +ðŁĶ¥ ðŁĶ¥ +go s +s ounds +un it +mu sc +ge l +ack ed +pac i +co s +de re +u u +a o +la m +inspir ing +ar ms +tw are +mat ters +ad dic +du de +ex t +cri sis +b ath +me et +sing h +expe ct +del hi +resc ue +wor st +au g +shi pping +ser ving +st o +dar k +ac es +histor ic +landsc ape +desig ner +b illion +gr ateful +wa ke +e ve +m iller +hou sing +dy nam +is co +be ha +sh op +pr ou +e as +a sia +e ding +k on +depart ment +aw ar +mar ine +in ci +photograph er +ta pe +lo go +r ings +d it +-- -- +vin yl +w c +vo ting +se ven +ambas sad +dal las +t u +com ment +k ra +b les +w ag +u d +au dio +stri ke +offici al +o ts +me tho +to ols +ra di +al an +hun t +wat ched +a ke +fa ke +drin king +mer ry +m l +b day +ri o +ni ke +c ant +re pe +co stu +mur der +ak ers +ch ers +ou ts +beg inning +so s +ad es +n in +not es +wro te +sol o +c i +li ghting +ur ban +bre xit +att end +shir ts +pla yo +ac tress +pl ic +stand ard +quot es +par ade +anci ent + © +tur ing +re e +pri mary +fla sh +citi z +mat es +ste in +z i +clin ton +sk in +gen e +hu m +g ar +t le +y i +fo cu +de an +pl ants +cy ber +b u +om e +ho p +ad dress +ti x +gi fts +relation ship +sub scri +fe ed +exac tly +haw ks +ex o +stre ss +s n +arre sted +an e +sof tware +z ero +the me +mu mb +im migr +mi a +make up +ple asure +uni vers +har b +eng ine +ap er +r in +br a +institu te +le ather +al th +sing ing +co s +gh ty +me as +st ic +si de +insur ance +co t +pit ch +moun tains +cri min +su pre +valent ine +at er +wou ldn +sc ale +rel ated +re gar +star tup +pack ed +mi ke +week ly +p ts +coun t +ha r +gott en +min d +ber lin +con ditions +swit ch +cor n +sa ve +g li +emer gency +tun ed +sto ck +discu ssing +every body +s day +whe ther +wrest ling +ec es +gen der +ch en +ðŁij Ģ +madri d +mar athon +e gg +i er +th x +as king +kore a +wol f +ay a +g m +g au +at ory +v r +gra ss +k illing +b ble +ur o +un i +e th +sh ore +th en +re ale +bot tom +ex erc +k ar +or ies +ad ri +san ds +se x +. ' +volunte ers +per form +par liam +inclu de +deli ghted +execu tive +fu el +kis s +ã ħ +char ge +h u +ca kes +ve t +g lu +agre e +pr ices +n au +h l +g ru +ra j +streng th +b ic +sp ending +al es +av en +b last +: ( +yo f +nor mal +si x +qu ick +se a +d aw +mee ts +lo vers +upd ated +po tat +comple ted +coo k +opportun ities +p ure +organ ic +tem per +c am +avo id +par king +duba i +and o +di stri +to y +comple tely +don ald +tri al +bas s +b oun +back ground +v as +mar vel +lu m +ru s +t ool +com missi +throw back +fin ding +is lam +! ? +st op +e vil +or al +resi dents +i denti +o ak +ðŁİ ¶ +l il +span ish +chap ter +sto pped +direc t +ho sted +pic ked +lab our +lew is +defen se +à ® +health care +wh is +mat h +pe ak +ra ised +fi x +bu ll +th ir +chel sea +fol k +tr e +can di +pau l +ei ther +ad am +poe try +jewel ry +ðŁ ¦ +pr ay +Ø § +g c +o z +wi shes +fore ign +sun g +lear ned +en e +n ing +micha el +illu stration +legend ary +w av +b au +ðŁļ ¨ +cal end +stre ets +â Ĩ +mon ster +bu ck +g r +scho ol +ba th +wa ste +ne ck +ha wa +be ach +re plac +jec t +on er +fac tory +coun t +ðŁĵ ¸ +mor gan +der ing +se an +steph en +de p +no vel +vide os +ic al +press ure +arsen al +ex pre +ir s +tren ding +ss a +fla sh +re sear +thr ough +profess or +scul p +to s +gg ed +mm a +be e +a pe +hun ter +am i +he i +pla stic +bu cks +uni verse +le gen +niger ia +ple ased +ri s +thin ks +autu mn +i ds +d is +anth ony +ðŁı ½ +ak ed +gla sses +fin ance +z er +k as +con tract +nu mbers +sh aw +partner ship +t il +laun ched +s al +victor ia +theat er +usu al +nam es +perio d +eli za +i th +bar cel +ro cks +bag s +mat e +distri bu +j on +di ffic +ali zed +cur ren +sco red +b ha +du blin +ro se +in ted +soli d +beha vi +wal ker +simp ly +garden s +head ed +in i +ohi o +we ap +f o +gl en +e state +ran dom +th under +thr u +k ill +jac ket +it i +entertain ment +thanks giving +ent al +en coura +el o +a ther +tan k +high lights +f ting +ru le +model s +bor der +bj p +hus band +in done +ken ya +be ars +al o +n inten +pi x +str o +or ders +sal ad +ro ads +n or +l ation +sop hi +ðŁı ¼ +pi eces +b one +min s +inclu des +nu tr +phi l +s ent +fun dra +ga in +bor ough +n ad +mon day +activ ity +it ems +be coming +ken ne +de tro +car di +gue sts +u x +world wide +sever e +new s +thank ful +fic tion +ve ge +m all +si an +er al +inj ury +le e +men u +danc ing +scot ti +exam ple +( # +na i +studi os +ba i +ðŁĴ Ľ +j av +diam ond +vin ce +ric k +prote ction +lin col +cham ps +appro ach +d ar +m ile +clou ds +je ff +in fin +l ers +p les +pe ace +go p +âĻ ¡ +tech n +str a +a verage +ef fort +introduc ing +di versity +austr alian +am p +boo st +s ke +pati ent +appreci ate +ici ans +pu r +f ell +woo ds +illu str +ðŁ ĸ +ag ency +ac tions +brit ain +under way +se attle +el and +ag o +f ill +stre aming +pro test +challeng es +ky o +et sy +coo king +exper t +ru ss +rain bow +commer cial +sp in +be ats +c ry +val u +el i +th row +gr ams +le vels +michi gan +c ad +ador able +const itu +w s +pu b +mid night +th at +net fli +braz il +die go +regu lar +jo y +âĤ ¬ +li qu +ea stern +k ni +fl at +n p +bro wn +w er +se y +tt ers +ac ting +v anc +cy cling +program me +ra w +comple x +tat too +throwback thursday +se ssions +ro oms +si ght +speci es +bom b +lau gh +ke eps +mo on +offic ers +con ver +t r +ha sh +t ack +ri ous +ad ap +a j +reco gn +ex po +sug ge +confir med +rol ling +dre ssing +ic t +fri day +ph ones +ri dge +con cept +ro y +ke ys +ef for +c ate +k ne +ev en +l ay +commun ities +mo d +n az +every where +al ab +bit coin +ban ks +out door +feder al +sto res +h p +c al +m ely +sig nific +be ar +re public +clo ser +al lah +pic k +x d +pal ace +ch ill +b am +er ous +un a +al len +out standing +olym pic +supp ly +fi gu +v au +l p +char lie +un es +> >> +legen ds +ici al +co ast +benef it +mul ti +f its +far mers +am ount +si sters +har ve +hon ey +que en +b ers +pl ann +âŃ IJ +m u +barcel ona +al ber +stat us +re main +ex tra +c andy +vi ous +âľ Į +o v +warri ors +-- > +ju mp +am ar +x mas +stu dies +i ors +k or +don ate +pre p +fi sh +im a +pain ted +ad mini +co splay +spor ts +dro ps +fi ghter +evi dence +ðŁĴ ª +la ke +ro b +cine ma +pro file +à ± +stan ds +leg acy +sh ape +ro of +ci vil +i ans +sy l +sh am +vo ted +re tail +ph illi +li sted +du ty +n b +th es +f are +au ction +ffici al +stor ms +d p +l oun +sh ops +al y +ani me +multi ple +ðŁĺį ðŁĺį +psy cho +je an +ap art +candi date +gg y +con f +jose ph +w ick +me at +fr ame +c l +for got +ph y +f ing +li ed +re p +se ed +f all +u fc +nu t +lin d +mo de +fiel ds +en ce +s ley +ðŁ¤ Ķ +ch ill +follow ed +announ ces +cor ru +tro phy +them selves +ac le +al du +k ong +l on +s v +bro ke +ander son +ta i +stor y +tempor ary +activ ities +k ati +ari z +cry stal +spo ke +extre mely +tra ding +ðŁĴ ļ +à ¼ +in ch +ed in +out fit +equ ip +ma di +form ed +be ef +po p +ti ger +this day +ti red +neigh b +re tro +is a +un t +t as +kan sas +de st +secon ds +ta y +hur ric +o u +galax y +dad dy +bro w +bur ger +en ced +de sk +ac cur +secre tary +el ite +k ab +ch in +touri sm +bud dy +ici de +dre ssed +u d +vac ation +che ers +com for +charac ters +j et +bu ying +l ins +n ap +reale state +li e +af c +i ii +f ame +n r +b at +ag ent +ma kers +âĢ ¼ +sec tor +op ti +le on +di et +pra yer +hi p +mi r +le x +br y +an a +pas sing +w en +reco very +ak i +po pul +res ort +mar ia +stu ck +read s +ti er +perfe c +netfli x +p oo +cham p +o c +re duce +we red +comm ents +cla im +acci dent +s ag +h ack +sal t +kin da +k iller +i os +z y +ex change +lec ture +eng er +ic king +t au +reve als +pri son +z om +gh an +u l +jour nal +i ot +tr in +jon a +govern or +cap e +quar ter +spec tive +impre ssive +bab ies +t x +m ill +o y +har ri +jo int +su e +collabor ation +tren d +revolu tion +re new +alum ni +ge tt +sh ell +sun day +ent u +ni c +donald trump +block chain +paci fic +expla ins +sp y +ad voc +par adi +to f +star ring +p av +fe ed +br ac +smo ke +ham p +y am +to kyo +si mon +d h +e ffici +phys ical +n j +ell i +s low +gradu ate +americ ans +ti fy +f red +ap ore +fin ds +rob in +we t +not ice +se mi +un ve +k om +pil ot +scre ening +da ily +ðŁĴ Ĺ +roy al +sp a +vo tes +n ag +wh ate +att ending +exper im +ad dition +k ate +sto l +m ali +foo t +chri st +ch an +de e +lic en +glo bal +mo ore +ti a +bri gh +myster y +y ay +âĿ¤ï¸ı âĿ¤ï¸ı +cre ati +me chan +clo ck +di c +âĢ Ķ +pp er +al ph +through out +al low +re sources +selec tion +ham il +bb q +aa aa +virgin ia +dis ney +en g +so red +drin ks +f ancy +consi der +end a +jan e +hand made +du l +on tari +i us +s ville +color ado +whate ver +whe el +promis e +ne ver +desig ns +ab ly +sex ual +vanc ou +at i +con vention +cul tural +sing apore +pro mo +load ed +gla sgo +pp l +n oo +ke e +ste m +men tion +i do +cru ise +ri ding +be comes +be y +âļ½ ï¸ı +tw in +dedic ated +na sh +de si +work out +jen ni +i v +grou ps +rela x +pho eni +li ft +mix ed +m ck +p c +mu st +me tro +ci es +y ar +a im +ang er +i e +rec y +marri ed +dro pped +eng ag +le st +ambassad or +op h +de s +w ick +assi stant +nat ur +fa il +l td +shor t +k ap +sha w +bi gger +rema ins +crit ical +sur vey +co verage +er son +win d +n b +bil ly +let es +ac ts +jim my +at lan +al and +t c +import ance +dam age +f g +stor age +tw t +bon d +bal ance +cr ying +pu ppy +vo te +pu sh +ðŁĴ ľ +pol y +me l +lon don +terr ori +effec tive +corpor ate +atl anta +jac o +nas a +gre ek +sen ate +i sh +ev a +intellig ence +effor ts +al co +k un +h all +di ag +claim s +fir st +h b +ba e +v ul +pu ll + ° +se par +spe ed +vic ti +on thisday +audi ence +r ates +te ach +fil ming +bu sh +son g +y um +br un +ra ine +aw a +par ks +ð Ŀ +ra bb +ra ch +ra id +reach ed +ra il +mo ves +selec ted +fr i +ra ising +om y +st ones +su k +franc isco +cas es +cap it +con fu +w tf +po ke +equip ment +gre g +ess ential +off ering +ne x +pi es +be c +cre ation +chair man +cro wn +w al +john ny +shi ft +ne ck +ban g +bir d +ðŁĺ ı +du ck +re serve +de pu +ma sters +over all +no tic +ju ice +sne ak +che er +cla sses +eag les +n ca +car pet +ci vil +coach es +har ris +u ps +b alls +dec or +mar tin +ro s +v ice +announ cement +who se +ti gers +ste red +c ts +dr am +ste el +youn g +inst all +supp o +recor ding +de ck +se ats +l der +ang le +bo t +sty les +elec tions +for tun +n ab +but ter +ari an +ka sh +in ner +ou red +be ast +we i +ic onic +exper ts +ne cess +b eng +jam es +li a +gre ece +ðŁĵ · +ðŁĺ ģ +good bye +m itch +tw ice +mumb ai +ste am +ru sh +med al +ne tt +fashi on +t ar +r s +sav ing +ric ul +l m +sleep ing +brook lyn +mis s +sen ding +disco vered +sp here +of theday +k icks +missi ons +w right +er n +ght ly +i ous +mel bourne +star tu +mo ved +car ry +d ak +ag ues +bel gi +e ma +way ne +do t +er ie +pe l +it unes +matthe w +no body +est ab +cal m +win ds +lu c +prep are +tren ds +exerc ise +adv ant +ðŁĴ ¯ +athle tics +app s +c tions +adv ance +laun ches +litt le +real donaldtrump +eliza beth +carol ina +hu b +hi dden +n w +us er +pol l +great er +mo st +f ed +p at +life style +s ati +sco res +marri age +l r +aven ue +de serve +ri f +ðŁ Ĺ +wat ch +champion ships +gr ay +en ni +cot ton +g om +whe re +pack age +su m +ab solu +new ly +foo ds +ty ler +assemb ly +musli m +ban k +re memb +op tions +produc er +land o +fun ds +u pper +shad ow +pro gre +co p +ing e +leg s +detro it +hill ary +jo se +gi ants +sou p +sustain able +t us +clo thes +roc king +n z +min ne +mat eri +bru ce +ear t +ca sting +independ ent +thou sands +ta h +de cl +veter ans +li ons +wra p +âĢ ¦ +de ss +bl ing +st ine +e ggs +o on +clo sing +z ay +at t +bac on +fa il +ariz ona +de pre +gho st +new sp +w ers +vi p +li ked +id ent +volunte er +ad ult +pu pp +cir cle +mat erial +degre e +gro wn +boo m +calend ar +su r +vie wing +ath letes +ch and +re ll +asi an +en tr +vol ley +victi ms +bo dy +m ama +trans fer +ge ek +in dic +sav ed +ma i +g ent +it s +loun ge +k ol +the ory +situ ation +is lands +ar th +z oo +floo d +vi ously +show ed +parliam ent +ch ev +el ine +at trac +ab ad +ta il +h rs +lu s +por tu +gor y +provi des +to ys +de ath +in fe +an ce +g le +li am +lo ver +hu d +dv d +reve aled +g w +re ment +ca the +l ying +ra dio +der by +stor s +che mi +hosp it +âľ ¨ +' : +ilo ve +le mon +re public +s ni +ne ss +do or +re action +pre gn +fla v +schol ar +spo tify +is ation +vis ual +aw are +spon sored +jo ke +less ons +leg is +lo ck +si mil +ðŁĺ ĭ +kin d +la y +ma h +ho ping +vancou ver +as er +clean ing +gal a +thre at +la p +ach e +ro mance +ex pen +re post +z am +e pi +mir ror +o ak +ad ul +bat man +s lu +l c +vie wed +re views +d ates +indone sia +acti vi +off en +lea f +i si +ag ricul +costu me +s ites +spir itu +appear ance +ir y +st air +applic ation +spec tac +ic ity +ski es +hand le +pun k +paradi se +t n +de al +provi ding +do c +recei ving +bre w +micro soft +à ¶ +fer r +me tro +th ail +y um +car ter +à ¡ +gent le +bre aks +coo per +show case +cu tting +egy pt +bab y +semin ar +gl ori +ss on +fa ve +re hear +lo tte +la dy +al as +pre p +deli vered +nu clear +ir o +engag ement +at ta +con ven +z an +gl ory +hol ds +busine sses +str ange +sch e +it self +gra d +mar kets +f alling +st ats +ge on +bu dd +li s +she et +thi si +co lo +deser t +regi stration +ig n +expla in +inter ior +la ws +writ ers +spr ings +k r +fri ed +blo om +inf ra +a o +cre d +pa st +line up +bo o +bre a +boo ts +celebr ity +att acks +bro ok +ev es +ex cu +cher ry +oo p +fas cin +boy friend +se as +n ine +effec ts +po wered +k ha +ðŁĺ Ģ +sh out +con dition +i j +her o +enter pri +win ter +applic ations +sho e +g el +batt le +pro grams +w art +ðŁĴ ¥ +ra p +ho l +dang erous +di a +coun ter +ric s +i or +k night +co at +emo tional +at ures +d as +whe el +fore cast +tran sport +glasgo w +king dom +prepar ing +im medi +ff in +awar ded +prin ting +ro man +fight ers +any more +bel t +p ine +win e +x i +employe es +logi es +al led +de mo +birth day +ange les +lo g +dri vers +neck lace +k ath +s it +athle te +ef s +s burg +pur pose +resi stance +rele ases +t is +vari ous +deli ver +ch al +s anc +opp o +cra w +neu ro +dr a +suppor ters +sna p +diffic ult +swe ar +logi st +pa th +attemp t +à ¥ +swim ming +ste ve +hur t +inclu ded +b ap +wa re +ðŁĴ ĭ +end ers +ja ke +le eds +cli mb +l b +im ple +li sa +clo thing +ðŁĺ İ +d t +com pla +sw ing +stra w +v als +k le +us ers +stor m +cu ts +ontari o +p an +hand some +i ow +ar gu +chec king +scotti sh +Ķ ï¸ı +si er +em ma +po d +patter n +de sh +en h +ed ward +t ing +k h +hal f +lincol n +mo ther +al leg +r c +volley ball +d n +g ay +all y +le ton +gro ve +l oud +adv anced +re spec +cli ent +supre me +thail and +ho w +gi g +to i +do t +dol lar +ðŁij ĩ +p it +r b +h n +produc ed +gg ers +âĨ Ĵ +ml b +can vas +fin eart +us d +in the +p son +actu al +s l +t b +ip ad +en sure +u mb +w d +sk a +mar s +k end +f eli +th ing +count down +absolu te +r out +dra l +p y +inju red +min t +hun ting +mm er +s age +li gh +ac ity +ex pan +mur ray +ar o +sec ure +four th +eag le +reli ef +st akes +industri al +clar k +under standing +see m +pl enty +sil ver +cla u +thre at +sa il +pro duce +ab str +is is +b r +eng ers +wor ry +bie ber +s j +just in +reali ze +ky le +esp n +fil ter +s ch +ty pes +game dev +d ing +twit ter +soldi ers +p om +car bon +y ards +child hood +ri ed +ke l +ele ph +t ons +key note +qui et +wi re +po sting +is sa +repre senting +bac ks +alex ander +celebr ates +ta ining +| | +ch or +esc ape +pe ek +ti ves +fiel d +ssi e +im pac +spons or +r c +we dd +cann ab +si des +trac ks +com par +con trac +techn ical +bi ble +expl oring +sh are +tra v +n ate +ill o +sc ru +m ingham +gun s +of the +sh ame +se es +ca tho +ac cess +ce l +repor ted + » +mari o +p ad +hope fully +ou se +y on +disapp o +ol o +p itt +pa c +ga p +cru sh +s g +k le +ge m +emp ire +dir ty +a is +avi ation +ze aland +fac ing +high way +d anny +spi der +ot ta +ðŁĺ Ħ +w y +col ours +in fl +co sts +olym pics +au s +h m +ho ward +pas ses +lau ren +mu sh +op in +r ho +disc ount +oper ation +em ily +mm m +cham ber +d il +to yo +shi p +sam u +pic tured +un ic +po l +keep er +carto on +st en +ig nor +n ations +n l +ta sting +deta il +offici als +mo tor +franc is +ed itor +ðŁij ĩ +pe ts +rang ers +t g +r n +w ri +nic hol +i se +spo ts +ani e +chec k +tri ple +ku mar +spe akers +ic ing +pre pared +ab use +friend ship +mon th +swi m +air e +sc ent +hamil ton +indi an +j es +yum my +te ars +da wn +i zed +worl ds +ðŁ ķ +b illi +st one +n hs +ba sic +p or +st le +ir on +ol der +cle vel +e ing +ðŁĺįðŁĺį ðŁĺį +prin ts +fir m +air craft +fin est +devel op +aar on +t z +gra ham +own ers +fo li +less on +qu es +bab e +cra ft +ph en +ju n +bir mingham +v ine +ll er +i an +fineart america +evol u +st ab +im per +war d +com ic +wi z +inv ited +du ke +mat ch +por ts +ro ger +diag no +ke pt +te st +vis u +r hy +so c +to x +b aker +sur face +co vers +man s +b its +x box +ff le +n an +gar d +h art +wat ers +v illa +re tro +light ning +catho lic +democr acy +neigh bor +pen n +cr an +jona than +la ura +vi bes +su b +coach ing +clear ly +uk raine +bra ve +commit ment +t all +mar t +ra p +mo di +sco tt +bro s +show er +ðŁı ¾ +âĺº ï¸ı +cou sin +appro ach +br e +com pos +hil ari +phil ly +g ad +quick ly +ri an +t m +vir tual +hou ses +k t +phoeni x +w ire +ff y +b unch +anc ing +tal e +snap chat +star ter +h t +k icking +ap art +th y +) ! +blo gger +it z +com fort +ang els +w ash +" : +ar gent +re quest +hon est +mi ghty +bo bby +k g +ro l +thou se +ex po +h c +tab les +mag ical +po sts +de m +n w +or lando +ab er +* ** +ðŁĺ ľ +environ mental +trans formation +mi le +w ic +hir ing +ma ine +bo ar +r ying +ti s +nit ure +twee ted +anton io +opin ion +fin ale +di y +f is +th in +trou ble +le go +fi les +qu art +sp a +curren cy +cli mate +fan art +rail way +sp ace +ban ds +dani el +mo tion +l eng +hol der +oc cu +mar ie +cathe dral +bu zz +bi es +nas car +bm w +bat tery +char lotte +doc tor +zz le +se ven +in san +d dy +st en +lab or +thr illed +se ren +docu mentary +wav es +cer tain +can did +allow ed +ninten do +star wars +ta p +home made +d les +ther ing +bre e +emp ty +pi ano +pos iti +coun try +por k +pu ts +per ry +m atic +spot light +ti st +or ities +we alth +c p +bar bar +commit ted +as sau +pro fit +e ight +hu l +fini shing +run ner +ss o +insp ec +char ged +christ op +lo sing +co al +ho o +ele v +de le +mo ham +don ation +c able +clin ic +j in +manag ed +ter ing +â ¬ +ur ban +depu ty +bb er +bur n +acade mic +o tt +sta ke +it er +sto wn +ack er +advent ures +ad ams +gre g +pro m +vo l +ac qu +con gre +pa int +citiz ens +c all +af ford +v c +as ks +the tic +independ ence +â Ľ +h itting +bl on +fu ture +â ı +in no +gen e +bo ards +di stance +se t +re mem +th al +pre vent +l ang +ob jec +su sp +mat t +in duc +bor o +pi one +re di +vir tu +prin ted +sco pe +shar k +suc ce +a stron +il legal +j ag +c ting +ine e +at o +rob in +nutr ition +b f +du tch +b n +fur niture +for gotten +at ar +ru p +hy per +bran ch +communic ation +degre es +on ia +un cle +promo te +or che +wi i +j s +but ton +ma jor +c bs +bri stol +premi um +ordin ary +e dit +m g +we ed +st even +: ' +gu s +te s +cap tured +dru gs +do w +wr ites +bi shop +whe els +ali zation +disco very +w r +rach el +ne il +hy dr +cu test +entreprene ur +kore an +ore gon +ul ty +perfec tly +suppor ted +histor ical +t wins +ell y +we l +de vil +in come +scienti sts +de leg +h en +on i +ic ed +gi o +cur ry +reve al +e g +buff alo +n ol +op era +camer on +haha haha +j ab +gradu ation +cra ig +r al +i f +organi zation +le ge +g ang +su d +edin burgh +l ack +fli es +g ate +thr ones +q b +the real +e leg +pp in +c les +jam ie +tn am +cryp to +ou l +p ages +a se +roo ts +stu pid +a did +boo t +prote in +s ap +si um +su s +end or +fun ction +don t +en na +ch y +squ e +wor ker +m tv +e a +k an +ðŁĴ ļ +mu s +professi on +t to +oper ations +al lo +c tor +inv ite +sc and +ou th +z im +lin ks +cli ents +sam sung +discu sses +n ell +ul tra +some where +ste wart +ine t +de z +b out +fac tor +ti an +tr ans +jere my +d b +ðŁĩ ¬ +or n +develop ing +spo l +coo per +ma u +rememb ering +tre k +famil y +sen iors +fo ster +att ended +w ing +trans form +ele mentary +hor iz +li sting +malay sia +it ch +warri or +philipp ines +russ ell +m end +initi ative +cre ep +to ps +br iti +a ur +shar p +adverti sing +ug ly +achi ev +materi als +bu g +dev ice +bon us +fac ility +col e +nh l +y as +plann ed +pol e +excell ence +tr ick +con fl +r p +achi eve +lo an +swa g +jess ica +ho we +p our +sc u +z oo +r ated +dre sses +re bel +mex ican +co ordin +me ss +atlan tic +t l +osc ar +wal ks +phar mac +investig ation +... # +cc i +eas ily +monday motivation +y ment +au ti +for ced +ar med +colle agues +pap ers +pro per +sha ke +bu c +le an +exhi bit +e vement +co tt +bi z +sp er +k ent +sw an +/ @ +girl friend +haw k +âĺ Ģï¸ı +mon o +ðŁĴ Ľ +stat ue +ðŁĺ ³ +ra s +te eth +preci ous +t ile +p am +swi ft +v ali +no se +dr unk +experi ences +come back +gen ius +wor se +sh ef +ra d +ed it +hon our +au spol +lar ry +h ire +gor don +achi evement +.... .... +su icide +alter native +su p +sur roun +sha ke +ke ith +pe pper +tur k +crimin al +be ck +su m +w alls +cn n +an tic +of fe +col li +win es +high light +hawa ii +emb ar +l fc +ðŁĩ ® +m v +> > +at mo +wor d +car l +shout out +bre wing +ì Ŀ +do f +s ic +hot test +col on +hh h +shu t +low ing +volu me +apart ment +agre ement +de stro +we e +religi ous +iow a +ro d +land ing +re present +ðŁĵ· : +la s +usu ally +h l +c ac +sal v +al ong +laugh ing +be ans +remin ds +pha se +some body +ma sk +ran ked +dest roy +sc i +âĢ¼ ï¸ı +gab ri +le o +ro a +fa iled +si l +refuge es +re vi +r ing +ber ries +coo kies +y y +conserv ation +sh ab +human s +de termin +a in +ni all +as su +mb a +fro m +extre me +vic es +commer ce +ght ful +or dered +suppor ts +re cap +v or +dro pping +correc t +pay ing +mean ing +n j +qui z +" # +busine ss +ðŁĩ® ðŁĩ +indi gen +du st +box es +bl ind +x xx +zz y +ðŁĩ¬ ðŁĩ +ss els +s ant +dd le +hilari ous +desig n +wonder ing +vehic les +k re +ju d +rece ption +par ker +Ã Ń +pri vi +hy dro +sof tball +pol lu +lo cked +ba h +e ar +scri pt +di vi +br ace +geor ge +the ast +bel o +j al +tion ary +dent al +roc ket +pur ch +sh ak +manufac turing +e z +it is +con cep +tb all +ch s +direc ted +pra yers +oo k +phil os +vari ety +che ss +ser ver +g and +bal ti +ðŁĵ ¸ +sel y +cru z +spectac ular +bur ning +re present +i z +t one +mer ce +h ell +bed room +estab li +bo l +com mon +ãĥ » +ab or +kit ty +hei ghts +re pair +willi am +qu ake +alab ama +popul ation +re v +re tt +i sts +n ite +le m +a ha +clevel and +r m +po ver +ob se +mon tre +man ia + ® +con ne +car ni +sh ah +f y +u a +sc or +strugg le +bo b +' ' +appro pri +deci de +ff ed +ca ster +s ort +hun gry +dra g +ا Ù +gr ounds +d w +sli ghtly +car din +dead line +bron ze +web in +bar ry +sil ence +e uro +op tion +ear n +ðŁĴ ĸ +howe ver +na ren +na ils +bath room +v ine +ph d +min ing +gar age +( ) +shou lder +defe at +di r +o v +liber ty +ple as +x on +com pre +a v +j in +ab les +sil ent +fam ili +vis its +di pl +ha bit +milli ons +regar ding +innov ative +sen ator +r ts +v on +k l +wh il +requi red +âĿ Ħ +lu v +presi dential +po cket +hun dre +sho wn +fro zen +to ward +fa st +confi dence +r ough +indivi dual +qu et +ðŁı ½ +dom e +fi fa +engine er +z en +re mix +ðŁĺ ĥ +pl ant +min or +robin son +as y +pul led +cer tain +potat o +( : +pre s +oc ca +w it +it em +si e +d ating +thom pson +own ed +an u +vi e +te dly +good night +ex cept +ðŁĮ Ł +ira q +ki e +ren ces +li p +simil ar +sau di +vi g +arth ur +pic ks +mil an +hon da +ma xi +o g +ste st +ar ch +analy tics +ba sti +pear l +ter ry +hor se +ast ro +ac ce +laun ching +inter national +s no +ta sty +den ver +ir l +pe te +tor n +advant age +var sity +" " +sol e +g c +lan g +demon str +ol ds +un ity +ne ts +insp ire +cre te +nash ville +nel son +e ter +wal k +hy un +m ack +tre as +see king +ra ge +bru sh +ab and +whil st +co con +h ong +shel ter +i p +possi bly +so o +it ed +â Ħ +rac es +war ming +qu in +tele vision +mat ches +ra pi +ment al +pal m +jenni fer +rol ls +indi ana +b ars +cat ching +resc u +candid ates +fa re +âł Ģ +se o +vie tnam +alph a +michel le +visi ble +re gre +wn ed +app le +li p +f fe +li z +york shire +ha il +se asons +be gan +m d +k c +la p +fascin ating +hel p +ur y +u ms +nu ts +se m +along side +bri dge +ori al +o ve +world cup +briti sh +comfor table +i ve +hot els +fair s +hor ri +so x +d ining +stre am +bar ri +ss y +w im +ter ms +v u +pe re +l ens +wal ked +r or +l ars +shi eld +dou bt +pro to +cro ssing +me ant +medi um +ad ding +e b +che ap +fun c +pap er +bran ds +ry an +feed back +col lins +un known +tro pical +sand wich +fal len +for mu +selec t +lo ads +answ ers +or i +mag a +d or +du o +ali e +dru m +ur i +de er +sou l +sh ut +âĺ º +sto len +don ated +bu zz +patri ots +ha l +na sty +nomin ated +mon te +ki a +th ri +ing u +te sts +pe tro +ðŁij ij +ho sts +ne st +to pic +pat ch +m my +hu gh +ab ilities +ma the +s miles +g b +ag enda +insi ghts +chi p +ph an +fail ure +dg ers +ha i +signific ant +sho ck +ru ral +gl am +figu res +pot us +o ta +mini stry +appe ars +fe ar +r h +americ an +h att +son y +fi res +e di +n ou +e qui +wh en +univers al +mad ness +i x +sculp ture +b ach +t to +swe den +et a +en to +develop ed +month ly +ma ps +ra h +le d +del ta +sa ints +is lam +ben ch +fif th +v ard +so cks +wel coming +j e +tur ner +v b +ad i +nor way +ad y +hurric ane +por sche +tra dition +ex am +newsp aper +lu ci +a ver +ide al +d na +madi son +ðŁ § +wit ness +ac ou +insi ght +si mon +robo t +sna ke +n bc +ac o +ro ss +sh ment +religi on +ch ann +in su +camp bell +inst alled +we ather +hor ses +ol i +rober t +k az +ðŁı Ģ +veter an +th read +quar ter +ea sier +cap ture +hi pho +law rence +roman tic +pas sion +cl ay +ox ford +th ai +stu dying +fi a +elec ted +most ly +c b +tu mb +âĢįâĻ Ĥ +x l +sh an +fa ster +ev ans +sli de +sh ri +see k +mi es +chemi stry +pump kin +tu m +, , +ro om +fi red +li ps +pres ence +af f +brew ery +arri ve +sw ag +photo graph +pen gu +chi ps +at tor +val ues +accur ate +con temporary +princi pal +cannab is +ari o +any where +gi a +democr ats +buil dings +li ved +ap s +neg ative +m are +bal lo +li on +diam on +loo k +re form +tom my +il la +tre ats +hundre ds +port land +wor thy +ex cep +ar ia +ido l +be er +cd n +y u +aw k +ðŁĩ ¨ +c ells +à ³ +ident ity +dra wn +de vil +f inger +th am +ðŁij Ĭ +ear ned +fin tech +dol ph +twee ting +evolu tion +ðŁĵ į +est im +m vp +n one +ðŁĩºðŁĩ ¸ +toyo ta +au x +mar in +b old +l bs +ste ak +mur phy +it able +lou is +sol ve +pi a +sk ir +ill ino +webin ar +ban ana +lo v +th on +vo ters +afford able +defe ated +lm fa +air lines +super b +any way +deb t +bo red +ver si +me tal +responsi ble +m k +s se +f ay +cau sed +f p +recomm end +pla za +spor ting +alli ance +au stri +n n +t ours +surpri sed +arti f +th under +sur ve +wor e +bri ef +necess ary +z ie +ash ley +dra ke +r t +kni fe +im mun +char ges +a the +bri de +rep ly +g av +broad cast +pu er +brace let +cap acity +harve st +id k +perfor man +d ding +il ers +par a +jam a +pro vince +ch in +id ers +har i +te aser +ch en +re stor +r at +fl at +col om +ðŁĴ ŀ +ðŁĩ¨ ðŁĩ +smoo th +r t +p itch +stay ing +isra eli +t cot +per spective +do ck +open er +lo vel +x o +class room +l ington +go al +kenne dy +sh am +sp aces +mitch ell +home coming +uk i +claim ed +recru it +ing o +mu fc +mon it +g roo +resi dent +per cent +per man +otta wa +int ment +an xi +stand ards +wor ship +sche me +f x +pot ter +bi an +athle tic +af gh +s se +sat ell +par ties +âĿ¤ âĿ¤ +infra structure +rela x +mo du +wor n +smo king +y ach +practic es +wc w +am b +dome stic +tay lor +k entu +provi ded +mo di +ve g +" ... +ob serv +ðŁĺ © +be ard +m our +an gry +ðŁĺ ± +startu ps +woo den +di ve +na il +anti que +ro ses +torn ado +m at +^ ^ +su spect +far m +de vices +me ga +tu l +scholar ship +ge e +disa ster +arri val +po in +mar c +kati e +bb ed +fal se +deser ves +ric hard +ju ana +fre y +tion ed +hy bri +r w +sar ah +ach i +c ure +o le +mor ris +ch ic +broad way +la bel +pa k +pover ty +gol f +e red +f u +er ies +be es +alo gue +st el +wire less +je wish +ti de +blo cked +life time +b har +sp lit +am ster +th i +jo shu +br unch +ha ps +s for +oo ps +ka poor +hi king +suppo sed +ro of +re as +tra in +ti ght +tru mp +bas ically +r r +ea red +see ds +entr ance +c p +wi e +son ic +vic tim +he re +e h +ear rings +sal mon +arc tic +an ne +dou gla +corru ption +hann ah +ha sn +vo ices +con ce +att a +fle et +clin ical +democr atic +ton y +st ood +le f +twit ch +a il +honest ly +incre ased +dro me +don na +accep ted +visit ors +ap ar +ad or +p ar +jer ry +ra i +brand on +ab u +!! !!!! +me me +in gh +glori ous +b hu +pu mp +j ol +li ke +fi sher +ma z +ag an +destin ation +play list +le tters +gen u +br ace +celebr ated +bann er +r he +dra gon +ðŁĺ ħ +sig nature +gre y +âľ Ķï¸ı +al ice +be red +ph er +ber n +ca th +ga thering +sc oring +influ ence +sm iling +de pt +lo cal +a x +ac u +reti rement +hon or +her self +chem ical +asse ss +y all +fre qu +appreci ation +ac a +cho ir +cu z +so il +c il +repor ting +u h +enterpri se +gr at +jaco b +ru m +fe e +j ak +sp in +bi kes +phi a +ste re +p is +bloo d +t att +ra ft +war ren +sh eri +back stage +mar sh +hash tag +ther ine +re in +game day +guar an +reci pes +min ds +stron ger +issu ed +bic y +n ak +ment ed +sc ary +u x +pre vious +tt le +th ats +ac tors +u ma +tin a +bun ny +promo tion +u ss +oli ver +montre al +what s +appreci ated +la kes +excu se +kno wing +pri zes +musc le +shad es +sco t +ing redi +electr onic +ju an +comb at +s ri +e h +turk ish +l om +stri kes +pri son +re e +po pe +vi d +ol dest +dol l +sw iss +certi fied +cli p +re turning +lat or +le igh +tt es +wat son +heal ing +el im +per haps +ha ss +k au +d der +mou se +new castle +indigen ous +wel comes +co le +tau ght +no ise +appe ar +jo e +can on +wedne sday +u tah +c tive +dri ven +i v +c ell +stri p +ac c +focu sed +ar rest +sto cks +wo o +â Ĺ +notic ed +shad o +di spla +ter ror +bor ne +secon d +que ens +wo ke +ja il +no tt +cam bridge +har t +se af +fa x +ac cept +âĺ ħ +goo ds +k at +t win +h s +thou sand +s ins +su ite +amp ton +ar n +rele v +ric har +hoo ps +n bc +class ic +p ab +soldi er +de plo +le ans +install ation +cla sh +le ban +ee e +ti re +belo ved +fu sion +travel ing +ne i +coo kie +glo be +phys ics +s q +co l +wol ves +d l +ex it +" - +foo tball +le af +ster ling +hi de +minne so +fresh man +natu re +indi e +supp lies +bri s +iri sh +ink tober +doo dle +ic op +mess ages +adul ts +recor ded +fix ed +ar do +offe red +under ground +dr one +p ine +ma inten +and re +ham mer +s x +r ound +hi ke +bra d +ro me +fu ll +on ey +ro ws +colum bia +archi ves +appro ved +bat ch +illino is +recogn ition +shou ldn +fo g +nca a +ke vin +human ity +al though +pow ers +p ou +s ar +pe st +alco hol +con sci +phil adel +en o +t m +ok la +cate gory +particip ate +accu sed +bri ef +po em +clu bs +consul t +ja b +big data +amster dam +ac ing +certi fic +n u +d at +impro ved +and y +campa ig +pale stin +p ace +mo bi +feel ings +wol f +bra in +pro pos +inter active +prin ce +inde x +c is +cha e +peace ful +co vering +ac o +cour ses +mon key +re place +b l +bloo dy +tal es +brigh ton +neighbor hood +g ates +spiritu al +af raid +bre ast +b ones +ðŁij ī +vide o +w au +tou ch +inju ries +car l +ri x +une x +âĢ ¢ +fre d +consi dered +thu si +an ch +on y +u sa +graph ics +ac re +ðŁĺ © +com memor +com mod +go ti +guar dian +star bucks +pre vention +haha haha +admini stration +portu gal +fac ulty +bet a +ul a +al bert +bre ath +er i +le tting +tr ic +ment ation +incredi bly +ten nes +v d +ðŁĻ Ī +ed die +br ick +gr ill +bt w +wat ches +resear chers +t ney +ni e +p as +a ster +vi br +poke mon +ch rome +go at +pitt s +il ly +festi ve +y d +can al +ðŁ Ĩ +fi es +car los +re que +partic i +tra ins +sam ple +temper ature +sym ph +pic king +in door +z ers +playo ffs +____ ____ +ap es +ly rics +islam ic +performan ces +d ick +spar k +se as +hom a +gr ound +disc i +employe e +com mu +alas ka +al an +fe ast +dg ing +ban king +manu el +slow ly +tru cks +mc car +oo o +sc rat +orche stra +indivi du +m x +bre ath +stair s +equ ality +bla ke +loc ations +cocon ut +balti more +aa a +l c +ðŁı Ĩ +har vey +resi st +immigr ation +adid as +fil i +re f +lg bt +mo s +pp i +ken ny +terr or +ban e +apol is +s g +social media +ka i +hon est +as sas +bol lywood +âĢįâĻ Ģï¸ı +ferr ari +hor n +cryp to +bo om +mainten ance +i di +s man +w l +ext ended +in sul +ve s +go sp +tr i +pi g +tar ge +cel er +st ati +sm h +ri dic +appe al +? ) +con clu +cos me +she ep +christop her +en thusi +po lish +me ts +oun ded +sustain ability +creati vity +con crete +ra i +ali en +ble ss +te es +clu b +ro t +bo s +ex ist +perfe ction +lu ck +rock y +expen sive +mean while +happy birthday +pre t +thr iller +ca ve +playo ff +som er +l u +le x +def ence +am writing +home less +pro phe +ch et +past or +ðŁ¤ £ +land er +ww w +Ģ ï¸ı +tic a +! # +o tic +rad ar +po sters +pow der +po li +ha un +tra p +bl in +assau lt +shor ts +re y +sh y +squ ir +rac ist +gar lic +fu r +remo te +sm ell +impre ssed +fing ers +âł Ģ +din o +le ment +s nu +promo ting +str ing +produc tive +b age +ma son +ra z +direc tly +j k +ev al +ðŁij Ĭ +doc tors +co w +ri der +st v +re move +w u +na than +ro d +n r += > +affe cted +inve st +mp tion +g inger +o d +agricul ture +s que +mu g +coun ting +ke e +mag nific +coo k +ani stan +roo t +plac ed +sym po +gh ana +un d +che er +thro wing +secre ts +f illing +opti mi +butter fly +bu bb +ðŁĺ ī +terri ble +d g +sil k +obse ssed +lo u +ai de +sal ute +mon u +philadel phia +scienti fic +i st +u ae +dess ert +bott les +can yon +ðŁĺ Ī +car ib +o ther +w ich +re source +guil ty +un d +le on +e ss +kan e +el e +tra iner +he im +an te +man age +roo kie +tre ated +po ses +rs vp +cau ses +aw ak +je well +le tt +on ics +tit les +cardi ff +g aga +bu mp +use ful +? ! +loo se +bb ing +: : +argent ina +de bu +cy cl +wh el +dis gu +j el +k ills +bio logy +ex ter +tra sh +bo dies +tr am +circu it +expe ct +la ds +w ells +sho t +ge e +naren dr +fa stest +b ent +b ills +mar shall +h ats +intro duce +citi zen +im possible +gi b +az z +net working +r ant +thin k +in dy +st ops +f theday +bri an +* * +amo di +dom e +coura ge +pac king +af fairs +g n +si zed +ent ary +pol and +swit zer +afgh anistan +w u +ten der +subscri be +mo sco +att end +republic an +hon ey +âĢ ĭ +si mul +we ster +foo die +or o +midd le +ab t +co pies +ma je +narendr amodi +ty pical +inspir ational +vit am +wis con +cu bs +tiv ity +h ali +e ars +k ay +d are +mari juana +cu rious +an ia +tom ato +re mind +ðŁĩ · +sc ared +cou p +po et +land ed +ri d +wra pped +mor ri +climb ing +e ws +fe eding +con tra +tho logy +gri d +ti vely +read er +la ser +di ving +di g +lat in +ti ed +shake spe +o ci +ad m +show ers +chu ck +mar cus +oo s +kne e +o live +ow l +dy lan +an no +g ym +deci sions +well ness +arri ves +sati s +chri s +thur s +ðŁ¤ £ +inter views +thank you +switzer land +over night +journ alist +ser ves +vol can +.... ... +plo t +nic ol +car rying +mag ne +tre asure +ex p +be ver +ðŁĺ ¢ +mar ty +mo le +don ations +recogni zed +b h +du s +sh ann +al do +success fully +ent e +ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ +cab inet +cu is +tit led +d as +so l +strate gies +deli vering +ad ds +ani an +ne ther +ðŁĴ ĥ +con tain +su its +pa irs +to dd +rel la +ro pe +ci o +cro p +paint ings +su z +re jec +bu st +d h +fra ud +m h +contro l +je al +destroy ed +al lows +wo ol +minneso ta +om en +j u +sympo sium +d af +lim it +accoun ts +load ing +inter n +re solution +hol land +qu al +meet ings +gra ve +cam ping +v am +re nov +liber al +am ber +gre e +hu mb +fe ver +el ing +broo ks +à ² +be th +ad ed +al t +ro e +perform ed +jo sh +frank lin +nic ole +de ss +bb s +m g +net works +min im +al t +weap ons +gu y +jas on +g ha +harb our +at on +pra ise +kentu cky +bel fast +st icks +blo ss +ho pes +an thro +famili ar +wa it +ch ile +depre ssion +la x +je ts +le ice +recei ves +si er +an k +de x +inde ed +fle xi +fab ric +lam b +hel icop +am anda +âĢĶ âĢĶ +compe te +sn ack +techno logies +sy rian +mom s +mu ham +cho sen +an at +dev on +shar ks +re t +fundra iser +selfi es +st ations +communic ations +tennes see +tu tor +ro t +valu able +dynam ic +nur se +i ed +earth quake +deser ved +a ve +sar a +stre tch +dougla s +ne pal +à § +ob viously +d ame +ra pe +any body +k w +pat rol +hol ders +h anna +info graphic +ec o +be ating +stan ley +bo ats +ri bb +e z +wit ch +inv a +ac id +boar ding +- @ +gi l +da ve +care ers +opp os +l loy +in ter +do pe +re su +j agu +sh ade +in dy +on ist +rel ations +ag en +ab le +inci dent +me ter +shar ma +id r +pro ve +immedi ately +tro ops +am an +g low +gaz a +blo cks +person al +chron ic +all er +si d +sh r +whats app +lu cy +ar chae +ho u +journ alism +our selves +go t +the med +shap ed +we ak +cas ual +leng th +sla m +ab bey +e v +coun ter +est a +reci pi +cha pel +expan sion +sel f +suff ering +sp ice +n z +sp art +desp er +boo king +quart ers +y on +ðŁĴ Ĺ +p k +continu ed +- # +man hatt +tal ked +sh en +com bo +hybri d +je ans +liqu id +se al +re tweets +ac celer +collec tive +t as +: )) +profession als +ra w +o tt +su san +ir ing +okla homa +re ven +survi val +cre ator +tran sit +st ac +sur f +i k +ed iting +ch illing +bai ley +ste al +ra ble +pa rent +hun ger +sn app +collec t +philos oph +dedic ation +c f +c m +le ep +repe at +re ha +un fortun +a er +a ero +abstr act +mon itor +ag ents +bu l +sci ence +harb or +drag ons +floo ding +ac compli +d ash +juli a +the red +tues day +cy ber +b low +ta ined +le m +refe rence +pp o +ne goti +char le +con nor +au lt +access ories +commissi oner +rain y +re ar +advis ory +luc as +ma id +co al +k av +pol o +ðŁı ¾ +tran sport +mar gare +straw berry +bur ns +gre ens +ne v +partici pants +col in +belgi um +col our +in form +d ell +br on +cal y +kick off +strate gic +re union +hon ors +li b +egy p +âŃIJ ï¸ı +hy po +si zes +regi stered +bet es +relax ing +bloo m +inten se +valent ines +insan e +w wii +p x +tri o +bla de +wiscon sin +con e +plat in +ali ze +ra ven +incre asing +indi ans +il ian +bl u +rabb it +exten sion +je f +au di +fer ry +s ell +a day +us b +swe at +cham pag +metho d +mem ph +assi st +s by +ca pe +remo ved +mag n +v t +r ams +f bi +tack le +phe w +h on +motor cycle +su spec +eleph ant +sub ject +let te +da iry +whe at +awk ward +ac t +tro l +mit ted +zay n +sheri ff +ene my +con s +ke tt +bul ls +ev alu +bt c +satell ite +ho lo +por ter +dia betes +bet ter +rele asing +sur f +: - +se basti +collec ting +en cing +e thi +go ds +al ley +health y +m ills +sma sh +co pper +cr ack +read ers +sp ac +licen se +bas ket +bang la +en tic +om i +m ere +si vely +anim ation +lan es +dent ally +chill in +fi e +k aren +dep th +li pse +n g +ri p +mel o +sand y +ðŁijı ðŁijı +vin cent +nu t +hu g +who le +cre ates +? ??? +âĿ¤ï¸ı âĿ¤ï¸ı +bak ed +up grade +rober ts +har a +carib bean +auth entic +mb s +mosco w +attor ney +wi ki +ch lo +hu ll +cor k +" ! +sty lish +ðŁĵ¸ : +di ary +impro ving +ex pand +bri ght +pollu tion +k nights +person ality +chec ked +fac ilities +z el +bow ling +gu er +ðŁİ Ĥ +on going +un its +hoo k +be ck +confl ict +to dd +far ming +educ ational +k ak +cla y +stro ke +bel ly +explo re +mill enni +th m +loo p +sm s +consi st +cir ca +br yan +d ab +youn ger +soli dar +pp a +experi enced +b ella +bo ard +shef field +steph en +consu mer +sub mit +spon sor +t ang +ag gre +comb ined +trac king +sand ers +b az +survi ve +fer red +equ al +se p +re ed +str ong +priv acy +st ap +un g +ac ry +pa sta +pir ates +ag er +fair y +du p +introduc ed +wi p +let s +spr ay +ðŁĵ º +gre w +a sts +pitts burgh +new york +jo ey +lau ren +tra de +ch op +pi pe +cla ire +behavi or +v ap +cre ws +lap top +ðŁ¤ Ĺ +che ster +disci pl +d f +out doors +k s +go ver +super star +cas ino +far mer +; -) +re turned +ðŁı Ī +ma il +roa sted +co sta +v ill +pe z +gard ening +distribu tion +sh ining +inve stors +ra sp +dec ades +reali zed +bar n +p ti +st able +ut d +pan thers +m ens +b n +ca de +bu cket +yn n +when ever +wa ke +da is +ber nie +lo dge +ju lie +atmo sphere +ðŁĺĺ ðŁĺĺ +major ity +par ti +exc it +cu t +me h +musli ms +be gun +fli ghts +vene ss +ce me +po sing +so le +g ou +dark ness +pe ach +cel tic +auth ority +grand ma +ful ness +smi th +speci fic +gar cia +co ins +good ness +aldu b +recru iting +den nis +gar y +sle eve +weap on +pl z +disco ver +harri son +recruit ment +ja i +ch im +com pared +tom s +mo thers +am y +archi ve +t ask +ben jam +se g +law yer +al um +inve sting +mi e +che z +j p +a ke +fl am +wall paper +âĻ¥ ï¸ı +t ton +che st +favor ites +we igh +coo lest +r ating +relev ant +lo gan +ma ple +run ners +pri or +peop le +ma ur +terrori st +te sted +carni val +su spen +me asure +m v +cyber security +app ren +terror ism +o z +v ital +ni es +gon z +fun ded +twi st +assess ment +die sel +en for +colum n +ad dressing +ca sts +pay ment +x ton +fi er +, ' +la st +ne e +un less +clo se +sk ill +cuis ine +fun eral +ti les +a un +k ru +relation ships +ðŁĴ ¯ +ev ent +âĢįâĻĤ ï¸ı +kind ness +pro posed +acou stic +a es +defen der +dan ce +h tt +w at +vo y +ðŁ¤ ĺ +au s +cli ff +sear ching +beauti fully +in qu +at l +speci alist +ðŁIJ ¶ +da i +tra ils +class ics +inst ant +v ous +re venue +mar ch +kir k +fr inge +fire works +tri via +âĺ ħ +tr action +wal ter +mo to +l ily +att itude +cli mb +sc an +sav ings +c w +fa ith +cred its +ab led +gra ff +auto graph +he he +ran ch +ha d +ro gers +ðŁĮ ¹ +f in +re qu +fol k +ad ditional +lyn n +u ber +dol lars +lo gic +wor th +so m +the sis +p ound +bi c +st ur +cer am +spen cer +en tered +v amp +organi zed +âľ Ī +pp s +tr on +merce des +no ti +compet itive +do w +ous ness +vic tor +gr illed +na i +pu tin +ab ra +bl ame +alex and +anim al +dec ent +p ent +inter ior +:' ) +but ler +bal let +ðŁĴ Ķ +albu ms +down s +la d +si r +pla in +p ers +blon de +dis c +paki stan +se ment +ga a +w age +ch as +man i +co ps +terr it +lo l +lau ghter +ri vers +magnific ent +lam p +w b +new sle +char ts +ble ssing +p unch +lon gest +fl oral +cu tie +fare well +sto pping +mb b +bu d +chee se +de cla +si m +mc donald +de ter +you th +t ch +fre der +kin dle +fer n +at or +as leep +p ond +spr int +p ounds +la zy +gh e +fundra ising +dead ly +gran de +dou g +he y +lin da +consi dering +i um +gol den +vi k +auth ors +di ss +u ally +appropri ate +mor ning +y le +hon oring +foli o +be c +re bec +fin land +formu la +corn wall +sh ay +cau sing +bl end +sig nal +t ent +kash mir +nation als +har mony +sc out +acce ssi +he ight +medi eval +impro vement +ke es +prac tical +car d +de par +hu n +om ing +cal gary +ste l +bu bble +gur u +ma h +unex pe +n h +ed a +me at +i ge +si o +god dess +in ches +tun es +br itt +sti on +ra j +âĻ « +mer cy +ðŁĴ ĺ +sen ds +i est +pol ici +val e +reduc ed +as ap +vi jay +defen sive +celebr ations +ri ders +med itation +har mon +g ing + ¡ +program ming +in au +sud den +m h +replac ement +sk u +j ar +gra des +ta st +k itt +brand ing +k aw +boo t +f ought +p ays +g f +iz ation +ho p +k k +activi st +v end +coast al +cha os +ðŁĶ ´ +se me +bill board +li fting +cu mb +sc al +ðŁĸ ¤ +stru ck +l v +indie dev +beat en +jun gle +al right +destin y +m ing +k c +ch ances +om an +q atar +cra f +tra ined +pri x +char m +o tive +s mu +e c +and ers +hand ed +al ban +certain ly +arri ving +i ze +sa i +tr ack +pain ter +hu mble +appo intment +head line +manag ing +mo d +as pe +andre a +à ¤ +ethi op +un ited +exi st +bal i +k ad +n t +d red +re x +recogni ze +tam pa +be ers +ati a +he els +no te +transport ation +tur tle +re de +hipho p +sp icy +sp urs +⬠ĩ +cor p +ther n +to ast +hur ry +proper ties +ma ge +mar co +ele ments +bou ti +syn drome +ms g +develop er +gra ders +he im +re sil +off ices +del ay +di men +vin tag +barbar a +ðŁĺ ± +vene zu +cu lar +fac ed +bar n +ðŁĺ Ĩ +survi vor +wor m +confu sed +passion ate +Ø ± +identi fy +electr icity +sou ls +brad ley +repor tedly +lun ch +shel f +eli a +swee t +smoo th +emplo yment +am el +manhatt an +ste am +oun ts +ye p +li ving +un e +descri be +ca res +man ila +sha wn +ac ted +bas h +st even +re st +pet ition +div ine +wel sh +rac e +platin um +ðŁĮ ¸ +p b +extra ordinary +solidar ity +m all +on ion +schedu led +game of +fer gu +de ms +nor m +p k +tri als +polici es +publi shing +st ole +fron t +charac ter +van ia +ex ce +sti e +sc a +resi dential +sa iling +ðŁĶ¥ðŁĶ¥ ðŁĶ¥ +spons ors +th ick +champag ne +she pher +continu ing +ven ice +per th +na p +a ster +y ak +un limited +cho ices +ne o +hi v +repor ter +bru ssels +f old +dy s +se mi +la wn +it alia +wi fi +as k +em ed +fr ame +monit oring +ste ad +i da +gr in +is a +fli p +re stric +offen sive +atta ched +di sh +wh y +philli ps +gre et +p als +mix tape +v ou +fiel der +spar k +alber ta +g len +ca sh +s ri +u ri +ro dri +entreprene urs +climate change +p sy +d le +em ents +lin ked +nether lands +acci dentally +oppos ition +vel vet +ra ys +c w +om o +m f +lmfa o +newsle tter +: ) +toi let +liter ature +di sp +phili p +uni form +sudden ly +head er +cool er +-- - +prou d +bri g +nis san +scienti st +j ah +con centr +pac ks +appo inted +so ap +eng age +cho se +âĻ ¡ +se tup +jeal ous +har ry +g ation +tun nel +te mp +osc ars +dec ade +recomm ended +child ren +ab a +anxi ety +ve ments +sal on +pho too +organi z +mach ines +ab s +vil le +hy pe +ti ff +emer ging +av geek +[ # +contribu tion +bra dy +re sto +g mail +fit z +photo shoot +hel met +h t +eleg ant +ug anda +nur sing +or leans +pen n +na h +foo tage +em a +w o +w ad +concer ns +ve re +re mark +who ever +str ang +p t +qu it +sh ang +histor y +s ick +perman ent +ill ness +col d +visi on +he m +ar row +con vic +pin k +oc cup +bal d +ex hau +u of +am o +on t +ãĥ » +adop t +la id +smo ked +inter pre +ess enti +associ ated +b d +bb y +fi er +inst all +dipl om +con diti +c f +w ak +any a +gr aci +fi sher +s ss +ap r +il it +mus ician +symph ony +cor d +h ack +le gi +l v +bless ings +hum or +sc ra +e ti +min ster +trav elling +bu sh +jewell ery +li me +!! ! +pregn ant +pe e +lo b +cap ital +ip a +pen cil +la bor +duc ks +prou dly +wedd ing +dere k +m w +pe g +valent ine +an gu +re treat +pro spect +dang er +vul ner +up set +, # +sr k +x im +thur sday +n fl +kis ses +re ds +cr ack +re ward +c u +ko k +me te +aband oned +it t +me als +sp ell +stan bul +del ays +ru m +le op +gu m +no va +super man +ch ick +m is +dram atic +inno cent +r ounds +re c +auti sm +bangla desh +mor al +mo vie +sp oo +k la +âĥ £ +ou ting +mess i +ab road +loo kin +a im +q i +st ack +colla ge +à ¯ +hud son +sc an +ho e +ch au +oc cur +comm ander +ho les +ðŁİ Ħ +bi as +v on +stick er +ma k +responsi bility +colum bus +sa int +ed mon +rac ism +far ms +w en +gul f +may o +!!!! !!!! +corpor ation +ba chel +el a +inter nal +je ep +fol lows +di alogue +de rer +smart phone +he len +rich mond +equ ity +s land +b g +ne ar +av i +memph is +we ir +discu ssed +bad ge +p up +mi stake +phen omen +un ite +ðŁ Ľ +de pic +ri des +in augu +n at +sof twitter +comb ination +gosp el +âļ ¾ +ad mission +retro gaming +ðŁIJ ¾ +sch u +mb o +jun ction +al arm +à ¦ +gr ac +kh ali +k ul +m ale +cap tion +wi sh +te re +cor ps +ru bber +play station +er in +effici ent +l or +jo kes +in ary +nor man +lu is +inaugu ral +ch ed +âļ½ ï¸ı +di p +to e +str at +aa c +am u +pi er +co tt +comm and +tt en +sn oo +cu be +clo ses +class ical +s word +expre ssion +reach ing +n app +co st +affe ct +ric o +gi f +brea the +tri be +or tho +h ay +l g +fri es +n m +hi ding +richar ds +en de +mic ro +capit ol +cop y +ro m +regi me +mary land +tax i +di al +embar ra +un believ +ch t +v s +elim in +o dd +pen ny +sound track +l ings +trans ition +rema ining +a is +mali k +? !? +rand om +def end +ul tra +tru m +danc er +st ol +dri ve +a ver +ro ast +defin ition +se an +excit ement +partic ul +su rely +sh av +ber y +di shes +com m +is ol +i am +ob li +gho st +hugh es +chi efs +b as +conserv ative +speci al +fe min +sh ri +n ancy +inte l +tu ne +ðŁĩ ª +jo el +gg le +mo to +ðŁĺ Ķ +bu ck +d ag +antic ip +mont ana +gu id +fro g +ec raft +op e +dri ves +nu mer +x y +color ful +wednesday wisdom +illu min +bey on +inau gur +deep ly +pre fer +for tune +coo ked +ti ble +âĺ ķ +swe ater +it ter +tt y +u i +gi e +com plic +~ ~ +tax es +cu ps +di verse +sam anth +âłĢ âłĢ +ba king +sy mp +wa i +be half +mer cur +travel s +ðŁİī ðŁİ +or ia +eng aged +jump ing +reti red +n aked +p uni +speed way +sci ences +rehear sal +on ym +dy ou +pl ates +r ati +kri sh +jaz z +car ol +ra f +pen alty +tim eline +ru by +engine ers +ra f +bel le +do se +che on +esc ap +me g +ran k +or d +me gan +mer ch +ec lipse +âĺº ï¸ı +ple dge +kir k +per si +leice ster +sa k +w k +saf ely +yy y +je t +promis ed +j c +en ne +no ah +re no +re a +ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ +tra il +ðŁij Ģ +f d +soo o +ri min +w k +ภ² +i al +x ox +bis cu +d ale +fan dom +particip ating +fla g +privi lege +pe ach +mach ine +bo ston +gro ss +o g +mir acle +adop tion +u ss +mon sters +be ij +clar ke +pu shing +pra ying +ar o +d n +ell is +apol lo +od ds +refuge e +to w +b p +ðŁĩ¬ðŁĩ § +h end +app eared +memb ership +pe an +du m +viol ent +v y +potat oes +aw w +greet ings +t ts +ac on +sh ane +photograph ed +cra b +temper atures +cu ba +c fc +wel com +he l +in nings +m k +co de +kno ck +gra ss +swe dish +p ta +ick y +v at +lin ing +s q +sa p +ar c +announ cing +sk ins +cit yof +br ing +co x +gam er +it arian +i da +h d +ros se +sad ly +ge o +âļ ¡ï¸ı +tag s +fa ther +chan ge +l ance +whis key +adel aide +te c +stick ers +marke t +class y +bad ass +flo rence +lin er +fro st +k ate +ac on +scand al +es sex +ðŁĺ ı +vi vi +dr ill +blo ggers +recomm end +d ha +ac res +ro ma +bu y +gro cer +er ia +ma har +ff er +patter ns +ver i +com pu +st ev +ang a +ment or +do o +it ali +cdn poli +on ly +conduc t +elec tro +de f +wh ale +prepar ation +bicy cle +vi ral +turn out +bra ss +qu ad +hospit ality +pack aging +den cy +ceme tery +abo ard +dre aming +pic ture +t all +inv ent +ad mi +o e +tem ps +qu an +fun dam +pro mp +resi dence +mu d +sour i +âĦ ¢ +graff iti +gi f +d nd +com p +s war +pe eps +pale stine +devil s +san g +assi stance +bi ke +missi ssi +inter viewed +ne phew +dru ms +v and +gentle men +n sw +inst a +leban on +ee ee +oli via +ver y +rou gh +industri es +m ation +ðŁĺ Ĵ +bar rel +n ay +po ps +moder n +ill y +are st +on ents +protec ting +v ans +e o +vi kings +restaur ants +re ck +jac kie +andre w +w illing +he ath +citiz en +disc rimin +๠Ī +stu art +m ys +hi p +tran sp +" ? +te x +su shi +ke d +cro ssed +dist ur +pe dia +f ate +some how +mo th +proce ssing +is s +r in +u ts +yy c +ver t +lg bt +re id +on to +arab ia +habit at += = +stre ak +simp son +addic tion +wim ble +deli vers +challeng ing +ðŁİ ¶ +fran ch +e du +s me +ai ds +hur st +th am +tari an +remem bered +palestin ian +fe es +tru m +sket ch +ur u +fit ting +jes se +ðŁĶ¥ ðŁĶ¥ +---- ---- +ba ch +ici a +colo red +da h +associ ate +int el +s eller +p u +stu ffed +ac s +b s +sh in +cooper ation +certific ate +ab u +ingredi ents +re v +in ge +el der +christi an +bun dle +th ic +dir t +beij ing +comm it +ted dy +ed u +to day +s field +w yn +confir ms +lo o +j v +ene ss +al pha +vir us +ari um +gr ind +bri dges +introduc tion +pol ls +bac ter +z ach +termin al +ra iders +fla vor +zom bie +vo d +sp reading +gameof thrones +effici ency +lat ely +ale m +twee t +cri mes +cl er +de y +dg ed +hy un +pay ments +cir cus +ðŁĺŃ ðŁĺŃ +mis souri +lu b +episo des +c age +po s +mat ching +tumb lr +lin ed +ge st +am bi +nar r +ing ton +regu l +blo wn +is le +co co +on don +joshu a +tour ing +sm a +sau sage +best friend +bo eing +desi re +sav age +ra pper +de vo +te ar +take over +cow boys +po ker +par ag +pp e +h int +we ars +se th +ro les +l anc +man ga +form at +fl yer +c ay +mo or +ba ke +spla sh +v ad +ker ala +proce eds +sil ly +reflec tion +di str +wi d +su it +ci vic +yan kees +by n +migr ation +di stin +or ch +fe mini +quali fying +tu ri +o be +hun dred +cra p +wan g +mathe mat +bu re +expo sure +fergu son +seme ster +re serv +pl ym +a hu +fac ial +wa x +wor ried +ca b +vi o +as a +co d +to pics +p cs +hal o +rescu ed +horiz on +ar k +âļ ª +hol ly +el f +ul ti +pu p +quali fied +attend ance +ati vely +destro y +y c +for th +photoo ftheday +c ents +ic eland +meas ures +de sk +port folio +artic les +direc tors +dat ab +e w +creep y +oun ding +hon oured +mi st +j it +men tioned +port able +iti c +d ann +friday feeling +am id +ti ger +scri p +helicop ter +hard ware +expl or +work place +austri a +beat les +ber nar +spi der +disc o +cul t +lim its +shor tly +fin al +nin ja +lu ke +le bron +wal mart +o il +van illa +shi re +ye g +ak y +c s +bl er +collec ted +t g +rol led +speci als +b ff +pier re +sh im +vi er +flash back +restor ation +individu als +pro d +fre aking +tu rer +o a +re fre +mor oc +gre et +re yn +care ful +our ing +u sh +is d +g ill +vie w +thunder storm +b led +pic nic +guar di +pi g +ar k +syl vania +bann ed +u cl +vi jay +ori um +av engers +believ es +eu r +monu ment +concer ned +la bs +ber g +a ap +vi sh +sing les +can cel +z el +ar ab +ru th +too th +ar ta +sh af +chair s +r ack +dise ases +crow d +cl y +fle x +christ ma +artif icial +tom at +fin e +dra ws +advoc ate +fran ce +Ù Ĭ +ðŁĺ ³ +heav y +s our +compre hen +no ble +aa p +hin du +cor al +g ars +ow en +n l +st all +yel low +mar ina +in ver +suppor t +tou gh +promis es +pi e +master piece +sco re +for ce +mor tg +crypto currency +o x +r ors +rock in +pro vin +ho g +no stal +oak land +pat rick +inclu sion +tra ffic +ah med +a ha +lux ury +con secu +de mon +âĸ º +b lowing +st ag +: " +encoura ge +ben e +sku ll +do dge +bu ster +kin son +wit ne +er ror +lo west +fel low +à ° +sh re +bl ur +vir gin +compos er +sli p +mor nings +ga ins +tab le +gra in +ari st +braz ilian +w we +tu es +ribb on +an ag +di st +sac rif +em brace +entreprene ur +af fili +de o +t ali +touri st +fat al +ì Ĭ +autom atic +ðŁĩ µ +we ak +wel fare +confir m +benjam in +fi ghts +alleg ed +me ad +strugg ling +pro secu +che f +à ¨ +propos al +er n +ðŁĺ Ħ +dy k +on gs +hon g +m ack +mel on +on ent +ru sh +d ap +tol er +pro pag +c ze +trans lation +wal let +cott age +sa il +constitu tion +ðŁĴ Ģ +mun ici +fav or +storm hour +i h +ðŁĺ Į +approach ing +pin ned +j ed +niger ian +n ach +sh at +particul arly +mc don +camer as +anni e +admini str +he at +electr ical +char ming +gib son +bouti que +ex posed +ac tor +pil low +beach es +genu ine +margare t +ben nett +lou isi +pos itions +el y +shin y +ten tion +architec t +ren tal +ac qui +goo gle +sub way +mom ent +ðŁļ ¨ +ri m +metho ds +cy cli +nor folk +Ù Ī +over whel +ra pid +we ar +happy birthday +progre ssive +ðŁĴ ¥ +co gn +pap a +f ool +philosoph y +pol ar +jim my +wi g +ðŁĴ ĭ +oper ating +reduc tion +ph i +fla gs +to the +o di +a res +k oo +k ang +ar kansas +ash ton +wimble don +sci fi +attrac tive +mississi ppi +logi sts +ral ph +la bel +gradu ates +ma ha +home town +âľĮ ï¸ı +foun ded +on the +li z +trans l +mini mum +pre sti +ta m +gener ations +re bel +journ alists +par am +mc m +acry lic +death s +tes la +w t +bry ant +jer us +i stanbul +muham mad +ri ley +k ris +work shops +is o +coun ts +stre t +prote cted +trin ity +man ual +r hin +r il +pleas ant +le mon +ner d +har der +dar ren +bur y +ra h +bas is +mi gu +occa sion +li sts +âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ı +e b +de cre +hamp ton +ìĿ ´ +tra vis +trans form +puer to +nh l +av oc +tri ps +unexpe cted +ve t +di dyou +bar ber +st ages +m son +re presented +for t +l al +pp le +nic ely +ignor e +qu il +qu inn +h k +carri er +remin ded +am ong +pass enger +el len +gue z +sc ape +mu ral +youn gest +ma sh +d ill +rout ine +stain less +jack son +gand hi +th al +on ers +edit orial +convers ations +sd ale +autom ation +i ke +า ภ+ðŁĩ ª +hau l +la ying +men tions +am en +abor tion +i bi +coun ties +ca therine +man ds +jam e +roll er +au t +n am +o logical +cep tion +ran king +tox ic +sn acks +victor ian +bang kok +psycho logy +re g +ang ela +respon d +sty le +sophi e +dak ota +achiev ed +mar ked +imper ial +in as +glo ves +sli m +confi dent +att acked +gg er +lon ely +valentine sday +re b +craft beer +orig in +zim bab +ce iling +te ens +other wise +w b +f ers +day sof +advis or +y ah +âĻ ª +en der +republic ans +av a +skir t +pi pel +chi e +jan e +ja x +ðŁĺ ĭ +âľ Ĭ +j ays +bre tt +bal o +cru cial +d har +as is +de au +lloy d +chat ting +âĿĦ ï¸ı +rel ay +remark able +n s +we t +bris bane +ðŁĶ ´ +tion ally +f k +la yer +house hold +consecu tive +es is +pend ant +st ir +crit ic +su gar +photo shop +pa res +arti stic +do dgers +c un +cra fted +am end +bo at +âŃIJ ï¸ı +egyp tian +sa w +tra ge +small er +ox y +pa ired +nex t +i res +tac o +o y +u c +st i +a erial +: // +dr o +dot com +gg ins +r pg +ay e +le an +stri ker +lo bby +prote sts +pri ority +congre ss +am ate +inv it +r ington +mom my +th us +allow ing +pione er +enfor cement +g ori +tal k +dra g +du mb +bul let +san ge +er y +tar gets +ðŁĩ ¦ +he ather +consi der +seaf ood +ve st +ris ks +% . +p g +sac red +he ating +kick ed +tto t +. - +chan di +co ven +po ol +pul se +i a +ro ster +shakespe are +es a +car go +pean ut +tro op +ac tion +tab let +home work +cast le +stru ction +mus icians +free zing +bu tt +justin bieber +j j +bah rain +an them +au dit +didyou know +na vig +guid ance +âĸ ¶ +tur f +n un +fic ations +ye men +char ging +x c +bron cos +su bur +p ale +bor ing +among st +for the +em per +om fg +p j +expe cting +ðŁĴ « +st l +ad min +expect ations +sw an +shoo t +oooo o +min ent +ãĢ IJ +wall ace +stan g +satur day +adop ted +dou bles +hom ie +ome z +d han +vent ure +surroun ding +fi le +mob ility +de es +w ski +broo ke +emb ro +re members +kar a +test im +bo tan +m tv +sacrif ice +jerus alem +d l + ´ +proper ly +ili on +as i +leg it +co pe +m cla +recy cling +lar ger +ðŁĴ ĵ +pat ric +gener ous +ja red +p f +mol ly +thom as +ju dges +h b +sor ts +bl vd +o ven +enter ing +plan es +be et +integr ation +boo ked +fre ed +ver n +ash es +to pped +de pot +welcom ed +ren a +m ick +d and +see ks +gam er +ran kings +ren e +mu t +whis ky +fire fighters +gu es +ga ther +tour ney +de men +y ang +new ton +autom otive +back yard +deta iled +mi st +to bac +fi ber +un usual +grat itude +sp are +ne ys +: * +per i +flo ating +fin alist +don ating +dre ss +bro ad +be the +econom ics +tai wan +ed wards +plu g +pra iri +val en +bab a +f ad +an as +har per +dis order +app lied +p att +bi kin +li ver +cu ri +carol ine +ann er +juli an +wal king +mal col +screen shot +co ding +skin care +activi sts +myster ious +ex act +blo cking +mercur y +bat ter +du mp +âľ Į +en se +li sh +ridic ulous +prote sters +ðŁĻ Ī +lu st +swe at +as s +ali ke +co dy +re ments +win ds +as pir +vi enna +pra y +.. .@ +bo i +cand le +assi sts +te e +der son +p ony +f ence +con spir +âĺħ âĺħ +oo th +e pic +ba rely +a unt +b am +diamon ds +end less +scre ens +can cer +gr o +p st +pro spec +mo sque +help ful +ou ri +bro ther +gu jar +cri sti +ine z +to wers +ad dresses +gra y +bur ton +re tweeted +ðŁ¤ Ķ +n ity +du ck +super vis +jo an +kin der +sanc tu +pi ed +âı ° +ł ï¸ı +m ati +reven ge +ce ster +eli fe +desig ners +back ed +bo li +wei ght +cou ch +su res +s its +shri mp +la gos +auth orities +os ity +hol ly +compu ting +fac tors +ab e +pan els +ram ad +sent ence +missi on +hol m +r b +d ads +shang hai +mon ey +she ets +sk ate +thre w +cup cakes +infin ite +l is +practic ing +ess ay +ka i +as ci +mo b +u gh +hol mes +re gg +ik h +mo ck +collec tions +pe p +o va +sal t +nan dez +co y +thre ats +tex ts +cin nam +pregn ancy +pen ding +stam p +flow er +g is +agre ed +pay ne +ro ver +ph ra +sof t +f fin +fa thers +pass engers +aw ays +al a +h es +li van +in s +samu el +ingu i +h of +j j +chen nai +cat al +om ic +he ath +ni ece +pump ed +integr ated +are l +no m +produc tivity +wan ting +vis a +di ana +tw il +it v +cam ps +ro wing +d ley +black and +gu ards +b ells +re verse +vi be +ric ky +mo ss +ny t +âĺ Ģï¸ı +el le +tro y +cu dd +ev an +women s +fo to +mi stakes +wick ed +mi l +c led +me mes +co smo +schol ar +ren o +ðŁĺ Ģ +v ents +# âĢ¦ +terrori sts +ca sey +cardin als +ðŁĺĬ ðŁĺĬ +venezu ela +bol a +liter acy +t w +en o +con tains +au stin +fin anci +ev an +har vard +origin ally +chev ro +her ald +nott ingham +manag ers +âŀ ¡ +accep ting +wal sh +tutor ial +entrepreneur ship +yach t +requi rements +glen n +pe de +unfortun ately +ach ing +dais y +gi an +night mare +âĿ Ĺ +r ina +b art +ema ils +oppo site +who m +sa ke +pu zzle +da shi +par ty +blan ket +bus es +lo re +beau ty +reas on +pun jab +winds or +func tional +exi sting +hel lo +gli mp +con vin +la k +scre aming +rebec ca +bli ss +north west +infin ity +cosme tics +pul ling +coffe e +pl ing +op ho +colom bia +interior design +( + +emo tions +sa c +sun glasses +sav es +d f +six th +al y +ðŁĺ » +de en +dev ast +polit icians +lac rosse +g u +pe i +jav a +comb ine +coal ition +er ts +survi v +ch ad +stri an +n n +de vi +coun c +concer n +contro ller +bre ast +j ury +tu m +introduc es +la di +mobi le +al z +ste ady +nur ses +h acking +on line +oce an +ðŁİ Ħ +a am +ju ven +ic c +louisi ana +ar te +street art +is on +wn s +fr m +p anda +no ir +main tain +del ay +symp toms +thor n +ge ome +ter n +carri ed +p ru +pan or +as sy +per u +clou d +sp ra +pe di +e ste +tag ged +ðŁĺ Ŀ +shado ws +naz i +ا٠Ħ +cor ri +âĻ¥ âĻ¥ +j ad +ðŁĩ « +form al +spo ken +ðŁĮ ŀ +enjo y +lo pez +out look +in ho +w ander +Ù ħ +ma ya +pe e +d ine +ãĢ ij +brief ing +suppor ter +ar ily +ght ers +natur ally +doctor who +j en +v ar +new year +re se +si mm +re x +con sequ +tomat oes +bur st +bra vo +bur gers +cr acking +nor theast +bi om +mush room +mar que +dou ble +ni er +v ag +tw enty +key board +win ni +jama ica +par ish +: - +mental health +ali zing +ren der +wa king +ðŁİ Ĥ +g ly +na than +wa shing +mel issa +jun g +loy al +chil i +song writer +guit arist +bo wie +neighb ors +onym ous +as set +ta i +head quarters +ðŁĮ Ī +i hear +ci gare +sur g +) " +re pl +dar ling +ðŁĻ Ħ +z ak +sa re +ãħ ĭ +mic key +ware house +mass age +ine es +did nt +i w +hur ts +eng aging +mag ic +women in +k itten +mor s +c art +tit ans +colle ague +compe ting +er an +k hal +mar ble +dem and +del ight +et ary +bli zz +lou ise +m ls +fini shes +experim ent +conduc ted +electr onics +itt ers +car ing +wh ats +sym bol +jun g +e cu +pi x +con text +char ger +ðŁĺ ĩ +re ig +fra g +ë ĭ +ch ad +tru e +ker ry +def ending +a int +au ton +check out +bar nes +less ly +d t +m me +clou dy +second ary +are z +_ : +app a +const ant +" ) +ve ts +jo b +i ent +ðŁĺŃðŁĺŃ ðŁĺŃ +m j +fren ch +di ver +davi es +hh hh +e book +๠ī +mar iti +bree ze +susp ended +mat o +vi et +ra hu +se i +bol t +en ary +le is +kar l +fr amed +expla ining +ab c +de aling +nat o +ja ke +exp and +leon ard +establi shed +du b +ar men +el led +voc al +nichol as +ori ent +k yo +illustr ated +ah h +danc ers +milli on +ge ta +po pp +as u +mur dered +gi ble +sto ked +gri ffin +maxi mum +adri an +en counter +ther o +david son +ðŁį » +holi day +ev o +asse ts +car son +memor able +âļ ½ +ob am +represent ative +cb d +tr icks +vo gue +vo ice +mm mm +sebasti an +cli f +ath y +par alle +ðŁ¤ · +pa k +ev acu +e ats +ا Ø +tou ched +organ ised +spir its +can ad +gui ded +frame work +ðŁĮ Ł +pe d +natur al +ag ar +replac ed +anch or +ti t +sha h +organ is +super ior +r n +ch ro +eric a +st ill +cor on +chu ck +loc ks +or gan +ro sen +sc am +ben ed +/ # +ke en +tre vor +vamp ire +sor ted +! ' +af ford +in tro +gr ace +ðŁĺ ľ +sau r +kick starter +influ en +v u +y up +po c +ðŁİ ¥ +a ar +s ang +tre k +et sy +tb h +scre am +chevro let +pix el +shepher d +an or +gabri el +tw ood +sd cc +me ters +develop ers +clo sure +v w +twit ch +ì Ĺ +se oul +pr ice +ho g +n ish +hill ary +scrat ch +in cen +wag on +dis ability +pan ther +ch ats +g d +wit z +sus sex +l ate +den mark +ger ald +cancel led +net te +i x +nav al +bap tist +te t +y ad +ma th +ho y +r andy +po int +intel lec +fru its +w ool +gu in +pr on +the ft +con dem +mar ry +n ola +architec ts +cin cin +roc kets +gentle man +ex plan +t ate +do e +ra ises +wild life +w l +insi der +blan c +w p +for sale +ny c +po well +unbeliev able +pen s +goo dies +mu stang +p ens +st ays +squ ash +xox o +near by +ever ton +co co +le agu +k han +stu d +south west +con struc +s worth +cro atia +le a +su ms +aim s +e an +van ess +iti ous +pa thy +arc ade +b end +sugge sts +sac ram +roy als +ri er +em ir +in cl +an k +clar k +ri ght +vac c +ठ¾ +tan e +li b +u sc +sal es +hu h +s ally +ver a +p ga +gro ws +dru m +tre e +eth ics +sug gest +is ab +se aled +pre viously +anim ated +ab du +ri ses +glo b +pre dat +scar f +del ic +om ar +ll i +sx sw +py thon +ne bra +fun k +reflec t +pav ilion +tic ally +ch asing +bak ery +inva sion +ko h +believ ed +co hen +con qu +cra fts +nat i +cle ver +govern ance +sam ples +fa ils +â Ķ +ti mo +r itu +stri king +inclu sive +sho cking +can t +requi res +dra wings +à¸ Ń +purch ased +du m +z ach +war ner +con sole +man sion +foun tain +circu m +e sh +is land +mil k +pro fits +hali fax +ri val +âľĪ ï¸ı +jen ny +sand ra +ny e +k elly +y al +qu ad +no s +inste in +fin alists +mid fielder +cu e +excep tional +a an +sa pp +gett in +sa a +f ati +sl ice +vol k +s wal +la sting +sum mary +it as +sm o +s z +âĺ Ĩ +ip l +fl ames +ene ws +ha v +hoo die +pitch er +win dy +re vol +centr al +ton ite +ðŁİī ðŁİī +sol ved +mil wau +organiz ations +wee ts +re fin +s th +ãĥ ¼ +el in +ton a +cinnam on +ðŁİ ¨ +ðŁİ ģ +ron aldo +pen insu +ome ga +el ds +desig ning +e igh +blu et +ben z +nu g +ash a +robo ts +su dan +choo sing +en do +ser ge +clo sely +hand y +fing er +be ing +ar te +survi ved +fl ame +mile stone +gu t +d war +fu tures +é e +el o +fri dge +eli c +ou ch +u b +p v +tit an +col lar +st ation +nev ada +aur ora +r d +dun can +âģ ł +bri en +mar sh +Ð ¾ +to tal +ch ry +s ers +su ffe +ra chel +colle ge +to days +cour ts +ch it +re united +gym na +gen esis +be side +re presentation +ch ant +collec tor +ra k +ath ens +ni gh +mun ich +langu ages +fl u +particip ation +__ _ +c v +spec trum +so da +co ver +refe ren +ab bo +ap a +public ation +ed m +mon ica +ar my +ðŁļ Ģ +div or +dr y +stre ams +robo tics +ci der +bull ying +appro val +sto ke +plat forms +sier ra +ex tin +i b +ha yes +succe ed +suff er +at ically +da i +lyn ch +h ound +del ines +ack now +d ated +exclu sively +he res +fac ilit +dam aged +char ter +la kers +fal con +unve iled +wel ove +e ase +pati ence +l one +gent le +gene tic +produc ing +g our +shann on +bil ities +zimbab we +p int +dau ghters +liter ary +bel le +cl am +surroun ded +k any +ne il +pir ate +rang er +hb d +nat alie +bel ong +olym pi +emb assy +sc ol +en er +ak in +lo ren +b h +: / +di va +den im +hi pp +ðŁĩµ ðŁĩ +arn old +? ' +we ren +em power +dis abled +man or +rasp berry +b af +aw ful +dru mmer +kar dashi +n ash +machine learning +ch u +rebel s +tim ing +mon roe +ton gue +ran ge +pup ils +re ss +amaz on +b z +har ley +pal mer +ballo on +s ings +ic ec +j b +c ers +g ps +whi st +ri se +l t +oo oo +c attle +shoo ter +vod ka +uc l +mt g +le sli +jon as +di spo +at ric +ste in +vintag e +fir ms +flo yd +cow boy +soo oo +is aac +war craft +disney land +beauti ful +be am +franch ise +bu n +k ag +an on +tur bo +swee p +made in +kar achi +dete ctive +penn sylvania +contro versi +vitam in +a side +chron ic +descri bes +remo val +ha h +ap er +ten ed +u to +bad ly +mir ac +f ry +ye a +in jec +ther mal +comp act +th or +te ed +ur gent +l ite +g illi +sop hom +ic o +che m +p m +for k +fre ak +ch ak +recipi ent +i y +ni k +model ing +c ans +ðŁı Ģ +del ux +se am +surviv ors +rad ical +investig ating +reli able +f m +tur t +ligh thouse +to ol +go wn +) ) +bo ts +auto graph +a id +bu ffe +h mm +horri ble +ssi onal +ann i +๠Ģ +k its +sch i +eter nal +hu ss +sens itive +r u +tast es +chec ks +im o +por tion +sk ate +e den +half time +fri ed +ri hanna +ti se +fl ick +ca in +s gt +âľ Ķ +sh au +sta ined +ra ffle +dro ve +sal man +princi ples +sh o +ar u +je ss +gu ine +gar bage +my an +jel ly +dis ru +z ia +q ld +ent ries +la v +fle w +ad mit +objec ts +comp are +ny times +cann es +p n +suff ol +ro c +d ana +e gg +hi st +coun sel +' ! +phy si +imag ination +ad just +explo sion +plym outh +hor ror +elli ott +bour ne +de x +bre ed +au dio +lob ster +disappo inted +nation wide +( ( +incre ases +austr ali +ce dar +star ing +rac ial +e is +g mt +visi ons +stay ed +discu ssions +de an +cur tis +mai den +stel lar +happ iest +h wy +pre season +car av +mon days +hospit als +glimp se +schol ars +ja i +ter race +ann a +goo se +gra ded +lot us +hun g +grocer y +stam ps +emper or +sc oop +in ser +c as +exist ence +he al +fal cons +mar vel +reduc ing +terri fic +magne tic +perfor ms +bar re +p us +tre ating +ic on +w h +decla red +tra uma +do d +come dian +nik on +bu gs +as m +mont gom +ibi za +comprehen sive +ha s +san ti +fellow ship +da sh +p sal +louis ville +sp y +fau lt +d the +fi led +vi sta +de sc +fe ars +you tu +sp s +es p +ri g +cri me +ber ger +wonder land +k ent +in formed +stev ens +my th +ast on +ir i +visit or +at ri +produc ers +al la +person ally +separ ate +agen cies +af ri +il an +spo ke +n ina +squ ad +di ves +de pend +li v +fier ce +enter taining +cha in +sc at +bor ders +pal ette +sp ro +os is +der by +tobac co +zi o +willi e +ju vent +zoo m +hol y +enti rely +af e +mart inez +be ds +pe a +bull dogs +ðŁĩª ðŁĩ +ib m +ne on +ethiop ia +team mates +plan ting +tw er +any time +for bes +ó n +run way +ner vous +ro ger +p ile +ch anc +apo caly +u w +o i +dr ought +territ ory +br ick +cre atures +go in +w aff +gre n +sou theast +je an +am bul +ed ited +stra p +c v +aar on +ãĥ» ãĥ» +t su +descri ption +kin dly +clu tch +im mer +en or +women sday +or ange +ra g +ob vious +hy der +chann els +man go +me yer +ra ining +ge tty +pil gri +coordin ator +up load +ninten do +don uts +san chez +app arel +j r +zz i +, @ +jeff erson +accessi ble +great ly +e id +initi al +budd ha +par is +ma scot +â¬ĩ ï¸ı +sch war +si ri +sp inning +mortg age +e cho +end ange +ge dly +chlo e +enh ance +kar nat +k ry +explo res +ðŁĴ ģ +af fair +ic als +all a +dar t +dolph ins +diffe rences +squir rel +au gh +dr ones +ell en +re store +pa w +un for +pi ke +hil ton +colla b +consu mers +co inci +out comes +pp p +a q +coup on +li est +si ms +k ho +av es +spo on +pu dding +cor byn +hat ers +ex ams +sla ve +. ! +p sa +app les +tam il +se d +co ke +zz o +lo sange +car bon +cla ir +... ) +k hu +cra ig +explor ation +sanctu ary +su e +al way +demen tia +won ders +super hero +pakistan i +brown s +bluet ooth +lo cker +mar c +ev entu +delux e +rodri guez +âĿ¤ âĿ¤ +ro bb +ðŁĴ ¦ +lin ux +ten s +intellig ent +se ed +vo ter +s ler +pe aks +inter n +teen age +peninsu la +hand ling +ti e +cou sins +wen dy +me e +à¹Ģ ภ+din o +ðŁĴ ° +ðŁĺ ĥ +ze e +s bury +trage dy +b k +bo re +z in +war ns +idi ot +tou ching +contin ental +tac os +saf ari +wa shed +po dium +morri son +fore sts +c bc +al on +partic ular +be ads +inv ented +lo ch +li ghter +where ver +i de +docu ments +a we +k r +no where +min er +st it +ro x +contribu te +har dy +cl an +ob ject +ca it +ðŁĴķ ðŁĴķ +happ ier +vege tables +t art +g ag +nom inee +heav ily +pan ic +j d +there sa +at m +u ph +s fc +su ri +drin k +n al +re vel +k l +avoc ado +nom ination +ma donna +shar on +malcol m +control led +sh ers +revi val +legis lation +shoo ts +n in +comm entary +pro s +human rights +str anger +mit ch +pipel ine +leg ally +th u +gil bert +tol l +gran ted +gh s +ir anian +refre shing +du k +ab i +pri me +jose ph +mo sa +stati stics +produc tions +mer ry +pat el +sa x +human itarian +struc tures +e missions +town s +fre el +ster ing +rat ings +alle gedly +cab in +st l +w ade +fl yers +tri m +promis ing +z u +bal lot +compar ison +free ze +ou ter +great ness +as sign +snow y +r ale +tor ies +med iter +kno ck +consult ant +cincin nati +analy st +sc oo +je ws +appro xim +pu re +portra its +cy rus +ation al +lo ans +acqu is +el u +accep table +uni on +water color +ru st +batt les +per fu +seas onal +ser ial +mind set +ri ot +fel d +enni al +clo set +pri est +tan ks +int l +scre w +bu m +ab dul +ou x +expla ined +ric a +imag ing +law yers +bu ried +ãĥ»ãĥ» ãĥ» +ear l +âĢ ķ +l ton +resto red +stri pes +fo ss +de mands +ste aling +alex is +mun d +ak er +ur us +war dro +hu gs +gen re +e go +Ù Ħ +particip ated +bab es +ban quet +ti ous +he mi +ds b +lo st +milwau kee +jen ner +ge m +ou tra +lo ses +id i +re ps +ðŁİ § +regu lation +fla w +f ang +vibr ant +ram p +ra ins +well being +so viet +vie wers +de po +libr aries +bi go +ser y +g ill +de struction +co z +c x +bri dal +al ds +plan ted +amate ur +lu d +che ering +show cas +pro file +i u +ver tical +pack ers +wiz ard +ski p +s light +be au +air ways +mu ch +re ra +ðŁĮ Ĭ +ab sor +pati o +pack ages +s ells +ment ally +ðŁĺ ¢ +reyn olds +k are +tri bun +wal t +kn it +ta ste +sur rey +boun ce +cre ature +b are +bet ting +su re +mi ley +laugh s +al ore +cy n +t l +arti st +ann ah +war mer +dynam ics +lunch time +mariti me +vulner able +ðŁĴ ĥ +wol ver +dur ham +const antly +am in +si bl +: @ +bul let +k ach +angel o +wil der +doo m +desk top +law suit +k ca +hen derson +inv iting +bet ty +ta wards +ra fa +le aked +and i +ge ms +af l +vel o +mediter ran +pro be +to tten +steph anie +sn ation +com be +q s +over come +assas sin +ra v +fil ip +winni peg +sh il +determin ed +k as +ou tre +regre t +gui des +aa a +ðŁĺ Ī +wi ves +mani fe +er ly +sm y +sh ima +x ing +pix el +jac ob +ac commod +to y +on o +po o +ti er +an swe +ðŁĴ ģ +ro sa +le ase +bel ongs +th ar +eventu ally +nei ther +go a +ski ing +at ra +ag h +broad casting +f ury +py ram +d ice +volk swag +wom ens +provi der +bom bs +miss ile +whi p +d ick +nor we +back up +el der +mat ure +concer ts +gi ous +sque e +good morning +bra ves +^ _ +au ssie +lun a +mal es +he ck +for tn +rome o +steel ers +p n +pe er +re presents + « +kat y +migu el +requ ire +cha ins +l ur +immedi ate +ti mber +âĸ¶ ï¸ı +advoc acy +ex port +an z +tiff any +auth or +ðŁİ Ī +du des +chil ly +hi d +har m +bu g +mon ster +terri er +tu c +story telling +ta k +in ti +immigr ants +b is +reach es +com passion +john ny +contribu tions +ðŁIJ ¶ +mechan ical +impre ssion +ran ks +ko be +men ting +bloss om +pab lo +buil der +bom bing +tw el +sul livan +om o +pe te +de mi +ku dos +w bb +t gif +mass ach +neighb or +che fs +eng ines +pun e +ga ined +phan tom +s days +ext end +gr an +cent ers +jac qu +dat asci +sleep y +el vis +answe red +s lot +con y +flexi ble +ti ally +le tics +% , +andre ws +si ble +mom ma +vin o +do x +invit ational +twil ight +j ade +ill ery +joh ns +f ou +p v +-- -> +break down +billi on +prin ter +mon d +c bc +mag gie +legi on +du b +kur t +po or +paren ting +regi ons +bikin i +be ware +si onal +au burn +kid ding +amp les +sp an +con tempor +c ic +ha bits +ak o +pre fe +bud dies +it z +em ily +person nel +moun tain +ver sus +ðŁĺ ¬ +ear ning +s ink +dar i +u u +s win +i ster +bru tal +n ac +kat a +clo th +am and +ðŁĶ Ĺ +ne o +alu min +week ends +nebra ska +co des +delay ed +brun o +pro ven +in c +i ght +fl an +or o +lam bert +regu lat +w f +massach use +kardashi an +bern ard +fi esta +volcan o +grand pa +anc a +d re +st itu +mean ing +fo am +au ck +at ed +r l +hot el +pers ons +dy nasty +ell or +ma i +am ne +sty ling +avi er +e g +vege tarian +, âĢ¦ +foun ders +sta in +g d +cy cles +sky line +trac tor +exi sts +tra l +kid ney +mar il +inst ag +se tte +addic t +tri angle +flash back +controversi al +z on +p ins +i as +tr ay +town ship +deleg ates +sp am +h ms +cr ane +peop les +o lo +fac tion +but es +on ica +deleg ation +new profile +eli er +mc a +w and +g ely +losange les +ber ke +ti ve +dis rup +zz a +cas a +jor dan +ford shire +ga thered +ic hi +atten dees +à¸Ń ภ+pe ppers +co in +bour bon +ern ity +ro tary +behavi our +jere my +team work +compli ance +tre mend +ðŁĩ § +bu hari +cam bo +bu yers +ha gen +bu ds +bay ern +mon te +sm ells +an za +ath lon +descri bed +work force +gi ving +ap i +invest ments +da il +sel ena +datab ase +th um +mor tal +stu dent +bu yer +do ver +gar ten +att le +loy alty +gen oci +holo cau +theat ers +ru ling +ven us +pat ent +ch un +ab by +awa ke +mass acre +bang alore +break ing +simm ons +ju sti +hal e +ed chat +gg les +haw k +mar king +head lines +stro m +co ve +breath taking +med als +hair cut +christ ine +tele graph +gujar at +ju ra +can e +sho re +propag anda +mu eller +.... .... +sa vi +stom ach +thro ws +ta b +war m +j ong +reno wned +hi r +ra is +mush rooms +guaran teed +bo a +m j +revolu tionary +certi fication +bru ins +jo in +w es +pas sport +c g +sex u +cap able +w v +ton es +jac kets +ac compan +spin ach +fore ver +bla ir +wat ts +g l +cou ples +prairi e +newprofile pic +logi stics +massachuse tts +jagu ar +o id +we al +under water +mo z +y i +ma ths +myan mar +pre ps +suffe red +tr ace +wal i +ah hh +bor g +st itch +cu lin +real ise +infe ction +discrimin ation +sh ame +an kle +hu mid +y t +brac ket +tru ck +tri u +ea ster +commun ity +post card +invol ving +ty ler +car amel +over view +ex amples +integr ity +base ment +instru ments +ani um +at us +gh er +laun dry +achi eve +gen eva +pr icing +hyder abad +beli ef +me ta +j aw +accoun ting +lead er +cristi ano +cou ture +cy p +vis ed +, ,, +k nu +h ick +break er +br am +ra b +mo or +ham as +gradu ating +pupp ies +ak h +ta h +ach es +ri e +op ini +g ta +re ign +tra gic +re ver +p ill +pine apple +tou ches +da re +le ys +il o +inter iors +sc outs +bar t +en zie +don o +bro ck +christi ans +ense mble + · +cine mas +new port +air line +win ston +le igh +cont ents +pre scri +ur ge +tr out +fic ally +il ia +sub si +are r +âļ¾ ï¸ı +w ounded +ðŁĻ Ĥ +pe pper +ðŁĴ ŀ +fit ted +af f +re sur +thursday thoughts +z ero +archae ology +di v +je e +i on +awa iting +co zy +beauti es +bal d +dat a +gri zz +stal k +kin ds +cle ared +jess ic +regu lar +ali ens +plac e +bo s +bi zar +thisi s +ðŁĴ Ģ +totten ham +ma fia +s lam +ari ana +car roll +back pack +care y +uni v +r g +pe p +dig it +tatt oos +ag on +volunte ering +diffe ren +consu mption +ka thr +head phones +t shirt +o b +ele ment +re tail +sh ru +al gori +contain er +consci ous +fi l +com ing +ra sh +u rope +def ine +gi or +femini st +flow ing +rout es +gl aci +fer t +somer set +ant es +twee ps +$ $ +h our +endange red +year sof +ro h +po pped +bac king +ba sil +bra ke +mon aco +lgbt q +pra gue +ut ility +cas si +gate way +haun ted +sch ul +ðŁİ µ +shou ld +walking dead +comple ting +dann y +montgom ery +pengu in +ss i +mer chandi +ðŁij ij +chur ch +h ates +cap tain +brea thing +ce t +fair ly +approach es +compan ion +surpri sing +kany e +pe y +hin di +targe ted +lor ds +de ut +di gging +ger man +ru t +ener gy +close st +y un +apo logi +ภ± +s ack +ru p +dd y +port al +d ough +b ats +ðŁĵ ° +at ur +graph er +pi res +mo tors +ðŁĮ ¹ +j c +dan g +tu k +clu e +us c +pag e +d less +bro ws +ju s +ad ing +re marks +oo m +car dio +ste fan +arm strong +âĢ¢ âĢ¢ +ni est +belgi an +bi op +so y +lo f +í ĥ +q t +flashback friday +ce e +ģ ภ+wre ck +mar ines +amend ment +wardro be +vo y +bur ned +guit ars +ra inf +li fel +ssi l +oun ce +exter nal +c key +me sh +she ikh +inv itation +sugge sti +pop corn +phenomen al +an onymous +tun a +chic ago +o val +del y +loc als +( & +pro f +no vel +fin der +spar ks +la ven +in fu +nic ks +qu ant +ra e +exe c +dist ingui +st ances +mu tual +sh al +unve ils +edmon ton +zan ia +a dio +vie wer +brad ford +audit orium +qu is +re act +htt p +l ero +chee ky +impac ts +ta k +ed t +desper ate +t ay +ì Ħ +sett le +bar gain +resu me +un ite +thro wn +ke st +se ys +mar ching +am it +decl ine +sch ar +me tr +stan ford +lin ke +ber ra +dol ls +rug by +jam i +b or +road trip +dino saur +mi k +sun der +re m +b k +over seas +nau ghty +imple mentation +iam srk +lun cheon +fir ing +mi ami +pere z +the e +z on +gi fted +con version +ceram ic +¡ ï¸ı +pe dro +ì Ĩ +v ick +! @ +he ed +si d +b w +docu ment +pl un +gr ants +fant asy +predic tions +vali d +car ved +gradu ated +ðŁijį ðŁı» +nation ally +ch y +af l +re sso +blan k +ri vals +j ig +e ties +om ics +une mp +b ound +sk o +inspec tion +par al +high s +cri sp +b ans +ob a +[ @ +co spla +costu mes +rec all +mou th +ni gel +b ts +ter a +ko v +do cs +west minster +dic t +gra vity +kar i +ro gue +t ted +war k +ida ho +w end +aw i +queen sland +proce sses +cli ffe +m ick +com pens +op ol +the y +cl ari +wiki pedia +salman khan +haz ard +pre ston +swee test +pd f +che es +tr ilo +south africa +bur nt +( $ +con tain +t p +sub mitted +sound cloud +at u +re z +word press +corru pt +n f +ma ker +í ķ +par as +adv ent +ri al +ca fe +fo ssil +!!!! !!! +co ws +c j +sp ur +institu tions +land mark +ent it +re ut +h is +alz heim +we mb +regg ae +mo squ +st at +identi fied +deal er +re am +re land +ten sion +ðŁĩ © +wra pping +deep er +fr at +red dit +ar is +moroc co +.. " +b low +ma pping +pri orities +ing a +swa p +re wards +conspir acy +creati ve +c j +congre ssional +vau lt +ple x +sophom ore +shad ow +ele ss +ðŁĺ ħ +dar ts +aldu b +anno ying +pro ps +n as +alumin um +h bo +offen se +j ill +oni ons +la ur +ta e +har dest +sh ro +ga ining +meas ure +ed tech +cyp rus +tar a +ang eli +car lo +go on +all i +im plic +ju pit +resil ience +ha il +bal anced +) ... +joy ce +gr a +th eli +defin ed +shi pped +main ly +min a +l m +sac ri +o ber +p im +claim ing +ent ers +co rey +bo k +cri ed +cool ing +dani elle +pharmac y +thor ough +ca ke +k lo +outre ach +z ens +digital marketing +val ent +sn p +her b +mr w +caf é +cap tures +no tre +triu mph +pan cakes +cu mber +spi ke +d ation +bi gg +sp er +crit ical +am al +too th +foun ding +a stro +' # +quan tum +th ames +un c +pri de +air bus +kno cked +un defeated +mediterran ean +cal cu +clo wn +sens or +ham mer +for give +cu shi +ber ry +maje stic +elec t +polit an +g ta +k ari +bur ke +sea hawks +volkswag en +re i +landsc apes +cas u +grand father +list ened +/ / +star trek +rainf all +fur ry +vi er +star k +rif le +ff a +leg es +hillary clinton +min us +correc tly +architec tural +pre ce +up side +box er +ðŁĻĮ ðŁı¼ +is ai +de t +pro vo +tis sue +spoo ky +ve led +re con +prospec ts +que bec +âļ « +ig no +anat omy +shap es +w p +p interest +hor e +an es +pick up +ti p +pra desh +hu gh +co e +po k +gram my +well ington +sti gate +ri gh +lea p +king ston +scen ic +go sh +v ani +au g +s ary +zi er +bure au +lin son +con te +fra gr +all an +g aw +lan a +colli sion +surve ill +ren ais +ar range +s ali +do in +br ance +bren dan +our se +in coming +suspen sion +à ´ +l la +educ ators +in tri +da e +bio graphy +bul gar +villa in +go thic +rw anda +e w +may or +meet up +democr at +mor gan +su dden +te sco +car rot +bom ber +mck in +re ne +fun day +agricul tural +haha h +show time +form ing +col a +scor pi +quo te +po ppy +s life +d az +tu b +ne n +mo t +ðŁĺ » +s ore +elder ly +o ve +skin ny +um i +anc o +man ship +we re +g v +k ah +fol ding +ne at +samanth a +dan ish +uk rain +humid ity +nu tri +jak arta +cand les +oooo oooo +at ile +streng th +i bra +bap ti +charle ston +fr ames +girl s +clear ing +glu ten +# # +super natural +ju bi +ph one +he in +dr un +le ak +invest or +y er +dom ain +ball room +mi sh +app li +off shore +bla ze +dor o +âĺķ ï¸ı +win ery +shar if +ad ore +n ir +saf er +si gh +as cri +strong ly +trac y +ck er +ol l +faith ful +ey ed +deli ghtful +vis m +karnat aka +tit an +wh ar +jer seys +re fur +heav en +gri p +pan ama +pre li +glu ten +o dd +cont ent +pon ti +tion ing +e commerce +feder ation +flaw less +ge ar +ti res +by r +pol ice +cu ban +tri butes +tic ul +chur ches +nur sery +di aries +muse ums +snapp ed +i van +wi ght +touri sts +ramad an +t rent +prophe t +won dered +focu sing +hi d +ic ons +i q +ambul ance +pi st +fun niest +time less +sr ilan +bu ys +ki ds +colour ful +a shi +ch ir +mu m +ðŁĵ ļ +let ter +x en +reut ers +pre serve +in ting +ste p +fu ji +uni ver +i u +show down +po ems +surveill ance +suspec ted +ta e +sol ving +tom b +mother sday +car pen +recru it +pil ots +bro c +mix ing +fri days +ty r +represent atives +tra pped +abdu l +free style +clu ster +âļ łï¸ı +k d +sk ill +pit t +ex o +commer ci +muse um +loc ally +g ina +no bel +immun e +fr ac +cap su +main ed +attemp ts +bull dog +be spoke +sing ers +sp elling +seg ment +nat ures +tic k +lip stick +clean er +gett able +preci sion +âĢ¼ ï¸ı +th ood +re ef +no pe +bill y +di gi +mu si +ri val +figu red +tal ity +sun ny +ber k +aw ww +awa its +un real +co pen +asy lum +ex otic +bu en +mo ck +en able +arch y +fr a +pla stic +al mond +amp li +displa ys +abbo tt +s me +x p +ðŁĻ ĥ +graph ic +i ved +mar a +cau tion +lea ks +en berg +ul u +unic orn +cann on +appren tic +ðŁĺĺ ðŁĺĺ +b ball +wil low +at ics +am as +manufac turer +campaig ns +port ers +flo ors +l su +ty pe +ke j +honor ary +it im +to le +min ecraft +d x +ma sh +ri o +consequ ences +ron ald +go ssi +suffol k +mu se +r bi +live music +i van +ðŁİ ¤ +le u +patri ot +man it +lan ca +home decor +de ar +sig ma +ti de +str ings +v ita +sequ el +try na +inve stigate +bor is +ve gan +barri er +mind fulness +web b +hu stle +in da +tan zania +str ay +tex as +c ag +diagno sis +wom an +g w +ob session +l ative +nu fc +fl ynn +moment um +sof a +wal d +vege table +tu cker +supp er +se ab +ar ro +se ag +ven ting +counc ill +sp lat +cal cul +.. # +com fy +odi sha +sto pp +war fare +ca es +à ¨ +co y +price less +in sec +ðŁĺ Ľ +contro ls +empower ment +datasci ence +per pe +gen ic +e res +tru deau +man o +sla very +expand ing +ma he +fa iling +s aga +photograph s +cre st +re on +surf ing +hi e +ðŁį Ģ +ja e +fel lows +south ampton +sol om +ce ster +tab ility +hor n +se ct +he e +cole man +at las +explo rer +consul tation +copy right +organi zing +den ied +mon keys +noo dles +br is +fl or +dou gh +bon ds +sho cked +eco system +care fully +w m +apart ments +cur ve +san diego +must ard +comm en +cere mon +e ch +ru th +ðŁĻĮ ðŁı» +hawa i +fil med +te ar +as ingly +ca ir +wat t +instru ment +ou tta +ye ol +river side +ë ° +. : +nor wich +alo g +migr ants +new man +ri de +spr ink +targe ting +beli eve +tor ch +reflec ts +per mission +ff man +ene mies +bas ics +se ized +sun days +le i +hass an +en do +h c +st ad +le ments +kk kk +nan o +shar k +man a +on ic +treat ments +ear ly +collabor ative +shu ttle +bran ches +mis ses +mained cm +ap ers +ky le +carri e +leis ure +sh et +bir ding +adv ances +ðŁĵ Ŀ +popu lar +di ane +a be +re war +neigh bour +k pop +remem brance +play ground +ru b +krish na +e bola +inqu iry +ep a +lu min +organ isation +abra ham +norm ally +pre ten +jan et +w t +ðŁĴ İ +encoura ging +a stic +bu mp +syd ney +s z +ss ss +gar rett +ðŁĵ » +consul ting +roman ia +spo tting +chanc ellor +ar ma +presti gious +ðĿ IJ +t ad +cry st +compe tit +rati o +cat aly +bro w +j ur +vi king +commu te +y day +la yers +du mb +esc al +genoci de +f ill +gu pta +ste pping +se i +fo to +wild cats +col i +projec t +ear nings +st r +ge ons +comple tion +b m +decor ated +craw ford +af ghan +sc are +visi bility +hi b +direc tion +stro ll +christ ina +alter nate +cl are +sty list +be hold +s ance +leop ard +acqui red +narr ative +ash i +the a +?? ?? +pe as +at ch +sli des +le en +renew able +eng lish +qu ir +co aster +r x +fo ols +match day +mis m +amaz ing +z ig +ke ting +won t +to wel +di ab +sta ke +n m +mel t +e than +gra pe +polit ician +sm en +í ĺ +re o +wedd ings +cat cher +or acle +me mo +ðŁĮ ´ +ec k +rob bie +norwe gian +oper ator +am or +se wing +ju l +x ie +u v +fif ty +me ga +tatt oo +liber als +u pri +traffic king +richard son +su v +ki p +mess y +tremend ous +gl ou +cour tney +la d +stere o +my ers +i dio +^_ ^ +man ning +dy e +w d +thr one +jun k +as u +provin cial +k ook +wr c +fine art +hamp shire +renais sance +b red +fall out +s j +sn l +al am +tor ture +fy i +sh ines +pa w +ch ar +hen ry +c row +aci ous +di an +pa ige +ba re +stock holm +scen ery +ðŁĩ · +jef frey +pu sh +decor ation +ne d +cu te +brig ade +laven der +inv ites +e sports +vo ir +dri ed +tran spl +sur geon +no vels +pul ls +son y +lun ar +man e +i vy +fru str +dor set +sa i +tor res +ssi on +shut down +suggesti ons +writ ing +e o +battle field +u ga +ðŁIJ ¾ +vac u +spl ac +g it +u g +high land +% ) +mer maid +sacram ento +ta ils +p w +ka h +t ell +enh anced +ì ķ +auck land +cru el +ðŁ¤ © +au dre +sail or +gram mar +g love +de on +infl am +fresh ly +k ell +zi p +christi e +mil d +di xon +instru ctor +g ence +ãħ ł +sub jec +constitu tional +crow ds +in visible +ru ins +da k +si p +pla que +p ouring +comple x +z ine +ste ad +f let +trans mission +lo way +ar un +incre asingly +au d +transp aren +cro wned +sc oun +blizz ard +lux u +fi ers +achieve ments +hun ters +rock ed +bas in +vio let +pro ves +achiev ing +pro sper +se ga +flo at +vi an +xi v +pol ic +tur a +approxim ately +wander lust +keep ers +geta way +co d +pol is +br yan +col ts +tal ents +yo gur +gluten free +wri st +gr y +cze ch +ðŁİ Ī +ev ille +ðŁı Ī +to x +dani els +am er +bi ds +weare one +me tab +g t +boy z +pd x +pos session +pu shed +shr ine +reali stic +tri gger +na vi +ru mors +n af +jen kins +tr un +comm uni +Ã Ĺ +gam ers +arm or +moham med +bal cony +y ah +stron gest +rhy thm +unfor gettable +k p +ho bb +custo dy +greg or +r ita +aes thetic +il ation +sponsor ing +n ay +kid napp +sh s +ra jas +me g +signific antly +butt ons +la c +ver sions +essenti als +opini ons +k ro +d printing +wi dely +d k +ur an +y al +reque sted +c n +cur ric +plu m +gr un +v m +dev on +m yo +rel ation +juvent us +rou ge +min ority +min es +jupit er +n ine +oxy gen +fran kie +une sco +fab ric +disgu sting +sal man +dete ction +lan ka +d ac +ðŁĩ« ðŁĩ· +argu ment +shel ves +cel tics +rober to +pi gs +he dge +fau l +pow ering +butter flies +fi r +re make +att i +com o +emp ha +kend all +poke mon +se ating +d ans +bald win +ðŁij » +lesli e +one direction +ti mber +im an +fon t +e der +di on +ste ph +for mat +gre gory +pro p +he x +ru in +sor y +inf er +n aw +bar ak +sd gs +kar ao +lu sh +v ander +end ent +g is +a fro +soc cer +ay an +t uni +lun g +da yof +alex a +mar ath +addic ted +ag ile +hy gi +light weight +ì § +mand ela +jo ey +anc y +hu m +bi r +memor ial +jim in +ging er +v ak +jav ascri +cro ps +orig ins +d ari +pi per +im port +aggre ssive +predic tion +re pairs +cr acker +voy age +ni ke +mu mmy +linke din +country side +bor der +gla ss +per t +s als +sho e +autograph ed +wal nut +colle gi +sal ary +pa iring +ðŁĮ ¸ +cath ol +swee the +defe ats +streng then +roof top +impro vements +barri ers +ur u +t ally +ru led +ðŁĨ ļ +nai ja +emo ji +per cent +gi o +pro bs +on ce +adm its +pa ths +li ar +day tona +pe ters +cal i +cal li +mu g +o sa +ap h +ab y +hy de +eth nic +pla ins +ol f +haha hahaha +holi c +?! ?! +su bli +bl acks +mo t +gh ton +lo vin +b rent +bar u +l ati +de w +ate au +q a +pain ful +bu sters +st atic +ðŁĩ¨ðŁĩ ¦ +note book +out fits +si es +r f +floo ds +Ñ Ģ +thro at +su ici +ro vers +beng al +pre pares +blo g +mini ature +Ø ¨ +am phi +com b +r sp +in timate +green e +Ì ĩ +al tar +surg ical +ves sel +... ? +gav in +g ator +threat ened +z ar +rob bery +di er +promo ted +y g +x s +su bs +inter viewing +threat ening +do zen +me ado +water fall +nintendo switch +cal um +mini sters +dro p +univers ities +war ned +tac tics +ðŁĩ ² +refu se +ad ju +v ast +ðŁĺ ´ +mc fc +lib ya +no filter +distribu ted +re ser +ron nie +de co +javascri pt +mon k +intere sts +fle x +mar tha +sti es +oo d +ðŁ¤£ ðŁ¤£ +e un +b ali +g omez +sti mul +moder ate +d ity +ir is +stra w +consist ent +direc tions +adop t +sal sa +cro o +reco vered +black friday +lan caster +accep t +weareone exo +buil ds +free man +air plane +diti on +bel ong +jam ie +pit ching +li f +om in +cri spy +pre pping +ve g +chan g +accompli shed +graci as +dolph in +elec tor +culin ary +super bowl +wal a +pur suit +black berry +be an +cardin al +pro ved +immigr ant +stric tly +holocau st +pass age +ha us +cou p +pur se +har ass +< < +le ed +ado be +st ad +legis lat +par ked +pri yan +sil va +kri st +s the +fun ky +ig a +sett lement +ph s +t mrw +stre ssed +hun t +ho ckey +treas ures +cham bers +ol u +hu t +mar ley +tex ture +wilder ness +mm ing +poten tially +om aha +ju dy +to es +spo iler +distingui shed +feli x +ah u +recommend ations +zom bies +hit ler +tri ple +colla pse +motiv ated +ulti mat +gg ling +so y +ci gar +fo ren +vine yard +gl itter +fin dings +colon ial +hun ter +eri k +den s +beet le +lot te +sub tle +s matter +tru sted +experim ental +nam ents +ðŁĺ Ĩ +regi on +acquis ition +bre eding +quarter back +am reading +oo td +ru de +initi atives +st out +hy ung +out come +al fred +mic s +exper tise +bacter ia +pengu ins +jump er +valen cia +bar k +ing day +sell ers +contrac ts +hou ston +commissi oned +adap tation +swan sea +santi ago +common wealth +ju dging +sub mission +sco rer +tom my +ñ o +ex quis +fil ing +explan ation +alli son +wemb ley +ri dge +chev y +san tos +own ership +cogn itive +favour ites +sh ed +phil anthro +dele ted +go dd +s nor +gui delines +ff ing +je ep +cli ps +sw amp +an or +guil d +bol ton +spring field +munici pal +goal keeper +ye on +ðŁĺįðŁĺį ðŁĺįðŁĺį +ãħĭ ãħĭ +water front +gra ve +contempor ary +ar ity +ÃŃ a +sle eps +sy rup +al am +pi re +co yo +moto gp +ty son +kej ri +cir cul +sing ly +cr unch +complic ated +nostal gia +k op +mo ve +k ale +mac ro +mid west +h ans +tri bal +nu de +௠į +bey once +congratul ate +cat er +leagu e +ðŁĻ Ĭ +la dder +cra shed +tech nic +karao ke +harass ment +ro ts +experi encing +kri sten +ðŁĩ ³ +ðŁ¤ Ĺ +reflec tions +guin ness +illustr ator +ðŁĻı ðŁı» +cen ter +nar row +comm ons +regul ations +Ù Ĩ +har m +cro ft +cu ssion +hong kong +st ical +intern ship +zo e +cho p +hoo ds +estim ated +batter ies +berke ley +smooth ie +shau n +cro s +~ ~ +cam pe +hu mp +b g +proto type +cl ick +shaw n +re viewed +tem pl +p f +jed i +blo gs +ray mond +as th +ba h +av ail +scot ch +leaf s +nik ki +to k +hol low +ur ges +of t +un like +lat in +u e +cat ering +mil i +alter nati +ma ver +Ð ¸ +ag le +pre order +lu x +cu cu +ðŁijı ðŁijı +t art +âĿ¤âĿ¤ âĿ¤ +arab ic +rapi dly +ar rang +all en +travel tuesday +pa ws +flo ws +st ability +flu id +ca pp +can berra +uu uu +sp ani +demon stration +m la +plac ement +m w +presi dents +awe som +bever ly +ani st +ne al +father sday +referen dum +la hore +o aks +deb bie +half way +gho sts +de bor +matthe ws +fi at +t fw +pre sen +rob i +de d +bro ck +laugh ed +am ounts +bam boo +kinder garten +eat en +mtv hottest +break out +u sic +fra ser +legis lative +p ang +modu le +sam my +go ver +ear ns +expe dition +gar h +concep ts +char lie +la va +bachel or +veg gies +deter mine +el lie +un locked +fru it +dal la +cou pe +wash ington +depo sit +iv ory +pau la +chic ag +gu cci +ðŁİ ĥ +cul tiv +pier ce +li fted +stu mb +re cover +musc les +conduc ting +cb s +mcla ren +sophi a +cel lu +oce ans +up loaded +game play +mal dives +kim ber +avo i +rac er +ca ine +cav s +h ana +li ga +ra ven +inter vention +inaugur ation +oo h +at traction +merchandi se +tune in +li king +juni ors +int ended +att acking +aqu arium +i wd +comp onents +sur ing +cent u +yogur t +ðŁı ĥ +show room +op tical +ty our +ju dge +yi eld +an to +pl c +transparen cy +recy cled +chi ef +ar om +ambassad ors +plan et +âĿĦ ï¸ı +om ed +vaness a +cour t +mar gar +hal ey +v r +reg ina +pd ates +hi span +live stream +âģ £ +ya hoo +gal la +secu red +w ir +bene ath +off l +n il +am b +ye g +out let +u te +pe ep +lind say +bent ley +... ! +he el +trilo gy +vo s +ty re +there fore +tor onto +ab i +simp li +ja e +exten sive +eleph ants +s or +orient ation +im peach +re play +constru cted +peter son +pa is +por ted +custom s +colla p +ad u +high lands +sal em +shel by +ko vic +stra in +ro sie +sen ators +snap s +bo bb +suz uki +bla des +k p +lo lo +gener ate +si ght +ma e +struc tural +predic t +jump ed +ah mad +sun g +just ice +gla m +vol vo +jubi lee +de tention +lo sses +pu ri +every time +Ð ° +ra o +ed ge +li mer +rese mb +har old +re tri +sacri fic +surpri ses +am c +srilan ka +bar bie +men s +fin n +ag s +ukrain ian +em brac +î IJ +flav ors +hom er +lau re +ou th +pr iced +ver de +fir m +ah s +cu b +tre y +par anor +pro fit +in dv +who a +har sh +al ot +crit ics +hu bby +fi gur +gi ra +ca stro +chan el +in put +origin als +ten ant +yy yy +ture rs +lincol n +co on +lear n +ch ou +ac are +o les +din er +hy p +bizar re +mc r +let sgo +decor ating +ðŁĮ İ +al ison +ar vin +f d +reha b +mccar thy +lot tery +da h +minne apolis +eli gible +diagno sed +emer ald +destin ations +s ans +or y +bla zers +n v +ba il +digital art +no c +mal ta +sol ar +pi pes +alleg ations +no ck +po pe +bri d +premi er +n x +present ations +ef a +bo ws +val ve +opp onent +Į ë +visu al +ing le +cate gor +e ter +po is +dan i +at tract +neu tral +th ene +cra shes +fred die +ut ili +c st +awak ening +slo ven +quali fy +pro of +fair y +le v +fre ight +enjo ys +cup cake +flav our +â ķ +protec tive +ðŁijı ðŁı» +is u +ad mir +h mmm +continu ous +ai res +rap tors +showcas ing +y uk +pa ste +follow er +instru ctions +sp ru +@ __ +the o +debu ts +ve tte +sto w +es of +ach ed +sul tan +sand wich +som alia +franc o +car ne +flu ffy +al pine +jas mine +he ated +viol in +ple ss +divor ce +per former +phi es +port sm +dar a +kir by +lo p +chill i +for th +sky pe +ðŁĩ®ðŁĩ ¹ +celebr ities +ed y +ve e +po ison +ey el +gra bs +ssi c +un o +wester n +rail road +am er +numer ous +s v +fo w +fi st +âĢ ĭ +reque sts +mar tial +em my +accept ance +lau ra +ภ´ +er up +hyun dai +out lander +u tt +wrest le +esp resso +demand ing +g dp +geo graphy +sas kat +tro ll +confe der +su es +se m +be ts +t ful +to sh +teach es +col oured +gal way +mac y +dis orders +bb cra +at em +fen der +lit ter +e sh +provi ders +renov ation +nomin ate +ps g +nomin ations +jen na +shar p +some day +z ur +bra ins +che shire +pre y +hu go + ¿ +to ken +r v +car r +tac tical +zel da +kay la +fern ando +photograph ers +j our +umb rella +woo dy +congress man +du mp +le vy +ju an +d azz +sign als +la in +an u +mic hel +por ch +al den +sibl ings +y ale +pe el +sw ick +gg in +ll c +k ale +s con +il d +pat reon +re el +qu in +wit t +mar ty +moo dy +ton i +der y +g ators +speci fically +dd in +ly on +tr ick +meado ws +p j +bor gh +vi k +tu r +bron x +pu ff +lan tern +ðŁ¤ ¦ +g ently +be stie +fac t +refu sed +fas ci +mp y +ðŁĶ µ +cross over +mead ow +indian apolis +duc ation +sle y +loo m +mix er +new music +film maker +prosper ity +li m +week end +cre amy +neu tr +lu ther +h v +nor thern +tw o +h ra +cat ches +appear ances +ha bit +kitt ens +n v +illa c +inf an +regar dless +liz ard +dun k +cur tain +ac om +in tu +ve z +e min +fl ats +calend ars +em power +ru ined +hun gary +vi d +we x +u lum +aber deen +o sa +k t +ma ssi +se emed +s den +' ? +tele phone +de fi +insp ires +me ow +z ones +bl ind +pl y +tuc son +advent ure +ge d +oy ster +ðŁijıðŁijı ðŁijı +out put +tt t +metal lic +sma sh +ucl a +sco ts +perfe ct +lu cy +regular ly +sp ic +rel ative +ath ers +mis e +batt ling +deci des +mat a +occu pied +random ly +cat softwitter +gi an +ball y +al ties +al lies +im men +sy rac +ðŁĴľ ðŁĴľ +l lan +au r +k ut +lam ar +affe cts +n ra +star war +ðŁ¤ ĺ +sc ram +en chan +pro cess +luxu rious +ar ray +sher lock +comp ati +dor f +stre ss +m su +s with +sal a +sof instagram +fo il +under stood +qu ay +r p +c ade +ja w +en ab +en coun +ðŁİī : +do ck +satur n +mu ll +lay out +ra rely +happ ily +fix ture +or ph +over looking +her bs +m itt +pil lar +nol an +pe tty +str y +u i +mu k +o res +o vers +á µ +re creation +we sley +ri t +kejri wal +sto cking +g v +subscri bers +moo se +ma e +ber t +opp re +assign ment +u ro +high lighting +cal vin +we igh +cambo dia +av on +ke m +dis abilities +read y +char gers +p ads +iz ing +illi an +tru ste +col leges +associ ates +alban y +mil ton +cr on +bu r +har dly +si ghts +anti ques +e cho +surpri singly +ha iti +cap t +ph p +op io +ine quality +equ al +ken y +sch mid +autograph s +ren t +qu er +cit rus +challeng ed +te c +epi de +fe st +z hou +li me +citizen ship +cry stal +convin ced +mess enger +copen hagen +âĿĹ ï¸ı +war ran +develop ments +ï¸ı âĥ£ +fore x +hi ro +sne akers +xi de +vi va +stere o +bat ting +ss el +ho st +beng al +critic ism +q c +cr un +attemp ted +ry e +determin ation +cre ations +d read +label s +pos se +anc er +joh an +si ster +partner ships +les bian +k st +guaran tee +bar o +fix ing +ma son +m ous +chem icals +t less +bio diversity +par o +bhar at +ac ol +refu ge +en te +t iti +dys sey +respon ds +lef to +in er +se vel +rahu l +ol ine +frank fur +cho reo +enjoy able +c to +strugg les +wood land +heavy weight +gen s +rece p +ac cred +ðŁĺ ¡ +trans formed +list en +at op +n k +sur ge +be re +gover nor +prison ers +clau de +t ill +mu lator +emo tion +water loo +star t +ðŁĩ º +clean ed +grand mother +fear less +afric an +astron omy +ðŁı ģ +ภĻ +the world +su itable +anth ony +k and +tt en +meaning ful +disc lo +jaco bs +à ¸ +tom linson +ghe tti +ty pho +sub stan +as co +te k +nag ar +mu d +am on +vacc ine +f ty +fle sh +no el +infl ation +portu gue +glam our +tra m +v re +te qu +roun dup +w yn +rejec ted +mosa ic +si ghting +cal f +o ta +com position +go pro +gonz ale +e ed +b ard +tu e +effec tively +we en +al to +ri bs +rel ate +thir sty +fu rious +di m +ch ard +perfu me +s ny +chur chill +k of +master class +wa ve +ðŁĶ µ +er in +own s +to be +sk illed +te m +go f +en i +tor i +cra zy +l ick +resi stant +ici al +ag ar +! : +g ali +del aware +bl itz +koh li +pu ck +avail ability +hi malay +influ ential +cro chet +victor i +read ing +ho bby +vie t +j as +en gra +sk ul +ðŁĩ² ðŁĩ +educ ate +tech no +distric ts +blu es +se tt +seven th +lear ns +ee ee +apocaly pse +hang out +cru el +mu tu +bru h +hel en +she er +c tion +kle in +tex ans +ce real +sh ine +ne red +gra s +am bro +f ella +hin du +matthe w +li ma +mir anda +je wel +so ho +euro vision +neighb ours +chand ler +be sides +ðŁ¥ ° +ast ros +thu mbs +ren ault +ra ve +hi red +ðŁĸ ¤ +it ary +z or +bla zer +k ine +ea u +kat y +dc comics +pe c +ro dgers +water proof +kill ers +super int +pre serv +as so +brew ers +promo tional +sc am +villa ges +sket ches +ju icy +for life +au dit +so lo +fundam ental +len e +philipp ine +t end +conserv atives +sponsor ship +dd le +a ine +h tc +os i +hul k +w af +ภĻ +evalu ation +ant ine +sle e +robert son +roo sevel +ag i +sophi stic +emplo yers +bubb les +ko wski +inter action +sh u +bou le +ic an +j are +han k +leg itim +k nicks +kar ma +recei ver +per ks +u h +sta ir +sun i +labor atory +gra ves +voc als +oo t +c ture +thri ve +tic o +ãĥ ³ +b w +carto ons +mcdon alds +dra w +y ung +pl er +li d +eth ical +groo ve +ent a +international womensday +pat ron +wor ries +ðŁİ ħ +ðŁij ĭ +ka therine +di az +tor i +bach chan +tru st +min eral +ic om +buil ders +bor n +col oring +lat te +ca se +revolu tion +tra der +ox id +chi pot +inst antly +sou thern +se hun +pro b +her nandez +lis bon +hu awe +p ong +me a +ro oney +wheel chair +ke en +be tt +cor in +regulat ory +di splac +ka ren +sch em +sun sets +wh ales +remin is +he p +hi de +mar cel +pand ora +do yle +th fc +ot to +no kia +trans gender +ko v +hawai ian +sha ve +so vere +exc er +nick i +pu g +st or +ro th +wee t +leg al +dig nity +po w +hom age +ðŁĩ³ ðŁĩ +s re +can on +la x +wo ah +quart z +ñ a +gree ting +flick r +nai robi +advoc ates +an c +vi i +eu gene +th ra +c re +el an +pen sion +th letics +ton i +re agan +x v +sto re +ben ch +har lem +todd ler +sent enced +âĻ¥ ï¸ı +glob ally +che aper +u f +ma m +nic o +ik u +tho u +ni st +dam i +th ala +rho des +sal e +bow ls +â Ī +las vegas +sanc tions +adm ire +mat ched +un able +travel er +ele ven +straw berries +âĢĶâĢĶ âĢĶâĢĶ +stu dio +jac ques +im s +valu ed +s no +cheese cake +n xt +e os +s x +f x +ton ic +hat ch +chic ks +gra ds +hand ic +r ory +as p +ri pped +denti st +n en +lu fc +âľ Ĭ +di ge +hop kins +sher man +f da +for all +ash ley +str and +h y +liqu or +buffe t +ess ence +phar ma +suri ya +ðŁĴĻ ðŁĴĻ +festi vals +z an +re fresh +pur ple +uni forms +kenne th += ) +as an +hel sin +transform ers +k ali +person alized +chal k +bo bby +â Į +the mes +depar ture +prin t +illustr ations +qui et +agre es +gri ff +Ø ³ +m iti +toge ther +conven ience +ab ar +car lo +turt les +info sec +some what +ar lington +scholar ships +emir ates +mu ms +st ella +auton om +fe ather +g ore +nom inees +fragr ance +Ñ Ĥ +w ong +thea stern +gr e +z illa +is i +bump er +go o +do zens +ab duc +âļª ï¸ı +o ils +don ors +sil icon +i pod +fortn ite +ðŁĴ ¨ +tor o +spark ling +consci ousness +pal a +nu m +moun ted +ffin s +thi eves +team mate +pra b +om er +ta pes +bo d +mit su +ste w +e re +p bs +tu sc +lo we +ra de +parliam entary +h m +ed gar +ðŁijĩ ðŁijĩ +to a +a gh +hon i +s late +ge ek +ap t +hard t +ta p +horiz on +grow th +make over +hi l +paper back +id an +reha bil +gi u +possi bilities +let tu +fran co +bo ss +ach er +does nt +mo e +ta ker +huss ain +ml k +di l +th ia +ham a +real ised +raven s +curric ulum +m ith +k night +ted x +r v +isai ah +cumb ria +birth days +f ing +pre z +mu barak +exquis ite +clear ance +y en +par i +ev o +à º +modi fied +app lying +imple ment +disco vering +chap man +indie game +dis k +crowd funding +mach in +li vel +sty led +âĿ Į +ma king +rehear sals +nutr iti +subscri ption +and ro +cre ators +car ries +ky lie +cam den +appren tice +tax pay +c ca +tuesday thoughts +pis sed +er man +dete c +freed om +mer i +.. ! +psal m +sun light +per spec +be ings +book store +rock star +fun ctions +p ence +fav es +z n +obam acare +sp ill +coven try +pi geon +pi vo +ba it +kol kata +av al +don or +wa h +privi leg +tra ditions +rajas than +ten ess +portugue se +yn es +tack les +de fic +tor n +pol ling +thor ne +in a +bened ict +bar ry +cal ories +ver dict +save the +nor ton +off ice +main stream +impro ves +fr on +respon ding +real tor +scotti sh +de clar +r l +shi v +supp lier +re sting +swee ts +qu i +. âĢ¦ +whit ney +startu p +thank you +teach er +h alls +ha ve +hand made +pro ving +quar tet +ro chester +li an +virtu al +mend es +of icial +mid lands +x box +meas uring +o vo +accommod ation +bri des +collegi ate +intellec tual +in car +ni ag +ðŁį · +sf w +coco a +co ats +civil ians +presi dency +mat rix +sweethe art +tri athlon +wag ner +ra dic +plann er +the o +execu tion +k um +the walkingdead +sc ar +ro tation +blo gging +bom b +re son +bb les +st are +assi sted +e do +brand ed +war nings +thor pe +acknow le +satis fied +sho res +ri d +dor a +phys ically +bi gh +appro ves +ha h +ric al +vers atile +pret end +lu m +ab hi +ye e +sp it +ãĢ Į +dj s +ash tra +j t +ven ues +gram mys +cy clo +tr acker +over watch +repl ica +el yn +nr l +lind sey +hom o +ballo ons +kitch en +si s +am os +ende av +ðŁĴ » +a rec +thu g +hoo ked +hr c +new york +bur gh +americ as +patric ia +ug u +ap athy +ha st +psy chi +cor k +petro l +ðŁİ ¬ +ak u +po pping +psycho logical +au x +g ma +cad illac +wa ste +auth ent +bri stol +nam e +que er +to ber +jer ry +com in +ch ant +privileg ed +op ar +lo ser +tex t +mar ker +stri es +equ ally +ak i +christ mas +gare th +ble w +em ma +imag in +se als +che at +conditi oning +j ana +ren s +dar ies +o asis +disc ounts +coun cil +i ka +shir ley +vou cher +al ps +w x +q r +dri ft +attemp ting +ut c +Ø ª +gonzale z +m f +jo ker +paralle l +pa re +aspe cts +proce du +n p +am a +rale igh +bright en +gu ire +radi ation +cre scent +ho b +il le +str and +v ore +n ard +che st +di wali +av atar +al der +d ling +pa thetic +ðŁĴ ĺ +spir it +jor ge +film making +ðŁĻı ðŁĻı +challeng er +b j +down town +ht ml +ade qu +twi sted +in ely +( ' +wra ps +oper ational +y ne +n us +mag net +market place +health ier +snap shot +dam on +inter ven +fe derer +ow ls +biscu its +j p +ro deo +blue berry +lec tion +fron tier +summ ers +re yes +pede strian +go l +caf fe +refur bi +bou lder +me ghan +speci alty +la ss +e i +suspec ts +appro x +rr r +ra th +st im +cru shed +he d +wh un +lo af +cr ore +river a +gene tics +so ck +wa sted +ny pd +answ ering +do ve +bel la +ol in +du n +fi ji +pre tty +spar kle +y un +j d +euro pa +li fts +am ber +mu r +te k +boy d +roy alty +in do +ri b +go tham +ti est +inst alling +ke mp +the photo +cos mic +) )) +whole sale +loy ment +eas y +su ing +sett led +af p +pro ver +suppor tive +re es +ne ath +deli ber +c é +wel come +pic oftheday +new born +pat ty +sun s +si est +fl int +diffe rently +spo ilers +troop er +g ins +cor y +look out +equi pped +ta pe +to by +resear cher +u sh +ke yes +al ma +induc tion +k w +k har +sl ick +bri de +e ur +cra ving +book ings +ch es +tr unk +vern on +sp her +cryst als +rel atively +pom pe +uni ons +val ley +par a +w ant +ok c +de af +ser gio +len non +sh ay +cr a +v at +he e +t we +liqu id +pol y +ðŁİ ģ +b ent +be aring +motor sport +bar be +te sti +han i +fin ancing +astron aut +water colour +ri sh +comic con +gar t +wr ong +ber n +it an +ste pped +fil ters +c low +me x +dem ons +all o +expand ed +comm and +et ers +go ats +si ri +y r +pot tery +mari on +i le +el an +san to +person a +du ke +hom eless +li ghted +wheel er +chang er +cab bage +sur real +ham burg +sma shed +str an +k not +i art +ob i +be dro +di al +th ick +b ingo +fu s +vacu um +con ve +ati ve +accur acy +accoun t +re fer +ri z +spider man +ban a +r ite +u b +ab s +medic al +lin k +si em +> >>> +be tra +g lowing +re actions +pupp et +spa ghetti +ang s +re medi +pray for +roy ce +char lotte +£ ï¸ı +gh et +affe cting +ro de +soci alist +mo ses +az i +o it +re porters +cd t +ap ing +s nat +minim al +wa ist +sie ge +>> >> +ri g +schmid t +h are +ec a +thor n +he mp +es the +cly de +th a +don ut +moham ed +ling erie +le gg +carpen ter +perform ers +de a +imag ined +cur se +la sh +ct r +agu a +ro ar +gr i +ro le +j fk +resur rec +roosevel t +maril yn +sm alle +will is +wa ited +char ities +the res +li k +origin al +car i +c ough +cru ci +la gun +contra st +k ou +arm our +re moving +t ent +maz da +bri ghter +thi ef +cor ner +tequ ila +buzz ing +al bi +p am +az ure +disc oun +pixel art +possi bility +ham ont +tra des +bu da +hi ve +vers y +fin ch +tran spa +em i +terri fying +in qui +g ba +sub stitu +collec ti +plac ing +cin dy +k ann +pa tho +diamon d +mour inho +guine a +anthro po +air s +pu mps +ì ļ +pas o +cur ling +an ita +resi dency +ne wh +jo on +cigare tte +que ue +ex trac +gam es +spl en +ex press +public ly +bon nie +tribun e +ba ek +reason able +c or +timo thy +she eran +Ä ± +f dn +su tton +concentr ation +carav an +x avier +al ger +cy lin +freder ick +ner ve +pe ak +lettu ce +j ail +pre game +kav an +up graded +eco logy +squad ron +gra pes +goo g +pa stry +ðŁĹ £ +ãĥ¼ ãĥ +mil ano +awa z +presen ter +ðŁĮ ¿ +her d +king s +tem plate +fl our +h v +k ley +i ya +spe c +at er +frankfur t +co ch +tex ting +del i +communi st +regi ment +ele anor +anticip ated +ðŁijĮ ðŁı» +thephoto hour +ran o +survi ving +simul ation +daw son +ar in +aqu a +m or +âĢ¦ . +cin o +ira qi +sh az +dun dee +we s +dra u +hann ah +s news +occup ation +ste en +x m +ang les +sett ings +gur u +kno x +or ca +shap ing +w ent +dr illing +zz ie +br i +kis sing +fin d +ma ine +âŃIJï¸ı âŃIJï¸ı +ðŁĮ į +lar ry +bu sted +ta vern +acti vely +- " +replac ing +no d +un lock +. " +âŀ ¤ +affili ate +to w +l n +happy newyear +di f +j m +green wich +contro versy +daw g +con dol +sav annah +compens ation +touch down +te o +amb itious +embro i +convic ted +iart g +bar ack +tr ance +testim ony +au dition +thum b +my ths +be x +que z +orch id +den y +entit led +hoo d +gr ant +in box +blue jays +r illa +smalle st +bur den +in famous +divi ded +boun daries +t ter +el t +wy oming +be verage +me sm +one ws +budd hist +y ana +as sad +is ms +bar rett +predic ted +back to +tw it +e there +cap tains +escap ed +ay o +lam borgh +gard ner +la ps +k al +adverti sement +insec ts +na po +am en +ac y +r and +g k +te h +k athle +tri dge +pan cake +at ro +pyram id +bu la +paral ym +gau ge +en cies +tom y +biscu it +but cher +quali fier +coun ty +ke i +po ols +dar ker +should ers +ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸ +sp re +( " +writ ers +g m +ðŁİ ĵ +k nit +hu ff +mt b +philli es +o st +den is +g art +licen sed +inter face +ex cel +d well +from the +co fficial +az zi +appear ing +fore st +n ana +ke ith +manufac turers +beck ham +) ? +e se +col ony +delic ate +ut ter +mc in +transpl ant +pre ferred +par d +ari e +hu b +po ds +perspec tives +pic t +del u +app er +be than +p mo +crimin als +femin ism +sh ack +circum stances +fel las +prote sting +wa x +sugge sted +t ator +dre w +om ni +fa ke +kath y +re b +del ine +ber ni +mi sty +ðŁij © +er able +break through +men swear +millenni als +chan yeol +la z +inser t +rep lies +phra se +n x +ihear tawards +audre y +gran ite +rac ec +ori e +ter ra +innov ations +britt any +at eral +pe ar +bio logical +sh ments +institu tion +m sn +frequ ency +d man +neg lec +t f +ste fan +fox news +ty po +comm s +sequ ence +car men +wh ites +econom ist +exe ter +se um +re sorts +cas ually +bun de +divi de +Ø ¹ +ga g +cre ed +reti re +cau cus +rapi ds +wrestle mania +tul sa +sunder land +fundam ent +o di +yam aha +v ary +intri gu +el se +be acon +an gie +tra ded +tran sm +g ents +kn itting +gal ac +ðĿ Ĺ +u to +sea side +hol t +re rs +far go +train ers +mon soon +b ale +sou ght +mad die +h w +co li +fr an +fav s +ðŁĴ Ķ +int ent +r ally +s bs +lemon ade +barack obama +bre ad +stick y +explo sive +chel ten +t j +as soc +ram en +hom ies +v log +mi ster +lor d +âĢįâĻ Ģï¸ı +aly ssa +sketch book +ru mble +cat ch +migr ant +discipl ine +un likely +chronic les +fl ora +sl ams +am id +s boro +coo p +ju mps +tran qu +mel is +sof ia +en ri +gab e +sy ri +nicol as +cha i +w v +be cky +foo ty +ta o +suppo se +ðŁĺįðŁĺį ðŁĺįðŁĺį +plu sh +ri sh +ðŁ¤ ĵ +k ha +satur days +ac cent +he c +lim it +carl ton +wi red +taylor swift +ðŁĺ ij +sq l +har ro +recipi ents +g at +go p +th of +amaz ed +gh an +ðŁıĨ ðŁıĨ +por to +cla re +di stant +na c +ohi o +ðŁĻı ðŁı¼ +mt n +anti bio +dino sa +me sa +par tial +b v +lear nt +lov ato +questi on +ex tract +gossi p +gi bb +niag ara +ðŁij ¨ +displa yed +so oner +ste vie +nug gets +ml n +bro m +tur b +give aways +stu pi +bl ink +c ili +conven ient +mo h +vi ve +f ric +cau se +cham ber +cu les +ne arest +is se +small biz +t j +canadi ans +smar ter +bra sil +ra re +que tte +w ha +cand le +at omic +ðŁijį ðŁijį +warri or +relax ed +stri ps +ne ur +k ka +r fc +jen sen +reco vering +respon ses +sal am +ortho dox +acti ve +ell ers +n it +âŃ IJ +metro politan +centu ries +vi da +gra ding +transpa rent +sim ple +do ts +superint endent +elev ator +autom ated +red skins +ima m +summer time +jona than +ge aring +michel le +confl ic +m ice +to te +publi sh +pa x +) - +na iled +á ´ +tele scope +ser bia +ba b +ape u +st ically +sen ti +r ats +isol ated +grou p +hat red +paranor mal +stan ley +ali on +safe ty +l s +ठ° +nex us +alexand ra +mas ks ++ + +tr on +au k +brother hood +brow se +mix es +sim one +mu sk +appro ve +lo la +ex p +per th +fu turi +un seen +d m +chel se +sc outing +o we +portsm outh +k ram +mi ze +di spen +su p +d lc +adver t +tere sa +is le +cy cle +met all +shi elds +marin ers +ra z +ing en +fun d +an go +jon es +o ka +mad den +broc coli +domin ic +situ ations +mer o +cric ke +puni shment +d b +sha king +ðŁĺ ļ +m q +ari ans +le h +cla w +we ds +d ure +ni el +j elly +gour met +tra ders +le vi +w ages +kne es +wi se +heaven ly +avi d +melo dy +z ack +ban anas +apprentic e +pro p +fun ny +o de +respec ted +me gan +fe wer +dra fted +med it +gra pe +us army +cru sad +vo cali +prepar ations +non sense +us age +th r +ro th +wiz ards +insi de +promo tions +mon a +red sox +si g +eleg ance +ch ia +univer sal +ãĢ į +ra ja +un ga +pol lin +filip ino +ak a +t sun +ik on +bi king +decor ations +z ac +cade ts +hum our +ag m +re ppin +vac cin +elo ve +u w +dia be +galla gher +az er +do l +a while +pro minent +wel sh +t ann +' ) +bi en +wa g +in al +c wc +wic ket +ur st +q anon +x e +out door +dun n +star r +co logy +ric ky +u efa +reb ounds +s music +inf ant +ðŁĻ ĭ +so p +u mber +hand ing +beg in +sor ting +ha sh +sp ati +re k +buda pest +black hawks +dele te +ro m +can did +auth ori +de bris +spe cul +inter section +marri ott +im ran +ðŁĺģ ðŁĺģ +cru ises +ram sey +rafa el +aware ness +vas cular +beyon cé +ru g +ðŁĺ Į +festi v +ar am +s able +bas il +p ill +flo oring +un beaten +implic ations +u f +w ound +for ge +poin ting +po ts +popular ity +ðŁijı ðŁı» +mani pul +s lots +deb ates +abs ence +ver mont +never forget +wri st +gl oria +ren ce +hu sk +mel ting +ðŁİ Ł +br aces +tim ely +transform ing +am ps +ma k +po e +ah an +gener ally +nd p +ale ppo +unic ef +pro fs +nor d +ma sk +jackson ville +v v +sh ells +bloom ing +oper ators +char coal +ne ville +ma gi +chi p +sam a +ir an +re forms +accu mul +ru e +æ ľ +web sites +ga on +devast ating +sto s +glaci er +ra pp +chipot le +pr a +or ous +rom ney +seas on +decor ative +c isco +dit ch +compla in +ll o +assu me +ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤ +n els +cent ric +ft w +car rots +tat a +can ter +per ience +li ers +demo s +bl unt +oper ate +reserv ations +le ah +sub stance +di son +an te +elec tion +v ue +squ are +non profit +ca a +f su +y am +ãĤ ¤ +v ladi +comple tes +mar i +philli p +ne ill +er as +ka it +men do +mahar ashtra +g p +dan e +provi dence +ther apeu +juven ile +me mo +in corpor +aa aa +seven teen +teen ager +à £ +or ns +wi de +cu teness +tw d +ff les +bar a +com edy +over time +y az +bar on +unemp loyment +ðŁij ĭ +exter ior +den se +cent res +match up +history month +artif icial +qu it +e sk +war n +cr itic +j af +ðŁĵ ² +inform ative +fu els +recy cle +nam ing +stri pe +sol ic +mole cular +dee pi +con vo +s sel +na e +de scent +ti z +accoun tability +ter ry +r ito +sl ay +em o +dem ol +sens ation +co v +tor e +round table +y ol +excu ses +ॠį +tur quo +hh hh +pod casts +cele b +me ssi +li o +man n +contribu ted +u z +gener ator +ele ts +veg gie +indu l +en suring +detro it +pun jab +tran spor +instru ction +ad d +por cel +pan eli +cir cles +persi st +clay ton +sp n +dog softwitter +is nt +sp r +retail ers +p w +hun gar +el ena +mon aster +gu atem +je ssie +an z +ra shi +fle e +car ving +fau x +l al +hen ri +d jo +du ll +s ana +lar a +glo be +cri mson +com pass +pau se +na b +lion el +ba ths +u fo +invent ory +sin gh +sat an +ðŁĩ ¸ +ce ments +in form +gener ated +bi den +av g +tas ks +de er +sa u +ja iled +pa stel +sc c +na il +steel e +per is +lamborgh ini +pur sue +mar gin +u ch +bo sch +dra in +cl ara +bo m +lat ino +web ster +rose mary +r ha +s oun +billion aire +not ch +percent age +con or +' " +hom es +earth day +h ort +big gest +di sin +wal ton +edit ors +im ma +om ar +equi valent +pharmac eu +ah med +cam eo +han ni +under rated +ge ment +micro bi +v oo +honor able +obe sity +âļ ¡ï¸ı +limer ick +invol vement +st agram +boule vard +bur g +blackand white +liber ation +fi ve +inter im +sm m +rival ry +cap abilities +stat ements +thu mb +ve d +sw ans +bar ber +e que +seren a +hel m +noo dle +sam pling +n awaz +sing le +thunder storms +sh on +in ev +ë ¯ +to pp +orch ard +bi an +ðŁĺ Ķ +door step +salv ation +marke ting +r ons +cle mson +ra vi +in take +stand with +sin a +ha iku +ple y +elector al +ph illy +la ys +electr ic +cap turing +u pp +er gy +believ ing +cul tures +es day +inva sive +ed ed +spee ch +end ur +viet nam +boy cott +pe de +deli ver +ðŁĴĸ ðŁĴĸ +mer chant +st ir +den ies +poc kets +o ti +cu ddle +ro land +mm ed +den ed +lear ners +hoo p +sour cing +h acked +di m +environ ments +ben son +jud icial +wor cester +pear ls +govern ments +arri vals +cor ners +tun ing +la bour +y m +or dering +le wi +i fe +hygi ene +thou ghtful +indone sian +campaig ning +princi ple +assau l +ru bb +at v +wil ly +en tre +il i +ph on +du ties +âĻ¥ âĻ¥ +sn akes +lo op +am ar +conver tible +bon ding +ment oring +max well +ethere um +destro ying +ax is +ca iro +fin nish +sho ck +ðŁĺ IJ +cal eb +com a +pe dal +co re +contin ent +el son +temp o +helsin ki +ac p +tack ling +st ated +bl a +dou b +sma shing +a ja +camer on +disru ption +warm th +being salmankhan +bullet in +o de +syrac use +ar an +mc gregor +bul k +an ton +confir mation +sp ine +im ran +instru c +jac ks +chi o +pal m +str e +embarra ssing +un t +elimin ate +to ss +c ise +a ws +oni sts +sh inee +jo s +ho se +li vely +opp onents +mo vements +recogni zing +sandwich es +sh akes +exerc ises +se at +profe ssion +merry christmas +lu gg +adopt dont +mar vin +byr ne +un le +he t +ku wait +rah man +aspe ct +humb led +gen es +f and +long time +) ; +cam pu +an gus +ðŁijį ðŁı¼ +q uran +sle eves +s lic +¸ ë +twel ve +your e +i ke +go gh +b st +dic tionary +reflec ting +to on +yar n +em bed +ðŁı ´ +re serves +floo ded +ver iz +du sk +estab lish +pro li +au d +ritu al +or bit +declar ation +recor dings +cam o +cas sette +good luck +cu tter +bo p +b ho +che ating +paci fic +ma res +tim er +col t +tr ous +tomor row +han sen +ci e +w ang +ban i +circu lar +ac ute +far mer +co ys +p se +ir ving +w j +haw kins +b ison +ur day +cru ising +o te +k ath +whi stle +your selves +ant is +sla sh +thorough ly +ke sh +ser ie +ex em +en ig +guil d +sh red +ho gan +ap o +ä ¸ +pu zz +ne tball +au ssi +panor ama +ws j +av is +ar ming +hum ph +brow ser +cri es +fo ggy +mat te +ðŁĮ » +it er +tal lest +by ron +cap tiv +je su +any ways +flag ship +p ton +we y +fay ette +financi al +f oul +solom on +jenni fer +cucu mber +ar gue +tex tile +wrest ler +john ston +pa stor +ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃ +cac tus +edi ble +re served +ric hie +met res +ingredi ent +h ella +un to +ch ol +cele bs +po ets +gra ham +hay den +coinci dence +b aw +communic ate +flet cher +/ - +tole do +ecu ador +coun sel +s laughter +line ar +at p +os u +jo el +ev ed +conqu er +ru stic +plic ity +recogn ise +room mate +cr acked +jas per +ph er +ðŁĮ º +wo ven +mo ist +ff c +ste ering +ni sh +stand ings +frequ ent +ar di +haz el +as msg +bau m +d art +si dd +nat h +ch ero +card board +c ss +n sfw +pa ir +ðŁĺį ðŁĺĺ +occur red +homeless ness +mal one +ph e +xi a +pad dy +decl are +theat re +b f +per sian +ta d +ax e +susp icious +lam b +mu cho +sen ior +st as +k ite +st ing +gra d +k af +wat ering +Ø ¯ +spi ral +th ms +educ ator +jer ome +of c +clo ck +su l +pe mb +.... ..... +park way +de aux +restric tions +m ons +need le +e j +le agues +water melon +am an +pl enary +max im +w ab +coming soon +bry ce +vi gil +super market +fortun ate +turquo ise +presi dent +li v +inter ns +feel in +fix tures +stun t +st aged +premi eres +lo k +prac titi +shor tage +log ne +ve c +con cor +roc ke +li g +com posed +syn thetic +di p +cam ila +ch is +j ou +su san +eye brows +supp lement +satis faction +moham mad +ti bet +house of +pu n +as sam +shado whun +psy ched +se duc +mand atory +her bert +sc allo +stream ers +proto col +block buster +produc es +sch nei +lau rel +tri be +time hop +pl a +mod elling +tv time +mtv stars +wi dow +me tric +ch am +con do +flow ering +ale c +d ms +inten sity + ¨ +mccar tney +islam abad +k b +f fi +ph al +anal og +f ond +h acks +positi vity +treat y +sub marine +conne ct +sel en +categor ies +cu b +organi ze +si k +quote oftheday +remin ding +am or +loc king +ðŁijı ðŁı¼ +comp ound +et te +b out +rec ur +fe rence +mi zz +tren d +hip ster +for tress +forth coming +preli min +o dyssey +ang p +del ici +even ings +ðŁĶ ¹ +i q +d w +da ir +kathr yn +christian ity +moon light +ha b +wh oo +f bf +se th +genu inely +pa x +char ity +deplo yed +b nb +bu cs +ju dg +con ge +plant ation +im press +car a +sc lub +sco py +land ers +compla ints +b ama +re build +x y +real ism +sh our +le in +brac elets +mer a +assas sin +an chor +ðŁijĮ ðŁı¼ +lin en +con fron +chronic le +comm ent +cat alog +il les +gor ge +me try +jung kook +love my +sent in +se em +fit ness +alli ed +ts man +digital transformation +pr an +lo ft +min ton +alden richards +en vel +cher ish +certain ty +zz z +rhin o +per kins +en rich +cape town +ome ter +sec tions +ske leton +def enders +ðŁĺ Ŀ +pen c +bri t +ja h +capital ism +ðŁ¥ ĩ +baz aar +re me +ex t +kk k +conver t +stor my +b ye +kar an +chry sler +ad os +pre ssed +syn c +ation day +dang er +bad ges +refu ses +em powering +ly m +ex ports +adoptdont shop +ðŁĩ ¯ +th c +awa ited +focu ses +fin ed +o at +haha hah +âģ © +n family +fi ona +luck ily +thr illing +ty ping +out break +di es +he u +craw l +ne sses +o ath +scri pts +gee ks +ðŁIJ Ŀ +p b +mathemat ics +al is +________ ________ +gymna stics +acti vism +recommend ation +gre n +wa in +cour ty +n apol +cau li +hor nets +g als +jo ckey +dir ty +at ar +enor mous +pe st +greg ation +an os +ii ii +def ends +black historymonth +at x +mb c +lugg age +wit ch +co b +la sts +cu m +gg g +ba thing +n ar +ce bu +ðŁį ĥ +navig ation +min e +re jo +ðŁİ Ģ +gif tide +re ta +use less +pu ll +defic it +al lu +ati me +it v +tr illion +pu e +ac ies +proce dure +l ori +jen ny +c ad +ul ously +dr ac +promo tes +ing the +can u +woo hoo +na omi +zar dari +ts u +be ir +sd g +le ver +we ber +ab ud +lun d +crow ded +deplo yment +ter rain +ken ny +ho f +witne ssed +lo ch +j k +bul ly +w ren +poe try +do ff +ww i +mo red +din i +cul ture +promp t + ¥ +maur ice +to pps +r m +cor respon +ab out +jewel s +gi br +eag le +ðŁĺĺ ðŁĺĺðŁĺĺ +l ending +sou ven +ç Ķ +contemporary art +establi shment +j ong +âĢ¦ " +gat or +patri otic +mc coy +v ape +human e +feli z +coach ella +re posting +ste als +fu ller +n ering +at ra +( - +bla ke +he ather +wor ms +discipl inary +rede mption +y ard +am in +" @_ +d nc +t ds +k appa +ne wark +comm its +spe ars +j ams +t and +msn bc +inter medi +aim ed +at ic +teen th +observ ation +kash mir +kavan augh +ou l +san francisco +re u +bel ated +cho w +pass word +st ills +deta ined +sar i +day ton +dar ren +itali an +ar th +amu sic +ar bit +w m +v m +he m +dou g +my r +a sho +pre v +vin d +bra h +sta g +ภµ +pre views +gu k +con taining +leon ardo +sad dle +ru shing +st av +lon gh +gam bling +ve gas +reserv ation +end ale +bal a +fl a +vari ant +he dge +bulgar ia +nat ali +we aver +sol st +encoura ged +ap c +as parag +ne st +cycli sts +fe l +ìĬ ¤ +overwhel ming +pey ton +j it +a post +mb le +ble eding +neighbour hood +a very +expre ssions +mac donald +gi gs +mon ds +illu sion +n ct +cam ero +over head +my th +ol y +vi o +et v +lau rie +unve iling +pri or +con n +iron man +di ff +day in +crit ici +con go +re vision +wal e +direc tor +p ines +black pink +gar ner +cur ated +manit oba +h ac +common ly +bar ton +.... # +mor tality +live smatter +philos op +shor ter +con vince +fre ak +vend ors +insi ghtful +el ly +sens ors +e led +s berg +weight loss +u kip +sp ur +priv ate +qu a +ss c +, ... +supervis or +advis er +amaz ingly +less er +at es +mah on +oooo oo +sar as +pmo india +waff le +un ders +toler ance +sculp tures +her sh +kno cking +smo ke +cathol ic +gri m +tra veled +fli p +ge off +dinosa urs +sle pt +scar let +ok i +compla int +ob sc +nam i +la g +cross fit +u fc +mc cain +refe ree +sad ness +pen ny +li eu +mo de +ki er +vol s +w is +el on +she a +ba o +son ia +cla ire +em manuel +moist ure +di gest +vi ii +t eller +ch on +access ory +night club +foss il +aw an +hu sky +ab original +brand on +ffici ent +cou gars +ste d +ad mitted +igno red +content marketing +ag as +v ase +execu ted +negoti ations +she ad +n and +tab lets +go th +ts al +d fw +on ep +protec tor +sp ho +gaz ette +andre as +ss er +comp ilation +ha v +contain ers +bro ker +soc al +porcel ain +hy uk +air ing +ðŁĴ ° +publi sher +scen ario +spart ans +re viewing +itu des +ed el +pear son +ba sh +mau i +a ad +ðŁĮ Ĭ +li u +ul ate +program mes +fav our +web design +real ty +motiv ational +cro sses +' ... +bus ch +adjust able +ar jun +mist ak +dimen sion +pi stol +weigh s +en y +unve il +indy car +gor don +f ade +fran ken +qual ities +bet t +loc ate +ker r +sp c +confu sion +ne e +luck y +bas es +dep ends +fire fighter +ol a +re t +mar oon +ðŁĶ Ĭ +w am +defin ing +whe at +bi l +é s +b hai +psy ch +ta u +ic ans +thi k +ob ile +inspec tor +ìĨ Įë +ill on +go s +ev angel +fa i +si st +voc ation +bur ge +chi stan +renew ed +enthusi asm +en ting +ag ri +ike a +m sc +aero space +sens iti +memo ir +hosp ice +co caine +der ry +mechan ics +Ħ ภ+tin o +reduc es +collec tors +in justice +supp re +v ana +ab un +nap a +su sa +os lo +e ff +en core +lic ence +ched dar +z al +moun t +ðŁĴ IJ +threat ens +!! " +archi e +fu tsal +scu ba +jo s +gn on +se xi +s official +compar ing +domin ant +tof theday +fa it +propos als +gi ft +y as +cn c +l r +ha b +reser voir +beli efs +gener al +mar ti +t d +est e +ì ł +wi l +ðŁij ¯ +ðŁĶ « +sp x +et work +excer pt +e instein +hir o +sil hou +team ed +per ception +corri dor +mental health +hin ts +ben ny +induc ted +sw x +wi desp +spe ak +cher yl +dru g +ðŁĺ ķ +h f +asparag us +myster ies +fitz gerald +off er +therap ist +care er +dam aging +ts d +per u +wei bo +y ay +phoeni x +disc re +mac book +bar ker +stig ma +sp read +roc kies +kang ar +bri dg +pa i +bi shop +ta iled +capsu le +ðŁĴ ĵ +ge of +roy ale +short listed +o ste +ash amed +ch app +key e +cl a +screen shot +austri an +nati ve +en ight +juli et +michel e +ðŁĮ ´ +travel ers +pi l +football er +win chester +ðŁĻ Ħ +azer bai +gold eng +organis ations +interpre tation +predat or +ofthe week +lo gan +pok é +mari e +cal la +t nt +cin de +ge tic +fit fam +gra v +ow ens +ðŁĮ ± +shoot out +sal is +commissi ons +co he +p tic +ni xon +hi a +amb ition +mar ine +cruel ty +t k +cru de +sal ty +jim a +mon go +ir ony +on wards +arre sts +strang ers +ig er +cycli st +ra g +exten ds +tra dio +bour g +mo i +el la +e able +lex us +au l +der a +histor ian +mor ton +ti ff +man ner +ko t +d k +po inted +mar qu +a an +en ey +du blin +on poli +em ili +secre t +fl o +âļ ¡ +ba j +ste ep +accompan ied +rum ours +dev i +purch asing +fi g +pu b +sch oo +autonom ous +go alie +x ia +autom atically +re vers +ter o +fu ku +titan ic +shoo k +sand als +see kers +exc av +nor dic +bigo live +ba ke +r att +z ak +ne p +ðŁĺ ¤ +cand y +billi ons +book worm +pp et +à ³ +sur faces +sc ars +phil ip +do gg +ci gars +co te +transl ated +cur ator +sin dh +han gover +bre wer +on es +el ton +ðŁĴª ðŁı¼ +mar cu +elli ot +righ te +di oce +ru ss +rail ways +grand son +as cen +apo logy +awa it +mob ili +re spir +parti san +oli vi +stri ke +yo o +white house +expre ssed +pu ps +bed ford +cul tur +fro gs +fly ing +cav ali +c ds +fri ger +street photography +re solve +tali ban +kan g +cru shing +ju m +ðŁĺ Ĵ +william son +tan g +cur ly +t man +veter an +fa ire +artificial intelligence +un anim +pre n +back drop +fr ances +oc cer +doro thy +work ing +ar thr +conver ted +day light +serv ant +pad dle +compla ining +thir ty +nad al +ak u +ibra him +ad dressed +p iss +green house +batt alion +si mulator +out lets +embroi dery +ðŁĵ ± +fis cal +ger ard +sas sy +ðŁİī ðŁİīðŁİī +vent ures +mer it +public ity +ðŁij Ī +sophistic ated +c tu +conven tional +condol ences +isra el +tra dition +ar an +te ss +gla d +ðŁĺĬ ðŁĺĬ +correc tion +ge on +am d +or ship +be ast +ch ment +ì ŀ +nic o +wk nd +wel s +cushi on +beli e +vo c +idio ts +under neath +pu ma +corn ell +en ation +lu l +swa ch +ab ig +u rer +mi e +form erly +ca f +er nal +chor us +juli us +sen ator +âľ į +wh ir +salv ador +ph d +uni fied +boo ster +graph ical +w rec +son ny +mi z +dere rs +s all +ven s +tusc any +wi d +y ong +kur ds +w az +trol ls +mac ro +cat urday +pre ssing +sa sha +cent ennial +gu sts +em c +be fore +den ise +cu st +ðŁĵ ¢ +lo oo +base l +eng land +y olo +ar du +manife sto +do ha +ì ľ +kni ves +bourne mouth +bi bl +bar b +al icia +Ø © +com er +cycl one +g it +ane ws +character i +vent ura +in tra +sf giants +hu t +be a +dar win +ell er +al v +re ese +bl y +kar an +conclu sion +man ny +fla kes +unite blue +nad u +co pp +ed ges +lanca shire +i als +o tta +philipp e +l ent +che e +ment ors +festi val +an ism +compli mentary +r j +pu g +d ine +we i +cli ffs +sar my +ti veness +treas ury +il and +after math +rabb i +ou n +bou quet +herit age +zi on +sur render +shen an +in ks +kar l +gh ty +pol icing +exam ination +ce y +per su +measure ment +hydro gen +lu han +âłĢâłĢ âłĢâłĢ +war i +о Ð +j y +fow ler +mis h +al fre +âĺ ij +bb naija +cat alogue +recogn ised +sa ver +hu skies +col in +mun do +si va +p ng +discoun ted +man utd +fre sno +de vin +prelimin ary +tro phies +pla stics +du g +pro cu +indi go +g ard +dy lan +pit ches +ground breaking +in son +bl ac +an thology +f h +expl ic +r ard +admi ral +so chi +la shes +splen did +en vy +ad v +sex y +festiv ities +stic king +bi b +thr ill +op p +ari el +botan ical +endur ance +fe males +br icks +vat ican +black pool +ber mu +br ough +roll er +bi d +sue de +sloven ia +mm ing +ml b +med alist +di ans +rehabil itation +ne on +s go +li thu +ram os +z ed +pi anist +inten sive +broad band +stu dy +peter sburg +lu ca +ah hhh +phys ician +dill on +tele com +gri ef +mu n +ac ro +si ded +s ly +blo ws +classic cars +tri um +ar gy +? : +h ri +marsh mal +âĢ ĵ +to pping +war saw +tran sc +preserv ation +b av +re friger +experim ents +ä º +gl it +sli ga +g age +fac tor +flav ours +br ony +sp o +cook book +carri age +aw ay +ny fw +on ian +w g +simp sons +ro lex +ðŁı ¿ +cro sby +ãħ ¤ +cre di +syn dic +pu bs +ali fe +poor ly +mac ed +ðŁĺ ŀ +behin dthe +w enger +n ats +ðŁİ Ł +rubb ish +procedu res +typho on +opho bia +er do +fu el +vi era +bu mps +millenni um +new zealand +lec tures +it on +mil ky +respon ded +ê ° +landsc ape +.. @ +bo ther +âĸ ¶ +z hang +huawe i +tu ition +s worn +in u +y or +pa olo +au ditions +ab il +malay sian +ho ps +fe athers +mp le +au ts +ã o +boun ty +ic he +ì ĺ +sh q +pin ot +ge ars +disapp ear +video games +t na +alzheim er +ðŁĮ ŀ +a ji +under wear +swit ching +sign age +o scar +ec on +dro w +cl int +pl ated +gun dy +emb lem +ho es +ici st +nel ly +juni or +road show +miner als +at le +alexand ria +ac claimed +v ell +shi va +ad he +en ne +amne sty +h ounds +councill or +ðŁĴ ¦ +aes the +part nering +influ enced +mag no +fl are +extin ction +civil ian +maje sty +va il +law makers +rac ks +mc c +ori an +sp ices +er rors +may er +co ca +pa i +s ooooo +reti ring +ba thro +ðŁĻĮ ðŁĻĮ +âĸ ª +su f +endor sement +buil ding +broo ch +pal la +arvin d +ag ent +kar ate +r hi +c tv +ta ine +um m +ba x +reig ns +uni of +enterpri ses +adel e +fla ke +at tire +bru ce +ba hamas +gra vy +sa in +che ek +tri vi +lo v +e en +bb lo +lady gaga +itt a +. "- +du stin +observ atory +eigh th +bloom berg +kh s +f cc +gi st +commemor ate +ve er +sexu ality +ed c +nic ole +vac ancy +u ser +son a +:' ( +dipl oma +t end +up grades +Å Ł +jura ssic +cardi ac +dr s +widesp read +à ł +dail ies +vend or +sim plicity +wi der +len ses +supp lements +de pos +ob served +vin es +parti ally +renew al +collabor ate +ali g +fin ity +ph u +zz y +pe tit +ðŁĵ ħ +z in +i gu +sm ack +fall on +ðŁĵ £ +back wards +comp onent +o so +compati ble +bin ding +zur ich +thom e +w ounds +ly ric +fresh men +sne aky +fi bro +di et +emplo yer +in sect +h ated +sch er +raz or +n sw +boo ker +califor ni +av fc + ° +preten ding +pep si +al is +un titled +k art +grand parents +e the +o ck +lux emb +visu als +small business +abdul lah +min ho +su baru +h ra +reve aling +heart breaking +clar ity +am g +sl r +** ** +âŀ ĸ +recor d +ici ary +min ded +ye h +exce ssive +knu ck +icec ream +tru th +ev ic +ta stic +ant arc +ren dering +, , +mit t +loren zo +st patrick +bound ary +zi g +vo cab +osa ka +fur n +tu n +gu l +s ounding +blo gger +utter ly +g af +adv ancing +l cd +mar gin +lifel ong +solst ice +sh ra +wa its +ple ar +bre ach +en ligh +ad er +itt le +c ation +ho on +stu died +?? ??? +k ash +ev angeli +ps l +wei ghts +met als +ty res +tur no +wi e +car b +g ale +se al +sun ite +am ic +patter son +á n +eu ph +up stairs +quali fiers +khali fa +apple music +ìĨĮë ħ +vau ghan +al ter +cru iser +mu a +t ana +kat rina +id ols +spo iled +secre tly +fi bre +part nered +um es +gi ov +com et +screenshot saturday +k eller +fil tr +fe t +con way +pe u +bad minton +gi d +m ound +don key +bu ff +lea ther +lar gely +bro ch +int ments +am use +r k +sto ve +impac ted +con t +cr acks +prison er +bar i +contrac tor +ori oles +domin ate +pol ar +am elia +dr c +ðŁijĮ ðŁijĮ +vi st +su arez +injec tion +blo oms +ðŁļ¨ ðŁļ¨ +sti ff +pay pal +sno wing +thur sdays +goo se +we dge +educ ated +weak ness +de cker +abud ha +bree zy +Û Į +hope ful +o bi +rai der +gh am +de u +se ve +par tly +fu t +infu sed +mer ri +than e +some time +hu e +me in +cre dit +sli ding +ran de +cher ry +dead pool +sh ol +ar am +under wood +sky e +distur bing +m nt +poli shed +guardi ans +ha dn +pic asso +ari us +ak shay +ir ri +j h +happ en +la kh +dal ton +at the +s well +mar sha +re h +cour s +j kt +top us +serv ice +r ink +hack ers +dono van +hor o +tc m +may hem +cha se +dev ops +ken sing +sc up +sh ere +quali fication +c live +ton g +n ancy +mar is +der dale +ber man +cinde rella +jol ly +ci c +loo t +collecti bles +hom icide +g ge +epide mic +su ites +mu ddy +gi mme +e rec +- * +tal la +lis le +embro ide +ðŁĩ© ðŁĩª +veriz on +ve ctor +be anie +arti san +ga in +flo res +vi gil +u so +ðŁĻı ðŁı½ +grin ding +gh er +air ports +respon sive +shaf t +can cel +ceremon ies +e me +at ari +bru shes +eag er +bo hemi +children s +yan kee +ma a +suspen se +mor an +mac ar +sun flower +cre w +vo id +ke ar +fashi oned +jen nings +sunday funday +sub missions +me ad +her man +wa i +crit ically +le um +baek hyun +for cing +co bra +ãģ ® +acqu ire +al k +ge ology +pri mar +import antly +ire z +bunde sliga +curi osity +sen a +stric t +con soli +win ters +ven om +chelten ham +ðŁį º +cen a +t at +ba in +glo ver +under cover +as ses +car n +memorial day +am eli +i rene +ch on +syn thesis +spe edy +mitsu bi +sla yer +compos ite +under stands +pe w +inter rup +hen ri +mor row +an om +thof july +g lee +thre e +ðŁĺ ® +and hi +ch att +renew ables +ye s +trans fers +!!!! !!!! +bab u +du ter +lo ops +pe ers +o ilers +pau lo +ic ation +h mu +war a +mer cer +hom eland +fu ji +ale y +year book +re m +re en +ab sur +bo is +] : +caes ar +shot gun +kur dish +o ren +ra e +anci es +ty pic +f h +def ault +re plic +lu k +trans actions +r ys +infan try +ðŁį ¾ +cho w +chick ens +ba gh +wy att +ay e +gg i +bre ws +ed itions +mi ra +commen cement +pre su +peris cope +ic hi +guatem ala +zam bia +pain ts +wit ches +wan i +un dere +cro y +vo ws +us mc +hear ted +theat res +shu ffle +le vel +mul tic +squee ze +fer n +app et +post al +mal t +on board +ld nt +co o +s sc +k ac +ðŁĺ ĩ +sc rap +mar cos +deal ers +ann u +mill er +co ve +ul ary +vladi mir +be ef +th ur +pick led +se same +bengal uru +mo tt +kathle en +hi st +no tor +dr ank +du chess +snow fall +e ff +tin y +j n +sy our +speci alists +scot us +bay lor +eve rest +mali bu +pre m +harm ful +l ali +b ates +g ye +differen ti +and ra +geome try +el over +black out +== == +ko ta +inter act +asi an +la yo +samu rai +fi del +exhau sted +gla di +pd t +spher ic +anti qu +guit ar +stu ri +ho pper +ang le +f ills +sla p +mi th +rod ney +ong i +in som +pre venting +cassi dy +ap ho +ore gon +lo in +ham mond +contribu ting +f n +gar ri +ori on +comp elling +escap ing +aim ing +plu mb +bi stro +be asts +concer ning +bo e +do pp +shop local +stumb led +âĤ ¹ +naz is +âĢįâĻĤ ï¸ı +gest ure +war ts +us open +hi ggins +char li +hang s +bom bers +° : +fe eds +c ch +st il +nic ola +ðŁĵ º +clam ation +tro pic +af ro +ou k +expen ses +der rick +al ine +fa w +reg ard +im er +sat in +thi um +ry der +pear l +te ss +mm mmm +sen ses +ðŁĩ ¹ +positi ve +exhau st +occu r +nor ris +lil ly +is les +direc ting +yo fficial +count less +sam ar +on stage +flo ck +mir rors +arch er +mo i +k d +vi v +in os +si kh +le i +sen sory +br its +kno x +chest nut +op y +coli seum +z af +di vin +adap ter +:) )) +tem ple +ku n +hel mets +t df +gu ide +m old +o ids +lu ther +he is +monaster y +sp ree +k lu +brit ney +jagu ars +gre ats +c cc +ky rie +machin ery +cric ket +re ro +ab o +aspir ing +semi finals +ale ss +sig natures +var d +me th +her bal +hol den +king dom +ap or +reg gie +ore o +palestin ians +em mys +sec tional +ro i +ney mar +qu el +cu ll +l ka +haz el +estim ate +ul ties +go w +be a +purch ases +bel ts +protec ts +m é +gue ssing +bb o +clau dia +fr acking +jon ny +el k +cel tic +al mighty +ra je +courty ard +ig i +can es +ðŁĴª ðŁı» +bank rup +le thal +âľĮ ï¸ı +graphic design +vad er +penc ils +rough ly +dan te +m fg +const ell +cam el +j b +bloss oms +en to +balo chistan +cine mato +ill ard +jer sey +con sent +dent ed +con templ +sch er +hol i +lou gh +st our +a yo +begin ners +cur b +v hs +a jax +du ff +av eng +dom est +commit ting +ai red +cha p +hedge hog +disappo inting +freel ance +in land +char ms +ðŁĺį âĿ¤ï¸ı +ai sh +m x +buck le +ti dal +per mit +bo ating +ra cha +kend rick +b ello +b hi +ple a +estim ates +l b +apo logies +jay a +bb l +ast oni +inter state +main taining +el bow +mu p +ep it +ðŁĺ ¡ +viol ations +def end +be h +sl c +am ir +pur i +ti um +fi fa +blur ry +scri m +ðŁĻı ðŁı¾ +ma ple +rel atives +âĺ Ŀ +cho c +con nor +⾨ ⾨ +whi sp +list ings +ma ze +than king +ri dd +grass roots +shi fting +desper ately +gor illa +den i +ju les +stra th +g ley +ja in +bu ick +t anner +ðŁĴ Ŀ +ga e +pri m +it ors +n ano +separ ation +armen ia +bor deaux +ðŁ ħ +pj net +bu rial +e bon +glo ss +re new +gri er +spe eds +comic books +sym boli +pur poses +ãħł ãħł +spati al +no table +ci on +n ps +ho ffman +nor man +rt g +du sty +situ ated +tr an +k fc +em en +nic kel +hast ings +sett ling +gr it +l ena +w aw +art s +gu m +ca regi +le wis +sapp hire +rememb er +embed ded +t lc +bl at +serge ant +el sa +boot camp +bow man +photo graphic +pill ars +direction ers +classi fied +no is +ve er +barre ls +wh oop +ðŁĺ± ðŁĺ± +fe male +petro leum +medi a +e fc +poké mon +ठķ +enthusi astic +var un +pro files +pedi atric +acci dents +con rad +jan g +jo jo +ac or +ob server +l f +live stock +for gi +fo s +el m +an and +go e +c ere +avoi ding +gri t +om an +thank fully +scat tered +nick y +cylin der +chees y +di ver +mahe sh +cav es +ear liest +qu inte +subjec ts +b end +gul f +vocali st +glu e +pat ches +un stopp +sny der +demonstr ating +pi o +hor ns +wic kets +and the +r ama +yo on +stra ight +bed time +or ang +bul lets +sa urus +min ers +inci dents +! ... +ðŁİ ¸ +ag ers +hand les +stat es +in ity +d ons +incredi ble +emin em +avi v +ru dy +moz art +folk lore +appli ances +mt l +fre y +di as +hu a +page ant +stri ve +im prison +bul lish +r ana +al erts +bb mas +hy per +derby shire +re cre +re dd +debor ah +cosmo s +law son +mel anie +psy cho +ho or +doo dles +sni per +shad y +man tle +canadi an +new year +inter actions +separ ated +cor ds +spiritu ality +ap u +it o +p ct +pel osi +rebel lion +se iz +wor cester +sec tors +ul i +san ta +Ð µ +ðŁĩªðŁĩ ¸ +bi ased +class ical +gam ma +dee plear +emer ge +back er +sur ance +hand crafted +ðŁİ ¥ +franc is +mill an +ic i +cro wn +wo w +stri ped +un fair +relax ation +³ ï¸ı +embrac ing +she alth +pale o +martin i +dist illery +wr ink +or k +na th +hay ley +cour thouse +si ber +sa di +quiet ly +mel t +m sm +me h +smart phones +rel ent +pp ing +war wick +co logne +gli a +cot ton +pro g +lon e +ip sw +star ters +expan ds +u mp +su ed +ski pper +infe ctions +ing le +à ¡ +cler k +demonstr ate +ac ar +ðŁĺĤðŁĺĤ ðŁĺĤ +ti bet +bun s +alo m +demol ition +ssi a +g st +[ ] +so ar +âĺ Ģ +ðŁĺ ª +ðŁĵ Ĭ +dee pest +beyon d +are t +att ends +activ ated +di mit +âļª ï¸ı +high lighted +magaz ines +rum or +az za +steph ens +dol ph +sho ckey +mat s +we av +mel an +serv ers +tra um +ku sh +æ Ĺ +bab ys +pa z +a al +la use +break ers +canter bury +ul ture +mi ri +euro s +tane ous +impre ssions +du tch +il d +gh i +pur due +adequ ate +l p +sy ner +ang ler +du rable +gal ore +ro wn +mg mt +ðŁĵ Į +lu cia +âĺij ï¸ı +zay n +bor row +. ( +north umber +cru sh +eng a +su sh +extra vag +t out +ma hal +ali stic +ther mo +gall eries +es se +chi bi +attrac tions +lex ington +legislat ure +docu mented +resi den +brow nies +w f +st ool +plan ets +sho ppers +conduc tor +ms p +tr icky +fru ity +end ra +feel the +whi pped +hair style +re fer +oo k +oc topus +audi ences +ku mar +after no +op tim +c fl +ni p +gen i +alpha bet +ann ab +lam in +accep ts +l ng +ðŁĺ « +t ine +ac om +cheer leaders +t k +gr on +v g +k ung +ja x +dha bi +r ss +mack enzie +beir ut +clean up +gy psy +st ell +bur ger +hurric anes +educ ation +st ina +âĻ¡ âĻ¡ +unfortun ate +jere mi +bad ger +at ers +: âĢ¦ +ter ra +subli me +stu d +y mca +mr u +duter te +bren nan +bul b +mel o +yl on +hack er +c red +gu d +as an +pad illa +embroide red +vietnam ese +pione ers +projec tion +re boot +id c +an ey +pri mer +suff ers +win ding +p on +sto day +mor n +u ch +all in +adid as +eliza beth +tu ck +o graphy +ðŁļ Ģ +be g +os borne +ghet to +r h +cn n +ir ma +ma kin +cab les +mur ders +oc ks +inst a +al as +si k +cu ff +la re +foo dies +o vic +at om +geome tric +em pathy +ภµ +cent enary +newsp apers +administr ative +ðŁİ Ĭ +sti ve +contrac tors +le tt +tas mania +awesom eness +den sity +ve en +prince ton +frequ ently +re ject +gh i +modu lar +ceram ics +sh ag +ki wi +can vas +sweat shirt +an j +ti mm +napol i +il er +appe als +hamil ton +ma yo +we ave +arrang ed +whar f +occu py +b vb +as aki +ot ter +nor m +vi es +de tox +tion al +dere k +id ad +ad missions +constitu ency +u pper +woo t +allo y +se ve +lu b +un comfortable +ed win +ab re +d wight +ar che +virtu ally +sp ol +pri e +ai i +er r +swit ch +bar ack +se ok +cou l +wn t +pou l +o live +caffe ine +cardi ff +notor ious +de mp +ex cess +bar r +t ford +a jay +bump ed +my thology +shel ley +fal con +shakespe are +must angs +no ted +bon e +civil ization +sy d +par sons +un official +hy ped +sp ends +oppo sed +v ings +space x +noti fication +deci ding +bio tech +out si +sal ah +! . +fe d +ss y +c ms +bad gers +cr o +ela ine +n ba +dy our +n ant +honey moon +climb ed +conom y +ath a +m ell +ne bula +nature photography +juli e +bm x +inve sted +mon o +lieu tenant +wat kins +techn ician +o se +ka e +ì Ľ +mc queen +pre ach +trav eller +flexi bility +ze bra +reta iler +p ant +ben der +brand t +squ id +war rant +veri fied +cas s +pier cing +hon ours +t ying +mor ris +kis sed +op rah +panor amic +me i +splat oon +wich ita +ari as +gal li +indy ref +good times +athe ist +confe ssion +ow ski +re pping +ad ditions +mechan ism +z im +j ans +su f +cho pped +beg innings +vitam ins +ãħ¤ ãħ¤ +or th +po les +ru b +antarc tica +indie film +web cam +ket ch +bre tt +cle ment +her on +defe ating +hydr o +buc ket +wand ering +sid ney +future of +b inge +on ies +knock out +administr ator +syn the +l ent +jan i +bar ley +premier league +ner ds +cr m +bra s +bot any +evol ved +rot ter +ro wed +tum or +weal thy +Â Ń +mon arch +li shed +da hl +ðŁİ ĥ +bu ch +ken yan +Ø § +red ness +assemb led +se mit +hud der +shro p +ran i +lear ning +mor y +iti a +geo graphic +worl dof +f b +pho sp +boo gie +am ped +? ... +che w +dwar f +ar us +s sen +ru sty +recru its +h k +gar de +app lause +vol umes +invol ves +ta c +hand bag +trans late +ffe l +se ym +aqu atic +trans fer +zo di +and r +acade mia +cr ater +te z +ar se +adap t +col oni +snow man +mal i +hang in +di schar +oy sters +pho e +colon el +w ba +hispan ic +thri ving +sh y +ag les +sales force +cre me +so les +la fayette +â ī +ter ia +ach a +sp erson +go go +car ly +the ore +am ore +vo x +af t +ãĤ ¹ +stap le +mu ffin +di agram +ino x +su stained +av ent +me ta +arbit r +dec ay +ado le +Ð ½ +ec ol +ph o +n k +o cu +gr anny +ç a +luxemb our +stad t +alber to +le vit +am as +d x +or phan +co bb +as c +lo gy +immen se +chan ts +off line +p ent +bre x +w inger +plan e +i el +nichol s +ca thy +nar uto +low ed +/ // +ignor ance +cat astro +you ts +sch en +buil d +haz i +s ine +critical role +du g +dete ct +lo gs +en amel +stpatrick sday +ed die +co pa +cigare ttes +ho ff +kay a +la goon +ra pha +air borne +choo se +puer tor +ke v +gui ding +fro sty +bor ough +mir a +ðŁİ Ĭ +cade t +anu sh +yo gi +e ger +fl ing +slo pe +nin th +we ston +foot wear +f n +may weather +a am +pla in +stair case +witne sses +work outs +ro bust +dex ter +co hort +ðŁļ Ĺ +sp ell +ha ze +o om +organ ising +wild fire +cont acts +av on +min o +upd ating +ðŁį » +li thium +ing ual +k is +au ga +lo com +de duc +u da +th ak +boy le +mp er +hot tie +eri k +re vised +is la +travel photography +oo za +en qui +confe rences +clo ver +g room +cur ves +live on +per f +displac ed +bo log +xx xx +ðŁĺ© ðŁĺ© +te al +ve ssels +rain forest +cal ci +pan ther +gira ffe +ta sted +imag ery +pad res +day time +bas s +ri pe +opio id +nu e +vin yl +invent or +sen s +process or +mu t +gad gets +bibl ical +shann on +jacqu eline +car y +the resistance +ali en +n vi +co sy +bi har +fo ley +ren d +mu gs +fa ken +cl one +ni allo +gra bbed +chi hu +power house +n tt +chero kee +spon ge +imple menting +rh ine +le one +ðŁį Ģ +pret tiest +infra red +impro v +swit ched +tu bes +con tr +bl k +projec ted +be aver +yo t +bbcra dio +thi gh +per secu +apologi ze +w ack +po ster +oli ver +az a +lou d +( ?) +f the +women shi +spar row +blu sh +us able +sc ales +it ative +peu ge +ne eding +legg ings +glam orous +mat ur +c z +wat t +da b +tam ar +et sym +bau er +heart felt +h n +else where +bir ch +alu mini +hu ck +e me +j l +traf ford +d z +por tions +ana sta +arthr itis +esp n +ber gen +viol ation +yo shi +c z +northumber land +clo sures +ðŁĩ¯ ðŁĩ +smi ley +r w +tel ugu +inten si +gre gg +ve ga +dun geon +south bound +ba il +domin ican +semi final +chap ters +h itch +van ity +trans iti +recomm ends +sati sf +bar ca +queen s +( ( +de struc +stra it +ra vi +dess erts +in tru +har am +k os +fo e +fat ty +pais ley +magn itude +dri dge +com ey +schem es +vision ary +our t +down loaded +ðŁĻĮ ðŁı½ +gd pr +lan i +p wc +gu ad +nic est +stake holders +re ferred +george town +arvind kejriwal +schnei der +in doors +all star +strand ed +gen der +ze pp +ma sses +ðŁIJ ± +pati ently +bl dg +z ab +we arab +vi vid +he ck +d ella +sy mb +je opar +la ger +à ª +comb ines +ne c +br ay +flo p +tx wx +jo ys +pon t +pro found +sur round +mad hu +ma ble +ay r +te as +n sa +open ly +er nest +ãĥ © +to po +g na +anti oxid +ti an +e tr +c ello +ma thi +gener osity +b iting +man ic +kel sey +chee ks +ten der +w th +pron oun +ultimat ely +gu sta +ari anag +ger ry +ble ed +red dy +mic h +mitsubi shi +oper ated +sex ually +ma u +cl lr +vi ds +co c +mel ted +ðŁĮ Ī +q ld +ite ch +instru mental +end game +ðŁĵ ĸ +ener gi +brow nie +tam il +at in +domin ated +pra ises +fire place +sens ational +men a +k arti +un prece +ru pt +ori ental +mc cor +tour naments +scen ter +re eves +prescri ption +sam e +fra u +tru ffle +em bo +roman s +bla sts +techno logical +pr at +b sb +y ar +tren dy +ac l +al ad +ðŁį ģ +o hh +bankrup t +tho ven +regar ds +is er +war wick +vine yards +real m +niallo fficial +do ta +ge mini +to do +v able +¨ ¨ +la u +wre ath +ju ve +nat asha +le ver +lor i +hor ser +cc tv +air bnb +es anders +sin clair +ema biggest +high school +con test +optimi stic +t te +ðŁĴķ ðŁĴķ +ss d +ye e +hel ena +con sen +ric ks +jes se +an ic +ðŁİ ¯ +re acts +ro be +independ ence +vol tage +m ington +s ant +à¸Ļ ภ+-------- -------- +sentin el +ke tt +rehear sing +aaaa aaaa +sof the +stir ling +sear ch +wi gan +stand out +sna il +pent agon +Ä ģ +ch lor +cru st +net any +chemi st +disapp eared +ric ardo +sp iders +bo se +war ren +me ssing +bann ers +gu el +par ach +ma id +coun ted +epi le +bon fire +speech less +se tter +meas ured +rejec ts +nik ki +le ster +foren sic +fab rics +alo ha +pre served +wat ford +deta iling +dar th +bo u +car ly +... ' +tail gate +noti fications +å ¤ +pas sive +trous ers +balo ch +ro ther +typic ally +à ¥ +sp it +wi z +sic ily +technic ally +ex pose +st age +hu bb +cre am +cap s +po ke +sle ek +ju ne +tempor arily +de z +awak ens +l ame +_ - +ji ha +tues days +advis ed +advis ors +exi sted +dis agree +news room +lo sers +world tour +dr ying +al di +har ness +foot print +hobb it +p mln +i ro +que red +asse ss +gaz e +sa b +th ian +í Ĭ +ti f +ob serve +ev il +dra wer +swee p +cor y +co dy +kyo to +cal lum +n inj +lau rent +be i +sket ching +custom ized +du r +regre ts +knox ville +ìķ Ħ +mess aging +grac ie +abun dance +bi dding +bre wed +fl ouri +therapeu tic +alt itude +ho gs +bur ner +elec tro +wonder fully +he ater +post pon +li very +r all +ad as +a ac +sau l +brook lyn +play house +âĻ¥âĻ¥ âĻ¥ +char itable +in y +z ah +compet itions +be av +plu gged +o is +do om +astron om +speci alized +max i +ta ps +cellu lar +depre ssed +folklore thursday +cri b +e mul +ë° © +fi gh +ru z +car lisle +spe ar +side walk +de i +depend ent +lac es +nh s +ðŁĮ Ļ +reali zing +net work +ric he +re gin +re fresh +st ral +pa thology +pla id +psyched elic +hin d +u ka +algori thm +lin king +progre ssi +fe y +d ade +hydr ated +b ant +fam ed +cot sw +bo ise +as c +rac ing +ja vier +ww en +mar lins +poo p +swe pt +toni ghts +we f +ani me +slo vak +âŀĸ âŀĸ +cla us +lem me +cli ppers +re ls +arianag rande +r te +ko t +thal apathy +hungar ian +zu ma +y von +is u +jour neys +clin ics +be be +ww f +n ws +super heroes +er it +sle ague +identi fication +mo tto +ba i +sour ced +ill er +ap i +pri se +unprece dented +dam as +tuni sia +dra in +undere stim +e ther +quarter ly +rewar ding +al ham +wolver ine +cab ine +hyp no +nad ine +hav ana +da e +ðŁĵ Ī +dr on +read ings +b ati +pic o +mer ci +iti an +wal kers +el ope +mi key +god zilla +bur lington +abu ja +social ism +at ility +sh ell +harry potter +g no +ab ur +re leg +fel ici +ro gen +neuro science +inst in +ath am +vou chers +j arre +fu se +def ici +monte rey +de port +mid day +pp ard +fre ed +ame ter +wil t +n ingham +pr att +liber ty +slo gan +o to +pr i +co ated +c pd +ne tt +il las +mal awi +evol ve +accessi bility +ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥ +or nament +b p +el is +son line +chi ro +fl ick +ib m +ar ak +en ables +gar land +san e +cu ties +tri p +rotter dam +n ys +lam ps +lu cas +bo g +ra ils +travel led +hic ks +en u +sab ha +scru b +hi er +hart ford +fo o +fer nandez +tre vor +mat tress +appo intments +ale j +fe i +o logist +saf ar +oc ta +sr c +sha un +ambi ent +dri c +bi ker +she e +must ache +h ta +bo one +her ty +car dio +bra kes +rec ital +consi sts +overwhel med +cau l +robb ins +im it +al th +ur l +bi bli +on ne +black livesmatter +diffic ulties +tel ang +tall er +ðŁĵ Ĩ +deb ating +bur rito +mo vember +strength ening +bo e +te stam +mirac les +base ball +re nee +ðŁijī ðŁı» +al fa +âĺ ĺ +unstopp able +ec s +g mo +giftide as +path way +fen cing +ðŁİ ¤ +b ham +ra s +sk o +d led +thel ast +magn um +bin ary +wil de +wil der +wh ati +barbe cue +h ism +can oe +kur di +eli ve +advant ages +mad ame +bi er +mis sing +enter tain +air force +y ama +c is +hash tags +j is +ve il +dream y +ten se +may ward +ch ateau +hunt ington +âļ ĵ +v all +up on +bl ouse +dun es +ðŁĺ ´ +fert ility +m ole +curren cies +st u +ber lin +toa sted +div as +wal t +lar k +por a +hit ter +um er +chil led +bal ancing +fa is +y in +or tiz +east enders +h ate +ur al +ap ril +tim el +à ± +per o +sto cked +respec ts +th t +best friends +giving tuesday +be ad +inv ent +im i +nap les +comb ining +tok ens +thir st +ma sc +par rot +sp u +dent on +* -* +t res +subur ban +wid th +si ve +con tender +siri us +lo k +troop ers +outra ge +tur bo +frag ile +me ssed +do h +disc ord +netany ahu +re sign +forgi veness +mo han +mun ch +cam ou +identi fying +enab ling +hot ter +thorn ton +jai pur +ar ya +ðŁı» âĢįâĻĢï¸ı +mu staf +maj ors +o ke +du ffy +roh ing +til t +ðŁĩ®ðŁĩ ³ +rock star +she ep +hend rix +ra v +in vention +do u +lagun a +gru mpy +sw is +im pe +) ' +you ths +bun ker +st ache +oppo se +indi es +acceler ate +ml p +ed en +w ann +k ail +akshay kumar +su pt +pol ym +midd leton +extra ordin +wil son +australi an +alumini um +way ne +alum nus +mat ics +gri m +er nie +opp a +competit ors +rand all +h ence +decla res +pre aching +sha he +can e +sustain able +stap les +le dge +ad ena +doctor al +bur gundy +decor ate +ren dered +ri sen +pr ank +di or +bee thoven +flo or +ac com +to t +ho dg +touri sm +say in +objec tive +mar kers +premi ership +en abled +camou fla +gi ant +Ñ ģ +smo key +ric ket +pan g +de pending +s ation +evol ving +inter cep +cen sus +tof the +re en +mendo za +trum pet +marke ters +an it +ðŁĻ Ĭ +north western +v la +foto gra +blackand white +che wan +wi g +tro om +ginger bread +k n +ro mero +n fc +or chi +fun ko +sour ce +f s +ra ped +o st +tar ot +ann ually +ðŁĺ ¬ +r ill +del av +.. !! +se s +can n +medic are +ph el +ape x +guardi an +rema ined +r pm +a ñ +story month +instag ood +neighb our +p ing +sem ite +my stic +as cot +mat er +hand ful +dang ers +ti d +ana heim +opol y +sh allow +nami bia +tor ia +procu rement +big bang +announ cements +prosecu tor +beng als +sal le +en roll +ga stro +sugge stion +ba k +ha ul +budd hism +berni esanders +flu te +fati gue +cyn thia +cho i +ir win +gu a +str ous +h p +ba p +satisf ying +play a +ðŁİ ¼ +inst ap +al ice +t p +irri gation +ðŁĩ¬ðŁĩ § +in tric +clu es +ple x +sa x +he pat +dump ed +signific ance +by u +medic ation +pro v +tough est +corn ish +âŀ ľ +kel ley +u v +si zz +si bling +me st +di stor +diplom atic +aun tie +b hat +son ic +bren da +pump kins +ro ch +black burn +ur ged +shi a +arrange ments +floo d +sa unders +lec turer +nou ri +popul ations +diplom acy +consist ently +ðŁ¤ Ļ +t mund +cauli flower +l ily +vocab ulary +vari eties +coo ker +up town +qu ent +mo sa +re inde +velo city +spru ce +social medi +i ber +volun tary +proce ssed +bal tic +y ang +leban ese +d p +dol ly +arrange ment +y uri +cran berry +kal yan +elev ation +cli ff +pu shes +ìĬ ¤ +sil ic +co wx +eter nity +sla ves +vine gar +glou cester +con tained +breaking news +aga inst +renov ated +norm andy +hero in +ys m +mo ds +gre ek +un di +tren ch +v h +encoura ges +head ache +gr ange +: ' +ever green +Ù Ĭ +reck on +ab used +th ru +cho ice +ti dy +col der +scho ice +ha in +bru m +li ars +bre it +yor ker +sh ack +he idi +micha els +sco pic +fasci st +play ful +ca c +yas ss +sh ad +.. ? +qu en +ram irez +clif ton +pr s +best fan +âģ ł +gener ating +head set +disappo intment +abstr act +bo iled +paren thood +azerbai jan +exhib iting +bom bay +oli vier +ko so +un lea +mat ernity +iz er +si ves +r hu +col l +saskat chewan +fre akin +de k +na g +stab ili +ðŁį ķ +organi zer +bo sses +ar u +u va +at able +ta un +after wards +fert ili +ver ge +az i +mor ph +๠ģภ+jer k +cosme tic +ko w +stru st +ap ache +post cards +for mul +ì ĭ +spin al +jack pot +elec tri +Ã Ń +lo y +gra der +diab lo +ar di +he sit +f w +arch ery +pa sh +the ories +repe al +re live +per cy +âĺ Ĩ +im in +syn chron +sham poo +coup ons +o to +la i +thou ght +luxembour g +mo v +ðŁĺ ¥ +ge mma +se ated +m ga +strat ford +un certainty +shi fts +est o +fo ol +fire arms +cor rie +ki ki +appa rent +p ills +olym pia +fi d +elev ated +de cks +ignor ing +av alan +ro v +whist le +p tsd +milit ants +robo tic +pac ers +quil t +bankrupt cy +lic h +per cussion +celebr ity +al s +( ; +su t +pokemon go +h g +off s +gibr altar +scre ams +billi e +gen ome +mar in +be ams +arch bishop +em in +bedro oms +g ated +ol ly +warran ty +at own +cudd les +gun na +k ic +vi ve +cy mru +nar row +pro b +le o +refe rences +manufac tured +cho pper +brun swick +sem is +don ia +r ye +man o +hur ting +? # +hol li +investig ations +c els +ðŁĵ ŀ +le ster +temp les +sto rey +mc mahon +toi lets +wo of +ï¸ İ +le verage +at om +night mares +victor ious +haun ting +custom er +ag i +yo ongi +mon ty +ver onica +w ur +inti mid +blan kets +volu tion +j m +âĺ İ +am on +jud ith +ðŁĺİ ðŁĺİ +distr acted +dri p +hurric ane +and es +revel ation +tro op +ab leg +col lin +tibet an +wor rying +inter nationally +eat er +camero on +brad or +y uk +ðŁĴĹ ðŁĴĹ +tra k +slo pes +ci er +ne a +ol er +ta ka +albi on +volcan ic +am n +a fi +ob stac +face time +ger ing +n pr +metall ica +organ ic +ðŁĴ ¡ +ki dd +d ances +pemb ro +wash er +m its +om er +emo tionally +tan go +ip o +do cks +scan ning +spec s +tho m +the ology +emer gen +om i +g pa +selec tions +un necessary +ima ge +ter s +induc ed +gi gan +rent als +supp lied +m fa +shan kar +lat er +pa jam +cla ve +Ù ģ +ma hin +carl son +avi an +ano va +kati e +aj ith +design ated +chocol ates +investig ators +gla zed +prin cess +er ry +ra gn +ou rable +hr u +sun dance +peuge ot +steam punk +gh lin +gre ase +hi res +z ap +per ce +j ill +tom e +he hehe +joy ful +mae stro +ni shed +gene alo +v ich +p its +fox es +good man +emer son +lo bes +con verse +o ats +thom son +ra him +mal ware +ah i +man kind +re sin +im g +sw ood +kin der +sc roll +ar a +sak ura +ro bbed +xi on +ny a +c ism +ce dar +be in +mour ning +tor to +heath row +done gal +bar b +hydr ation +k or +elim ination +su pdates +hill s +appe ti +star red +ko m +gw en +dd d +cra y +sc anner +personal ised +seren ity +re design +meta ph +box ed +judg ment +no se +ë ¹ +er ad +ac ne +supp liers +ener getic +v om +as ap +ðŁĶ ¸ +ir vine +hat ch +la ss +ad ren +waff les +accur ately +ici o +itt le +se un +occup y +web cam +thene w +ent es +ga i +j w +accoun table +vis or +ir rit +licen sing +hudder sfield +gen ie +ðŁİ ¾ +atmo spheric +ten sions +spart an +clif ford +ol an +north bound +ame en +cen sor +u el +ster y +$ $ +far rell +hy ster +cl t +se dan +rep lied +descri bing +micro wave +sla b +pro sp +assi sting +ru bio +e than +hh hhh +gu ay +z man +ra ise +roll ing +o e +n ile +ambro se +scar borough +hero ic +coo ks +mor t +chop ra +ðŁĮ · +to b +shav ing +stac ey +dor m +motor sports +wi ki +fol ds +sp iced +stress ful +liter al +fu dge +pe ggy +wa ite +tre sses +se sh +pr ic +ðŁİ ħ +fri ght +r va +mumb ai +po m +tt v +cel lar +tom e +andro id +dor is +tsun ami +tin der +o ec +m wc +dor tmund +no thin +l iti +so u +believe in +at u +kno cks +mag ni +ss sss +ro hit +ine ws +ang i +m andy +ke ttle +intermedi ate +av ant +cur l +endor sed +ori o +ur t +consider ation +wi res +shel ters +b ino +vik ram +imple mented +ly dia +bu k +paro dy +c news +under graduate +canu cks +sam i +polit ically +ro tten +gh z +tex tiles +over load +moder ni +recre ational +fli r +bat on +typo graphy +ov ation +intrigu ing +pilgri mage +al ge +ad ays +tcm party +sp elled +cur ls +boo ze +ste m +ann es +ir ls +spon ge +sho pper +sig nation +bra ss +mi stress +le ah +beg inner +lau derdale +augu st +pre school +ta ping +tai pei +execu tives +b d +rhe tor +esc or +immun o +deeplear ning +stat ues +it us +manu script +ly ric +cor vette +mol ly +la ge +de p +cn bc +le st +je ssi +fi fe +griff ith +oppo sing +ran g +dr ills +respec tful +p ity +d ell +har ding +play boy +blo ke +shut out +k ili +o sp +se attle +bc poli +mis es +journ als +team ing +es ther +fre ddy +Ķ ï¸ı +metr ics +no tre +gar ry +for ty +navi gate +perio ds +bened ic +j id +da w +ance stors +restor ing +con g +aller gy +tit anium +c ence +lean ing +ab bas +v ast +uc f +roof ing +e man +seve rely +vo gue +ve au +in bound +d z +tane ously +stret ching +man chester +dr yer +dav is +kan th +the game +it ted +re tain +el les +conge stion +frat ernity +ol lie +lo ki +fre ely +cho o +pon y +sc ep +tab ly +bal t +rock n +di me +lo gging +ðŁį · +ad u +ha voc +water ford +char is +swee tie +run ning +ner d +erdo gan +z ara +weigh ing +fif ty +pre cise +low ell +kurdi stan +r yo +or th +syn th +lin ers +phenomen on +art illery +il legally +constru ct +nostal gic +gar th +al ta +shel ton +a sean +w ander +dur ban +di versi +bon o +cl on +le man +sh un +obstac les +appet ite +fe eder +respir atory +di xie +formu la +an to +so ber +extin ct +au c +ing les +legitim ate +; ; +min nie +ipsw ich +dram atically +ðŁijı ðŁı¼ +ingh am +milit ary +mon et +us navy +for k +dun no +play er +q otd +st oo +ex or +ethiop ian +film fest +pe red +c ate +sau di +in ner +sin cere +tion ality +ale e +de eds +cooper ative +ir onic +cro cod +br ary +post season +cam per +can ary +e in +exten sions +nb d +sher wood +spo kane +hu mp +jit su +ê ¹ +dar yl +p si +stab bed +offer ings +expe cts +cav al +body building +fr aming +f ca +ye arly +bom bed +sk il +resear ching +jud iciary +gree ted +tu dor +mil o +innov ate +ðŁĺ Ľ +r hs +ru by +contribu tor +fam er +soci ally +m lin +fi ery +ut ter +beau t +it os +de voted +rain bow +bar ney +pe ren +ar jun +r na +gab by +ut i +hann ity +pick le +ser v +qu akes +pp e +fe m +wh itec +j n +victor ies +ðŁ§ ¡ +gol fer +congratul ates +resul ting +mechan ic +ur ve +cen tered +kie v +an s +in cub +< < +c mo +bestfan army +dap h +en ham +on cology +ku sh +t xt +ori ented +fashion able +c sr +sa hara +r ack +pd p +han son +ภĩ +ti ers +ra r +pan am +in sky +sa hi +testam ent +asth ma +in her +fisher ies +or der +ho we +gall on +ep is +suz anne +drow ning +paneli sts +ðŁĺ ² +ë ¦ +al ach +commemor ative +at tribu +ðŁij » +mo o +visi onal +week sary +gu st +ak in +poin te +ee e +di spar +ni pp +dent al +st all +pi an +bor e +ul ster +tic k +ir r +tae hyung +micro phone +bermu da +ga ard +el er +plumb ing +hu gely +âļ« ï¸ı +race way +cam bridge +mar cel +burn ley +to ast +holly wood +fa sting +me red +hib ition +ca pped +benef icial +ow ning +cont amin +arab ian +to on +cap ac +hul u +sm ir +nutri ents +se in +graph s +con ditional +ðŁij ħ +or ac +play in +nor the +tor nad +mar ian +ju mbo +lex i +incredible india +road to +uk one +confu sing +sp h +shan k +pi ed +mq m +positi vely +sher ry +path ways +consi ders +tof u +argu ments +resil ient +che tt +with dra +ter o +ated ly +sw ana +he b +fli ght +har ley +decre ase +kind le +book shop +³ ï¸ı +marty rs +sm ur +mc cl +concer to +sti me +rejo ice +app lau +cle ment +mer kel +jai me +im mortal +isle of +mar co +youtu ber +stal king +me too +st ack +sp ouse +u st +lu v +âļ¾ ï¸ı +eque strian +ev ing +fl in +nick name +the big +as ar +st acks +wal ker +bor a +kidnapp ed +hur ling +humb old +rec alls +co pper +ann is +se o +mer ger +mu ir +ad dy +ðŁĴª ðŁĴª +be x +cr acy +con an +congratul ation +mid st +âĻ ¬ +for bi +op tic +cr ate +crocod ile +mad agas +secur ing +ast on +o gue +savi or +salis bury +love it +fuji film +cast les +as st +ar rows +sp acious +tr s +poly vore +progre ssion +m ri +nel son +bi m +indic ator +o da +pe pe +re signation +gu t +sne aker +log ically +az y +are lla +te aring +jo shi +ssion ism +q pr +mari ah +p x +ble ed +mi an +med ley +we iss +ker ry +gat ory +at al +madi son +av enger +nab y +pl and +gi les +fresh water +d ington +ta j +demonstr ates +n tv +bul bs +sunday morning +pe ake +souven ir +wa h +ton nes +m kt +complex ity +con den +ross i +b ing +y ds +su k +n go +mid land +ol y +life is +ri pple +mo reno +dd ers +tu s +á ĥ +bou l +x a +hol dings +wn y +shadowhun ters +ke i +asp ire +m ous +ow en +so ak +skir ts +moun taine +stor ming +ch rome +ri ots +sar ato +amaz e +less ness +nav ar +crit eria +ra fa +indul ge +ay er +por to +nam o +........ ........ +yi elds +val le +j h +mac ron +sa ins +dur ant +tra ilers +wo t +confeder ate +sh rin +id ol +form ally +ten e +motor cycles +than g +no de +bang er +dal y +p ats +enroll ment +au ctions +at al +ar bor +lo gos +de arest +trans action +dom ingo +fle a +ser mon +de ck +sin cere +questi oning +juli o +was p +pre tz +armen ian +k ham +inflam mation +picture sque +acci dental +film makers +ðŁĺ ļ +ðŁĴ į +ca sey +so b +yee zy +good will +parag ra +ss ly +fe ather +dy ed +assassin ation +na de +b cs +app lies +femin ine +fe u +ext ent +depu ties +l ack +psy chic +go i +kill ings +pse u +ðŁ¤ ª +un c +mar l +tan e +mck enna +sur fer +influ ences +free way +hack ney +mal aria +el and +te au +rema stered +Ø ± +raz or +gg y +cor ro +lak sh +fla ir +honest y +hoor ay +de pp +am c +wedne sdays +q a +ed its +- $ +se villa +dou bled +human ities +c cot +som os +r ine +af a +si oux +re construction +wel ding +th reads +am ish +encoura gement +po der +bo ck +bal m +p tions +stand up +accompli shments +guar ding +convic tion +ac ion +napo leon +depic ting +att ack +su i +wear able +âĸª ï¸ı +pot ter +esc ort +vis e +to ts +bo on +event profs +angu lar +womenshi storymonth +bar row +sch i +ac comp +ti k +l end +kensing ton +wol fe +st acked +cra shing +exhi bit +wing ed +sab rina +ma sa +k ms +alway s +et t +pla sma +counsel ing +pick les +nfl draft +mr s +inev itable +coura geous +staf ford +writers life +ho s +e j +gh yun +trade mark +adri an +influen cer +coron ation +ra ging +explo red +usa f +excep tion +eu x +tan ker +sw ami +pac ket +ðŁij¨ âĢį +f en +she en +a ero +j l +re gal +nw t +au ster +meh ta +char ge +a ste +b ate +inf eld +racec ourse +collap sed +fle ece +z il +al lie +alternati ves +geor ges +ðŁĵ į +quir ky +fc b +nat geo +philanthro py +bra i +every day +ðŁIJ ° +ach ers +ja an +fin es +q i +fisher man +distin ct +gri mes +nation alist +comm ence +ro wn +âĢ ³ +z ing +f ter +hr w +baro que +bl ender +kitt y +hoo ks +c ited +w anda +consen sus +reinde er +an and +supp ly +me ds +v n +ol ph +rat chet +shel don +secur ities +ë°© íĥ +cro m +mosqu ito +j eric +im mac +dimen sions +â ¤ +di ssi +sponge bob +dami en +steven son +jo anne +del ish +yi kes +than x +surve ys +postpon ed +alco holic +al ised +ðŁĻı ðŁı» +do ch +sen tim +mered ith +com pares +b ago +happy days +mo ss +ãħ ĭ +ne c +gn ment +frustr ated +comb in +ri v +ec lec +col lo +compli ment +actor slife +ct to +nic ar +op hon +apar the +man t +ja de +trol ley +optimi zation +eye on +eco logical +qui st +ep he +ॠĩ +cin co +appo ints +old school +c pr +behavi oral +min aj +:- ( +tag ging +ev al +jo aqu +ðŁĺ « +ha k +de me +jama ican +so s +hy att +hand book +libr arian +hanni bal +pump ing +ch om +f man +ga i +hu ll +respon ders +green ville +n us +vau gh +ðŁİī ðŁİī +ta xi +gold berg +man tra +te ase +forbi dden +metho dist +ati vity +* *** +ec t +mc gr +Ħ ëĭ +se b +amid st +disapp ear +thy ro +phili ps +er ina +v icious +stream er +million aire +ma p +str ick +hack athon +gh a +ed ic +mi ka +pe ck +ill i +anto ine +ar ca +op tic +ma ure +ðŁĩ¦ ðŁĩº +cla shes +man ly +âĺ ģ +al var +and res +me i +el m +ww ww +al tered +l te +ê¹ Ģ +mo jo +for rest +thal ai +non t +spee ches +acknow ledge +ign ite +x factor +ðŁ¥ Ĥ +mead ow +disru pt +debu ted +scrim mage +pharmaceu tical +fi dd +found ations +philosop her +et al +publi shers +bo ys +c ke +ru gged +opti mism +re be +phil harmon +nar cis +ral lies +lu is +go blue +fol ded +un acceptable +optim al +li sa +pol aro ++ . +en za +âĿ £ï¸ı +mon opoly +grace ful +dair y +du a +diffic ulty +judge ment +o si +mer sey +flu x +new found +ter ns +dimen sional +in vic +al ba +am it +abudha bi +alger ia +autom obile +the ad +lo tion +acceler ator +vac ant +iti on +lu f +al ic +pl l +bla zing +ba z +sen e +ðŁij ¼ +villa ins +direc tory +eis en +to ck +broch ure +ri pp +hb d +zayn malik +nic he +lo lol +certific ates +mor se +fac up +x ham +un wanted +im ports +carne gie +fan sign +mo u +r alph +destroy er +sw ing +trek king +cili ation +pit bull +g aps +ho well +defin itive +mc le +f ps +et z +bol ly +lyn n +gan o +at ure +fur suit +co il +na v +but ts +tro jans +eu re +en ko +sch umer +horri fic +install ment +br b +subur bs +a bel +vi r +de sh +cun ningham +ðŁIJ » +span n +sch we +ke mp +tr u +ste alth +qu es +le w +deli ghts +ko ch +hu mili +cr iti +il t +sp ells +mi ley +car ic +ðŁį ´ +lc fc +substitu te +oun g +? !! +af fir +predic table +class of +er r +cy press +chand ra +age ing +__ __ +ther land +don caster +el in +yo shi +sail ors +har ris +jo anna +niger ians +h ers +pla gue +pro cra +k no +can ton +busine s +un h +pra kash +c in +bow en +co ating +m als +be gging +smith son +ponti ac +sp ies +dam ian +pl ine +und ant +al ta +one ss +shame less +da q +bb m +wal es +stam pede +ser um +Ù Ĩ +cataly st +x n +ab sc +free zer +ch un +ari os +mc cre +fore head +he ars +damas cus +tac oma +ardu ino +encoun ters +stan ton +lg b +ab as +" .. +ke te +drac ula +ele m +g ne +zepp elin +la brador +pul p +op tional +or n +russi ans +san itation +hil ary +etsym ntt +pen alties +au st +ig ans +olympi an +medic aid +vers ace +va pe +re stra +pe ep +sexi est +st alls +di le +the a +punjab i +pupp y +tuesday motivation +ðŁĵ ļ +the flash +roc ket +mo dest +chihu ahu +on na +k sa +hur dles +ca ve +fail ures +sp lit +bo ho +gur l +disappo int +ho ward +nug get +fran z +stal ert +kaz akh +for getting +sch ri +ag ate +am at +eve rett +du et +veter inary +juli an +ch ills +bra ve +ghost busters +lan do +gre ets +profit able +d é +ti r +ze e +om en +pd x +gray son +har i +fix es +stab bing +swim mer +symb ols +compli ments +po se +func tioning +th nx +gi r +corpor ations +bar low +lo e +off season +distin ctive +marvel ous +nik on +enri que +ky u +ja ws +amo to +lom bar +travel blogger +fa h +ouri sm +tri stan +so e +ce ase +ðŁı ħ +z ac +mck enzie +taxpay ers +swim suit +bl o +les ley +kan sas +w ks +ki el +provo king +my les +str ing +kangar oo +galac tic +fif th +s ke +we ir +ll is +mat ory +ðŁĩ ¿ +un ci +re productive +roo ting +ti des +gad get +.... ...... +alex ander +bow ler +scre w +apo log +eri ka +wal ters +shet ty +lan e +ban ter +as ant +me so +v ain +" "" +us i +fer din +accomp lish +man sfield +bom bar +collabor ating +cla p +it ure +s da +smo ky +na k +im person +car la +com ra +bur gl +lo co +ti es +in hi +trac ey +se is +diss er +rr rr +dra y +prote ct +cor ona +hun ger +ck en +c eli +trou bled +predat ors +fic tional +shav ed +riche st +metab oli +ful ham +gro oming +mono chrome +wa sting +as co +ast e +ti sta +remedi es +ung soo +south end +perman ently +bu mble +procra stin +ident ical +practic ally +ma scul +su ke +assu red +val erie +devi ant +grizz lies +thi er +pur a +ne pal +not ts +bil ateral +spo il +car mel +cine matic +ph l +ni fty +ma o +hypo cri +la ser +pan try +mathemat ical +el isa +coordin ation +bel mont +a it +radi ant +bo iler +man g +f ag +cr c +h ams +br in +â¬ĩ ï¸ı +famil ia +âĿ £ +sab er +ru pert +gg an +rit z +mic h +sal ford +le vi +gra l +ðŁĴ ¤ +n ino +ce d +business man +ul tr +sim ply +compre ssion +pa ins +hal t +ë°©íĥ Ħ +landsc aping +n f +croo ked +er d +itt in +ddle ston +sur passed +ino a +da g +bl en +exten ding +at ing +al gae +ball er +u mar +snoo ker +col lu +flo wn +thu b +ridic ulously +ki sh +op le +di re +as ser +ari sto +sc iss +h ating +trou ble +syl via +suc cul +plo ts +sincere ly +al er +laure ate +br ack +att n +rif les +me to +collec tible +cu omo +conte stant +consist ency +ant z +rang es +abig ail +de b +mini ster +grow ers +an oo +hoo ver +dream er +nu cle +resear ch +mi y +sha hid +ma v +d honi +cin i +do j +hin dus +part ying +dal i +alon so +inform al +clark son +it ton +ki an +cit yo +mor i +la sted +as pen +libr ary +susp ici +qu at +den ial +fol der +ch ori +swee ping +eni x +ðŁį Ĥ +Ø Ń +nas car +handmade hour +mou l +heat wave +em er +exam ine +ib n +gr ind +po v +tion ist +m bo +she ila +integr ate +om es +take away +cer v +con nie +tic ket +ce led +bi en +visu ally +madagas car +sor ry +gu i +park run +tra its +la be +pois oning +ॠĢ +vi able +bohemi an +denti stry +bad os +spr outs +mask ed +te ddy +ðŁĺ · +sa f +sa as +ji ang +ti ght +spe aker +withdra wal +bc n +as signed +class rooms +fle ming +ðŁĴ « +super girl +tot als +table top +e books +horizon tal +cra z +flu sh +j ard +c dc +er son +ãħ ł +green wood +ni h +co x +ad a +lit re +go ing +v icky +cur ved +lou ie +gra ins +hy e +lon ge +reme dy +tra inee +san jay +super stars +ma ser +man u +s age +wh l +ðŁĺĤ ðŁĺŃ +ðŁijį ðŁı» +m sd +en z +rab hu +j oo +gh u +ac er +e po +resurrec tion +justice for +bl ended +mo da +avalan che +france sco +re spective +g s +ye ast +wel ch +devo tion +ge tin +athe ism +am ic +carol yn +lo c +ld nont +ave c +us da +le gged +bra very +b lower +cow boy +he h +sti ble +buff al +chann el +run chat +âĺķ ï¸ı +ide ology +best seller +y oo +pe anu +bon ne +fel ic +edi son +fr actu +naren dra +pp ets +seym our +ri viera +he ctor +necess arily +bi anca +soci eties +the best +w g +sent ences +win k +vacc ines +pal ooza +jam ming +as f +mp us +agre ements +ec k +ba c +hon ore +com pul +wild cat +im posed +yo ga +hud son +can celed +l ich +fu zzy +es que +ch uk +w vu +se k +fli pping +r hon +wi shed +wh a +cap ability +len ovo +ìĨĮëħ Ħëĭ +vi vo +tv d +nor a +sil k +pas adena +yo semite +valu ation +clo cks +u ber +mr c +dar kest +au bre +ss o +bell y +wrest lers +kill in +lou der +buck ley +ge el +ad on +un s +appe aling +ðŁij ¯ +semit ism +list ens +fit z +ãĥ³ ãĥ +ny lon +ar ty +seem ingly +hal a +su ited +et y +she ds +mu ffins +ap ric +um ents +u ta +jam mu +chelse afc +star z +yo ko +roo t +clean sing +di ar +pione ering +ihear tradio +dig iti +fin dyour +can o +ðŁĴ İ +z ol +spac ecraft +six ers +moi sturi +b ile +ti sts +hor ton +rang ing +colum bi +mete oro +senti ment +ep l +foo th +text book +drain age +r ly +sc ue +imran khan +ðŁĴ ¸ +margar ita +ed dy +predic ts +gamer gate +advis e +growth hacking +love you +ug and +v f +beng hazi +s later +ne wor +ch el +independence day +p np +cul len +hoo dies +num bered +brit t +t sa +kl tu +s ages +mom o +onep lus +col l +gu ts +w ta +mesm eri +enh ancing +chiro prac +j is +teen agers +m one +constell ation +sweep stakes +e ze +slovak ia +la ye +pear ce +wa ver +po gba +k ron +sur geons +mar x +ti d +gg a +desc end +p ours +upri sing +wal la +sab bath +bachel ore +mack in +k am +peter borough +hor a +ðŁĮŁ ðŁĮŁ +think big +r j +hy drau +sp al +univers it +ðŁı ī +mail online +league of +ten ants +w ally +lan ce +heav ens +dd r +bol ts +am ir +i phone +ci gar +en du +re i +el abor +r inging +john son +characteri stics +sal oon +algori thms +tal kin +m tn +di ve +region als +ff ice +hat i +deviant art +so tto +shir o +l ama +k we +f aded +por ting +tu mmy +est ates +buen os +ðŁ¦ ģ +beli ever +pen etr +dar n +sp ite +can opy +fashi oni +t illa +pet als +eli jah +bra wl +marty r +ë°©íĥĦ ìĨĮëħĦëĭ +mid town +eric h +d apper +sm town +me gam +ww w +le le +on s +cat fish +fir th +fossil friday +ball park +th aw +pot ent +illi e +cre ep +car p +so ap +gun dam +infe c +yy yyy +ठ¨ +z ag +rit t +calcu lator +bo ca +ok o +to ad +threat en +refin ed +olym pic +accompli shment +bacter ial +a ji +tat um +feli z +she ed +j at +th ic +jam al +ðĿ ĺ +lin a +ðŁIJ ¯ +jo king +yot po +pin ch +ak ron +her b +motiv ation +li a +ho stage +cre ek +gam ble +russ ell +patt i +fo tos +c pc +bro ken +back the +cla ys +u mm +stock ton +mat ernal +ü r +la kel +cent ury +be k +infe cted +ภ¡ +smack down +man ned +ta hoe +sm es +bas a +su la +augu sta +. * +rohing ya +gre ed +counsel or +silhou ette +gra vit +cla use +' - +bo bc +occa sions +now adays +dic tat +be ard +n ally +brigh test +kab ul +inc india +dhan ush +archae ological +che ape +mizz ou +d hi +ov ski +bax ter +asse mble +à ¢ +gi gi +ac am +wis ely +haz ard +north ampton +âľĪ ï¸ı +me th +bla sting +re unite +mu lus +ali zes +t read +mil a +ed ward +ko va +pe sto +ðŁij ¶ +vit z +hydrau lic +refurbi shed +mo tel +isab ella +hom me +sever ance +uph ol +mis erable +f ari +lat ter +ef er +crack ers +es l +ac io +yy j +in an +ec b +z ind +pan as +tru cking +re ed +sh aker +burge ss +em pire +ag nes +n ington +art works +fr s +ti le +bi ome +eu n +ch ong +americ ana +god father +go blin +i shi +! ). +temp ted +gen omics +mand ate +ck y +ðŁĴĻ ðŁĴĽ +som ali +br andy +in ven +spoke sperson +pc b +yu an +h g +fa z +starwar s +ro wan +blue grass +don g +d day +trin idad +er ton +ban ning +re tention +cu red +tober fest +re set +we is +deta ched +behindthe scenes +immun ity +ph a +bra y +ðŁij ½ +ran cho +ram say +est onia +nd tv +] . +cab aret +tar o +d v +show cases +plu m +ðŁij ¸ +son oma +pre pa +memor ab +e stu +drive way +u les +magn us +x r +nn n +much as +en ge +stre amed +fore stry +audio book +tro y +reck less +kil om +ru ler +ra k +proce ssion +i ons +po ole +noc tur +wh s +farm house +per a +par me +hypocri sy +s ics +v ant +cas k +holi stic +au st +Ð ¿ +in do +ðŁij© âĢį +di so +disp atch +ol sen +make it +en nis +cent re +ar range +ðŁĮ ¼ +sal ted +ea siest +f ate +reg atta +mo zz +ac an +sin i +g ically +ch ops +chick en +work in +ha gg +invol ve +wee ds +book day +wake up +ky r +michel in +fu ss +re juven +vac ancies +incar cer +m st +sc ents +sovere ign +kick er +à § +bo d +âĢĶ > +sa h +mob il +shrop shire +oph one +dress er +mis suni +hep burn +i mo +foli age +diagno stic +as san +cycl ing +guil t +c sa +puertor ico +win elover +wake field +do ggy +k he +pa pp +co g +al lot +cu ck +poe tic +mi o +re vit +mag ician +ç ¥ +ant enna +west wood +mber g +lux e +oat meal +Ø ¬ +te at +ffe e +sear ches +l ly +plu to +el on +let tering +inno cence +fa i +ann on +telang ana +ma it +neu ral +can ni +ar oma +a stor +fe x +co cac +mon etary +f ent +un sure +' @ +indi rec +teh ran +isol ation +li bs +make up +merce des +ff y +he tero +de o +sco m +cur sed +veteran sday +franken stein +shre ws +de co +ge ese +lefto ver +ha did +vari able +acade mics +carol in +under going +vari ation +na h +ssi er +gamer sunite +pur suing +emer ged +ll ers +control ling +ro aring +mete or +vol t +daw gs +be aver +is life +bathro oms +aci onal +pre vent +lake district +in als +y ani +gra bbing +sac ks +le z +sw ay +k ool +time s +klo pp +la de +con cord +resul ted +revi ve +recon ciliation +ol and +az z +gir o +mand arin +de en +nutriti onal +is coming +van i +aw www +der ived +love your +stop the +shou ting +nov ak +ðŁĻĮ ðŁı¾ +lo af +displa ying +sunday with +ma guire +ch eri +ðŁı Ł +re match +qu ic +Ú © +y in +ðŁĺ ¹ +ili ve +z ip +our ke +down loads +sw at +missi ss +care rs +t ment +proper ty +hahahaha haha +gi bbs +sur rey +ar ise +tic ism +sti a +ir ling +fro g +co se +bas sist +fore ig +lea u +pil lows +hol la +eli e +disclo sure +peanu ts +inte ch +ww c +plun ge +trium ph +cor i +sli ppers +ðŁĻı ðŁĻı +neutr ality +ma re +hair y +gang ster +hu mming +cust ard +mer lin +ale a +s by +dam p +mo han +ver bal +j st +gu tted +b jor +un finished +ðŁĩ¯ðŁĩ µ +un happy +âļ« ï¸ı +by pass +at su +fis cher +sa v +afric ans +re use +mid way +demo lished +ger rard +her cules +Ä Ł +medic ines +cl icking +sur round +jo ong +wav ing +tri bes +wet lands +offici el +argu ing +l le +do va +su zy +club house +ne gro +ob tain +ga o +gl ance +assi st +ch os +ãĤ ¢ +âĺ ķ +adri d +occur s +st ans +par don +livel i +emplo yed +re visit +ff xiv +bb le +ne aring +min er +ðŁĺ ¹ +giov anni +up to +mar vell +mar se +to wels +cb n +engine ered +y elling +spart an +si ans +ðŁĻĮ ðŁı¼ +se v +coyo te +sta di +t cm +app en +shenan igans +open access +so aked +ma squ +le vine +stro kes +l k +aparthe id +hipho p +char don +may may +ha asan +stri pped +fr o +scri ption +f ton +h f +pri sons +marsh al +ķ ãĤ +an cho +com promise +classi fication +buzz feed +bblo ggers +deser ving +) / +s way +ob o +camp ers +poder nfamily +p oured +bri e +squir rels +se ize +: # +le k +ti mb +st acy +nas daq +repe atedly +br at +mi ghty +competit or +mah one +de si +o ke +bm w +shi e +f cb +cheape st +minim alist +par amount +n ate +har as +insan ity +lat eral +ment ality +mo zam +ta pped +yad av +u sp +b way +the od +bil t +ra ids +em press +adap ted +pat ron +nut shell +ag ra +be aded +sundaywith marsha +vi king +proce ed +main tained +thinkbig sundaywithmarsha +sn es +mus ica +to wer +ch ab +bo k +sm t +insul t +harve sting +windo w +ru ther +be ige +dec al +indic ate +ma iling +ri ft +po le +ander son +ch oral +sp ride +l ili +ev elyn +imrankhan pti +.... " +ke red +un dp +water falls +se ars +le mans +world series +ri el +ani e +app ar +score rs +lam p +a than +phys icians +qu inoa +refu sing +vu itton +unle ash +s la +pat i +shou ts +inten tions +fo amed +europe an +neighbor hoods +me er +man son +du h +br at +con es +bow l +kazakh stan +ठ¿ +in appropriate +del hi +ketch up +ful ton +s ys +consul t +gar field +to go +f ml +f led +b ds +facilit ate +ree bok +selfi e +elev ate +activ ate +bi ble +ca wx +b ys +cam ille +sy ou +sk ool +her t +w bc +ple dges +recor der +po sh +ac re +so aking +mat il +v sco +shoot ings +pla r +e con +ðŁĻĮ ðŁı» +rashi d +u bi +ðŁ¤ ¤ +sw inging +wi pe +rap tor +m su +music video +dur ham +at tic +apar ty +fe tus +activ ation +aa z +motiv ate +ðŁĴķ ðŁĴķðŁĴķ +j al +ठ® +ag on +sche er +stal ker +fo ster +az zo +tele gram +vi gor +s laugh +screen shots +entrepre neu +kri stin +inten tion +ch illi +fr action +don a +ge a +tc u +s ite +la k +em il +d nt +bor o +wil kinson +re cu +ato day +t anya +bl anco +cd n +brilli antly +g cc +ac c +evacu ated +ther ine +den ny +cait lin +she pard +pou ch +hand held +sou theastern +ha a +à ´ +re solutions +led ger +sr in +r ar +shat tered +chim ney +im with +mete or +hand led +ra ke +town send +en han +shi py +duc t +tw x +inflam matory +war hammer +theat rical +gro s +sk ar +sco tty +ni el +tit o +tin i +conne ction +_ . +goldeng lobes +sha q +ðŁı ³ï¸ı +hall way +fron ts +effec tiveness +gla ston +d hs +ex pi +to h +c pl +sc s +re o +ha g +resemb lance +hor an +abu sive +qu er +virtu e +cho lester +a q +shan e +m ce +carri ers +di stress +re wind + ¡ +voo doo +int act +ann o +ðŁĺ ¤ +pi led +adi a +ãĥ ³ +en ow +di gs +light ly +goo fy +turb ine +governor s +con te +re open +pa h +i ve +cra fting +swee ps +jo di +an de +zu cker +kaw aii +o ko +v ai +out line +kri sti +ts n +insp o +qu int +fil thy +lyn ne +listen ers +depar ting +or d +t weed +, & +ale k +sel fish +nor ther +recogni zes +i ps +be s +a ed +w ills +pe at +surround ings +mon uments +ais le +be cker +la v +quant ity +v ah +helicop ters +tu cked +alv arez +sha pe +o bey +ad diti +road side +m ite +bl ers +ep age +j au +ignor ant +b ins +lu lu +x o +c fo +ee eee +apprentice ship +shef fiel +to i +ho k +faken ews +deplo y +aid an +husk ers +ãĢ İ +west brook +mi ster +confi gur +car r +fic a +proceed ings +ha w +ste ak +mur derer +pay day +a jo +p vc +don ates +bi af +nom nom +be it +k ali +x rp +ahmed abad +se mic +che y +x tra +an twer +head lining +squ ares +roun ded +flu ore +bol d +disa sters +am oo +gener ic +cran es +brief ly +gi g +auster ity +anticip ation +for ti +treas urer +cann y +ce cil +dete cted +check list +ภ§ +pam ela +bar bados +an field +hear ty +tx lege +peren ni +arro g +ing ram +âĹ ı +ty ne +spo on +r ation +am ba +m be +cam el +h hs +york shire +reflec tive +fre aks +to k +ju do +partic les +du bs +ban jo +accred itation +prover bs +over dose +inte gral +gu ang +mc s +super car +af b +al vin +ail s +x tre +st aging +tw ent +rabb its +mar o +inste m +dol l +cr ay +sant ana +ble ach +mini ons +che ap +man t +di vers +catal onia +lo is +mat ri +cou gar +kay ak +e gre +p so +a ia +å ® +char lton +tr acked +sc ari +pe tt +f wd +x in +gra vel +br ic +bigg boss +ar den +hu gging +pal ms +st v +li mb +the movie +handic ap +ri me +z ai +stu b +indi a +lithu ania +rhy th +p ita +maced onia +high ered +brid get +schwar z +ske let +hi kes +ant arctic +c ps +mash up +Ð ° +n ell +chand ra +he ir +an us +sher idan +mi mi +muse u +bec ca +an ir +bar rie +dioce se +compar able +ðŁı³ï¸ı âĢį +yuk on +me p +hor mon +mer ic +al f +con quered +christ church +ðŁĴĻ ðŁĴĻ +hazard ous +poo h +cont ing +retro spective +par ame +na ir +con sor +ho tra +astoni shing +cater pillar +u man +ti sm +t vs +serv ic +croy don +mor ales +c g +cu m +te ur +scan ada +s all +magno lia +el ise +th our +à® ¿ +ag omez +phel ps +ë°©íĥĦìĨĮëħĦëĭ ¨ +wh os +weav ing +si sd +pro poses +cro ws +pre sale +econom ies +bernar do +sha hid +air show +mc cann +hor ticul +nr l +du el +mongo lia +tou lou +requi rement +struc tured +ed i +o lives +he a +cu ter +Ð º +enthusi ast +harri et +domin ion +sub mer +ðŁį ĥ +sa ab +nes burg +mo ff +def ended +bur t +rewar ded +gold man +op tics +khali d +house holds +buc kets +ce cil +che ss +substan tial +ef l +oper ation +evalu ate +st n +rece ssion +l ll +tom as +tru ths +ak bar +s words +p act +embarra ss +ha o +ay urve +scrip ture +ny cc +op t +di ameter +sc ented +organi zers +re lat +ha e +dream ers +de se +ðŁĮ » +restric ted +n ale +r hp +dol an +mun ster +ha ired +consult ants +jo ints +hu mil +d ill +relent less +t é +af il +ut ilities +japan ese +condem n +pet ite +colli de +q f +peach es +cou rier +l ore +âĺİ ï¸ı +reli ability +ch uk +ðŁĻ ĥ +stu res +ge ther +ho stel +bi er +- _- +â ĩ +e ze +ta ilo +di ent +blu ff +chu ffed +pil ip +mon arch +e em +bu chan +b ick +op au +ku ps +ภ¢ +pist ons +sp ins +m and +ce st +bur ne +v ile +cher ries +bec kett +need les +pan ch +ë Ĥ +haha h +trou bles +insi sts +do you +g mc +mor tar +deleg ate +in n +g anda +sin atra +ठ¤ +spee ding +pu pil +pre mises +ali gnment +pi kach +as us +j alan +Ø µ +lime stone +fol kl +parme san +ce il +mo y +shawn mendes +ac up +hu st +ot es +med ina +ma di +gta v +censor ship +ar g +swe eney +sy kes +col o +foot steps +cann ed +adv ance +gta online +healthy living +ðŁį ¾ +a ig +p ality +oc s +he brew +im minent +berk shire +jeremi ah +out going +bak er +entr ata +ma ids +gro ves +bo c +a del +m fw +con science +arm ys +nut ella +conte stalert +novel ist +la h +ban ker +marque z +ðŁı ¡ +to ff +out age +gr p +ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃ +musc le +du dley +nvi dia +mi di +m uni +ess ays +dat ac +car ter +ภ£ +t ans +i ves +public ations +al er +ok wx +il u +cu tt +har p +out law +luther an +br ill +bo lic +do well +green land +be sties +path i +pay ton +gue st +har den +ðŁ¤ © +ann ed +evacu ation +po ised +mc der +b han +o i +envel ope +ci d +ca vi +ta pas +book review +grey hound +âĻ ª +fe ud +lun gs +for te +rai der +ff er +oni x +dep end +yn wa +rel ating +de vs +ðŁĴ IJ +acqui res +d ha +j yo +priv ati +can ine +k b +cra b +sar din +imag ining +k j +em por +down hill +ne z +ta eyeon +nick imin +gb p +à µ +w ap +sec co +ma shed +ðŁĴ¥ ðŁĴ¥ +augu stine +diss ol +dic tator +â ĵ +vi per +ed fringe +vau x +hard work +book let +no x +chi ff +ðŁĴ ¨ +observ ations +xbox one +u sher +ke er +lu p +dal las +cal gary +ma dra +di ous +k bs +wood ward +hero ine +lu mber +sea world +o ws +mc ke +maver ick +gu la +cross roads +fan g +s ade +nik ol +chee tah +me c +pp g +er ick +ðŁİ µ +tox ic +bj j +viol a +sp ire +ch ino +tra vis +institu tional +ha as +low ry +w ac +ea e +hu mid +mp ton +ru ck +je w +c ine +zim mer +se f +bhar at +fre es +aam ir +ðŁĴ ħ +z inc +wan e +multi player +royal wedding +e el +preci pit +qu ery +kimber ly +isa bel +ful fill +ig an +vau l +pan e +sc y +dig it +gun n +u tah +dog day +fi on +xia omi +da c +el ast +cha vez +ro blo +g ine +ten th +ab h +ke to +hur dle +na dia +memorab ilia +ha bs +qu an +h w +hv ac +pix ar +ec cle +kram er +accu ses +ðŁĴļ ðŁĴļ +per se +mean time +wa hl +atle tico +âĢ¢âĢ¢ âĢ¢âĢ¢ +ott oman +no vo +k us +conne cted +tru sts +d mv +spen cer +rahu lg +do ve +sto kes +bolog na +enthusi asts +à ª +rockstar games +ted cruz +du ras +s acked +late x +immer sive +cer t +lu cin +princi pals +fa res +sa ils +far n +am ent +saf fron +quent in +check point +fer ris +ex cur +ðŁijī ðŁı¼ +bai ley +se h +ter re +mad am +s band +wan derers +cumber batch +yy c +digit ally +blackandwhite photography +roll in +moroc can +ðŁĮ ħ +din ner +d well +to om +m ye +ez ra +cp fc +war hol +me er +jon ah +no aa +s gate +so on +secu lar +g ating +ti o +dri ver +si ssy +assan ge +ta th +ed mund +bobc ats +ra ji +po stage +stu ds +m gm +kat o +edin burgh +meet the +shir t +fa a +mens fashion +sp reads +wi m +car ts +phoe be +j ars +bot swana +Ù Ĥ +ed war +sk ar +ri ve +gu sty +c tv +ferdin and +su therland +nickimin aj +k v +si us +bee ch +re z +desi res +on ial +camp o +quar ry +lor raine +gil more +ig gy +µ ï¸ı +ho pping +avi z +ðŁĮ º +uni sex +dedic ate +att itudes +ste er +jun kie +rail way +y b +whi sper +key an +k us +ju g +di x +a ins +sum mon +ov ich +sy ed +her ald +ma ison +me ded +wild flower +main land +ri sky +ru kh +over looked +ki c +destro ys +nam an +ki p +z ano +champion sleague +ban dit +quin cy +smi le +cal vin +open ings +ta pp +ol ulu +spec tro +accred ited +ap k +pra ised +bar nett +pol len +premi ered +selen agomez +tou red +screen ings +uu u +mis o +en se +adam lambert +guel ph +har yana +hu tto +le ar +l tc +po ached +brex it +æ Ŀ +tt c +pa vement +mon gers +ro e +ad ers +ling ton +particip ant +ca red +ga il +y ates +lan tic +dash board +jo o +feli pe +ssi onist +bu m +s end +a eri +thu gs +luci fer +a he +dete ctor +fil ly +gas oline +ham per +hump day +the ta +the band +fore casts +o hhh +lo bb +hol l +cp u +az u +ad ar +hai ley +bu b +car t +quo ted +an archy +pan cre +twit art +al den +st ash +the less +or ni +belie bers +mor mon +partic le +avi ation +⬠Ĩ +webcam toy +sad dened +cru is +ham let +n ct +roll ins +marque e +saw yer +reli ance +a ura +di ec +soo thing +sig nings +ak is +à ³ +at kins +aer op +ðŁĮ ¿ +y ab +sh ari +con nol +du bbed +manufac ture +convin cing +feelthe bern +ra u +pu lit +on ec +gem stone +ur ging +bag u +ga h +aci ds +fi anc +zodi ac +sn oop +her rera +initi ated +ven ge +profess ors +pro di +stron ger +e mission +bb a +hal le +ta pp +haw an +wh im +compe ted +myr tle +ir port +cold play +ach e +ske p +m son +ss ic +calli graphy +swim mers +me y +pp c +thri ft +po c +re places +commu ter +âģ¦ âģ¦@ +go ers +lo gue +para dig +bas kets +sensiti vity +joh an +atl antis +& & +suit case +anxi ous +l h +str i +gal loway +stre ad +war den +gr ounded +ffici ency +li feat +reli c +disgu ise +island ers +f cofficial +classical music +b mc +en field +bi que +oak ley +bat man +sla ying +ner ves +mul tit +calci um +projec tor +scott sdale +ant ino +gri ps +kim mel +des mond +prote stors +hi atus +metaboli sm +conclu ded +press er +ti pping +sli de +e to +hun ting +aus open +ri k +pp ery +innov ators +pitch ers +ag ger +fun gi +z ad +proli fic +rockn roll +bl ames +ct ar +stam ford +q ad +mozz arella +insan ely +den ver +ph ouse +nom ad +ï ¿ +s ris +pro du +hen ley +pag an +am trak +ru bi +in cl +tu tor +sco tia +wo es +sing apo +fun nel +turn bull +know ledge +gri mm +real madrid +we are +missi les +con sol +emo jis +sne ak +smi ths +ru iz +br ou +i el +ha ver +ðŁĮ ļ +kin gof +basil ica +circul ation +prin ters +ta pping +ri dley +dra gged +ha j +writ er +fundament als +personal ities +me tre +stereo types +bur le +best of +n ffc +ha th +mini stries +a ali +trac ing +pav ed +ł ï¸ı +g ic +insp ire +tu g +ha re +repe ated +ex pon +lol li +rho de +pre cin +install ations +instag ram +az ar +i es +sole ly +du kes +mission ary +van guard +fursuit friday +on d +pol ari +ma st +har an +jos é +jack ed +ec oun +al ities +ne ph +ra vel +moder ated +sco w +s fb +uru guay +as o +ni g +au du +p ints +lat ina +ben z +m itting +char ted +mat ology +cit ro +biop ic +ðŁij Ń +djo kovic +fox y +agu il +so to +an ada +sin king +sc rap +hair s +bethan y +fact friday +ðŁIJ IJ +unlea shed +) ( +contra dic +ram on +coast line +y ong +sn sd +li gan +p ome +mit age +ge tt +wat i +ri sk +so aring +bru sh +f pl +av an +å Ĩ +lar son +sh ear +mul til +blu r +multi media +chun ky +par i +n ani +weir d +cholester ol +char les +dream ed +tan ning +puzz les +fr am +hand ball +ch ag +beli ze +al u +bang s +Ñ Ħ +detec tives +mc g +ish q +bo thered +saf c +mp ing +ten eri +g ays +sail or +an gi +mul ticul +gue ssed +ros é +high ways +bro om +chatt anoo +- ' +see ker +on ed +at f +lu c +> < +bar i +per cep +jewel ry +as ph +sor row +sl ing +mam moth +jac kie +ë § +wilt shire +sa o +can cell +im paired +tor ial +bre ed +guy en +jud ice +tit le +pro spective +applic ants +ðŁį Ĭ +epis cop +e id +b yo +stock ings +ðŁĴĥ ðŁĴĥ +ll p +sna g +keep it +l ough +ol son +matur ity +!! !" +cop ter +i sha +bl i +wil mington +tr youts +th ai +ðŁ¥ ³ +pe bble +kra ft +f p + º +ssi vely +li vin +contest ants +tex tures +jo an +h dr +film festival +prov ence +wi do +op end +c si +sto wn +cro ati +ad just +host ile +analy sts +il an +cu ppa +bru m +newfound land +good win +me tt +mall orca +plu gs +bu k +bb hutto +wrest le +sa ire +sho pped +for za +le head +vi vo +ba st +ro xy +reg is +hard working +hon olulu +desp air +young sters +ni g +impro mp +roll tide +de emed +tre ason +ru shed +for ged +ff f +pikach u +bri ggs +do it +ac cent +la us +gla ze +compet ent +a ho +photo g +mid field +le go +har vard +min orities +re illy +slic ed +once upon +initi ally +financi ally +landscape photography +har dro +qu o +mm ers +par kinson +smu gg +read iness +bru tally +glou cester +mp ed +bbhutto zardari +mur der +ye d +dat aviz +sr t +dow ning +bi ans +m ü +fle ck +fli pped +s ly +brilli ance +ri m +k um +bubb a +ko i +knit ted +sor g +ma is +ðŁĮ ² +ti ss +su stain +sen su +ak han +zi est +exam ines +chardon nay +user name +short list +re bs +on o +dar ing +hard wood +che que +righte ous +light ening +dir k +shra dd +du ra +down stairs +sh al +ami gos +ru ff +s law +ri es +red nation +man us +ðŁĩ§ ðŁĩ· +distin ction +u bun +dur an +mi gra +thi ans +la ver +domest ic +k x +jaz zy +justi fy +belong ing +insul ation +color stv +drun ken +chann eling +qu and +xi ii +enligh ten +kan o +fati ma +teen choice +terri fied +p ba +as ley +met museum +dun e +pack er +ki o +ðŁĴľ ðŁĴľ +bo iler +fas cism +ar mored +back grounds +in mates +embarra ssed +defin es +th d +we go +silic one +lo on +el ding +bor rowed +he mp +ak sh +kaw asaki +br y +de af +kill er +dispo sal +ðŁĩ ° +glaston bury +un covered +o xide +po ff +d ant +k j +ku ro +dri zzle +peop les +fe e +pro pri +dd lovato +pi ggy +ot is +aller gies +u bis +pengu in +ser a +vi z +prosp erous +ici des +tornad oes +sene gal +web cast +sto red +enchan ted +bb cone +bay area +entrepreneu rial +rednation rising +experim enting +ang an +lot to +they re +por e +er p +seren e +east wood +bro kers +bar ge +stal lion +timber lake +tailo red +dy stop +b ate +lat ors +di xit +bran son +dynam o +ky lie +shame ful +bt wn +spring time +mix ture +s ounded +lu ton +dad es +mal a +op ra +en ic +rahulg andhi +se wer +~~ ~~ +ky u +nor theastern +ca er +bc u +nir vana +kitch ens +ous y +al m +river dale +hid den +fl int +sp d +pat rons +katy perry +au gh +exhib itions +sm c +shu ts +at ore +da in +some thing +ber th +bo g +por ter +gen to +con cussion +ang lic +ro we +gr illing +scar lett +master ing +mor nin +comm ented +si me +si zing +christ y +ce os +st m +at ry +tari ffs +vac ation +pre judice +p su +paren tal +far age +can a +cap com +koso vo +you re +men stru +stal in +grape fruit +br an +che sa +dav en +exc el +!! ) +๠Į +distribu tor +ce a +bride sma +millenni al +wa in +ob serving +mis ery +plan etary +expo sing +bra ised +comp ton +don gha +q l +spring steen +th ul +syl ve +cab o +pal ad +niel sen +gaz ing +ba ja +r oud +orchi ds +johan nesburg +se man +d ji +oper ative +affe ction +eclec tic +at c +mut ant +aw x +nic e +mel bourne +indu lg +tu lip +dias pora +wel p +big gie +mississ auga +retri ever +or an +tam my +c ta +hipp o +seas oned +ger mans +eng v +marvell ous +im f +rela ys +mon tan +maur iti +me ister +as surance +reig ning +su fficient +han e +no thing +pos se +nav y +in love +brigh ton +en qu +ch ung +sweat y +es c +cal ed +man s +nicar agua +sl ices +mo cha +washington post +bb n +dam ned +grow ing +en burg +lo an +me s +wh oops +believ ers +spi el +vo daf +l at +s led +cricke ter +brown e +golf ers +bar ra +wat chers +lu igi +sw amy +mom s +pit ched +san tor +cr s +si re +sc amp +bo de +ste war +jon ny +ent ity +pac qui +mind ful +min india +bear ded +temp t +scorpi on +eat on +authori zed +ar to +s vp +op athy +cch ini +house music +disney world +âĢĶ @ +pro pose +di y +expen se +ten g +pupp ets +sm el +d aca +per ry +fin n +boo sting +lefto vers +cou gs +satell ites +man y +az e +g ong +fi e +metho do +fer ries +ðŁ¤Ķ ðŁ¤Ķ +explore rs +load er +attrac ted +il ton +godd amn +pi azza +doc tr +sav ing +paragra ph +visu alization +may ors +work flow +ack les +ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ +ठ¸ +twer k +clu t +lo ver +te ases +si an +o te +deter ior +accor d +l fw +swar ovski +nat al +tra ps +k ina +analy ze +laye red +bever ages +un it +ran som +pe shaw +dest ined +astro logy +si pping +miley cyrus +cam ino +marshmal low +bli ss +out back +fa q +int oler +humil ity +po ppin +hallo ween +mon tene +op hy +nu n +tattoo ed +a as +ðŁĮ ³ +dale y +qual ity +du sa +fisher men +swi f +ter rac +st au +le in +trol ling +ship ment +garden er +march madness +head band +gr t +bur nett +w and +!!!! !!!!! +gh e +du x +hu d +war ner +ðŁĩ ¦ +ex ile +rescu e +rat a +d han +duc ati +dro wn +bl ends +spi e +alli gator +simul taneously +broo ke +u ke +k har +comm union +ri ka +ford fc +chin atown +you rown +me y +can al +syste matic +de pri +ox ford +an il +w ut +equ ation +be z +fle ur +the good +lang ley +ad ity +ed ith +al fie +о ÑĤ +en cry +br ill +ex emp +ce sar +mb ling +ab ri +sc icom +j ing +school ing +mi ka +mechan isms +impromp tu +rhe a +moo re +crime a +be sto +wri ght +el ders +ro ds +kam al +folkl ore +be et +mini on +reli eve +thr o +team usa +pas cal +made with +boli via +itt i +free bies +desi red +best selling +l iness +la den +ke ane +mi sts +hipp ie +atta chment +@ / +se w +flan agan +âĿĹ ï¸ı +supre mac +stl cards +si as +q u +rh ys +ste ep +val leys +v w +pav ing +disp at +al ison +por te +id u +new sc +soc ket +mo s +co star +re vo +prote ins +stanley cup +m cal +ear ring +se cs +mc lean +cap ric +nick elo +ad en +v c +shou se +adap tive +maxi mize +entertain er +pro se +gri ffi +six teen +lam ar +mi rage +saudi arabia +awe ather +ru st +in filtr +fashion week +ðŁĺĬðŁĺĬ ðŁĺĬ +selec tive +bubb le +a den +fen nel +deci sive +m ta +mock ing +mb les +st amp +mu le +bernar do +gr in +po tt +j ingle +vet tel +colom bian +cam o +motivation monday +ba han +p ly +dh ary +k ami +x men +sleep er +gar a +my sti +confi dential +conflic ts +p neu +ce s +insur tech +clean se +me rely +va is +tu x +the great +shar on +ma j +hol a +eco systems +aj ay +aa j +hu sh +har mon +backto school +wiki leaks +reflec ted +ðŁĺ ĵ +commemor ating +ac et +buck ingham +messi ah +tu ous +hor net +to be +d q +he ine +mi g +pl ate +nichol son +sp ie +cumber land +nor mal +pho bia +happy halloween +city fc +mc el +gilli an +ke to +lu de +de mise +su ga +str ate +mcgr ath +visit scotland +foo led +cb r +gc se +col ori +po td +missuni verse +fin ances +ma poli +for ks +Ø ´ +cann on +medic inal +ðŁĹ ĵ +kh o +wre ck +pan to +bag el +gu ll +syndic ate +ic y +pr c +ki en +zi ka +ti sh +pe ta +c co +li za +ch ut +ex traction +el g +gl i +fu eled +pos it +respec tively +leice ster +br ink +vulner ability +im ported +e sha +ðŁ¦ ħ +r ural +re ll +gam ing +atlan tic +aband on +no ah +re solved +pro state +aller gic +ps d +âĺ ¹ +dun geon +fang irl +illumin ated +m hs +white sox +d ently +ck o +endor se +over ly +dazz ling +prior iti +night life +ut il +be have +flam en +east bound +ðŁĴ Ł +ilove you +gov uk +mozam bique +alle gi +dr i +testim onial +ath s +ì§ Ģ +mm y +shab by +pro secco +friend ships +cal am +dam ages +off set +jura ssic +jun o +arre ll +ðŁĴ © +interven tions +dare devil +car ver +run away +ran e +truste es +ha ute +dep ths +ðŁİ Ń +me in +sacrific es +con cier +ne sting +i zzy +me tam +ilove my +ur ine +du lu +mal hotra +ve ins +night ly +co at +an di +he witt +lon el +ci ble +wr ite +jen nie +sant ac +ĸ ï¸ı +str ato +singapo re +sop rano +kri sten +cheer ful +flee twood +fa iri +m eli +wa st +tur nt +sfor sale +sc rolling +angel ina +ren dition +jeric ho +nick y +or b +fla vo +patri ot +ash eville +sick ness +re fund +aggre ssion +b pl +ãĥ ĥ +elu sive +thi story +hang er +bu ffs +vil las +at kinson +sp h +ja it +decl ined +wo k +supre macy +oo tball +ey ang +ðŁİ ĵ +s ford +ath i +consu me +road ster +e so +u pro +reci pe +au f +uc i +ar on +oo oh +cs go +re ich +mc d +min ute +ladi es +pun k +rut gers +mee k +ariz on +ta j +land lord +de gra +autu mn +lyn x +us f +b hi +fairy tale +dongha e +bet sy +explo ded +chen nai +op a +pro tag +br ant +ðŁĵ °: +g f +pal li +ðŁı¼ âĢįâĻĢï¸ı +su t +ill ini +colum nist +shir tless +de centr +sear ched +ec or +bu ggy +s ack +ðŁĺĤ ðŁĺŃ +de t +ther i +or naments +bring back +to v +quarter finals +ic he +con stra +gi er +buchan an +vi x +kay aking +mu stread +swal low +mel b +sc af +op al +may oral +har at +ðŁ¦ ĭ +schedu les +id f +ha gue +ro z +a ah +d mc +du plic +ca che +orph an +frac ture +rec on +ch av +bun nies +al ain +mustaf a +ðŁİ Ļ +vac ations +dynam ite +tex ted +broad caster +ðŁĴ £ +ste amed +rock er +di etary +luxury travel +inaugur ated +sa wards +vaugh n +lincoln shire +click ed +kra ja +f anc +remo ves +layo ffs +mc far +bre eds +win nie +jon ghyun +incen tive +vari ations +pat ton +atur day +persist ent +pr un +pi ers +dal es +æ ĸ +breast feeding +r ance +ta wa +Ĥ âĸ +mur doch +cap tive +thi stle +nic a +commod ity +cou ldnt +board walk +graci ous +practiti oners +n gc +scru m +ner o +camoufla ge +col on +he i +phys icist +saturday morning +ten er +si won +colum ns +bru ne +y vr +ba ir +reti res +hal am +cab er +shaz am +min u +cas cade +milk shake +gri d +d ren +vin cent +so dium +plat ter +cheer leader +chen ko +y ak +elimin ated +ty po +y man +re think +âĿ Ĺ +ts ville +bernardo kath +ex tr +ðŁĺģ ðŁĺģðŁĺģ +ta o +re per +mo ths +em powered +c iting +transpor ted +mon ks +san at +cle ars +bachelore tte +camp bell +racha el +har le +hand ler +climb s +inter ference +rele ase +sh and +r bs +hr h +ãģ ª +val le +r é +sli me +w akes +chu bby +slo an +el ves +ath en +attor neys +micro scope +ston er +sc aling +o be +c out +se man +mid week +bal sam +ðŁĺį âĿ¤ +ti ful +v ish +lo tta +ri pping +re mn +ti re +le ap +ha vent +la by +hi mach +whisp ers +we in +ðŁİ ¸ +wild flowers +se le +u cc +li ability +az ine +sw ings +k ya +ta ir +re main +e do +flo ps +poc ket +grand ad +exam iner +gr is +ffe ct +ðŁijĬ ðŁı» +stud ded +heart beat +de acon +firm ly +infec tious +ste f +out lines +le asing +cla ws +sen se +tab s +hoo t +mo sul +spa wn +co a +hog warts +ve in +alban ia +manu el +b ino +vaux hall +scot land +go bucks +mat ty +phy sio +tor ino +const able +investig ated +s lower +mistak en +bay er +wild fires +vo ic +x on +time to +chas sis +bar ric +pi on +bald head +woo k +regi str +dra fts +b hs +li gue +l ick +staf fordshire +baf ta +dar ry +je anne +ven ding +cor p +⼠³ï¸ı +kid dos +fen way +ca o +west bound +ðŁĺ Ļ +dv r +quick er +bla h +goo die +ðŁĴĭ ðŁĴĭ +vo x +esp er +fac ade +cor relation +red bull +rou p +decl ining +chi ve +mc gee +tur o +in der +f eller +fu g +il ysm +mar di +peshaw ar +ki eran +ine ma +meat balls +pe ck +depre ssing +sen sing +gi z +dd ington +spring watch +ro aming +yellow stone +horse shoe +am man +week day +ol or +ðŁ¥ ° +boo sts +spr int +scar ves +je e +bee tro +cl an +all the +ìĦ ¸ë +enlighten ment +ado be +re generation +? @ +cont ag +yach ts +to u +mor a +en voy +r ani +go li +dhanush kraja +wood working +streng ths +se di +disc s +ar ina +sc on +lit e +ano ther +ðŁ¥ Ĭ +ye men +gu ern +sav vy +lo yed +biom ed +heart break +comra des +milli e +pat ch +un f +jar vis +bl aming +commemor ation +ge y +å ¥ +cardio vascular +alig ned +docu ment +. ? +aesthe tics +em u +the irs +le h +ps ic +si f +pl ateau +ex pend +domin ating +rob es +mauriti us +excep tionally +hom er +discover ies +bra un +ten nant +insul in +ðŁİ ® +car bs +te as +? !" +zi e +franco is +brow sing +th ol +cla rence +hel per +ob tained +cas sie +le es +! , +pome gran +hu bs +presti ge +] [ +mach er +bott led +pun ch +pi pe +o ch +gall ons +deliver ies +u ra +un day +mon de +depic ts +re gency +outra geous +khal ed +car o +he arti +za g +develop mental +over coming +stati stical +flavo red +for ds +cre atives +lau rence +di as +sun screen +in ked +pre acher +n ul +impac ting +auti stic +âļ Ķï¸ı +o ss +pel icans +cele ste +v b +ru mp +mc gra +fair fax +hu mor +bbc news +row ling +cal der +seam less +ag ne +p ti +mix ed +t shirts +mer ci +b tob +women instem +genealo gy +pre ven +l our +cra dle +gi use +Ð ¾ +chron o +fair ness +chocol ate +tor y +as da +pre scott +stret ched +al man +u il +re charge +in tre +ob st +hosp ital +hay ward +teneri fe +fried man +vap ing +confe ssions +ye ah +bal li +luck now +cor pse +sculp tor +amp ton +t pp +indic ates +sur plus +tru man +ðĿ Ļ +sin ha +in vo +sovere ign +ke v +establi shing +engra ved +assu ming +ðŁı ģ +sou za +fab i +ton ed +oun ge +del oit +dow ney +no ble +om or +car tridge +ðŁı IJ +u hur +hol loway +succe sses +r sa +âĦ ¢ +ma zz +tw d +disc ourse +. < +y at +satis fy +com pri +ठ¹ +graph ite +disser tation +ar ter +í Ķ +b ally +zom bi +ly ons +a ic +u bc +pra da +e il +da x +cla i +grand daughter +extravag anza +chall enge +ðŁ¤ ŀ +po ver +primar ily +dad dy +man a +bi kers +inqui ries +da un +fel ine +gener ative +he f +benef iting +lind sey +pol ka +demonstr ated +al le +rand y +o su +low key +weir dest +red bull +our y +n ous +wood stock +cre denti +nic er +g ado +aly ss +ap h +prepa redness +station ary +incorpor ated +dy er +sarato ga +cele sti +: " +antibio tics +or gs +inde fin +ap ron +и Ð +fif teen +no f +ðŁĶ Ŀ +ph x +te ga +m z +organiz ational +on air +band ung +pleas ures +mor i +secre tari +rac coon +ca shi +pil ates +k on +geof frey +la o +kam p +depart ments +back packing +an am +à « +crack down +aun ty +on do +li zzie +ph ers +cu n +ðŁĩ ± +k pop +pu t +inten tional +connol ly +bar clays +hs fb +swin don +u ku +s ally +a int +âľ ħ +pen ang +up lifting +epile psy +inter ro +bun gal +go ku +blue berries +ठ¦ +u ssia +sil ky +mou red +i stic +bri efs +me ats +go b +ch aser +state wide +pra sad +gl itch +ar in +ban ff +memb er +ðŁĺŃ âĿ¤ï¸ı +lo ving +hall a +ภ¡ +smo kers +yak u +scicom m +physi o +sw ol +lem ons +gel ato +ch ool +capit als +ki stan +ti ghts +spi kes +trav ellers +ik lan +commissi oning +ar ine +emabiggest fans +empha sis +front line +pad dock +destruc tive +ba ha +l inger +je wish +shet land +mc gin +mon key +ko z +s one +raj ini +te h +y en +c vs +masqu er +gir ly +we sle +was nt +bro dy +termin ator +gil le +mag gi +bir die +jeopar dy +cu bic +vm ware +intric ate +an up +to pia +east on +sab res +investig ates +bu sting +bil ingual +valent ino +in format +fer re +advent ur +hydr ate +for sy +az iz +san to +e de +whist ler +continu ously +d ham +un used +ji had +addic tive +vi dy +do b +i do +fi ed +ni versary +n one +fu er +ðŁĺį ðŁĺĺ +coven ant +prin table +immac ulate +o em +cl t +serv ants +consu med +un released +sc um +pack aged +me re +ìĦ¸ë ¸ +to by +ta f +spo ons +me al +f ball +fair field +jan et +silver stone +dart mouth +follow me +voy ager +kom bat +anni ver +ene w +mag dal +ho ve +sa th +grizz ly +car di +gart ner +sand y +kan ye +post ure +po ign +im pulse +radio logy +horiz ons +si am +aish war += => +no che +tr is +el yn +com me +du i +ce c +councill ors +cudd ling +creep ing +loc ke +manag es +trans ferred +ne cks +di er +dan o +v ick +lun ches +d he +en sures +cri ss +ul ster +bann on +cont enders +sp am +sweet ness +med al +hon duras +arc tic +ultra sound +in fr +disco vers +ei ffel +ca sters +ru ben +du st +awe ed +atri um +lest we +se ared +ðŁĵº : +ty ne +ex changes +little mix +l le +astron auts +hersh ey +work day +kno b +so v +re signs +today show +der man +an th +af c +ta ster +sw oo +sa eed +per ing +narrow ly +rn li +best buy +panas onic +obst acle +farmer s +ðŁİ Ļ +pa wan +ki est +ang ers +absur d +oh my +sin o +pist achi +sp ice +giu li +prime time +ko w +k ens +ex agger +! ?! +u ba +midd les +ju dd +e jec +slam med +pen sions +of a +re create +b hp +xx l +liver pool +thre sh +pur ity +ni eu +hol ics +wr ath +ra do +gli o +am ma +dile mma +cr u +lets go +.... @ +âĿ ĵ +sugge sting +tru mps +hor us +f v +ic om +refer ring +predic tive +tar ts +ge tte +so ck +glo ssy +pin ky +al ec +thy me +ou ra +thero ad +pe tr +cr am +p fi +dv n +me ier +incen tives +tun nels +mobi l +rec ap +extra s +upri ght +rev amp +per severance +, - +ot p +mir ror +ar wx +ger ry +ma her +g or +hom epage +am is +ag ra +made le +best friend +sirius xm +bun dles +admir ing +t dsb +ðŁį ģ +ch as +slow ing +ro h +wall papers +âĢ¦ / +tek ken +gang s +tal a +lind say +shou l +line backer +tool kit +ur anium +caly p +ab rams +mat thi +ðŁı ¿ +hon ourable +da yo +ver sail +tan k +st c +fr itz +spl end +pat ag +anno yed +on day +devast ated +chattanoo ga +national ism +mas sey +jen n +tail or +dev gn +org ans +zu cchini +on fox +sat ire +wex ford +dis grace +no to +vol ta +âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ıâĿ¤ï¸ı +à ¶ +home owners +poin ter +m cr +au sten +day sto +mo ons +pal ma +gra zing +e so +influen cers +shahid kapoor +compli ant +measure ments +develop s +y d +par l +p vt +rand olph +tor tured +ger ald +eli as +deepi kap +war mup +hick ory +g ap +co ffin +am our +re neg +moun ting +seven s +ig le +hi er +dec ad +tri ght +esc apes +wer ner +t fl +ful filled +ni ger +sour dough +re aper +choo ses +spin ner +week nd +fil tered +sh uk +kat i +old ham +open source +kh anna +at elier +conne c +opho bic +gla s +complic ations +ar son +counc ils +sm ol +as sy +lur king +ling ui +han ks +e in +Ù ħ +ru gs +n guyen +nou veau +men ace +le v +alad din +ru ining +round about +k m +con or +shoo ps +may day +traum atic +prab has +ka iser +k ita +rou ter +pe dro +re tar +stun ner +spani sh +distur bed +acade my +e learning +wit ty +sen g +fer al +av y +sta b +ke aton +ur du +ko to +hu i +coo ke +ari an +the personal +u ma +se ap +a sting +rhetor ic +hand writing +munici pality +consor tium +ðŁIJ Ł +glasgo w +ra ya +eli za +polym er +bro th +prac ti +correspon dent +addic ts +gay le +ail ing +o fe +p li +hear tw +st itch +sight ings +prie sts +sam o +slo th +good wood +roc co +sab c +summ it +l ace +pres ley +itt en +cin cy +thepersonal network +s week +pe gas +af con +regi stry +ci m +le th +dic ap +cand ice +flu ent +sm ack +pede stri +al oud +car ac +priyan kach +p gh +ir ons +dol ce +lat via +dece ased +thero ck +cla p +cen e +fo am +morris sey +gre t +essenti ally +com cast +be agle +argu es +ing ed +- âĢ¦ +sa g +ha san +ðŁĻ Ĩ +ðŁį ° +nh ra +kann ada +indic ators +on er +bri xton +at as +screen play +sor ority +sha heed +he em +class mates +tain ment +es i +breast cancer +zucker berg +aur or +en cia +ref ers +kae per +vor tex +com part +lym ph +photograph ing +ste ff +rest ling +par sley +mom ento +th man +lac king +du tt +ocu lus +fin o +fren zy +ra sc +der n +dis missed +noo k +met gala +sh ill +rapha el +maver icks +exhib its +eag erly +c pa +amen ities +. âłĢ +exo dus +ern st +lit a +deal t +womens march +i ain +score board +campe ones +c en +ti ki +garri son +fidel ity +bra g +road map +psy chop +lo e +ble u +ðŁijĬ ðŁı¼ +sau vi +spr inger +temp tation +ru dolph +ac ura +wic z +parach ute +stro l +len ny +zi k +dom s +nb af +al pac +vivi an +ro ve +pre et +perpe tu +sna ke +air soft +infl atable +prin ces +ati e +ffe y +pati ent +m ire +chel le +sl ack +groo vy +# : +up loading +!!!!!!!! !!!!!!!! +siem ens +provi sion +v fx +need y +f ats +to poli +bhu tto +sa thletics +alu ms +t winning +south western +adop ting +last night +man ne +la ga +tw ell +ac ia +-- -- +eye wear +hur ley +fle e +sa ch +pe cker +cost ly +is k +cr ates +polic y +ero sion +in go +wer k +ðŁIJ į +torto ise +therap ies +inter net +chihuahu a +ri ps +fre i +ed or +tai ji +t fc +do d +demp sey +christ in +chen g +hi ps +gra eme +com passionate +cavali ers +histor ic +soul ful +crimin al +ja c +vin ci +expi red +sur at +turi smo +k ona +se aweed +ber ts +le ica +expre ssing +a al +wor t +break fast +her ring +am used +rhu barb +mar tian +cospla yer +y ash +stri al +ra ul +refer ral +dw ts +j w +ad ler +cur tains +gu r +val ence +tyr one +sw fc +coach ed +re born +diabe tic +cho ke +nor folk +investig ative +ðŁĴ¯ ðŁĴ¯ +z id +v mas +phi e +objec tives +âľ ĭ +over due +di vers +mat su +ðŁİŁ ï¸ı +casu alties +ภ§ +al k +stand ardi +re alist +arti facts +pand or +ke x +in vin +( !) +ine y +par aly +mr t +fay e +the voice +on ga +de ed +skin ner +az wx +speci men +priyankach opra +nu evo +bar kley +toulou se +resu mes +football ers +cit i +fe tch +è re +lestwe forget +ðŁĻ ĭ +ch unk +dri fting +manipul ation +equ als +pu tt +ky ungsoo +âĿ¤ï¸ı # +ela stic +par ano +fo y +do ping +cin cy +ss ler +interrup ted +al ay +ado res +ame thy +con voy +ãĢ ı +Ĭ ãģ +black list +gener als +sa chin +bru shed +oun ces +non stop +illi ams +bt sarmy +u av +ru ff +bur ma +bi k +defen ce +schul tz +bo asts +lonel iness +go re +trans forms +alum na +@ @ +ra ppers +ne hru +car o +himalay an +wearab les +ge h +pepper mint +re development +flam ingo +cos by +big baldhead +ag ri +bare foot +sco pes +re gram +gh ana +ðŁİ « +i heart +sa die +carri e +microbi al +ku ala +sk ater +quer que +âĻ © +gen res +reas oning +ch ased +as o +sli pped +en can +vam os +ker s +ad verse +mo il +commod ities +with you +sil ent +hy pe +an de +am ination +whi spe +lit z +âļ½ï¸ı âļ½ï¸ı +ri ff +pp y +lam bs +gan esh +ab sent +regu lator +marse ille +en roll +par cel +wa p +by rd +ðŁĩ Ń +tu ber +country music +par l +contro llers +responsi bilities +we y +ch ate +montene gro +chic o +mil an +l ms +tra inees +appropri ately +un certain +popp ies +ed sheeran +nutr itious +gar o +deut sch +awe some +ãĥ ¼ +comfor tably +land marks +et i +re usable +daniel le +ro sal +co les +just ic +c cs +f anny +ni m +mc u +clin ch +at ene +mer ge +im db +ang lo +uc cino +pan ini +an not +bur berry +feat ure +predic ting +fashioni sta +s ask +imag inary +mm o +south sudan +spe ar +hu bble +jo inthe +coyo tes +sli go +ko dak +sit com +polaro id +roo ted +corru p +ðŁĻĮ ðŁĻĮ +bris ban +at z +ah l +re my +tal ent +aval on +ra da +pau line +locom otive +go ons +ne mo +maser ati +ic u +stu tt +histor ically +sm b +pres by +avo id +so oners +rhine stone +w ad +ri sing +tro t +mo des +reg ent +optimi ze +re ece +sm u +ver ti +newyork city +cor tez +ra c +in case +sin c +fiel ding +e tta +tiff any +al monds +sad dle +k rat +mat ter +g low +star ving +gl o +cra ppy +sl ur +st d +monit ors +recei pt +maymay entrata +mc il +un is +rain bows +cal dwell +pacqui ao +j op +a fe +hoo k +es sen +wiz ard +medi an +fla ws +com s +âĿ Ħ +ing h +ha ynes +anton io +tem plates +ou ter +na w +cardi gan +bel grade +ðŁĴ ī +hom o +a ise +ro pes +no ve +what you +tri gge +concep tion +ad ukone +na di +fri ars +sw er +adju sted +hot line +san ity +kau r +down loading +c gi +ten or +eth nic +app alach +ภ¸ +pa g +gol ds +on set +investig ator +car tel +peace fully +jarre tt +cat alan +poli o +n um +fru stration +dhar ma +my life +âľĮ ðŁı» +aber deen +mu sa +bin der +spark ly +fle eing +instin ct +co ping +domin ance +ill ers +er a +u conn +lo oms +living ston +gal i +he s +c ma +bel a +se ley +mon k +la ch +mar x + ´ +m erica +woman in +es sex +ra ina +jim i +nep tune +z ack +chine se +mart ins +chand elier +her n +with us +ear l +asph alt +modu les +st p +ul la +psychi atric +mile age +captiv ating +si der +men to +mor t +tran ce +tal bot +ab by +ì ĥ +âľĮ ðŁı¼ +j ak +daw n +turn up +scre wed +fe ds +blue print +ðŁĴĸ ðŁĴĸ +har sh +er os +insom nia +ban kers +ta emin +mis conduct +hu mber +gi di +edu ardo +con a +musc ular +consu ming +ra sh +don nie +di pped +col lie +samu el +melt down +ðŁĺįðŁĺį ðŁĺį +me z +exam ining +schwar tz +pri stine +ðŁIJ Ŀ +ve it +ful filling +an esthe +gue sses +dra ft +som me +soli d +pati onal +ho ped +evolu tionary +all er +enter tained +sli ps +lud wig +conclu des +sen sible +bon net +cra ze +tra s +haz ards +const antine +ed ics +star trek +to c +occu pational +in cheon +deepikap adukone +pizz as +new comer +de part +oppre ssion +ebon y +foss ils +tro jan +el en +ste aks +k hou +positi oning +ug by +red cross +ak h +dol ce +us mnt +pp en +dil ig +ma vs +call er +cost ello +⼠Ħ +dy n +thing s +rhin os +a xi +sar kar +con vocation +att ers +ss ss +fun gus +eu gen +russ o +squ at +w sb +eli on +william sburg +s off +defici ency +be arer +o kin +key stone +t wain +cal ming +break able +wa res +horser acing +com bs +bun ting +u it +t land +ðŁĴĻðŁĴĻ ðŁĴĻ +ga stron +sab ot +ick ers +commissi oners +sen ate +ii ot +ath ena +nit rogen +an tony +ero tic +di alo +mis sou +hypo cr +âľ Ī +kaeper nick +can v +d roo +clevel and +o sh +mon sta +stefan o +^ ) +sh ul +po ison +ha e +commerci als +ma ul +nit ro +co worker +alo e +vap or +t ents +russi an +qu id +question able +mid get +po ker +girl friends +sin the +erit rea +ten ure +depos its +buc keyes +spot ter +theod ore +trin ity +joaqu in +u cci +follow the +caf c +mp a +ðŁIJ » +plo tting +dom ino +ta ek +sion ally +dicap rio +pa p +car mel +ig er +bt cc +beth le +www bigbaldhead +foo die +bagh dad +mason ry +off ended +à · +ภģ +sc ro +vers es +ori ent +ar ches +pi yu +know your +gre e +ta kers +gu ard +dish on +bucket list +bha fc +war dly +ðŁİīðŁİ Ĭ +leigh ton +pe w +stra y +assaul ted +in hal +ly fe +amar keting +l x +kat z +ubun tu +me o +carto onist +turno ver +mi z +dis like +mul len +mo f +bl and +hi des +emer ges +chori zo +truste e +ma hog +lan sing +paralym pic +fa int +fa una +ch al +sn ar +cat h +bent on +cast illo +sli ppery +apric ot +oec d +bar o +l z +he ming +clow ns +co workers +peru vian +commu ters +y ell +ðŁļ ´ +under ing +v j +tt p +fli pk +w ana +soc ent +Ĥâĸ Ĥâĸ +ठĤ +oo sa +jag ger +di sm +e less +d ham +cali f +a official +ec lip +harro gate +gra pp +com rade +n tr +concentr ate +thi ghs +bit coin +bel arus +ë ĵ +end uring +now watching +industri al +pi p +ar on +ar at + ® +whit by +oooo ooo +sa ree +tic als +mis leading +yo on +year s +sle igh +roman ian +sciss ors +vam pires +ac up +ab ba +th weeksary +cent ri +fl ye +u o +c bi +bu ena +sin d +mar ino +bur r +re building +ठ² +anniver saire +ac ca +ðŁĴĢ ðŁĴĢ +gett ing +tu lips +wolf pack +âľį ï¸ı +more than +ta kin +ðŁ¤ĺ ðŁı» +u be +mon ic +dou bts +mo wer +co balt +don ne +specul ation +argu ably +kak u +htt ps +prosecu tion +din ah +stam atic +disclo sed +bever ly +fl wx +cra bs +extraordin aire +war mest +imper i +o logists +trac es +par c +lake side +am r +ter i +hour ly +domin ation +ar row +shrews bury +ance stry +wr angler +trigge red +pen sac +roo ster +survi ves +a on +bo ko +val or +love is +la g +pe y +fo cal +out laws +bl anc +artic ho +wit s +marsh all +die go +support small +u ca +sa h +je et +syn ago +gover ning +ðŁĴ ¬ +sal ads +cre ate +miri am +cen sored +ami de +no u +z eta +allegi ance +* ) +bl m +ric an +pa stors +oly mpus +blo c +whir l +star ry +pr one +y k +p ne +congratul ating +be v +so ber +love island +sa ir +an ing +tutor ials +q e +lun d +in ist +cle ver +taxpay er +ali z +wren ch +dd ling +cap ri +h pa +ðŁı» âĢįâĻĤï¸ı +na j +o j +futuri stic +jelly fish +ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥ +cel ery +plan k +fil a +ne me +un healthy +lec tions +ðŁ§ ¡ +rit chie +n ws +mi kha +wonder woman +âĢ İ +hip stamatic +ka g +ðŁĴľðŁĴľ ðŁĴľ +poul try +mo w +wor ds +lo ff +ðŁ¤£ ðŁ¤£ +relat able +re mixes +keny atta +ke m +re signed +fo d +stra igh +j lo +hu tch +box ers +colle en +mag s +instruc tional +ko l +attrac ts +pra g +account ant +go ggles +br u +th ole +mar row +leu ke +oc to +pon ds +bubb ly +he ist +ìĹ ij +im p +a har +ha unt +hall mark +psy ch +kkkk kkkk +col umb +jump suit +cost co +si delines +ag gies +over turned +ni b +key chain +fu k +f af +mi am +assist ants +cy cled +ri der +dam mit +red wings +mag es +kin s +ì Ĥ +ho d +son t +carol ine +" ' +cu le +bra id +fel ony +ar ities +ruther ford +depic tion +isab elle +ro ach +k day +fifth harmony +em y +li gam +bari sta +albu querque +gro ss +ðŁį º +oo ks +ðŁij ¼ +dun can +try in +jag s +g ould +li tho +âģ £ +а Ð +sam my +tun g +cas ser +apo lo +aaaa a +man g +as ics +sh en +p ye +tur bul +ss p +saint sfc +on lin +n anny +he ster +do z +ภĶ +th read +ren ts +kh and +ðŁĴª ðŁı½ +un conditional +rob son +car re +ph on +sacrific ed + £ +auto s +par ker +oc a +log in +kee gan +hard cover +dough nuts +ðŁĮ İ +spit fire +refresh ments +saskat oon +commod ore +j f +rub ber +halam adrid +child care +stra da +io m +ri k +dak ar +ther mom +cro pped +gar u +ali k +ven i +i ft +si ka +ritu als +z ul +e ch + © +su dan +l land +i me +do cker +ì ¤ +fe ared +fa o +wal ter +no g +mutu als +l h +ali gn +mon ia +concep tart +ðŁĻı ðŁı¼ +sco e +compet ence +sw ine +ly me +laun ch +green er +abstract art +inqu is +gran ada +ga elic +flu ff +d backs +grave yard +ba be +acade mic +adventur ous +joh ann +~ ! +bi bi +| # +pl ings +gett y +as b +âĿ¤ï¸ı @ +staf f +religi ons +bang or +world bookday +me gh +de vin +ash ore +meri dian +gi thub +qui z +all stars +be stest +ir resi +ack er +do te +war rington +pol ly +newor leans +cr ou +wi gs +che y +smithson ian +la sag +de tour +bor is +stra ps +mari ah +inten tionally +ko h +ðŁį ¸ +ssi an +mar issa +cor al +episcop al +casu alty +tom o +supply chain +sam p +on go +ro o +cavi ar +p fw +clau dio +buff alo +s ations +mat ty +snap back +l ds +al arms +mat te +âĺ Ķï¸ı +conditi oner +d ors +he x +fi zz +a stri +sus sex +secur ity +qa eda +all star +cocac ola +as one +cl icks +sc ans +mu te +he avier +ðŁİ § +âĺ ŀ +lv l +book boost +youtu be +fla shes +f jor +c su +explo de +do dge +cair n +gonz ales +th ill +pel le +hart ley +renew able +re tin +e stre +costar ica +shipy ard +nc fc +pri ya +a ghan +an ath +plu gin +co rey +re bound +or u +kat rin +hor mone +gi m +mahin dra +s sus +park land +har per +fanta stic +infer no +ep ilo +wrest ling +fe ct +c it +ac oun +to ssed +monu mental +char tered +bu st +pe tra +âĮ ļ +wildflower hour +sweat ers +* . +bl er +ate ch +go wan +demo graphic +bra l +suici de +renov ations +vu el +sin ister +ar mani +miso gy +ph arrell +nap s +un iting +crusad ers +cor gi +insu red +than i +no or +g q +d ada +bicy cles +snu ggle +sch an +ten berg +ss al +fe mme +bo il +½ ï¸ı +re ap +occur ring +hus sein +divi d +sto ke +sh alom +na ia +o lic +frustr ating +Ù ĩ +ig s +gro ver +scen arios +n ds +bru tality +med alli +bu on +sas s +skate boarding +ony x +lor ry +ny u +gau tam +mm ings +gu g +end i +lo thian +comm ando +chal k +ph ora +asse ssing +ti gh +crun chy +ad ay +is l +ci ara +pilgri ms +kam al +p to +brit anni +t ani +sm c +l ure +app store +ab y +golf ing +cl c +fa u +an as +shu tting +regul ated +carn age +scow boys +all enge +c ma +humbold t +rel le +ku mb +her i +refin ery +sound check +d wayne +bos nia +i sp +the alth +anni v +relev ance +my a +bag gage +dre ad +s bc +th ed +bu h +hi jab +lo id +ke w +c te +respec t +lovel ies +cu bes +celebr ate +dir t +sav ers +_ , +gar ment +pulit zer +mas jid +beat port +al arts +encry ption +s ner +ple ads +found ry +sym metry +ru mi +birth place +scallo ps +supp le +pivo tal +t ati +no de +so d +pro xim +tr ics +col dest +bren t +mand u +cla ir +e ach +and alu +hi ddleston +ðŁIJ º +mel ts +v ance +pin n +se ments +scre ened +sa chs +o bl +ic ha +âĺĺ ï¸ı +school ers +heal ed +lo gged +ðŁ¤ĺ ðŁı¼ +ic us +bore dom +b ish +b ffs +tal king +sure sh +hoo kem +de on +de fl +ei leen +ðŁį ķ +women intech +ri sotto +rang er +adverti se +ภģภ+tel ly +la go +dart moor +d ong +sk ates +lo go +un ner +mail box +ma sala +lo oooo +amethy st +che wing +c bb +australi ans +rc mp +game art +# ... +kor n +extre mism +fruit ful +anci ent +pu bg +pol ite +wh it +mur als +m gr +line man +dav ao +ste ms +ten nis +av age +tu pac +gigan tic +hs bc +auto biography +up the +ี à¹Ī +re gal +fig uring +ku l +mis sy +hoo p +gra s +for ums +back lash +abduc ted +p nw +min ic +bu tt +bott oms +at on +ven g +ðŁĮ ı +del aney +prab hu +fan club +over haul +health ye +sy no +aa f +ren amed +kim i +un cle +man city +se u +qu anti +este em +um in +en zo +mel vin +under go +j har +far ah +coast ers +humph rey +mh z +children s +^ . +d hi +disrup tive +integr ating +r nb +over sized +a ide +ne au +docu mentation +ðŁijĢ ðŁijĢ +pal o +hear th +ri yad +pun ctu +abc news +secu res +boy band +bir ch +ju co +tra ff +legislat ors +bay a +ãĤ ¯ +no ises +collec ts +s warm +k ner +bi shops +stur geon +snapp ing +mo l +fre aky +chair person +tro p +lyn ch +car cin +art sy +e sto +cha i +fl ur +inv ali +sau sages +im el +j or +fun fact +wit ter +puni shed +ac ons +h ya +re versi +em c +dif fu +z x +sp aw +cla d +d mit +hol land +fre sco +pay roll +ab undant +stu ffing +mor o +c ny +boy cott +wend y +ele ven +pro voc +pil ot +tr x +be ad +climate action +ri on +assi e +ì ĸ +o sm +islam ic +ho ar +good reads +al ici +afterno ons +spoke sman +jo lie +it as +masc ara +âĻ© âĻ« +pre vail +beetro ot +lu jah +k li +dod ger + » +ru le +l n +scre am +ho bart +col bert +r tc +er m +pat ro +quo ting +s live +que st +non fiction +semin ary +prosecu tors +ve st +express way +g ge +nau tical +et f +ðŁİīðŁİ Ĭ +dur ation +cha ired +the film +fab io +she h +can o +ðŁĴª ðŁı» +with draw +! :) +cor pus +phen om +yel p +la wn +ent om +snapp er +but te +pin ball +pro xy +libr e +alle vi +n ada +gabri el +fo wl +eure ka +daph ne +tu nes +pun ched +wh ore +jo g +ren tial +man ners +o pe +wh ufc +gu th +revol t +sne aker +philharmon ic +ho ste +sovereign ty +ðŁĻıðŁĻı ðŁĻı +fish ing +sci art +fe ta +i pp +dump ing +kel own +gir i +dig its +sal u +san jay +twee ters +sp as +col chester +sc ab +ma dd +๠Ħภ+Ä ĩ +ged don +march for +do p +maure en +un plugged +di do +fashion blogger +up a +mex ic +tar y +pol ye +jame son +v t +grin der +mad dy +consult ancy +¬ ë +leagueof legends +ac cents +um ni +jane iro +tu ss +h ens +ampli fier +to shi +pret tier +pre vents +new town +red wood +vant age +ball ard +ar tof +a she +a sion +lac ey +ap at +gro ve +ภĦ +rw and +real tors +tra itor +bed ding +ö r +zi on +fla shing +cam pan +boom er +secretari at +ab ol +liti gation +cont amination +se dly +shred ded +in for +do herty +bench mark +ro che +skate board +sho vel +i zz +to pper +o ster +laby rin +autu m +k ong +hum mus +vi z +tech news +kla us +am using +socialmedi amarketing +i des +cast ell +ste e +underestim ate +cal ab +pa ign +b illing +unanim ously +g mb +fly fishing +hath away +commerci al +colour ing +skul ls +pivo t +te p +tb c +motor way +x press +construc tive +pu k +under lying +kir sten +mani ac +cha o +se ma +chiff on +ðŁijĮ ðŁı» +ver ona +kom o +stan doff +wi ped +c ated +bla ir +wor kin +m sc +bethle hem +swi pe +unexpe c +pe es +pe tri +orig ami +ðŁij ħ +mex ico +flav or +ru dd +cannab is +mar u +ri ddle +wor shi +sil on +sch at +ap se +tang er +bi ous +e er +questi oned +o zar +dan k +angle sey +char an +bak u +compe ten +re pri +bat ter +sa xon +cal ves +leng ths +$ $$ +âŀ ¡ï¸ı +immer sion +ga unt +car ry +cy to +b anda +shu tt +experi ence +el gin +mous se +ta z +ê µ +in correct +en z +b ham +mor on +so ver +ar un +ti pped +la ble +de arly +bau tista +í Ļ +mor tal +woo p +dt la +sho cks +dav os +ðŁĵ Ŀ +swim wear +her man +ðŁijĩ ðŁijĩ +z ir +neglec ted +grac ed +campu ses +av s +ar ora +swach hb +live pd +ac cra +enqui ries +shoo ters +kur t +vancou ver +brad ley +gar da +g ü +ol la +attrac ting +up ton +ne win +lu mia +furn ace +ev ers +e on +sw a +roo kies +a oc +v ss +bris ket +tor ch +yo da +heart land +tac o +ph ony +food bank +ab bey +bab ylon +u y +gre ate +expre sses +d andy +sc apes +survi vor +ron d +e ci +ha vin +ab el +chil dish +tor que +wav y +ur self +kanye west +year of +ale stine +o brien +al fon +sk ag +kore an +anchor age +val eri +de w +ðŁİ ¨ +land slide +car ole +christ en +go phers +af i +priyan ka +q q +power of +it te +pc so +tw ol +pr y +intellec tu +guer rero +pi les +wish list +w ren +time table +ë ı +prodi gy +gibb ons +. / +ne ur +anz ac +mur ray +vie st +pla ster +la ir +art gallery +inter continental +g br +bell ator +nam joon +mam mals +am el +y aw +saras ota +cam ar +bud ding +sum mari +aco sta +la sh +ey ou +post graduate +instruc tors +ti g +const ant +were wolf +ic os +cla s +glen n +bud ge +ðŁĻ Ĥ +er ta +sta ins +persecu tion +cumb ri +o ch +syner gy +hu ang +scand in +mid terms +comment ator +regar ded +perpe tual +bo iling +al p +lan ge +sch le +fac eli +twee ta +ri dden +ok toberfest +charlotte sville +ik lan +jo u +ch atham +b sc +ðŁį ¦ +stra uss +mel low +xx xx +happy hour +re actor +ww er +distr action +at orial +ðŁĴª ðŁı¼ +twin peaks +fay ette +a or +ko k +bro om +sy fy +ou se +am ag +Ø · +ubis oft +lu lu +hall mark +stu art +it ya +si deline +venge ance +re lu +sex ism +boun cing +un ites +gu stav +te ssa +stu mp +pro clamation +ima x +divid end +col by +ðŁį İ +play wright +un safe +co smo +ðŁĩ²ðŁĩ ½ +cup board +constitu ents +ang lia +ram page +ðŁĺįðŁĺį ðŁĺįðŁĺįðŁĺį +than ked +take aways +shro ff +de bat +kh ur +conduc ts +format s +à © +port age +graph ers +u ten +pre m +mo ines +condem ns +s ous +l ps +f cs +deal ership +leuke mia +bure au +ski d +guardi ola +ca ster +thir d +avoi ded +en cyclo +c sr +vi xx +analy zing +she ar +dulu th +shap iro +chan ting +stre sses +as be +mil itia +ãĥ ª +col lin +arsen e +sure sh +teach ings +yi xing +sh ill +nu des +sv u +clear water +war ped +pro life +artist son +it u +versail les +galax y +ax el +spring st +cal a +hu hu +sc u +commit ments +exe ter +poign ant +mo tion +conserv atory +row dy +rec alled +mu sk +emb elli +so the +âĺ Ģ +sto pper +sch ild +to pe +el mo +zi el +j om +barn sley +snow den +on tour +jour ney +hills borough +par ole +w ts +mo ving +ag ility +tiv o +ff ers +kindle unlimited +g wen +ann an +ah mad +tex tured +hepat itis +dra m +insi ders +tis sues +ãĥ Ħ +fc barcelona +cr atic +na acp +pe can +f gm +custom ize +concer t +g sm +pe g +p one +justin trudeau +super cars +happy holidays +bu lar +ado x +lap tops +digital health +destin ation +gradu ally +áĥ ¦ +popp y +ss l +inhi bit +star light +of fro +glo omy +x per +hal der +im plants +le to +hass el +a as +un told +en ci +liber ia +or an +con tests +il ah +sma g +sc out +mari anne +cr yo +schedu ling +lo s +kan e +stutt gart +ne se +law rence +da in +pho tom +car ou +ภ£ +g wy +national dogday +roa sting +band camp +kentu cky +stret ches +ke rel +ca she +ãĤ ¸ +sta x +tran si +dog gie +at ric +hal le +ci vic +brow ning +lein ster +cat day +high land +joy ous +in cumb +or lando +ro mo +col ton +del ta +car ab +ro tc +aster oid +goose bumps +mo logy +yo ko +an ds +tomor rows +red carpet +sm p +ca sio +ðŁ¤£ðŁ¤£ ðŁ¤£ +se au +rejec tion +rot ating +bi partisan +th un +mat i +bon i +ol l +ener gye +do it +l j +mother hood +lou ise +neck laces +el ite +ni x +l cs +en v +gl u +le sh +cran k +su sie +m clau +so tu +crow ley +rat ri +use d +bre ton +alfre do +ye o +travel pics +ti pp +elli son +sax ophone +me red +heu ghan +ta ine +f es +vi ro +suppo sedly +i as +dige stive +y le +li zzy +wildlife photography +bri anna +west field +ra ined +am her +ðŁĺĦ ðŁĺĦ +distribu te +bott om +pre serving +oil and +craf ty +de scen +col ling +shakespeare sunday +r wc +ang led +ci an +t ations +mon tage +me yers +france sca +ðŁĮ · +wi ggins +san ford +volunte er +car ra +bar k +vari ed +pl in +am u +kap il +rock ers +qu ind +br ane +in mate +ent al +impro vis +michi gan +re tweeting +progre ssing +mercedes benz +smo ker +physi ology +dor ado +watt pad +h wa +sr bachchan +w ga +vol atility +hi re +ac ap +wn ba +hein z +stit ches +kidnapp ing +bur ys +lim b +f itters +thumb nail +ton e +mir and +desi rable +ad dison +tar an +tamil nadu +spec tator +soci ology +amit shah +remo tely +âĻ ¦ +ham id +r ds +g lee +smooth ly +sch ro +er c +lali ga +he als +us f +ni shi +d hu +un il +h le +tro mb +bhu tan +pilip inas +se ung +whit man +te y +min ce +snow boarding +re au +k ker +av o +zach ary +ran veer +ti k +gover n +qu al +beck y +anthropo logy +att en +grocer ies +de bit +war p +sil icon +hawa ii +ðŁĴ ħ +pomegran ate +pe er +orang es +people schoice +end ure +ðŁĴĽ ðŁĴĽ +ãĤ¹ ãĥ +ac ial +a haha +stu k +imper ial +bl ond +pow der +kno ts +vin ce +wood lands +den a +watch in +mat cha +ma hat +galax ies +middles brough +k ö +stre e +resc ues +wal do +lero y +desp ic +real ities +tm nt +ha q +un o +pe c +bolly wood +blin ds +design thinking +he ms +and hra +ab sen +fan s +ste ch +shire hour +bla ine +shak ti +pu rely +ðŁı ı +tra fal +ke ynes +gr ate +to bias +spon taneous +satur ated +caval ry +pri sc +ðŁĺ ij +wh t +pas si +~~ ~ +vir at +patt inson +la o +weir do +sym pathy +ju da +occa sionally +cred ited +stat u +es co +hil ly +esc ape +dischar ge +se er +may nard +sud bury +z lat +or al +we er +encoun tered +sm elling +over sight +ê ¸ +that cher +mack ay +you can +fre ep +freed oms +prophe cy +ho e +ishq ba +dra ke +qu its +pel led +tur k +o vi +wesle yan +new music +leg g +ch eng +h illi +ay y +pan ties +ad versity +ad jac +vaccin ation +ju ke +ga c +exce ed +time sof +sta ining +ep cot +v ital +up ward +bethe sda +apar k +ma hi +camp fire +enchan ting +rha pso +h z +na ver +fa x +vali dation +ac ad +ny r +as ym +coordin ated +depar ted +all ery +var ies +spr ite +chap lin +ss occer +s wat +bre t +relu ct +tunes app +super star +reminis cing +o co +home grown +dough nut +un canny +la pd +thyro id +! âĿ¤ï¸ı +botan ic +bre s +sp ade +i ste +echo es +du lil +bur sting +qui ero +ðŁij İ +loy ola +amuse ment +ha ils +sleep y +burgl ary +âľ ı +ro gue +cot land +mo ors +low er +wic ked +ðŁĶ Ĭ +compet iti +argent ine +yvon ne +karti keyan +ili ary +gat sby +precin ct +six ty +na ji +cam s +practiti oner +ðŁĺ³ ðŁĺ³ +pu ne +neg li +juli en +inv aded +cali br +cla m +duba i +mu k +lan tic +produc t +fe dex +ï¸ı : +eu ra +dari us +s ling +virtual reality +home stead +ðŁı³ï¸ıâĢį ðŁĮĪ +pac ed +in ha +pul mon +la zy +premi ering +ma stered +in he +con gregation +ba jo +sport ing +new jersey +hor ny +lma oo +leng thy +du t +yo gh +swe aring +philosoph ical +pap ua +in ski +know les +dy ke +âĢ ² +to ken +mc guire +ri ot +probab ility +mc con +gro s +su mat +c ite +da a +on da +mad dow +che w +board games +spar ked +re claimed +ad hd +ny se +imwith her +equ inox +boo ths +balsam ic +ha zy +dor chester +ag os +se aw +moder ator +seri ea +ander sen +pilgri m +âŃIJ âŃIJ +itch en +hal li +x ton +nathan iel +mun ition +celesti al +ga f +zo om +mark le +pen thouse +cal e +s fa +bar king +tu cket +em ery +cal orie +li que +ad ar +mc nam +tor tilla +wood pecker +mo town +bad ger +ayr shire +scram ble +dd ay +cra ziest +per rie +cho co +cast e +i ot +wre cked +selec ting +uss r +gra ft +pun t +lab ou +ir st +ba ek +Û Į +su ki +que u +ach at +te ster +aug mented +wc vb +sin ks +ðŁĵ » +ra ke +inter ne +be cause +belle vue +une arth +light en +ðŁĺ £ +turn around +labe led +unemp loyed +twitter kurds +le ia +h ye +great er +ðŁIJ İ +tim ed +i red +e tt +limit ations +cab e +s out +bee ch +anni hil +re trac +yo ona +ang er +den nis +supp lying +di z +" ( +sc ur +gun man +su ho +sauvi gnon +ภ¥ +wi ley +land on +choreo graphy +pre historic +ðŁı ĥ +var gas +assess ments +pinn acle +di i +chamber lain +ì Ī +v p +present ers +deut sche +sun shine +sal utes +r one +bu siest +- .- +motor ists +hemi sphere +al wx +ps p +ow a +den ying +cho c +gu tier +han uk +mus kete +jait ley +se wage +t ame +thin kers +shi m +se quo +pap ar +middle east +k wa +ke g +patag onia +no y +bar ça +take off +he a +à ¬ +n sc +g dc +ðŁij Ī +mou stache +mel ania +thr a +â¬Ĩ ï¸ı +pier ced +ze us +fon ts +ber a +it iner +q atar +contr ary +ire land +i fy +ou los +commun al +fin s +un paid +pa a +ðŁijĩ ðŁı» +ri os +ou p +f iller +cafe teria +à¸ Ń +kas i +cali ber +z ulu +v sco +ts ford +dragon fly +smo kin +pi st +psycho logist +diplom at +we bs +buc cane +à® ¾ +motiv ational +du ne +ba e +c fs +with out +er on +i ac +ate e +pen sion +fra zier +en sis +sk is +par ting +ger y +territ ories +nach os +eni ght +ever lasting +msd honi +tel e +sp un +po di +sab ah +environ mentally +ce ase +beau mont +mar ta +kel vin +ho ff +sun il +n da +co b +sh ale +ree dus +un boxing +u bio +re opened +n all +capsu les +mar r +himalay as +swee ter +ja z +f mr +twee ter +dha ka +na u +de mi +d fs +ta urus +fad ing +it utes +ci p +over flow +jef frey +don ny +car tunesapp +ðŁį ij +prefe cture +danc ed +c pt +ple asing +ital k +earth quakes +ul ation +hi o +ãĢ ĭ +ant an +nutri ent +de ere +selec ts +enrich ment +r iti +tram pol +bl amed +j ia +contribu tors +chesa peake +pi geons +tribun al +mad uro +w su +ilo ve +effici ently +dar cy +war ms +ar ra +ec u +ho wer +strugg led +rajini kanth +ðŁĺ¢ ðŁĺ¢ +hou sing +str at +eli x +disp ro +raf fic +thi erry +na sty +c fb +staf fing +al ma +back ers +hen son +sky walker +reale state +roo s +ness y +chan ce +cair ns +c ci +pe dal +ly ft +cross word +wait er +only in +kru ger +k ir +alej andro +car tier +car rera +re paired +ou at +un clear +un breakable +today in +qu eries +jo dy +gen ital +win ner +to l +kelown a +fascin ated +ãĥ ¬ +sris ri +squ ared +spr ung +negoti ate +priv ately +av en +>> >>> +g ical +gav in +chester field +zu mba +or r +nat alia +impeach ment +mn l +car at +criti que +credi ble +trac y +tan i +musi k +jig saw +gam bia +tol kien +fe u +as per +sav ory +fo xx +f itt +mar lon +l rt +v ell +p br +imprison ed +i om +chu l +wind shield +kay e +ba a +chor d +s art +al gon +minister ial +nat geo +la zio +nor ms +ðŁijį ðŁijį +lic king +fut bol +un sung +dalla scowboys +sh red +distur b +dev ine +be ards +ch f +b day +ro sso +ig or +ay i +si ren +k air +sti les +ro f +mag nets +un cover +mou se +bang ing +si ghted +spe ople +impac t +row land +kir a +environ ment +love the +p sis +mish ra +gl endale +ca jun +o che +de ception +sex ist +stra ws +s ga +buff er +apost le +sp l +pop up +ðŁļ Ĺ +r g +up er +ball in +i dy +occa sional +national park +ðŁı Ĭ +u an +innov ation +ภ« +te aparty +re tte +counter fe +b ha +rec s +ig en +ðŁĮ IJ +humming bird +cu r +ha ven +la zar +pue blo +: : +zi onist +op ath +inver ness +promo ter +carto on +cabine ts +mahog any +surve ying +r ational +feel ing +testi fy +so w +oc on +ภ¢ +ne el +mar is +sol itary +che mo +rad cliffe +sim ons +ros ary +new er +jo die +re tali +pra wn +pad dy +hen ge +k ala +im plant +at y +bren twood +par adox +ene z +re designed +p our +wy d +al de +௠ģ +sol d +biomed ical +๠Ĥ +tt tt +mat teo +ys er +new ton +de bun +ner dy +loo l +wo on +elisa beth +ec c +wh i +ach o +salv age +sal aries +qu ity +navig ating +oph thal +con soles +re built +o pec +ast ers +sho red +set list +kathr yn +rhy mes +re visiting +ash ish +li ft +re post +sole il +âı ± +weal th +sa at +we c +king james +flipk art +field work +se gu +mo dal +bu b +are rs +ðŁį Ĵ +clo oney +pad dington +necess ity +guth rie +pen te +li mo +jo sie +ar tin +en c +l hs +betra yal +info graphics +i er +mo a +hear ings +bon jour +sym bolic +ag ro +wed ges +krist ina +wild flower +athle tic +photograph y +pe sh +ca hill +chi lean +gou l +fi oren +ðŁij ¶ +z il +sk im +bad oo +deli a +tre ble +n cc +ðŁĩ¦ ðŁĩ +a house +bul lock +sol itude +ا٠Ĩ +can cers +futureof work +hu tch +water shed +war mongers +sp illed +colom bo +mo th +associ ations +weigh ed +global goals +not just +christ i +tor g +swe ating +man eu +clu sters +âĢ¼ï¸ı âĢ¼ï¸ı +ta ped +ul y +tru sting +yu suf +te in +ra b +, ,,, +sin ai +audi ble +explic it +cro wns +sch iz +at least +ðŁĹ £ +de bra +je suit +ene gger +z hen +one sie +i it +ss f +gur gaon +chak ra +bear cats +k ran +k awa +reque sting +han over +g end +sor os +mer cy +lovel y +do omed +tim my +ku z +ul l +ab ram +sa ison +ãĥ « +clean ers +re mo +circu its +bar red +o th +mo ist +madele ine +gall o +u j +per mits +hea viest +car ols +az te +gior gio +flo ats +decl aring +us rc +min at +craf ts +pri ma +conven i +nickelo deon +danc ing +ceremon ial +blo gg +tw p +anglic an +she k +k nick +( (( +hubb ard +harve y +hit man +fen g +we some +for za +s word +op us +bro m +gi bility +z al +m unch +dance hall +gre edy +hd mi +re birth +ðŁĺĭ ðŁĺĭ +s world +figur ine +com post +k f +engra ving +gior no +st ana +k man +ham ster +compos ers +aj e +func tionality +pol k +is ons +air planes +te se +hor rors +musc at +gi ven +sp ence +ðŁĩ¸ ðŁĩ +eli ot +ach illes +fre ck +crypto currencies +sou ther +hal o +bor neo +polit ic +hahahaha h +up state +si ena +obsc ure +hau sen +lloy d +happy friday +motor bike +bon a +americ as +hol s +- ( +spor ty +un aware +reven ues +christop her +bank sy +av an +ev apor +com press +eyel iner +to dos +buff y +renewable energy +ly rical +ar chan +rapi st +fair trade +lma ooo +beat z +pro active +la pse +ir ical +revers al +po de +mcin tyre +mac au +ãĥ ķãĤ +nash grier +f sa +g all +çĶ Ł +perpe tr +il ya +configur ation +% ; +str ange +rac i +ภĩ +pic kups +kov sky +mam mal +w ps +g able +compar ative +z h +save our +da vey +on etsy +mu ssels +mis er +cri stina +electr on +cra ve +lo ren +precipit ation +m z +ðŁį « +vin cen +snow board +no ida +ah n +marin ated +g tr +town hall +min is +bethe l +adv an +su ra +shi el +fur ry +ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ +lyn d +so il +sc ence +sen eca +shar jah +dick ens +credenti als +av ar +per k +requ iring +pre fer +j ian +de ca +r ach +ing for +del e +be ep +ðŁĴ » +cis ely +hu ddle +green sboro +haw king +ho ax +hang ar +ç ľ +mis o +lo vin +gre ta +ab ad +logi e +at an +snow flake +mahe sh +fear the +al kal +bobb lehead +ba hn +ju dged +fu tu +feli x +ðŁį ĵ +pi ke +der iv +notic es +au er +dis super +or da +wi pes +am ino +stri kers +foo tb +dram as +pun ching +score less +heming way +bi h +bal lad +chat ter +am mo +kle in +fabric ation +kari m +z end +hi sto +vol ta +rock y +marke ter +xtre me +sequ encing +paradig m +cle ats +boom ing +âģł âģł +block ade +promp ts +yogh urt +pur pose +nu r +regu late +nois y +ing rid +bird watching +bar tender +Ù ĥ +wor dof +cha otic +shor ty +el dest +z app +onceupon atime +fl yo +rit os +mike quind +ðŁIJ ´ +regi stering +. ] +ad ol +gg gg +pur ge +kid lit +ar bor +val ves +synago gue +o th +unanim ous +veri fication +dar rell +ãģ Ħ +vander bilt +tape stry +pro sper +did dy +dra fting +de cep +marqu is +st int +michael jackson +pee led +men us +bb b +sc are +ema il +wri gley +it is +f ell +some thin +bar ra +ed gar +di pping +pu ddle +sla de +lear ner +jal en +ðŁ§ IJ +the daily +mikequind azzi +ju x +iq bal +mckin ney +ra iser +ef an +dr one +cat o +pic ket +cro we +l att +uk o +giuse ppe +hin i +synthe si +ponti fex +song writing +to d +swit ches +din ners +h q +gabri elle +pensac ola +cir cle +expo ses +ev s +riyad h +pro men +o ck +sa j +cit ation +brew co +jo si +ep aper +dri f +point less +tang led +cri pp +line ups +fairi es +daz e +mour n +bla dder +sal z +bur undi +book mark +the people +sub sequ +princi pal +sk er +court ney +a oki +rac ers +ad m +mom a +critical role +hou n +shed ding +sa ka +ace ous +mck ay +hus bands + ½ +me da +accu sations +ro sel +nc is +witne ssing +or ama +go ds +hil ton +el man +ÃŃ n +meg ap +cra ven +announ cer +crit eri +sheffiel dissuper +milit ant +consu l +hoo ded +aby ss +b x +ma dam +lo cu +mary am +manic ure +grat is +ac tresses +ros ario +this dayin +king ly +gn ome +cel ine +r ous +he el +lil ac +vish al +ab h +thor ns +s ls +ne al +construc ting +be ren +s lang +ma ins +far ra +sar ko +pai ge +gu iller +l ala +ice berg +nou n +plann ers +u mmm +ou ses +ill ary +ma an +box ing +zi pper +srin agar +migu el +o str +mp o +responsi bly +lan terns +appli ance +x b +gren ade +neglec t +dy sle +ham mock +ne ctar +wit cher +r gv +di ence +ser bian +seed ed +cru z +bi sh +sp he +e q +sky rim +alge bra +phil ately +bungal ow +ge off +y ves +demand ed +consider ations +the vamp +pawan kalyan +co ded +grit ty +erup tion +se infeld +uni denti +ëĭ Ī +wor m +ac us +se ung +dun g +ro land +su d +di visions +ab lanc +shor test +j f +p oun +plant based +be to +tough er +mc o +don et +mark us +v fl +ðŁı ł +open ing +co ward +caber net +o xi +burle sque +sand ra +su mo +consi st +tho t +cay man +motor ola +gutier rez +d slr +y w +no bel +nov ice +moms demand +grun ge +sp or +d cc +pre sses +sli st +allot ment +voc ational +ft c +pu ja +lo ven +utt arak +tan dem +sh ep +come dians +anat om +cant wait +healthye ating +west side +mar gins +chi ang +asbe stos +stupi dity +proble matic +fit bit +: $ +ceil ings +shu a +protec tions +bio tic +beng ali +re sts +bien nale +tim o +cul min +e minent +affe ction +unbeliev ably +individu ally +canvas sing +wh itt +nov asco +chin son +h pe +go w +gloucester shire +pa o +thresh old +chev ron +s ine +we ther +pp ie +aqu ino +antwer p +âĸ ¬ +po on +inst af +equ ine +cinemato graphy +nbaf inals +vali ant +kil kenny +te rence +syste mic +sr l +p ound +made ira +pl ough +tre cht +mat ed +mp d +ransom ware +ph in +li qui +bb ce +boom er +i standwith +con ju +r te +nar a +foo lish +da shing +vier nes +br ite +da u +juni per +ai da +you now +ra zer +de i +repe ating +comfor ting +adjac ent +e to +ca sted +chat ur +mu er +syn th +san itary +mac le +independ ent +law ful +e erie +h or +ðŁĴ Ń +am rit +vel o +station ery +mu f +may may +contempl ating +elabor ate +gre gor +dri es +ac col +ภļ +schwarz enegger +ill nesses +day break +follow back +collu sion +electr onic +jo vi +hiro shima +ta w +hom ec +mic ah +qu itting +fro sting +ben fica +hel i +s ical +pic cad +corpor ate +ment orship +you are +sing er +shi va +ru ne +ing er +ri um +play able +doo p +wil low +ter re +ni p +at d +war bler +profession ally +er ase +proce ed +pedestri ans +mis chief +ben ding +alas kan +c kett +mo p +dd les +shut ter +ge ared +atene o +ma deline +g ations +o sha +der ick +sw ild +an gry +pat ents +hun k +decre ased +fr y +ðŁĴĸðŁĴĸ ðŁĴĸ +sal on +quant ities +d ario +ni gel +ku ma +jen n +happ ye +xx x +rex perience +pro s +au sch +rele ssly +ham burger +fuku shima +er ne +stat ec +ren d +may field +j one +lef ty +bern stein +sm il +gener ates +fore station +band its +ta yo +r ca +ac ci +rodri go +kn app +elo vers +vege tation +u ral +le ft +ħ ï¸ı +worl dre +sur i +embar k +w son +ba you +mu ller +mo vers +ðŁķ º +presby ter +l f +cre e +bat b +sal am +demonstr ations +an ec +n pc +it ics +to graphy +re inst +thur st +tal e +off ences +smart city +bro tha +ofthe year +in valuable +ear n +ðŁijı ðŁı½ +kre mlin +gra dy +town fc +guern sey +ma ha +contag ious +dre x +be en +( £ +nati vity +k tm +somer halder +comp ounds +íķ ĺ +" âĢ¦ +af g +ott news +h ound +fire fly +cil an +donet sk +volunte ered +ak ira +è ª +sing ul +st h +dro wned +mand o +he ir +ðŁİīðŁİ Ī +tax is +y uki +vel d +k ans +el k +ran ts +hash tag +t eng +ro g +a at +gru b +e ber +in india +colo ssus +sig ni +so ever +mile stones +der o +differen tial +phu ket +master mind +an gh +mel ani +bro ker +actor vijay +stun ned +continu ity +af fl +vo cal +perenni al +fianc é +in complete +hun ts +re issue +domin ates +tur meric +ro am +ri on +bag ged +nas sau +fu t +x ox +national trust +jo ye +san o +hearth stone +dis respect +le es +h se +siber ian +offe e +re stock +wolf gang +re gan +plan o +un wind +re par +mil le +] , +skul l +fat ally +concep tual +ðŁĮ ² +f é +ber to +b ms +u a +mag na +notre dame +le te +la undering +heartw arming +buffe tt +go at +pe abo +wind mill +v ac +continu ally +az alea +mem brane +can cels +make yourown +athe red +p to +tor pe +ðŁĺ ł +ðŁĴ § +sc ares +le aking +z et +pix els +ac i +kh il +marath i +ðŁĻı ðŁı½ +u la +tam u +chandi garh +z agre +aa b +pronoun ced +aubre y +sand er +pun ta +har low +ic elan +celebr atory +so t +unci ation +stru ly +mc dowell +deepi ka +remin ders +my stical +ct c +chat ted +s ica +bar gains +ch hat +ru bin +m net +oiland gas +pel ican +o at +mor ality +k our +i h +nu clear +gc u +ric her +vene zia +m ma +le ith +ac company +rich mond +sports net +ba ahu +smu ggling +mm i +ðŁĩ®ðŁĩ ª +twi sts +sahi b +.... . +amb itions +il lo +histor ical +fo rec +show biz +pon ies +chas ers +remo del +will ing +prince sses +am ple +cushi ons +ac les +lot r +da ch +an the +in corporate +new bury +ki ri +fried rich +ab v +ball ers +alber t +ðŁij Ń +let i +nan op +ci de +anal o +n sf +)) )) +griffi ths +valen ci +ro ano +fun run +babys itting +ca day +ent re +u ck +slu g +tic al +the sims +ro ar +car ney +g am +sto we +fi d +bun ny +sham rock +pe cu +mol ina +go cougs +con tributes +transform ation +mo y +v aj +sever y +antioxid ants +thir teen +sight seeing +l j +reversi ble +odd ly +hoo kah +nou vel +hal al +fe i +stab les +mul t +ho pped +bra ids +inter change +ghana ian +ww ww +eth no +con junction +ago v +ye ti +earth and +ts p +con serve +heir loom +metaph or +woo f +tor io +self less +n wa +em ilia +yl ene +y xe +gi ar +moder ating +pro bz +b fi +ne er +du mmy +hanuk kah +we bber +k v +eye brow +dag ger +su mp +ra ges +ork ney +tb o +hal sey +assign ments +tr onic +scri b +co on +an war +# âĢİ +jal ape +flori da +qu aid +haw keyes +âĻ¡ âĻ¡ +street car +ro g +dat lantic +gran ola +un changed +expect ation +Ù ĩ +mar lin +gu mmy +ðŁĻı ðŁı¾ +awareness month +oil painting +mu th +per ch +jun to +villa gers +mor g +che ated +web comic +the future +d ps +la kings +men tioning +vo or +ident ities +accor d +mc gu +l pga +rum our +massi vely +m pls +heal y +d ate +sp oli +re visited +on t +al and +scru tiny +lakel and +bl ending +< / +an kara +jami edor +metab olic +f ences +ann y +å ħ +semic on +oo tt +space ship +wack y +le ta +ap ac +she e +in herit +do res +ðŁĩ¨ðŁĩ ¦ +gent e +tw ick +ri ms +gal ve +de ville +king fisher +scorpi o +ow l +al ar +vari an +ðŁĹ ĵ +vene tian +star dust +then orth +q ing +har rington +consul ate +spectac le +ho bbs +tur ks +gre er +mat ing +ðŁİ Ģ +ðŁĮ Ģ +direc ts +í ĭ +pompe o +vo iced +la os +tz u +pro me +pri sm +mer c +fortun ately +bc fc +mcdon nell +not sorry +smi led +t ba +for war +mid term +dar by +we instein +up grading +wol ff +bron co +cab ello +ðŁ¥ ĩ +fi able +shar pe +bat tered +sat o +myth ical +instap ic +pre pped +eni um +e spo +di aper +explan ations +who pping +ragn ar +pe el +antibio tic +l acks +harri son +li sm +au l +qu ail +martin a +sent encing +sc ams +di di +tr onics +ãħł ãħł +go ff +za in +param ore +cha ined +clin ton +li ff +cott ages +em on +reve rend +consu mer +ce an +t any +lum pur +e bay +sto ol +ðŁĺ» ðŁĺ» +ta pro +h ath +modern art +just ine +prover b +app y +tra x +mani fest +am bu +nai k +pe pp +r sd +mer chants +kitch ener +shi fted +li zz +âĺħâĺħ âĺħâĺħ +âĢĶâĢĶâĢĶâĢĶ âĢĶâĢĶâĢĶâĢĶ +uto pia +tom o +ou ted +com ers +chiroprac tic +book club +cin dy +pro hibition +se uss +ë¯ ¼ +thin kin +rr rr +go fund +t ack +om b +catastro phic +ling u +guild ford +bo td +ॠĭ +plan ter +^ ^ +win k +kath mandu +sto ppers +smooth ies +re efs +hin d +bell amy +Ħ ë +waste water +vo or +nat l +! ] +re el +y ap +scoo by +work space +corin thians +bl un +obli gation +g bbo +dy son +cra vings +ell ington +dap l +wre xham +earthand clouds +uk runchat +positi oned +kal b +four square +jo ck +im pending +even ing +ath y +pro claimed +c ites +ann apolis +san i +mar th +ir l +accom mo +ka a +fin a +y aa +di sper +ec ar +bha k +will y +ðŁĺĢ ðŁĺĢ +mcder mott +mo j +gener ational +u said +train ing +lon ely +lo res +impe cc +âĢ IJ +beav ers +ma ki +he b +aap l +å ı +wolver hampton +leader board +me u +c fa +easter n +hu r +civil war +ou rage +hor ned +le high +awar ds +evi dent +gi gab +r ous +ma del +ro byn +ur gently +k ors +en as +heis man +bam bam +fab ian +f om +evalu ating +assemb ly +out sourcing +hun tsville +ðŁĶ ª +justi fied +cashi er +sp aper +buc keye +analy tical +illumin ati +au tho +o j +sha de +geel ong +wh ey +he aton +terri bly +ele k +un charted +sd live +moto cross +her mes +dar shan +dar lington +cash mere +gri pping +cilan tro +pun ish +... : +ðŁĴ Ħ +inst ance +der i +lo bal +muk her +sp ar +thin ker +fre mont +com piled +color ado +vig ne +sm d +whe ad +villa ge +le ek +formula e +ta res +persist ence +?? ???? +ped ago +he z +alzheim ers +vul ture +off ence +is great +suff ra +kick in +h mmmm +broad way +ï¸ı @ +art i +alli son +endor ses +ry u +lolli pop +soy bean +kend all +cer a +inv ade +( ðŁĵ·: +conver ter +car pets +ho bo +fr it +pe ac +es qu +ern an +ou f +an il +di ffer +ch ing +bre cht +sp g +daven port +stra va +sever n +n gos +stor ians +fe te +parame dic +j hb +al amo +sne aking +gold coast +roof s +isi l +depic ted +projec tions +nu mb +o ss +ep i +glu cose +zid ane +infin iti +íĺ Ħ +ran som +ton ics +fal k +g ler +ou tw +re ss +week ly +the on +n ole +ðŁĩªðŁĩ º +vol ley +sum mar +neg ativity +sam son +ye w +aus votes +ju l +ju dy +f art +pra yed +pal ate +multicul tural +double header +cycl ones +pier re +ãģ ¨ +âĺ łï¸ı +rt w +conver ting +wir ral +l ari +ir relevant +austin mahone +an che +ya an +sd f +$ . +explo ding +ulti mate +prof ici +gofund me +cell ence +ep stein +bul lied +sep tic +à® ¤ +lu mber +cu ff +vsco cam +pl or +ภ¥ +se ok +ro to +venezu elan +sor ta +spir ited +daniel padilla +team sisd +radio active +icelan dic +ðŁĴ ¤ +ver e +accommo date +shi pp +ot ter +ol ina +e go +su la +san antonio +de as +simil arities +âļ ¾ +y om +bro ward +å ° +can cun +veri fy +on te +candle light +ìł ķ +inf ants +az am +ðŁĺ ° +le ven +un stable +bloom ington +x ford +con tour +y p +innov ator +histor ies +po y +lolo lol +ex pires +cat alo +bill boards +an ab +el ic +novasco tia +fa ire +ìĿ ´ +rock well +gr ille +az tec +joh or +ur struly +fi ren +dun lop +id le +port man +jo es +tx hsfb +hol m +cham ele +under world +lo ss +ti em +therap ists +past ure +pa ste +ing now +vul can +ra gon +lar kin +o shi +ho co +child hood +umb rel +success or +kath y +iz en +° ï¸ı +share holders +ol ga +ai b +he ap +fl aming +ro u +air tel +rat t +z ane +vo w +thor ough +sn ag +par th +un conscious +ve y +new release +gh ee +croati an +facilit ating +swan son +astor ia +to logy +master y +ðŁ¤ ij +bil bao +trou pe +the ori +chey enne +ro tt +shore line +gra sso +master chef ++ ) +vi x +ellen show +as g +an ak +ku ya +safar ilive +debu ting +blu m +list ener +v ins +book shelf +smart cities +makeyourown lane +; ; +ðŁIJ ¯ +ri zz +on ward +bull dog +bear ish +vir uses +fri gh +lin den +we iser +sn t +gon a +dre sden +fl anders +cu k +wheel ing +ba u +atu esday +surf ers +swi ft +mc call +arbitr ation +aw d +mon c +b ine +at x +re fr +mi ro +po sey +n are +rit ter +âģ ¦ +play book +blow out +sports manship +s oooooo +malay alam +gri ms +bur bank +infin ity +sar gent +oit nb +joseph ine +ski pping +par kin +excur sion +semin ars +jo har +par tridge +post game +ll ll +blan che +temp ting +m na +lu ka +is ers +to ffee +bar ron +he mmings +sa e +go hawks +cu pid +li mbs +con se +un common +z ada +head shot +so ils +pione er +mam ma +sem itic +pan dey +jamiedor nan +spl its +vel a +son i +ra ff +t mobile +âŀ ĸ +pra wns +lit er +enjo yment +egg plant +tu b +cultur al +us ic +suspici on +sy cam +summ ed +ma du +ho ck +up wards +eye ing +ri ve +assas sins +âĤ ¬ +out fy +chi ves +t ner +la is +por ridge +sad dest +w cc +vick i +sna ils +biz italk +mill an +ðŁĮ į +sam oa +j ing +mi key +gu j +chel ms +eli gibility +arma da +thro p +surger ies +ãĤ ¿ +mo hawk +ex its +me m +is lington +c me +land fill +kait lyn +ðŁİ ¼ +combin ations +tomorrow land +ver b +cor a +pre cisely +na om +ðŁĨ ķ +shr ink +sof tly +merce de +mand el +poo dle +ball erina +sop h +jux ta +y at +ary an +hesit ate +lo wered +gu lar +dungeon sand +ron an +my ri +sp f +men opau +gra sp +pa thi +fe asi +fla w +shi story +ste ward +gg le +fay re +cli que +credi bility +yo g +sec tion +mu sko +se ville +no tt +cal m +mate o +indic ted +fi ba +by l +lin o +u kin +!! # +enig ma +siri us +bu sc +ðŁį Ĭ +mac kerel +psal ms +a at +tomorrow spaper +ðŁĺ ĸ +p fc +........ ... +shre k +mul let +o sh +danger ously +immen sely +am ur +ðŁį Ĥ +pro por +sy a +london marathon +abo ve +obli gatory +pro v +ra cha +alex is +pri mary +sh h +ether net +d stv +cou gar +un lucky +ni l +steak house +mel a +fc bayern +cause way +ca therine +fluore scent +nx t +to kyo +au sp +releg ation +qui zz +shored itch +proud tobe +promo s +inter acting +home brew +da esh +w pg +stead ily +provin ces +bal lots +i ah +al to +< << +you u +ri ley +prefe rence +tra verse +incen se +am munition +ho dges +# @ +hail state +tart an +witch craft +vent ilation +liber tarian +! âĢ¦ +ow es +% ! +ong chang +bru shing +le ic +fi ber +under attack +down load +ex pir +hy o +pompe y +mc bride +y ag +stre e +com bat +ten ding +ai ra +gug gen +ab ra +in na +fli ps +aw al +m ach +dol lar +inspir ations +z um +o du +it ty +video game +aqu aman +har u +bel fast +je b +but ch +us gs +calcu lus +go yal +mor gen +x finity +stand up +contrac ep +sab re +na be +in secure +gener ously +epit ome +l w +t ca +narr atives +don nell +pand as +ber gh +tu t +ker al +fel icity +br ampton +quinte t +nom ore +ðŁĶ ij +lo i +alham dulil +ðŁĶ¥ ðŁĶĹ +ston er +shaw l +clin ical +bren dan +gon e +fla wed +tri ppy +j g +al location +po aching +ve vo +mo cks +lef tist +bon uses +condem ned +abil ity +st ating +microbi ome +bio logist +for you +wahl berg +ss or +ift ar +w ul +ÑĦ оÑĤ +pom er +me me +ver te +tre ll +tra it +in let +hormon es +deliber ately +vill ar +battle ship +p bl +tw enti +ho kies +dal ail +say a +may fair +han s +die ts +⾨ ⾨ +od in +hot spur +pap i +k ana +k amp +fin na +flo tus +ti ans +unic orns +tribe ca +chang ers +fore ground +out a +inv aders +gett ys +tomorrowspaper stoday +mac millan +hand written +w fp +u de +state of +base d +âĺģ ï¸ı +cas m +psy ched +histor ians +fol d +d da +ag grav +p ans +green way +au sv +ðŁĺ ¶ +shradd ha +inde x +be sti +zim mer +t ness +eye shadow +ot te +go ts +distribu ting +pro min +yo l +ace a +tram rahim +hoo per +supre me +jam min +intu itive +quali fications +sli m +sid di +jay ne +tri pping +g tx +pun s +e manuel +om g +mid summer +in to +succul ent +ri en +new mexico +o or +hoo king +in f +ðŁ¤ Ŀ +flir ting +na hi +g friend +t ps +hel ix +z s +on ie +ct f +kri s +irresi stible +fla p +ðŁijıðŁı» ðŁijıðŁı» +us wnt +ru d +ram ps +pin oy +ot w +lol z +low ering +favor ite +t mc +phra ses +her mi +aver aging +em br +ben o +estu ary +sle eve +ribb ons +ta sh +ภ¹ +x f +aw gs +sun ited +brew eries +anir ud +pun ches +ol die +ip ads +wi fey +land lords +d ji +gun ner +íķ ´ +tex an +ex op +cas sandra +s off +ðŁļ « +igh ton +bak ers +awareness week +v all +ear p +bts bbmas +apologi zes +âļĵ ï¸ı +was ps +states man +snat ch +watch dog +ra fi +after party +spi ke +j er +peri ph +r nc +mu ll +le en +shi es +li eu +urstruly mahesh +mer ton +de sai +shi f +ðŁĮ ± +pe dic +gos ling +arrang ing +ww g +gen y +you uu +netfli x +e ttes +k wi +bernar dino +am iga +Ø ¨ +kashmir i +t ings +emer itus +de cat +ab domin +dc i +pha ses +d jan +be am +op ry +i shed +the ellenshow +the st +habit ats +to ons +mclau ghlin +ri pper +micro biology +tal aga +clu eless +ss u +cro che +bro mance +longe vity +zagre b +prev ented +tra ve +spo ilt +darry l +migra ine +al cat +dd dd +vi v +ser pent +mat tel +jam a +con quest +î Ħ +sam sung +presbyter ian +ket ch +fire fox +mo tif +le c +cho pping +cher no +j ann +ðŁIJ ° +pro lon +wake up +conver gence +mersey side +heart broken +lo oming +hal lucin +mai ze +commun ism +mo h +twitter storians +serge y +res eller +favor able +ed gy +re iter +mal aga +live me +ka hn +pul sion +big g +kim kardashian +ati o +tyr anny +ru ption +q ant +pro ven +by z +pu shaw +kri stin +e er +tar dis +ri z +awak en +mi ko +un documented +path finder +indirec t +resemb les +h ler +conce aled +scand al +re im +d nb +cr itters +attend ant +apprentice ships +aa u +scre amed +l su +fa h +har bour +ed d +bat sman +li ss +mi sha +spani el +it f +advan cement +fa c +close up +cecil ia +medi c +narcis si +lav ish +gi ac +ma ys +le it +wine wednesday +pushaw ard +let to +curren ts +bug atti +out ine +w j +un do +ler osis +devo tional +ðŁij « +on na +fais al +sa una +himach al +am ii +à® ® +di zzy +screen writing +ph x +sp n +ick i +ag irl +fi shes +wb z +pi m +bo ar +ac id +! .. +rocke feller +n ga +dra stically +simpli fy +dru mming +autum nal +gur mee +lor de +jo ann +give up +b our +am ura +der land +sim pler +wat son +tri dent +concor dia +bel lum +bre k +dum plings +vi on +dungeonsand dragons +sp ri +ascen sion +wil datlantic +u st +rob ins +legi on +insi st +jar o +gue ss +so b +bigh it +pool side +negoti ating +mc gill +bil d +techn icians +miti gation +ajay devgn +b to +ant en +cosmo politan +ðŁĺĬðŁĺĬ ðŁĺĬðŁĺĬ +patri oti +temp er +promen ade +nav ajo +nam m +wrink les +dc fc +le ach +bru nette +r f +cout inho +al ti +tradition ally +op tome +na z +accord ingly +rec ard +de ets +sw ell +po sure +whit ening +strang er +illi on +here ford +u wu +ro bber +cotsw olds +cl en +gor ge +nam aste +re lish +gri ff +adren aline +bla sio +val e +ê ² +toler ate +rail minindia +jen sen +ho ven +el lu +ob sole +eisen hower +unidenti fied +than niversary +body guard +Ø ¯ +i dge +sch al +stock port +sn i +re taining +po po +pix ie +oli thic +ki er +ha jj +sa z +cor bin +!!!! !!!!!! +v it +me gat +de h +circu it +af fleck +theore tical +hope less +u ab +slu mp +b ice +jam med +let stalk +can i +side ways +labyrin th +re fs +ha hn +jare d +ðŁį ¹ +jam bo +ph yl +enhan cement +c tr +ful lest +se ye +do ba +cho ic +yo s +cb j +andr é +re watch +pri ma +doctr ine +for gets +u hm +ar ound +u le +art lovers +shi raz +har th +ex tor +Å ¡ +unexpec tedly +eli us +y x +em my +se ac +ðŁijĩðŁijĩ ðŁijĩ +correc ted +com bu +wom anc +cou gh +what son +publi shes +divers ity +back bone +lock down +mesmeri zing +nor te +ma b +desig ner +í ģ +ra gh +mole cules +get outside +the beatles +semicon duc +nach o +lun es +ham mers +sul tan +o on +fe ren +att ach +ar qu +uttarak hand +s ash +; - +tre ad +i ko +ar thur +scandin avian +r ation +ga el +charge able +fish y +v ma +hand bags +char a +ay ne +de fam +sett lers +qad ri +pal ais +in wx +apocaly ptic +poo ja +a es +at ories +proof ing +n lp +ts la +v ina +li do +dee phouse +informat ics +v v +pp ings +di ss +à ¯ +uhur u +st ony +betra yed +b aff +my ra +as pen +allow ance +tam ara +ci f +cor bett +ser ge +di go +ambi gu +pain ters +p cr +p ca +nom s +lo ft +ve e +opend ata +ðŁIJ ± +alex andre +identi fies +fantasy football +re production +brom ley +ware agle +mm er +p ss +cu es +ay at +hut chinson +sar ac +jack man +ira h +ap ink +col s +aussi es +ex ecs +day ton +ðŁĻ Ĩ +im v +har am +chuck le +authent icity +ar do +incub ator +ภª +photo shopped +embrac ed +fight for +gor man +zz zz +schol astic +cri sps +te apo +mid night +ga ine +col lier +s ate +de tte +å Ń +imag ine +i ff +tw ili +i fication +teat ro +nor ma +es ur +emergen cies +rise up +r inger +hass le +cait lyn +tranqu il +vers a +se b +over look +gin i +bo go +se re +may ne +henri k +contamin ated +rhapso dy +pro portion +wildatlantic way +âģ© . +organis ers +tran e +stand ard +sper m +laun cher +ric ci +her ts +paper work +showcas ed +mer yl +pen a +p imp +disa strous +^. ^ +phar a +x is +fron tal +sw irl +sp ills +swag ger +smart watch +sizz ling +savi our +cat ar +bb cr +refurbi shment +dr is +citro en +absor b +patrioti sm +il leg +chro mo +fresh ers +ru s +lim iting +ef ish +down ed +man dir +hazel nut +p all +mac on +disappear ing +quali fies +bo on +bar racks +am ine +gen dere +ðŁļ ĺ +j es +ãĥ Ń +qu ito +middle weight +sch au +quad ru +aci ones +limit less +ðŁijĮ ðŁı½ +ch man +ar av +regulat ors +it up +batter sea +mil ford +g z +tic king +gh ou +cru shes +tu tu +dread ful +fam ine +for change +dalail ama +ðŁĴ į +whit aker +hash mi +h us +vo d +bet te +aa ah +iso o +ðŁ¥ Ī +ha ar +la ine +b v +all day +spr out +indie games +free bie +gree ks +but ler +ill in +ha al +ware ness +si ma +public health +gam a +wa a +oun g +goo oo +okin awa +off enders +im pose +ho c +young ster +story teller +sc ap +figh ter ++ , +whit es +music monday +re za +go ducks +bri a +mi um +cas per +cru mbs +a ad +marti alarts +ch p +ri gged +tn g +harve sted +sa k +do jo +mill wall +b nw +oc d +histor yof +t mr +si rens +fan ci +caregi vers +vir a +son i +recur ring +acknowle dged +ðŁı Ł +oph ile +bu cky +stre ssing +roo k +di gger +vi val +san do +fle et +si ers +sel caday +refre shed +anti fa +a que +po lo +disappear ance +de mb +âĮļ ï¸ı +ren ted +ber ger +g mb +cu la +ss al +goo dy +u hh +marcel o +w anna +soft ware +shop small +turt le +tom as +fri sco +ðŁĺį ðŁĴķ +jim enez +c su +day z +an do +wyn ne +choreo grapher +cerv ical +trail blazers +ed g +zend aya +travel blog +el s +whole some +co g +lab out +ar ney +del le +su isse +ma si +ine se +om be +fi ddle +re claim +pa u +wat cher +sla in +ber ty +opti mum +el ites +min is +tur key +patro ls +ger ard +au reli +wild ly +wal tz +br gy +w ob +cre st ++ ++ +ve z +fro sted +davi do +the x +param edics +p into +han k +du pont +ur g +fo stering +micro poetry +spec tre +---- > +ne uro +fri da +music al +galve ston +e ffic +sc ape +pal azzo +th all +pro visional +p js +au re +ðŁĶ ľ +mam amoo +kit ties +cre e +wa k +lo ool +lu pus +cn blue +à º +ðŁİ ¬ +rac ed +tro se +om as +stri de +co ors +⤠µï¸ı +in comparable +cy ril +broad er +arec lipse +ðŁį Ķ +inter val +ti ru +co working +w aco +a ham +a bee +flouri sh +the times +ol ini +kick boxing +lu cer +at la +as un +casser ole +mi aw +lobb ying +jan ice +cir que +re flex +le ary +sanat omy +tem pest +se mb +mur dering +us av +ro bo +on et +p cc +nati ves +life of +sa ha +ruth less +rel ates +appeti zer +pye ongchang +nor d +er u +a thing +ug ly +pl ying +bran ce +organ ise +kend ra +dat o +chees es +par ma +burn out +a stra +pre toria +adjust ment +uk u +sl o +li ken +fav ors +cli ve +be ets +snow donia +go tv +sy n +open house +pan i +portra yed +sl ated +me cca +ren al +supportsmall streamers +staf fs +da o +bi ker +vik tor +tit us +admi red +ðŁĵ ± +hurric an +he ats +gl ory +photo genic +mer i +de por +burn ham +or angu +dj ing +impre ssionism +ign ition +ca i +w ynn +de pe +cove ted +colla gen +sau s +or nam +administr ators +ss on +nh politics +hahahaha hahahaha +aspir ations +r gb +swol len +so we +sc r +diver gent +hou ghton +han oi +d ory +ni ki +land ry +b cci +ðŁijĮ ðŁijĮ +is mail +tri pod +her d +bhat t +dress age +tab by +ingu ish +hur on +à³ į +à ł +to das +evangel ical +chor ds +st john +slo ppy +marty r +face book +ali ght +sen sei +kath niel +r ites +zi one +u o +revel ations +weight lifting +pan o +nc wx +ac ton +à® ķ +Ø ² +som a +à¸ Ĺ +respec ting +mar che +fore man +be tty +ki k +shi bu +po on +argy le +k swx +et z +mar bella +brac kets +stand by +fire side +defi ance +v ex +britanni a +in habit +appo int +piyu sh +le ash +sci ento +fla sk +sen na +> : +at roc +sand erson +id lib +dhan ush +ðŁĺ Ļ +en thr +hit ch +de dly +al ley +dor k +mon do +cudd ly +mis sin +ye sss +night ing +j pn +w ary +ump ire +ma z +ê ³ +bab s +ĭ ãģ +stan ford +posse ssed +exce eded +ðŁĶ ¶ +wall art +tra p +j il +hi bis +sp ying +scri be +khali l +trans lator +lu mb +di zed +ch c +super vision +shut ter +ja g +_ * +yester days +ms f +hi hi +gonz aga +gille spie +vive k +ec static +this morning +ch us +ed es +ston ed +be es +ðŁĩ¹ ðŁĩ +tur in +ho ver +at rics +ster n +sam heughan +auti sm +mi ya +eye witness +writ ings +travel tips +chut ney +px rtg +keny ans +my stic +k rit +/ $ +red head +world ly +am us +op la +le ve +gab bana +se en +o clock +gang a +keen an +sc ent +ol dies +go green +corner stone +comp ly +con cours +ðŁİ¶ ðŁİ¶ +ha an +con fis +aw son +cle op +î Ģ +su zu +sau té +al gar +subscri ber +este emed +ãĤ¤ ãĥ +worth while +mel rose +flo ck +bri ghtly +viol inist +p ere +sli pping +and co +si gh +ha van +cu lo +m sa +fibro sis +matil da +ra fting +aw ard +ë ª +mm mm +ge aux +ste iner +sin n +help ers +beet les +ai mee +tai wan +pistachi o +mac beth +m zan +descend ants +on sale +in r +il m +grou se +sa ig +mo w +bi gre +adjust ments +tu la +mathe w +transl ates +mu h +bol lah +ðŁĴĽ ðŁĴĻ +amo res +ab outs +bomb shell +bla ster +x avi +s ns +k roger +ga ther +erad ic +daf t +chem o +ben ches +ðŁĩ© ðŁĩ +ut v +our a +n ko +gator ade +biaf ra +ok state +im danielpadilla +dom ains +open ingday +kid do +do i +ric e +day care +mac millan +ba thurst +cheer leading +ðŁ¦ ģ +cash back +k won +hob bies +exem pl +ries ling +âļ ª +ag les +ny s +every thing +nav is +ad di +magne sium +faceli ft +ark ham +grand es +extre mist +don at +vit ality +pump kin +be tta +sl td +arti san +li by +pe aked +ah hhhh +mary am +assi m +un sc +ment e +al aya +low ers +ar as +gri ev +le ip +gr ati +cri ses +spr ints +exe cute +w to +ms d +mag ical +re viewer +spark les +juke box +ðŁĺĤ âĿ¤ï¸ı +pay back +licen ses +dun kin +bel t +lake wood +h ateful +bud gets +rev amped +ph erson +ky iv +went worth +ro sen +cru ise +gi ggle +def star +assassin scre +ym outh +win kle +w fc +band wagon +b kk +w iring +kear ney +south side +pe tit +! ðŁĺį +nor dic +mir za +mu gabe +v l +scon es +k tv +sand al +du c +m alls +ðŁĴŀ ðŁĴŀ +it c +al ay +im pair +un rest +flo ss +c é +ab ou +var ying +muse o +ser ver +di ya +hibis cus +ero y +mer ritt +fin dom +f pp +un usually +go tt +conting ent +ali aa +ball on +jo l +hi ked +zy me +ay r +ag n +ga z +perio dic +spar ty +practi sing +lin ton +tal is +cy pri +womanin biz +radio disney +ðŁĮ ¼ +jump ers +endo cr +ðŁļ¨ ðŁļ¨ +and on +shar apo +mi er +ma sonic +fac tories +vi en +bb ers +ìĽ IJ +hol d +ke bab +be ak +approach ed +ac milan +mun ro +ko sher +excell ency +negoti ation +walt disneyworld +cr ouch +te asing +suppre ssion +en ya +b ce +transformation tuesday +cal lie +vis was +p gat +ic ted +end ings +esc u +recru ited +it fc +collabor ations +g ino +snu ck +ausch witz +i fc +x ii +ke sha +ger vais +clo ak +x l +sa ad +prob ation +pre cau +mac in +anasta si +le k +e azy +daysof code +mariah carey +yo g +stit ched +boy friends +sh ar +ph ile +ag u +twin kle +phi shing +week ender +ic ton +gurmee tramrahim +al ton +l eness +all an +pen ultimate +kry stal +go u +lan de +dis mant +ab using +nor se +pat erson +ed mun +ap an +xi umin +sk el +cat walk +re act +wal led +t angle +br yn +ve to +super moon +cas ablanc +appreci ates +ski d +bo th +catal ina +ele ague +cyber monday +cau tious +ðŁ¤ ĵ +nov o +hamp ton +ha ye +jose f +var an +lo bos +roano ke +orph ans +tt in +squ ads +ishqba aaz +black panther +e tu +k sh +cru mble +cess na +reli eved +scul ly +pollin ators +explore canada +ki es +kam loops +kir an +pri mal +sett lements +hot spot +brain storming +ce dric +bi ennial +sh ant +âĻ¡âĻ¡ âĻ¡ +do on +hear n +walk way +fe m +ve al +deport ation +tox ins +elimin ating +descen ding +by the +bla sphe +ha sta +comple ment +as cent +ri ga +provo st +âĸ ª +wee ping +anti semitism +employe e +unearth ed +pin o +natali e +bla d +ang ola +lock heed +in ian +ag r +ni ster +im pala +m ke +fan atic +âĺħ âĺħ +ðŁij ¸ +lu ch +simpli fied +gall ery +econom ic +cy borg +con i +sel ma +in ception +ko ala +dv ds +cre sted +m mor +visi ble +n sd +ðŁĻĮ ðŁı½ +w under +refriger ator +re opening +e era +carou sel +as p +balli stic +victor y +mo tive +tre y +sharapo va +si i +mon ter +int end +west chester +sp e +cy mb +vi dal +ll ama +uni v +fin er +crafts manship +jazz fest +b ch +ag gio +n cc +lamb da +tranqu ility +cis co +ba den +so bbing +of i +go ta +ru mored +war med +ore an +ac ton +mar ci +gh ani +âľ ĵ +as sorted +pembro ke +pen elope +da f +at ty +aim o +pretz el +carni val +than os +ko chi +mer sal +ham radio +ar twit +cas c +guer rilla +kush ner +k app +al ise +todd lers +steward ship +o tti +ter ri +tem pe +rest less +vit o +zay ed +rsp b +pi on +hi ppo +haw thorne +in as +am ily +nut cracker +lo p +d ali +tro pic +ðŁ¤ ł +ul o +jare dle +py rene +pale o +usa ir +m ould +it ated +gene tically +biom ass +ðŁĩ³ðŁĩ ± +do dd +practic ed +monarch s +un manned +m buhari +am al +photo gra +ko ol +bren don +ju ices +cu re +world bank +poin ters +ðŁĴ Ŀ +tur f +le ds +bor ussia +bapti sm +warwick shire +moun ts +gay o +be gg +co pied +asi ans +k g +moder nist +gi d +front man +concentr ated +y t +sc avenger +iron ically +adi c +ps n +ðŁ¥ ī +cultur ally +yu v +mac arthur +fertili zer +be withyou +ri gor +min ors +z oning +âĸ ł +ri r +adole scent +vin ny +ren g +sand stone +gu et +we sth +ple dged +lac ed +sp ide +v ai +ty coon +seiz ure +du p +appalach ian +ro k +cathol ics +sey chel +posse ss +la ger +jo di +cham p +stra s +d ina +cent uri +cal der +blur ay +ðŁĩ¨ðŁĩ ³ +mo do +an nette +youtu bers +chap s +ang ling +label ing +a qui +pk wy +ly le +bi sexual +lit ur +dug out +li bby +grey sanatomy +sub stances +august us +rall ying +fi del +ing ue +äº º +hallmark channel +tooth brush +m á +adi rond +ag gi +ðŁĵį : +cru sade +tax ation +k z +i ver +dou bling +room ie +wa b +en rolled +az on +a ju +grand children +as df +ðŁ¥ º +mat ic +ough ton +utili ze +ðŁĴ £ +pon der +rais in +dys function +co bain +butter nut +e man +su red +dri an +and friends +with the +on omy +heine ken +bri dal +leader ship +pyram ids +deutsch land +jo cel +bo wel +y qr +horse power +be acon +ing eni +gra dient +fer mented +mo om +thing y +pot assi +wrist band +bor d +bo died +ðŁĺŃ ðŁĺį +ma pp +ka u +cyber punk +ph ish +loo king +co ates +ap ur +am ie +uk labour +at in +g la +adop table +shel by +v illi +ri ya +m ingly +cli mber +bumble bee +ðŁĺ ¸ +c sd +âĿ ¥ +hospit alized +c ki +hat er +ch r +re tina +it a +fan base +beat rice +gwy ne +go ss +fo s +favor ited +swachhb harat +mal ade +mon mouth +" [ +si van +sh hh +command ing +sains burys +wee d +g man +ss w +rep tile +iv y +tro pics +roll ers +over cast +ex position +masquer ade +man crush +wa ist +spr inter +sle et +le vin +j pg +_ ( +o pel +explo it +ap a +po we +wrec king +jong in +or b +er ick +bo sco +pra ising +ber tr +to wing +in security +ku t +resto cked +rr p +prescri bed +trafal gar +per t +g ases +app rais +g har +music als +âĸ¬ âĸ¬ +mc fad +ag ony +conditi on +equi p +shi k +atra vel +ðŁĩ¿ ðŁĩ¦ +ke h +abduc tion +pe oria +wil kins +g ms +as d +ev i +ðŁĴĹ ðŁĴĹðŁĴĹ +u z +mo c +halle lujah +guad alu +lou vre +dra wing +go ve +ph ant +fri e +web dev +program mer +z able +games com +clari fy +li th +kin ky +âĿ £ +labour doorstep +son ata +ju ris +mai den +vi adu +buch arest +conditi oned +capit alist +u de +ps b +sp ca +lul la +footh ills +kay o +bon d +wom b +roun der +ce sar +bur sts +ap ra +sw oon +sab rin +fra grant +cle arer +ku brick +cli max +jour no +ag le +ðŁı½ âĢįâĻĢï¸ı +poo ch +hal e +sol it +sal mon +organis ms +bron son +art en +hodg son +alo ve +vent ure +bb i +ae a +ðŁIJ ¢ +ld n +d nr +o zone +el las +man ny +azz ur +un beat +tru ffles +th ong +ma ñ +las ers +ley e +gettys burg +back packs +or is +ma ison +craw ling +la bra +cl ing +dra gging +ste al +dou bt +de van +ck ers +agent sof +photo bomb +elon musk +abo y +dist ances +story line +sp i +nor than +europe ans +wh ale +ser pent +ðŁļ ² +fi or +tr it +ox o +awar ding +class mate +su fc +smar test +rich es +pr k +big foot +ar mb +bi polar +dw elling +om ars +k wan +gri me +m eng +freder ick +navar ro +sorry notsorry +jaredle to +pa ve +sl ack +barn sley +att ar +evic tion +accumul ation +o ir +cat chy +wel ter +vik as +has see +nik ita +mo yes +mathe ws +shi v +gat wick +pro filing +compan ions +mar rake +an tics +ðŁĻĮðŁĻĮ ðŁĻĮ +se se +bo i +bart lett +poison ous +ab uses +ym m +kam pala +guggen heim +imv kohli +dol om +bre e +thro ttle +gare th +fitz patrick +un ya +par ad +mar got +j nr +we a +potassi um +p nc +disgu ised +cra sh +ren ergy +ill ic +coup led +ni els +ci ones +æĹ ¥ +im ent +despic able +d ye +what cha +conne ctions +paralym pics +gaunt let +wait rose +suici dal +star ship +vap or +st ou +law maker +coo led +si mo +then o +offro ad +ja den +bas que +vick y +lu kaku +centr o +tri sh +strate gist +medic ations +hor st +b fc +gra il +sharp ly +ad itya +tom b +kau fman +tri pad +sam ba +pastor al +brit ney +sag an +hill side +mas ons +sar a +z one +x u +to tes +rob bie +app en +mon tag +der o +short film +charis matic +tat ors +ki ba +and ri +al arming +split ting +ic ar +th ug +scari est +sylve ster +an an +u trecht +a difference +me ade +bu ster +air strikes +cu ffs +account ants +ðŁĺ¡ ðŁĺ¡ +new t +bo tt +issu ing +cl ancy +wwen etwork +kyu hyun +rese mble +pajam as +sin k +kin ney +sul ph +or k +li es +la gh +or ton +ra hul +d sc +we will +re am +collo qui +shar ia +hec tic +sar casm +land er +tm z +endor f +ro z +ham mered +fri s +w adi +pope francis +he it +flash light +un born +op es +hol iness +ðŁIJ ¦ +nach t +im sa +gr acing +bj p +ver ts +c sc +home owner +a que +bigo try +anni e +bag h +âĿ¤ï¸ı ðŁĺį +car i +thom p +dispo sable +cardio logy +pat ented +hh hhhh +ld r +stephen son +cro res +fan ning +cli mat +ðŁijį ðŁijįðŁijį +ðŁijį ðŁı¼ +aer on +piccad illy +bank rupt +sil via +emplo y +don ny +commen ting +screen writer +io ta +ce an +anc ers +tu an +street wear +ठ¯ +sk ine +esp a +asi f +os ce +she ppard +more cam +bott le +der s +orac le +google play +aver aged +edmon ton +steph an +sister hood +cru sted +stag gering +methodo logy +congress woman +c abo +tri ggers +mil ky +gli de +tooth paste +room mates +nu ff +gu am +sprink les +alternati ve +wat fordfc +uof t +hal ey +cont acted +bun dy +pro stitu +gh ar +pre ston +on site +hil ar +g ts +c att +hamp stead +? ?! +ðŁĩ§ ðŁĩ +bbc qt +aless andro +resi st +ma idan +t ko +shad ing +pin up +gal lo +sin u +at ec +fun k +ac lu +stri des +rhy me +wet land +bbc springwatch +t ins +wild card +st our +flamen co +pau la +onto logy +gang sta +am ade +ãĤ « +t bs +skelet al +run ner +jard in +harri er +hun ted +z hen +believein film +de mean +au diti +re start +chon dri +âĿ¤ï¸ı ðŁĴĻ +mcla ren +ga b +sh um +au sa +lewi sham +y pg +k jv +fur nished +dor o +bon ded +mor ty +lat itude +_ ) +lo va +water ways +vin ai +shor th +drun k +c ay +ay ana +kap lan +capp uccino +spr o +life boat +has bro +spol ice +tor on +do ing +dam n +sh ree +foun tains +ent ation +mar u +boar der +to pless +j ada +chan ning +ul ls +en closure +gib son +fractu red +brit ton +à ¶ +t ous +por th +dra f +tra iling +mar gate +eli fe +down ward +lin n +gla des +girl power +ak rish +u ki +ron da +ts c +appreci ationday +vis ing +lo om +ðŁį ³ +mex ican +ar gos +y ya +jad ine +south port +d end +si sta +rede em +men g +bra xton +antioxid ant +s key +mp g +fin ding +vibr ation +ce u +kh art +di mini +cl ine +shel ly +hin es +ī ï¸ı +to pical +no ver +ma xx +prim itive +illustr ate +b ounds +tren ton +join tly +breed ers +u chi +wakeup america +b ada +ðŁĹ £ï¸ı +gu acam +sp heres +pere gr +youth ful +lo lo +bir min +t ly +jeremy corbyn +defe cts +co sm +a rent +v aa +bag els +medi ac +cori ander +ic ago +g haz +ab bas +re model +struc turing +pu m +out law +ad ani +r bc +gul ls +n li +confu se +ðŁijĩ ðŁı¼ +vil a +mcnam ara +correc tions +mug hal +ser i +re gain +ss b +lea ve +haha hah +gran de +di stressed +re chargeable +ho a +hou sed +sti l +attribu ted +opath ic +di ps +pri t +head phone +conclu de +pil o +he t +ut sa +nit in +je m +sni ppet +tutor ing +op er +sun k +en sla +cha u +ac orn +quinte ss +ran kin +affili ated +our lives +cl int +se ater +isa ac +ba shing +sme ar +nur se +doo dling +" ; +sa ku +atroc ities +im am +g fs +viol ating +comm end +brad shaw +er ville +b illed +b be +thul hu +i phones +moo se +di os +re w +me thane +strang ely +whis ky +ti ghtly +spiel berg +radi us +notic ing +wi f +ig nati +i fa +ap is +w ali +ha itian +bu shes +y z +v l +ex ited +asse l +tru ec +dom en +ash er +in king +newyear seve +hend ricks +bat i +ìĿ´ ì +rich ter +mon santo +con line +agre at +ðŁ¤ ¯ +master pieces +ar n +rough s +cle ve +se v +fashi ons +to ya +sh ail +cop eland +aqu ari +dec als +are you +y aya +a str +fon t +ml m +ar ca +pp or +pol lock +xper ia +conserv ation +chain saw +ag gie +?! ?!? +si le +sh on +ìĹ IJ +note books +marque tte +de us +bb led +spic er +mc cabe +nor wich +modi fication +boo sted +stru m +sales man +bang le +nis san +hez bollah +brea sts +a af +anth us +sk er +ow ed +her os +gi fs +fo sters +eat ers +du es +_ / +lymph oma +sf am +me gal +afri di +ag ic +p amp +jeal ousy +ðŁijĮ ðŁı¼ +calcul ate +napp ing +g ale +ðŁ¦ Ħ +lub bock +assu med +ren ting +íĥ ľ +subur b +ãĤ · +tech nic +u cla +in front +gar net +ster oids +stri ving +ho war +mo ver +le ton +bull do +is in +ci ao +sn z +fore front +d ams +mid wife +ma wards +cla pton +we in +subsi dies +spr oud +rother ham +phan tom +ar ach +spi el +rac ket +sel amat +no on +l bc +enti ally +ðŁĴ ¸ +sil ve +m oud +kine tic +y asi +ðŁİ © +o ol +mi ku +i za +fer a +flo ren +barber shop +groo t +z est +ne ars +stan is +z and +police man +juris dic +form ations +appar atus +sp d +arti fact +to sc +motiv ating +womanc rush +re dro +diagno stics +ra za +out fitters +el xn +dod gy +ry n +sh d +ortho don +ol de +jay anti +bal ances +quic kest +can ton +friday reads +! * +na a +a ak +ðŁĶ · +behavi ors +rasp berries +ä » +polit ical +cam il +å ľ +di k +ast ounding +lie be +novel ty +tur moil +sul ly +spring break +hon ouring +cc g +ðŁı Ĵ +my little +ky c +pro ms +ðŁķ Ĭ +à ¨ +bi ge +av ril +ðŁĩµðŁĩ ° +mari on +as ants +sur ya +oc tag +luf than +ac ron +fayette ville +ti que +love s +en ca +de kalb +ta ver +de vote +aux iliary +joh annes +tread mill +ay an +qu r +donald son +cher yl +" .... +s ven +kir sty +gun ners +ra dish +o ahu +v sky +i ble +con course +b ps +elo qu +ash ford +te bow +roblo x +ma da +dri ving +th day +spro ject +m ms +band ed +. !! +libr arians +flan nel +intoler ance +her al +ç µ +neme sis +list a +tar ak +cry pt +star plus +vish nu +sc ale +cr is +% ), +j illian +regg ae +pegas us +ol in +ip ment +man ic +l fc +godd ard +ite am +parl our +anch ors +lee minho +talla hassee +ant it +d ho +kid ney +y ash +batt led +az ad +gar is +faul kner +sni ff +papar azzi +ed m +phy llis +con tested +aa ay +se ca +k ton +vel ve +rain ier +for um +tam pab +ho sp +trac tors +ox fordshire +no tion +guang zhou +ðŁĺ ¯ +ref ill +wednesday motivation +sli der +mukher jee +pr att +fon taine +alph on +af ar +ts i +pest icides +fi ends +mo cking +bra w +tran sat +do ses +co res +hom ophobia +docu menting +zlat an +con doms +s é +sun set +kun st +ton ga +ภª +v ation +sp ray +chow der +ra ps +palla dium +nor wood +music history +hoo ker +si si +osp rey +ph ys +conce ded +bob cat +ar mad +ze it +Ù Ħ +ðŁĺģ ðŁĺģ +mer idi +ðŁĩ· ðŁĩº +corn wall +! ), +touch downs +ze it +chal et +mm m +al che +gor illa +fo ss +ati ku +lumin ous +ivan ka +be ek +sta res +sw iss +âĿ¤âĿ¤ âĿ¤âĿ¤ +scru bs +me ath +gusta v +jo gging +confe tti +as os +ers fc +breit bart +applic able +autho red +ya ho +h in +displac ement +j v +ðŁĮ¹ ðŁĮ¹ +ot c +non profits +diec ast +gu sto +inte stin +c ages +me en +lu kas +moon ey +ðŁĺ · +very day +tor ah +is sion +wa c +lever aging +ish able +cu se +le wood +may an +turn table +ju ice +tru sty +tu p +eti quette +supervis ors +stu n +gu zman +confe ren +ric o +fe ast +back ward +pol aris +mic he +jo g +h ing +field house +vel ing +sho cker +esc ence +ठ¾ +vi be +anasta sia +mar ched +kill ing +Ķ ë +fe tt +exop lan +... ( +snow day +lo h +ir ani +la khs +del a +po caly +boom ers +dictat orship +ac er +tur keys +quarter final +muskete ers +ðŁĴĽ ðŁĴļ +sf x +museum week +sc ala +ri sis +( ðŁĵ· +ãĢ Ĥ +z ies +bo eh +hu es +lu sci +dol a +impeach trump +roo d +don caster +tor re +hero es +fo yer +tar i +blur red +ke w +frank ly +dro id +ap al +Ð ¼ +y af +bre t +par agu +cac ao +ðŁĻĮ ðŁı¾ +ru e +head aches +shaw ty +char ley +pal er +go wns +correc tional +ðŁĺ© ðŁĺ© +breaking bad +ol ing +da p +endeav our +cit adel +tra d +incumb ent +medit ate +foo ted +ðŁĴ µ +shab bat +dayof the +wil lem +gal way +to red +marri age +f illion +sleeve less +aud itor +jin young +invin cible +kad una +a and +volcan oes +mon eti +indie gogo +buccane ers +ðŁijī ðŁı½ +ãĢ Ĥ +lay ton +cuck oo +hu mber +buzz er +Ï ī +to re +stra ins +sto m +pa ine +s we +du ff +z ou +si mi +li pp +ur n +se agu +ðŁĶ ® +sun dae +hi c +ðŁĺ ¨ +bull pen +u per +flyo ver +al dridge +glo bes +ali es +ken zie +ge es +y cle +sp lin +mag enta +j ha +bal u +gh orn +ti pper +wick er +taste of +con clave +ch ale +inv asi +cat er +dio xide +me gab +win n +at p +transform ative +nest led +hi g +bri dging +lil ies +chee red +bad dest +sc rolls +real is +dipl o +ðŁĶ « +conce ssion +prefe rences +explo des +er gon +introduc tory +ine au +ch af +som es +land rover +spir ation +sex y +sco recard +illustr ates +soul mate +wi en +inter disciplinary +fore casting +ent ities +glu ed +en lar +cur t +percep tions +boot leg +mi re +asho k +v az +hor ne +cal le +ac ulture +ther oy +night time +oc al +character design +ar mist +ðŁĺı ðŁĺı +yah oo +ac eae +to se +even to +sou t +nay anth +wh om +v are +ri gging +gen us +hi ve +com mands +sti e +day a +ethan ol +en f +hi fi +flu ence +cle mson +re invent +thermom eter +humor ous +emer ging +aci ón +ðŁĺĺ ðŁĺį +s ity +haw ke +accompan ying +t ility +ðŁĺ ª +re cess +protag onist +l ery +dun dal +int l +britt any +q bs +off the +marri ages +how to +viol ated +adel aide +wit t +lanc er +pak v +hu me +st ade +bra gging +ou tright +ad c +super st +real time +cu res +garden ers +ero ck +dale jr +ver o +bar tol +mo ti +mc fly +v pn +st ink +over rated +guer ra +e tis +ath ome +twd family +th ab +tn x +rafa el +family travel +x ley +sat anic +equ ations +ru dy +wal dorf +stan i +tu be +meas les +zimmer man +obli gations +i ously +bow ser +trans former +sho ppe +shak en +gh ouse +to d +ke tball +share holder +mar ca +kp mg +ak an +given chy +coast al +au th +roller coaster +mar ches +coordin ate +cine ma +apprentic es +par lor +mit o +men on +consider able +bar re +glo ss +enh ances +jaz eera +fal mouth +thra sh +stat en +k zn +eng el +samanth ap +flo ppy +sal om +ðŁıĨ ðŁıĨ +w ack +deliber ate +osc ill +herit ag +du sted +orni thology +pad dle +fer ns +bar un +cl ans +anticip ate +a ay +mat ically +é ĩ +tu mble +post man +unic ef +tro tter +op d +leaf let +ge ist +cease fire +scre ws +cre ation +wal nuts +longh orns +under statement +ab b +proxim ity +na x +un ity +turn pike +orda ined +dub step +chak ra +me ch +love her +look alike +donne in +vir on +Ù Ī +bang ers +vari ants +out dated +in ta +cri sto +sp elt +food and +f on +stefan i +margin al +hu tton +ti ara +tel ford +qu en +fair grounds +que tta +mikha il +heal er +v ball +ty re +under grad +gl end +hom ers +scri bed +main tains +po che +mis sal +mar ko +u as +á n +sh p +con vey +pad re +sab a +pu glia +madhu ri +pa xton +chap lain +n ago +ca si +... !!! +fli rt +sal eh +k are +di re +stam ped +extre me +ðŁĺĥ ðŁĺĥ +ho ppy +guadalu pe +advant aged +eu char +p low +un n +mac qu +port land +cla sh +pe s +lou bout +y p +keep ing +arca dia +fran kie +fi u +de th +encyclo pedia +si ze +inve sts +ðŁį © +geo logical +fran ç +con front +ðŁĺ ¥ +d ys +af m +tex an +graph ene +repost app +ac f +ur sula +gaz a +dd led +fu m +wsb tv +m be +fron tiers +chrono graph +ke s +inter faith +tab oo +spar ta +won do +flori st +em braces +ca w +no el +arch ers +ðŁIJ · +roman o +ban an +sh akers +melo dies +geo thermal +se phora +ìļ ° +оР´ +pro c +hand shake +pan de +popul ated +slow down +hor tons +registr ations +un deni +lan ts +pas sover +thak ur +li ef +adhe sive +pe tal +micro scopy +memph is +confir ming +air drop +mesm er +perce ived +ming le +lifel ine +gh j +worcester shire +pas sions +ach er +el lar +ah o +firen ze +bar ang +letter man +hat field +lu cha +je ter +e shop +william s +horo scope +pre de +east bourne +dur ga +di version +al trin +seis mic +premi osm +nar co +ti r +ori g +or m +land fall +ci ous +lin do +max ine +x ico +tra y +os wald +c ba +ric otta +n cr +mar au +ภ² +gladi ator +ch ery +lun g +u me +po psic +lon ging +can als +ta ya +decentr alized +sho pp +pres sures +mahar aj +eti had +wal greens +succe ssion +sign aling +li g +staf fer +north korea +def ying +as ma +de g +peri meter +oak ville +m sk +balti more +rece ip +de ple +ðŁĺŃ ðŁĺĤ +jambo ree +> .< +rsp b +puni sher +consider ably +in tothe +pari sian +acceler ated +polye ster +low es +fr ying +sauté ed +mou ths +seychel les +ra x +go dis +dak ota +house wives +the me +mat inee +black bird +ye sung +pre fers +pelle gr +in ated +trun ks +stronger together +re pet +re pairing +ped als +toler ant +her r +dun ne +indic ation +decat ur +b tv +exhibit ors +ik on +friday motivation +bra gg +live tweet +al ves +womens art +foreig ners +wal lets +min dy +lan ey +bb in +tv miaw +lif ter +tar get +tam e +dr ou +astro photography +mp c +g pu +nord strom +fric tion +run off +lov able +sp nfamily +ext ingui +bloo dy +sch el +arti stry +sw ish +scar ce +ph ils +max im +pos sum +com promised +sty li +sc fc +is sa +birmin gham +sket ched +angel ica +ordin ance +je ts +conqu er +ðŁĺ IJ +online shopping +s ori +reason ably +nue stro +ar turo +ch l +benef ici +spho to +wel t +ni kk +ðŁ¤ ŀ +dan ao +for mid +as se +af irst +âľ Ĥ +gil lette +as sor +an onym +sel ca +fe mi +bear able +y and +ar mory +cre pe +celtic fc +bra vo +in expensive +de lec +ge cko +new market +snow flakes +kab ir +con tra +can ning +mor pho +gar wal +ðŁĴĥ ðŁı» +fight ing +mu tation +woo dy +ju gg +gr aces +premiosm tvmiaw +kenne dy +gu p +sa e +op ha +off spring +fini sher +bet ts +span ning +mar j +h one +sh ing +contin ents +samanthap rabhu +un related +l acy +explo sions +benjam in +sophi e +no ting +micro soft +as sen +a hoy +i ker +ho fer +mo e +ah madi +yan n +an ak +ma hi +be u +aha h +creep er +baahu bali +am at +pri ory +haw keye +deloit te +sko da +print making +assemb ling +mirac ulous +no ch +sw o +leg a +oper ates +border lands +eli e +stron gh +rep tiles +pir ate +un fold + ¯ +qual comm +un predictable +ot r +rose wood +direc tional +counsel ors +corn ell +liber ated +j ad +ir regular +bulgar ian +high ness +vodaf one +sw ild +mini mize +gra zie +๠ĩ +r stats +stre ep +ome tric +humb le +lu mp +l ille +b ü +home depot +tripad visor +ki wan +a via +er z +ex ico +du f +blu men +mi zing +ar ma +in im +con stan +sor a +ju al +au n +tw ell +tren ches +her a +r k +po plar +recipe oftheday +ll an +bhu ban +short ages +ing don +bridge water +ðŁIJ ĺ +fortn ite +cam den +un cture +pro w +colon ies +t ks +n go +b hm +live pd +spl ace +sli ke +happye aster +ter rence +revol ver +j ed +yy yy +office of +m ts +exist ential +r ourke +explore bc +sse d +pri est +vix en +si ding +k pa +a har +ju ic +ob struc +foren sics +uk mfg +cancell ation +we ary +ab q +ele c +pri zed +deb ts +me zz +salv atore +m dc +gre tte +c gc +th on +snow storm +ts ch +cook ery +å ¹ +wa xing +n acional +mur s +ra ve +cap es +ger main +dri pping +sub mitting +ome lette +iter ation +aj es +shim mer +fu eling +ðŁĩ§ ðŁĩª +li po +bo bble +un follow +islam ist +hi ber +cat s +agentsof shield +sen si +____ _ +ster ia +inst al +ausp icious +har row +over land +femini sts +inst ant +char iot +blind ness +sp ed +sc arec +nu it +mini atures +ho seok +glo ck +fifa worldcup +e te +dis m +we iner +ex foli +ear ts +ภĶ +my art +man il +iss ant +form a +in cu +buffal ob +in tim +mc cul +anj ali +po po +un doub +hil a +fun gal +thank ful +fu tur +en dish +ren ds +th ar +she ff +ring o +nichol ls +io wa +po tom +cl ams +ãģ Ħ +acon f +stadi ums +di mp +di k +residen ces +do v +caric ature +seagu ll +kl m +confe ss +sla pped +cele b +turb ines +pp v +nur ture +el ab +.... .# +tu ff +de press +al far +amii bo +di spon +e wing +que er +friend s +for re +âĺ ¼ +sw t +aqu arius +head liner +cur d +fi gs +o tters +love fl +kare em +go vegan +fri yay +consol ation +at ri +ì§ Ħ +âĺĿ ï¸ı +poly ne +gu ed +o ya +la us +intestin al +cam illa +scal p +pi r +leed s +horri fying +bore tum +dand elion +fer rer +ell ic +as x +so ren +re loaded +ale ague +navig ator +ine tte +add ams +al chemist +ak shay +dystop ian +awe c +n aya +al isa +ai led +ag or +avi ator +ali zer +smo bile +findyour park +cop ying +to ddy +sh ti +mon ger +cal houn +nap kin +break up +y atra +se thu +ric hi +eras mus +fer ry +am ore +prac tise +bo bo +power point +oo se +li ffe +chin a +sh ka +fad navis +du ane +war on +fal se +ðŁļ Ĥ +wa shes +disc ip +==== ==== +g k +ab b +stub born +medi eval +p ci +ðŁį ª +maril yn +h yo +man di +cr i +prede cess +continu ation +om usic +s lat +wh al +mall ory +bon n +shen zhen +ca i +âĺ ĥ +sa fest +for wards +dra wers +bla sted +sle e +mor phe +mb ta +dumb ass +ÑĦоÑĤ о +alhamdulil lah +ec lub +al beit +heal ey +ayurve da +adverti sed +cro cs +itt les +bry son +be i +nj pw +honore e +fu sed +ðŁĶ ĺ +mul tin +n aga +de parts +ko p +kin o +jhar khand +ed na +ax le +mil ton +supremac ist +marrake ch +domin ic +tran script +] [# +: ). +wo c +sur rounds +o gil +leaf lets +co well +whe w +tru de +proli fer +succe s +sports man +con dom +po che +k up +imprison ment +{ } +scram bled +å Ľ +ka ine +cell phone +metam or +con i +remn ants +ee z +down pour +afterno on +exerc ising +ber ser +architec ture +wick low +m ns +is p +bo c +n iss +mn wild +stu mble +r si +lu ffy +sil en +dd ad +bul lies +haw ker +bb cc +scu ba +e pp +que ts +for aging +pal let +ha di +cinemato grapher +cat chers +to aster +k hi +lite coin +kid lit +amher st +maur icio +ip ad +mar malade +fe y +don nelly +g to +est as +cere bral +ant grasso +zz led +vir gil +swa pped +ðŁĺħ ðŁĺħ +no dapl +greate st +nhl bruins +fra ser +b mo +ane w +. âĿ¤ï¸ı +se gregation +remark ably +mccor mick +lo gger +er as +contrac ting +âłĢ âłĢ +yor ks +uku lele +touch screen +de cked +ben n +south wark +ra vin +nu mis +ðŁ¤ Ļ +ru t +gre co +eth ic +red neck +ar r +t cs +ih ri +ðŁĩ« ðŁĩ· +l k +inher ited +zy k +viadu ct +marty red +hi gu +ss n +be in +street style +fer gie +bank of +æĹ ¥ +stake holder +exempl ary +cre ss +ess a +ero tica +intre pid +gom es +bra un +bethan y +bang tan +pulmon ary +m illing +doctor ate +trump russia +ठ° +s ani +bl att +pla u +depri ved +t le +ful ly +bour n +st ak +lufthan sa +kio sk +far oo +def y +bad an +ðŁĺĺ âĿ¤ï¸ı +rit z +tri sha +ran ds +middle sex +arab s +pro j +sport scenter +repe ats +iv f +bleed blue +as sure +o bs +territ orial +ele n +bever ley +ann ah +âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ıâĿ¤ï¸ı +z l +for good +science fiction +gla u +son ya +pri th +st weets +mix ers +mari o +ant elope +writing community +went z +den ham +be di +sf o +harley davidson +look book +immuno therapy +or phe +es ville +ed ged +tas k +sb ball +corro sion +kilom eters +co sting +play back +ke ke +di visi +u ter +re location +yel led +pen g +up beat +ser ve +âļ ł +hal en +stir ring +reh man +en v +schu macher +frag ment +alkal ine +sb k +resil i +share point +rol lover +tra sh +counter part +âĻ « +ob itu +à ½ +ãĤ ¹ +mul berry +ðŁİ Ĩ +auton omy +spra ying +nat l +love you +fran ki +nu k +esc ar +can teen +ali baba +de plor +mole cule +pu d +fort night +blon die +sp hin +portra yal +ta che +bu te +consi sting +freep alestine +c sp +im mort +d ns +ðŁĴ¥ ðŁĴ¥ +tour de +coo king +archi val +ga thers +bit t +b anc +pre mature +snow ball +poetry day +lou dly +fug itive +ed ay +em ra +ðŁĩ¸ ðŁĩª +sci en +node js +jur gen +je ong +band ana +un is +fox sports +v andy +pro visions +wee p +tu k +i ko +h oun +zig gy +z r +fil let +bat a +tin k +con e +we want +k ilo +hor ace +sl t +sc t +stay tuned +victor ia +umb ria +att acker +ingham shire +fright ening +no ir +fr at +con tempt +lia ison +ho i +br ink +tr ill +ni agar +kick ass +dun das +not my +rho de +bu mble +no xi +fa g +spec tators +mancrush monday +jin ping +distr act +dais y +wal den +portra it +ar thistory +vol tron +ev el +is c +ac m +r ite +na o +de ported +swe ats +ru fus +lo bo +labor day +gam o +ihri thik +bl it +abdomin al +ãħ¤ãħ¤ ãħ¤ãħ¤ +i it +e q +bu sy +allu arjun +un disclosed +de ton +pro create +ki l +ðŁİĤ ðŁİĤ +mitch ell +ki i +inherit ance +al p +jo burg +pat rolling +compul sory +un signed +ni am +l ga +eshop suk +tr illi +ma w +appreci ating +rock ab +mañ ana +an tal +mal vern +roy o +grand prix +sut ton +go ftheday +dig i +ãħĭãħĭ ãħĭãħĭ +t les +varan asi +erec ted +discip les +cont act +ðŁĺ µ +li d +⬠ĩ +scen tre +radi ator +ing tips +trans itions +thursday motivation +chem ical +separ ati +sal is +mi m +geo graphical +book fest +/ . +âľ ĭ +v ae +cur rie +ag garwal +acceler ation +the ses +lg m +u mass +pro portions +nat a +ani ans +ku ch +be acons +ap r +@ # +ðŁĴª ðŁı¾ +nu ke +sher aton +ki o +ma kati +polit ico +mor ale +ì Ļ +econom ically +gg ly +ss en +pa stries +intern ships +vic ente +fanta ken +aveng ers +accu se +slee pover +indic ated +the dream +ster one +ren ders +fro st +ou i +gre gg +d ore +⾨ ⾨⾨ +pu gs +sat y +nu mb +hems worth +tam i +la ssic +schi ff +igle sias +ag awa +] " +re shi +game stop +divor ced +theat er +clau di +un conventional +prophe ts +ac in +twel f +tow ering +t ml +sc lerosis +k wan +ge ts +distur b +na ira +ener g +pir acy +pru itt +noti fied +hen na +bra m +ground water +bl s +opti mis +$ ) +luci e +biz hour +fang irling +gr ills +or l +ver se +c ina +law less +artistson twitter +tele vised +marshmal lows +radio head +bar r +m fc +bre vi +mmor pg +g aya +âĸ « +sub titles +j t +disney land +to bago +nh m +groo ve +fi awec +" / +ba o +scra bble +om ni +ff l +um c +si mba +ali er +ter rell +plu me +mi di +dig nit +co c +bru t +ad ata +alche my +d sm +ðŁĺĨ ðŁĺĨ +win try +spa res +cu er +conclu sions +to ys +od or +fl ann +gar vey +scrip tions +inspec tions +cat ap +ang lo +st louis +heim er +at ay +tr ich +en yc +chil ds +vent il +mont p +guiller mo +circu lare +z ell +mode led +craf tsman +al ina +stimul ation +cashe w +ju das +best of +to ire +susp ends +scol lege +real ising +by tes +bloo ds +as si +ðŁĴ ¿ +o hs +ðŁį ĭ +scallo p +ठµ +gi fting +camo gie +wil kes +o zzy +ðŁ¤ ¤ +ver onic +sav oy +deme tri +baby girl +ðŁĺį ðŁĺŃ +so x +cly de +induc tee +count down +self care +ठľ +vi ka +tor re +phd chat +pe ars +aw h +suff rage +le sn +admir ation +mp p +shark week +schul z +santor ini +clo ver +( * +stras bourg +ex iting +so yu +finger print +che a +ãĢ ľ +vin dic +song writers +so a +prou der +nam a += )) +simple st +delici ously +gil les +u q +mn wx +ep p +sh un +ken nel +fall on +ðŁIJ £ +sin d +tra gically +out es +modern ism +co ke +gy n +spi on +âĺ¹ ï¸ı +le am +compress or +apolog ise +twent yon +fan atics +âĻ » +sco tsman +sa wa +ko u +as er +ภļ +welter weight +phen om +twick enham +stri a +p out +ka z +gi am +cd p +ho y +emplo y +red mond +ภĦภ+sm ere +trance family +proto cols +pie ce +lu iz +iter acy +carl s +united states +har med +phd life +ch aw +foot prints +l é +cho ker +z ana +sli pper +eric sson +insul ting +articho ke +advis ing +acquis itions +op or +mut ations +re ar +ॠģ +pod cast +wi ther +kun g +íĺ ¸ +win slow +di apers +ðŁĵ¸ @ +ec ker +col lar +hu ey +gi ro +mono gram +kas ich +si veness +malay si +arom atic +gre s +gali leo +u ji +rob b +dr m +none theless +as a +: > +lo a +l np +at work +ag t +laksh mi +pipel ines +id al +stre l +re all +chain z +stone wall +san sk +ðŁı ´ +pied mont +hoste ss +ci u +t é +analy ses +wil helm +scott y +rw by +mosqu it +use mb +qu ins +ðŁij İ +tu cker +s conf +speci fications +psychi atry +broo kes +s ils +ol af +de to +co di +cli p +fil th +womancrush wednesday +go to +ang erous +be ale +w tc +paneli st +ne x +lar sen +emili o +tab leau +h itters +conce ived +americ ani +or tega +mar di +Ñ ĥ +pain tball +thir sty +new yorker +etis ation +go ss +we aker +u gh +tro ll +har ga +du al +ght ning +at ine +ðŁĺİ ðŁĺİðŁĺİ +cook out +pyrene es +po ss +authent ication +sports wear +yun ho +kir o +archi pel +shen ko +ren der +nov ation +divin ity +ðŁij £ +su fi +humb ling +ge opol +devote es +wait ress +tr ough +py ro +i ba +bl ing +gra f +epilo ts +bt r +of tball +bas king +domin os +so om +r ath +sher yl +qu el +astronom ical +wel d +track list +sig nee +slee pless +com man +ch ron +summ on +pure michigan +cri spr +sli p +la gi +ra q +um u +thal ap +char med +scru mp +quad copter +ski p +peter sen +mun i +ðŁĮ ¾ +mon aghan +tra ys +ick ed +canad aday +te gr +ï¿ ½ +hot ness +heavy metal +ab ar +gop debate +az ul +spider man +sun flowers +ľ ë +web comics +bar d +Ð ² +nichol as +slu sh +ram an +mark ham +ffici al +ff ler +íĬ ¸ +ple ss +anush ka +to to +sk aters +pro wrestling +compet es +ay ala +myster y +thr ills +mp g +independ ently +y ul +imper ative +formid able +tire less +st acking +ton gues +mal tese +pot ts +mat ti +char ting +chill out +super nova +ome o +sky sports +nu tty +ðŁĹĵ ï¸ı +ro han +insp ired +concier ge +ser ra +ma kk +gal at +chi pp +ye v +ì £ +reim bur +op ul +kimber ley +i eee +bre men +ch itec +or in +nak u +bon kers +foo ty +emer gence +ðŁĨ ĺ +sti p +serge i +zo ey +ai me +wou ld +dy es +destin y +vinai grette +dri er +circulare conomy +an archi +ss r +sch el +cin er +gro om +determin ing +gar min +cal ais +incarcer ation +bu kit +no i +chelms ford +mckin ley +chi pped +belong ed +tu mors +str oud +mi i +influen za +wwen xt +tun dra +tele communications +cat sofinstagram +t ages +beat ty +o du +ml kday +oo per +dang le +ak ley +cru mb +anti gua +ti mbers +rou hani +ðŁĴª ðŁĴªðŁĴª +ha fi +... !! +w cs +coo p +sn c +lit res +ãĢ Ĭ +ha z +co z +k ant +green field +cur ti +y ale +flye agles +what soever +wor thing +rou lette +flyeagles fly +un da +a inted +stand ing +lusci ous +h pc +effic acy +ash land +me ghan +ky wx +n pr +bath tub +ac os +h ani +mar cor +man tis +da isi +bo ba +ab bie +mu til +vi al +spy der +po z +g ti +el fie +nigh tw +metro id +anton i +mad die +dh ry +dar lings +ten ds +taek wondo +atlan ta +me ow +chlo e +ãĥ İ +ym es +siber ia +k con +gu es +mar iner +fac il +azz le +[ ... +han nover +bav aria +vir go +te uk +u sps +) # +wall a +sam pson +need less +ver bally +hay ley +bow led +pi us +lam pard +ham string +vol vo +road safety +cho king +sor bet +a hem +healthy food +brai ded +horticul ture +cr ative +che ek +ad do +the force +ko ko +schiz oph +j ie +w ada +twentyon epilots +h bcu +pro ton +pau ls +lou isa +lat am +kyr gy +com pac +sd k +sap i +?? ? +liber alism +ep silon +ai den +w usa +spra yed +baske tball +kim ono +blue wave +ali as +ë§ Ī +mug shot +ce c +do gre +ad ora +ðŁĵ· @ +kra kow +intrigu ed +exhau sting +astron omer +ven ison +lady bug +ci v +bra e +us m +bri be +acup uncture +pembro ke +ke ating +chi e +y ad +t si +sm i +see ding +gate shead +lis boa +gy p +canv ass +ðŁĶ´ âļªï¸ı +op i +ni r +soci etal +ly te +ati es +c sm +ar tery +al in +aka poor +abstr acts +âĢ¦ âĢ¦ +teen wolf +ne we +travel gram +sentim ental +per ched +han del +ho ek +f ay +coordin ating +anim ate +man ian +effor t +jer ky +f ck +adri enne +ma bly +tra ding +my el +spi ro +sol a +stor ing +over drive +monday morning +dream team +pul se +bon di +ber nie +pgat our +tri poli +son am +plat t +âļ ¡ +ag roup +îIJ Ĵ +inv ading +v cu +k ell +ñ os +un dead +pod casting +mercede sam +mana fort +cor tex +que so +impecc able +pal mer +wil doz +sport sc +guacam ole +dispen ser +cate gori +stun ts +per il +invit ations +dune din +xi e +achi eves +saf er +pre ds +ph an +knuck les +k ak +igno res +lovemy job +aru ba +ound ation +datac enter +co vert +gr ing +cou ple +ا ر +vol i +mc cle +arti sans +lu do +kal am +arom a +under taker +hu la +wiz kid +gu mb +god frey +bakers field +ker n +engine er +car ve +pal in +guaran tees +pe bbles +b ays +zi eg +fin k +â¬ĩï¸ı â¬ĩï¸ı +down pours +ro chelle +rasp berry +ðŁĺ ® +gra phies +stom p +caf es +ari zed +utt ar +cal vary +dri e +crusad er +bus an +tux edo +si u +seam us +cul tured +blan chard +town house +ge red +butter milk +flu ctu +roger federer +hel i +ðŁ¦ ĥ +u ous +ram esh +mu ppets +email marketing +ye ss +br ice +ri zio +pel o +donnein arte +u rable +inve stin +bump ing +raji v +sav a +thro wer +fore x +o hhhh +th rust +pull man +r fid +sep sis +le ed +fri ght +roun ding +ne b +ph ins +ai sha +utili zing +squ ats +gold smith +j ic +bo ks +vau s +i po +exclu sion +tari ff +po kes +min al +land s +en force +washington dc +or char +g x +mar ys +ey our +aussi e +bak ers +un popular +latin os +lar ge +pu tnam +bol o +wa de +pel o +di zz +ob struction +fla ppy +weare the +depend ence +pajam a +e te +y ann +e wan +disc la +a ay +kar ina +e ic +an trim +w soc +neg atively +kai do +fotogra fia +dh ru +colo ssal +mcle od +k wang +mani pu +ex hilar +us atoday +summer slam +co les +tapro om +unbeat able +de ma +tic ks +k ling +fil s +campaig ners +ภķ +brew ster +audu bon +qu ay +ch s +ki gali +d ler +strength ens +som al +sign ingday +gol ds +pig ment +orche stral +g q +lin kin +ðŁı ĩ +ta w +algar ve +ho v +ear le +gold fish +am ig +ex er +ben in +dru id +ðŁIJ ¸ +she m +quat tro +mer cen +men te +incorpor ating +bon anza +state fair +en de +concep tions +e es +âĻ¥ï¸ı âĻ¥ï¸ı +d son +fire arm +orb ital +we h +multi p +fo b +requi em +p light +thou se +sa id +oc re +remem brance +n old +chi pping +be v +er t +ca thy +sy m +ri ggs +m ley +dialo gues +sl ender +how l +gau teng +wd w +to bi +smo kes +im plo +b pm +ad n +mom basa +cap sul +bloom field +artic ul +cle o +goog led +flu ffy +l ard +en zyme +ve sti +ibra hi +fl ame +e mea +out ages +dispro por +ble ak +an sel +ick er +st louis +stock market +good friday +sau lt +stal led +pro m +ep som +b é +the se +sau ces +me w +lit fest +pre d +re u +kar ak +si enna +ell in +bio technology +ï¸ıâĥ£ - +tac tic +sa in +por k +mon za +ka j +lu sh +compart ment +chang ing +shraddha kapoor +fo al +ar tem +cu ando +can ola +ori ente +me sse +d ited +br c +box er +bbc two +s st +ment day +em ing +de wey +kof i +âŀĸâŀĸ âŀĸâŀĸ +reali zation +smo l +tw ood +san je +flag staff +ber wick +cor set +can ary +whistle blower +et ched +com posing +squee zed +bow er +auto desk +ne h +mathi eu +ba ja +Å Ĥ +hy dra +da im +am eri +insi sted +mer lot +gar ros +heart news +gaine sville +cut ler +bo de +ðŁĺī ðŁĺī +lew es +scoun try +g sa +us u +cc m +god awgs +phara oh +cra e +mor ley +hyp noti +f ades +neur ons +fu zz +ing co +high landers +star k +vig ne +pac kets +amar illo +reu ben +insul ts +bas ic +vec tor +n me +ac ruz +tro s +transm itter +ðŁĺ ŀ +interpre t +ðŁĺ ² +pre quel +mc gowan +dis semin +ðŁĴĺ ðŁĴĺ +mascul inity +indie gamedev +ali ve +te t +pe tal +ema iled +ar med +ko o +he er +ba ird +super junior +metro polis +delav in +decl ines +stit utes +Û ģ +p tbo +g lan +cho res +e aling +chri ssy +ste mc +vi an +assassin ated +pron ounce +illeg als +discover y +cav ill +fri fotos +f al +so i +sabot age +t int +p dc +ðŁİīðŁİ Ī +ãĤ Ĭãģ +ji o +endeav or +in sig +commit tees +she arer +me tz +mar rying +h dd +g by +fre t +tri sh +pu l +scrip ted +sa ki +l w +ke ye +shim i +nan aimo +ca h +à « +tem pered +ici an +du gg +dish washer +air field +s rugby +gr inch +y st +r ms +mahat ma +lan kan +disc ar +dige stion +no des +l ls +om ic +gu tter +tis garh +feder ico +election day +bo he +master card +fire ball +âľ Ķï¸ı +oy ster +p ong +do k +en route +m vc +beat the +ali stair +shu b +sh aming +cherno byl +ghi bli +the s +pin ion +d bs +sal ts +ic tion +epi ph +nc pol +in convenience +whit ley +inspec ting +wood ley +wi ener +skil let +no les +m ca +h ina +a sha +willing ness +well ness +tam ed +show time +dis advantaged +ber nat +us n +mission aries +coun selling +arrog ant +quant itative +leg alization +ho dge +energye fficiency +cameron dallas +pos sessions +p bb +harris burg +v g +hindu ism +happy thanksgiving +fi b +re acting +tweeta picture +pol iti +mu ppet +hur rah +pac e +coast guard +guar ded +as am +par ry +fore very +x q +oom f +ke anu +j ind +ri st +customer service +sac red +ðŁĺ º +ton er +occur rence +mat u +val dez +red d +is ak +power rangers +pe asant +raj ini +abra ham +e mil +car do +tr il +hair styles +obsole te +sam pler +direc tive +delavin kisses +ver ton +glo s +sp ay +paler mo +com ets +man ziel +chicag of +ski pped +pic torial +h ant +b mi +a ol +re opens +pad dling +devo s +fra ud +bas eline +que ues +sp ired +sn are +eu ve +descri ptions +daisi es +ca ching +gall eria +tri mmed +stin o +recy cla +ic ular +bir ken +raw lings +fli x +chic as +b gt +lik eli +argy ll +thel ove +ga ston +bl anca +ha k +f one +sailor moon +h aci +ima c +fl yn +de can +bel les +ap ic +zo g +taun ton +con stance +lasag na +ker nel +in ka +har bor +collec tively +calcul ated +av ille +shil pa +pur du +gi mm +fun er +a est +pembroke shire +nighting ale +n unes +hyper tension +hu bert +sli ders +infer tility +comm ended +transat lantic +metr ical +!! @ +Å Ł +ss g +bac ca +inver ted +fun factfriday +it ans +albu m +acqu ainted +ri er +whel an +sar ab +mu e +snoo ze +pi ff +agre eing +sp itting +jer maine +n ye +âľı ï¸ı +am bush +ze ph +con greg +univers ity +s app +wann abe +pat rice +ib d +do glo +fri dges +sun d +king ston +ar gon +kam en +hardro ck +ds ley +do lores +ì ° +ota ku +pi ping +be having +âŃIJï¸ıâŃIJï¸ı âŃIJï¸ı +blue bird +an sari +teapo t +fire work +cro p +log ans +ty ped +thick ness +ig ers +c fp +dys functional +contra sting +et ty +aston martin +tx st +dra grace +at tributes +marath on +manu scripts +john stone +ðŁĺ± ðŁĺ± +bo er +ay u +aru gula +poo rest +con du +assu mption +anag h +no h +delav in +sit ter +g ö +mor ow +kick start +com i +gl acial +ghe ad +ba in +ker shaw +en dof +fre ud +om at +i af +hu g +sign up +each other +defin ite +tu bing +shak ira +ðŁijı ðŁı½ +uu uu +sw in +sham bles +ol as +sk ell +brit ain +kn w +clu tter +om y +j ens +hang ed +city scape +scra ps +un locking +dead liest +er no +breast cancer +a it +inspec t +fu ri +ðŁĴ Į +ku d +ju le +or ah +mi ds +m dt +bur gring +r attle +pu sa +stal k +cle ans +iss ance +z ek +worth it +nam eis +musko ka +council man +urban art +bar rac +un solved +tu l +g ita +white board +soy beans +em ent +cont i +saturday motivation +conveni ently +doc king +t ado +âı © +sp ino +puppy love +po f +fabric ated +robb ers +adop ts +ti fied +kk r +indulg ence +notic eable +macqu arie +chap el +sensu al +ki ko +melan oma +lore tta +li ance +ab en +sp lus +ga al +ac ele +lib dems +compar isons +ðŁĮ µ +rhy thms +mer y +en capsul +nap ier +ðŁijĮ ðŁijĮðŁijĮ +ðŁij IJ +plat z +fre sno +re formed +ran bir +el it +the best +bhu shan +vin nie +impro vised +s ittin +re created +e ba +ec ker +ac rob +pon te +cor d +gi ddy +eur usd +fe ver +intu ition +gar i +dum mies +bud weiser +amend ments +te tra +sch nit +ay as +mar ys +ci st +k ani +ker mit +ðŁĺ±ðŁĺ± ðŁĺ± +tin ker +strol ling +di visional +niger i +omin ous +menstru al +kar ab +k hy +bw fc +pan handle +l illi +well er +stra pped +son the +transfer ring +ethe real +sne aks +ru dol +gab les +jac king +cin code +for tune +canadi ens +con for +ab normal +frank lin +tit a +mu la +persi st +cu ties +ki el +ðŁĩ± ðŁĩ +her mann +aw k +fi asco +ko to +we ta +hi ker +budd y +preven tive +mcgra w +game boy +forsy th +top shop +si ob +sad h +in tram +follow art +so aps +dragon ball +ou x +morri son +๠ĥ +lu bric +adul thood +morri sons +âļ łï¸ı +her mo +ta ka +stall one +mis use +team gb +ra gha +con fined +at y +hom ophobic +nw o +sky news +ho ya +ac rosse +wi iu +pur ée +jed dah +ðŁ¤ § +advis ers +ph ine +an is +scrump tious +ë° ķ +c ke +vin y +ter m +s dc +o do +home school +vas c +leop ards +debor ah +illic it +cur ran +as roma +nau ght +mar ig +brand i +em p +ðŁĺį ðŁijĮ +î Į +su spend +lu z +initi ation +sch aft +jensen ackles +craw ler +post doc +des ks +trail blazer +den omin +tri x +no ise +po et +± ï¸ı +s mug +vol atile +proof s +pharmac ist +sardin ia +mash able +kim chi +co ed +schal ke +doo dled +c sw +sh ur +ro x +do k +chris brown +mathemat ician +ab ound +ang elic +rock ford +d ole +yor kers +ms n +g man +xavi er +bor rowing +mark ings +longh orn +k ja +diver ted +mm it +euph oria +ay yy +te a +pa h +ck i +un cut +li ven +ky ung +fan art +mer ing +red ding +amo vie +gri di +c thulhu +schol arly +ju dah +th bewithyou +eu calyp +ðŁIJ ķ +hert fordshire +cour troom +by u +auc tioned +ple ase +mar cia +ê° ĵ +succe eded +el as +arvin d +t lot +saig on +re tt +ra kesh +fd ny +as en +se bring +gladi ators +you know +v lad +gol a +par ap +ÑĢ и +sab cnews +one team +oh l +sun e +ri j +cd c +star gate +run down +plat o +ph c +chat ter +ra viol +mn f +mand ala +li et +ภķ +mari a +hun gover +consoli dation +fer rell +tradition al +ilove art +gal ap +ðŁı Į +que zon +espa ña +ðŁĩ¨ðŁĩ Ń +ho bby +steam boat +mali gn +guil lau +pro hi +its me +íĥ Ģ +in scription +al z +mari an +k ade +mm on +adju sting +ne sts +intern ally +ci r +vik ram +mal ala +k ph +fel icia +the real +cap tivity +at is +marcor ubio +kale ido +che v +mano j +le more +gent ri +vi ps +tro pe +" âĢĶ +pair ings +mal nutrition +fr ay +desig nation +brun omars +az e +tor rential +pan zer +ga il +under the +the ological +schizoph re +dazz le +freder ic +mo par +ad illa +so ggy +ra un +medi ocre +colo rec +i fe +p inst +blu ef + ² +world water +gir oud +clar inet +ad olf +tar antino +receip ts +assu mp +ðŁij Ł +coffe es +âľĬ ðŁı¾ +du plex +s of +r x +lin o +timber wolves +pan dit +mo tm +e ga +ay ama +ach s +outsi der +ll en +co er +til ly +cheese burger +ma ds +ple dis +emp ty +national parks +az iz +p mi +jun kies +f ener +sq n +è s +gener ation +cleop atra +bhuban es +mosqu es +ty free +popp ins +tw c +or well +n age +ka whi +hol low +dal ai +¨¨ ¨¨ +ou ro +m health +gi on +az o +vis as +reneg ade +re ic +w sop +ðŁĴļ ðŁĴĽ +e chel +tox icity +mü n +bun k +stimul ating +asth our +\ ' +ep h +ende mic +cn bc +shrin king +peabo dy +michel angelo +can yon +wal e +su mi +si ders +inu it +? . +profession alism +dr acing +plat oon +p ons +out bound +maple leafs +de sol +cen cy +a than +ver ma +ru bbing +ok an +ðŁij ł +mull ins +authent ic +Å į +alman ac +ga ia +bb q +on imo +ke h +ty a +tou ts +y av +re posit +, . +wi ght +se eyou +cal lof +done sia +bar gaining +gr anth +sd su +amphi theater +p su +re watching +wine tasting +peak district +dete cting +thur man +phe e +èª ķ +u mich +re r +sculp ted +go le +name sake +ðŁĶ ģ +serv icing +bau gh +pu gh +pen cil +dar th +munch kin +at orium +ten ers +sun y +rolling stones +mag ing +star rer +i dris +fe instein +ag ron +âĺºï¸ı âĺºï¸ı +supervis ed +chamele on +aggre gate +succe ssive +mo gul +inst yle +pol dark +custom e +ohio state +ha ya +ci des +broker age +angel ou +fifa wwc +de forestation +al ton +pam ph +hu gged +ho bo +change able +ku ber +bur roughs +demon etisation +cape cod +vers atility +or ice +le ila +womenin science +tu a +he dges +embarrass ment +ali fe +so ars +ni ghter +hy mn +gi pp +chas u +tech s +ni all +k illa +hi ka +cam els +valu e + ¢ +sc oops +mah moud +clu sive +adri ana +pac o +oz il +un as +transl ations +whispe rer +s bi +bu xton +bio tics +indi ffe +ken ney +k lar +et ching +barra best +inst ability +se ine +vo tel +blo gged +whis key +my space +t ant +lan dia +give back +illu s +aw ak +ac ab +f bloggers +cloud computing +blat ant +syri ans +band ra +sty n +an em +ke ted +kar thik +barun sob +pin ot +gu bernat +gay e +arti ste +i fied +conven tions +hu an +geni uses +eeee ee +fol ly +somer ville +pride month +ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸ +chemo therapy +paul s +bak ar +ìĦ¸ë¸ IJ +taiwan ese +fol lo +c ss +re ign +nn nn +fla un +catastro phe +iti es +frag ments +extre mists +ym oun +car men +eze kiel +conne cting +se h +man ta +remodel ing +we ymouth +at oms +ce m +ne well +lu mi +the open +mo c +mili band +g land +z shq +mag gie +mani acs +m sp +ad y +cre ams +le anne +e sta +py g +af finity +pray er +dun bar +ligh troom +ac adi +wyn onna +roman tic +state dept +sick le +wh os +lam o +et our +fin ity +shru b +shar pen +pun dit +ed on +af ore +mar s +jeff ery +ter ps +medal list +kath arine +accu sing +ta z +roy d +from home +confron tation +alle gh +ðŁijī ðŁijī +refresh er +ran veer +never land +jo jo +lu crative +en am +ca ver +pa edi +man jaro +flu ids +the ssal +oppre ssed +mu ss +joh anna +Ø ® +cn g +buil dthe +sett les +s ith +fu ego +cl amp +ar ag +pay er +ted x +mand y +inter stellar +fr c +ch and +b cc +mo lo +len til +johan sson +grims by +nature lovers +ðŁļ¨ ðŁļ¨ðŁļ¨ +shin de +x in +international dayof +transiti onal +sat a +cad dy +wo d +if u +ha ys +holl yo +j ang +ir c +co im +grad able +" " +ðŁį ´ +ঠ¾ +a el +n yo +west lake +time out +sof i +phenom ena +cultiv ation +ag no +un armed +so t +con j +gen o +royal navy +nutriti on +fair mont +ti relessly +sn g +re ty +mic a +lu cent +slo ane +droo l +riz al +od ell +critici zed +. '" +la ze +deser ted +co der +pra s +l illian +itiner ary +dav y +an ap +whi pping +hobo ken +kare ena +çľ Ł +vi us +ter n +nan tucket +mis understood +bu laga +st ant +chin ook +z am +reli es +d ss +ed mond +sket chy +m ell +fe x +rec tor +dist ill +day dream +wine maker +ri pley +billion aires +hel ene +ati f +cul prit +bertr and +wou ldnt +ma pped +v ak +gla dly +parliam ent +kidlit art +ware ness +goli ath +âĨ ĵ +view point +tat ted +fu ls +dor sey +ang lers +li ds +ki ya +bow les +be h +b ite +compati bility +ance stral +pro x +beha ved +gubernat orial +ch field +sab an +z h +teen y +shibu ya +holli day +pan cy +âĿĦï¸ı âĿĦï¸ı +seun gri +? , +ðŁĩ¦ ðŁĩ· +im itation +impac tful +any i +gene vie +añ os +bate man +gli der +af ar +ra sheed +effor tless +sh war +dach sh +er un +at os +kin i +ch d +kha ki +k lin +felici dades +bel o +as l +to ppers +fin ley +stac ey +rigor ous +kar ting +le ppard +car michael +be ret +c se +ak hi +mer ingue +ab an +ha ke +ger i +er jee +re sto +comm anders +pr it +fl or +ad ven +ex termin +remain der +å IJ +es g +martin o +lulla by +| @ +mi gn +in store +big bang +cor di +cau ley +ante bellum +dg ate +cro ck +span dex +scaf folding +ore os +ê°ĵ ìĦ¸ë¸IJ +pom ona +ma uro +uni versi +re mi +af ootball +t ant +sm alls +ne h +worl do +tropic al +mor ph +jav elin +gla r +arqu itec +reminis cent +tu bs +spide y +make u +syl la +progressi ves +blo t +shor ten +keep in +ch ak +ang st +super food +decad ent +ston y +neuro logical +ar boretum +ann ak +fe ma +per cu +dis respectful +small biz +lo x +co om +c sc +bs bi +pre valence +him ss +esp an +mo ga +fr ampton +sky map +mas se +levi athan +( ). +noctur nal +car ameli +ang or +amne sia +outsi ders +she alth +rhin o +ant ag +ag io +ðŁĴ° ðŁĴ° +take me +kab addi +c si +m sh +coch rane +thessal oni +sil a +ha us +du sting +obe se +mack lemore +mani sh +len in +m dc +gro wn +shef field +s rs +ke le +car son +ch um +dah lia +can tore +opp o +how ling +cyber crime +sur realism +sc ran +fa iz +thre n +rac ists +r out +pk not +se mana +sin i +mc cull +ma chi +alfon so +y b +sar dar +kend rick +den g +reci pro +on f +doom sday +bri bery +custom iz +art is +c pi +ðŁĻĪ ðŁĻĪ +sla va +let te +en s +âĿ¤ï¸ı ðŁĺĺ +cra yon +ad an +tr c +migr ate +simp son +row ers +king sley +farmers market +shee han +ne phe +bor non +car ton +mic key +all ure +u lu +sli pknot +heb do +gui do +dog celebration +online marketing +acceler ating +) .. +origin ated +macar oni +ed tech +out field +mit z +disc us +adverti ser +man or +ha shi +descri p +cap ita +ful bright +recep tor +con n +con ey +spion age +r attle +pre st +u li +blog post +acker ay +) âĢ¦ +red velvet +mat th +inspir ing +b sd +ker ri +po con +mil lar +re pur +accent ure +ä ¹ +ram bo +ragnar ok +dele ting +british museum +pat ory +leip zig +flori an +sci fi +in ers +br ate +yo y +melis sa +ab er +ma sa +po te +mosquit oes +transpl ant +r pa +; )) +bast ille +yl an +joye ux +melo dic +cap tions +atri st +roch dale +gott i +pew die +cuties aturday +who is +aqu aculture +tiv a +sp el +he ss +ha ji +fred die +co per +brand o +v k +photo book +* , +my dayin +micha ela +brune i +sr ini +in te +Ä ± +de ol +d fc +separ ately +bun d +ve sts +to c +me ck +rein forced +constra ints +car roll +sq ft +re ver +cam per +bird man +in action +gener ators +triumph ant +pe sts +o vo +gy pt +al amo +sc aled +suresh pp +sd n +is mo +gi os +) @ +justic eleague +restaur ant +gab i +den gue +next gen +exemp li +ap ex +inspir ational +down side +kid z +u pl +et na +alvar o +fel dman +bar net +m ha +es ch +bloo ded +>>>> >>>> +kan i +ho fficial +casablanc a +bir ds +ty ga +sw amp +o day +new castle +nb ap +ci sion +cho ols +af lo +ne p +mon ton +ak b +super model +down time +th os +sc wx +snoo py +ag greg +yo ke +nor cal +we tt +prolon ged +me tast +beat er +f ta +t lap +disgu sted +y h +voice over +itch y +ip c +ðŁİ ¾ +phe asant +stra its +ram pant +j g +fer til +assu res +fortun es +sal inas +liz ards +kett le +i bs +cyn thi +he g +mc cr +soccer oos +happen ings +cor den +ðŁĺĤ ðŁijĮ +t ches +egre t +wolver ines +congratul ated +ho gg +bott ling +wr i +fer ri +bo sch +af ire +og den +s jo +j dm +sv t +con tex +tol lywood +min k +me se +super sonic +op oulos +å ¸ +âĶ ģ +knuck le +gu ise +gam i +chu cky +z inger +radi al +compla ined +bo da +fe tal +discipl ines +cor ro +ðŁĩ®ðŁĩ ¹ +op ted +filtr ation +ad nan +em cee +mi stre +insom ni +fer gus +tra jec +on don +med tech +tanger ine +madra s +gru e +cab s +z hu +sureshpp rabhu +insul ated +day swild +pp m +band ai +v day +s ff +squ id +lo thing +not dead +expre ssive +cu ll +ala stair +x u +up front +fish ers +en es +um d +dis missal +sti er +sel s +lu st +re active +prote ster +eyel ashes +al im +goo de +gre eng +da ir +com pen +anush ka +proto typing +ma pu +bear ings +ðŁIJ Ł +for me +bsbi botany +timo thy +out skirts +am bed +are tha +wend ell +stre aks +ni m +k pk +sne e +fit ter +quo ta +p ate +win ning +ðŁį Ń +sho pping +ma inst +cul ver +ste vie +mcfad den +counter parts +gren fell +fol som +dor set +tech crunch +⬠ħï¸ı +tip tuesday +us l +tre x +geor gie +ranveer official +lic ks +se wn +k f +' âĢ¦ +jap s +p ate +orth op +fe sta +stra s +mon tal +hammer smith +fore most +wido ws +mad re +ite z +mito chondri +lig ans +z ona +cari bou +m ss +andre i +weather channel +gh c +: ... +ta ft +awe ather +al isation +bru tal +bliss ful +nik ola +mal icious +q m +mpg vip +bro die +bl itz +applau d +dri bb +v ague +dog go +transl ating +interpre ted +hat ched +ge tyour +benefici aries +spar ring +caes ars +aw illiams +la hat +bro ke +ti mp +virtu es +rel ying +pie tro +k tn +ici sts +pab lo +lou i +a ag +pn pp +cha st +pul ses +fini sh +usair force +type writer +thomp son +dog s +ut to +ãģ į +sand al +new ly +do ge +z w +wan kers +ne gr +mu cha +determin es +black fish +sk unk +mu ps +instru ment +phy to +daysto go +skin ned +hai der +con ten +ðŁIJ¾ ðŁIJ¾ +we iler +undoub tedly +chair ing +wall is +sh ard +zind abad +adul t +absor ption +pre sto +deplo ying +drum mond +battle front +seag ulls +how dy +juda ism +des de +part ition +âľ Ŀ +no logy +national bestfriend +lesn ar +film fare +co asts +christen sen +ac an +mb u +co pped +ru bble +sw c +fun nier +far ther +where as +nano technology +with stand +pil low +bow ers +to pe +it ly +con fit +ma kar +comfor ts +bo sh +cli pper +bal la +sti k +mil b +safe guard +musi que +eas port +ya z +pad ded +bad er +fore ign +chop in +archi ve +o ka +tran sporting +tml talk +aj it +consequ ence +sc roo +ff o +collabor ated +pug chat +ye mi +jav ed +au burn +o of +ma w +sau cer +miti gate +i les +evangeli st +ter ie +re cl +indic tment +cat a +bright ness +may the +whim sical +un lv +key word +cu min +med way +west world +tra w +im posing +form ity +coul ter +ab z +ny pd +grass i +kel sey +qld pol +clock work +f dr +di anne +âĺ ij +ad h +p ann +bra vely +ae ge +un lawful +ver di +pocaly pse +phar o +kar la +reson ance +ma stiff +la dak +bu u +ma iled +hi i +craw ley +tor rent +mach ado +liby an +effort lessly +fal sely +q vist +ke ef +craf thour +cheri shed +val kyrie +s ari +kal amaz +be he +ðŁĮ Ļ +th im +ro ddy +col trane +but chers +ach im +wk end +awk ward +cab rera +:) ))) +fran c +decl an +con dos +a ja +pandor amusic +char ter +ph ill +mon trose +hatch back +handic app +gre aves +eucalyp tus +ut most +t son +bur ton +mid wives +in cur +ðŁĺį # +moo d +compre ssed +tom a +must ang +mo g +as ana +te stic +sho tel +in sol +cor sair +nh q +ben ny +sm ma +kap ur +in con +jon as +ener gies +don al +as ad +se z +n pa +archi ved +stimul ate +do p +hy d +gri eving +ãĥ Ī +ron a +why te +tree house +ss ell +sand ro +ko bo +ther most +se clu +hi ya +ge ez +mam as +prisc illa +flav oured +fas s +w old +maker space +cospla y +p tv +happy valentinesday +sequo ia +love craft +gu an +d tm +ci i +yoko hama +pos thum +re q +ðŁĶµ âļªï¸ı +galat asar +dol by +hamp tons +disturb ance +stone henge +ok c +disrup ting +month sary +jun gle +head lights +du stin +micro sof +happy mothersday +ko ko +gra zi +te sto +na idu +mal ay +ari al +ru mb +ab oo +har man +tra pe +spo ils +je ho +go dly +lock screen +z un +pi ous +ma gento +l enders +prob able +corpor al +m our +aw al +su a +call me +ton ne +go vin +devast ation +x j +gear box +war lock +per me +it ate +gaza underattack +du val +paras ite +clement e +le th +i va +fro zen +tho les +to bin +cair n +s ill +luc kiest +conver ts +st ale +pan cra +euro pale +wis dom +sch ur +ì ¶ +verti go +bi j +u bc +nu re +righte ousness +mt c +factor y +ver st +revers ed +hur i +hee chul +fab er +ar r +ul ous +ven om +ph at +green ery +bra dy +à ¦ +: (( +never giveup +di sha +mo ta +health care +dun ham +dex po +den zel +bb ins +f ics +wh am +mc g +eli an +wat a +str alia +tel lu +pe sky +spin off +ar moured +re acted +do fficial +te du +sag ar +mor ally +paralle led +fi os +dow ner +dau gh +re do +world cup +tari q +bar ne +glaci ers +oc cult +barbar ian +her mosa +!! !) +y ur +inter nation +p ss +sit u +p int +american air +sw am +dopp ler +ðŁĴĻ ðŁĴľ +cincode mayo +le van +hell enic +mc ne +ju di +yu h +st x +qu are +ðŁĺĤ . +sti g +g els +mot ley +hard work +euro zone +e ad +ç¥ Ń +seab ir +ci us +la id +alpac a +presu mably +pewdie pie +boo ted +am ari +tam ine +sol ace +bar row +acade mies +x ian +om ination +dun geons +b ma +de ity +ai k +stab il +hir a +affection ate +ving ne +new port +ãħĭ ãħĭ +thir ds +re tains +aroma therapy +ski er +ni ma +do pe +cr inge +con domin +to or +anim ator +sar aj +seas cape +minim alism +lake shore +calla way +berg man +à¤ Ĺ +whisp ering +stupi d +ri ghtful +requ is +ir n +se va +ut pol +tuber culo +squ ish +de but +govern mental +christ ine +all man +weap on +s ito +bur i +lo lita +leaf y +fu ch +tin ted +mck en +a hahaha +ðŁĩµðŁĩ ¹ +repe al +ne gan +ðŁķ Ĭ +tail gating +game insight +ðŁıŁ ï¸ı +yaku za +z t +ti ring +pro posing +bow lers +tra itors +ak shi +cler gy +cit o +up sets +tu scal +symph onic +sil ently +shu ff +black well +ðŁĺĤ ) +ko be +rober to +ri dg +dc u +mer ino +ft p +east side +. ~ +nb l +mn leg +ts for +frau dul +ca pping +in my +gymna st +ston es +ss in +twe aks +shag gy +oak land +dem sin +sang ria +mm va +hen nessy +down ton +ri ghtly +in it +aga ve +ob last +northe ast +friend ship +dal a +tro phy +ðŁij ½ +mag in +margar itas +ê · +ww fc +fa sh +di ke +cu d +char t +ðŁij ® +refuge es +jop lin +n cs +imp y +firm ware +pas cu +flam in +health tech +bell letstalk +w aka +ol ls +la go +co wan +bombar dier +sh ome +ðŁĻ ħ +mc master +na ve +well s +u ta +tell ers +mis fits +kap il +face off +af firm +a pro +whit epaper +super yacht +speci mens +al located +... , +- __ +ka w +dachsh und +djo ker +s work +qui ere +or um +ðŁIJ ł +som m +c mt +ingh our +skin ny +lgb ti +gi ggles +break away +resear ched +par ity +my al +ms l +re tained +si vity +make inindia +sol ves +defam ation +wal tham +sri racha +road way +concep tu +al in +iw ant +å Ī +del ft +tender loin +ga ins +faul ts +sw ire +st ellen +pol lo +dy ne +bornon thisday +asdf ghj +sq l +sali m +advis es +vo ip +ìĹij ìĨ +un touched +she il +ontari o +uph ill +so bre +de shi +nov ella +du tton +craw fish +ا٠Ĩ +ma a +tw ine +kal in +ðŁĩµðŁĩ Ń +ye ss +brook s +hoo siers +ton ka +umbrel las +ay ers +ate am +acqu iring +su ction +ä n +wi es +tari ans +soci o +mat tb +shepher ds +o so +charity tuesday +s logans +ninj as +al bat +by te +bash ir +trampol ine +mydayin la +i ja +bas el +ror y +gol die +fi rec +un noticed +pecu liar +sch a +ker son +mour ns +liquid ity +qu ipment +hi bs +ar s +aeron au +slide show +sla bs +delici ousness +sk itchen +hta fc +full erton +cre ighton +aer ob +procrastin ation +az ores +white hall +uss occer +medi ation +djoker nole +and me +um en +noxi ous +jo ss +ili fe +anni vers +sudan ese +et res +under mine +whole foods +diso be +kor i +ade le +eli z +can ti +al on +gymna sium +sarko die +meteoro logist +yl de +ste en +stamp collecting +nas al +lo tt +fran ks +ex ol +ack i +good year +animal rights +y les +vio lets +mm es +s thel +ra pping +tu scan +wai ver +tur ner +eat local +northe asthour +anim ations +tom morow +t sh +ff ame +bra e +pe tron +glam our +br yn +d cs +bal es +ðŁĶ ¶ +bro v +bre v +b ons +physi que +car ne +x e +elix ir +vol ved +l oma +ìľ ł +æ ĺ +van u +ri gs +bal ance +va res +bon ita +sprink le +perfec to +di on +le ak +calcu tta +o ba +d ma +c mon +tun er +pneu monia +bo gus +apolo ge +cl ough +bor ne +)) )) +revi ved +o varian +ner f +c legg +fan fest +cho u +reali zes +mc n +li gu +leg alize +just saying +for ster +bo sni +k hi +in dom +hei del +en cryp +si ss +ed di +mar bles +brisban e +y ing +pre paid +wal sall +cooper ate +orche str +mar isa +ho wie +che wy +bren ner +andro meda +e gan +sto cki +cav endish +ag an +ban o +de ir +go g +bl k +re thinking +ch ig +rhe u +sni p +p eng +semin ole +m swx +an nex +lyn da +lewisham ilton +cu mul +tb l +dolph in +agu ero +........ .... +pre lude +at our +gr anger +too ting +ro tun +dis ar +home items +da res +**** **** +ðŁij Ĩ +compre h +jin x +as well +iri e +circul ating +ðŁIJ ¥ +over board +cultiv ate +rhe tt +oriente ering +ca k +bal kans +s itt +jas min +britney spears +ro tor +se aling +g bc +oc ci +f as +eman cip +com er +war time +tic kle +son ny +pac es +log g +at rix +sr p +g win +do bbs +uz be +the wanted +dru sh +ex tru +m icky +honore es +dar win +re dux +mm j +ram i +jalape ño +io c +do ver +ju ju +whit ney +s eng +en ly +au ch +archipel ago +vigil ant +man gal +wil dest +parano id +hal i +bb ly +sanc tioned +real ms +con co +u ddin +c sk +play time +libr a +sav ag +oc tane +rec tan +re turn +par rish +mor rha +cc p +c mu +sa iled +se vent +ro sie +pil ing +he w +boar ded +seg ments +neph ro +( . +cr ats +bak es +ðŁį ¸ +back tothe +sibl ing +kirk land +ke o +gu wa +bre ads +ðŁĺľ ðŁĺľ +t q +haras sed +ga u +wil bur +j isoo +ep er +li sam +tri ppin +sh ino +ru kh +beast mode +cho a +inst aweather +rich land +gar i +fe z +cowboy snation +fur suit +k run +a en +sycam ore +se gun +ent ennial +di h +o ax +demsin philly +ðŁĻ Ģ +sn hl +pen nies +pass words +ma kin +ty e +d eng +kni gh +jeep life +hel pline +a for +zz zz +ste amy +pic ker +iter ate +happen ingnow +ki b +bloom berg +martyr dom +bul ly +assor tment +a hora +zo e +no i +illu stri +agar wal +p sc +electr onica +recruit er +gar diner +rad ha +naf ta +dot net +pi ero +geor g +bel s +ðŁĺĤ ðŁĺį +tuberculo sis +run nin +mor is +haul ing +ev oc +bre thren +sha ir +frame works +a stu +ri gid +ku ma +kre me +jin nah +insu rers +ny u +f ere +nol lywood +good vibes +- ... +toi le +sk ril +instaweather pro +cze ch +pa vel +one piece +nike plus +fi let +cav ity +ðŁı½ âĢįâĻĤï¸ı +ðŁİ £ +dra stic +dail ys +siam ese +re bu +oste o +lar k +f re +sh elling +p é +glad ys +ðŁıĢ ðŁıĢ +gusta ve +submer ged +grand stand +att u +won t +f pv +b ley +jon i +ang ames +weigh ted +al ou +ठ¶ +les bians +f j +anni es +am l +dor ia +dav in +be ta +can c +madewith unity +ha j +bad lands +mu l +blu ec +pa wn +cov ington +neuro logy +htt weets +dysle xia +thel ove +ne at +fork lift +autom ate +une ven +monte ss +he in +ha g +rel ics +competiti veness +can elo +mar tens +bullet proof +sk ittles +g ya +pri mo +americ afirst +woo o +abor tions +?? !! +ma che +ld ers +rl ly +preli ms +direc t +cour se +swa in +super cell +ec centric +sting ray +ple ts +wil cox +west in +okan agan +kir an +car bo +bomb ings +ra rest +bo h +gaw d +di gg +mo ana +enti rety +en closed +dodge ball +par ton +milky way +at r +thorough bred +re ally +qant as +epiph any +ine e +aero smith +spi eth +ar thro +ell ini +du bu +bra ving +âļ½ âļ½ +re structuring +illumin ate +equ ili +mp i +ash ton +pony tail +ma scots +flat tering +cru m +ast a +à® ° +stranger things +bar nab +ر ÙĬ +make shift +got cha +will am +cho irs +kilom etres +gho sh +eu than +dol ly +un ning +the ar +cre we +w sw +j ace +dis miss +ke an +ho ta +kh at +~ > +thir u +ren dez +hart man +tee ssi +cas ca +z ah +hydr ange +fo d +aw p +mzan si +thick er +nago ya +ne va +sti que +cast el +dam ian +there by +ji ang +ale k +music islife +ra q +calla han +gou ache +somal iland +sean hannity +ra heem +lo se +elo ve +whar ton +rectan gular +illustr ating +har ne +auti sma +scra pped +ell and +decre e +nag pur +ki pp +so re +n md +ma as +gun a +gart ner +bel li +then ight +je on +gendere quality +gi ver +a el +gar ments +ne u +mardi gras +mar sden +ro wer +pollu ted +camer aman +vin od +be asley +cro c +ji u +hollyo aks +anesthe sia +al les +ste ward +lati mes +ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸ +tic ian +gor ia +come dic +ðŁ¤Ķ ðŁ¤ĶðŁ¤Ķ +nai ve +sli ons +ł Ī +bur glar +ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃðŁĺŃ +york shi +se ñ +fan boy +lau rel +inci dence +potom ac +rober ta +presi den +pr yor +os bourne +w ku +te me +pal ae +ðŁ¥ º +re boun +itu de +red dish +k hand +coloni alism +north carolina +ðĿ Ĵ +manne quin +lady bird +ta sty +knowledge able +g shore +ðŁĮ Į +à® © +qu aker +salz burg +med alists +chy na +bridesma id +ma ori +ro p +outra ged +in adequate +truck ers +al ana +ìĿ ¼ +ri x +oooo oooo +command ments +lam beth +aa j +eco friendly +bla z +morecam be +boun cy +rou x +rai ded +mi zed +sh c +gaw x +labor atories +ru bs +rest room +consult ations +ca jun +virgin i +so ir +rev ue +ple in +wag er +ç ¹ +we do +growing up +! ðŁĺĬ +face ted +sin ners +ho vering +ti ene +seas oning +an ja +leg go +il is +fla x +dev o +ash ram +mati sse +ker i +go wer +bo tox +mar shes +unh cr +ts m +opti mus +dun i +stu ffs +so k +order ly +n bad +islam ophobia +raviol i +fab er +cre ds +won ka +in fusion +over weight +daily news +assi mil +acol lege +medalli on +kili manjaro +sti ff +tham es +sun ken +th ard +my dubai +hilari ously +han nel +plu mber +fair view +separ ating +rasc al +qui en +necess ities +confeder ation +ll ll +: ] +weak nesses +bron co +ra ffles +el ot +ãĤ¸ ãĥ +advent calendar +ðŁİ ¹ +stra vel +tun ic +k su +im peach +e spionage +! - +di ment +cur rant +bio de +commu ting +by ron +ðŁĴĵ ðŁĴĵ +shad ed +tr uro +cray ons +ar ne +h sc +fre aked +dram ati +fle ek +u cd +marl borough +^ - +cross ings +mal o +black ops +bin ance +cho ked +chen ey +pl o +ge stures +val edic +ryan air +rem ington +v cs +mc kee +ec z +be gs +nail art +mayor of +happy fathersday +war t +pet itions +n ingly +clean energy +bro x +sl alom +exist ent +ab ay +ug liest +tom p +stom a +sel by +goal scorer +ben ji +overwhel mingly +lan s +semiconduc tor +south korea +re scheduled +sk yl +en listed +dow ski +si del +rosen berg +nas ser +white head +pri us +har are +en n +ry der +í Ĥ +mon g +clas ico +transpor ter +po tty +is me +** *** +vic e +sk it +ode ssa +l mp +her n +raci ally +pin oy +paragu ay +obitu ary +go es +bu cha +side walks +angu lar +un constitutional +transiti oning +i bu +gu ys +un packing +oooo oo +black girl +ber gs + ¯ +wordof theday +trump train +thunder bolt +m si +fasci sts +ठ¬ +t sk +collap ses +raje sh +loveis love +migr ating +set back +ðŁĺĬ âĿ¤ï¸ı +t els +safety first +nar rated +jae joong +un answered +lique ur +en nes +dal go +bill ings +salt water +mer maids +lon gs +clap ham +we arec +pic collage +n ach +h ace +pois oned +lo th +ag na +adel rey +guar dia +poli shing +peace keeping +d all +p isa +la pland +process ors +de andre +so bs +p once +dra ins +c be +ðŁİ¥ : +spla sh +meat ball +fon tana +worcester shirehour +ne v +bri sk +b int +ac r +po x +cay enne +skril lex +j fc +hahahaha hahaha +gla s +en gul +tempor al +oni zed +con cre +com pose +vibr ations +plant ers +fer t +criticalrole fanart +t bli +sch allenge +huck abee +munici pal +iam bic +radi os +ne vis +dura bility +mc cla +horse back +inst itutes +ful fill +atta ch +ate ur +ak an +resi sting +illumin ation +hand le +hair care +om ent +macle od +ka iser +g no +bear down +ly f +gl omer +distor tion +z m +san k +roo sters +is now +as ports +ag en +wo ken +st george +ro mper +my le +econom ists +ru to +t will +health and +d ito +ws l +tair p +pra kash +mic heal +h ts +w rights +kat su +fioren tina +defen seman +d itch +var sity +texan scheer +ba ham +sc anned +we il +seduc tive +ðŁijį ðŁı½ +fu e +er win +dav ison +ter ran +moo ds +wool f +re source +@ . +cu sh +ðŁį ° +regre ssion +cur led +la zer +jo anne +ab bott +mo z +down ers +mm mmmm +valent ina +k hair +dream t +cro ok +che k +ste aming +nephe ws +cl eric +as ober +indefin itely +w ye +us news +joy ce +flu shing +wynonna earp +ron do +kis s +hot dog +bar ns +sax ophon +far ley +gas p +decre asing +al way +pe x +l sd +shi ft +p outine +ra zz +rescu ing +ni ko +ho ch +cc l +u aap +n ts +m car +il wx +conqu ering +ket tering +stur dy +delay ing +sto k +vani shed +cath ar +bin gham +in v +ic hiro +he mo +budge ting +[... ] +be ss +sebasti an +slow ed +ðĿ ij +musli m +stun s +acton climate +ve a +se ton +rose tta +oun t +hard in +flu id +ca w +ðŁ¥ Ĥ +yach t +un l +sp hy +provoc ative +or ic +is back +__ _ +nicol as +gy an +loo se +fl in +reb ate +: :: +! "@ +com icon +she ff +down stream +chic hester +beach life +mom life +diabe te +ar ra +van e +ok u +ye o +man go +try out +app ell +he irs +arjun a +dd u +na veen +movi c +soci alists +s back +criteri on +soyu z +k her +da z +yol anda +wine oclock +re ina +one w +leon ard +en dez +u bs +support local +facilit ated +carameli zed +b pa +vuel ta +my tho +m ami +spe are +nbap layoffs +fe vre +nick jonas +im print +c so +craig slist +la salle +gi deon +ha doop +dis regard +w ud +tu c +ma gee +acou stics +ta a +qui e +pol a +cr t +dw yer +dis sec +capit ol +men tion +kn oll +he igh +fin ders +plac ements +l se +indi ra +gur i +madhuri dixit +kingdom s +iambic pent +geor gina +je ky +conflic ting +bay an +aga tha +uph old +dr on +vic ar +ex pat +periph eral +pe ssi +fa f +ance stor +? .. +wid get +pun c +comm enced +beav s +air waves +ad dis +po a +de sses +co den +vu e +ru pee +kar in +spo ck +m sy +ภ° +pr ick +fill more +ti fication +thing sto +sar de +em ile +pere ira +n ad +bright ening +arre sting +wo king +usc g +sp ill +raspberry pi +hu go +ite c +is ma +cuff links +optimi zed +oc c +mi wx +en ka +el ited +afford able +sa kh +coron ado +ho h +at ul +ai oli +jim cantore +accoun ted +vin ay +her mit +groo ves +ran ch +r illa +we tter +ou tof +veter in +ni kov +ki an +fair banks +ram apho +n iti +k ko +ru sty +ne stle +tv xq +shahe er +âĿ¤âĿ¤ âĿ¤âĿ¤ +penn ant +gem stones +dem debate +ðŁIJ Ĭ +auton ews +support indiefilm +mach o +ve x +new sat +ne ti +conce ssions +can died +yof the +mac au +den ds +cricke ters +san iti +mari ano +gh at +ar toftheday +¡ ľ +e gos +gen oa +chat bots +bri er +al labout +mon ty +spi ed +r tr +comfor t +sni ppets +real time +gra in +exam ined +en lightening +tt u +god bless +release the +sing ular +ki ans +ha ka +sor ren +defe ct +mar g +equ ities +d orian +su ka +per l +aishwar ya +pul lover +preci sion +fair way +ne ve +rive ting +vill anova +en com +ak o +passion ately +europale ague +siem pre +x vi +enligh tened +c fr +âĺħâĺħ âĺħâĺħ +wast eland +is f +new comers +emergen cy +amphi theatre +- . +text books +figur ative +tre mb +pe sc +ab hin +ab bot +ac acia +har ds +por sche +kau ai +el isa +car rick +abo u +elli er +be ch +neu tron +galap agos +ru ben +in nis +how to +nun s +sab ine +i ac +clin ched +no tori +fi ves +cairn gor +per i +gr c +ðŁĴ¯ ðŁĴ¯ +mal m +twelf th +di ff +rout ines +marty n +lin den +synthesi zer +nu mber +game cube +fal kirk +byz antine +queu ing +gr ill +scal able +char red +rou ting +her bali +gri zz +ðŁĺŃðŁĺŃ ðŁĺŃ +tol l +termin als +l pc +ab d +war mups +remo vable +¯ \ +vi go +pap aya +ne ve +lov ingly +jo kers +ib les +sse tt +poten ti +pel e +gi gi +sadi q +leg acy +son o +ru pees +retar ded +ele e +par r +fi ance +ey re +say ers +pend ants +mak nae +al bans +adap ting +p ff +pu berty +ji u +ing rad +hypocr ite +diplom ats +phys ical +rob by +bon sai +ãģ · +f att +catal unya +âľ ĸï¸ı +ro ma +more land +so e +conver sions +stl blues +shol m +gra ssy +pra do +on u +assaul ting +> _ +sett es +dis graceful +aph ra +âļ½ï¸ı âļ½ï¸ı +ठª +kil n +goal tender +s ru +philanthro pist +b als +th n +stu den +sando val +dogre scue +eli ons +asse ssed +lar go +hec tares +sh rm +sa if +cle avage +no ches +n ene +fat alities +cur ing +clean ser +al es +p vp +south bank +pizz eria +marsh als +kni fe +an dover +tbli ghtning +sr sly +ou te +digi mon +timesof india +prome the +le bo +f su +wit z +rever e +man as +mam ba +ch ica +gu an +exhibit or +csr racing +d ere +xx xxx +gu sta +story time +ston ey +organ ics +and u +se am +min ogue +anushka sharma +ab a +ðŁİĻ ï¸ı +ugand an +chro matic +as sn +document aries +sh t +ru paul +loy d +k ats +e us +ite ch +me dusa +pan ty +kel logg +et to +talla de +sha a +do st +p ms +mari ana +je ster +croo ks +ðŁĶ ¬ +min danao +ind hoven +ðŁ¤ ª +le xi +tv n +jan is +co te +ãģ Ĩ +ser rano +iw m +ðŁIJ ¬ +k ke +distribu tors +cap u +counterfe it +camp site +ag gie +ðŁĺ ¼ +chhat tisgarh +~ @ +state u +san di +prevent able +cl s +can ne +mm c +i ver +sa haran +pal is +night out +do s +ap ia +absc bn +manag erial +aro se +mo wx +aro sa +ðŁĮ ³ +under dog +remo ver +astronom ers +lent ils +su scep +smoo ther +pend leton +fau cet +e mory +dal mati +af cb +tic us +exem pt +en rol +d heim +ðŁIJ º +restric tion +star fish +sto w +snor kel +thunder birds +she ad +homo sexual +dy n +as li +andre tti +dou che +dom o +tar mac +slu mber +pr onto +first dayof +mini ature +mari achi +argu s +recomm ending +mobi les +in ce +illustri ous +or c +adver ts +gr its +wea sel +pag oda +over pass +gre ys +maxi mus +arma gh +wood land +sun ni +ðŁĴ ī +ë Ŀ +ti one +soci o +ho s +ðŁ¤Ĺ ðŁ¤Ĺ +wind sor +subsequ ent +munch ies +id h +exclu ding +e mi +cu th +z ai +week days +law suits +barn ard +Ø ª +pe tting +net es +mul ligan +pharmac ists +ra quel +e ton +cran ston +gil ded +cle ary +ce ph +ra a +pam per +lombar di +as in +sher ry +pro d +for te +ari anism +buffalob ills +æľ ¬ +ðŁĶ¥ # +uu u +just ices +car ina +nat in +mas low +dro oling +cog nac +cam ber +el ong +r dr +in en +convic tions +am use +tro ck +harm less +visit ation +gen omic +bl and +beno it +chim p +tuscal oosa +gre asy +x po +gil t +se q +per mitted +christma seve +book s +mu e +old school +human right +be ati +ðŁĶ Ŀ +sh at +sculp ting +h wan +fern andes +sci utto +fu entes +endeav ors +maid stone +un paralleled +shou ted +queen of +mer c +band ic +ve da +sel angor +pi le +ja han +intimid ating +disapp ears +cl ich +za ha +w urst +hi v +fod ils +cor dless +aaaa aa +hy dra +bel inda +e els +bu f +su staining +rugby league +no c +brig itte +( ðŁĵ¸: +tromb one +soo the +smo g +ad p +stab le +ing ley +diagno se +ms g +we ss +tic keting +one e +nsw pol +e up +auto psy +adity anath +sun down +river front +si ya +p is +hier archy +dur ango +di jk +ren shaw +he aps +epide mi +david bowie +interne tof +dd i +nation ality +mb ar +air y +win der +w alia +elli ott +c x +bav arian +pl att +an tw +wi wx +sof ter +ne ha +h eller +th and +dani ela +bo ast +degra dation +ðŁĴ¦ ðŁĴ¦ +transform ing +man e +av ut +ðŁĺĪ ðŁĺĪ +vo ter +the e +t ate +pu ff +in door +sop roud +boy ce +boris johnson +wait in +immun ology +ðŁıĨðŁıĨ ðŁıĨ +âĿ Į +street food +liz asober +cavali er +c elia +need le +motor ing +g ato +, ) +ra de +harve st +t ms +jar pad +on ey +air men +v re +impair ment +abhi shek +snoo p +l ant +fam ously +bl ou +s ze +g ander +un touch +tu f +dee jay +col lateral +b ind +ðŁļ © +pin ning +ic n +' ; +the economist +ul tram +worldwater day +ti poff +the i +feed ers +campa ign +sc umb +day weekend +yo m +pe dic +h ough +ps v +pl in +on de +boston marathon +az zy +* _* +con ley +thi ago +hoo o +gal erie +luci d +je tt +gl itz +final fantasy +achiev ers +y ung +peregr ine +op hi +dam es +biom ar +âĺĢï¸ı âĺĢï¸ı +sk c +l ics +fl ank +ar rahman +ho of +uphol stery +t ats +wo z + ¿ +snor ing +ra er +l ju +ap d +pl ating +kan u +im ation +fragr ances +m ra +mor ay +mo tt +im muni +hearti es +bho pal +tim ers +g ata +color way +car nation +win get +si ghs +s ville +optimi st +chate au +olympi ans +ci o +singer songwriter +ny o +fi bers +bur ch +ag ro +mil ne +ig bo +cr amer +ation als +dan ube +pad ma +nor mani +en forced +bre ck +boeh ner +ar den +sur rendered +pros thetic +om a +ha iled +calcul ations +w fa +bi b +fcb live +fon da +west coast +que sts +friend ly +to wie +fit ch +bal ot +star dom +scrat ching +ho sa +thi ka +o ven +stro ke +out post +pharmaceu ticals +hi kari +mu y +af d +fallon tonight +squ at +or u +dra ined +chocol at +ë¯ ¼ +wor ths +ri b +mu j +that s +residen te +it el +boo st +mi gos +mul led +la a +etsy shop +don keys +me k +p tc +flin ders +e hs +ro hit +mu ir +g ad +compos itions +åĨ Ļ +combu stion +i kh +yemen i +wav ed +gar ci +ak os +oo ds +fu sion +se que +s lan +pl ur +kic chasu +shenan do +s ams +worl den +horo witz +with me +mic robes +k ki +ðŁĴĶ ðŁĴĶ +w su +patch work +fre er +y aki +the art +symboli sm +mil er +bt n +ma bu +side kick +motiv ates +sag itt +natur als +serv iced +ps ori +pa ola +qu ig +i badan +gi ggs +ë ³ +sciento logy +si oux +salam at +d res +cad bury +d hawan +ci ón +_ ' +swa pping +maris ka +james bond +explo sives +ay les +af er +s agu +cen sor +tom a +jeff erson +ring ed +par tist +ir responsible +aguil ar +vac ay +equ itable +altrin cham +ac ur +man ish +ger min +schoo led +pu tter +ed ad +nav al +toast y +sol areclipse +dish u +coy ne +ac co +mu ck +mar an +el os +len der +cro ix +worth less +ha ber +gun men +ðŁį ĵ +zen ith +t enders +hur st +hol tz +itali ans +car low +u cd +characteri stic +bun g +av l +u th +sa sia +rs l +red man +neighbor ing +green peace +sti ps +follow party +y gk +en os +omni bus +na issance +chri ssy +secu re +call back +ji hoon +memor y +block er +l anta +daf fodils +bil t +ffer ty +fau st +ie c +nipp les +so g +m nd +jagu ar +bol dly +ab poli +pro position +gun sense +evan sville +cu tters +we go +dou n +do x +stal lions +ka j +shi ppers +j awa +vol o +le ven +pap rika +kov ich +jor di +induc tees +app alling +dial ysis +allevi ate +âĢĶ âĢĶ +pie ter +mid wi +q tr +juli ette +inter mission +haw ks +act ment +one ill +k lin +vam ps +fam ous +cou ld +autom obi +da an +west end +elli p +nh c +mel anch +web series +ton gue +snat ched +smy th +tan gible +sl i +e asing +bar stool +over lay +afford ability +ting ed +ter as +ay ush +wanna one +rh ine +dan a +sh ana +kend al +fer tile +w ir +repl eni +lar vae +is ro +con vos +ab brevi +u cc +hun gry +bur rows +ag er +nav i +mat in +du per +cer n +ma don +ķ ï¸ı +é ģ +tu ps +hy att +sh ep +friday night +wis er +hei di +hat ton +p gh +foun tain +wrist bands +ahmadi yya +aeri al +subscri bed +so los +m ace +sla yed +for fe +dul ce +christ mass +arun jaitley +viol ate +ob stru +ni eces +w vu +idy l +fa ze +pre serves +infr inge +premi ers +inter vals +agen cy +( © +stand alone +di mes +bo er +param eters +ge tit +ðŁĺĺðŁĺĺ ðŁĺĺðŁĺĺ +tu lane +for given +scol l +mb ps +smash bros +rob bi +prima vera +ali st +ghost ly +ay at +ye ats +impre ssionist +ear phones +caul field +wai kiki +sal ute +sc ou +mu ay +louis vuitton +bak hta +ado g +inven tions +hur d +forec lo +stream line +thalai var +ch snews +will ard +t sn +euro parl +cru sher +my sore +gro wer +ra ping +pat ti +g den +sm w +muf ti +kid man +ab r +soun ders +skep tical +ðŁĶ İ +sun dar +i me +fer g +feather weight +ar lington +pas qu +ag azine +wearab le +nati c +mccl ure +inter mitt +hor de +six ties +car te +bha v +ze al +experi ential +ador ned +som mer +eno te +hypo thesis +stin ky +pro to +dead lines +vo gel +mus ings +monc ton +gu ter +f le +aci on +voice of +ta sha +inhabit ants +type face +s ba +bts x +ðŁĶ Ĵ +wor x +u hc +jo ko +cell ars +gor o +continu um +... & +weather cee +ha p +sr k +ris ers +lonely planet +un named +co eur +ðŁį Į +the world +ili ke +fa sten +ami go +ri ba +ramapho sa +staf fers +had ley +? ?" +fi ore +sal ut +hu ff +bez os +Ñ ĭ +ra der +kam ala +in line +fill ers +um atic +all in +shat ter +re in +o ku +ch ases +fla gged +baby metal +water stones +ts b +cut out +op hel +aam a +rockab illy +sto lic +jet blue +ich ick +down ton +uzbe kistan +pat na +la q +gr ange +) _/ +subsi di +sc p +newsc ast +it sa +twee tyour +e mor +archae ologists +uni fication +por ta +q x +protec tors +pro hib +charis ma +car tag +ren fre +scul pt +guwa hati +de ma +boo p +unf pa +dex ter +lay la +alleg es +sou ps +never again +l ys +cal c +bar oness +visu alize +ger ber +absor bed +i ers +a han +fon tein +detec tors +verst appen +sv c +formul ated +ac dc +li x +in competent +bh k +lour des +water house +snow ed +appreci ative +sig ma +lizasober ano +pen ned +pay check +tall inn +fanc afe +par isi +av alley +vi g +ru fc +hard ship +so cute +po ise +ì ¹ +roth schild +k ly +???? ???? +l hp +il ay +f hs +am ad +ide als +brad bury +bal boa +nic ot +kid nap +wol ve +tas manian +op t +matthi as +ãĥ³ ãĤ +super markets +mylittle pony +me lee +li ster +gr oun +fe dora +kind ness +en en +bra hms +¯\ _( +ros well +mar lene +ic u +re formation +or ail +he brides +dispar ities +terrac otta +swal lows +re id +influ encing +flu or +den e +tum our +blon des +thunder bird +sh eva +moga dishu +ka b +cre eps +i ving +ene ed +anno y +âĶ Ģ +intri gue +enqu iry +ar aj +tur al +kuber netes +end lessly +divi dends +tor a +ti sh +commemor ates +un ra +tri b +pon ty +ne m +diss ent +brew ingco +ðŁĺ ½ +nor mali +bi of +( ... +chil len +ì£ ¼ +mell on +av is +mccor mack +ing ra +enrich ed +custome rexperience +testo sterone +snu g +sett i +ger onimo +inqui rer +bre aches +very thing +bloom ing +mu ra +dispo s +bi de +de va +shade sof +in trin +sh ev +s ven +nayanth ara +gan esha +c ws +ber ta +label led +use um +nick named +ma han +car uso +ap ur +ðŁij Ĩ +w q +orphan age +discar ded +mag nu +lu e +je on +bridge port +pac ing +mercur y +( ðŁĵ¸ +marx ist +amphi bious +transplant ation +stit ching +then burg +gradu al +ãĤ Į +ro ft +ma ils +ine c +guy ana +dopp elg +ver o +re write +head less +harb augh +gate way +car sforsale +sw i +st is +mach t +un de +sura baya +stap leton +nur turing +mil ner +ya o +lma oooo +ko sh +arsen al +k ame +er ry +ar royo +dis misses +ru bbed +rc b +lew d +dil u +and or +vi de +ur in +inter sec +ha ar +al b +year swith +app leton +é al +ul livan +suc cu +monter rey +d mx +artem is +ron nie +farm land +s football +gro tto +anth i +ãĢ ģ +à® Ł +vid ya +jimmy fallon +ൠį +t zer +gravit ational +w thr +u hhh +e hr +tin ker +ti juana +scran ton +ram charan +bar clay +re van +m si +ka p +wr s +we thenorth +tor al +sat u +gro m +fac ep +erick son +z yn +se dge +oo dle +spur sofficial +ds p +sic ilian +soli hull +recei vers +ladak h +hend rick +ther i +presi ding +mc guinness +litt ers +gun nar +gh oul +wi b +n tv +kar o +fro ck +b lau +ampli fy +all is +ul lah +memo irs +kh loe +intercep tions +pet day +lo oney +con fin +ch ay +piyush goyal +frequ encies +ut z +event ual +warm ly +obli vion +an ka +ta it +âĿ¤ï¸ı . +director ial +ru lers +prince s +mu ck +stur ridge +deu ce +abri dged +bagu ette +un cles +pen du +min ding +forre ster +av ila +wall er +wall street +ment or +hin o +high way +crom well +fanart friday +mb i +co yle +a hi +tro ve +spie gel +pay tm +mcin tosh +jan sen +nit i +nash ville +len o +leicester shire +le gos +dic t +ðŁĵ ½ +sp ad +beverly hills +sy rah +separ ates +z ain +un fit +dra gs +tan ia +over flowing +hri thik +haw thorn +z ani +mac far +fi de +to tem +pe ds +fundament ally +cal ico +sin ner +j ä +hil de +ds d +ten ay +ta hit +mil f +lie b +inform ing +up lift +ra el +mortg ages +lec t +ii ii +guillau me +compos ites +old smobile +l end +gar th +com mish +bapti zed +scorpi ons +ru cker +bringback our +alli ance +thalap athy +tal i +sp ans +eri dge +wither spoon +lin da +sky lar +kor n +hom s +Ä į +sil enced +caf fe +ar ty +dist inguish +to wed +pun g +jessic a +ear nest +beau fort +t ama +study abroad +si khs +new bie +nav ratri +mar ble +loun ging +lit ter +dal it +so sa +iz es +gra de +com promising +tr iton +de tta +v j +chau ffe +spec tral +powe red +montess ori +artic ulate +hal ton +al co +ye y +mn twins +acoun ty +ðŁijı ðŁı¾ +âī Ī +mad men +kal a +gru m +chi k +ati s +su me +akh tar +job search +high lighter +bo ath +âĦ ¹ +tar zan +lam bo +âĽĦ ï¸ı +ox fam +dump ster +pretz els +mac os +incl ined +fac tual +adverti sers +shu i +pu ree +ml pfi +anti dote +cap o +pa str +merc ado +but ton +ar min +ag g +lol la +horri bly +er rands +christop he +time snow +monday motiv +li ss +scand als +mc i +dispropor tion +âĺ İ +sur pass +samar itan +so tho +pu rest +fl att +trivi atuesday +delec table +leop old +hermi one +chou dhary +en rich +¡ ¡ +subsi diary +ine qualities +bachel or +auto immune +la kota +i hop +ad jec +the simpsons +sh es +se k +gret chen +up stream +hin akhan +coper nic +x tina +lu g +tough ness +e ad +cli pped +bi us +sl v +fah ren +dee pak +ca u +x an +im mature +dig ni +bo bs +shred ding +but tery +accommod ations +de ven +chun ks +super league +sky bet +kil dare +je et +ë į +ce k +wrec ks +pro pane +oh l +tb d +quo i +trum pp +mi mo +reluct ant +ver ne +o ic +ma gh +ar nau +se ver +li dge +stair way +kicchasu deep +ðŁĶ º +mach ining +aama admi +ot i +c da +al it +pan y +inst alls +ac ct +e shop +di em +hard well +fulfill ment +sc afe +qu ack +extrac ts +swee tened +fi ghton +f di +d inger +wal tham +us ur +refe rees +seok jin +gran n +af rin +th n +sch af +par cels +bet is +amar ine +nom an +kh tar +mor itz +cou pling +bar ons +ðŁIJ ¸ +à ¸ +sl p +sad ler +x ander +tri ad +mc millan +kh z +divi ding +ìĹijìĨ Į +dar yl +zed d +le ys +pla ques +flu ori +tipper ary +on nell +di dier +lang ford +im c +the sun +bir dies +ar cha +ye ssss +t di +dar ia +cand ace +al tam +pal aces +ch it +sant am +event ful +book of +ad b +mon stax +cre ole +co el +âĸ ½ +we aren +sten nis +she ath +ati sm +gron ingen +mlpfi m +le pre +wrong ly +rsp ca +rendez vous +acknowle dging +pel vic +solic itor +sla ys +nue stra +lo d +is lander +fer oci +fashion show +ra ss +dge on +adole scents +sma shes +negli gence +grate ful +ved ere +sw oop +ing l +apol ice +vand alism +gan n +jo ao +di supdates +zimbab we +under age +radi ance +w of +bour geo +pla s +cr ani +gh ue +wrec kem +warran ts +re form +jim mie +at wood +ys l +neil himself +l bj +i man +tan to +nois se +ver bs +equip o +al together +mam ent +l ice +dou glass +tier ney +pri med +j hal +furn itu +braz ili +v ill +past els +n ison +u ff +paral ysis +jay e +im po +ðŁij ģ +strate gically +pakistan is +was sup +super bike +thank u +tru elove +sha ikh +israel is +vi p +to g +li en +la ker +grey hounds +cul ars +bian chi +balot elli +ar ran +loo s +str ates +he bron +ar vo +sunder land +the al +tomb stone +sand man +c pac +thanks giving +love him +lat ino +an in +aka if +ĭ ãĤ +tor quay +di est +alli anz +ðŁĺ ķ +golf club +cl lr +wal cott +sch nau +promp ted +nomin ating +len nox +val et +mon ro +may ward +e ph +ðŁĶ Ķ +inter oper +r da +re flex +arm chair +ê° ķ +stri pper +por ti +ph arm +ham za +ni reland +ne ue +h pv +port foli +sun burn +fris bee +be al +bapti ste +x h +ty m +pr ati +o vers +haz rat +deser t +der ry +us ky +em mett +ach arya +)_/ ¯ +shu d +may a +ham ill +ra im +nr c +fitt ings +cur vy +ðŁı ĩ +ster ling +ॠĢ +wal kin +short cuts +mil ly +ast ur +alpha be +pl i +pe z +miss you +rad ford +ml g +ta eyang +notjust lakes +du mps +seren dip +le ur +ra ving +e ster +de priv +absc bn +ðŁijĩ ðŁı» +scar city +o cr +mean ings +cap t +da hl +fer mentation +bri oche +to win +out lander +massi mo +en cro +ðŁ¥ ³ +buil t +po tam +kir i +tm w +monit ored +k ites +peoples vote +gray son +íģ ¬ +afri ka +a dies +i vote +gy ne +g annon +di x +c mc +ou ral +fox andfriends +bel i +ig ne +gl an +katrin akaif +co politics +qual itative +p si +lu cci +disc oura +âĺ ® +kel li +gau tam +carac as +reale st +pu la +in us +hill top +make aw +atten borough +tw y +r arity +peck ham +ma hon +corn elius +clin icians +ton line +tb i +paradi se +ka si +inev it +fresh ness +colling wood +lun atic +defen se +cop d +in fra +wain wright +sains bury +alab am +te ma +lac o +chec ker +releg ated +tren t +stal ks +huff post +bhubanes war +ast ral +share your +prim rose +hi me +cat an +end ment +en dow +cle mens +mal oney +hil ary +game time +den ise +collabor ators +b wo +radic als +gue tta +ici on +au a +snap matic +sat chel +excav ation +base man +s ão +gn ation +fel d +surve y +shah zad +ma st +anirud hofficial +tru cker +ot ago +geo graph +ethe l +âļ¡ï¸ı âļ¡ï¸ı +s ver +mu tt +internetof things +ancho red +wh ouse +bang la +bal main +ç¹ ĭãģ +break fa +á Ģ +twi ster +te tris +ca v +stag s +g z +au b +stor med +hel ens +yar mouth +st asy +gustav o +co sc +vin son +up p +sc ricket +assump tions +app e +nu h +u er +pre mise +n aga +e amon +coron ary +na f +north side +el mer +ro tar +out lining +el f +re surg +kat elyn +in can +hyster ia +ce e +am bani +pro lly +Į ãĤĬãģ +ax es +san jose +rem brandt +mag pie +even ly +scor sese +qu aint +f g +b buk +indian football +weare all +spd wy +pis ces +ec g +âĺħâĺħâĺħâĺħ âĺħ +pre orders +: | +ni pple +sal azar +ju me +jail break +min n +bas sett +ze tta +jef free +ad jun +tic on +san diego +drink local +chol era +solic itors +o bo +com post +ni an +wr a +tre ach +ic ic +profession al +del ve +leg ate +histor ia +cro issant +con noisse +nam o +palli ative +chem trails +i ority +global warming +comic art +behavi oural +re sted +li as +cli mates +Ł ãģĦ +rut land +nou rish +menopau se +hot ties +demen ti +ve spa +mel ville +anal ogue +tz man +str ung +im perfect +gl are +cir cling +ros berg +rec o +oc ity +lo ire +em be +do ssier +ne el +nan do +me a +gal vani +fin esse +ag p +berke ley +asi m +âĺº âĺº +quil ted +ish ere +un matched +po tion +for z +at re +selfi es +juli ana +ðŁļ ¶ +âĸ º +mel ton +âłĢâłĢâłĢâłĢ âłĢâłĢâłĢâłĢ +spin rilla +pur cell +ed p +at leti +tony awards +ra ja +pro gno +mol ten +stu ff +p ally +nobel prize +âĻ» ï¸ı +spiritu al +spe ake +sa sha +bri um +tru ss +critici ze +assassinscre ed +yor uba +u lo +fire man +workin progress +ef cc +fla res +ro bot +hi kers +cl l +shado wing +pat sy +leh man +c ns +å ± +guad al +à± į +ra pe +r honda +paralle ls +son ja +langu age +land ings +z ola +cr amps +bur ning +apprais al +jol la +ham m +kas a +gul ly +f go +uly sses +ri be +ðŁĴ Ħ +ib u +eti enne +bri ar +fin ely +comb ating +y ql +go tham +we chat +to paz +primar ies +l se +iz z +hel e +dispon ible +cy stic +bel ichick +th rush +kansas city +ge om +soli di +red bubble +by stand +cambridge shire +par fait +ast le +ow o +ind ore +stom ping +sm elly +ðŁ¤ ĸ +locom o +adm itting +hol me +clock wise +min sk +mc co +for get +ev p +cam ra +ab ella +yo tes +universit yof +mé xico +silver ado +ric ket +crom bie +pu j +eradic ate +deli ght +y go +glam ping +vic a +du ggan +coun ters +cf d +sc our +react js +pu ram +paras ites +in ki +vill en +stel la +li mbo +ang as +k cr +ðŁĴļðŁĴļ ðŁĴļ +vap ori +mum ford +oli gar +à ¼ +al oo +boo ties +ad r +k elli +dru mmers +av ici +nature uk +ron al +in trac +un splash +le che +g oma +el ine +envir o +bi onic +bu eno +mi k +av in +star ling +em powers +cake day +boy cot +ðŁĴļ ðŁĴļ +ðŁĮ¸ ðŁĮ¸ +v ach +m ci +fractu res +ger i +sk ing +exclu ded +lu ce +ja ve +ig gy +evi den +aki stan +a wn +mor als +luci fer +ha ban +tumb ling +sunday motivation +mo sley +captain america +sch icago +the one +mo td +d ts +ðŁIJ ¼ +rep ell +ii i +locu st +geo spatial +mer sey +immer se +desc end +ber nade +j s +boat sales +win der +cran k +sing leton +candid acy +ben a +ðŁı» âĢį +high lander +ol t +k prs +healthy lifestyle +four teen +end the +ith aca +circul ated +r ans +pre valent +ha vas +splend or +roo ster +kalamaz oo +jewell ers +enne dy +rou sey +es y +cann ons +ornam ental +// // +ren don +win ne +mol ding +eid mubarak +coun tess +simon a +ha wa +fo es +du ster +sb u +por tray +mar ries +goo dday +cho co +achi ever +ðŁĺ¹ ðŁĺ¹ +pre neur +tr amp +tom i +n bat +garden chat +farra khan +ever glades +ab ru +sou sa +se ce +homes wee +terre strial +bar it +sri devi +ol u +mel inda +f rick +can dies +ðŁĺŃ ðŁĴķ +qu reshi +family fun +exor cist +cardin al +ny t +dies el +cu mulus +capric orn +si ology +lor na +dou gie +an die +super sport +c fl +п ÑĢи +say ang +pe ek +ภĬ +lo be +j em +ing lis +gg led +c sn +amne sty +chu ps +ba es +sau er +ðŁı IJ +mongo lian +en et +back street +dr illed +acce ssing +ce o +b se +ai ken +pur r +wor sen +whe res +war k +testi fying +bu ri +bla st +aw g +ðŁĵ ĭ +re defining +hear ing +u ci +c mp +bon i +tail oring +ta ji +noc chi +em t +stephen king +ne et +compla ins +campaig ner +luci ano +twili ght +ti esto +pas sports +flo yd +cathe dr +na ked +caregi ver +b coz +ade cides +ku ri +ly k +br aries +dren ched +disc lose +ðŁĴª ðŁı½ +le blanc +je tty +gar ty +chip mun +b su +rhyth mic +ic z +fri d +anne x +ame x +solo ist +lanc ers +arro whead +speci fication +simul ated +na is +inver te +bo wing +wor ship +f z +abo ss +sha q +ì¶ ķ +challeng ers +an arch +aamaadmi party +ãħĭãħĭ ãħĭ +suffol k +so corro +sn ell +cla dding +absor bing +shaw a +particip ates +ðŁį Ķ +book stores +bak u +seap ort +ko jima +gab y +pack ard +electr ician +let it +mo wing +fa wad +young jae +hot mail +men ing +u rie +intim acy +con ti +: ") +lifeis good +in ciner +i dri +craz iness +jour nos +fran chi +bott len +al da +ff es +k x +south we +air a +clay ton +sco ti +f j +bri ga +ðŁ¤ĺ ðŁı» +demonstr ators +y z +stor k +na q +casc ades +travel chat +plat a +pad ma +fran ci +at tain +bat girl +lom bard +hoo s +d dos +neon atal +discla imer +r ss +r ant +di sen +tex aste +so cal +frac tal +cam ry +stri fe +sn acking +mu h +sant ander +mor ons +gra f +par ades +hu ston +dru pal +mi ento +kir stel +hy de +vom it +forti fied +sphin x +da v +bir yani +win nings +s baseball +mer ged +lovel ondon +ling ering +dream big +car leton +liveli hood +djan go +astri d +gri ds +down e +bru ised +s ne +scarec row +hel ium +f nc +bi ggs +an ter +restor ative +em pires +ab del +life style +kiwan is +colloqui um +me en +pr ick +anti que +ze b +mi mic +edmon ds +ðŁijĬ ðŁijĬ +q ing +pp el +mc gill +interpre ting +âŀ ķ +rash ad +do ka +narr ator +electro magnetic +ash by +sau ra +iran deal +âģ īï¸ı +krish nan +in di +ff en +bre a +os man +multin ational +chi ppe +recruit ers +aus biz +p ounding +re gen +cur sor +refu sal +mac s +in ak +ax ial +wa ifu +up cycled +hindu stan +cas sini +carly le +scrat ches +re ef +man atee +eat ery +ðŁĵ ¢ +un condition +sen pai +on ther +comic book +pro sciutto +de mar +mi se +ma ge +fre ec +aye sha +al der +android games +ley ton +ho ck +door way +chicagof ire +aali yah +sw elling +bi x +. ðŁĺĤ +evan kirstel +torpe do +kon stant +genevie ve +ma ia +ha user +do torg +hide ous +fi k +sp raw +e ek +z appa +wan dered +' ' +ra jan +bam bi +( $) +wid ening +tool box +sa ir +illumin ating +pra ys +out patient +i w +day o +lo b +sw fl +sha des +gu ms +coo kin +ko di +gri ffin +traum ati +ste a +slaugh tered +god bless +air time +pseu do +b sa +hau led +ar if +à¸Ńภĩ +le l +wc po +mil iti +char ters +worl da +ru k +k gs +digital india +is able +idyl lic +esp ino +marie tta +e bo +team canada +ab our +wil ton +rock stars +fav ored +phys ic +wrink le +tb r +d print +ball arat +ad al +z ey +ðŁĺį ðŁĶ¥ +tom lin +mt r +pal sy +fener bah +tight en +phil ia +ir oning +ry u +b ant +enqu ire +ca ir +abur ger +tru n +green berg +chau han +ir ina +sh ani +trend setter +pre tt +zaf ar +alo ve +v ici +pan ic +no o +lu stre +disrup ted +bal lis +son sof +mon si +inst ac +ake st +ëĭ ¤ +kw ame +horror movies +distric t +sau cy +mb an +ar mies +with drawn +med ics +loft us +er oom +be kind +ar ns +all on +un ison +davi ds +cr at +nicot ine +so or +sm x +on co +cospla ying +zombi es +har ms +e ger +ro sy +moon shine +fe in +ce tt +du brov +reg ents +ben itez +ðŁijıðŁı¼ ðŁijıðŁı¼ +ste c +m alia +prioriti ze +ic eland +ft se +v amo +lam ont +homo sexuality +bre es +regu i +cb p +te j +sky sports +deter gent +sha sta +de rel +conserv ancy +colori zed +accol ades +vis o +show your +nan ow +bice ps +us ability +bi m +dailys ketch +pearl jam +stran gest +mega deth +broad casts +bar ren +ar ton +chri ss +confi gu +lu res +is the +e ul +railway ana +global health +gi anni +u aap +s lum +consci ously +ab re +n up +bud get +v ada +e sch +real ness +er ased +th unt +be z +armist ice +ðŁij ¹ +sh run +o led +driver less +ðŁ¤· ðŁı»âĢįâĻĢï¸ı +won dr +sk an +sal aam +mother land +h wang +gen o +gang nam +tw right +endor sing +en ic +ador ation +pau sed +patric ks +do cked +plat te +ff xv +ethnic ity +auto show +side show +after life +re located +orphan ed +food network +dare to +and ra +sla ps +v live +swim s +re imagined +mist le +re vise +real ity +bhar ti +ðŁĴĻ ðŁĴĽ +late st +prou dest +gra sses +lan yard +fresh est +carcin oma +anom aly +zieg ler +sum ner +ly rix +gor g +is d +av el +swild life +me squ +john cena +euro league +sab er +master ful +yar ra +cogn ition +jacob son +abo lic +sir loin +shuk la +moj ito +su pere +st weet +me z +e sa +rudol f +gur a +where you +tt m +win s +trust worthy +ny k +bra den +table top +good food +es on +be k +lingui stic +gra ys +ch ath +h cs +mon i +de ans +cu ssions +ch ell +slo ws +he mi +d app +shar pie +boo sters +a os +str ack +se dona +mu eller +hard wick +or nate +thor a +sal ud +o twol +ch um +mi ho +for age +thel ittle +tear ful +ones elf +min dy +sm g +gmb h +emer ald +ðŁĶ´ âļªï¸ı +tu tti +recep tions +re vising +i brox +tope ka +sal ami +expan se +i books +dob son +cli o +at s +ðŁļ Į +mo ha +is ance +shu tters +moo t +jan ine +marvel comics +jor dani +pos er +kenne th +hy ung +de ja +ase ball +speci ality +eu ston +classic car +had ith +ðŁIJ ī +chas ing +iz o +gros ven +ag lia +thisdayin history +t row +om ile +hu ar +by n +sal ine +div ine +demon ic +ty ran +han dover +revit alization +pa ella +cryp tic +se dg +m end +dun kirk +bre d +wal d +sport scar +a ard +whe aton +da ener +k lan +br t +bakhta war +spi res +schu bert +ro ti +poli sh +o se +ag ame +wonder con +prote stant +bo sa +ðŁĺ Ł +d ü +joy ride +ger trude +âĿ Ŀ +gil a +v h +tw a +tra v +swal lowed +star ve +la in +ent ren +rei ki +su kh +cra ic +az u +web page +kee fe +hypo the +hir sch +hel le +camp ground +w amy +tra vi +sha hi +san deep +ru i +han uman +dw p +reposit ory +no or +no ff +un real +p ell +black history +har vick +ma scar +pay ee +pa sha +gastron omy +d ÃŃ +ai g +rosen thal +open day +embelli shed +t tip +sun bathing +go pack +end ome +ï¸ı # +invali d +final four +st fu +squish y +ra sta +mo sch +jam esc +die trich +sel a +mel b +el vi +t dp +sun i +sli t +j ha +bi za +spi ked +l li +l illard +vam pi +syno psis +az har +kendrick lamar +ĮãĤĬãģ ŁãģĦ +heart less +country file +air play +arrog ance +pre e +virtu oso +ãħłãħł ãħłãħł +raj u +le bu +for ward +tu g +dro s +mondaymotiv aton +concep cion +thel o +pad i +looo ol +ÑĢ од +it ss +eth ical +end uro +__ : +expend iture +mon ste +mas king +terri ers +ib is +e mber +cu mple +punctu ation +pi per +ir vin +ade e +yy yyyy +flash backs +cel sius +don nie +bo gota +ben evol +the script +shil pa +pro se +fin dia +ze ke +ne ko +do ves +blues lyrix +fro sh +sowe to +mp lo +al ai +sab i +raq qa +wf tv +stro ller +ian somerhalder +ðŁĶ ª +an on +mo seley +! ?!? +sta king +mol y +car tri +c sg +ast or +transc end +ma er +de ux +cow girl +sas k +pun ter +ma ken +o ates +love tt +grow ler +sag in +v n +ssi ble +officeof rg +y mc +sab ar +faul ty +ap ha +ak on +ðŁij « +snow don +ae w +raise the +ðĿ ĵ +grue some +clement ine +sp ing +lat a +worlden viron +mi mic +can aria +bakhtawar bz +ao a +fal a +ãĤ Ń +avi va +you uuu +thi gh +la dders +gu mbo +tz ky +fu zz +plastic pollution +est ate +strength ened +k ant +dr in +cal vert +transform ational +frigh tened +mac lean +elited angerous +ear thy +t son +to da +j nu +.. , +mic hal +i ban +je ong +is real +sim coe +exclu sives +blue bells +ben e +te u +pil sner +pens ke +athe ists +m pu +cartag ena +ðŁĴĹ ðŁĴĹ +million aires +kk kk +it ar +subscri ptions +remo te +ma fi +hin ton +w cc +ho k +ds b +ab leton +sevent y +pun ks +e indhoven +sh one +mcfar lane +lim popo +empha si +à ¼ +sin fo +pe tre +man grove +ch ino +ber tie +play lists +push awards +p af +deb bie +c do +r ino +ðŁı¾ âĢįâĻĤï¸ı +fol ke +bon nar +th ine +sl an +hal ter +evi e +aw some +vul tures +spar ky +seiz ures +âľ Ķ +ram one +ine ffe +al n +pro ctor +ast ra +the voice +gro te +sci on +dead line +am aya +tain ted +patter ned +exce eding +cross fit +kay lee +drop box +ru shes +tack led +mo by +retro gamer +n cbd +benef itting +shay kh +guild hall +gen try +dream cast +dread ed +bun dled +th aw +revol ving +n pt +kylie jenner +imagin ative +ron i +over came +family time +ds burg +car naval +relation ship +recogni zable +cor oner +ho le +fan fic +emir ates +bur ritos +analy se +thin ner +ne es +galli poli +bl r +cat woman +-- >> +au lt +ada ily +nau ghty +ili o +solit aire +mtv br +jocel yn +arun ach +rep ent +south gate +hy acin +essenti al +fent on +and um +it or +go pal +sl inger +po sei +aw il +wi elding +ra ila +eli as +a sto +à ¤ +tend ency +str ata +ker t +< - +im acele +da es +sti mulus +han ley +fit nes +ec stasy +lim ous +ha iling +ðŁ¤ Ń +chis wick +tar ies +sla v +pul i +moderni zation +black mail +b ingham +h fx ++ + +ðŁĩ®ðŁĩ ³ +ni v +we a +profess or +k off +bol ster +su ave +sequ ences +pepper oni +not te +dre n +ãģ¨ ç¹ĭãģ +hs v +o ga +ap tly +z ad +excel si +rin ka +mol dova +min n +ma bel +conferen cing +bas ing +of er +ob si +hamill himself +care less +brief ed +inhe rent +par ish +dub nation +town sville +sar awak +gee ky +doncaster isgreat +was abi +gu p +phen o +dra inthe +carrie underwood +ble eds +bbc world +ane w +alta f +dul wich +ani ston +w ti +sumat ra +gra fton +bl n +me ster +bode ga +re go +es q +an jo +sump tuous +mai sie +ï¿ ½ +wil t +jak ob +el vis +se pul +mu ster +air pollution +president e +happy monday +exten sively +fl ondon +t ls +play ing +pe ed +din ho +var dy +pi ka +n iro +au cus +ðŁį ¦ +nu ll +el ondon +juvent us +imag ines +dis ab +lit o +d ura +work places +promo te +mc caf +wood work +waw x +à® ª +tt ino +shar i +sem per +better together +ðŁijĬ ðŁı» +ze bra +pon dering +en chil +ho m +cosm ic +tan z +mo cked +ec cc +ath ed +abo lish +prop eller +paris agreement +assemb lies +indu stry +fraudul ent +pe sa +chang min +ax x +ðŁĴ µ +irr ational +cu sa +ramad han +octa via +on elove +jac ki +bar ak +taxi der +seri ous +nathan fillion +mc en +ch k +po part +grav ity +copp ola +reading fc +illu sions +j ig +ww x +re sh +ex porting +buzz ard +âĻ ¤ +p cm +lan apar +ko s +arom as +antal ya +ww dc +ven a +phil a +ball in +ðŁij Ħ +quin ta +ma o +f ery +eigh ty +sentim ents +safe guarding +r wa +pu ffs +luc ille +de cath +sl u +nu gent +de ter +braz il +ze iss +super bowl +subsi dy +alter n +hi dalgo +enz ymes +ä ½ +tag ne +hair dresser +adri en +walk out +oppo ses +can tina +bed side +af an +ðŁĶ Ĺ +prophe tic +dan es +un successful +super charged +pk k +exem ption +hart le +secu lar +cli pping +br s +united way +c net +pat chy +ha gan +e en +âļ ľ +var a +sym pathi +never trump +affir mation +om f +ny cfc +ma ja +sur ro +keer th +up scale +sandal wood +mon archy +kno bs +å ĭ +po tholes +hunger games +ter races +na sir +coun sell +welcome to +wa q +se aman +m ita +stun ningly +on theroad +in ability +) !! +bon go +ant v +sp ut +worldenviron mentday +resu sc +y td +fi m +eun hyuk +sa chin +rose anne +cler mont +ape c +am ina +v ening +n antes +al most +sin us +ex as +ty l +ti en +ple ad +lanc s +bur naby +re k +jo om +observ ers +disco graphy +cl g +âĻ ¦ +sn ack +r ti +o ily +crystal li +bru te +web development +topp ings +la f +an is +ad der +reli ving +car lin +battle of +we g +syri an +pon t +n dc +lagh ate +yu ma +sp p +p iti +ro bbing +mart ing +rey kja +raj put +nc ds +kie wicz +âĢ¢ âĢ¢ +vam pire +substan tially +opio ids +nepal i +k line +ar oo +under stand +lit t +u it +thro mbo +sar ies +qu ot +b alling +t tr +s gh +philip p +br ant +ac l +m ello +whit taker +. ; +defi ant +b gc +repl ying +mir ren +metamor pho +sch wab +bul ge +utili zed +pick ering +par don +d sa +ภĪ +doo ley +cumul ative +Ð » +ur gency +e mir ++ /- +¦ Ī +ot as +âı ³ +station ed +grape vine +ar ac +karan johar +f ancy +sau l +coo gs +lgbt q +ا٠ħ +jav i +u mmer +pl l +den is +dai pur +pu ffin +lewi sham +fand om +co pe +ves matter +s ve +hel pless +deo dor +ostr ich +kaz an +friday the +con dor +v x +sophom ores +rob les +cu tt +cli mbers +ë¦ ¬ +sle g +sn f +mac ys +hydr ating +grou pe +po yn +mou lin +hg tv +lmfa ooo +sulph ur +asdfghj kl +annab elle +hump back +bra ved +viswas am +multi purpose +hu midi +escor ted +barb ican +f ad +cor sa +ðŁ¤ « +pi ppa +here to +can y +ser gi +or cas +o vie +ed ou +s any +glob alization +man cini +food truck +f is +defi brill +sch re +sma fia +love wins +la ut +k aka +hol lande +game on +resurg ence +out side +olympi ad +int an +abstr action +rapi d +pal om +cal le +jas min +attack ers +swag g +mit ra +ky lo +à® ² +her mitage +gor do +e ira +so sfam +roll out +exc ite +sy nod +mer rill +c als +as sa +liveli hoods +ju ve +the black +gopack go +ant lers +alban ian +wool ly +qu iche +puri fication +are th +smar thome +ne k +all blacks +mex icans +is m +ger ms +comple xion +mar ck +u shi +ðŁIJ IJ +char l +ca stic +till erson +giuli ani +biode gradable +mal bec +bo is +ju bil +im es +r ame +gene tic +esp nu +ch ley +so ho +go pher +g sc +buu ren +cu be +bridesma ids +webin ars +to e +mani pur +viol ently +notic ias +ex changing +chi ev +replac eable +muay thai +bu ss +sp il +instal ment +div ya +cait lin +o lim +fil tering +whirl wind +sta red +prior it +pr am +pompe ii +mono logue +k ite +bu ka +âĢ¦ .. +vac cine +bre ro +woz ni +sol ent +re ferr +my rt +gridi ron +galatasar ay +fro ze +clare mont +ðŁ¥ ĥ +victori as +ssel dorf +pa stures +net neutrality +ch or +ðŁij ģ +ಠ¿ +we ho +symp tom +jo sel +in ous +dragon con +power ball +p te +four thofjuly +ec la +ear buds +where abouts +salt life +depriv ation +ch ter +wi ggle +syste m +ps st +ch az +d any +ri mo +oax aca +lanapar rilla +barcel on +melanch oly +way back +ho tro +n si +l illy +kur o +ja han +intellec t +board game +ðŁı Ĭ +sneak peek +k prc +jail s +cand el +zan zi +mor timer +star ch +ra gs +p fa +long live +k art +gir ona +cro cker +christop h +precau tions +war ship +per m +paren t +van gogh +gif ford +allegh eny +ra yn +ut m +sten cil +rec alling +pen ney +z azzle +ìĥ Ŀ +hin ds +aren as +nu ev +law ler +gu in +do this +ðŁij ķ +ì¶ķ íķĺ +we g +ti b +ri din +complex es +turbul ent +pe sos +de marcus +vall arta +sam sun +kis ses +hein rich +deport es +wil ms +ur d +then ext +inki gayo +ho wi +fir sts +carri age +clean liness +mas war +is ch +ax el +si zzle +road house +fr ans +ent ourage +co bble +boo th +benedic t +tal on +fc u +year ofthe +ray on +raider nation +fo yle +ko val +pi anos +l pg +bur mese +man ure +geo caching +cosc ino +b np +fer ra +stro phy +mar ais +ce es +legen dof +kat niss +eno ch +av ed +you know +d prk +ðŁĺ¢ ðŁĺ¢ +sp un +pro st +sor rows +cent red +ke a +gal icia +? ðŁ¤Ķ +ÑĢод а +bou chard +ðŁĴĻ ðŁĴľ +yu i +seed lings +jon ah +reco vers +ny rd +board room +su ma +my japs +tun g +sha i +ir gc +eli o +wag ons +ka shi +polic emen +john nie +ale coscino +shop ify +dot ted +de tri +va w +to fficial +in your +chal mers +trac ed +no vi +by es +ari el +nipp on +la pel +gri ez +b gs +fool ing +d ita +vijay sethu +nm wx +as ot +kr anti +hel m +ve di +sic kest +mo chi +k abo +shru bs +he red +b sp +sq m +ham r +dul kar +anth a +nr f +avoid ance +at en +publi x +be arers +nas i +ha p +h ells +ðŁĸ ¥ +ภ· +thelast jedi +oh wx +ðŁį « +wa hoo +there se +rec aps +ss nhq +bird photography +v ay +pet ti +pau lo +bel vedere +( * +gr l +du vet +c pec +sa it +por sch +meas urable +avi ators +fre mantle +bre en +on om +me and +life saving +eu ref +en don +embar as +aira sia +el is +dun kin +star magic +s ill +porto bello +ki efer +ex e +mu ted +ãģ ¦ +we thepeople +logi a +liber al +theforce awakens +min ed +haun ts +freck les +care taker +s india +âķ IJ +dev lin +list on +direction er +oh n +fi garo +em manuel +du bois +cl ones +bru ise +ðŁİĪ ðŁİī +disin fe +der matology +as r +s watch +dis comfort +tam anna +pi day +mack en +k atic +delu sional +shaw nee +gu d +al bino +p ali +din gh +cucu mbers +coffe y +anticip ating +treas ured +web summit +shel tered +sav or +pedago gy +m gs +sh ma +s bu +den ali +cam pos +bubble gum +o ir +le aps +y ler +r one +sansk rit +min t +meat less +futuri st +du de +a vel +prote sted +squ ire +z aki +sz n +har court +cycl one +bour dain +gather ings +d ant +advent urer +parag on +alt man +dd ing +ban erjee +snorkel ing +mother well +mis sy +en der +glo ws +ki wis +chick pea +por o +e fron +app t +u y +speci fied +gab by +e strada +com bos +bour bon +vin i +var un +steph ani +key words +car vings +amit abh +wr ought +tw al +re els +clu bbing +ubi quit +cri t +ambed kar +æ Ļ +prun ing +vaccin ated +boe ing +s ks +lo ona +hypno sis +edel man +pho l +he w +colo sse +mckin sey +u on +to te +sacrific ing +ox i +n ang +e mu +пÑĢи ÑĢода +m th +kers wednesday +argu ed +timel apse +ris king +regul ating +ni gh +likeli hood +cu bic +au ction +rein for +pi stor +no ses +ye l +snu ggles +pe i +jean ette +ta ku +ri th +guy z +ภŀ +y te +ver ted +pay soff +jau regui +hoo ligans +procedu ral +mi b +har dy +el eng +chec kers +all ine +the met +prou dof +keerth yofficial +collabor ator +ni u +infl icted +adv ani +re twee +memor iam +f icial +ti ghter +sal em +re viewers +br ics +ben digo +am ell +tur kish +sush maswar +paul son +pal awan +mol lie +stitch er +s burgh +ir u +hay dn +en ers +aro a +u zzi +saraj evo +hel a +apol lo +nine ty +vac a +sp on +vent u +jel ena +hei fer +avo ids +sp ine +pri ze +mar ist +re creating +me de +woo den +find lay +ro fl +n di +compreh end +yu go +y ü +to work +u fos +son ar +pi ston +recor ding +tent ative +art forsale +pel lets +fre do +ÙĪ ر +mu ses +custom ization +pro found +is ner +ide ally +si am +plan kton +cm dr +man ger +fran ken +customiz able +ठ® +walk away +swi vel +vast ly +no ton +lex a +ex moor +z as +tan te +reduc tions +lol ly +hip sters +benef ited +ë ² +ww www +mascul ine +fi ji +dre y +ph ill +ane ous +nic ol +men dez +disapp ro +ch ner +through s +shen mue +east man +ðŁIJ İ +yu ck +under tale +re ys +go beavs +eng en +c na +mer r +bir k +ãģ¨ç¹ĭãģ ĮãĤĬãģŁãģĦ +âĥ£ @ +yn na +ste ed +offen der +at um +vani shing +presi denti +love them +g nocchi +fri ggin +per il +mad hya +ag ne +dee jay +mar nock +m tb +fold able +@ ___ +stand re +bron x +bow ski +fin ite +cro ckett +b sf +ge tit +seren awilliams +mir o +ignati us +sla y +rin se +fon due +sel dom +s more +gan i +dy ce +dmit ry +cru mb +late post +pri mark +oh ana +flor als +do a +remembrance day +d ds +azi one +toon ami +air port +æĿ ± +th ad +fi st +dine sh +dr who +ad words +admi rer +pro je +kyrgy z +à « +manife station +le wan +j ic +thi bau +le ased +van ity +nouri shed +never theless +aug mente +fu elled +che ad +wil shere +ru di +p z +my co +mor ro +herbali fe +hardro ck +de man +dre ality +sp ades +ce vic +bha i +bar on +ultimat efan +hou news +to bi +stru t +ke el +affili ation +the masters +sm al +hu e +este ban +con v +om nic +datab ases +co v +ter ti +st g +snoop dogg +metab ol +leth bridge +ðŁı» âĢįâĻĢï¸ı +year ling +residente vil +nws l +iy aki +griez mann +c ous +ðŁĵĿ : +tor ian +sam i +ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥ðŁĶ¥ +g are +alli ances +whit field +we ther +refin ing +coy i +kra ken +ðŁĺĺ âĿ¤ +singul arity +lil i +h ns +bol dand +waw rinka +misogy ny +lo vers +c q +b dg +ad ona +gar ter +women of +sc d +recogn ising +mun a +str ou +sign alling +lare do +hell boy +alek sand +un available +pedi atric +as in +mer ia +ri shi +futuri sm +w ye +polari zed +e we +pro pel +in forms +cre ase +~ " +arti ston +like for +heidel berg +er ra +life in +len ny +inter rupt +cohe rent +ca z +vick ers +le veled +f bs +cab ins +bu mmed +apost les +we h +ten don +souven irs +infu ri +pier ce +asse t +m las +go th +di ggin +ann as +yl or +th waite +sw el +pan era +mur derers +croo ked +bs go +ac u +a on +re an +one of +ko hl +bloo dh +pest icide +lost dog +fle xing +ëĤ ĺ +su pra +eter nally +ðŁļ Ļ +pa olo +ol an +mom o +is elle +captain marvel +s lou +mistak enly +akhi lesh +mer t +il inan +bu on +bal kan +mir ro +mill en +der ail +dam on +tit i +bi os +re don +pic ard +par te +ðŁ¤ Ł +Ø º +son ics +fir sth +dd c +veg ans +tur ban +ni gan +lot tie +lyn don +star buck +pink floyd +life styles +am ara +a she +r sc +val a +sm er +cw gc +cli ent +buen as +jag an +coo ps +ðŁijij ðŁijij +speci alizes +snag ged +g lar +ben net +wildlife wednesday +bow den +pi k +art in +empor ium +ar l +re ba +pas ser +disappo ints +additi ve +âľĬ ðŁı½ +bay er +missou la +ha skell +comm ences +ni x +ne man +explo ited +plastic surgery +cc d +aso cial +vo t +sie gel +fro ome +kap am +far a +e ha +pro bes +mw f +meet ing +p bb +ak ins +mistle toe +kingdom hearts +for kids +ec r +bal e +escor ts +adidas originals +k wa +k ts +hallo ffame +ðŁĺį . +wag s +pot ted +o wing +honey comb +he fty +uro logy +mer le +b pd +stri pping +re ich +k state +gu ay +yon ge +shak ti +g loom +bat t +son om +n ery +el ba +blan ks +hel le +triple ts +bom bay +ak arta +ab ia +transm itted +rol f +ja is +angular js +fi erc +m ss +trac e +ॠĩ +tom bs +old man +kom bucha +fo l +e health +cere als +are lli +in ari +ðŁĴ © +wo l +liber ties +fa wn +af firm +nun avut +hyster ical +k drama +art es +âĢ¢âĢ¢âĢ¢âĢ¢ âĢ¢âĢ¢âĢ¢âĢ¢ +valent in +man slaughter +gal es +eo in +energi zed +del s +with draws +st les +sar castic +ram esh +incredi bles +lock hart +ya wn +ultimatefan live +oooooooo oooooooo +mu en +guru dev +te er +pe eling +new snow +lingui stics +direc tv +ag end +uni lever +ru ger +han dedly +ero se +li mel +the c +royal ties +fini shers +nr g +m gt +fid get +com ps +bac on +aggre ssively +ab it +ch â +tar de +slu gger +q anda +gre ening +d ats +ensla ved +spec tor +o ye +fre ef +b hand +stop brexit +mis conceptions +cav a +ðŁĺįðŁĺįðŁĺįðŁĺį ðŁĺįðŁĺįðŁĺįðŁĺį +multit asking +hou sel +ferre ira +cen time +ank les +jo dh +hel ly +fro me +out tuesday +nar nia +bal aji +l bloggers +jyo ti +ðŁį ĩ +lan cia +cap ri +y ap +nat ash +down fall +." âĢĶ +à ® +ligam ent +coat ings +ai ded +hi ko +fall ing +encryp ted +yeg food +infringe ment +cu di +ce p +ðŁĺį ðŁĺĤ +tra d +super rugby +ed win +wh iche +vi meo +lay ne +in vigor +he he +dubrov nik +bie ber +u tr +sham an +op ers +ham ill +en ig +di f +ar um +scrap book +min h +diver gence +mckin non +life time +guter res +wil le +ple as +patt y +mic ron +k z +dom aine +ru sher +m ds +ches ney +screw driver +âģ© , +sle dge +hau er +chan a +stam ina +sprink ler +pl n +he ff +bol ton +om on +car rington +accor dion +jor ge +inter ception +in puts +gu ll +tran scription +vanu atu +it ical +eth os +tic h +spac ey +pee king +u mi +ha ger +psycho tic +illi an +illi a +bonnar oo +an ese +pu c +laghate parth +en hall +econom ical +dre dge +% - +u we +tu bular +scoun cil +pe asants +fl er +tumb ler +he p +ford ham +row ley +initi als +ev asion +er nation +plu gins +coch ran +c attle +acid ity +ðŁİĬ ðŁİī +re grann +jump man +ef ace +x ma +patri archy +esco bar +cristi an +tip ton +nu eva +hack ney +back seat +kill arney +aid an +sta dion +simul taneous +ida ho +a je +u th +figu re +clo s +bur k +volun tar +rec ite +macfar lane +cur few +bou do +w gn +sti x +sla p +scrat ched +philli p +jour ne +ex pelled +wa z +u ke +tati ana +ou e +ho pp +dimit ri +ðŁĵ £ +mato logist +electri fying +blu ffs +bill smafia +az cardinals +y aa +x mas +shar a +r ith +g ills +dre s +bar ton +authori zation +imperi alism +home of +to do +foot path +band width +visit spain +moh sin +erup ted +mi ki +insig nia +mike l +ss h +ger a +bank holiday +aw an +t weak +star craft +e al +construc tion +skelet ons +le ep +ine m +bar clay +ship wreck +monsi eur +yo h +ron t +form ative +ser o +le p +horse man +hoo sier +haz mat +cylin ders +cen ti +ðŁĴ¥ðŁĴ¥ ðŁĴ¥ +re em +na ire +mus ically +gras shopper +est onian +termin ology +ro main +blogger rt +tox in +stan ce +cultiv ated +an ast +ðŁIJ į +shi mano +go pher +ene i +recycla ble +gam ification +fight for +c q +avoc ados +ke ys +eli ke +gly cer +shak ur +mobili zation +gal ley +expla in +ex changed +pe th +obe dience +illa ge +en nis +ãĥ ŀ +wi v +walla bies +ma ar +ig ers +fin tech +fin alized +wo j +meaning less +in field +onna ise +e et +bron te +pass ages +ðŁij § +strick land +northern lights +lom ond +h tc +wr ay +shi fter +di alog +ðŁį į +>> >>>> +te atime +ste ch +sic huan +qu ill +fran ca +comple mentary +bar rington +marcu s +mal am +goo oo +for sa +elec tra +af s +âĹ Ĩ +tri fe +sn azzy +fo lia +and olan +after dark +wood son +stra de +litt lest +o gun +con wy +co wards +ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤ +íĬ ¸ +se ul +mur phy +dun ks +kapil shar +jo achim +wom ack +equal ity +aver ages +a ine +ðŁ¦ Ī +tac ular +dis ability +u ked +mid century +bar thol +teas ers +tab ern +nj caa +sp out +op i +ku bball +bl om +so ar +popu lism +meth yl +ðŁijĬ ðŁı¼ +o spre +alo ils +ðŁĵ ĸ +ðŁĮ ļ +x er +sp illing +publ ica +car dam +adi sh +sa cha +p kg +bu da +lyric ist +i bc +gru mp +ho ver +hal ep +anti body +anem one +âĻ¥âĻ¥ âĻ¥âĻ¥ +m cl +litho graph +cc u +s fest +path ic +calli ster +otta wa +gun sn +rut ger +hali but +en vision +differenti ate +ðŁļĢ ðŁļĢ +pir an +lat el +uc n +trou bad +ra ine +fierc ely +learn english +lea se +wex mondays +em it +dray ton +bur rell +scuba diving +hol ler +dr u +clo cked +w ral +ap ro +trans lucent +w bo +patri arch +mo ja +lan nister +fish ery +ne derland +mil dly +mi rai +ma ko +ja p +ðŁĺ©ðŁĺ© ðŁĺ© +pro statec +p anna +ar ama +under taking +tomp kins +ne op +soli ds +sav oury +e ames +cut lery +wood bridge +steam er +ri zzo +wild cat +rat na +lamin ated +kin eni +jal ap +ai des +acknowle dges +?! ?!?! +! ðŁİī +w afc +mag gio +ha ves +dar je +of i +gr il +v asi +bru x +mo hd +fake speare +arn old +r mb +for be +wal leye +ro di +therapeu tics +strate gi +ob ste +mu dder +download able +dd ings +d ca +asi angames +campe on +appropri ation +th century +ram atta +dra ped +bul lion +mu c +one x +se greg +ophel ia +bod ily +âĿ¤ ðŁĺį +wi zar +te ased +ade my +to id +sur a +lazar us +sn ickers +ma se +lo h +bow ed +bibli o +x change +har lan +gho shal +flavor ful +bha gat +alle z +whiche ver +ten stein +disc er +organ iser +mt g +dream liner +t se +hok kaido +mo k +indulg ent +hick man +blin ded +al yn +aaa ah +sp ool +lough borough +inter pret +et v +aristo tle +optimi zing +avici i +madu rai +ju li +naw az +mat chups +ab ide +paint ing +w elling +vel i +octag on +in scribed +po king +plac er +life cycle +kili g +g sp +eli ves +cle ments +na sheed +me sut +incarcer ated +dist illed +wal ang +delic acy +del gado +che z +ch ita +ad ero +tu x +pati l +o do +abh cosmetics +tv c +p bc +in accurate +hardwork paysoff +ball er +quot ation +merchandi sing +ga stri +defen ses +dro gba +bex hill +ban kno +win ona +si eg +p gs +hahah ha +agu chi +su bram +mirac le +de sch +li bre +ba cher +ent ine +bbcra di +lou dest +r ps +pi erc +fr yer +storm trooper +rafael nadal +pas co +exhau stion +epic onetsy +rc tid +kel lie +ga ines +d bz +sm riti +s bridge +lim ited +cla w +technic al +bio graphical +ado red +ภ° +exclu de +ac adia +key boards +fur man +so ca +sur u +ni ps +sw aps +server less +run e +pu ffy +north ampton +nish ings +hen der +cartri dges +gun shot +ðŁĵ ¹ +fil ament +respon dents +pey ton +mountaine er +mer ging +life span +intimid ation +p afc +nl wx +expan sive +pur r +f ck +ca e +at ti +tele thon +so hn +mend el +lo pes +dor i +un broken +te red +tast ings +in active +disin tegr +t assel +share the +pi ano +is lay +air space +z awa +ricci ardo +ming ton +fresh er +cur ry +re vs +pharo ah +h mv +exhilar ating +wh oo +lin kin +kri spy +competen cy +ste wards +ne bu +kat su +ad mins +baz ar +as ar +giving back +s summit +song z +lin us +raj kumar +farm ington +fanta sia +ðŁĺ´ ðŁĺ´ +so bri +lis se +barry more +pri sm +blo b +sen ew +mono xide +exp ire +eigh teen +di pper +xi ao +kil t +hin ch +bbc sport +bam boo +p ter +ex al +ðŁ¦ ĭ +ham lin +expe ditions +star gazing +food security +wy lie +ul f +st ingly +on storm +lo eb +bro ome +bn ha +pancre atic +eli ve +!!!!!!!! !!! +ther apper +ortho pedic +avengers endgame +antit rust +ìļ ° +go te +om d +off side +gy llen +win eries +white water +ad l +lu pita +exce eds +consi sted +chew bacca +ash leigh +nhl jets +is san +sh ld +hay at +cran berries +ðŁ¤ĺ ðŁı½ +rock the +spring training +fall out +dairy free +wa j +un decided +so wn +rc n +north wales +htt r +fu mble +d its +comp elled +popu list +min ted +blan chett +. '' +pro pulsion +m illa +au berg +her tz +h ta +u daipur +serendip ity +azte cs +als ace +ðŁIJ ij +lu n +sho es +char li +gar za +ðŁĴ Ł +pro biotics +fox tv +ol is +mi ff +loc alized +diffu ser +si gue +fun ko +rend ous +ðŁĴ ij +jeky ll diff --git a/MagicQuill/comfy/sd1_tokenizer/special_tokens_map.json b/MagicQuill/comfy/sd1_tokenizer/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..2c2130b544c0c5a72d5d00da071ba130a9800fb2 --- /dev/null +++ b/MagicQuill/comfy/sd1_tokenizer/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "<|startoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "pad_token": "<|endoftext|>", + "unk_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + } +} diff --git a/MagicQuill/comfy/sd1_tokenizer/tokenizer_config.json b/MagicQuill/comfy/sd1_tokenizer/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..5ba7bf706515bc60487ad0e1816b4929b82542d6 --- /dev/null +++ b/MagicQuill/comfy/sd1_tokenizer/tokenizer_config.json @@ -0,0 +1,34 @@ +{ + "add_prefix_space": false, + "bos_token": { + "__type": "AddedToken", + "content": "<|startoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "do_lower_case": true, + "eos_token": { + "__type": "AddedToken", + "content": "<|endoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "errors": "replace", + "model_max_length": 77, + "name_or_path": "openai/clip-vit-large-patch14", + "pad_token": "<|endoftext|>", + "special_tokens_map_file": "./special_tokens_map.json", + "tokenizer_class": "CLIPTokenizer", + "unk_token": { + "__type": "AddedToken", + "content": "<|endoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + } +} diff --git a/MagicQuill/comfy/sd1_tokenizer/vocab.json b/MagicQuill/comfy/sd1_tokenizer/vocab.json new file mode 100644 index 0000000000000000000000000000000000000000..469be27c5c010538f845f518c4f5e8574c78f7c8 --- /dev/null +++ b/MagicQuill/comfy/sd1_tokenizer/vocab.json @@ -0,0 +1,49410 @@ +{ + "!": 0, + "!!": 1443, + "!!!": 11194, + "!!!!": 4003, + "!!!!!!!!": 11281, + "!!!!!!!!!!!!!!!!": 30146, + "!!!!!!!!!!!": 49339, + "!!!!!!!!!!": 35579, + "!!!!!!!!!": 28560, + "!!!!!!!!": 21622, + "!!!!!!!": 15203, + "!!!!!!": 9168, + "!!!!!": 5203, + "!!!!": 2360, + "!!!\"": 28048, + "!!!)": 42532, + "!!!": 995, + "!!\"": 20556, + "!!#": 34997, + "!!)": 28352, + "!!": 748, + "!!@": 40705, + "!\"": 2947, + "!\"@": 43819, + "!#": 9670, + "!'": 13222, + "!),": 37904, + "!).": 26225, + "!)": 4571, + "!*": 37737, + "!,": 29325, + "!-": 43499, + "!...": 22121, + "!..": 35475, + "!.": 22517, + "!:)": 31671, + "!:": 17545, + "!": 256, + "!?!": 29767, + "!?!?": 47081, + "!?": 6004, + "!@": 15117, + "!]": 34466, + "!âĢ¦": 35068, + "!âĿ¤ï¸ı": 32559, + "!ðŁİī": 49085, + "!ðŁĺĬ": 43434, + "!ðŁĺį": 36438, + "\"": 1, + "\"!": 10377, + "\"\"": 41530, + "\"\"\"": 25539, + "\"\"": 8575, + "\"#": 8345, + "\"'": 31065, + "\"(": 32741, + "\")": 13112, + "\",": 4332, + "\"-": 9375, + "\"....": 37785, + "\"...": 9049, + "\"..": 25403, + "\".": 2811, + "\"/": 39486, + "\":": 7811, + "\";": 37549, + "\"": 257, + "\"?": 11727, + "\"@": 1512, + "\"@_": 20236, + "\"[": 36930, + "\"âĢ¦": 33993, + "\"âĢĶ": 41151, + "#": 2, + "##": 15483, + "#...": 31491, + "#:": 30144, + "#": 258, + "#@": 35062, + "#âĢ¦": 12834, + "#âĢİ": 34262, + "$": 3, + "$$": 24233, + "$$$": 31859, + "$$": 14929, + "$)": 39460, + "$.": 34682, + "$": 259, + "%": 4, + "%!": 35070, + "%),": 37819, + "%)": 16063, + "%,": 14505, + "%-": 48784, + "%.": 12475, + "%;": 33379, + "%": 260, + "&": 5, + "&&": 27791, + "&": 261, + "'": 6, + "'!": 13781, + "'\"": 19479, + "'#": 15319, + "''": 46594, + "''": 8445, + "')": 19175, + "',": 5662, + "'-": 26152, + "'...": 20474, + "'.": 4645, + "':": 7182, + "';": 44517, + "'": 262, + "'?": 17242, + "'@": 26397, + "'d": 1896, + "'ll": 1342, + "'m": 880, + "'re": 982, + "'s": 568, + "'t": 713, + "'ve": 1200, + "'âĢ¦": 42120, + "(": 7, + "(!)": 30253, + "(\"": 18741, + "(#": 6229, + "($)": 46597, + "($": 15186, + "(&": 15042, + "('": 18235, + "((": 22944, + "(((": 33287, + "((": 13796, + "().": 41737, + "()": 8475, + "(*": 48004, + "(*": 39575, + "(+": 12903, + "(-": 20228, + "(...": 45159, + "(.": 43055, + "(:": 8528, + "(;": 23983, + "(": 263, + "(?)": 22885, + "(@": 2181, + "(£": 33987, + "(©": 44886, + "(ðŁĵ·:": 34610, + "(ðŁĵ·": 37999, + "(ðŁĵ¸:": 44422, + "(ðŁĵ¸": 45204, + ")": 8, + ")!!": 47518, + ")!": 7805, + ")\"": 13046, + ")#": 39981, + ")'": 23613, + ")(": 27956, + "))": 13720, + "))))": 42911, + "))))": 34181, + ")))": 18305, + "))": 5167, + "),": 2361, + ")-": 19034, + ")...": 15274, + ")..": 41822, + ").": 1818, + ")/": 26616, + "):": 4143, + ");": 19686, + ")": 264, + ")?": 18765, + ")@": 41928, + ")_/": 45028, + ")_/¯": 45781, + ")âĢ¦": 41844, + "*": 9, + "*)": 30956, + "**": 9825, + "****": 21326, + "********": 42974, + "*****": 43571, + "****": 25167, + "***": 7829, + "**": 4441, + "*,": 41895, + "*-*": 23568, + "*.": 31304, + "*": 265, + "*_*": 44535, + "+": 10, + "+)": 34810, + "++": 47298, + "+++": 35986, + "++": 19056, + "+,": 35885, + "+.": 25238, + "+/-": 47614, + "+": 266, + ",": 11, + ",\"": 3823, + ",#": 11215, + ",&": 26905, + ",'": 10599, + ",)": 44493, + ",,": 21340, + ",,,,": 33225, + ",,,": 14811, + ",,": 8844, + ",-": 29821, + ",...": 20365, + ",.": 41277, + ",": 267, + ",@": 13975, + ",âĢ¦": 14601, + "-": 12, + "-\"": 18646, + "-#": 10151, + "-$": 24946, + "-'": 28010, + "-(": 33345, + "-)": 3535, + "-*": 21527, + "--": 2154, + "----": 5753, + "--------": 11772, + "----------------": 23122, + "----": 30164, + "---->": 35999, + "---": 11079, + "--->": 14518, + "--": 2432, + "-->": 6422, + "-->>": 47252, + "-.-": 32765, + "-...": 43147, + "-.": 44040, + "-": 268, + "->": 5081, + "-@": 10087, + "-_-": 27227, + "-__": 42718, + "-âĢ¦": 30047, + ".": 13, + ".!!": 37805, + ".!": 14030, + ".\"": 18650, + ".\"-": 21234, + ".\"": 1081, + ".\"âĢĶ": 48703, + ".#": 5014, + ".'\"": 41558, + ".''": 49379, + ".'": 5938, + ".(": 22294, + ".)": 5376, + ".*": 26145, + ".,": 5276, + ".-": 12481, + "..": 608, + "..!!": 23707, + "..!": 17994, + "..\"": 15229, + "..#": 15735, + "..,": 47143, + "...": 3002, + "...!!!": 38351, + "...!!": 39915, + "...!": 16860, + "...\"": 5240, + "...#": 8195, + "...&": 44979, + "...'": 23167, + "...(": 37981, + "...)": 14040, + "...,": 42717, + "....": 2386, + "....\"": 26689, + "....#": 20346, + ".....": 34151, + ".....#": 38867, + "........": 8246, + "................": 24855, + "............": 42965, + "...........": 35008, + "..........": 25526, + ".........": 19881, + "........": 14720, + ".......": 9917, + "......": 5590, + ".....": 3104, + "....": 1390, + "....@": 29790, + "...:": 34570, + "...": 678, + "...?": 16388, + "...@": 12672, + "..": 852, + "..?": 23875, + "..@": 21124, + "./": 31975, + ".:": 15811, + ".;": 47596, + ".": 269, + ".<": 29442, + ".?": 29294, + ".@": 1230, + ".]": 33511, + ".~": 42651, + ".âĢ¦": 18047, + ".âĿ¤ï¸ı": 39085, + ".âłĢ": 30097, + ".ðŁĺĤ": 46580, + "/": 14, + "/#": 13217, + "/$": 36266, + "/-": 19811, + "/.": 39382, + "//": 15348, + "////": 46271, + "///": 22734, + "//": 3502, + "/": 270, + "/@": 8216, + "0": 15, + "0": 271, + "1": 16, + "1": 272, + "2": 17, + "2": 273, + "3": 18, + "3": 274, + "4": 19, + "4": 275, + "5": 20, + "5": 276, + "6": 21, + "6": 277, + "7": 22, + "7": 278, + "8": 23, + "8": 279, + "9": 24, + "9": 280, + ":": 25, + ":\"": 29498, + ":\")": 46432, + ":\"": 12089, + ":#": 26625, + ":$": 33769, + ":'": 8017, + ":'(": 21250, + ":')": 10701, + ":'": 23851, + ":((": 42496, + ":(": 5965, + ":)": 11070, + ":))))": 42339, + ":)))": 21840, + ":))": 10164, + ":).": 39010, + ":)": 1408, + ":*": 12617, + ":-": 13021, + ":-(": 25137, + ":-)": 4223, + ":-": 10323, + ":...": 42140, + "://": 12441, + ":/": 13604, + "::": 33077, + ":::": 43818, + "::": 9788, + ":": 281, + ":>": 39677, + ":@": 14339, + ":]": 43486, + ":|": 45986, + ":âĢ¦": 22365, + ";": 26, + ";))": 41873, + ";)": 3661, + ";-": 35657, + ";-)": 10475, + ";;": 34824, + ";;": 24492, + ";": 282, + "<": 27, + "<-": 47280, + "": 34308, + "<<": 24588, + "<": 283, + "<<": 16482, + "<<<": 35054, + "<|endoftext|>": 49407, + "<|startoftext|>": 49406, + "=": 28, + "=))": 39587, + "=)": 17840, + "=": 284, + "==": 11748, + "====": 21734, + "========": 38952, + "==>": 29688, + "=>": 9714, + ">": 29, + ">.<": 38507, + ">:": 36196, + ">": 285, + "><": 28015, + ">>": 8270, + ">>": 2988, + ">>>": 6395, + ">>>>": 18461, + ">>>>": 18435, + ">>>>>": 32972, + ">>>>>>": 48947, + ">>>>>>>>": 41947, + ">_": 44144, + "?": 30, + "?!": 9785, + "?!!": 25342, + "?!\"": 29315, + "?!": 2835, + "?!?!": 16349, + "?!?!?!": 49084, + "?!?!?": 37619, + "?!?": 11395, + "?\"": 3283, + "?#": 24018, + "?'": 13610, + "?)": 9626, + "?,": 41628, + "?...": 22641, + "?..": 43905, + "?.": 41251, + "?:": 21067, + "?": 286, + "??": 5195, + "??!!": 43219, + "??!": 37341, + "??\"": 44996, + "??": 2197, + "???": 40017, + "???": 3824, + "????": 15936, + "????": 10362, + "?????": 21370, + "??????": 34589, + "????????": 45091, + "?@": 29258, + "?ðŁ¤Ķ": 47928, + "@": 31, + "@#": 39397, + "@.": 43730, + "@/": 28639, + "@": 287, + "@@": 30314, + "@_": 2692, + "@__": 17042, + "@___": 48308, + "A": 32, + "A": 288, + "B": 33, + "B": 289, + "C": 34, + "C": 290, + "D": 35, + "D": 291, + "E": 36, + "E": 292, + "F": 37, + "F": 293, + "G": 38, + "G": 294, + "H": 39, + "H": 295, + "I": 40, + "I": 296, + "J": 41, + "J": 297, + "K": 42, + "K": 298, + "L": 43, + "L": 299, + "M": 44, + "M": 300, + "N": 45, + "N": 301, + "O": 46, + "O": 302, + "P": 47, + "P": 303, + "Q": 48, + "Q": 304, + "R": 49, + "R": 305, + "S": 50, + "S": 306, + "T": 51, + "T": 307, + "U": 52, + "U": 308, + "V": 53, + "V": 309, + "W": 54, + "W": 310, + "X": 55, + "X": 311, + "Y": 56, + "Y": 312, + "Z": 57, + "Z": 313, + "[": 58, + "[#": 11115, + "[...": 39975, + "[...]": 43790, + "[": 314, + "[@": 15148, + "[]": 22240, + "\\": 59, + "\\'": 41239, + "\\": 315, + "]": 60, + "]\"": 39434, + "],": 34067, + "].": 26262, + "]:": 21641, + "]": 316, + "][#": 39009, + "][": 29329, + "^": 61, + "^)": 30720, + "^-": 43516, + "^.": 31552, + "^.^": 35791, + "^": 317, + "^^": 34454, + "^^": 9064, + "^_": 14423, + "^_^": 15995, + "_": 62, + "_'": 44701, + "_(": 36951, + "_)": 37393, + "_*": 36237, + "_,": 31417, + "_-": 23193, + "_.": 26841, + "_/": 37647, + "_:": 13109, + "_": 318, + "__": 2355, + "__:": 47043, + "__": 3838, + "___": 43812, + "___": 13530, + "____": 4727, + "____": 25350, + "_____": 38803, + "________": 9549, + "________________": 20115, + "`": 63, + "`": 319, + "a": 64, + "a": 320, + "aa": 1821, + "aa": 3894, + "aaa": 14376, + "aaa": 9583, + "aaaa": 6727, + "aaaa": 19336, + "aaaaa": 31095, + "aaaaaa": 44413, + "aaaaaaaa": 23126, + "aaaah": 49151, + "aaah": 35856, + "aaay": 37846, + "aab": 34108, + "aac": 23251, + "aac": 11346, + "aad": 20464, + "aad": 35894, + "aaf": 37638, + "aaf": 31534, + "aag": 42174, + "aah": 28990, + "aaj": 28727, + "aaj": 43411, + "aak": 37739, + "aal": 22268, + "aal": 30208, + "aali": 27896, + "aaliyah": 46577, + "aam": 12943, + "aam": 22775, + "aama": 45018, + "aamaadmi": 45563, + "aamaadmiparty": 46406, + "aamir": 27456, + "aan": 20705, + "aan": 13426, + "aand": 38054, + "aap": 12023, + "aap": 12052, + "aapl": 34516, + "aar": 4695, + "aar": 13234, + "aard": 46932, + "aaron": 13948, + "aaron": 7709, + "aas": 28542, + "aas": 32205, + "aat": 34018, + "aat": 35004, + "aau": 35426, + "aay": 38281, + "aay": 40249, + "aaz": 26770, + "ab": 596, + "ab": 3937, + "aba": 44204, + "aba": 11102, + "abad": 33444, + "abad": 7155, + "aban": 41662, + "aband": 8595, + "abandon": 28805, + "abandoned": 11227, + "abar": 17860, + "abar": 39805, + "abas": 25402, + "abay": 43542, + "abb": 38954, + "abb": 38297, + "abba": 30870, + "abbas": 37494, + "abbas": 24412, + "abbey": 31927, + "abbey": 10132, + "abbie": 39949, + "abbo": 13536, + "abbot": 44046, + "abbott": 43737, + "abbott": 15649, + "abbrevi": 44843, + "abby": 30586, + "abby": 14694, + "abc": 13137, + "abc": 5334, + "abcnews": 31566, + "abd": 44093, + "abdel": 46511, + "abdomin": 35335, + "abdominal": 39328, + "abdu": 13361, + "abduc": 17884, + "abducted": 31520, + "abduction": 36984, + "abdul": 14227, + "abdul": 15593, + "abdullah": 21317, + "abe": 15856, + "abe": 12734, + "abee": 36037, + "abel": 31938, + "abel": 25318, + "abella": 46156, + "aben": 40865, + "aber": 7828, + "aber": 41867, + "aberdeen": 30539, + "aberdeen": 17236, + "abh": 27484, + "abh": 33649, + "abhcosmetics": 49189, + "abhi": 18113, + "abhin": 44045, + "abhishek": 44502, + "abi": 16867, + "abi": 14161, + "abia": 48604, + "abide": 49163, + "abig": 20863, + "abigail": 25686, + "abil": 21135, + "abilities": 8724, + "ability": 35146, + "ability": 3024, + "abit": 48668, + "ablanc": 33716, + "able": 10102, + "able": 863, + "abled": 10655, + "ableg": 24055, + "ables": 8486, + "ableton": 47169, + "ably": 6748, + "abnormal": 40934, + "abo": 2889, + "abo": 21861, + "aboard": 11661, + "abol": 31768, + "abolic": 46827, + "abolish": 47403, + "aboo": 42433, + "abor": 8416, + "aboriginal": 20422, + "abortion": 12336, + "abortions": 43218, + "aboss": 46401, + "abou": 36455, + "abou": 44053, + "abound": 41037, + "abour": 46637, + "about": 20204, + "about": 781, + "abouts": 36339, + "above": 35019, + "above": 4348, + "aboy": 37077, + "abpoli": 44779, + "abq": 38767, + "abr": 44932, + "abra": 10694, + "abra": 35087, + "abraham": 40623, + "abraham": 15869, + "abram": 33255, + "abrams": 29852, + "abre": 22472, + "abre": 46756, + "abri": 28605, + "abridged": 45333, + "abroad": 11253, + "abru": 46295, + "abs": 18431, + "abs": 11109, + "absc": 25389, + "abscbn": 44260, + "abscbn": 45810, + "absen": 32453, + "absence": 19240, + "absent": 30363, + "absol": 4624, + "absolu": 7055, + "absolut": 4666, + "absolute": 7501, + "absolutely": 4703, + "absor": 14303, + "absorb": 35806, + "absorbed": 45059, + "absorbing": 46412, + "absorption": 42210, + "abstr": 7530, + "abstract": 23885, + "abstract": 10197, + "abstractart": 31170, + "abstraction": 47696, + "abstracts": 40065, + "absur": 21639, + "absurd": 29757, + "abt": 9850, + "abu": 9167, + "abu": 11787, + "abud": 20180, + "abudha": 21450, + "abudhabi": 25256, + "abuja": 23371, + "abun": 20544, + "abundance": 23236, + "abundant": 31611, + "abur": 23377, + "aburger": 46660, + "abuse": 7678, + "abused": 23855, + "abuses": 37132, + "abusing": 36558, + "abusive": 26858, + "abv": 34172, + "aby": 16342, + "aby": 31378, + "abyss": 33632, + "abz": 42292, + "ac": 546, + "ac": 2816, + "aca": 9213, + "acab": 41388, + "acacia": 44047, + "acad": 32537, + "acade": 2892, + "academia": 22662, + "academic": 31178, + "academic": 7935, + "academics": 26417, + "academies": 42569, + "academy": 29968, + "academy": 4041, + "acadi": 41455, + "acadia": 49236, + "acam": 26172, + "acan": 42227, + "acan": 26318, + "acap": 32357, + "acar": 22232, + "acare": 16961, + "acc": 26805, + "acc": 9318, + "acca": 30883, + "acce": 8564, + "acceler": 10161, + "accelerate": 23619, + "accelerated": 38513, + "accelerating": 41821, + "acceleration": 39387, + "accelerator": 25261, + "accent": 28110, + "accent": 18931, + "accents": 31738, + "accenture": 41853, + "accep": 4616, + "accept": 16447, + "accept": 9338, + "acceptable": 14209, + "acceptance": 17090, + "accepted": 9159, + "accepting": 12855, + "accepts": 22338, + "access": 7596, + "access": 3822, + "accessi": 10787, + "accessibility": 23407, + "accessible": 13977, + "accessing": 46339, + "accessories": 10220, + "accessory": 20417, + "acci": 4263, + "acci": 33943, + "accident": 6608, + "accidental": 24895, + "accidentally": 11061, + "accidents": 22072, + "acclaimed": 21172, + "acco": 44730, + "accol": 33858, + "accolades": 46731, + "accom": 23658, + "accommo": 34495, + "accommod": 14386, + "accommodate": 34708, + "accommodation": 18066, + "accommodations": 45536, + "accomp": 24985, + "accompan": 14746, + "accompanied": 20715, + "accompany": 34142, + "accompanying": 38179, + "accompli": 10205, + "accomplish": 25542, + "accomplished": 16462, + "accomplishment": 26100, + "accomplishments": 24965, + "accor": 4182, + "accord": 34293, + "accord": 28513, + "according": 4717, + "accordingly": 35535, + "accordion": 48760, + "accoun": 3081, + "account": 18424, + "account": 4684, + "accountability": 19377, + "accountable": 24216, + "accountant": 31026, + "accountants": 37222, + "accounted": 43951, + "accounting": 14805, + "accounts": 9974, + "accra": 31900, + "accred": 17451, + "accreditation": 27015, + "accredited": 27647, + "acct": 45569, + "accu": 5618, + "accumul": 19275, + "accumulation": 37112, + "accur": 6551, + "accuracy": 18423, + "accurate": 8858, + "accurately": 24206, + "accusations": 33615, + "accuse": 39414, + "accused": 9434, + "accuses": 27496, + "accusing": 41474, + "acdc": 45067, + "ace": 2675, + "ace": 804, + "acea": 35219, + "aceae": 38153, + "acele": 40868, + "aceous": 33610, + "acer": 37990, + "acer": 25809, + "aces": 5725, + "acet": 28735, + "acf": 38389, + "ach": 972, + "ach": 987, + "acha": 22686, + "acharya": 45780, + "achat": 32706, + "ache": 27771, + "ache": 7214, + "ached": 17048, + "acher": 38442, + "acher": 17936, + "achers": 25051, + "aches": 14823, + "achi": 3264, + "achi": 9087, + "achiev": 8160, + "achieve": 14798, + "achieve": 8175, + "achieved": 12359, + "achievement": 8245, + "achievements": 16114, + "achiever": 46286, + "achievers": 44544, + "achieves": 40123, + "achieving": 16120, + "achilles": 33327, + "achim": 42335, + "aching": 12864, + "acho": 33130, + "achs": 41195, + "aci": 4359, + "aci": 34100, + "acia": 30163, + "acial": 32422, + "acid": 35474, + "acid": 10085, + "acidity": 48800, + "acids": 27751, + "acies": 20162, + "acin": 39442, + "acing": 9442, + "acio": 26202, + "acion": 44965, + "acion": 24968, + "acional": 26435, + "aciones": 35832, + "acious": 16020, + "acity": 7511, + "ación": 38175, + "ack": 877, + "ack": 725, + "acked": 5698, + "acker": 31201, + "acker": 7940, + "ackeray": 41843, + "acki": 42857, + "acking": 5515, + "ackles": 28503, + "acknow": 13563, + "acknowle": 18100, + "acknowledge": 25209, + "acknowledged": 35913, + "acknowledges": 49083, + "acknowledging": 45645, + "acks": 3858, + "acl": 47593, + "acl": 23073, + "acle": 6504, + "acles": 34164, + "aclu": 37354, + "acm": 39317, + "acmilan": 36500, + "acne": 24195, + "aco": 9463, + "aco": 8800, + "acol": 17431, + "acollege": 43468, + "acom": 17224, + "acom": 22342, + "acon": 11621, + "acon": 11571, + "aconf": 38851, + "acons": 31599, + "acor": 22076, + "acorn": 37537, + "acos": 39943, + "acosta": 31994, + "acou": 8794, + "acoun": 31295, + "acounty": 45449, + "acoustic": 10616, + "acoustics": 43873, + "acp": 19627, + "acqu": 7946, + "acquainted": 40713, + "acqui": 12194, + "acquire": 21576, + "acquired": 15932, + "acquires": 27376, + "acquiring": 42785, + "acquis": 14207, + "acquisition": 16543, + "acquisitions": 39649, + "acr": 43648, + "acre": 26749, + "acre": 9493, + "acres": 11630, + "acro": 21060, + "acrob": 40891, + "acron": 37770, + "across": 2500, + "acrosse": 40979, + "acruz": 40455, + "acry": 10440, + "acrylic": 12252, + "acs": 11782, + "act": 10305, + "act": 1393, + "acted": 10971, + "acti": 4786, + "acting": 6319, + "action": 12493, + "action": 1816, + "actions": 6271, + "activ": 3430, + "activate": 26737, + "activated": 22249, + "activation": 26769, + "active": 19009, + "active": 4046, + "actively": 18645, + "activi": 7230, + "activism": 20117, + "activist": 10850, + "activists": 12649, + "activities": 6514, + "activity": 6206, + "actment": 44807, + "acton": 36167, + "acton": 36697, + "actonclimate": 43797, + "actor": 12181, + "actor": 4035, + "actors": 9255, + "actorslife": 25117, + "actorvijay": 34033, + "actress": 5805, + "actresses": 33639, + "acts": 6816, + "actu": 2375, + "actual": 7488, + "actually": 2955, + "acu": 9204, + "acu": 48475, + "aculture": 38145, + "acup": 30869, + "acup": 27278, + "acupuncture": 40043, + "acur": 44719, + "acura": 30120, + "acus": 33710, + "acute": 19734, + "acy": 18717, + "acy": 2356, + "ad": 594, + "ad": 680, + "ada": 25785, + "ada": 1886, + "adaily": 47254, + "adal": 46646, + "adam": 6037, + "adam": 4944, + "adamlambert": 27659, + "adams": 7942, + "adan": 41802, + "adani": 37499, + "adap": 6341, + "adapt": 22666, + "adaptation": 16566, + "adapted": 26657, + "adapter": 21839, + "adapting": 44120, + "adaptive": 28672, + "adar": 27702, + "adar": 32681, + "adas": 23250, + "adata": 39500, + "aday": 31367, + "aday": 10280, + "adays": 24337, + "adb": 45630, + "adc": 38201, + "add": 19408, + "add": 3536, + "addams": 38912, + "added": 4149, + "adder": 47557, + "addi": 36378, + "addic": 5709, + "addict": 14614, + "addicted": 16275, + "addiction": 11751, + "addictive": 29638, + "addicts": 29997, + "adding": 8676, + "addis": 43911, + "addison": 32369, + "additi": 26927, + "addition": 6698, + "additional": 10666, + "additions": 22575, + "additive": 48546, + "addo": 40001, + "address": 5834, + "addressed": 20817, + "addresses": 12702, + "addressing": 10594, + "adds": 9944, + "addy": 24746, + "ade": 2194, + "ade": 1928, + "adecides": 46374, + "aded": 9994, + "adee": 47054, + "adel": 4434, + "adel": 27308, + "adelaide": 38193, + "adelaide": 11611, + "adele": 42843, + "adele": 21220, + "adelrey": 43627, + "ademy": 49123, + "aden": 28669, + "aden": 28688, + "adena": 23648, + "adequ": 18232, + "adequate": 22281, + "ader": 21365, + "adero": 49185, + "aders": 27672, + "ades": 5793, + "adh": 42301, + "adhd": 32649, + "adhe": 21175, + "adhesive": 38429, + "adi": 2486, + "adi": 8779, + "adia": 26874, + "adic": 36780, + "adid": 8086, + "adidas": 22396, + "adidas": 9589, + "adidasoriginals": 48575, + "adies": 45834, + "adifference": 37217, + "adilla": 41167, + "ading": 15000, + "adio": 15060, + "adirond": 36843, + "adish": 49009, + "adity": 28596, + "aditya": 37186, + "adityanath": 44437, + "adjac": 32517, + "adjacent": 33836, + "adjec": 45512, + "adju": 16413, + "adjun": 45995, + "adjust": 13784, + "adjust": 28073, + "adjustable": 20476, + "adjusted": 30515, + "adjusting": 41132, + "adjustment": 36081, + "adjustments": 36331, + "adl": 49351, + "adler": 30222, + "adm": 9892, + "adm": 33604, + "admi": 11666, + "admin": 12528, + "admini": 6434, + "administr": 12174, + "administration": 9502, + "administrative": 22424, + "administrator": 22603, + "administrators": 36123, + "admins": 49297, + "admir": 17031, + "admiral": 21013, + "admiration": 39569, + "admire": 17791, + "admired": 36103, + "admirer": 48344, + "admiring": 29835, + "admission": 11315, + "admissions": 22463, + "admit": 13769, + "admits": 16332, + "admitted": 20427, + "admitting": 46148, + "adn": 40339, + "adnan": 42037, + "ado": 4775, + "ado": 2933, + "adobe": 29256, + "adobe": 16484, + "adog": 44913, + "adol": 33512, + "adole": 22704, + "adolescent": 36793, + "adolescents": 45656, + "adolf": 41179, + "adon": 25907, + "adona": 48419, + "adop": 4183, + "adopt": 16441, + "adopt": 11159, + "adoptable": 36905, + "adoptdont": 19674, + "adoptdontshop": 20089, + "adopted": 12538, + "adopting": 30158, + "adoption": 11544, + "adopts": 40853, + "ador": 4992, + "ador": 9162, + "adora": 40031, + "adorable": 6298, + "adoration": 46781, + "adore": 15502, + "adored": 49233, + "adores": 30290, + "adorned": 44953, + "ados": 20079, + "adox": 32188, + "adp": 44426, + "adr": 46189, + "adren": 24204, + "adrenaline": 35552, + "adri": 5935, + "adrian": 25012, + "adrian": 13163, + "adriana": 41363, + "adrid": 26562, + "adrien": 47469, + "adrienne": 40081, + "ads": 2485, + "adu": 16882, + "adu": 24446, + "adukone": 30511, + "adul": 7222, + "adult": 42209, + "adult": 7115, + "adulthood": 40964, + "adults": 9391, + "adv": 1647, + "adv": 21018, + "advan": 33411, + "advance": 27291, + "advance": 7022, + "advanced": 7465, + "advancement": 35437, + "advances": 15852, + "advancing": 21355, + "advani": 48189, + "advant": 7017, + "advantage": 8573, + "advantaged": 38361, + "advantages": 23506, + "adven": 41670, + "advent": 3071, + "advent": 15199, + "adventcalendar": 43492, + "adventur": 29627, + "adventure": 17251, + "adventure": 4377, + "adventurer": 48098, + "adventures": 7941, + "adventurous": 31179, + "adver": 4806, + "adverse": 30348, + "adversity": 32516, + "advert": 19080, + "adverti": 5682, + "advertise": 31473, + "advertised": 38987, + "advertisement": 18713, + "advertiser": 41829, + "advertisers": 45472, + "advertising": 8158, + "adverts": 44306, + "advice": 4973, + "advis": 4634, + "advise": 25962, + "advised": 23196, + "adviser": 20367, + "advisers": 40984, + "advises": 42761, + "advising": 39648, + "advisor": 12380, + "advisors": 23197, + "advisory": 10224, + "advoc": 6657, + "advocacy": 14443, + "advocate": 12044, + "advocates": 17757, + "adwords": 48343, + "ady": 41446, + "ady": 8781, + "ae": 5548, + "ae": 4542, + "aea": 37048, + "aed": 26912, + "aege": 42304, + "ael": 41533, + "ael": 43340, + "aen": 43085, + "aer": 10195, + "aeri": 27685, + "aerial": 44866, + "aerial": 12440, + "aero": 10196, + "aero": 25026, + "aerob": 42824, + "aeron": 37286, + "aeronau": 42816, + "aerop": 27735, + "aerosmith": 43253, + "aerospace": 20530, + "aes": 10617, + "aes": 35677, + "aest": 40694, + "aesthe": 21181, + "aesthetic": 16179, + "aesthetics": 29295, + "aew": 47108, + "af": 702, + "af": 4391, + "afa": 24953, + "afan": 47474, + "afar": 41637, + "afar": 37866, + "afb": 27022, + "afc": 29742, + "afc": 6571, + "afcb": 44276, + "afcon": 30019, + "afd": 44626, + "afe": 30487, + "afe": 13912, + "afer": 44707, + "aff": 8849, + "aff": 14864, + "affair": 13998, + "affairs": 9830, + "affe": 4556, + "affect": 11361, + "affected": 9715, + "affecting": 18448, + "affection": 33780, + "affection": 28381, + "affectionate": 42578, + "affects": 17285, + "affili": 12120, + "affiliate": 18652, + "affiliated": 37540, + "affiliation": 48377, + "affinity": 41451, + "affir": 25343, + "affirm": 42711, + "affirm": 48625, + "affirmation": 47495, + "affl": 34036, + "affleck": 35584, + "afford": 7951, + "afford": 13223, + "affordability": 44828, + "affordable": 43944, + "affordable": 8926, + "afg": 33994, + "afgh": 9029, + "afghan": 15919, + "afghanistan": 9836, + "afi": 24074, + "afi": 31958, + "afil": 27209, + "afire": 42010, + "afirst": 38601, + "afl": 15132, + "afl": 14356, + "aflo": 41959, + "afm": 38385, + "afootball": 41694, + "afor": 43102, + "afore": 41468, + "afp": 18311, + "afraid": 9474, + "afri": 13888, + "afric": 2136, + "africa": 3093, + "african": 17471, + "african": 4736, + "africans": 26534, + "afridi": 37651, + "afrika": 45833, + "afrin": 45586, + "afro": 16267, + "afro": 21795, + "afs": 48960, + "aft": 22693, + "after": 2278, + "after": 953, + "afterdark": 48966, + "afterlife": 46790, + "aftermath": 20958, + "afterno": 22330, + "afternoon": 39035, + "afternoon": 2716, + "afternoons": 31631, + "afterparty": 35305, + "afterwards": 23911, + "ag": 602, + "ag": 5241, + "aga": 1050, + "aga": 4654, + "again": 1495, + "against": 23838, + "against": 1601, + "agame": 46943, + "agan": 42946, + "agan": 9178, + "agar": 13199, + "agar": 17544, + "agarwal": 43117, + "agas": 20430, + "agate": 25454, + "agatha": 43896, + "agave": 42671, + "agawa": 39433, + "agazine": 44942, + "age": 4758, + "age": 805, + "aged": 3889, + "ageing": 25349, + "agen": 10101, + "agen": 43696, + "agencies": 13887, + "agency": 44885, + "agency": 6270, + "agend": 48653, + "agenda": 8728, + "agent": 21210, + "agent": 6576, + "agents": 10199, + "agentsof": 37074, + "agentsofshield": 38801, + "ager": 44847, + "ager": 10443, + "agers": 22123, + "ages": 2321, + "agg": 45482, + "aggarwal": 39386, + "agger": 27836, + "aggi": 36844, + "aggie": 44244, + "aggie": 37618, + "aggies": 31047, + "aggio": 36685, + "aggrav": 35203, + "aggre": 10426, + "aggreg": 41968, + "aggregate": 41318, + "aggression": 28900, + "aggressive": 16295, + "aggressively": 48667, + "agh": 17917, + "agh": 14402, + "aghan": 31276, + "agi": 24036, + "agi": 17645, + "agic": 37652, + "agile": 16276, + "agility": 32161, + "aging": 4336, + "agio": 41746, + "agirl": 35469, + "agle": 37035, + "agle": 16702, + "agles": 36374, + "agles": 22679, + "aglia": 46912, + "agm": 19162, + "agn": 36474, + "agna": 43626, + "agne": 29374, + "agne": 48303, + "agnes": 26213, + "agno": 41540, + "ago": 6276, + "ago": 1468, + "agomez": 27127, + "agon": 26775, + "agon": 14901, + "agony": 36977, + "agor": 38920, + "agos": 32657, + "agov": 34227, + "agp": 46048, + "agr": 36639, + "agra": 26660, + "agra": 29830, + "agram": 2447, + "agre": 3180, + "agreat": 37594, + "agree": 5953, + "agreed": 12774, + "agreeing": 40720, + "agreement": 8286, + "agreements": 25865, + "agrees": 17854, + "agri": 20527, + "agri": 30326, + "agricul": 7234, + "agricultural": 15440, + "agriculture": 9720, + "agro": 33178, + "agro": 44589, + "agron": 41314, + "agroup": 40099, + "ags": 16926, + "agt": 39681, + "agu": 3922, + "agu": 36544, + "agua": 18482, + "aguchi": 49206, + "ague": 2095, + "aguero": 42964, + "agues": 7000, + "aguil": 27946, + "aguilar": 44715, + "ah": 1772, + "ah": 1288, + "aha": 12082, + "aha": 8429, + "ahah": 38661, + "ahaha": 32423, + "ahahaha": 42620, + "aham": 36036, + "ahan": 45061, + "ahan": 19255, + "ahar": 31038, + "ahar": 38760, + "ahe": 27688, + "ahead": 3158, + "ahem": 39995, + "ahh": 13152, + "ahhh": 14769, + "ahhhh": 21054, + "ahhhhh": 36392, + "ahi": 45349, + "ahi": 24154, + "ahl": 30433, + "ahmad": 32167, + "ahmad": 16902, + "ahmadi": 38656, + "ahmadiyya": 44865, + "ahmed": 19491, + "ahmed": 12081, + "ahmedabad": 26966, + "ahn": 33405, + "aho": 28114, + "aho": 38444, + "ahora": 43113, + "ahouse": 33197, + "ahoy": 38652, + "ahs": 16937, + "ahu": 11908, + "ahu": 16515, + "ai": 2014, + "ai": 2215, + "aia": 27046, + "aib": 34780, + "aic": 29454, + "aid": 13723, + "aid": 5182, + "aida": 33830, + "aidan": 48814, + "aidan": 26945, + "aide": 31558, + "aide": 9746, + "aided": 48707, + "aiden": 40020, + "aides": 49082, + "aids": 11759, + "aig": 27295, + "aig": 46989, + "aii": 22478, + "aik": 42575, + "aiken": 46342, + "ail": 1457, + "ail": 9154, + "ailed": 38919, + "ailing": 29999, + "ails": 27024, + "aim": 6787, + "aim": 11255, + "aime": 39872, + "aimed": 20247, + "aimee": 36318, + "aiming": 21768, + "aimo": 36706, + "aims": 13326, + "ain": 8326, + "ain": 2210, + "aine": 48983, + "aine": 17634, + "ains": 27621, + "aint": 29543, + "aint": 13099, + "ainted": 39933, + "aioli": 43949, + "air": 1281, + "air": 1922, + "aira": 35085, + "aira": 46444, + "airasia": 48020, + "airbnb": 23098, + "airborne": 22755, + "airbus": 15324, + "aircraft": 7706, + "airdrop": 38434, + "aire": 7682, + "aired": 21938, + "aires": 17034, + "airfield": 40525, + "airforce": 23511, + "airing": 20453, + "airline": 14847, + "airlines": 8929, + "airmen": 44499, + "airplane": 16451, + "airplanes": 33319, + "airplay": 47024, + "airpollution": 47362, + "airport": 48337, + "airport": 3259, + "airports": 21543, + "airs": 18539, + "airshow": 27139, + "airsoft": 30134, + "airspace": 49280, + "airstrikes": 37220, + "airtel": 34784, + "airtime": 46617, + "airwaves": 43910, + "airways": 14299, + "airy": 44453, + "ais": 7616, + "ais": 11393, + "aise": 30505, + "aish": 21946, + "aisha": 40211, + "aishwar": 29687, + "aishwarya": 44019, + "aisle": 26917, + "ait": 25613, + "ait": 40814, + "aj": 3990, + "aj": 6342, + "aja": 42343, + "aja": 19633, + "ajax": 21933, + "ajay": 22494, + "ajay": 28726, + "ajaydevgn": 35515, + "aje": 48818, + "aje": 33315, + "ajes": 38791, + "aji": 26102, + "aji": 21153, + "ajit": 42261, + "ajith": 24118, + "ajo": 26958, + "aju": 36855, + "ak": 819, + "ak": 1196, + "aka": 19154, + "aka": 3412, + "akaif": 45736, + "akan": 43678, + "akan": 38244, + "akapoor": 40064, + "akarta": 48603, + "akb": 41962, + "akbar": 27180, + "ake": 10558, + "ake": 5776, + "aked": 6115, + "aker": 14245, + "aker": 3074, + "akers": 5788, + "akes": 4764, + "akest": 46679, + "akh": 14821, + "akh": 30660, + "akhan": 28158, + "akhi": 41660, + "akhilesh": 48495, + "akhtar": 45458, + "aki": 18173, + "aki": 6592, + "akin": 24630, + "akin": 13601, + "aking": 1809, + "akins": 48568, + "akira": 34001, + "akis": 27732, + "akistan": 46221, + "akley": 39908, + "ako": 44027, + "ako": 14541, + "akon": 47105, + "akos": 44659, + "akrish": 37434, + "akron": 26115, + "aks": 2953, + "aksh": 28226, + "akshay": 21483, + "akshay": 38914, + "akshaykumar": 23624, + "akshi": 42634, + "aku": 18151, + "aku": 20815, + "aky": 11977, + "al": 526, + "al": 566, + "ala": 12783, + "ala": 3449, + "alab": 6365, + "alabam": 45880, + "alabama": 8422, + "alach": 24622, + "alad": 23074, + "aladdin": 29951, + "alai": 47072, + "alain": 28999, + "alam": 16612, + "alam": 16012, + "alamo": 41922, + "alamo": 34632, + "alan": 9563, + "alan": 5773, + "alana": 43405, + "aland": 34304, + "aland": 6819, + "alar": 34333, + "alarm": 11321, + "alarming": 37209, + "alarms": 31236, + "alarts": 31422, + "alas": 7276, + "alas": 22412, + "alaska": 9562, + "alaskan": 33898, + "alastair": 42062, + "alay": 30289, + "alay": 36450, + "alaya": 36397, + "alb": 45248, + "alba": 25254, + "alban": 10882, + "albania": 29170, + "albanian": 47721, + "albans": 44119, + "albany": 17359, + "albat": 42797, + "albeit": 38984, + "alber": 6413, + "albert": 34174, + "albert": 9507, + "alberta": 11048, + "alberto": 22714, + "albi": 18512, + "albino": 48062, + "albion": 24071, + "albu": 2216, + "album": 40712, + "album": 2431, + "albums": 10705, + "albuquerque": 31079, + "alcat": 35361, + "alche": 37909, + "alchemist": 38913, + "alchemy": 39501, + "alco": 6848, + "alco": 45446, + "alcohol": 9426, + "alcoholic": 25098, + "ald": 4539, + "ald": 2928, + "alda": 46440, + "alde": 33114, + "alden": 17155, + "alden": 27710, + "aldenrichards": 20051, + "alder": 18220, + "alder": 46571, + "aldi": 23204, + "aldo": 9933, + "aldridge": 38084, + "alds": 14285, + "aldu": 6505, + "aldub": 10532, + "aldub": 15247, + "ale": 1440, + "ale": 1336, + "alea": 26518, + "aleague": 38909, + "alec": 29804, + "alec": 19954, + "alecoscino": 47948, + "aled": 4970, + "alee": 24515, + "alej": 23440, + "alejandro": 32950, + "alek": 26906, + "alek": 43310, + "aleksand": 48429, + "alem": 11825, + "aleppo": 19258, + "aler": 25674, + "aler": 27335, + "alert": 4662, + "alerts": 22144, + "ales": 44171, + "ales": 5962, + "aless": 21864, + "alessandro": 37344, + "alestine": 31945, + "alex": 2959, + "alex": 4134, + "alexa": 16273, + "alexand": 10696, + "alexander": 25527, + "alexander": 7563, + "alexandra": 19054, + "alexandre": 35711, + "alexandria": 21171, + "alexis": 35023, + "alexis": 14243, + "aley": 21635, + "alf": 27098, + "alfa": 23482, + "alfar": 38870, + "alfie": 28598, + "alfon": 31947, + "alfonso": 41784, + "alfre": 20982, + "alfred": 16553, + "alfredo": 32291, + "algae": 25654, + "algar": 36291, + "algarve": 40290, + "alge": 24336, + "algebra": 33694, + "alger": 18568, + "algeria": 25257, + "algon": 33007, + "algori": 14912, + "algorithm": 23295, + "algorithms": 26039, + "alham": 23352, + "alhamdulil": 35129, + "alhamdulillah": 38982, + "ali": 835, + "ali": 3558, + "alia": 2492, + "aliaa": 36468, + "alian": 3464, + "alias": 40026, + "alibaba": 39231, + "alic": 25265, + "alice": 23759, + "alice": 9192, + "alici": 31630, + "alicia": 20914, + "alie": 8697, + "alien": 22846, + "alien": 9639, + "aliens": 14883, + "alier": 39493, + "alies": 38086, + "alife": 41347, + "alife": 21100, + "alig": 21272, + "alight": 36157, + "align": 31160, + "aligned": 29292, + "alignment": 27267, + "alik": 31141, + "alike": 12665, + "alim": 42075, + "alin": 42746, + "alin": 40063, + "alina": 39529, + "aline": 21799, + "aling": 5169, + "alion": 19049, + "alis": 21308, + "alis": 20114, + "alisa": 38918, + "alisation": 42143, + "alise": 36718, + "alised": 25099, + "alism": 5607, + "alison": 28653, + "alison": 16970, + "alist": 44900, + "alist": 3320, + "alistair": 40551, + "alistic": 22302, + "alists": 5653, + "alit": 45566, + "alities": 27925, + "ality": 1694, + "alive": 40467, + "alive": 4716, + "aliz": 30979, + "alization": 8026, + "alize": 10268, + "alized": 6141, + "alizer": 38922, + "alizes": 26181, + "alizing": 13023, + "alk": 30246, + "alk": 21577, + "alkal": 33450, + "alkaline": 39210, + "all": 813, + "all": 615, + "alla": 13884, + "alla": 14000, + "allabout": 43996, + "allah": 6378, + "allan": 36552, + "allan": 15404, + "allblacks": 47728, + "allday": 35862, + "alle": 4870, + "alle": 29478, + "alled": 7379, + "alleg": 7456, + "allegations": 16992, + "alleged": 12133, + "allegedly": 14177, + "alleges": 45051, + "allegh": 41479, + "allegheny": 47851, + "allegi": 28832, + "allegiance": 30955, + "allen": 16712, + "allen": 6386, + "allenge": 31387, + "aller": 10116, + "aller": 30630, + "allergic": 28809, + "allergies": 28247, + "allergy": 24408, + "allery": 32542, + "alles": 43354, + "allevi": 31682, + "alleviate": 44799, + "alley": 36205, + "alley": 10329, + "allez": 49137, + "alli": 4123, + "alli": 15268, + "alliance": 45404, + "alliance": 8945, + "alliances": 48403, + "allianz": 45740, + "allie": 25040, + "allied": 20045, + "allies": 17277, + "alligator": 28574, + "allin": 45007, + "allin": 22395, + "alline": 48182, + "alling": 2992, + "allis": 45309, + "allison": 34602, + "allison": 16578, + "allman": 42611, + "allo": 8107, + "allo": 18389, + "allocated": 42716, + "allocation": 35139, + "allon": 46693, + "allot": 26363, + "allotment": 33750, + "allow": 5645, + "allow": 6722, + "allowance": 35696, + "allowed": 7885, + "allowing": 12458, + "allows": 9966, + "alloy": 22467, + "alls": 1997, + "allstar": 31247, + "allstar": 22974, + "allstars": 31198, + "allthe": 29253, + "allu": 20157, + "alluarjun": 39333, + "allure": 41814, + "ally": 7461, + "ally": 769, + "alm": 28303, + "alma": 32933, + "alma": 18337, + "alman": 29394, + "almanac": 41268, + "almighty": 21898, + "almond": 15646, + "almonds": 30468, + "almost": 47534, + "almost": 2671, + "aln": 47203, + "alo": 3435, + "alo": 6183, + "aloe": 30728, + "alog": 15813, + "alogue": 9101, + "aloha": 23160, + "aloils": 49002, + "alom": 22236, + "alon": 14097, + "alon": 42846, + "alone": 4702, + "along": 8300, + "along": 2528, + "alongside": 8646, + "alonso": 25704, + "aloo": 46187, + "alore": 14323, + "alot": 16945, + "alou": 43180, + "aloud": 30028, + "alove": 46669, + "alove": 37045, + "alp": 32020, + "alp": 39342, + "alpac": 30128, + "alpaca": 42561, + "alph": 6720, + "alpha": 11807, + "alpha": 8624, + "alphabe": 45796, + "alphabet": 22335, + "alphon": 37865, + "alpine": 17055, + "alps": 18191, + "already": 2426, + "alright": 10866, + "als": 23982, + "als": 938, + "alsace": 49388, + "also": 1446, + "alt": 9995, + "alt": 10006, + "alta": 24470, + "alta": 25378, + "altaf": 47342, + "altam": 45624, + "altar": 16385, + "alter": 4949, + "alter": 21393, + "altered": 25201, + "altern": 47463, + "alternate": 15926, + "alternati": 16699, + "alternative": 37327, + "alternative": 8248, + "alternatives": 25041, + "alth": 23463, + "alth": 5863, + "although": 9421, + "alti": 35531, + "alties": 17276, + "altitude": 23241, + "altman": 48100, + "alto": 35053, + "alto": 17518, + "altogether": 45689, + "alton": 41331, + "alton": 36550, + "altrin": 38458, + "altrincham": 44718, + "alty": 5546, + "alu": 4776, + "alu": 27991, + "alum": 5404, + "alum": 10553, + "alumin": 14563, + "alumini": 22908, + "aluminium": 23631, + "aluminum": 15251, + "alumna": 30313, + "alumni": 6646, + "alumnus": 23633, + "alums": 30155, + "alv": 20928, + "alvar": 25196, + "alvarez": 26924, + "alvaro": 41941, + "alves": 38547, + "alvin": 27023, + "alway": 14046, + "alway": 43764, + "always": 24997, + "always": 1466, + "alwx": 32768, + "aly": 6468, + "aly": 12910, + "alyn": 49150, + "alyss": 29490, + "alyssa": 18898, + "alz": 12936, + "alz": 41128, + "alzheim": 15212, + "alzheimer": 21151, + "alzheimers": 34592, + "am": 548, + "am": 687, + "ama": 18206, + "ama": 1696, + "amad": 45095, + "amade": 37366, + "amag": 32049, + "amal": 15315, + "amal": 36753, + "aman": 19890, + "aman": 10110, + "amand": 14560, + "amanda": 10036, + "amar": 6424, + "amar": 19607, + "amara": 48522, + "amari": 42565, + "amarillo": 40449, + "amarine": 45591, + "amarketing": 30788, + "amas": 22716, + "amas": 15667, + "amat": 38664, + "amat": 25455, + "amate": 12453, + "amateur": 14287, + "amaya": 47210, + "amaz": 1185, + "amaze": 24846, + "amazed": 18944, + "amazing": 15949, + "amazing": 1370, + "amazingly": 20368, + "amazon": 13630, + "amazon": 4140, + "amb": 9042, + "amb": 16853, + "amba": 27003, + "ambani": 45967, + "ambas": 5634, + "ambassad": 5758, + "ambassador": 6795, + "ambassadors": 16832, + "ambed": 42089, + "ambedkar": 48131, + "amber": 18292, + "amber": 9986, + "ambi": 11844, + "ambient": 23447, + "ambigu": 35702, + "ambition": 20673, + "ambitions": 34152, + "ambitious": 18666, + "ambro": 17585, + "ambrose": 24253, + "ambu": 34423, + "ambul": 13944, + "ambulance": 15555, + "ambush": 40725, + "amc": 24942, + "amc": 16921, + "amd": 20845, + "ame": 3995, + "ame": 780, + "amed": 5660, + "ameen": 24229, + "amel": 31988, + "amel": 10960, + "ameli": 21599, + "amelia": 21433, + "amell": 48198, + "amen": 18716, + "amen": 12335, + "amend": 12425, + "amendment": 15019, + "amendments": 40901, + "amenities": 30096, + "ament": 27528, + "amer": 17081, + "amer": 16147, + "ameri": 40422, + "americ": 1283, + "america": 2224, + "americafirst": 43216, + "american": 8746, + "american": 2151, + "americana": 26221, + "americanair": 42538, + "americani": 39726, + "americans": 6676, + "americas": 33343, + "americas": 18142, + "ames": 5469, + "ameter": 23393, + "amethy": 30291, + "amethyst": 31485, + "amex": 46390, + "amg": 21324, + "amher": 32311, + "amherst": 39065, + "ami": 6100, + "ami": 3065, + "amic": 25824, + "amic": 21383, + "amid": 18908, + "amid": 11953, + "amide": 30952, + "amidst": 25172, + "amie": 36901, + "amig": 40294, + "amiga": 35329, + "amigo": 44991, + "amigos": 28176, + "amii": 35462, + "amiibo": 38871, + "amily": 36732, + "amin": 14337, + "amin": 20235, + "amina": 47531, + "amination": 30355, + "amine": 35823, + "aming": 3507, + "amino": 33464, + "amir": 26029, + "amir": 21973, + "amis": 29829, + "amish": 24958, + "amit": 15083, + "amit": 25255, + "amitabh": 48124, + "amitshah": 32374, + "aml": 43185, + "amma": 29786, + "amman": 29243, + "ammo": 33474, + "ammunition": 35060, + "amn": 24073, + "amne": 14596, + "amnesia": 41741, + "amnesty": 46330, + "amnesty": 21177, + "amo": 4833, + "amo": 11156, + "amodi": 9826, + "amon": 17492, + "amon": 24046, + "among": 12310, + "among": 4265, + "amongst": 12520, + "amoo": 26977, + "amor": 19977, + "amor": 15973, + "amore": 38937, + "amore": 22691, + "amores": 36338, + "amos": 18133, + "amoto": 25492, + "amount": 6403, + "amounts": 16747, + "amour": 29908, + "amovie": 41062, + "amp": 3521, + "amp": 6259, + "amped": 22640, + "amphi": 16379, + "amphibious": 45206, + "amphitheater": 41285, + "amphitheatre": 44039, + "ample": 34162, + "amples": 14536, + "ampli": 15647, + "amplifier": 31743, + "amplify": 45308, + "amps": 19252, + "ampton": 29410, + "ampton": 9347, + "amr": 30916, + "amreading": 16546, + "amrit": 33849, + "ams": 1396, + "amster": 9110, + "amsterdam": 9441, + "amtrak": 27855, + "amu": 11347, + "amu": 32336, + "amur": 35014, + "amura": 35487, + "amus": 36269, + "amuse": 21421, + "amuse": 44367, + "amused": 30212, + "amusement": 32570, + "amusic": 20266, + "amusing": 31789, + "amwriting": 9660, + "amy": 10547, + "amy": 5187, + "an": 514, + "an": 550, + "ana": 6588, + "ana": 1388, + "anab": 34742, + "anada": 27948, + "anag": 12115, + "anagh": 40774, + "anaheim": 23728, + "anak": 34814, + "anak": 38658, + "anal": 2785, + "analo": 34179, + "analog": 19963, + "analogue": 46031, + "analy": 4611, + "analyse": 47246, + "analyses": 39695, + "analysis": 5296, + "analyst": 14198, + "analysts": 28075, + "analytical": 34550, + "analytics": 8558, + "analyze": 28519, + "analyzing": 32107, + "anam": 29525, + "anan": 37215, + "anand": 25073, + "anand": 22083, + "anap": 41566, + "anarch": 46405, + "anarchi": 39879, + "anarchy": 27707, + "anas": 31382, + "anas": 12633, + "anast": 48902, + "anasta": 22915, + "anastasi": 36534, + "anastasia": 37975, + "anat": 10045, + "anath": 31277, + "anatom": 33759, + "anatomy": 15376, + "anc": 1124, + "anc": 17758, + "anca": 14583, + "ance": 7165, + "ance": 884, + "anced": 5071, + "ancer": 17415, + "ancers": 37296, + "ances": 3515, + "ancestor": 43904, + "ancestors": 24405, + "ancestral": 41615, + "ancestry": 30922, + "anch": 9489, + "anche": 34679, + "ancho": 26610, + "anchor": 20030, + "anchor": 13201, + "anchorage": 31950, + "anchored": 45926, + "anchors": 37830, + "anci": 4192, + "ancient": 31495, + "ancient": 5810, + "ancies": 21647, + "ancing": 7797, + "anco": 15459, + "ancy": 16282, + "ancy": 3633, + "and": 672, + "and": 537, + "anda": 2911, + "andalu": 31443, + "andco": 36302, + "ande": 26889, + "ande": 30354, + "ander": 3740, + "ander": 3935, + "anders": 10880, + "andersen": 32661, + "anderson": 26683, + "anderson": 6510, + "andes": 24052, + "andfriends": 36871, + "andhi": 21617, + "andhra": 32452, + "andi": 28870, + "andi": 14354, + "andie": 46318, + "andme": 42831, + "ando": 35950, + "ando": 5986, + "andolan": 48965, + "andon": 36488, + "andor": 45243, + "andover": 44177, + "andr": 22661, + "andra": 46795, + "andra": 21730, + "andre": 2657, + "andre": 9400, + "andrea": 10895, + "andreas": 20444, + "andrei": 42137, + "andres": 25197, + "andretti": 44291, + "andrew": 11717, + "andrew": 4847, + "andrews": 14506, + "andri": 37208, + "andro": 4417, + "andro": 17980, + "android": 24284, + "android": 5191, + "androidgames": 46572, + "andromeda": 42942, + "andré": 35609, + "ands": 32257, + "andthe": 22111, + "andu": 44200, + "andum": 47266, + "andy": 9447, + "andy": 2888, + "ane": 5846, + "ane": 3051, + "anec": 33965, + "anem": 41395, + "anemone": 49019, + "aneous": 48273, + "anes": 15381, + "anese": 48778, + "anesthe": 30622, + "anesthesia": 43353, + "anew": 39084, + "anew": 47341, + "anews": 20919, + "aney": 22387, + "anfield": 26993, + "ang": 883, + "ang": 2704, + "anga": 11641, + "angames": 43178, + "angan": 28264, + "angas": 46180, + "ange": 2960, + "ange": 3039, + "angel": 5029, + "angel": 5130, + "angela": 12354, + "angeles": 7382, + "angeli": 15265, + "angelic": 41038, + "angelica": 38582, + "angelina": 28890, + "angelo": 14342, + "angelou": 41328, + "angels": 7809, + "anger": 32737, + "anger": 6788, + "angerous": 39716, + "angers": 29756, + "angh": 34030, + "angi": 28003, + "angi": 24301, + "angie": 18859, + "angle": 21749, + "angle": 6946, + "angled": 32322, + "angler": 22284, + "anglers": 41608, + "angles": 18627, + "anglesey": 31850, + "anglia": 32076, + "anglic": 28322, + "anglican": 33284, + "angling": 36824, + "anglo": 39515, + "anglo": 30408, + "ango": 19090, + "angola": 36636, + "angor": 41740, + "angp": 19992, + "angry": 33910, + "angry": 9054, + "angs": 18441, + "angst": 41714, + "angu": 11209, + "angular": 43584, + "angular": 24981, + "angularjs": 48608, + "angus": 19688, + "ani": 1326, + "ani": 3624, + "ania": 9866, + "anian": 9945, + "anians": 39393, + "anic": 23113, + "anie": 26697, + "anie": 7671, + "anil": 28589, + "anil": 34619, + "anim": 2190, + "animal": 10697, + "animal": 4668, + "animalrights": 42859, + "animals": 4995, + "animate": 40076, + "animated": 13360, + "animation": 10344, + "animations": 42870, + "animator": 42591, + "anime": 23314, + "anime": 6469, + "anin": 45735, + "aning": 30972, + "anir": 27089, + "anirud": 35278, + "anirudhofficial": 45917, + "anis": 40986, + "anis": 47556, + "anism": 20947, + "anist": 16729, + "anistan": 9727, + "aniston": 47344, + "anit": 23683, + "anita": 18544, + "anium": 14794, + "anj": 22443, + "anja": 43440, + "anjali": 38834, + "anjo": 47353, + "ank": 13339, + "ank": 10029, + "anka": 45324, + "ankara": 34309, + "ankle": 14777, + "ankles": 48688, + "ann": 850, + "ann": 5424, + "anna": 13821, + "anna": 2160, + "annab": 22336, + "annabelle": 47661, + "annah": 39166, + "annah": 14327, + "annak": 41720, + "annan": 32166, + "annapolis": 34491, + "annas": 48467, + "anne": 9139, + "anne": 4083, + "anned": 27352, + "anner": 12642, + "annes": 24343, + "annette": 36821, + "annex": 42958, + "annex": 46389, + "anni": 2438, + "anni": 13728, + "annie": 37270, + "annie": 12173, + "annies": 43184, + "annihil": 32734, + "annis": 24742, + "anniv": 31399, + "anniver": 29671, + "annivers": 42836, + "anniversaire": 30882, + "anniversary": 3048, + "anno": 9901, + "anno": 26871, + "annon": 26385, + "annot": 30411, + "announ": 1806, + "announce": 3682, + "announced": 4103, + "announcement": 6932, + "announcements": 23735, + "announcer": 33626, + "announces": 6500, + "announcing": 11593, + "annoy": 45138, + "annoyed": 29863, + "annoying": 15248, + "annu": 21698, + "annual": 2906, + "annually": 23703, + "anny": 34313, + "anny": 5291, + "ano": 5617, + "ano": 2658, + "anom": 21612, + "anomaly": 46811, + "anon": 47079, + "anon": 13667, + "anonym": 38605, + "anonymous": 15036, + "anoo": 25690, + "anor": 13243, + "anor": 16596, + "anos": 20132, + "another": 29274, + "another": 1380, + "anova": 24116, + "ans": 24586, + "ans": 885, + "ansari": 40748, + "ansel": 40356, + "answ": 3369, + "answe": 14391, + "answer": 4518, + "answered": 14499, + "answering": 18280, + "answers": 8692, + "ant": 1103, + "ant": 773, + "anta": 3023, + "antag": 41745, + "antal": 39355, + "antalya": 47440, + "antan": 32899, + "antarc": 21338, + "antarctic": 27077, + "antarctica": 22587, + "ante": 19311, + "ante": 9769, + "antebellum": 41683, + "antelope": 39177, + "anten": 35517, + "antenna": 26370, + "anter": 46508, + "antes": 14927, + "antgrasso": 39074, + "anth": 3737, + "anth": 29741, + "antha": 47981, + "anthe": 34167, + "anthem": 12504, + "anthi": 45261, + "anthology": 21009, + "anthony": 17477, + "anthony": 6113, + "anthro": 10019, + "anthropo": 18538, + "anthropology": 32407, + "anthus": 37639, + "anti": 3120, + "anti": 3564, + "antibio": 18954, + "antibiotic": 34387, + "antibiotics": 29499, + "antibody": 49018, + "antic": 8260, + "anticip": 11435, + "anticipate": 38280, + "anticipated": 18605, + "anticipating": 48067, + "anticipation": 26983, + "antics": 37126, + "antidote": 45476, + "antifa": 35926, + "antigua": 39910, + "antine": 17641, + "antino": 27818, + "antioxid": 23010, + "antioxidant": 37452, + "antioxidants": 34208, + "antiqu": 21745, + "antique": 46517, + "antique": 9060, + "antiques": 17365, + "antis": 19748, + "antisemitism": 36630, + "antit": 37833, + "antitrust": 49343, + "antlers": 47720, + "antly": 5265, + "anto": 16826, + "anto": 24486, + "antoine": 25188, + "anton": 5497, + "anton": 19644, + "antoni": 39958, + "antonio": 30497, + "antonio": 7842, + "antony": 30707, + "antrim": 40252, + "ants": 1589, + "antv": 47520, + "antw": 44460, + "antwer": 26970, + "antwerp": 33797, + "antz": 25684, + "anu": 8537, + "anu": 17152, + "anup": 29617, + "anus": 27084, + "anush": 22765, + "anushka": 42080, + "anushka": 39822, + "anushkasharma": 44203, + "anwar": 34261, + "anxi": 9021, + "anxiety": 11103, + "anxious": 27793, + "any": 1307, + "any": 1504, + "anya": 11173, + "anybody": 10071, + "anyi": 41632, + "anymore": 7372, + "anyone": 2302, + "anything": 3582, + "anytime": 13924, + "anyway": 8931, + "anyways": 19778, + "anywhere": 8863, + "anz": 14445, + "anz": 19425, + "anza": 14669, + "anzac": 31977, + "ao": 7313, + "ao": 5703, + "aoa": 47119, + "aoc": 31918, + "aofficial": 30840, + "aoki": 33602, + "aol": 40643, + "aon": 30928, + "aon": 48476, + "aor": 32044, + "aos": 46860, + "ap": 688, + "ap": 2728, + "apa": 36954, + "apa": 13537, + "apac": 34320, + "apache": 23921, + "apal": 38017, + "apan": 36562, + "apar": 9161, + "apark": 32528, + "apart": 6474, + "apart": 7803, + "aparthe": 25121, + "apartheid": 26597, + "apartment": 8285, + "apartments": 15791, + "aparty": 26767, + "apat": 31755, + "apathy": 18145, + "apc": 20300, + "apd": 44563, + "ape": 6098, + "ape": 2609, + "apec": 47530, + "aper": 13681, + "aper": 5858, + "apers": 15846, + "apes": 9550, + "apeu": 19040, + "apex": 41935, + "apex": 23712, + "aph": 16341, + "aph": 29491, + "apha": 47104, + "apho": 21758, + "aphra": 44147, + "api": 23342, + "api": 14674, + "apia": 44259, + "apic": 40679, + "aping": 18456, + "apink": 35725, + "apis": 37575, + "apk": 27648, + "apo": 4089, + "apo": 19758, + "apocaly": 13932, + "apocalypse": 17571, + "apocalyptic": 35675, + "apol": 5023, + "apolice": 45663, + "apolis": 9598, + "apollo": 48213, + "apollo": 11554, + "apolo": 31094, + "apolog": 25530, + "apologe": 42908, + "apologi": 14977, + "apologies": 21959, + "apologise": 39608, + "apologize": 22879, + "apologizes": 35298, + "apology": 20768, + "apor": 21871, + "apore": 6679, + "apost": 20309, + "apostle": 33051, + "apostles": 48457, + "app": 882, + "app": 2231, + "appa": 4884, + "appa": 13110, + "appalach": 30523, + "appalachian": 36806, + "appalling": 44797, + "appar": 26698, + "apparatus": 37716, + "apparel": 13972, + "apparent": 23963, + "apparently": 5287, + "appe": 3748, + "appe": 45949, + "appeal": 9625, + "appealing": 25909, + "appeals": 22447, + "appear": 5544, + "appear": 9308, + "appearance": 7238, + "appearances": 17214, + "appeared": 11561, + "appearing": 18759, + "appears": 8743, + "appell": 43833, + "appen": 37201, + "appen": 26589, + "apper": 18780, + "appet": 21686, + "appeti": 24179, + "appetite": 24481, + "appetizer": 36065, + "applau": 24713, + "applaud": 42152, + "applause": 22650, + "apple": 8629, + "apple": 3055, + "applemusic": 21390, + "apples": 14032, + "appleton": 45250, + "appli": 15495, + "appliance": 33677, + "appliances": 22134, + "applic": 4235, + "applicable": 37927, + "applicants": 28035, + "application": 7241, + "applications": 7341, + "applied": 12636, + "applies": 24910, + "apply": 4356, + "applying": 17965, + "appo": 5433, + "appoint": 36190, + "appointed": 11087, + "appointment": 10890, + "appointments": 23439, + "appoints": 25132, + "apprais": 36972, + "appraisal": 46108, + "appreci": 3474, + "appreciate": 6263, + "appreciated": 9264, + "appreciates": 36573, + "appreciating": 39352, + "appreciation": 9212, + "appreciationday": 37438, + "appreciative": 45074, + "appren": 10582, + "apprentic": 15662, + "apprentice": 19122, + "apprentice": 17985, + "apprentices": 38252, + "apprenticeship": 26939, + "apprenticeships": 35425, + "appro": 2398, + "approach": 7781, + "approach": 6241, + "approached": 36499, + "approaches": 14962, + "approaching": 12164, + "appropri": 8446, + "appropriate": 10768, + "appropriately": 30383, + "appropriation": 49110, + "approval": 13549, + "approve": 19064, + "approved": 9412, + "approves": 18107, + "approx": 18266, + "approxim": 14201, + "approximately": 16128, + "apps": 7020, + "appstore": 31377, + "appt": 48112, + "appy": 34420, + "apr": 39396, + "apr": 11177, + "apra": 37027, + "apric": 25923, + "apricot": 30815, + "april": 23548, + "april": 2484, + "apro": 42712, + "apro": 49051, + "apron": 29502, + "aps": 8868, + "apse": 31843, + "apt": 17921, + "aptly": 47313, + "apu": 22166, + "apur": 36900, + "apur": 45193, + "aq": 14018, + "aq": 26862, + "aqu": 4458, + "aqua": 18613, + "aquaculture": 41885, + "aquaman": 35098, + "aquari": 37605, + "aquarium": 16814, + "aquarius": 38879, + "aquatic": 22658, + "aque": 35927, + "aque": 37268, + "aqui": 36826, + "aquino": 33796, + "ar": 516, + "ar": 625, + "ara": 24161, + "ara": 3340, + "arab": 5405, + "arab": 12028, + "arabia": 11746, + "arabian": 24663, + "arabic": 16709, + "arabs": 39155, + "arac": 47620, + "arach": 37689, + "arag": 41502, + "araj": 45142, + "arak": 23416, + "aram": 19223, + "aram": 21473, + "arama": 49066, + "aran": 20839, + "aran": 19641, + "aras": 36399, + "arat": 30856, + "arav": 35836, + "arbit": 20267, + "arbitr": 22702, + "arbitration": 34845, + "arbor": 33516, + "arbor": 24878, + "arboretum": 41719, + "arc": 4997, + "arc": 11592, + "arca": 25189, + "arca": 37612, + "arcade": 13331, + "arcadia": 38372, + "arch": 2458, + "arch": 8557, + "archa": 45619, + "archae": 10121, + "archaeological": 26163, + "archaeologists": 45035, + "archaeology": 14868, + "archan": 33359, + "archbishop": 23994, + "arche": 22474, + "archer": 21824, + "archers": 38407, + "archery": 23935, + "arches": 30771, + "archi": 4479, + "archie": 20557, + "archipel": 39750, + "archipelago": 43025, + "architec": 3359, + "architect": 12192, + "architects": 13290, + "architectural": 15360, + "architecture": 39038, + "architecture": 4920, + "archival": 39249, + "archive": 42257, + "archive": 10548, + "archived": 42379, + "archives": 9411, + "archy": 15643, + "arctic": 29716, + "arctic": 9138, + "ard": 3793, + "ard": 746, + "arden": 44600, + "arden": 27057, + "ardi": 23932, + "ardi": 19837, + "ardo": 35735, + "ardo": 9394, + "ards": 1654, + "ardu": 20906, + "arduino": 25398, + "are": 1076, + "are": 631, + "area": 2445, + "areas": 5429, + "arec": 18136, + "areclipse": 36030, + "ared": 5369, + "arel": 12798, + "arella": 24784, + "arelli": 48619, + "aren": 4033, + "aren": 4318, + "arena": 5463, + "arenas": 47860, + "arent": 37487, + "arer": 14857, + "arers": 33159, + "ares": 12224, + "arest": 11708, + "aret": 22247, + "areth": 47725, + "aretha": 42090, + "areyou": 37607, + "arez": 13108, + "arg": 27285, + "argent": 7812, + "argentina": 9789, + "argentine": 32582, + "argon": 40737, + "argos": 37443, + "argu": 7440, + "arguably": 30899, + "argue": 19788, + "argued": 48153, + "argues": 30045, + "arguing": 26549, + "argument": 16224, + "arguments": 24693, + "argus": 44300, + "argy": 21066, + "argyle": 36179, + "argyll": 40667, + "ari": 1221, + "ari": 3681, + "aria": 8883, + "arial": 42431, + "arian": 29980, + "arian": 6953, + "ariana": 14892, + "arianag": 23025, + "arianagrande": 23321, + "arianism": 44351, + "arians": 19104, + "arias": 22567, + "arie": 18774, + "ariel": 47959, + "ariel": 21025, + "aries": 5213, + "arif": 46621, + "arily": 12993, + "arin": 29564, + "arin": 18612, + "arina": 29271, + "arine": 29586, + "aring": 2142, + "ario": 8862, + "arios": 25392, + "aris": 15227, + "arise": 26490, + "arist": 12110, + "aristo": 25666, + "aristotle": 49156, + "arities": 31069, + "arity": 16608, + "arium": 11809, + "arius": 21482, + "ariz": 6516, + "arized": 40167, + "arizon": 28936, + "arizona": 7106, + "arjun": 24565, + "arjun": 20477, + "arjuna": 43835, + "ark": 11921, + "ark": 12010, + "arkansas": 12227, + "arkham": 36381, + "arl": 48542, + "arlington": 44940, + "arlington": 17865, + "arly": 3637, + "arm": 5671, + "arm": 4793, + "arma": 15887, + "arma": 38716, + "armad": 37897, + "armada": 34938, + "armagh": 44313, + "armani": 31314, + "armb": 37096, + "armchair": 45757, + "armed": 40471, + "armed": 8202, + "armen": 13145, + "armenia": 22008, + "armenian": 24891, + "armies": 46686, + "armin": 45481, + "arming": 19766, + "armist": 38150, + "armistice": 46765, + "armor": 16167, + "armored": 28214, + "armory": 38610, + "armour": 18503, + "armoured": 42514, + "arms": 5706, + "armstrong": 15005, + "army": 13541, + "army": 3133, + "armys": 27311, + "arn": 9348, + "arn": 37597, + "arnau": 45556, + "arne": 43509, + "arney": 35962, + "arnold": 49096, + "arnold": 13609, + "arns": 46692, + "aro": 7514, + "aro": 11551, + "aroa": 48209, + "arom": 16831, + "aroma": 40143, + "aroma": 26390, + "aromas": 47439, + "aromatherapy": 42584, + "aromatic": 39669, + "aron": 30855, + "aron": 28926, + "aroo": 47581, + "arora": 31897, + "arosa": 44264, + "arose": 44262, + "around": 35615, + "around": 1630, + "arqu": 35654, + "arquitec": 41703, + "arr": 39106, + "arr": 42489, + "arra": 32918, + "arra": 43827, + "arrahman": 44554, + "arran": 45722, + "arrang": 16711, + "arrange": 15410, + "arrange": 26311, + "arranged": 22451, + "arrangement": 23822, + "arrangements": 23792, + "arranging": 35321, + "array": 17293, + "arre": 4374, + "arrell": 28846, + "arrest": 9320, + "arrested": 5845, + "arresting": 43930, + "arrests": 20683, + "arri": 2115, + "arrival": 9073, + "arrivals": 19583, + "arrive": 8851, + "arrived": 3514, + "arrives": 9905, + "arriving": 10884, + "arro": 15729, + "arrog": 26997, + "arrogance": 47025, + "arrogant": 40582, + "arrow": 30920, + "arrow": 11149, + "arrowhead": 46393, + "arrows": 24768, + "arroyo": 45237, + "ars": 42815, + "ars": 864, + "arse": 22665, + "arsen": 5330, + "arsenal": 45234, + "arsenal": 6084, + "arsene": 32117, + "arson": 29937, + "art": 1486, + "art": 794, + "arta": 12031, + "arte": 13482, + "arte": 12947, + "artem": 40387, + "artemis": 45256, + "arten": 37043, + "arter": 29449, + "artery": 40062, + "artes": 48629, + "artforsale": 48239, + "artgallery": 31982, + "arth": 7146, + "arth": 20265, + "arthistory": 39313, + "arthr": 20807, + "arthritis": 22916, + "arthro": 43255, + "arthur": 35660, + "arthur": 8550, + "arti": 1635, + "arti": 34601, + "artic": 3003, + "articho": 30937, + "artichoke": 39647, + "article": 3550, + "articles": 11939, + "articul": 40343, + "articulate": 45444, + "artif": 8950, + "artifact": 37718, + "artifacts": 30249, + "artificial": 19357, + "artificial": 12040, + "artificialintelligence": 20799, + "artillery": 24465, + "artin": 33168, + "artin": 48540, + "artis": 41794, + "artisan": 36389, + "artisan": 21535, + "artisans": 40140, + "artist": 14326, + "artist": 2456, + "artiste": 41402, + "artistic": 12421, + "artiston": 48443, + "artistry": 38570, + "artists": 4899, + "artistson": 32127, + "artistsontwitter": 39469, + "artlovers": 35617, + "arto": 28464, + "artof": 31751, + "artoftheday": 43990, + "arton": 46744, + "arts": 22040, + "arts": 3812, + "artsy": 31588, + "arturo": 38591, + "artwit": 36713, + "artwork": 4188, + "artworks": 26215, + "arty": 45417, + "arty": 25916, + "aru": 13757, + "aru": 23907, + "aruba": 40131, + "arugula": 40770, + "arum": 48732, + "arun": 16105, + "arun": 31877, + "arunach": 47260, + "arunjaitley": 44874, + "arus": 22644, + "arvin": 16971, + "arvind": 21209, + "arvind": 41079, + "arvindkejriwal": 22971, + "arvo": 45726, + "arwx": 29824, + "ary": 4617, + "ary": 856, + "arya": 23594, + "aryan": 34966, + "as": 587, + "as": 601, + "asa": 39676, + "asa": 11914, + "asad": 42376, + "asaki": 22455, + "asam": 40603, + "asan": 22379, + "asan": 17841, + "asana": 42363, + "asant": 25536, + "asants": 37766, + "asap": 24199, + "asap": 10822, + "asar": 24733, + "asar": 49299, + "asb": 31186, + "asbe": 32113, + "asbestos": 33765, + "asc": 22720, + "asc": 23305, + "ascen": 20767, + "ascension": 35499, + "ascent": 36625, + "asci": 12753, + "asco": 25578, + "asco": 17488, + "ascot": 23723, + "ascri": 15506, + "asd": 36988, + "asda": 29391, + "asdf": 36857, + "asdfghj": 42758, + "asdfghjkl": 47660, + "ase": 8083, + "ase": 894, + "asean": 24472, + "aseball": 46903, + "ased": 2134, + "asen": 41085, + "aser": 39615, + "aser": 7209, + "ases": 3762, + "asf": 25863, + "asg": 34813, + "ash": 2067, + "ash": 2612, + "asha": 40572, + "asha": 13472, + "ashamed": 20633, + "ashby": 46531, + "ashe": 48523, + "ashe": 31752, + "asher": 37585, + "ashes": 12587, + "asheville": 28897, + "ashford": 37796, + "ashi": 15563, + "ashi": 15934, + "ashish": 33145, + "ashland": 39938, + "ashleigh": 49356, + "ashley": 17825, + "ashley": 8957, + "asho": 20273, + "ashok": 38141, + "ashore": 31194, + "ashram": 43445, + "ashton": 43264, + "ashton": 12228, + "ashtra": 18118, + "asi": 3596, + "asi": 12562, + "asia": 5741, + "asian": 21737, + "asian": 7128, + "asiangames": 49108, + "asians": 36771, + "asics": 31097, + "aside": 13676, + "asif": 37302, + "asim": 46050, + "asin": 48432, + "asin": 44347, + "asing": 4194, + "asingly": 15803, + "asion": 31753, + "asis": 12398, + "ask": 11027, + "ask": 2765, + "asked": 3993, + "asking": 5914, + "asks": 7953, + "asl": 41650, + "asleep": 10749, + "asley": 28206, + "asli": 44290, + "asm": 13851, + "asma": 38497, + "asmsg": 19839, + "aso": 30343, + "aso": 27932, + "asober": 43749, + "asocial": 48557, + "ason": 1163, + "asone": 31249, + "asons": 4249, + "asos": 37924, + "asot": 47968, + "asp": 17814, + "asp": 36666, + "asparag": 20301, + "asparagus": 20604, + "aspe": 10894, + "aspect": 19681, + "aspects": 18203, + "aspen": 35695, + "aspen": 25712, + "asper": 32991, + "asph": 28019, + "asphalt": 30574, + "aspir": 12669, + "aspirations": 36127, + "aspire": 24836, + "aspiring": 21862, + "asports": 43695, + "asr": 48052, + "asroma": 41000, + "ass": 12664, + "ass": 5301, + "assa": 47715, + "assad": 18699, + "assam": 19930, + "assan": 26352, + "assange": 27565, + "assas": 9603, + "assassin": 14366, + "assassin": 20029, + "assassinated": 40488, + "assassination": 24907, + "assassins": 34918, + "assassinscre": 36428, + "assassinscreed": 46082, + "assau": 7908, + "assaul": 19596, + "assault": 9679, + "assaulted": 30785, + "assaulting": 44143, + "asse": 3166, + "asse": 38600, + "assel": 37582, + "assemb": 5531, + "assemble": 26169, + "assembled": 22627, + "assemblies": 47406, + "assembling": 38670, + "assembly": 34542, + "assembly": 7059, + "assen": 38651, + "asser": 25665, + "asses": 21596, + "assess": 9209, + "assess": 23211, + "assessed": 44160, + "assessing": 31364, + "assessment": 10590, + "assessments": 32753, + "asset": 48463, + "asset": 13039, + "assets": 13170, + "assi": 2907, + "assi": 39540, + "assie": 31624, + "assign": 14190, + "assigned": 25767, + "assignment": 17342, + "assignments": 34257, + "assim": 36394, + "assimil": 43467, + "assist": 26558, + "assist": 10286, + "assistance": 11685, + "assistant": 6799, + "assistants": 31054, + "assisted": 18095, + "assisting": 24243, + "assists": 12675, + "assn": 44208, + "asso": 17617, + "assoc": 18891, + "associ": 3566, + "associate": 11777, + "associated": 11164, + "associates": 17358, + "association": 5578, + "associations": 33209, + "assor": 38604, + "assorted": 36701, + "assortment": 43112, + "asst": 24767, + "assu": 8328, + "assume": 19294, + "assumed": 37661, + "assuming": 29422, + "assump": 41182, + "assumption": 40773, + "assumptions": 45948, + "assurance": 28408, + "assure": 39161, + "assured": 25591, + "assures": 41988, + "assy": 29940, + "assy": 12963, + "ast": 1761, + "ast": 1242, + "asta": 43269, + "aste": 25033, + "aste": 25579, + "aster": 11013, + "aster": 9526, + "asteroid": 32253, + "asters": 33139, + "asth": 16684, + "asthma": 24610, + "asthour": 41238, + "astic": 15876, + "asting": 29984, + "astle": 46141, + "asto": 47275, + "aston": 24760, + "aston": 13879, + "astoni": 21962, + "astonishing": 27110, + "astonmartin": 40760, + "astor": 26391, + "astor": 47086, + "astoria": 34798, + "astounding": 37748, + "astr": 37609, + "astra": 47205, + "astra": 36079, + "astral": 45889, + "astri": 31243, + "astrid": 46499, + "astro": 8563, + "astro": 15318, + "astrology": 28526, + "astron": 7982, + "astronaut": 18376, + "astronauts": 29733, + "astronom": 23264, + "astronomer": 40036, + "astronomers": 44268, + "astronomical": 39775, + "astronomy": 17472, + "astrophotography": 38559, + "astros": 17598, + "asts": 10452, + "astu": 43137, + "astur": 45795, + "asu": 13157, + "asu": 16001, + "asun": 36044, + "asure": 3813, + "asus": 27269, + "aswell": 42978, + "asx": 38906, + "asy": 8524, + "asy": 2333, + "asylum": 15638, + "asym": 32539, + "at": 527, + "at": 536, + "ata": 4236, + "atable": 23909, + "atal": 24877, + "atal": 24797, + "atan": 33446, + "atar": 20128, + "atar": 7995, + "atari": 21549, + "atas": 30057, + "atay": 39518, + "atc": 28383, + "atch": 15938, + "atd": 33890, + "ate": 992, + "ate": 671, + "ateam": 42784, + "ateau": 16359, + "atec": 37352, + "atech": 31306, + "ated": 14589, + "ated": 943, + "atedly": 24698, + "atee": 32839, + "ateful": 5419, + "atelier": 29932, + "ately": 3862, + "atem": 17116, + "aten": 47984, + "atene": 30405, + "ateneo": 33904, + "ater": 18597, + "ater": 5877, + "ateral": 18819, + "aters": 22364, + "ates": 20370, + "ates": 1150, + "atest": 1705, + "ateur": 43677, + "atf": 28013, + "ath": 1374, + "ath": 1649, + "atha": 22530, + "atham": 23383, + "athan": 41260, + "athan": 26701, + "athe": 8963, + "athed": 47402, + "atheism": 25823, + "atheist": 22571, + "atheists": 47155, + "athen": 29112, + "athena": 30705, + "athens": 13524, + "ather": 6171, + "ather": 1817, + "athered": 34091, + "athers": 17266, + "athi": 28918, + "athing": 36069, + "athle": 3310, + "athlete": 7388, + "athletes": 7125, + "athletic": 33182, + "athletic": 9028, + "athletics": 7019, + "athlon": 14670, + "athome": 38217, + "athon": 4951, + "aths": 28835, + "athy": 34488, + "athy": 13183, + "ati": 591, + "ati": 6751, + "atia": 10908, + "atic": 20248, + "atic": 2647, + "atically": 13558, + "atics": 15666, + "atie": 30137, + "aties": 40060, + "atif": 41592, + "atiku": 37912, + "atile": 15474, + "atility": 23373, + "atime": 20158, + "atin": 36903, + "atin": 23047, + "atine": 39741, + "ating": 25653, + "ating": 1074, + "atio": 35401, + "ation": 2265, + "ation": 656, + "ational": 14205, + "ational": 3108, + "ationals": 44593, + "ationday": 20082, + "ations": 986, + "atis": 45456, + "atis": 41142, + "atism": 45638, + "ative": 18422, + "ative": 1648, + "atively": 11929, + "atives": 5629, + "ativity": 25166, + "atkins": 27734, + "atkinson": 28908, + "atl": 5411, + "atl": 10629, + "atla": 36043, + "atlan": 6818, + "atlanta": 39964, + "atlanta": 6839, + "atlantic": 28804, + "atlantic": 8189, + "atlantis": 27790, + "atlas": 15775, + "atle": 21170, + "atleast": 33231, + "atleti": 46067, + "atletico": 27501, + "atm": 14127, + "atmo": 8271, + "atmosphere": 10506, + "atmospheric": 24223, + "ato": 7987, + "ato": 4364, + "atoday": 26799, + "atom": 22418, + "atom": 24031, + "atomic": 18996, + "atoms": 41434, + "aton": 31525, + "aton": 10012, + "atop": 17455, + "ator": 10748, + "ator": 1962, + "atore": 28314, + "atorial": 32040, + "atories": 35678, + "atorium": 41306, + "ators": 3389, + "atory": 5920, + "atos": 41643, + "atour": 42967, + "atown": 24000, + "atp": 38105, + "atp": 19817, + "atr": 43247, + "atra": 20227, + "atra": 14401, + "atravel": 36981, + "atre": 46057, + "atri": 13882, + "atri": 38889, + "atric": 32238, + "atric": 13652, + "atrics": 36253, + "atrist": 41879, + "atrium": 29725, + "atrix": 43003, + "atro": 18724, + "atroc": 36197, + "atrocities": 37551, + "atry": 28334, + "ats": 46890, + "ats": 1032, + "atsu": 26531, + "att": 1017, + "att": 7103, + "atta": 7282, + "atta": 9146, + "attach": 43676, + "attach": 35653, + "attached": 11038, + "attachment": 28638, + "attack": 24971, + "attack": 3815, + "attacked": 12366, + "attacker": 39288, + "attackers": 47701, + "attacking": 16813, + "attacks": 7321, + "attain": 46459, + "attar": 37110, + "attemp": 4933, + "attempt": 7409, + "attempted": 17408, + "attempting": 18195, + "attempts": 15610, + "atten": 4084, + "atten": 32408, + "attenborough": 45860, + "attend": 9841, + "attend": 5802, + "attendance": 11928, + "attendant": 35424, + "attended": 8140, + "attendees": 14648, + "attending": 6696, + "attends": 22248, + "attention": 4936, + "atters": 30675, + "atthe": 21489, + "atti": 49265, + "atti": 16235, + "attic": 26766, + "attire": 21222, + "attitude": 10648, + "attitudes": 27611, + "attle": 14685, + "attle": 5030, + "attn": 25677, + "attor": 8856, + "attorney": 10372, + "attorneys": 29113, + "attrac": 7154, + "attract": 17010, + "attracted": 28493, + "attracting": 31909, + "attraction": 16807, + "attractions": 22307, + "attractive": 12231, + "attracts": 31024, + "attribu": 24624, + "attributed": 37520, + "attributes": 40763, + "attu": 43173, + "atty": 36705, + "atu": 15191, + "atu": 24295, + "atuesday": 34841, + "atul": 1744, + "atul": 43948, + "atum": 48295, + "atur": 14986, + "aturday": 29027, + "ature": 25305, + "ature": 4490, + "atures": 7358, + "atus": 14795, + "atv": 19598, + "atwood": 45680, + "atwork": 39680, + "atx": 34849, + "atx": 20136, + "aty": 40974, + "aty": 33107, + "atz": 30432, + "au": 627, + "au": 2566, + "aua": 45906, + "aub": 45938, + "auberg": 49382, + "aubre": 25899, + "aubrey": 34110, + "auburn": 42269, + "auburn": 14534, + "auc": 24489, + "auch": 43024, + "auck": 14588, + "auckland": 16072, + "auction": 48160, + "auction": 6462, + "auctioned": 41073, + "auctions": 24876, + "aucus": 47374, + "aud": 16107, + "aud": 19711, + "audi": 5091, + "audi": 10277, + "audible": 33227, + "audience": 6863, + "audiences": 22328, + "audio": 13792, + "audio": 5766, + "audiobook": 26282, + "audit": 12505, + "audit": 17625, + "auditi": 37377, + "audition": 18673, + "auditions": 21134, + "auditor": 38050, + "auditorium": 15063, + "audre": 16075, + "audrey": 18812, + "audu": 27934, + "audubon": 40275, + "auer": 33460, + "auf": 28924, + "aug": 15397, + "aug": 5720, + "auga": 22797, + "augh": 28310, + "augh": 14005, + "augmente": 48356, + "augmented": 32708, + "augu": 2610, + "august": 24353, + "august": 3171, + "augusta": 26144, + "augustine": 27397, + "augustus": 36835, + "auk": 19058, + "aul": 20695, + "aul": 34391, + "ault": 47253, + "ault": 10219, + "aun": 10608, + "aun": 38721, + "aunt": 12685, + "auntie": 23783, + "aunty": 29528, + "aur": 8156, + "aur": 17282, + "aura": 27728, + "aure": 36010, + "aureli": 35980, + "auror": 30067, + "aurora": 13500, + "aus": 10624, + "aus": 7630, + "ausa": 37384, + "ausbiz": 46543, + "ausch": 33926, + "auschwitz": 36523, + "ausopen": 27831, + "ausp": 35039, + "auspicious": 38806, + "auspol": 8241, + "aussi": 19762, + "aussie": 40230, + "aussie": 14424, + "aussies": 35727, + "aust": 26301, + "aust": 25418, + "austen": 29885, + "auster": 25030, + "austerity": 26982, + "austin": 12845, + "austin": 5125, + "austinmahone": 34678, + "austr": 2518, + "australi": 13798, + "australia": 3444, + "australian": 23630, + "australian": 6258, + "australians": 31488, + "austri": 8946, + "austria": 11960, + "austrian": 20638, + "ausv": 35206, + "ausvotes": 34661, + "aut": 12343, + "auth": 2381, + "auth": 38247, + "authent": 18158, + "authentic": 41266, + "authentic": 10369, + "authentication": 39746, + "authenticity": 35734, + "autho": 34552, + "author": 14447, + "author": 4358, + "authored": 37928, + "authori": 19207, + "authorities": 12729, + "authority": 10524, + "authorization": 48854, + "authorized": 28463, + "authors": 10765, + "auti": 8200, + "autism": 36256, + "autism": 11244, + "autisma": 43324, + "autistic": 29360, + "auto": 3917, + "auto": 5668, + "autobiography": 31509, + "autodesk": 40415, + "autograph": 10657, + "autograph": 13722, + "autographed": 16309, + "autographs": 17376, + "autoimmune": 45509, + "autom": 4114, + "automate": 43203, + "automated": 19022, + "automatic": 12126, + "automatically": 20725, + "automation": 12328, + "automobi": 44813, + "automobile": 25258, + "automotive": 12607, + "auton": 13100, + "autonews": 43975, + "autonom": 17870, + "autonomous": 20722, + "autonomy": 39223, + "autopsy": 44436, + "autos": 31118, + "autoshow": 46788, + "auts": 21140, + "autu": 5445, + "autum": 31783, + "autumn": 28940, + "autumn": 6110, + "autumnal": 35481, + "aux": 18154, + "aux": 8909, + "auxiliary": 37778, + "av": 722, + "av": 8484, + "ava": 12385, + "avage": 31505, + "avail": 1651, + "avail": 16686, + "availability": 17551, + "available": 1685, + "aval": 18012, + "avalan": 23970, + "avalanche": 25815, + "avalley": 45082, + "avalon": 30436, + "avan": 27971, + "avan": 33351, + "avant": 24305, + "avar": 33423, + "avatar": 18219, + "ave": 10062, + "ave": 4860, + "avec": 25828, + "aved": 47918, + "avel": 46817, + "avel": 48088, + "aven": 5963, + "aven": 32971, + "aveng": 21935, + "avenger": 24799, + "avengers": 39413, + "avengers": 12016, + "avengersendgame": 49342, + "avent": 22700, + "avenue": 7042, + "aver": 8788, + "aver": 11403, + "average": 6254, + "averaged": 37310, + "averages": 48982, + "averaging": 35266, + "avery": 20313, + "aves": 14023, + "avfc": 21304, + "avg": 19452, + "avgeek": 11114, + "avi": 3324, + "avi": 11297, + "avia": 38710, + "avian": 24115, + "aviation": 27717, + "aviation": 7617, + "aviator": 38921, + "aviators": 48011, + "avici": 46192, + "avicii": 49158, + "avid": 19118, + "avier": 14598, + "avila": 45339, + "aville": 40689, + "avin": 46204, + "avis": 45163, + "avis": 19765, + "aviv": 22130, + "aviva": 47122, + "aviz": 27607, + "avl": 44749, + "avo": 4496, + "avo": 32400, + "avoc": 12291, + "avocado": 14135, + "avocados": 48911, + "avoi": 16797, + "avoid": 30448, + "avoid": 5983, + "avoidance": 47983, + "avoided": 32103, + "avoiding": 22086, + "avoids": 48220, + "avon": 22790, + "avon": 17348, + "avril": 37763, + "avs": 31896, + "avut": 44472, + "avy": 29973, + "aw": 808, + "aw": 5557, + "awa": 4820, + "awa": 6872, + "await": 20769, + "awaited": 20092, + "awaiting": 14872, + "awaits": 15635, + "awak": 9776, + "awak": 41387, + "awake": 14695, + "awaken": 35412, + "awakening": 17017, + "awakens": 23191, + "awal": 42447, + "awal": 35090, + "awan": 48869, + "awan": 20420, + "awar": 5745, + "award": 36310, + "award": 2047, + "awarded": 7368, + "awarding": 37089, + "awards": 34528, + "awards": 2320, + "aware": 4427, + "aware": 7196, + "awareness": 19217, + "awareness": 4823, + "awarenessmonth": 34278, + "awarenessweek": 35294, + "away": 21088, + "away": 1520, + "aways": 12782, + "awaz": 18586, + "awd": 34846, + "awe": 1693, + "awe": 14106, + "aweather": 42142, + "aweather": 28681, + "awec": 38916, + "aweed": 29724, + "awesom": 16727, + "awesome": 30390, + "awesome": 1848, + "awesomeness": 22430, + "awful": 13617, + "awg": 46350, + "awgs": 35275, + "awh": 39566, + "awhile": 19171, + "awi": 15167, + "awil": 47271, + "awilliams": 42163, + "awk": 8888, + "awk": 40943, + "awkward": 42337, + "awkward": 10304, + "awn": 46222, + "awp": 43300, + "aws": 19658, + "awsome": 47196, + "awson": 36286, + "aww": 11568, + "awww": 15634, + "awwww": 26460, + "awx": 28385, + "ax": 3165, + "ax": 9203, + "axe": 19861, + "axel": 47889, + "axel": 32131, + "axes": 45970, + "axi": 30672, + "axial": 46550, + "axis": 19614, + "axle": 39003, + "axx": 47411, + "ay": 658, + "ay": 551, + "aya": 5917, + "ayala": 39827, + "ayama": 41194, + "ayan": 37781, + "ayan": 16269, + "ayana": 37400, + "ayas": 40904, + "ayat": 44902, + "ayat": 35720, + "aye": 21661, + "aye": 12446, + "ayer": 24852, + "ayers": 42783, + "ayesha": 46570, + "ayi": 33025, + "ayles": 44706, + "ayne": 35669, + "ayo": 21929, + "ayo": 18708, + "ayr": 23002, + "ayr": 36473, + "ayrshire": 32687, + "ays": 785, + "ayu": 40769, + "ayurve": 27185, + "ayurveda": 38986, + "ayush": 44831, + "ayy": 32514, + "ayyy": 41052, + "az": 854, + "az": 5468, + "aza": 22883, + "azad": 37838, + "azalea": 34087, + "azam": 34727, + "azar": 27911, + "azcardinals": 48846, + "aze": 41157, + "aze": 28485, + "azer": 19169, + "azerbai": 20649, + "azerbaijan": 23888, + "azhar": 47019, + "azi": 23914, + "azi": 18452, + "azine": 29140, + "azione": 48335, + "aziz": 41205, + "aziz": 29630, + "azo": 41227, + "azon": 36854, + "azores": 42826, + "azte": 33270, + "aztec": 34749, + "aztecs": 49387, + "azu": 27701, + "azu": 46963, + "azul": 39807, + "azure": 18514, + "azwx": 30262, + "azy": 24783, + "azz": 9817, + "azz": 26453, + "azza": 22255, + "azzi": 18758, + "azzle": 39974, + "azzo": 26779, + "azzur": 37055, + "azzy": 44534, + "añ": 23716, + "años": 41634, + "b": 65, + "b": 321, + "ba": 932, + "ba": 1792, + "baa": 33004, + "baahu": 34145, + "baahubali": 38663, + "bab": 1202, + "bab": 19039, + "baba": 12631, + "babe": 31177, + "babe": 7716, + "babes": 14253, + "babies": 6635, + "babs": 36217, + "babu": 21623, + "baby": 7268, + "baby": 1794, + "babygirl": 39554, + "babylon": 31928, + "babymetal": 45013, + "babys": 22266, + "babysitting": 34186, + "bac": 2791, + "bac": 25867, + "bacca": 40708, + "bach": 11773, + "bach": 8758, + "bachchan": 17690, + "bachel": 11283, + "bachelor": 45508, + "bachelor": 16766, + "bachelore": 26009, + "bachelorette": 29093, + "bacher": 49211, + "back": 1663, + "back": 893, + "backbone": 35635, + "backdrop": 20802, + "backed": 12721, + "backer": 22183, + "backers": 32934, + "background": 5994, + "backgrounds": 28215, + "backing": 14935, + "backlash": 31519, + "backpack": 14894, + "backpacking": 29524, + "backpacks": 37063, + "backs": 7562, + "backseat": 48812, + "backstage": 9236, + "backstreet": 46337, + "backthe": 26127, + "backto": 18703, + "backtoschool": 28730, + "backtothe": 43059, + "backup": 14415, + "backward": 37964, + "backwards": 21283, + "backyard": 12608, + "bacon": 48666, + "bacon": 7104, + "bacter": 11814, + "bacteria": 16556, + "bacterial": 26101, + "bad": 2564, + "bad": 2103, + "bada": 37475, + "badan": 39149, + "badass": 11616, + "baddest": 38112, + "baden": 36690, + "bader": 42254, + "badge": 11301, + "badger": 32686, + "badger": 22363, + "badgers": 22521, + "badges": 20084, + "badlands": 43192, + "badly": 13684, + "badminton": 21412, + "badoo": 33192, + "bados": 25755, + "bae": 32834, + "bae": 6855, + "baek": 18557, + "baek": 32702, + "baekhyun": 21572, + "baes": 46332, + "baf": 13616, + "baff": 35693, + "bafta": 29199, + "bag": 3408, + "bag": 3365, + "bage": 9698, + "bagel": 28777, + "bagels": 37489, + "baggage": 31402, + "bagged": 34047, + "bagh": 21659, + "bagh": 37271, + "baghdad": 30763, + "bago": 25105, + "bags": 6136, + "bagu": 27749, + "baguette": 45334, + "bah": 8372, + "bah": 16685, + "baha": 29592, + "baham": 43718, + "bahamas": 21224, + "bahan": 28704, + "bahn": 33452, + "bahrain": 12503, + "bai": 6232, + "bai": 23339, + "bail": 22933, + "bail": 16986, + "bailey": 27535, + "bailey": 10180, + "bain": 40784, + "bain": 21593, + "bair": 29059, + "baird": 40474, + "bait": 18010, + "baj": 20713, + "baja": 40418, + "baja": 28374, + "bajo": 32619, + "bak": 4059, + "bak": 23742, + "bakar": 41414, + "bake": 20736, + "bake": 11878, + "baked": 10364, + "baker": 27303, + "baker": 7743, + "bakers": 35293, + "bakers": 40231, + "bakersfield": 40149, + "bakery": 13377, + "bakes": 43057, + "bakhta": 44912, + "bakhtawar": 46937, + "bakhtawarbz": 47118, + "baking": 11467, + "baku": 46417, + "baku": 31852, + "bal": 1398, + "bal": 2282, + "bala": 20291, + "balaji": 48694, + "balance": 42894, + "balance": 6827, + "balanced": 15273, + "balances": 37733, + "balancing": 23541, + "balboa": 45098, + "balcony": 16169, + "bald": 11153, + "bald": 14875, + "baldhead": 29191, + "baldwin": 16242, + "bale": 48573, + "bale": 18873, + "bales": 42879, + "bali": 16432, + "bali": 10900, + "balkan": 48499, + "balkans": 42987, + "ball": 3807, + "ball": 1069, + "balla": 42246, + "ballad": 33472, + "ballarat": 46645, + "ballard": 31750, + "baller": 49194, + "baller": 25655, + "ballerina": 34962, + "ballers": 34173, + "ballet": 10703, + "balli": 29406, + "ballin": 47444, + "ballin": 33057, + "balling": 47588, + "ballis": 46675, + "ballistic": 36667, + "ballo": 8871, + "ballon": 36469, + "balloon": 13634, + "balloons": 18130, + "ballot": 14185, + "ballots": 35051, + "ballpark": 26080, + "ballroom": 15493, + "balls": 6927, + "bally": 17275, + "bally": 29451, + "balm": 24962, + "balmain": 45929, + "balo": 12395, + "baloch": 23173, + "balochistan": 21918, + "balot": 44615, + "balotelli": 45721, + "bals": 44154, + "balsam": 29121, + "balsamic": 32654, + "balt": 24441, + "balti": 8400, + "baltic": 23817, + "baltimore": 38502, + "baltimore": 9582, + "balu": 38093, + "bam": 6383, + "bam": 12686, + "bama": 20021, + "bambam": 34538, + "bambi": 46596, + "bamboo": 49322, + "bamboo": 16748, + "ban": 1159, + "ban": 2777, + "bana": 18428, + "banan": 38410, + "banana": 8922, + "bananas": 19121, + "banc": 39252, + "band": 4613, + "band": 1963, + "banda": 31865, + "bandai": 42054, + "bandana": 39265, + "bandcamp": 32229, + "banded": 37804, + "bandic": 44400, + "bandit": 27639, + "bandits": 33940, + "bandra": 41393, + "bands": 7858, + "bandung": 29512, + "bandwagon": 36432, + "bandwidth": 48859, + "bane": 9597, + "banerjee": 48102, + "banff": 29565, + "bang": 3524, + "bang": 6907, + "bangalore": 14697, + "banger": 24872, + "bangers": 38311, + "banging": 33033, + "bangkok": 12351, + "bangla": 10339, + "bangla": 45928, + "bangladesh": 11245, + "bangle": 37634, + "bangor": 31190, + "bangs": 27992, + "bangtan": 39131, + "bani": 19732, + "banjo": 27014, + "bank": 7061, + "bank": 2723, + "banker": 27316, + "bankers": 30599, + "bankholiday": 48868, + "banking": 9566, + "bankno": 49201, + "bankof": 39120, + "bankrup": 21904, + "bankrupt": 23077, + "bankrupt": 37288, + "bankruptcy": 23978, + "banks": 6367, + "banksy": 33350, + "bann": 5304, + "banned": 12012, + "banner": 9185, + "banners": 23145, + "banning": 26246, + "bannon": 29710, + "bano": 42947, + "banquet": 14254, + "bans": 15146, + "bant": 23301, + "bant": 46657, + "banter": 25535, + "bao": 39487, + "bao": 20408, + "bap": 7415, + "bap": 23754, + "bapti": 15477, + "baptism": 36765, + "baptist": 13274, + "baptiste": 45770, + "baptized": 45400, + "bar": 1040, + "bar": 2411, + "bara": 19345, + "barack": 18670, + "barack": 22481, + "barackobama": 18885, + "barak": 47419, + "barak": 16260, + "barang": 38446, + "barb": 24173, + "barb": 20913, + "barbados": 26992, + "barbar": 7906, + "barbara": 10937, + "barbarian": 42530, + "barbe": 18372, + "barbecue": 23501, + "barber": 19517, + "barber": 12296, + "barbershop": 37707, + "barbican": 47668, + "barbie": 16923, + "barca": 22942, + "barcel": 6134, + "barcelon": 47820, + "barcelona": 6412, + "barclay": 48877, + "barclay": 45276, + "barclays": 29538, + "bard": 39812, + "bard": 17514, + "bare": 16023, + "bare": 14318, + "barefoot": 30327, + "barely": 12684, + "bargain": 15076, + "bargaining": 41282, + "bargains": 34126, + "barge": 28272, + "bari": 21428, + "bari": 28016, + "barista": 31078, + "barit": 46300, + "bark": 32333, + "bark": 16560, + "barker": 20618, + "barking": 32676, + "barkley": 30266, + "barley": 22607, + "barlow": 25483, + "barn": 10490, + "barn": 10942, + "barnab": 43272, + "barnard": 44332, + "barne": 42527, + "barnes": 13102, + "barnet": 41943, + "barnett": 27650, + "barney": 24563, + "barns": 43759, + "barnsley": 37109, + "barnsley": 32153, + "baro": 17422, + "baro": 30817, + "baron": 48371, + "baron": 19349, + "baroness": 45056, + "barons": 45596, + "baroque": 25065, + "barr": 39473, + "barr": 22492, + "barra": 28442, + "barra": 33542, + "barrabest": 41376, + "barrac": 40835, + "barracks": 35822, + "barre": 13840, + "barre": 38257, + "barred": 33261, + "barrel": 11703, + "barrels": 22059, + "barren": 46743, + "barrett": 18701, + "barri": 8660, + "barric": 29189, + "barrie": 27090, + "barrier": 15706, + "barriers": 16321, + "barrington": 48954, + "barron": 34881, + "barrow": 42568, + "barrow": 24983, + "barry": 18028, + "barry": 8461, + "barrymore": 49310, + "bars": 8616, + "barstool": 44826, + "bart": 14838, + "bart": 12870, + "bartender": 33498, + "barthol": 48989, + "bartlett": 37130, + "bartol": 38209, + "barton": 48853, + "barton": 20345, + "baru": 16356, + "barun": 38278, + "barunsob": 41398, + "barça": 32788, + "bas": 1244, + "bas": 11420, + "basa": 26142, + "base": 2776, + "base": 4579, + "baseball": 23479, + "baseball": 3470, + "based": 35196, + "based": 2812, + "basel": 42803, + "basel": 20903, + "baseline": 40648, + "baseman": 45910, + "basement": 14792, + "bases": 20496, + "bash": 20462, + "bash": 10972, + "bashing": 37545, + "bashir": 42799, + "basic": 40452, + "basic": 7696, + "basically": 9125, + "basics": 15825, + "basil": 19225, + "basil": 14936, + "basilica": 27879, + "basin": 16117, + "basing": 47321, + "basis": 12278, + "baske": 3713, + "basket": 10338, + "basketball": 40023, + "basketball": 3835, + "baskets": 27787, + "basking": 39769, + "basque": 37175, + "bass": 22831, + "bass": 5992, + "bassett": 45992, + "bassist": 26496, + "bast": 28092, + "basti": 8559, + "bastille": 41874, + "bat": 2121, + "bat": 6575, + "bata": 39277, + "batb": 33962, + "batch": 9413, + "bate": 25034, + "bate": 28277, + "bateman": 41635, + "bates": 21727, + "batgirl": 46460, + "bath": 6064, + "bath": 5713, + "bathing": 20144, + "bathro": 21201, + "bathroom": 8470, + "bathrooms": 26434, + "baths": 19442, + "bathtub": 39942, + "bathurst": 36365, + "bati": 23362, + "bati": 37589, + "batman": 27811, + "batman": 7223, + "baton": 24331, + "bats": 14984, + "batsman": 35432, + "batt": 2407, + "batt": 48595, + "battalion": 20820, + "batter": 12654, + "batter": 31855, + "battered": 34375, + "batteries": 16666, + "battersea": 35839, + "battery": 7870, + "batting": 17401, + "battle": 7344, + "battle": 3528, + "battled": 37837, + "battlefield": 16055, + "battlefront": 42214, + "battleof": 47560, + "battles": 14213, + "battleship": 35165, + "battling": 17268, + "bau": 6055, + "bau": 34840, + "bauer": 22903, + "baugh": 41301, + "baum": 19840, + "bautista": 31881, + "bav": 21075, + "bavaria": 39977, + "bavarian": 44458, + "baw": 19808, + "bax": 21216, + "baxter": 26168, + "bay": 3631, + "bay": 2174, + "baya": 31573, + "bayan": 43895, + "bayarea": 28260, + "bayer": 48548, + "bayer": 29183, + "bayern": 14666, + "baylor": 21721, + "bayou": 33955, + "bays": 40156, + "baz": 10430, + "baz": 25268, + "bazaar": 20070, + "bazar": 49298, + "bb": 1174, + "bb": 3529, + "bba": 27762, + "bball": 15664, + "bbb": 33535, + "bbc": 5123, + "bbc": 5188, + "bbcc": 39052, + "bbce": 33818, + "bbcnews": 29370, + "bbcone": 28259, + "bbcqt": 37343, + "bbcr": 35802, + "bbcra": 17115, + "bbcradi": 49213, + "bbcradio": 22876, + "bbcsport": 49321, + "bbcspringwatch": 37358, + "bbctwo": 40395, + "bbcworld": 47340, + "bbe": 37559, + "bbed": 9077, + "bber": 7933, + "bbers": 36494, + "bbhutto": 28085, + "bbhuttozardari": 28135, + "bbi": 37047, + "bbin": 38553, + "bbing": 9787, + "bbins": 42504, + "bbl": 21961, + "bble": 26570, + "bble": 5924, + "bbled": 37626, + "bbles": 18093, + "bblo": 21231, + "bbloggers": 26614, + "bbly": 43031, + "bbm": 25382, + "bbmas": 22145, + "bbn": 28427, + "bbnaija": 20984, + "bbo": 21892, + "bbq": 41270, + "bbq": 6726, + "bbs": 10002, + "bbuk": 45978, + "bby": 11166, + "bby": 3810, + "bc": 3116, + "bc": 2162, + "bcc": 41509, + "bcci": 36138, + "bce": 36510, + "bcfc": 34359, + "bch": 36684, + "bcn": 25766, + "bcoz": 46373, + "bcpoli": 24389, + "bcs": 24909, + "bcu": 28299, + "bd": 24358, + "bd": 11165, + "bday": 33022, + "bday": 5781, + "bdg": 48418, + "bds": 26732, + "be": 571, + "be": 655, + "bea": 21886, + "bea": 20925, + "beach": 6068, + "beach": 2117, + "beaches": 12183, + "beachlife": 43824, + "beacon": 36883, + "beacon": 18858, + "beacons": 39395, + "bead": 31621, + "bead": 23557, + "beaded": 26661, + "beads": 14099, + "beagle": 30044, + "beak": 36498, + "beal": 45769, + "beale": 39717, + "beam": 35339, + "beam": 13663, + "beams": 23993, + "bean": 16471, + "bean": 5328, + "beanie": 21534, + "beans": 8302, + "bear": 6375, + "bear": 4298, + "bearable": 38608, + "bearcats": 33242, + "beard": 26157, + "beard": 9052, + "bearded": 28459, + "beardown": 43687, + "beards": 33020, + "bearer": 30686, + "bearers": 47986, + "bearing": 18370, + "bearings": 42083, + "bearish": 34829, + "bears": 6182, + "beasley": 43349, + "beast": 20847, + "beast": 6957, + "beastmode": 43076, + "beasts": 21771, + "beat": 3774, + "beat": 3018, + "beaten": 10864, + "beater": 41974, + "beati": 44386, + "beating": 10078, + "beatles": 11961, + "beatport": 31421, + "beatrice": 36922, + "beats": 6289, + "beatthe": 40550, + "beatty": 39903, + "beatz": 33363, + "beau": 1016, + "beau": 14298, + "beaufort": 45423, + "beaumont": 32857, + "beaut": 24559, + "beauti": 1154, + "beauties": 14874, + "beautiful": 13662, + "beautiful": 1215, + "beautifully": 10627, + "beauty": 12881, + "beauty": 2488, + "beav": 23260, + "beaver": 26432, + "beaver": 22874, + "beavers": 34513, + "beavs": 43909, + "bebe": 23331, + "bec": 6899, + "bec": 10773, + "became": 5464, + "because": 32714, + "because": 1631, + "becca": 27088, + "bech": 44055, + "beck": 8256, + "beck": 10396, + "becker": 26918, + "beckett": 27249, + "beckham": 18764, + "becky": 32406, + "becky": 18921, + "become": 2989, + "becomes": 6766, + "becoming": 6208, + "bed": 4152, + "bed": 2722, + "bedding": 31761, + "bedford": 20779, + "bedi": 39181, + "bedro": 18415, + "bedroom": 8411, + "bedrooms": 23996, + "beds": 13914, + "bedside": 47473, + "bedtime": 22115, + "bee": 6097, + "bee": 5028, + "beech": 32733, + "beech": 27596, + "beef": 21703, + "beef": 6529, + "beek": 37915, + "been": 33986, + "been": 1025, + "beep": 33432, + "beer": 8885, + "beer": 2544, + "beers": 10907, + "bees": 36249, + "bees": 9100, + "beet": 12582, + "beet": 28621, + "beethoven": 23656, + "beetle": 16534, + "beetles": 36317, + "beetro": 29251, + "beetroot": 31638, + "beets": 36087, + "before": 20898, + "before": 1348, + "beg": 2219, + "beg": 22401, + "began": 8636, + "begg": 36769, + "begging": 25371, + "begin": 19197, + "begin": 4947, + "beginner": 24351, + "beginners": 21930, + "beginning": 5791, + "beginnings": 22581, + "begins": 4635, + "begs": 43531, + "begun": 10514, + "beh": 21971, + "beh": 41612, + "beha": 5737, + "behalf": 11470, + "behave": 28825, + "behaved": 41617, + "behavi": 6149, + "behaving": 40745, + "behavior": 10461, + "behavioral": 25135, + "behaviors": 37741, + "behaviour": 14655, + "behavioural": 46019, + "behe": 42329, + "behin": 2335, + "behind": 2403, + "behindthe": 21104, + "behindthescenes": 26253, + "behold": 15929, + "bei": 38991, + "bei": 23227, + "beige": 26677, + "beij": 11547, + "beijing": 11796, + "bein": 39117, + "bein": 24168, + "being": 13481, + "being": 1265, + "beings": 17998, + "beingsalmankhan": 19637, + "beir": 20176, + "beirut": 22352, + "beit": 26963, + "bek": 46846, + "bek": 26135, + "bekind": 46691, + "bel": 1308, + "bel": 3543, + "bela": 30555, + "belarus": 30849, + "belated": 20256, + "belfast": 35100, + "belfast": 10015, + "belgi": 7001, + "belgian": 15008, + "belgium": 10239, + "belgrade": 30502, + "beli": 1859, + "beli": 45842, + "belichick": 46132, + "belie": 20854, + "beliebers": 27714, + "belief": 14802, + "beliefs": 20575, + "believ": 4972, + "believe": 15819, + "believe": 2649, + "believed": 13380, + "believein": 24294, + "believeinfilm": 37375, + "believer": 26057, + "believers": 28434, + "believes": 12017, + "believing": 19551, + "belinda": 44415, + "belize": 27990, + "bell": 5417, + "bell": 3718, + "bella": 18282, + "bella": 10418, + "bellamy": 34461, + "bellator": 31985, + "belle": 13587, + "belle": 11496, + "belles": 40678, + "bellevue": 32715, + "belli": 43335, + "bellletstalk": 42695, + "bello": 21954, + "bells": 12811, + "bellum": 35493, + "belly": 25901, + "belly": 10404, + "belmont": 25612, + "belo": 8379, + "belo": 41649, + "belong": 16453, + "belong": 13596, + "belonged": 39893, + "belonging": 28193, + "belongs": 14395, + "beloved": 9363, + "below": 3788, + "bels": 43127, + "belt": 36416, + "belt": 7373, + "belts": 21888, + "belvedere": 48003, + "ben": 1465, + "ben": 3518, + "bena": 46249, + "bench": 17770, + "bench": 8771, + "benches": 36349, + "benchmark": 31775, + "bend": 22100, + "bend": 13332, + "bender": 22551, + "bendigo": 48197, + "bending": 33897, + "bene": 12091, + "bene": 47151, + "beneath": 16850, + "bened": 13216, + "benedic": 24402, + "benedict": 47896, + "benedict": 18027, + "benef": 3260, + "benefici": 38593, + "beneficial": 24660, + "beneficiaries": 42160, + "benefit": 6399, + "benefited": 48266, + "benefiting": 29474, + "benefits": 5465, + "benefitting": 47222, + "benevol": 47060, + "benfica": 33873, + "beng": 6962, + "bengal": 17404, + "bengal": 16374, + "bengali": 33774, + "bengals": 23737, + "bengaluru": 21707, + "benghazi": 25967, + "benin": 40296, + "benitez": 46711, + "benjam": 10550, + "benjamin": 38647, + "benjamin": 12131, + "benji": 43548, + "benn": 39097, + "bennet": 48536, + "bennett": 12186, + "benny": 42369, + "benny": 20595, + "beno": 35268, + "benoit": 44373, + "benson": 19578, + "bent": 9809, + "bent": 18369, + "bentley": 16859, + "benton": 30812, + "benz": 27937, + "benz": 13470, + "ber": 867, + "ber": 1516, + "bera": 32802, + "bere": 17458, + "bered": 9193, + "beren": 33654, + "beret": 41658, + "berg": 12022, + "berg": 3294, + "bergen": 22918, + "berger": 35933, + "berger": 13873, + "bergh": 35120, + "bergman": 42597, + "bergs": 43592, + "berk": 15633, + "berke": 14639, + "berkeley": 46049, + "berkeley": 16667, + "berkshire": 27300, + "berlin": 23532, + "berlin": 5891, + "berman": 21514, + "bermu": 21032, + "bermuda": 24644, + "bern": 9195, + "bern": 18382, + "bernade": 46242, + "bernar": 11962, + "bernard": 14579, + "bernardino": 35328, + "bernardo": 27137, + "bernardo": 28696, + "bernardokath": 29081, + "bernat": 40578, + "berni": 18798, + "bernie": 40093, + "bernie": 10503, + "berniesanders": 23745, + "bernstein": 33936, + "berra": 15089, + "berries": 8319, + "berry": 15334, + "berry": 3488, + "bers": 6408, + "berser": 39037, + "bert": 17340, + "bert": 2358, + "berta": 45187, + "berth": 28317, + "bertie": 47182, + "berto": 34073, + "bertr": 36962, + "bertrand": 41594, + "berts": 30205, + "berty": 35973, + "berwick": 40407, + "bery": 11411, + "bes": 26911, + "bes": 3635, + "beside": 13519, + "besides": 17596, + "bespoke": 15612, + "bess": 43791, + "best": 3419, + "best": 949, + "bestbuy": 29749, + "bestest": 31199, + "bestfan": 23880, + "bestfanarmy": 24590, + "bestfriend": 29832, + "bestfriend": 11856, + "bestfriends": 23555, + "besti": 35210, + "bestie": 17188, + "besties": 27346, + "besto": 28615, + "bestof": 27892, + "bestof": 39533, + "bestseller": 25841, + "bestselling": 28632, + "bet": 1051, + "bet": 4430, + "beta": 43188, + "beta": 9505, + "betes": 10255, + "beth": 9993, + "beth": 4892, + "bethan": 18781, + "bethany": 39130, + "bethany": 27952, + "bethe": 12624, + "bethel": 33410, + "bethesda": 32527, + "bethle": 30760, + "bethlehem": 31827, + "betis": 45590, + "beto": 33721, + "betra": 18436, + "betrayal": 33171, + "betrayed": 35692, + "bets": 17107, + "betsy": 28946, + "bett": 17715, + "bett": 20489, + "betta": 36387, + "bette": 35855, + "better": 10320, + "better": 1539, + "bettertogether": 47392, + "betting": 14319, + "betts": 38637, + "betty": 36175, + "betty": 14350, + "between": 1957, + "beu": 38660, + "bev": 40324, + "bev": 30968, + "bever": 9924, + "beverage": 18694, + "beverages": 28521, + "beverley": 39165, + "beverly": 30906, + "beverly": 16728, + "beverlyhills": 45363, + "beware": 14532, + "bewithyou": 36787, + "bex": 18676, + "bex": 24748, + "bexhill": 49200, + "bey": 3234, + "bey": 6767, + "beyon": 11447, + "beyonce": 16632, + "beyoncé": 19219, + "beyond": 22246, + "beyond": 4432, + "bez": 28592, + "bez": 46764, + "bezos": 45000, + "bf": 19858, + "bf": 7990, + "bfc": 37183, + "bff": 11984, + "bffs": 31462, + "bfi": 34244, + "bg": 16674, + "bg": 11295, + "bgc": 47598, + "bgs": 47963, + "bgt": 40665, + "bh": 9930, + "bh": 13603, + "bha": 6144, + "bha": 33068, + "bhafc": 30779, + "bhagat": 49136, + "bhai": 48370, + "bhai": 20508, + "bhak": 34501, + "bham": 31874, + "bham": 23491, + "bhan": 27356, + "bhand": 48679, + "bhar": 9108, + "bharat": 27454, + "bharat": 17430, + "bharti": 46803, + "bhat": 23784, + "bhatt": 36143, + "bhav": 44950, + "bhi": 28943, + "bhi": 21955, + "bhk": 45070, + "bhm": 38741, + "bho": 19721, + "bhopal": 44573, + "bhp": 29776, + "bhs": 29195, + "bhu": 9172, + "bhuban": 38729, + "bhubanes": 41213, + "bhubaneswar": 45888, + "bhushan": 40884, + "bhutan": 32391, + "bhutto": 30153, + "bi": 717, + "bi": 3035, + "bia": 3841, + "biaf": 26961, + "biafra": 36355, + "bian": 19531, + "bian": 9027, + "bianca": 25854, + "bianchi": 45720, + "bians": 28141, + "bias": 11268, + "biased": 22178, + "bib": 44607, + "bib": 21022, + "bibi": 31182, + "bibl": 20912, + "bible": 26738, + "bible": 7583, + "bibli": 23465, + "biblical": 22841, + "biblio": 49131, + "bic": 5960, + "bic": 10675, + "bice": 35589, + "biceps": 46735, + "bick": 27238, + "bicy": 9247, + "bicycle": 11652, + "bicycles": 31326, + "bid": 21035, + "bid": 5553, + "bidding": 23237, + "bide": 45178, + "biden": 19451, + "bids": 16148, + "bie": 5561, + "bie": 4173, + "bieber": 48725, + "bieber": 7535, + "bien": 19176, + "bien": 25742, + "biennale": 33776, + "biennial": 36609, + "bier": 27226, + "bier": 23508, + "bies": 7867, + "big": 1915, + "big": 1205, + "bigbaldhead": 30325, + "bigbang": 41680, + "bigbang": 23734, + "bigdata": 9440, + "bige": 37762, + "bigfoot": 37095, + "bigg": 15312, + "bigg": 35399, + "biggboss": 27056, + "bigger": 6806, + "biggest": 19483, + "biggest": 3505, + "biggie": 28392, + "biggs": 46507, + "bigh": 18106, + "bighit": 35508, + "bigo": 14278, + "bigolive": 20735, + "bigotry": 37269, + "bigre": 36330, + "bih": 33471, + "bihar": 22849, + "bij": 42478, + "bik": 30306, + "bike": 11686, + "bike": 3701, + "biker": 36100, + "biker": 23449, + "bikers": 29468, + "bikes": 9227, + "bikin": 12638, + "biking": 19157, + "bikini": 14531, + "bil": 3092, + "bil": 20506, + "bilateral": 25599, + "bilbao": 34802, + "bild": 35512, + "bile": 25943, + "bilingual": 29623, + "bilities": 13582, + "bility": 4694, + "bill": 4444, + "bill": 2886, + "billboard": 10856, + "billboards": 34741, + "billed": 37558, + "billi": 7693, + "billie": 23990, + "billing": 31797, + "billings": 43615, + "billion": 14520, + "billion": 5729, + "billionaire": 19475, + "billionaires": 41590, + "billions": 20742, + "bills": 9810, + "billsmafia": 48845, + "billy": 15626, + "billy": 6814, + "bilt": 44770, + "bilt": 26654, + "bim": 46737, + "bim": 24775, + "bin": 4849, + "bin": 5346, + "binance": 43520, + "binary": 23497, + "bind": 44513, + "binder": 30541, + "binding": 21287, + "bine": 34848, + "bing": 24818, + "bing": 5665, + "binge": 22600, + "bingham": 43785, + "bingham": 47296, + "bingo": 18418, + "bino": 29172, + "bino": 24313, + "bins": 26934, + "bint": 43647, + "bio": 2830, + "bio": 5162, + "biode": 43502, + "biodegradable": 47740, + "biodiversity": 17428, + "biof": 45158, + "biographical": 49232, + "biography": 15423, + "biological": 18821, + "biologist": 35149, + "biology": 9796, + "biom": 13010, + "biomar": 44549, + "biomass": 36746, + "biome": 26218, + "biomed": 29280, + "biomedical": 33117, + "bionic": 46201, + "biop": 15009, + "biopic": 27942, + "bios": 48505, + "biotech": 22514, + "biotechnology": 40375, + "biotic": 33773, + "biotics": 41371, + "bious": 31845, + "bipartisan": 32266, + "bipolar": 37097, + "bique": 27809, + "bir": 921, + "bir": 16284, + "birch": 31569, + "birch": 22907, + "bird": 6908, + "bird": 3329, + "birdie": 29612, + "birdies": 45618, + "birding": 15851, + "birdman": 41915, + "birdphotography": 47999, + "birds": 41951, + "birds": 4337, + "birdwatching": 33497, + "birk": 48289, + "birken": 40661, + "birmin": 37482, + "birmingham": 38580, + "birmingham": 7720, + "birth": 1128, + "birth": 5397, + "birthday": 7381, + "birthday": 1166, + "birthdays": 17954, + "birthplace": 31429, + "biryani": 46489, + "bis": 5064, + "bis": 14461, + "biscu": 11532, + "biscuit": 18731, + "biscuits": 18248, + "bisexual": 36829, + "bish": 33690, + "bish": 31461, + "bishop": 20625, + "bishop": 8024, + "bishops": 31579, + "bison": 19741, + "bistro": 21770, + "bit": 3010, + "bit": 2010, + "bitcoin": 30848, + "bitcoin": 6366, + "bite": 41613, + "biting": 23016, + "bits": 7747, + "bitt": 39251, + "bius": 45525, + "bix": 46579, + "biz": 8212, + "biz": 5431, + "biza": 47013, + "bizar": 14886, + "bizarre": 16965, + "bizhour": 39462, + "bizitalk": 34929, + "bj": 4592, + "bj": 18229, + "bjj": 27437, + "bjor": 26525, + "bjp": 37264, + "bjp": 6178, + "bk": 15099, + "bk": 14083, + "bkk": 36433, + "bl": 833, + "bl": 9467, + "bla": 2205, + "bla": 19630, + "blac": 21008, + "black": 2025, + "black": 1449, + "blackand": 12809, + "blackandwhite": 23688, + "blackandwhite": 19506, + "blackandwhitephotography": 27544, + "blackberry": 16470, + "blackbird": 38526, + "blackburn": 23789, + "blackfish": 42193, + "blackfriday": 16445, + "blackgirl": 43591, + "blackhawks": 19203, + "blackhistory": 46982, + "blackhistorymonth": 20135, + "blacklist": 30295, + "blacklivesmatter": 23467, + "blackmail": 47295, + "blackops": 43519, + "blackout": 21733, + "blackpanther": 36592, + "blackpink": 20339, + "blackpool": 21031, + "blacks": 16351, + "blackwell": 42642, + "blad": 36635, + "bladder": 33593, + "blade": 10264, + "blades": 16893, + "blah": 29212, + "blaine": 32457, + "blair": 31824, + "blair": 14749, + "blake": 20229, + "blake": 9579, + "blame": 10695, + "blamed": 32906, + "blames": 27841, + "blaming": 29287, + "blan": 4609, + "blanc": 30936, + "blanc": 13301, + "blanca": 40670, + "blanchard": 40177, + "blanche": 34875, + "blanchett": 49378, + "blanco": 26801, + "bland": 44372, + "bland": 30799, + "blank": 15134, + "blanket": 12878, + "blankets": 24042, + "blanks": 48599, + "blasio": 35553, + "blasphe": 36622, + "blast": 46349, + "blast": 5964, + "blasted": 38976, + "blaster": 36341, + "blasting": 26178, + "blasts": 23067, + "blat": 22048, + "blatant": 41391, + "blatt": 39138, + "blau": 45307, + "blaz": 43413, + "blaze": 15497, + "blazer": 17606, + "blazers": 16984, + "blazing": 25267, + "bldg": 22981, + "ble": 1447, + "ble": 1059, + "bleach": 27034, + "bleak": 40355, + "bled": 12006, + "bleed": 23027, + "bleed": 24791, + "bleedblue": 39160, + "bleeding": 20311, + "bleeds": 47339, + "blen": 25651, + "blend": 10780, + "blended": 25813, + "blender": 25066, + "blending": 34307, + "blends": 28572, + "bler": 31305, + "bler": 11979, + "blers": 26930, + "bles": 5763, + "bless": 9640, + "bless": 5387, + "blessed": 4411, + "blessing": 10729, + "blessings": 11185, + "bleu": 30114, + "blew": 18176, + "bley": 43176, + "bli": 1450, + "bli": 28051, + "blin": 9678, + "blin": 5406, + "blind": 17248, + "blind": 8351, + "blinded": 49149, + "blindness": 38812, + "blinds": 32449, + "bling": 39764, + "bling": 7097, + "blink": 18976, + "bliss": 28531, + "bliss": 12893, + "blissful": 42145, + "blit": 39327, + "blitz": 42151, + "blitz": 17548, + "blizz": 13075, + "blizzard": 16111, + "blk": 42950, + "blk": 22872, + "blm": 30957, + "bln": 47348, + "blo": 1204, + "blo": 25505, + "blob": 49312, + "bloc": 30961, + "block": 4638, + "block": 4593, + "blockade": 33489, + "blockbuster": 19939, + "blockchain": 6653, + "blocked": 9106, + "blocker": 44767, + "blocking": 12652, + "blocks": 10113, + "blog": 16376, + "blog": 2589, + "blogg": 33282, + "blogged": 41380, + "blogger": 21352, + "blogger": 7806, + "bloggerrt": 48898, + "bloggers": 11627, + "blogging": 18090, + "blogpost": 41842, + "blogs": 16682, + "bloke": 24384, + "blom": 48996, + "blon": 7958, + "blond": 32426, + "blonde": 10711, + "blondes": 45130, + "blondie": 39236, + "bloo": 2373, + "blood": 9231, + "blood": 3590, + "blooded": 41946, + "bloodh": 48480, + "bloods": 39539, + "bloody": 38568, + "bloody": 9468, + "bloom": 7311, + "bloom": 10257, + "bloomberg": 43109, + "bloomberg": 21238, + "bloomfield": 40342, + "blooming": 45175, + "blooming": 19266, + "bloomington": 34731, + "blooms": 21439, + "bloss": 10017, + "blossom": 14472, + "blossoms": 21916, + "blot": 41710, + "blou": 44506, + "blouse": 23525, + "blow": 15230, + "blow": 10211, + "blower": 25832, + "blowing": 12087, + "blown": 11848, + "blowout": 34857, + "blows": 21063, + "blr": 47250, + "bls": 39458, + "blu": 1263, + "blu": 10273, + "blue": 3829, + "blue": 1746, + "bluebells": 47150, + "blueberries": 29551, + "blueberry": 18251, + "bluebird": 40747, + "bluec": 43194, + "bluef": 41174, + "bluegrass": 26241, + "bluejays": 18684, + "blueprint": 30594, + "blues": 17566, + "blues": 5159, + "blueslyrix": 47068, + "bluet": 13469, + "bluetooth": 14052, + "bluewave": 40025, + "bluff": 27232, + "bluffs": 48844, + "blum": 34818, + "blumen": 38714, + "blun": 34472, + "blunt": 19305, + "blur": 12102, + "blur": 27976, + "bluray": 36818, + "blurred": 38013, + "blurry": 21977, + "blush": 22889, + "blvd": 12578, + "bly": 20930, + "bly": 4426, + "bm": 4773, + "bm": 15916, + "bma": 42573, + "bmc": 27807, + "bmi": 40642, + "bmo": 39083, + "bms": 34074, + "bmw": 26637, + "bmw": 7869, + "bmx": 22535, + "bn": 10496, + "bn": 7992, + "bnb": 20010, + "bnha": 49336, + "bnp": 47910, + "bnw": 35903, + "bo": 647, + "bo": 2525, + "boa": 14732, + "boar": 7837, + "boar": 35473, + "board": 10419, + "board": 1972, + "boarded": 43052, + "boarder": 37414, + "boardgame": 47829, + "boardgames": 32646, + "boarding": 10086, + "boardroom": 47937, + "boards": 7963, + "boardwalk": 29043, + "boast": 44467, + "boasts": 30309, + "boat": 12426, + "boat": 4440, + "boath": 45461, + "boating": 21951, + "boats": 10080, + "boatsales": 46244, + "bob": 8444, + "bob": 4423, + "boba": 39948, + "bobb": 16891, + "bobble": 38796, + "bobblehead": 33451, + "bobby": 17847, + "bobby": 7816, + "bobc": 26153, + "bobcat": 37896, + "bobcats": 27568, + "bobo": 38939, + "bobs": 45533, + "boc": 27307, + "boc": 39042, + "boca": 26094, + "bock": 24961, + "bod": 17904, + "bod": 26340, + "boda": 42030, + "bode": 28452, + "bode": 40429, + "bodega": 47350, + "bodied": 36892, + "bodies": 9799, + "bodily": 49119, + "body": 7132, + "body": 1774, + "bodybuilding": 24538, + "bodyguard": 35565, + "boe": 23476, + "boe": 21773, + "boeh": 38002, + "boehner": 44599, + "boeing": 48135, + "boeing": 11857, + "boer": 44889, + "boer": 40768, + "bog": 23426, + "bog": 28318, + "bogo": 35769, + "bogota": 47059, + "bogus": 42907, + "boh": 43238, + "bohe": 40541, + "bohemi": 21552, + "bohemian": 25753, + "boho": 25444, + "boi": 37129, + "boi": 12673, + "boil": 31332, + "boiled": 23886, + "boiler": 28212, + "boiler": 25615, + "boiling": 32019, + "bois": 47742, + "bois": 21640, + "boise": 23304, + "bok": 26671, + "bok": 15289, + "boko": 30929, + "boks": 40216, + "bol": 2860, + "bol": 8413, + "bola": 12840, + "bold": 26975, + "bold": 8911, + "boldand": 48413, + "boldly": 44778, + "boli": 12722, + "bolic": 27343, + "bolivia": 28628, + "bollah": 36336, + "bolly": 25302, + "bollywood": 32448, + "bollywood": 9604, + "bolo": 40236, + "bolog": 22818, + "bologna": 27513, + "bolster": 47304, + "bolt": 13131, + "bolton": 48757, + "bolton": 16598, + "bolts": 26028, + "bom": 3012, + "bom": 19469, + "bomb": 18091, + "bomb": 6331, + "bombar": 25544, + "bombardier": 42700, + "bombay": 48602, + "bombay": 23890, + "bombed": 24542, + "bomber": 15436, + "bombers": 21786, + "bombing": 14475, + "bombings": 43236, + "bombs": 14410, + "bombshell": 36340, + "bon": 1871, + "bon": 4216, + "bona": 33342, + "bonanza": 40304, + "bond": 37022, + "bond": 6826, + "bonded": 37390, + "bondi": 40092, + "bonding": 19609, + "bonds": 15786, + "bone": 22502, + "bone": 6195, + "bones": 9476, + "bonfire": 23151, + "bongo": 47519, + "boni": 32269, + "boni": 46356, + "bonita": 42896, + "bonjour": 33176, + "bonkers": 39865, + "bonn": 38969, + "bonnar": 47191, + "bonnaroo": 48777, + "bonne": 25844, + "bonnet": 30636, + "bonnie": 18555, + "bono": 24476, + "bons": 42883, + "bonsai": 44129, + "bonus": 8164, + "bonuses": 35144, + "boo": 824, + "boo": 7317, + "boogie": 22639, + "book": 2828, + "book": 1116, + "bookboost": 31257, + "bookclub": 34438, + "bookday": 26327, + "booked": 12584, + "booker": 21302, + "bookfest": 39381, + "booking": 10145, + "bookings": 18345, + "booklet": 27405, + "bookmark": 33596, + "bookof": 45629, + "bookreview": 27362, + "books": 44382, + "books": 2161, + "bookshelf": 34821, + "bookshop": 24705, + "bookstore": 17999, + "bookstores": 46416, + "bookworm": 20743, + "boom": 9609, + "boom": 7121, + "boomer": 33819, + "boomer": 31766, + "boomers": 37988, + "booming": 33487, + "boon": 24979, + "boon": 35821, + "boone": 23453, + "boop": 45047, + "boost": 44639, + "boost": 6260, + "boosted": 37631, + "booster": 20877, + "boosters": 46859, + "boosting": 28480, + "boosts": 29247, + "boot": 10843, + "boot": 8087, + "bootcamp": 22051, + "booted": 42564, + "booth": 47895, + "booth": 3971, + "booths": 32653, + "booties": 46188, + "bootleg": 38139, + "boots": 7319, + "booze": 24341, + "bop": 19720, + "bor": 1141, + "bor": 15093, + "bora": 24736, + "bord": 36891, + "bordeaux": 22009, + "border": 16304, + "border": 6177, + "borderlands": 38676, + "borders": 13900, + "bore": 14084, + "bore": 24638, + "bored": 8933, + "boredom": 31460, + "boretum": 38902, + "borg": 14770, + "borgh": 17180, + "boring": 12519, + "boris": 31212, + "boris": 15704, + "borisjohnson": 44481, + "born": 17695, + "born": 2683, + "borne": 42910, + "borne": 9328, + "borneo": 33332, + "bornon": 41811, + "bornonthisday": 42757, + "boro": 26796, + "boro": 7974, + "borough": 22761, + "borough": 6203, + "borrow": 22293, + "borrowed": 28224, + "borrowing": 41045, + "borussia": 36764, + "bos": 14885, + "bos": 9644, + "bosa": 46946, + "bosch": 42009, + "bosch": 19466, + "bosco": 36960, + "bose": 23142, + "bosh": 42244, + "bosni": 42924, + "bosnia": 31396, + "boss": 17935, + "boss": 4206, + "bosses": 23906, + "boston": 11540, + "boston": 4399, + "bostonmarathon": 44533, + "bot": 4136, + "bot": 6947, + "botan": 12554, + "botanic": 32560, + "botanical": 21026, + "botany": 22612, + "botd": 34451, + "both": 36575, + "both": 2212, + "bother": 21125, + "bothered": 27997, + "botox": 43449, + "bots": 13721, + "botswana": 27584, + "bott": 3520, + "bott": 37225, + "bottle": 37306, + "bottle": 5392, + "bottled": 29331, + "bottlen": 46439, + "bottles": 9754, + "bottling": 42006, + "bottom": 32314, + "bottom": 5931, + "bottoms": 31524, + "bou": 3728, + "bou": 23165, + "bouchard": 47930, + "boudo": 48827, + "bought": 4142, + "boul": 24830, + "boulder": 18260, + "boule": 17652, + "boulevard": 19504, + "boun": 5993, + "bounce": 14316, + "bouncing": 32060, + "bouncy": 43415, + "bound": 15140, + "bound": 4567, + "boundaries": 18690, + "boundary": 21344, + "bounds": 37469, + "bounty": 21142, + "bouquet": 20961, + "bour": 2934, + "bour": 35486, + "bourbon": 48118, + "bourbon": 14652, + "bourdain": 48095, + "bourg": 20690, + "bourgeo": 45672, + "bourn": 39143, + "bourne": 13789, + "bourne": 5192, + "bournemouth": 20911, + "bout": 19982, + "bout": 8123, + "bouti": 10926, + "boutique": 12179, + "bow": 2297, + "bow": 4040, + "bowden": 48538, + "bowed": 49130, + "bowel": 36880, + "bowen": 25368, + "bower": 40414, + "bowers": 42238, + "bowie": 13036, + "bowing": 46398, + "bowl": 26719, + "bowl": 3814, + "bowled": 39987, + "bowler": 25528, + "bowlers": 42632, + "bowles": 41611, + "bowling": 10390, + "bowls": 17787, + "bowman": 22052, + "bows": 17000, + "bowser": 38234, + "bowski": 48311, + "box": 2774, + "box": 2063, + "boxed": 24190, + "boxer": 40394, + "boxer": 15363, + "boxers": 31019, + "boxes": 8350, + "boxing": 33669, + "boxing": 5554, + "boy": 2927, + "boy": 1876, + "boyband": 31568, + "boyce": 44480, + "boycot": 46208, + "boycott": 31615, + "boycott": 19559, + "boyd": 18295, + "boyfriend": 7328, + "boyfriends": 36541, + "boyle": 22802, + "boys": 25223, + "boys": 2034, + "boyz": 16152, + "bp": 23410, + "bp": 11558, + "bpa": 43855, + "bpd": 48587, + "bpl": 28901, + "bpm": 40338, + "bps": 37794, + "br": 711, + "br": 7532, + "bra": 1195, + "bra": 5860, + "brac": 6663, + "brace": 8376, + "brace": 9183, + "bracelet": 8969, + "bracelets": 20027, + "braces": 19249, + "brack": 25676, + "bracket": 14780, + "brackets": 36183, + "brad": 4848, + "brad": 9405, + "bradbury": 45097, + "braden": 46842, + "bradford": 15062, + "bradley": 31905, + "bradley": 10952, + "brador": 24062, + "bradshaw": 37556, + "brady": 42494, + "brady": 11117, + "brae": 42874, + "brae": 40040, + "brag": 30110, + "bragg": 38545, + "bragging": 38199, + "brah": 20276, + "brahms": 45114, + "brai": 25048, + "braid": 31067, + "braided": 39997, + "braids": 34221, + "brain": 9454, + "brain": 4812, + "brains": 17129, + "brainstorming": 36607, + "braised": 28363, + "brake": 14937, + "brakes": 23456, + "bral": 31309, + "bram": 14815, + "bram": 39456, + "brampton": 35124, + "bran": 3684, + "bran": 28348, + "brance": 36072, + "brance": 15413, + "branch": 7998, + "branches": 15843, + "brand": 3910, + "brand": 2896, + "branded": 18097, + "brandi": 41003, + "branding": 10841, + "brando": 41892, + "brandon": 20423, + "brandon": 9166, + "brands": 8681, + "brandt": 22552, + "brandy": 26232, + "brane": 32340, + "branson": 28280, + "brant": 28951, + "brant": 47592, + "braries": 46377, + "brary": 24520, + "bras": 22611, + "brasil": 18991, + "brass": 24348, + "brass": 11655, + "brat": 26717, + "brat": 26631, + "brate": 41864, + "braun": 39129, + "braun": 29309, + "brave": 25461, + "brave": 7769, + "braved": 47663, + "bravely": 42303, + "bravery": 25831, + "braves": 14422, + "braving": 43258, + "bravo": 38613, + "bravo": 13006, + "braw": 37871, + "brawl": 26066, + "braxton": 37451, + "bray": 26256, + "bray": 22993, + "braz": 4625, + "brazil": 47459, + "brazil": 6305, + "brazili": 45697, + "brazilian": 12111, + "brb": 25316, + "brc": 40393, + "bre": 887, + "bre": 7782, + "brea": 7318, + "brea": 46538, + "breach": 21363, + "breaches": 45173, + "bread": 18886, + "bread": 5066, + "breads": 43064, + "break": 2206, + "break": 2568, + "breakable": 30691, + "breakaway": 42732, + "breakdown": 14519, + "breaker": 14814, + "breakers": 22270, + "breakfa": 45931, + "breakfast": 30210, + "breakfast": 3290, + "breaking": 14698, + "breaking": 2755, + "breakingbad": 38032, + "breakingnews": 23837, + "breakout": 16752, + "breaks": 7263, + "breakthrough": 18802, + "breakup": 38931, + "breast": 12930, + "breast": 9475, + "breastcancer": 40813, + "breastcancer": 30065, + "breastfeeding": 29033, + "breasts": 37637, + "breath": 9508, + "breath": 9576, + "breathe": 11364, + "breathing": 14959, + "breathtaking": 14709, + "brecht": 34622, + "breck": 44598, + "bred": 46929, + "bred": 16008, + "bree": 7892, + "bree": 37138, + "breed": 28030, + "breed": 13791, + "breeders": 37472, + "breeding": 16544, + "breeds": 29021, + "breen": 48013, + "brees": 46721, + "breeze": 13125, + "breezy": 21451, + "breit": 23864, + "breitbart": 37926, + "brek": 35494, + "bremen": 39861, + "bren": 5209, + "brenda": 23786, + "brendan": 35134, + "brendan": 15414, + "brendon": 36756, + "brennan": 22372, + "brenner": 42941, + "brent": 31439, + "brent": 16355, + "brentwood": 33108, + "brero": 47781, + "bres": 32561, + "bret": 38020, + "bret": 32548, + "brethren": 43134, + "breton": 32290, + "brett": 22591, + "brett": 12394, + "brev": 42882, + "brevi": 39475, + "brew": 5048, + "brew": 7253, + "brewco": 33582, + "brewed": 23238, + "brewer": 20756, + "breweries": 35277, + "brewers": 17618, + "brewery": 8850, + "brewing": 8275, + "brewingco": 45155, + "brews": 21663, + "brewster": 40274, + "brex": 22726, + "brexit": 27666, + "brexit": 5801, + "brgy": 35983, + "bri": 1036, + "bri": 18636, + "bria": 35890, + "brian": 9824, + "brian": 4989, + "brianna": 32308, + "briar": 46119, + "bribe": 40042, + "bribery": 41792, + "bric": 27055, + "brice": 40190, + "brick": 13937, + "brick": 9518, + "bricks": 21029, + "brics": 48196, + "brid": 16995, + "bridal": 36875, + "bridal": 14284, + "bride": 18342, + "bride": 8964, + "brides": 18067, + "bridesma": 28356, + "bridesmaid": 43399, + "bridesmaids": 47754, + "bridg": 20623, + "bridge": 8647, + "bridge": 2465, + "bridgeport": 45201, + "bridges": 11811, + "bridget": 27073, + "bridgewater": 38732, + "bridging": 38109, + "brie": 26622, + "brief": 9435, + "brief": 8954, + "briefed": 47326, + "briefing": 12991, + "briefly": 26980, + "briefs": 29557, + "brien": 13504, + "brier": 43995, + "brig": 11081, + "briga": 46448, + "brigade": 16032, + "briggs": 28108, + "brigh": 6710, + "bright": 10383, + "bright": 4852, + "brighten": 18208, + "brightening": 43929, + "brighter": 18507, + "brightest": 26159, + "brightly": 36298, + "brightness": 42280, + "brighton": 28416, + "brighton": 9470, + "brigitte": 44421, + "brill": 27342, + "brill": 28601, + "brilli": 3821, + "brilliance": 28146, + "brilliant": 4106, + "brilliantly": 26803, + "brin": 25620, + "bring": 11596, + "bring": 2430, + "bringback": 28969, + "bringbackour": 45403, + "bringing": 4777, + "brings": 5138, + "brink": 39296, + "brink": 28796, + "brioche": 45818, + "bris": 9385, + "bris": 15783, + "brisban": 30431, + "brisbane": 42932, + "brisbane": 12407, + "brisk": 43646, + "brisket": 31920, + "bristol": 18159, + "bristol": 8010, + "brit": 2318, + "brit": 20066, + "britain": 40802, + "britain": 6272, + "britanni": 31373, + "britannia": 36188, + "brite": 33827, + "briti": 8155, + "british": 8651, + "british": 3504, + "britishmuseum": 41858, + "britney": 37192, + "britney": 21853, + "britneyspears": 42990, + "brits": 21832, + "britt": 10811, + "britt": 25976, + "brittany": 38187, + "brittany": 18818, + "britton": 37422, + "brium": 46079, + "brixton": 30056, + "bro": 927, + "bro": 4410, + "broad": 3491, + "broad": 12623, + "broadband": 21050, + "broadcast": 8967, + "broadcaster": 29005, + "broadcasting": 14403, + "broadcasts": 46742, + "broader": 36029, + "broadway": 34599, + "broadway": 9092, + "broc": 15587, + "broccoli": 19094, + "broch": 21419, + "brochure": 25275, + "brock": 14841, + "brock": 16745, + "brodie": 42150, + "brody": 29608, + "broke": 42165, + "broke": 6509, + "broken": 26126, + "broken": 5107, + "broker": 34032, + "broker": 20449, + "brokerage": 41327, + "brokers": 28271, + "brom": 18972, + "brom": 33296, + "bromance": 35353, + "bromley": 35715, + "bron": 4011, + "bron": 10243, + "bronco": 43488, + "bronco": 34370, + "broncos": 12516, + "bronson": 37042, + "bronte": 48936, + "bronx": 48310, + "bronx": 17183, + "brony": 21084, + "bronze": 8459, + "broo": 5204, + "brooch": 21207, + "brook": 4782, + "brook": 7322, + "brooke": 28576, + "brooke": 12549, + "brookes": 39707, + "brooklyn": 23253, + "brooklyn": 6983, + "brooks": 42779, + "brooks": 9991, + "broom": 32046, + "broom": 28008, + "broome": 49335, + "bros": 7776, + "broth": 29994, + "brotha": 33974, + "brother": 12697, + "brother": 3157, + "brotherhood": 19059, + "brothers": 4548, + "brou": 27874, + "brough": 21033, + "brought": 4222, + "brov": 42881, + "brow": 6547, + "brow": 15895, + "broward": 34719, + "brown": 6315, + "brown": 2866, + "browne": 28440, + "brownie": 23045, + "brownies": 22312, + "browning": 32241, + "browns": 14051, + "brows": 14998, + "browse": 19060, + "browser": 19768, + "browsing": 29318, + "brox": 43539, + "brs": 47485, + "brt": 46936, + "bru": 1698, + "bru": 31028, + "bruce": 21223, + "bruce": 7085, + "bruh": 17575, + "bruins": 14736, + "bruise": 48048, + "bruised": 46502, + "brum": 23862, + "brum": 28078, + "brun": 6870, + "brunch": 9113, + "brune": 29057, + "brunei": 41898, + "brunette": 35528, + "bruno": 14568, + "brunomars": 41156, + "brunswick": 24012, + "brush": 27969, + "brush": 8594, + "brushed": 30298, + "brushes": 21550, + "brushing": 35072, + "brussels": 11020, + "brut": 39499, + "brutal": 42144, + "brutal": 14556, + "brutality": 31348, + "brutally": 28132, + "brute": 47552, + "brux": 49093, + "bry": 6587, + "bry": 28228, + "bryan": 16134, + "bryan": 10412, + "bryant": 12256, + "bryce": 19895, + "bryn": 36569, + "bryn": 42877, + "bryson": 38990, + "bs": 11783, + "bs": 1329, + "bsa": 46619, + "bsb": 23070, + "bsbi": 41728, + "bsbibotany": 42086, + "bsc": 32031, + "bsd": 41848, + "bse": 46341, + "bsf": 48314, + "bsgo": 48474, + "bsp": 47977, + "bst": 19698, + "bsu": 46385, + "bt": 3317, + "bt": 4205, + "btc": 10315, + "btcc": 30759, + "btn": 44681, + "bto": 35516, + "btob": 29379, + "btr": 39767, + "bts": 15154, + "bts": 4007, + "btsarmy": 30302, + "btsbbmas": 35297, + "btsx": 44971, + "btv": 38541, + "btw": 9520, + "btwn": 28284, + "bu": 609, + "bu": 5831, + "bub": 27704, + "bub": 33158, + "bubb": 9739, + "bubba": 28149, + "bubble": 28687, + "bubble": 10799, + "bubblegum": 48078, + "bubbles": 17648, + "bubbly": 31034, + "buc": 8207, + "buccane": 32830, + "buccaneers": 38058, + "buch": 22623, + "bucha": 43582, + "buchan": 27237, + "buchanan": 28975, + "bucharest": 37013, + "buck": 6061, + "buck": 11433, + "bucket": 22596, + "bucket": 10498, + "bucketlist": 30778, + "buckets": 27168, + "buckeye": 34549, + "buckeyes": 30741, + "buckingham": 28736, + "buckle": 21948, + "buckley": 25905, + "bucks": 6103, + "bucky": 35916, + "bucs": 20011, + "bud": 2942, + "bud": 10737, + "buda": 18520, + "buda": 49012, + "budapest": 19202, + "budd": 7296, + "buddha": 13981, + "buddhism": 23744, + "buddhist": 18697, + "buddies": 14543, + "budding": 31992, + "buddy": 40948, + "buddy": 6557, + "budge": 32005, + "budget": 46758, + "budget": 5639, + "budgeting": 43789, + "budgets": 36419, + "buds": 14665, + "budweiser": 40900, + "buen": 15640, + "buena": 30876, + "buenas": 48529, + "bueno": 46202, + "buenos": 26055, + "buf": 44417, + "buff": 5456, + "buff": 21416, + "buffal": 25836, + "buffalo": 31231, + "buffalo": 8054, + "buffalob": 38831, + "buffalobills": 44352, + "buffe": 13724, + "buffer": 33050, + "buffet": 17829, + "buffett": 34081, + "buffs": 28906, + "buffy": 33356, + "bug": 14453, + "bug": 8162, + "bugatti": 35451, + "buggy": 28963, + "bugs": 13850, + "buh": 31406, + "buhari": 14661, + "buick": 22000, + "buil": 1354, + "build": 22739, + "build": 3289, + "builder": 14474, + "builders": 17694, + "building": 21206, + "building": 2307, + "buildings": 8866, + "builds": 16449, + "buildthe": 41497, + "built": 45824, + "built": 3874, + "buk": 28084, + "buk": 24317, + "buka": 47778, + "bukit": 39888, + "bul": 2572, + "bul": 10200, + "bula": 18726, + "bulaga": 41575, + "bular": 32187, + "bulb": 22373, + "bulbs": 24808, + "bulgar": 15424, + "bulgaria": 20295, + "bulgarian": 38693, + "bulge": 47603, + "bulk": 19643, + "bull": 4537, + "bull": 6029, + "bulldo": 37675, + "bulldog": 34828, + "bulldog": 15611, + "bulldogs": 13916, + "bullet": 14340, + "bullet": 12465, + "bulletin": 19638, + "bulletproof": 43212, + "bullets": 22117, + "bullied": 34689, + "bullies": 39050, + "bullion": 49114, + "bullish": 22142, + "bullock": 33198, + "bullpen": 38081, + "bulls": 10313, + "bully": 43111, + "bully": 20190, + "bullying": 13548, + "bum": 27683, + "bum": 14226, + "bumble": 25585, + "bumble": 39303, + "bumblebee": 36911, + "bummed": 48456, + "bump": 9783, + "bump": 15877, + "bumped": 22495, + "bumper": 17881, + "bumping": 40196, + "bumps": 21115, + "bun": 2591, + "bun": 13665, + "bunch": 7796, + "bund": 41905, + "bunde": 18841, + "bundesliga": 21582, + "bundle": 11793, + "bundled": 47228, + "bundles": 29834, + "bundy": 37332, + "bung": 44748, + "bungal": 29549, + "bungalow": 33696, + "bunk": 41236, + "bunker": 23615, + "bunnies": 28998, + "bunny": 34198, + "bunny": 9258, + "buns": 22235, + "bunting": 30695, + "buon": 31350, + "buon": 48498, + "bur": 1039, + "bur": 17362, + "burbank": 34862, + "burberry": 30412, + "burch": 44588, + "burden": 18687, + "bure": 11902, + "bureau": 32098, + "bureau": 15400, + "burg": 19505, + "burg": 3499, + "burge": 20522, + "burger": 22356, + "burger": 6548, + "burgers": 13007, + "burgess": 26211, + "burgh": 18141, + "burgh": 4965, + "burgl": 25554, + "burglar": 43365, + "burglary": 32573, + "burgring": 40823, + "burgundy": 23650, + "buri": 46348, + "buri": 42614, + "burial": 22012, + "buried": 14233, + "burk": 48822, + "burke": 15340, + "burle": 27891, + "burlesque": 33732, + "burlington": 23370, + "burma": 30305, + "burmese": 47906, + "burn": 7934, + "burn": 4285, + "burnaby": 47541, + "burne": 27246, + "burned": 15022, + "burner": 23243, + "burnett": 28558, + "burnham": 36111, + "burning": 46107, + "burning": 8405, + "burnley": 24653, + "burnout": 36078, + "burns": 10234, + "burnt": 15185, + "burr": 30879, + "burrell": 49045, + "burrito": 23473, + "burritos": 47245, + "burroughs": 41337, + "burrows": 44846, + "burst": 13005, + "bursting": 32566, + "bursts": 37026, + "burt": 27162, + "burton": 42354, + "burton": 12704, + "burundi": 33595, + "bury": 12276, + "bury": 3899, + "burys": 32362, + "bus": 1319, + "bus": 2840, + "busan": 40172, + "busc": 35000, + "busch": 20475, + "buses": 12879, + "bush": 11191, + "bush": 6867, + "bushes": 37578, + "busiest": 32764, + "busine": 4598, + "busines": 25364, + "business": 8346, + "business": 1716, + "businesses": 7287, + "businessman": 25635, + "buss": 47764, + "bust": 31299, + "bust": 9959, + "busted": 18643, + "buster": 37219, + "buster": 12094, + "busters": 16362, + "busting": 29622, + "busy": 39332, + "busy": 4354, + "but": 2201, + "but": 767, + "butch": 35102, + "butcher": 18732, + "butchers": 42334, + "bute": 39240, + "butes": 14630, + "butler": 35867, + "butler": 10702, + "butt": 12500, + "butt": 31523, + "butte": 31678, + "butter": 5427, + "butter": 6952, + "butterflies": 16232, + "butterfly": 9738, + "buttermilk": 40180, + "butternut": 36867, + "buttery": 45535, + "button": 45480, + "button": 8007, + "buttons": 16188, + "butts": 25309, + "buu": 42313, + "buuren": 47752, + "buxton": 41370, + "buy": 11632, + "buy": 2131, + "buyer": 14682, + "buyers": 14663, + "buying": 6566, + "buys": 15560, + "buzz": 7866, + "buzz": 8706, + "buzzard": 47434, + "buzzer": 38064, + "buzzfeed": 26613, + "buzzing": 18511, + "bv": 18958, + "bv": 35861, + "bvb": 22454, + "bw": 17672, + "bw": 15120, + "bway": 26652, + "bwfc": 40918, + "bwo": 45902, + "bx": 33633, + "by": 1713, + "by": 638, + "bye": 20076, + "bye": 4460, + "byes": 47958, + "byl": 34994, + "byn": 46917, + "byn": 11890, + "byo": 28039, + "bypass": 26530, + "byr": 15534, + "byrd": 30369, + "byrne": 19676, + "byron": 43504, + "byron": 19775, + "bys": 26740, + "bystand": 46138, + "byte": 42798, + "bytes": 39538, + "bythe": 36621, + "byu": 41072, + "byu": 23770, + "byz": 35406, + "byzantine": 44081, + "bz": 13631, + "bé": 40365, + "bü": 38706, + "c": 66, + "c": 322, + "ca": 772, + "ca": 1684, + "caa": 19316, + "cab": 3033, + "cab": 11912, + "cabaret": 26263, + "cabbage": 18407, + "cabe": 32731, + "cabello": 34371, + "caber": 29062, + "cabernet": 33730, + "cabin": 14178, + "cabine": 23354, + "cabinet": 9937, + "cabinets": 33083, + "cabins": 48455, + "cable": 7925, + "cables": 22408, + "cabo": 37318, + "cabo": 28370, + "cabrera": 42338, + "cabs": 42048, + "cac": 8298, + "cac": 23872, + "cacao": 38022, + "cache": 28993, + "caching": 40655, + "cactus": 19794, + "cad": 6297, + "cad": 20166, + "caday": 34187, + "cadbury": 44698, + "caddy": 41521, + "cade": 10497, + "cade": 17306, + "cadet": 22764, + "cadets": 19160, + "cadillac": 18156, + "cae": 49264, + "caer": 28298, + "caes": 15740, + "caesar": 21642, + "caesars": 42162, + "caf": 3471, + "caf": 20867, + "cafc": 30748, + "cafe": 15201, + "cafe": 4979, + "cafes": 40166, + "cafeteria": 32817, + "caffe": 18258, + "caffe": 45416, + "caffeine": 22487, + "café": 15304, + "cag": 15714, + "cage": 11838, + "cages": 37939, + "cah": 40519, + "cahill": 33185, + "cai": 38971, + "cai": 36116, + "cain": 13747, + "caine": 16799, + "cair": 15804, + "cair": 46659, + "cairn": 31264, + "cairn": 42467, + "cairngor": 44067, + "cairns": 32941, + "cairo": 19615, + "cait": 14116, + "caitlin": 47768, + "caitlin": 26809, + "caitlyn": 35763, + "cajun": 43425, + "cajun": 33044, + "cak": 42986, + "cake": 15295, + "cake": 2972, + "cakeday": 46207, + "cakes": 5950, + "cal": 1198, + "cal": 6372, + "cala": 32133, + "calab": 31795, + "calais": 39886, + "calam": 28841, + "calc": 45055, + "calci": 22824, + "calcium": 27815, + "calcu": 15328, + "calcul": 15734, + "calculate": 37656, + "calculated": 40688, + "calculations": 44605, + "calculator": 26093, + "calculus": 35104, + "calcutta": 42901, + "calder": 29372, + "calder": 36817, + "caldwell": 30484, + "cale": 32674, + "caleb": 19619, + "caled": 28421, + "calend": 6057, + "calendar": 7122, + "calendars": 17229, + "calf": 17508, + "calgary": 27415, + "calgary": 10797, + "calhoun": 38929, + "cali": 2857, + "cali": 16337, + "caliber": 32820, + "calibr": 32597, + "calico": 45379, + "calif": 30839, + "califor": 3526, + "californi": 21303, + "california": 3729, + "call": 7950, + "call": 1620, + "calla": 20658, + "callahan": 43313, + "callaway": 42596, + "callback": 44764, + "calle": 47699, + "calle": 38144, + "called": 2726, + "caller": 30666, + "calli": 16338, + "callie": 36512, + "calligraphy": 27775, + "calling": 4597, + "callister": 49026, + "callme": 42449, + "callof": 41280, + "calls": 4572, + "callum": 23224, + "calm": 34990, + "calm": 7011, + "calming": 30690, + "calorie": 32679, + "calories": 18029, + "cals": 47714, + "calum": 16405, + "calvary": 40169, + "calvert": 47134, + "calves": 31857, + "calvin": 27642, + "calvin": 17345, + "caly": 10244, + "calyp": 29851, + "cam": 1004, + "cam": 5982, + "camar": 31991, + "camber": 44362, + "cambo": 14662, + "cambodia": 17347, + "cambridge": 24651, + "cambridge": 9334, + "cambridgeshire": 46139, + "camden": 38735, + "camden": 17984, + "came": 1986, + "camel": 27005, + "camel": 21914, + "camels": 41357, + "cameo": 19492, + "camer": 4961, + "camera": 3934, + "cameraman": 43347, + "cameras": 12172, + "camero": 20320, + "cameron": 19634, + "cameron": 8057, + "camerondallas": 40587, + "cameroon": 24061, + "camil": 37745, + "camila": 19919, + "camilla": 38897, + "camille": 26741, + "camino": 28529, + "camo": 28702, + "camo": 19716, + "camogie": 39547, + "camou": 23588, + "camoufla": 23667, + "camouflage": 29049, + "camp": 2854, + "camp": 2877, + "campa": 2793, + "campaig": 9448, + "campaign": 44524, + "campaign": 3193, + "campaigner": 46364, + "campaigners": 40272, + "campaigning": 19594, + "campaigns": 15669, + "campan": 31765, + "campbell": 29094, + "campbell": 8806, + "campe": 16672, + "campeon": 49109, + "campeones": 30105, + "camper": 41914, + "camper": 24522, + "campers": 26619, + "campfire": 32530, + "campground": 46969, + "camping": 9982, + "campo": 27600, + "campos": 48077, + "camps": 12806, + "campsite": 44243, + "campu": 19687, + "campus": 4560, + "campuses": 31895, + "camra": 46155, + "camry": 46472, + "cams": 32590, + "can": 950, + "can": 753, + "cana": 28341, + "canad": 13193, + "canada": 2698, + "canadaday": 39800, + "canadi": 4329, + "canadian": 22160, + "canadian": 5255, + "canadians": 18989, + "canadiens": 40932, + "canal": 28585, + "canal": 9535, + "canals": 38483, + "canaria": 47117, + "canary": 40409, + "canary": 24523, + "canberra": 16719, + "canc": 43189, + "cancel": 12026, + "cancel": 21546, + "canceled": 25874, + "cancell": 28027, + "cancellation": 38765, + "cancelled": 13270, + "cancels": 34089, + "cancer": 12690, + "cancer": 3148, + "cancers": 33201, + "cancun": 34721, + "cand": 4986, + "candace": 45623, + "candel": 47834, + "candi": 6034, + "candice": 30024, + "candid": 7884, + "candid": 19206, + "candidacy": 46248, + "candidate": 6475, + "candidates": 8619, + "candied": 43982, + "candies": 46305, + "candle": 18995, + "candle": 12674, + "candlelight": 34724, + "candles": 15472, + "candy": 20741, + "candy": 6417, + "cane": 23644, + "cane": 14716, + "canelo": 43210, + "canes": 21902, + "cani": 35592, + "canine": 27380, + "cann": 4139, + "cann": 23709, + "cannab": 7577, + "cannabis": 31837, + "cannabis": 8861, + "canne": 44252, + "canned": 27290, + "cannes": 13773, + "canni": 26389, + "canning": 38621, + "cannon": 28771, + "cannon": 15661, + "cannons": 46269, + "cannot": 4785, + "canny": 26986, + "cano": 31668, + "cano": 25937, + "canoe": 23503, + "canola": 40389, + "canon": 17749, + "canon": 9310, + "canopy": 26061, + "cans": 13707, + "cant": 13395, + "cant": 5784, + "canteen": 39230, + "canter": 19301, + "canterbury": 22271, + "canti": 42845, + "cantina": 47472, + "canton": 37735, + "canton": 25363, + "cantore": 41769, + "cantwait": 33760, + "canu": 20171, + "canucks": 24321, + "canv": 30714, + "canvas": 22441, + "canvas": 7483, + "canvass": 40054, + "canvassing": 33783, + "cany": 47674, + "canyon": 41246, + "canyon": 9755, + "cao": 29207, + "cap": 1289, + "cap": 3938, + "capabilities": 19512, + "capability": 25885, + "capable": 14742, + "capac": 24665, + "capacity": 8970, + "capcom": 28342, + "cape": 10288, + "cape": 6631, + "capecod": 41339, + "capes": 38785, + "capetown": 20059, + "capit": 6889, + "capita": 41833, + "capital": 11198, + "capital": 5439, + "capitalism": 20068, + "capitalist": 37015, + "capitals": 29579, + "capitol": 43880, + "capitol": 11375, + "capo": 45477, + "capp": 16718, + "capped": 24659, + "capping": 42656, + "cappuccino": 37402, + "capri": 48699, + "capri": 30982, + "capric": 28667, + "capricorn": 46314, + "caps": 23185, + "capsu": 15608, + "capsul": 40341, + "capsule": 20627, + "capsules": 32870, + "capt": 45815, + "capt": 17369, + "captain": 14958, + "captain": 4621, + "captainamerica": 46229, + "captainmarvel": 48492, + "captains": 18706, + "caption": 11327, + "captions": 41878, + "captiv": 19776, + "captivating": 30580, + "captive": 29038, + "captivity": 41141, + "capture": 8818, + "captured": 8020, + "captures": 15305, + "capturing": 19548, + "capu": 44241, + "car": 811, + "car": 1615, + "cara": 20016, + "carab": 32251, + "carac": 30029, + "caracas": 45854, + "caramel": 14788, + "carameli": 41739, + "caramelized": 43854, + "carat": 32981, + "carav": 13814, + "caravan": 18566, + "carb": 21379, + "carbo": 43235, + "carbon": 14038, + "carbon": 7549, + "carbs": 29313, + "carcin": 31587, + "carcinoma": 46810, + "card": 10793, + "card": 2601, + "cardam": 49008, + "cardboard": 19845, + "cardi": 6211, + "cardi": 29677, + "cardiac": 21256, + "cardiff": 22488, + "cardiff": 9781, + "cardigan": 30501, + "cardin": 8457, + "cardinal": 46310, + "cardinal": 16472, + "cardinals": 12837, + "cardio": 15003, + "cardio": 23455, + "cardiology": 37276, + "cardiovascular": 29291, + "cardo": 40625, + "cards": 4094, + "care": 2050, + "care": 1776, + "cared": 27675, + "career": 20609, + "career": 3061, + "careers": 10090, + "careful": 11999, + "carefully": 15789, + "caregi": 22042, + "caregiver": 46372, + "caregivers": 35909, + "careless": 47325, + "carers": 26484, + "cares": 10968, + "caretaker": 48037, + "carey": 14895, + "cargo": 12490, + "cari": 18497, + "cari": 37273, + "carib": 9757, + "caribbean": 10368, + "caribou": 42135, + "caric": 25337, + "caricature": 38857, + "carina": 44357, + "caring": 13083, + "carl": 8273, + "carl": 9482, + "carla": 25552, + "carleton": 46496, + "carlin": 47559, + "carlisle": 23276, + "carlo": 17861, + "carlo": 15266, + "carlos": 9538, + "carlow": 44745, + "carls": 39635, + "carlson": 24114, + "carlton": 18934, + "carly": 23166, + "carly": 22689, + "carlyle": 46555, + "carmel": 30757, + "carmel": 25601, + "carmen": 41427, + "carmen": 18834, + "carmichael": 41657, + "carn": 21597, + "carnage": 31385, + "carnation": 44577, + "carnaval": 47238, + "carne": 17053, + "carne": 42885, + "carnegie": 25287, + "carney": 34194, + "carni": 8438, + "carnival": 36708, + "carnival": 10577, + "caro": 30317, + "caro": 29344, + "carol": 4242, + "carol": 11489, + "carole": 31955, + "carolin": 26418, + "carolina": 7027, + "caroline": 31064, + "caroline": 12641, + "carols": 33269, + "carolyn": 25825, + "carou": 32224, + "carousel": 36665, + "carp": 26085, + "carpen": 15584, + "carpenter": 18475, + "carpet": 6922, + "carpets": 34612, + "carr": 26951, + "carr": 17136, + "carra": 32332, + "carre": 31114, + "carrera": 32952, + "carri": 4739, + "carriage": 47885, + "carriage": 21087, + "carrick": 44052, + "carrie": 30334, + "carrie": 15848, + "carried": 12960, + "carrier": 12308, + "carriers": 26865, + "carries": 17982, + "carrieunderwood": 47338, + "carrington": 48759, + "carroll": 41911, + "carroll": 14893, + "carrot": 15435, + "carrots": 19299, + "carry": 31863, + "carry": 6998, + "carrying": 9920, + "cars": 3346, + "carsforsale": 45222, + "carson": 41766, + "carson": 13171, + "cart": 27705, + "cart": 13065, + "cartag": 45042, + "cartagena": 47157, + "carte": 44949, + "cartel": 30529, + "carter": 27330, + "carter": 7260, + "cartier": 32951, + "carto": 5487, + "carton": 41812, + "cartoon": 33082, + "cartoon": 7651, + "cartoonist": 30793, + "cartoons": 17673, + "cartri": 47084, + "cartridge": 29432, + "cartridges": 49249, + "carts": 27581, + "cartunesapp": 32888, + "caruso": 45192, + "carve": 40152, + "carved": 15127, + "carver": 28850, + "carving": 19428, + "carvings": 48123, + "cary": 22844, + "cas": 1671, + "cas": 13831, + "casa": 14643, + "casablanc": 36572, + "casablanca": 41950, + "casc": 36714, + "casca": 43296, + "cascade": 29065, + "cascades": 46454, + "case": 17698, + "case": 2068, + "cases": 6888, + "casey": 24899, + "casey": 12836, + "cash": 11050, + "cash": 5131, + "cashback": 36368, + "cashe": 32233, + "cashew": 39531, + "cashi": 29517, + "cashier": 34547, + "cashmere": 34566, + "casi": 38350, + "casino": 10473, + "casio": 32261, + "cask": 26299, + "casm": 35198, + "casper": 35892, + "cass": 22556, + "cassandra": 35289, + "casser": 31093, + "casserole": 36045, + "cassette": 19717, + "cassi": 14942, + "cassidy": 21757, + "cassie": 29323, + "cassini": 46554, + "cast": 2509, + "cast": 1970, + "caste": 32693, + "casted": 33838, + "castel": 43306, + "castell": 31792, + "caster": 32101, + "caster": 8449, + "casters": 29721, + "castic": 47737, + "castillo": 30813, + "casting": 7087, + "castle": 12496, + "castle": 3540, + "castles": 24766, + "castro": 16950, + "casts": 10595, + "casu": 15345, + "casual": 10129, + "casually": 18840, + "casualties": 30244, + "casualty": 31222, + "cat": 1481, + "cat": 2368, + "cata": 42279, + "catal": 12792, + "catalan": 30532, + "catalina": 36576, + "catalo": 34740, + "catalog": 20036, + "catalogue": 20985, + "catalonia": 27039, + "catalunya": 44132, + "cataly": 15894, + "catalyst": 25387, + "catan": 45893, + "catap": 39514, + "catar": 35801, + "catastro": 22736, + "catastrophe": 41422, + "catastrophic": 34448, + "catch": 18901, + "catch": 3042, + "catcher": 15965, + "catchers": 39060, + "catches": 17213, + "catching": 8617, + "catchy": 37114, + "catday": 32243, + "cate": 6357, + "cate": 24510, + "cated": 31823, + "categor": 17006, + "categori": 40117, + "categories": 19971, + "category": 9432, + "cater": 16634, + "cater": 38101, + "catering": 16697, + "caterpillar": 27111, + "catfish": 26077, + "cath": 9196, + "cath": 30811, + "cathar": 43784, + "cathe": 7174, + "cathedr": 46370, + "cathedral": 7865, + "catherine": 35035, + "catherine": 12339, + "catho": 7595, + "cathol": 16315, + "catholic": 20382, + "catholic": 7757, + "catholics": 36808, + "cathy": 40326, + "cathy": 22731, + "cation": 21367, + "cato": 33558, + "cats": 38800, + "cats": 3989, + "catsofinstagram": 39901, + "catsoftwitter": 17273, + "catt": 37339, + "cattle": 48799, + "cattle": 13644, + "caturday": 20892, + "catwalk": 36565, + "catwoman": 47251, + "cau": 1121, + "cau": 45529, + "caucus": 18847, + "caught": 4520, + "caul": 23460, + "cauley": 41682, + "caulfield": 44906, + "cauli": 20123, + "cauliflower": 23802, + "cause": 18982, + "cause": 1394, + "caused": 8940, + "causes": 9775, + "causeway": 35034, + "causing": 10779, + "caution": 15656, + "cautious": 36579, + "cav": 4942, + "cav": 45935, + "cava": 48682, + "caval": 24537, + "cavali": 20783, + "cavalier": 44488, + "cavaliers": 30194, + "cavalry": 32467, + "cave": 25441, + "cave": 9654, + "cavendish": 42945, + "caver": 41487, + "caves": 22096, + "cavi": 27360, + "caviar": 31228, + "cavill": 40492, + "cavity": 43156, + "cavs": 16800, + "caw": 38405, + "caw": 43804, + "cawx": 26739, + "cay": 11876, + "cay": 37399, + "cayenne": 43650, + "cayman": 33737, + "caz": 48451, + "cb": 4034, + "cb": 8830, + "cba": 38472, + "cbb": 31487, + "cbc": 14096, + "cbc": 14523, + "cbd": 13176, + "cbe": 43639, + "cbi": 30875, + "cbj": 35608, + "cbn": 26579, + "cbp": 46723, + "cbr": 28762, + "cbs": 16788, + "cbs": 8009, + "cc": 2976, + "cc": 2021, + "cca": 17987, + "ccc": 21856, + "ccd": 48556, + "ccg": 37755, + "cch": 21789, + "cchini": 28467, + "cci": 32942, + "cci": 8196, + "ccl": 43773, + "ccm": 40435, + "cco": 28786, + "ccot": 24950, + "ccp": 43045, + "ccs": 30400, + "cctv": 23097, + "ccu": 49023, + "cd": 4308, + "cd": 4480, + "cda": 45565, + "cdc": 41098, + "cdc": 25779, + "cdn": 8886, + "cdn": 26802, + "cdnpoli": 11645, + "cdo": 47187, + "cdp": 39624, + "cds": 20784, + "cdt": 18455, + "ce": 685, + "ce": 629, + "cea": 28355, + "cean": 34409, + "cean": 37295, + "cease": 32856, + "cease": 25499, + "ceasefire": 38291, + "cebu": 20146, + "cec": 29694, + "cec": 40029, + "cecil": 26987, + "cecil": 27169, + "cecilia": 35440, + "ced": 25634, + "ced": 2323, + "cedar": 24167, + "cedar": 13799, + "cedric": 36608, + "cee": 45966, + "cee": 15015, + "cees": 47914, + "ceil": 27275, + "ceiling": 12374, + "ceilings": 33770, + "cek": 45544, + "cel": 2269, + "cel": 7597, + "cele": 1314, + "celeb": 38862, + "celeb": 19393, + "celebr": 1372, + "celebrate": 31414, + "celebrate": 2694, + "celebrated": 9184, + "celebrates": 7564, + "celebrating": 3382, + "celebration": 4615, + "celebrations": 10825, + "celebratory": 34115, + "celebrities": 17071, + "celebrity": 23981, + "celebrity": 7320, + "celebs": 19803, + "celed": 25741, + "celer": 9621, + "celery": 30990, + "celeste": 29364, + "celesti": 29497, + "celestial": 32669, + "celi": 25567, + "celia": 44489, + "celine": 33644, + "cell": 9316, + "cell": 5533, + "cellar": 24282, + "cellars": 44976, + "cellence": 34687, + "cello": 23013, + "cellphone": 39029, + "cells": 8890, + "cellu": 16791, + "cellular": 23268, + "cels": 24021, + "celsius": 47057, + "celtic": 21897, + "celtic": 10523, + "celticfc": 38612, + "celtics": 16226, + "cem": 41435, + "ceme": 10517, + "cement": 4369, + "cements": 19448, + "cemetery": 11660, + "cen": 1306, + "cen": 30106, + "cena": 21591, + "cence": 24410, + "cency": 41259, + "cene": 30038, + "censor": 24230, + "censor": 44709, + "censored": 30951, + "censorship": 27284, + "census": 23677, + "cent": 1784, + "cent": 3662, + "centenary": 22422, + "centennial": 20895, + "center": 16651, + "center": 2119, + "centered": 24584, + "centers": 14494, + "centi": 48889, + "centime": 48687, + "centr": 2370, + "central": 13448, + "central": 3339, + "centre": 26310, + "centre": 2916, + "centred": 47925, + "centres": 19354, + "centri": 30872, + "centric": 19297, + "centro": 37178, + "cents": 11934, + "centu": 16818, + "centuri": 36816, + "centuries": 19014, + "century": 26134, + "century": 4275, + "ceo": 46340, + "ceo": 3559, + "ceos": 28332, + "cep": 2632, + "cep": 48714, + "ceph": 44343, + "cept": 3678, + "ception": 12346, + "cer": 1364, + "cer": 1925, + "cera": 34608, + "ceram": 10677, + "ceramic": 15112, + "ceramics": 22438, + "cere": 3984, + "cere": 22085, + "cereal": 17581, + "cereals": 48618, + "cerebral": 39073, + "ceremon": 15796, + "ceremonial": 33281, + "ceremonies": 21547, + "ceremony": 5193, + "cern": 44851, + "cers": 13638, + "cert": 27522, + "certain": 8526, + "certain": 7883, + "certainly": 10883, + "certainty": 20054, + "certi": 4888, + "certific": 9443, + "certificate": 11786, + "certificates": 25281, + "certification": 14735, + "certified": 9288, + "cerv": 25738, + "cervical": 35953, + "ces": 28715, + "ces": 1604, + "cesar": 37025, + "cesar": 28603, + "cess": 2314, + "cess": 1554, + "cessna": 36596, + "cest": 27245, + "cester": 15769, + "cester": 12718, + "cet": 14960, + "cett": 46708, + "ceu": 37457, + "cevic": 48369, + "cey": 20971, + "cf": 10189, + "cf": 11171, + "cfa": 34521, + "cfb": 32931, + "cfc": 11577, + "cfd": 46171, + "cfl": 46320, + "cfl": 22332, + "cfo": 26937, + "cfp": 40756, + "cfr": 44033, + "cfs": 32835, + "cg": 27118, + "cg": 14740, + "cgc": 38775, + "cgi": 30520, + "ch": 540, + "ch": 634, + "cha": 1587, + "cha": 4541, + "chab": 26670, + "chad": 13095, + "chad": 12923, + "chae": 9460, + "chaf": 38123, + "chag": 27989, + "chai": 31590, + "chai": 18919, + "chain": 13898, + "chain": 3946, + "chained": 34402, + "chains": 14438, + "chainsaw": 37617, + "chainz": 39687, + "chair": 4728, + "chair": 4269, + "chaired": 31664, + "chairing": 42205, + "chairman": 6901, + "chairperson": 31584, + "chairs": 12033, + "chak": 13702, + "chak": 41713, + "chakra": 38304, + "chakra": 33241, + "chal": 7397, + "chal": 30809, + "chale": 38099, + "chalet": 37907, + "chalk": 31362, + "chalk": 17846, + "chall": 2073, + "challeng": 4138, + "challenge": 29462, + "challenge": 2836, + "challenged": 17380, + "challenger": 18228, + "challengers": 46404, + "challenges": 6280, + "challenging": 11754, + "chalmers": 47955, + "cham": 1290, + "cham": 19951, + "chamber": 18983, + "chamber": 7642, + "chamberlain": 32756, + "chambers": 16501, + "chamele": 34759, + "chameleon": 41317, + "champ": 36813, + "champ": 6602, + "champag": 10283, + "champagne": 11007, + "champi": 1680, + "champion": 2643, + "champion": 3950, + "champions": 4227, + "championship": 3429, + "championships": 7047, + "championsleague": 27638, + "champs": 6240, + "chan": 1255, + "chan": 6704, + "chana": 48752, + "chanc": 13931, + "chance": 32940, + "chance": 2594, + "chancellor": 15886, + "chances": 10870, + "chand": 7126, + "chand": 41508, + "chandelier": 30570, + "chandi": 12482, + "chandigarh": 34106, + "chandler": 17595, + "chandra": 27082, + "chandra": 25348, + "chanel": 16951, + "chang": 2233, + "chang": 16461, + "change": 11608, + "change": 1799, + "changeable": 41335, + "changed": 4907, + "changer": 18406, + "changers": 35185, + "changes": 4938, + "changing": 40384, + "changing": 5621, + "changmin": 47410, + "chann": 8804, + "channel": 25837, + "channel": 3847, + "channeling": 28197, + "channels": 13961, + "channing": 37417, + "chant": 18165, + "chant": 13521, + "chanting": 32111, + "chants": 22723, + "chanyeol": 18805, + "chao": 31815, + "chaos": 10853, + "chaotic": 33501, + "chap": 3825, + "chap": 21939, + "chapel": 40859, + "chapel": 10137, + "chaplain": 38348, + "chaplin": 32545, + "chapman": 17968, + "chapp": 20634, + "chaps": 36823, + "chapter": 6014, + "chapters": 22936, + "char": 1054, + "char": 16017, + "chara": 35668, + "charac": 2792, + "character": 10997, + "character": 4009, + "characterdesign": 38149, + "characteri": 20920, + "characteristic": 44747, + "characteristics": 26037, + "characters": 6564, + "charan": 31851, + "charcoal": 19268, + "chard": 17524, + "chardon": 26599, + "chardonnay": 28161, + "charge": 25032, + "charge": 5948, + "chargeable": 35664, + "charged": 7916, + "charger": 13090, + "chargers": 17352, + "charges": 8962, + "charging": 12514, + "chariot": 38811, + "charis": 24449, + "charisma": 45041, + "charismatic": 37205, + "charitable": 23256, + "charities": 18493, + "charity": 20008, + "charity": 4607, + "charitytuesday": 42794, + "charl": 47736, + "charle": 10217, + "charles": 27983, + "charles": 5127, + "charleston": 15478, + "charley": 38027, + "charli": 21784, + "charli": 49392, + "charlie": 16764, + "charlie": 6393, + "charlotte": 18445, + "charlotte": 7871, + "charlottesville": 32027, + "charlton": 27048, + "charm": 10876, + "charmed": 39790, + "charming": 12177, + "charms": 21944, + "charred": 44085, + "chart": 42685, + "chart": 5053, + "charted": 27939, + "charter": 42345, + "charter": 13569, + "chartered": 31298, + "charters": 46626, + "charting": 39841, + "charts": 10728, + "chas": 10717, + "chas": 29838, + "chase": 21503, + "chase": 3859, + "chased": 30342, + "chaser": 29560, + "chasers": 34158, + "chases": 45011, + "chasing": 46909, + "chasing": 13376, + "chassis": 29188, + "chast": 42176, + "chasu": 41352, + "chat": 5355, + "chat": 2402, + "chatbots": 43994, + "chate": 30377, + "chateau": 44582, + "chateau": 23520, + "chath": 46849, + "chatham": 32030, + "chats": 13263, + "chatt": 21618, + "chattanoo": 28009, + "chattanooga": 29866, + "chatted": 34124, + "chatter": 33473, + "chatter": 41103, + "chatting": 12401, + "chatur": 33839, + "chau": 11263, + "chau": 37536, + "chauffe": 45440, + "chauhan": 46663, + "chav": 28997, + "chavez": 27480, + "chaw": 39639, + "chay": 45317, + "chaz": 47815, + "chc": 36233, + "chd": 41645, + "che": 983, + "che": 3842, + "chea": 39580, + "chead": 48358, + "cheap": 27036, + "cheap": 8678, + "cheape": 26164, + "cheaper": 17776, + "cheapest": 26640, + "cheat": 18180, + "cheated": 34285, + "cheating": 19722, + "chec": 1113, + "check": 7672, + "check": 1217, + "checked": 10387, + "checker": 45883, + "checkers": 48181, + "checking": 7441, + "checklist": 26989, + "checkout": 13101, + "checkpoint": 27531, + "checks": 13737, + "ched": 11341, + "ched": 2146, + "cheddar": 20551, + "chee": 5326, + "chee": 20944, + "cheek": 40000, + "cheek": 21227, + "cheeks": 23019, + "cheeky": 15068, + "cheer": 9733, + "cheer": 6918, + "cheered": 38111, + "cheerful": 28882, + "cheering": 14289, + "cheerleader": 29072, + "cheerleaders": 22343, + "cheerleading": 36366, + "cheers": 6562, + "chees": 15182, + "cheese": 10738, + "cheese": 4108, + "cheeseburger": 41200, + "cheesecake": 17803, + "cheeses": 36076, + "cheesy": 22093, + "cheetah": 27431, + "chef": 12137, + "chef": 4895, + "chefs": 14486, + "chek": 43745, + "chel": 3084, + "chel": 25970, + "chell": 46854, + "chelle": 30141, + "chelms": 34936, + "chelmsford": 39890, + "chelse": 19071, + "chelsea": 6031, + "chelseafc": 25927, + "chelten": 18889, + "cheltenham": 21589, + "chem": 5667, + "chem": 13698, + "chemi": 7179, + "chemical": 39376, + "chemical": 9208, + "chemicals": 17426, + "chemist": 23138, + "chemistry": 8841, + "chemo": 33095, + "chemo": 36348, + "chemotherapy": 41412, + "chemtrails": 46015, + "chen": 5907, + "chen": 8983, + "cheney": 43522, + "cheng": 32512, + "cheng": 30190, + "chenko": 29073, + "chennai": 28948, + "chennai": 12791, + "cheon": 11498, + "cheque": 28168, + "cher": 3597, + "cher": 3466, + "cheri": 26471, + "cherish": 20053, + "cherished": 42325, + "cherno": 35376, + "chernobyl": 40554, + "chero": 19844, + "cherokee": 22860, + "cherries": 27248, + "cherry": 21470, + "cherry": 7325, + "chers": 5789, + "chery": 38478, + "cheryl": 37784, + "cheryl": 20600, + "ches": 18346, + "ches": 1910, + "chesa": 28349, + "chesapeake": 32909, + "cheshire": 17130, + "chesney": 48747, + "chess": 27170, + "chess": 8397, + "chest": 18217, + "chest": 10563, + "chester": 10466, + "chester": 3343, + "chesterfield": 32975, + "chestnut": 21834, + "chet": 9663, + "chett": 24695, + "chev": 7152, + "chev": 41145, + "chevro": 12850, + "chevrolet": 13240, + "chevron": 33792, + "chevy": 16581, + "chew": 32645, + "chew": 22642, + "chewan": 23689, + "chewbacca": 49355, + "chewing": 31486, + "chewy": 42940, + "chey": 26968, + "chey": 31208, + "cheyenne": 34805, + "chez": 49183, + "chez": 10556, + "chf": 33021, + "chfield": 41619, + "chhat": 34127, + "chhattisgarh": 44246, + "chi": 1337, + "chi": 4039, + "chia": 19147, + "chiang": 33764, + "chibi": 22306, + "chic": 2627, + "chic": 9091, + "chica": 44190, + "chicag": 16778, + "chicago": 15038, + "chicago": 3530, + "chicagof": 40638, + "chicagofire": 46576, + "chicas": 40664, + "chichester": 43823, + "chick": 3170, + "chick": 11238, + "chicken": 26322, + "chicken": 3717, + "chickens": 21658, + "chickpea": 48109, + "chicks": 17810, + "chico": 30379, + "chie": 40046, + "chie": 12388, + "chief": 16830, + "chief": 3455, + "chiefs": 11419, + "chiev": 47761, + "chiff": 27407, + "chiffon": 31817, + "chig": 42952, + "chihu": 22857, + "chihuahu": 25437, + "chihuahua": 30181, + "chik": 45455, + "chil": 1333, + "child": 4392, + "child": 2913, + "childcare": 31133, + "childhood": 34772, + "childhood": 7551, + "childish": 31939, + "childre": 2135, + "children": 11101, + "children": 2153, + "childrens": 31551, + "childrens": 21553, + "childs": 39521, + "chile": 10022, + "chilean": 33186, + "chili": 13033, + "chill": 6498, + "chill": 6382, + "chilled": 23540, + "chillen": 45160, + "chilli": 26787, + "chilli": 17067, + "chillin": 10347, + "chilling": 10179, + "chillout": 39842, + "chills": 25460, + "chilly": 14450, + "chim": 10543, + "chimney": 26821, + "chimp": 44374, + "chin": 6555, + "chin": 8979, + "china": 38943, + "china": 2817, + "chinatown": 28582, + "chine": 4013, + "chinese": 30568, + "chinese": 4271, + "ching": 34621, + "ching": 1439, + "chino": 47181, + "chino": 27440, + "chinook": 41577, + "chinson": 33786, + "chio": 19650, + "chip": 19271, + "chip": 8730, + "chipmun": 46384, + "chipot": 17702, + "chipotle": 19284, + "chipp": 39854, + "chippe": 46541, + "chipped": 39892, + "chipping": 40323, + "chips": 8855, + "chir": 15564, + "chiro": 23413, + "chiroprac": 25987, + "chiropractic": 34437, + "chis": 19920, + "chistan": 20523, + "chiswick": 47290, + "chit": 13515, + "chit": 45626, + "chita": 49184, + "chitec": 39862, + "chive": 29222, + "chives": 34921, + "chk": 47424, + "chl": 38592, + "chley": 47748, + "chlo": 10374, + "chloe": 39966, + "chloe": 13992, + "chlor": 23135, + "chman": 35835, + "chment": 20848, + "chner": 48277, + "cho": 1327, + "cho": 5150, + "choa": 43077, + "choc": 32772, + "choc": 21983, + "choco": 46285, + "choco": 32692, + "chocol": 3443, + "chocolat": 44631, + "chocolate": 29389, + "chocolate": 3820, + "chocolates": 24120, + "choi": 23749, + "choic": 35606, + "choice": 23857, + "choice": 4051, + "choices": 11016, + "choir": 9214, + "choirs": 43277, + "choke": 30231, + "choked": 43521, + "choker": 39642, + "choking": 39993, + "chol": 19802, + "cholera": 45999, + "cholester": 26861, + "cholesterol": 27982, + "chom": 25151, + "chon": 20416, + "chon": 21601, + "chondri": 37379, + "chong": 26220, + "choo": 3869, + "choo": 24437, + "chool": 29578, + "chools": 41958, + "choose": 22756, + "choose": 5073, + "chooses": 29923, + "choosing": 13475, + "chop": 10458, + "chop": 16663, + "chopin": 42256, + "chopped": 22580, + "chopper": 24011, + "chopping": 35375, + "chopra": 24258, + "chops": 26321, + "chor": 7567, + "chor": 47795, + "choral": 26684, + "chord": 33005, + "chords": 36152, + "choreo": 17443, + "choreographer": 35952, + "choreography": 32749, + "chores": 40483, + "chori": 25718, + "chorizo": 30802, + "chorus": 20869, + "chos": 26559, + "chose": 11090, + "chosen": 10044, + "chou": 16960, + "chou": 42917, + "choudhary": 45503, + "chow": 20257, + "chow": 21657, + "chowder": 37886, + "chp": 35896, + "chr": 36918, + "chri": 1135, + "chris": 9907, + "chris": 2978, + "chrisbrown": 41035, + "chriss": 46745, + "chrissy": 44762, + "chrissy": 40485, + "christ": 1403, + "christ": 6703, + "christchurch": 27100, + "christen": 31956, + "christensen": 42226, + "christi": 3328, + "christi": 33213, + "christian": 11792, + "christian": 4729, + "christianity": 20000, + "christians": 14842, + "christie": 16084, + "christin": 30189, + "christina": 15925, + "christine": 42610, + "christine": 14712, + "christma": 12039, + "christmas": 18174, + "christmas": 1677, + "christmaseve": 44381, + "christmass": 44873, + "christop": 7917, + "christoph": 47844, + "christophe": 45486, + "christopher": 33349, + "christopher": 9630, + "christy": 28331, + "chro": 13207, + "chromatic": 44207, + "chrome": 24843, + "chrome": 9529, + "chromo": 35809, + "chron": 5577, + "chron": 39781, + "chronic": 10115, + "chronic": 13677, + "chronicle": 20034, + "chronicles": 18905, + "chrono": 29387, + "chronograph": 38397, + "chry": 13508, + "chrysler": 20078, + "chs": 40277, + "chs": 8391, + "chsnews": 44919, + "cht": 11384, + "chter": 47811, + "chu": 3799, + "chu": 13622, + "chubby": 29109, + "chuck": 13211, + "chuck": 9894, + "chuckle": 35733, + "chucky": 42026, + "chuffed": 27233, + "chuk": 25878, + "chuk": 27221, + "chul": 33001, + "chum": 46869, + "chum": 41767, + "chun": 14693, + "chun": 25391, + "chung": 28418, + "chunk": 30275, + "chunks": 45538, + "chunky": 27978, + "chups": 46331, + "chur": 2309, + "church": 14956, + "church": 2735, + "churches": 15539, + "churchill": 17527, + "chus": 36246, + "chut": 28788, + "chutney": 36261, + "chy": 15131, + "chy": 8096, + "chyna": 43398, + "châ": 48669, + "ci": 698, + "ci": 5798, + "cia": 4019, + "cial": 1143, + "cian": 32323, + "ciao": 37677, + "ciara": 31369, + "cible": 28873, + "cic": 14539, + "cic": 21517, + "cid": 27359, + "cide": 34178, + "cider": 13547, + "cides": 41326, + "cie": 19730, + "cier": 24067, + "cies": 6785, + "cif": 35698, + "cigar": 26031, + "cigar": 16525, + "cigare": 13044, + "cigarette": 18548, + "cigarettes": 22750, + "cigars": 20750, + "cii": 42408, + "cil": 9217, + "cil": 2998, + "cilan": 33998, + "cilantro": 34568, + "cili": 18977, + "ciliation": 25294, + "cim": 30021, + "cin": 2396, + "cin": 25367, + "cina": 39467, + "cincin": 13291, + "cincinnati": 14197, + "cinco": 25131, + "cincode": 40930, + "cincodemayo": 42542, + "cincy": 30015, + "cincy": 30286, + "cinde": 20660, + "cinderella": 21515, + "cindy": 34439, + "cindy": 18532, + "cine": 4015, + "cine": 27451, + "cinema": 38251, + "cinema": 6443, + "cinemas": 14845, + "cinematic": 25602, + "cinemato": 21919, + "cinematographer": 39059, + "cinematography": 33802, + "ciner": 39882, + "cing": 4014, + "cini": 25699, + "cinnam": 12768, + "cinnamon": 13460, + "cino": 18616, + "cio": 44584, + "cio": 9954, + "cion": 22024, + "ciones": 37155, + "cious": 38466, + "cip": 32884, + "cir": 2459, + "cir": 41135, + "circa": 10411, + "circle": 33574, + "circle": 7117, + "circles": 19411, + "circling": 46036, + "circu": 5143, + "circuit": 35583, + "circuit": 9801, + "circuits": 33260, + "circul": 16618, + "circular": 19733, + "circulare": 39525, + "circulareconomy": 39878, + "circulated": 46258, + "circulating": 42980, + "circulation": 27880, + "circum": 13406, + "circumstances": 18786, + "circus": 11833, + "cirque": 36049, + "cis": 9459, + "cis": 23513, + "cisco": 36689, + "cisco": 19290, + "cise": 19657, + "cisely": 33434, + "cision": 41957, + "cism": 24166, + "cist": 40906, + "cit": 4420, + "cit": 31294, + "citadel": 38036, + "citation": 33581, + "cite": 32641, + "cited": 25069, + "cites": 34490, + "citi": 4280, + "citi": 30270, + "cities": 5441, + "citing": 29088, + "citiz": 5816, + "citizen": 11720, + "citizen": 9814, + "citizens": 7949, + "citizenship": 17386, + "cito": 42636, + "citro": 27941, + "citroen": 35805, + "citrus": 17379, + "city": 5002, + "city": 1305, + "cityfc": 28751, + "cityo": 25709, + "cityof": 11595, + "cityscape": 40808, + "ciu": 39693, + "cius": 42559, + "civ": 40039, + "civic": 32240, + "civic": 11888, + "civil": 6923, + "civil": 6450, + "civilian": 21187, + "civilians": 18076, + "civilization": 22503, + "civilwar": 34524, + "ción": 44700, + "cj": 15238, + "cj": 15205, + "ck": 916, + "ck": 868, + "cke": 25224, + "cke": 40989, + "cked": 3441, + "cken": 25566, + "cker": 15509, + "cker": 4744, + "ckers": 37073, + "cket": 5525, + "ckett": 33899, + "ckey": 15029, + "ckey": 3657, + "cki": 36916, + "cki": 41055, + "cking": 4805, + "cko": 28818, + "cks": 2031, + "cky": 26229, + "cky": 3083, + "cl": 969, + "cl": 6482, + "cla": 940, + "cla": 20636, + "clad": 31606, + "cladding": 46411, + "clai": 29459, + "claim": 4290, + "claim": 6607, + "claimed": 9010, + "claiming": 15286, + "claims": 6852, + "clair": 31441, + "clair": 14039, + "claire": 20410, + "claire": 10460, + "clam": 13588, + "clam": 32598, + "clamation": 21793, + "clamp": 41501, + "clams": 38849, + "clan": 29252, + "clan": 14114, + "clancy": 37227, + "clans": 38279, + "clap": 30037, + "clap": 25546, + "clapham": 43619, + "clapton": 37683, + "clar": 3617, + "clara": 19468, + "clare": 18948, + "clare": 15927, + "claremont": 47789, + "clarence": 29320, + "clari": 15175, + "clarify": 37004, + "clarinet": 41178, + "clarity": 21323, + "clark": 13340, + "clark": 7521, + "clarke": 11548, + "clarkson": 25706, + "clas": 32003, + "clash": 38367, + "clash": 9359, + "clashes": 25193, + "clasico": 43567, + "class": 2876, + "class": 1874, + "classes": 6919, + "classi": 2507, + "classic": 9353, + "classic": 2713, + "classical": 22179, + "classical": 11355, + "classicalmusic": 27806, + "classiccar": 46906, + "classiccars": 21064, + "classics": 10634, + "classification": 26612, + "classified": 22056, + "classmate": 37090, + "classmates": 30062, + "classof": 25345, + "classroom": 9001, + "classrooms": 25768, + "classy": 11615, + "clau": 7526, + "claude": 17461, + "claudi": 39439, + "claudia": 21893, + "claudio": 31230, + "claus": 23317, + "clause": 26151, + "clave": 24111, + "claw": 49230, + "claw": 19106, + "claws": 29161, + "clay": 10402, + "clay": 8823, + "clays": 26128, + "clayton": 46445, + "clayton": 19413, + "clc": 31380, + "cle": 1321, + "cle": 2537, + "clean": 3572, + "clean": 3772, + "cleaned": 17468, + "cleanenergy": 43538, + "cleaner": 15619, + "cleaners": 33258, + "cleaning": 7210, + "cleanliness": 47886, + "cleans": 40827, + "cleanse": 28717, + "cleanser": 44170, + "cleansing": 25931, + "cleanup": 22353, + "clear": 4631, + "clear": 3143, + "clearance": 17959, + "cleared": 14880, + "clearer": 37031, + "clearing": 15481, + "clearly": 7767, + "clears": 29092, + "clearwater": 32124, + "cleary": 44342, + "cleats": 33486, + "cleavage": 44165, + "cled": 12827, + "clegg": 42915, + "clemens": 45896, + "clement": 22592, + "clement": 24714, + "clemente": 42461, + "clementine": 47112, + "clements": 49175, + "clemson": 38170, + "clemson": 19537, + "clen": 35547, + "cleo": 40344, + "cleop": 36287, + "cleopatra": 41212, + "cler": 11828, + "clergy": 42635, + "cleric": 43748, + "clerk": 22230, + "clermont": 47529, + "cles": 8077, + "cleve": 37599, + "clevel": 7701, + "cleveland": 30716, + "cleveland": 8430, + "clever": 30977, + "clever": 13385, + "clg": 47546, + "cli": 1503, + "clich": 44407, + "click": 16676, + "click": 3585, + "clicked": 29015, + "clicking": 26542, + "clicks": 31250, + "client": 48528, + "client": 7467, + "clients": 8114, + "clif": 13182, + "cliff": 23827, + "cliff": 10625, + "cliffe": 15170, + "clifford": 24226, + "cliffs": 20953, + "clifton": 23878, + "climat": 37283, + "climate": 7854, + "climate": 4589, + "climateaction": 31622, + "climatechange": 11055, + "climates": 46022, + "climax": 37033, + "climb": 7421, + "climb": 10649, + "climbed": 22528, + "climber": 36910, + "climbers": 47648, + "climbing": 9877, + "climbs": 29098, + "clin": 2879, + "clinch": 30404, + "clinched": 44064, + "cline": 37460, + "cling": 37068, + "cling": 4760, + "clinic": 7926, + "clinical": 35133, + "clinical": 9148, + "clinicians": 45866, + "clinics": 23330, + "clint": 37542, + "clint": 21160, + "clinton": 34403, + "clinton": 5820, + "clio": 46889, + "clip": 39712, + "clip": 9289, + "clipped": 45524, + "clipper": 42245, + "clippers": 23319, + "clipping": 47484, + "clips": 16594, + "clique": 34983, + "clive": 36086, + "clive": 21509, + "cll": 46091, + "cllr": 45743, + "cllr": 23034, + "clo": 1194, + "cloak": 36528, + "clock": 19878, + "clock": 6716, + "clocked": 49049, + "clocks": 25895, + "clockwise": 46150, + "clockwork": 42297, + "clon": 24477, + "clone": 22854, + "clones": 48047, + "clooney": 33161, + "clos": 48821, + "close": 10603, + "close": 2660, + "closed": 4552, + "closely": 13478, + "closer": 6377, + "closes": 11354, + "closest": 14975, + "closet": 14221, + "closeup": 35439, + "closing": 7101, + "closure": 13249, + "closures": 22923, + "cloth": 14559, + "clothes": 7080, + "clothing": 7425, + "clou": 4069, + "cloud": 12965, + "cloud": 3887, + "cloudcomputing": 41390, + "clouds": 6244, + "cloudy": 13106, + "clough": 42909, + "clover": 39574, + "clover": 22812, + "clow": 18386, + "clown": 15329, + "clowns": 30820, + "cls": 44251, + "clt": 29651, + "clt": 24236, + "clu": 996, + "club": 9642, + "club": 1736, + "clubbing": 48128, + "clubhouse": 26553, + "clubs": 9437, + "clue": 14994, + "clueless": 35350, + "clues": 23764, + "clusive": 41362, + "cluster": 15595, + "clusters": 33217, + "clut": 28507, + "clutch": 13953, + "clutter": 40804, + "cly": 12037, + "clyde": 39557, + "clyde": 18469, + "cm": 10190, + "cm": 3741, + "cma": 30554, + "cma": 31388, + "cmc": 45839, + "cmdr": 48250, + "cme": 34946, + "cmo": 24589, + "cmon": 42904, + "cmp": 46355, + "cms": 22520, + "cmt": 42727, + "cmu": 43046, + "cn": 3886, + "cn": 16200, + "cna": 48287, + "cnbc": 41242, + "cnbc": 24371, + "cnblue": 36018, + "cnc": 20571, + "cnet": 47487, + "cnews": 24319, + "cng": 41496, + "cnn": 22405, + "cnn": 8259, + "cns": 46095, + "cny": 31614, + "co": 622, + "co": 1320, + "coa": 29167, + "coach": 3275, + "coach": 2312, + "coached": 30228, + "coachella": 20222, + "coaches": 6924, + "coaching": 7766, + "coal": 10227, + "coal": 7919, + "coalition": 12920, + "coast": 6398, + "coast": 3720, + "coastal": 38246, + "coastal": 10852, + "coaster": 15944, + "coasters": 31548, + "coastguard": 40601, + "coastline": 27959, + "coasts": 42225, + "coat": 28869, + "coat": 7356, + "coated": 23401, + "coates": 36899, + "coating": 25369, + "coatings": 48706, + "coats": 18075, + "cob": 20140, + "cob": 32863, + "cobain": 36866, + "cobalt": 30896, + "cobb": 22719, + "cobble": 47894, + "cobra": 21574, + "coc": 23036, + "coc": 39498, + "coca": 21197, + "cocac": 26393, + "cocacola": 31248, + "cocaine": 20534, + "coch": 18599, + "cochran": 48798, + "cochrane": 41752, + "coco": 11850, + "coco": 13316, + "cocoa": 18074, + "cocon": 8597, + "coconut": 9581, + "cod": 16132, + "cod": 11915, + "code": 11582, + "code": 3217, + "coded": 33703, + "coden": 43914, + "coder": 41561, + "codes": 14566, + "codi": 39711, + "coding": 12647, + "cody": 23222, + "cody": 12666, + "coe": 15386, + "coed": 41028, + "coel": 45633, + "coer": 41198, + "coeur": 44986, + "coffe": 2255, + "coffee": 12898, + "coffee": 2453, + "coffees": 41184, + "coffey": 48066, + "cofficial": 18757, + "coffin": 29907, + "cog": 26362, + "cog": 35960, + "cogn": 12210, + "cognac": 44361, + "cognition": 46825, + "cognitive": 16584, + "cohe": 20669, + "cohen": 13381, + "coherent": 48450, + "cohort": 22782, + "coil": 25307, + "coim": 41528, + "coin": 14651, + "coin": 4170, + "coinci": 14015, + "coincidence": 19807, + "coins": 10530, + "coke": 39602, + "coke": 14035, + "col": 754, + "col": 9371, + "cola": 15444, + "colbert": 31647, + "colby": 32068, + "colchester": 31715, + "cold": 11146, + "cold": 3153, + "colder": 23859, + "coldest": 31438, + "coldplay": 27770, + "cole": 9305, + "cole": 8166, + "coleman": 15774, + "coles": 40265, + "coles": 30398, + "coli": 18877, + "coli": 15910, + "colin": 20989, + "colin": 10238, + "coliseum": 21836, + "coll": 25982, + "coll": 23898, + "colla": 2929, + "collab": 14013, + "collabor": 4437, + "collaborate": 21271, + "collaborated": 42265, + "collaborating": 25545, + "collaboration": 6642, + "collaborations": 36520, + "collaborative": 15841, + "collaborator": 48186, + "collaborators": 45901, + "collage": 11258, + "collagen": 36120, + "collap": 16881, + "collapse": 16520, + "collapsed": 25037, + "collapses": 43601, + "collar": 39662, + "collar": 13497, + "collateral": 44512, + "colle": 1801, + "colleague": 13067, + "colleagues": 8203, + "collec": 1733, + "collect": 10186, + "collected": 11980, + "collecti": 18530, + "collectible": 25680, + "collectibles": 21519, + "collecting": 10325, + "collection": 2548, + "collections": 12760, + "collective": 10162, + "collectively": 40687, + "collector": 13522, + "collectors": 20540, + "collects": 31576, + "colleen": 31020, + "college": 13512, + "college": 2229, + "colleges": 17357, + "collegi": 16311, + "collegiate": 18068, + "colli": 8262, + "collide": 27214, + "collie": 30611, + "collier": 35748, + "collin": 24056, + "collin": 32116, + "colling": 32319, + "collingwood": 45873, + "collins": 8684, + "collision": 15407, + "collo": 25115, + "colloqui": 37243, + "colloquium": 46514, + "collu": 25658, + "collusion": 33864, + "colo": 7300, + "colo": 27288, + "cologne": 22216, + "cology": 19187, + "colom": 8987, + "colombia": 12901, + "colombian": 28701, + "colombo": 33207, + "colon": 8280, + "colon": 29050, + "colonel": 22674, + "coloni": 22667, + "colonial": 16530, + "colonialism": 43385, + "colonies": 38738, + "colony": 18767, + "color": 4036, + "color": 3140, + "colorado": 34580, + "colorado": 6742, + "colorec": 41171, + "colored": 11775, + "colorful": 11444, + "colori": 28764, + "coloring": 17696, + "colorized": 46730, + "colors": 5389, + "colorstv": 28195, + "colorway": 44576, + "colossal": 40258, + "colosse": 48142, + "colossus": 34022, + "colour": 10240, + "colour": 4769, + "coloured": 17111, + "colourful": 15562, + "colouring": 31803, + "colours": 7626, + "cols": 35726, + "colt": 19726, + "colton": 32249, + "coltrane": 42333, + "colts": 16135, + "colum": 4164, + "columb": 31043, + "columbi": 25947, + "columbia": 9410, + "columbus": 11273, + "column": 10593, + "columnist": 28958, + "columns": 29056, + "com": 610, + "com": 2464, + "coma": 19620, + "comb": 3587, + "comb": 16380, + "combat": 35083, + "combat": 9275, + "combating": 46121, + "combe": 14363, + "combin": 25112, + "combination": 11312, + "combinations": 34950, + "combine": 12919, + "combined": 10427, + "combines": 22991, + "combining": 23561, + "combo": 10155, + "combos": 48117, + "combs": 30694, + "combu": 35629, + "combustion": 44654, + "comcast": 30043, + "come": 4225, + "come": 891, + "comeback": 8234, + "comedian": 13848, + "comedians": 33758, + "comedic": 43360, + "comedy": 19346, + "comedy": 4749, + "comer": 42997, + "comer": 20916, + "comers": 34436, + "comes": 2091, + "comet": 21405, + "comets": 40636, + "comey": 22957, + "comfor": 6563, + "comfort": 44000, + "comfort": 7808, + "comfortable": 8652, + "comfortably": 30392, + "comforting": 33835, + "comforts": 42243, + "comfy": 15736, + "comi": 40781, + "comic": 7729, + "comic": 4962, + "comicart": 46018, + "comicbook": 46564, + "comicbooks": 22018, + "comiccon": 18379, + "comicon": 43820, + "comics": 4256, + "comin": 18164, + "coming": 14916, + "coming": 1171, + "comingsoon": 19894, + "comm": 965, + "comm": 11413, + "comman": 39780, + "command": 18391, + "command": 11350, + "commander": 11265, + "commanders": 41667, + "commanding": 36933, + "commandments": 43409, + "commando": 31361, + "commands": 38163, + "comme": 29692, + "commemor": 9495, + "commemorate": 21242, + "commemorates": 45149, + "commemorating": 28734, + "commemoration": 29288, + "commemorative": 24623, + "commen": 15795, + "commence": 25059, + "commenced": 43908, + "commencement": 21666, + "commences": 48551, + "commend": 37555, + "commended": 40702, + "comment": 20035, + "comment": 5761, + "commentary": 14146, + "commentator": 32016, + "commented": 28328, + "commenting": 37292, + "comments": 6606, + "commer": 4028, + "commerce": 8333, + "commerci": 15601, + "commercial": 31802, + "commercial": 6287, + "commercials": 30724, + "commish": 45399, + "commissi": 6000, + "commission": 5292, + "commissioned": 16565, + "commissioner": 10221, + "commissioners": 30702, + "commissioning": 29585, + "commissions": 20668, + "commit": 3041, + "commit": 11797, + "commitment": 7770, + "commitments": 32136, + "commits": 20241, + "committed": 7907, + "committee": 5636, + "committees": 40504, + "committing": 21937, + "commod": 9496, + "commodities": 30350, + "commodity": 29041, + "commodore": 31129, + "common": 8414, + "common": 4176, + "commonly": 20344, + "commons": 16653, + "commonwealth": 16569, + "comms": 18832, + "commu": 9561, + "commun": 1515, + "communal": 32809, + "communi": 16164, + "communic": 4784, + "communicate": 19809, + "communication": 7999, + "communications": 10052, + "communion": 28579, + "communism": 35387, + "communist": 18602, + "communities": 6361, + "community": 14784, + "community": 1927, + "commute": 15898, + "commuter": 27782, + "commuters": 30823, + "commuting": 43503, + "como": 16236, + "comp": 2561, + "comp": 11679, + "compac": 40014, + "compact": 13690, + "compan": 1995, + "companies": 5361, + "companion": 14963, + "companions": 37124, + "company": 2634, + "compar": 7580, + "comparable": 27092, + "comparative": 33388, + "compare": 13771, + "compared": 10544, + "compares": 25104, + "comparing": 20564, + "comparison": 14186, + "comparisons": 40870, + "compart": 30072, + "compartment": 40383, + "compass": 19438, + "compassion": 14463, + "compassionate": 30193, + "compati": 17295, + "compatibility": 41614, + "compatible": 21286, + "compe": 5254, + "compelled": 49375, + "compelling": 21766, + "compen": 42079, + "compens": 15172, + "compensation": 18663, + "compet": 2932, + "compete": 10038, + "competed": 27767, + "competen": 31853, + "competence": 31165, + "competency": 49293, + "competent": 28113, + "competes": 39826, + "competing": 13068, + "competit": 15892, + "competiti": 32581, + "competition": 3742, + "competitions": 23259, + "competitive": 10687, + "competitiveness": 43209, + "competitor": 26633, + "competitors": 23638, + "compilation": 20446, + "compiled": 34579, + "compla": 7428, + "complain": 19292, + "complained": 42029, + "complaining": 20812, + "complains": 46363, + "complaint": 20391, + "complaints": 20020, + "comple": 1730, + "complement": 36624, + "complementary": 48953, + "complete": 3263, + "completed": 5976, + "completely": 5989, + "completes": 19321, + "completing": 14949, + "completion": 15915, + "complex": 16099, + "complex": 6324, + "complexes": 47870, + "complexion": 47732, + "complexity": 24815, + "compli": 5270, + "compliance": 14658, + "compliant": 29893, + "complic": 11460, + "complicated": 16621, + "complications": 29936, + "compliment": 25116, + "complimentary": 20948, + "compliments": 25477, + "comply": 36281, + "component": 21284, + "components": 16816, + "compos": 7783, + "compose": 43659, + "composed": 19916, + "composer": 12104, + "composers": 33314, + "composing": 40412, + "composite": 21606, + "composites": 45395, + "composition": 17510, + "compositions": 44652, + "compost": 46002, + "compost": 33307, + "compound": 19980, + "compounds": 33991, + "compre": 8483, + "compreh": 42976, + "comprehen": 12050, + "comprehend": 48230, + "comprehensive": 13854, + "compress": 33353, + "compressed": 42359, + "compression": 25638, + "compressor": 39607, + "compri": 29445, + "compromise": 26611, + "compromised": 38576, + "compromising": 45436, + "comps": 48665, + "compton": 28364, + "compu": 11639, + "compul": 25869, + "compulsory": 39345, + "computing": 12732, + "comra": 25553, + "comrade": 30844, + "comrades": 29282, + "coms": 30493, + "con": 616, + "con": 2457, + "cona": 30605, + "conan": 24750, + "conce": 9145, + "concealed": 35419, + "conceded": 37895, + "conceived": 39725, + "concentr": 11085, + "concentrate": 30846, + "concentrated": 36776, + "concentration": 18565, + "concep": 8389, + "concepcion": 47035, + "concept": 6353, + "conceptart": 31162, + "conception": 30510, + "conceptions": 40307, + "concepts": 16763, + "conceptu": 42745, + "conceptual": 34070, + "concer": 2228, + "concern": 12928, + "concerned": 12020, + "concerning": 21772, + "concerns": 11134, + "concert": 32180, + "concert": 3066, + "concerto": 24710, + "concerts": 14418, + "concession": 38117, + "concessions": 43981, + "concier": 28859, + "concierge": 39850, + "conclave": 38098, + "conclu": 9627, + "conclude": 37525, + "concluded": 27825, + "concludes": 30634, + "conclusion": 20932, + "conclusions": 39507, + "conco": 43034, + "concor": 19913, + "concord": 26448, + "concordia": 35492, + "concours": 36282, + "concourse": 37793, + "concre": 43658, + "concrete": 9637, + "concussion": 28321, + "condem": 13287, + "condemn": 27212, + "condemned": 35145, + "condemns": 32092, + "conden": 24816, + "conditi": 11170, + "condition": 36978, + "condition": 7336, + "conditional": 24671, + "conditioned": 37014, + "conditioner": 31239, + "conditioning": 18181, + "conditions": 5892, + "condo": 19952, + "condol": 18661, + "condolences": 20836, + "condom": 39021, + "condomin": 42589, + "condoms": 37878, + "condor": 47643, + "condos": 42342, + "condu": 40772, + "conduc": 5379, + "conduct": 11647, + "conducted": 13080, + "conducting": 16787, + "conductor": 22317, + "conducts": 32084, + "cone": 39279, + "cone": 10266, + "cones": 26718, + "coney": 41837, + "conf": 6477, + "confe": 1968, + "confeder": 17104, + "confederate": 24864, + "confederation": 43484, + "conferen": 37961, + "conference": 2230, + "conferences": 22811, + "conferencing": 47320, + "confess": 38860, + "confession": 22572, + "confessions": 29404, + "confetti": 37923, + "confi": 5005, + "confidence": 8510, + "confident": 12365, + "confidential": 28712, + "configu": 46746, + "configur": 26950, + "configuration": 33378, + "confin": 45316, + "confined": 40973, + "confir": 3930, + "confirm": 12130, + "confirmation": 19645, + "confirmed": 6346, + "confirming": 38433, + "confirms": 11803, + "confis": 36285, + "confit": 42241, + "confl": 8173, + "conflic": 19029, + "conflict": 10397, + "conflicting": 43894, + "conflicts": 28713, + "confor": 40933, + "confron": 20033, + "confront": 38382, + "confrontation": 41478, + "confu": 6890, + "confuse": 37503, + "confused": 10946, + "confusing": 24683, + "confusion": 20493, + "cong": 24407, + "conge": 20013, + "congestion": 24432, + "congo": 20334, + "congr": 1227, + "congrats": 1887, + "congratul": 1750, + "congratulate": 16633, + "congratulated": 42004, + "congratulates": 24580, + "congratulating": 30967, + "congratulation": 24751, + "congratulations": 1864, + "congre": 7947, + "congreg": 40727, + "congregation": 32618, + "congress": 12452, + "congress": 4599, + "congressional": 15239, + "congressman": 17145, + "congresswoman": 37317, + "coni": 39031, + "coni": 36651, + "conj": 41543, + "conju": 33821, + "conjunction": 34226, + "conley": 44536, + "conline": 37593, + "conn": 41836, + "conn": 20329, + "conne": 8437, + "connec": 29933, + "connect": 19969, + "connected": 27506, + "connecting": 41429, + "connection": 26840, + "connections": 37161, + "connie": 25739, + "connoisse": 46012, + "connol": 27739, + "connolly": 29537, + "connor": 21984, + "connor": 10218, + "conom": 2664, + "conomy": 22529, + "conor": 29955, + "conor": 19478, + "conqu": 13382, + "conquer": 38585, + "conquer": 19821, + "conquered": 27099, + "conquering": 43778, + "conquest": 35367, + "conrad": 22073, + "cons": 10311, + "consci": 9427, + "conscience": 27310, + "conscious": 14914, + "consciously": 46755, + "consciousness": 17894, + "conse": 34887, + "consecu": 12084, + "consecutive": 12413, + "consen": 23110, + "consensus": 25071, + "consent": 21922, + "consequ": 13003, + "consequence": 42262, + "consequences": 15682, + "conserv": 4649, + "conservancy": 46729, + "conservation": 37616, + "conservation": 8322, + "conservative": 11421, + "conservatives": 17631, + "conservatory": 32140, + "conserve": 34231, + "consi": 2899, + "consider": 12471, + "consider": 6734, + "considerable": 38256, + "considerably": 38510, + "consideration": 24310, + "considerations": 33700, + "considered": 9487, + "considering": 10761, + "considers": 24691, + "consist": 10410, + "consist": 33735, + "consisted": 49354, + "consistency": 25683, + "consistent": 16439, + "consistently": 23799, + "consisting": 39241, + "consists": 23458, + "consol": 27869, + "consolation": 38888, + "console": 13403, + "consoles": 33136, + "consoli": 21586, + "consolidation": 41111, + "consor": 27108, + "consortium": 29988, + "conspir": 12680, + "conspiracy": 15236, + "const": 3826, + "constable": 29179, + "constan": 38718, + "constance": 40682, + "constant": 32000, + "constant": 13111, + "constantine": 30640, + "constantly": 14336, + "constell": 21913, + "constellation": 25991, + "constitu": 6299, + "constituency": 22464, + "constituents": 32075, + "constitution": 12157, + "constitutional": 16091, + "constra": 28973, + "constraints": 41910, + "constru": 3983, + "construc": 13321, + "construct": 24467, + "constructed": 16876, + "constructing": 33653, + "construction": 48873, + "construction": 4585, + "constructive": 31810, + "consu": 4689, + "consul": 5295, + "consul": 33630, + "consulate": 34341, + "consult": 9438, + "consult": 26727, + "consultancy": 31735, + "consultant": 14196, + "consultants": 27203, + "consultation": 15777, + "consultations": 43424, + "consulting": 15883, + "consume": 28919, + "consumed": 29653, + "consumer": 34408, + "consumer": 10422, + "consumers": 14014, + "consuming": 30607, + "consumption": 14904, + "cont": 2036, + "cont": 21425, + "contact": 39367, + "contact": 3523, + "contacted": 37331, + "contacts": 22789, + "contag": 29259, + "contagious": 33984, + "contain": 9948, + "contain": 15187, + "contained": 23836, + "container": 14913, + "containers": 20448, + "containing": 20281, + "contains": 12844, + "contamin": 24662, + "contaminated": 35773, + "contamination": 31770, + "conte": 15402, + "conte": 26882, + "contempl": 21924, + "contemplating": 33854, + "contempor": 14538, + "contemporary": 16607, + "contemporary": 8859, + "contemporaryart": 20212, + "contempt": 39293, + "conten": 42201, + "contender": 23573, + "contenders": 29711, + "content": 15526, + "content": 4750, + "contentmarketing": 20429, + "contents": 14850, + "contest": 23103, + "contest": 4576, + "contestalert": 27313, + "contestant": 25682, + "contestants": 28062, + "contested": 37845, + "contests": 32210, + "contex": 42015, + "context": 13089, + "conti": 46431, + "conti": 40842, + "contin": 1918, + "continent": 19623, + "continental": 14089, + "continents": 38642, + "conting": 27104, + "contingent": 36467, + "continu": 4688, + "continually": 34086, + "continuation": 38964, + "continue": 3942, + "continued": 10150, + "continues": 4305, + "continuing": 11009, + "continuity": 34035, + "continuous": 17033, + "continuously": 29634, + "continuum": 44978, + "contour": 34733, + "contr": 22871, + "contra": 9880, + "contra": 38620, + "contrac": 7581, + "contracep": 35109, + "contract": 6120, + "contracting": 39091, + "contractor": 21429, + "contractors": 22427, + "contracts": 16563, + "contradic": 27957, + "contrary": 32805, + "contrast": 18501, + "contrasting": 40758, + "contribu": 4753, + "contribute": 14112, + "contributed": 19397, + "contributes": 34203, + "contributing": 21762, + "contribution": 11116, + "contributions": 14465, + "contributor": 24553, + "contributors": 32908, + "contro": 2372, + "control": 9963, + "control": 3366, + "controlled": 14140, + "controller": 12929, + "controllers": 30374, + "controlling": 26427, + "controls": 15746, + "controversi": 13674, + "controversial": 14617, + "controversy": 18659, + "conv": 48382, + "conve": 18421, + "conven": 7283, + "conveni": 33278, + "convenience": 17859, + "convenient": 18978, + "conveniently": 40844, + "convention": 6752, + "conventional": 20835, + "conventions": 41404, + "conver": 6336, + "convergence": 35381, + "convers": 4577, + "conversation": 5690, + "conversations": 12326, + "converse": 24149, + "conversion": 15111, + "conversions": 44137, + "convert": 20074, + "converted": 20808, + "converter": 34611, + "convertible": 19608, + "converting": 34674, + "converts": 42470, + "convey": 38342, + "convic": 11150, + "convicted": 18668, + "conviction": 24967, + "convictions": 44366, + "convin": 12889, + "convince": 20351, + "convinced": 17388, + "convincing": 27742, + "convo": 19372, + "convocation": 30674, + "convos": 44842, + "convoy": 30292, + "conway": 21410, + "conwy": 48971, + "cony": 14501, + "coo": 1664, + "coo": 21691, + "coogs": 47624, + "cook": 9726, + "cook": 5977, + "cookbook": 21086, + "cooke": 29979, + "cooked": 11452, + "cooker": 23806, + "cookery": 38779, + "cookie": 9367, + "cookies": 8320, + "cookin": 46610, + "cooking": 39248, + "cooking": 6283, + "cookout": 39743, + "cooks": 24256, + "cool": 5594, + "cool": 2077, + "cooled": 37170, + "cooler": 11078, + "coolest": 10566, + "cooling": 15291, + "coom": 41726, + "coon": 34260, + "coon": 16958, + "coop": 39917, + "coop": 18910, + "cooper": 7264, + "cooper": 8133, + "cooperate": 42936, + "cooperation": 11785, + "cooperative": 24517, + "coops": 48531, + "coordin": 8187, + "coordinate": 38250, + "coordinated": 32540, + "coordinating": 40075, + "coordination": 25611, + "coordinator": 13967, + "coors": 36025, + "cop": 3196, + "cop": 7070, + "copa": 22749, + "copd": 45876, + "cope": 47635, + "cope": 12564, + "copeland": 37604, + "copen": 15637, + "copenhagen": 17390, + "coper": 41891, + "copernic": 45519, + "copied": 36770, + "copies": 9851, + "coping": 30545, + "copolitics": 45846, + "copp": 20937, + "copped": 42229, + "copper": 24741, + "copper": 10333, + "coppola": 47427, + "cops": 10719, + "copter": 28049, + "copy": 11376, + "copy": 4509, + "copying": 38925, + "copyright": 15778, + "cor": 851, + "cor": 18559, + "cora": 34953, + "coral": 31220, + "coral": 12054, + "corbett": 35699, + "corbin": 35578, + "corbyn": 14026, + "cord": 40893, + "cord": 11181, + "corden": 41999, + "cordi": 41681, + "cordless": 44412, + "cords": 22164, + "core": 19622, + "core": 5000, + "cores": 37874, + "corey": 31279, + "corey": 15288, + "corgi": 31320, + "cori": 26508, + "coriander": 37491, + "corin": 17716, + "corinthians": 34471, + "cork": 18148, + "cork": 10376, + "corn": 5202, + "corn": 5894, + "cornelius": 45865, + "cornell": 38689, + "cornell": 20859, + "corner": 18509, + "corner": 5253, + "corners": 19584, + "cornerstone": 36280, + "cornish": 23774, + "cornwall": 37903, + "cornwall": 10777, + "coron": 13210, + "corona": 25564, + "coronado": 43946, + "coronary": 45955, + "coronation": 25014, + "coroner": 47241, + "corp": 29203, + "corp": 10918, + "corpor": 4258, + "corporal": 42445, + "corporate": 33877, + "corporate": 6838, + "corporation": 11282, + "corporations": 25482, + "corps": 11330, + "corpse": 29408, + "corpus": 31672, + "correc": 5011, + "correct": 8340, + "corrected": 35628, + "correction": 20843, + "correctional": 38030, + "corrections": 37507, + "correctly": 15359, + "correlation": 29218, + "correspon": 20203, + "correspondent": 29996, + "corri": 12974, + "corridor": 20592, + "corrie": 23961, + "corro": 24936, + "corro": 42033, + "corrosion": 39191, + "corru": 6501, + "corrup": 30429, + "corrupt": 15194, + "corruption": 9141, + "corsa": 47670, + "corsair": 42367, + "corset": 40408, + "cortex": 40109, + "cortez": 30461, + "corvette": 24367, + "cory": 23221, + "cory": 18329, + "cos": 5865, + "cos": 5700, + "cosby": 30324, + "cosc": 45944, + "coscino": 47909, + "cose": 26495, + "cosm": 37486, + "cosme": 9628, + "cosmetic": 23918, + "cosmetics": 12896, + "cosmic": 47398, + "cosmic": 18304, + "cosmo": 12829, + "cosmo": 32072, + "cosmopolitan": 35518, + "cosmos": 22151, + "cospla": 15149, + "cosplay": 42401, + "cosplay": 6435, + "cosplayer": 30215, + "cosplaying": 46701, + "cost": 11360, + "cost": 4713, + "costa": 10480, + "costar": 28659, + "costarica": 31272, + "costco": 31045, + "costello": 30667, + "costing": 39193, + "costly": 30170, + "costs": 7628, + "costu": 5786, + "costume": 7235, + "costumes": 15150, + "cosy": 22848, + "cot": 4718, + "cot": 5871, + "cote": 44234, + "cote": 20751, + "cotland": 32576, + "cotsw": 23303, + "cotswolds": 35546, + "cott": 8211, + "cott": 11349, + "cottage": 12155, + "cottages": 34405, + "cotton": 22218, + "cotton": 7050, + "cou": 1368, + "couch": 12724, + "cougar": 35028, + "cougar": 27042, + "cougars": 20425, + "cough": 35631, + "cough": 18498, + "cougs": 28482, + "coul": 22483, + "could": 44812, + "could": 1510, + "couldn": 4072, + "couldnt": 29042, + "coulter": 42291, + "coun": 939, + "counc": 12927, + "council": 18187, + "council": 3620, + "councill": 15732, + "councillor": 21179, + "councillors": 29695, + "councilman": 40833, + "councils": 29938, + "counsel": 13780, + "counsel": 19814, + "counseling": 25000, + "counsell": 47510, + "counselling": 40581, + "counselor": 26148, + "counselors": 38688, + "count": 6073, + "count": 5887, + "countdown": 39559, + "countdown": 7500, + "counted": 23149, + "counter": 10134, + "counter": 7352, + "counterfe": 33067, + "counterfeit": 44242, + "counterpart": 39216, + "counterparts": 42106, + "counters": 46170, + "countess": 46276, + "counties": 12338, + "counting": 9723, + "countless": 21819, + "countries": 5489, + "country": 7896, + "country": 2157, + "countryfile": 47023, + "countrymusic": 30372, + "countryside": 16303, + "counts": 12264, + "county": 18734, + "county": 2116, + "coup": 9871, + "coup": 16479, + "coupe": 16773, + "couple": 40136, + "couple": 3377, + "coupled": 37153, + "couples": 14752, + "coupling": 45595, + "coupon": 14019, + "coupons": 23945, + "cour": 1391, + "coura": 4436, + "courage": 9828, + "courageous": 25005, + "courier": 27217, + "cours": 21493, + "course": 43225, + "course": 2613, + "courses": 9464, + "court": 16837, + "court": 2908, + "courte": 5088, + "courtesy": 5228, + "courthouse": 22205, + "courtney": 33601, + "courtney": 15990, + "courtroom": 41071, + "courts": 13514, + "courty": 20121, + "courtyard": 21900, + "cous": 48397, + "cousin": 7780, + "cousins": 14073, + "cout": 29118, + "coutinho": 35530, + "couture": 14808, + "cov": 19384, + "cov": 48385, + "cove": 21700, + "cove": 14708, + "coven": 12483, + "covenant": 29647, + "coventry": 18007, + "cover": 13534, + "cover": 2202, + "coverage": 6810, + "covered": 5603, + "covering": 9462, + "covers": 7745, + "covert": 40134, + "coveted": 36119, + "covington": 43196, + "cow": 5076, + "cow": 9706, + "cowan": 42699, + "coward": 33729, + "cowards": 48972, + "cowboy": 25833, + "cowboy": 13657, + "cowboys": 11864, + "cowboysnation": 43082, + "cowell": 39015, + "cowgirl": 47090, + "coworker": 30727, + "coworkers": 30821, + "coworking": 36034, + "cows": 15204, + "cowx": 23831, + "cox": 25784, + "cox": 11597, + "coy": 12765, + "coy": 15742, + "coyi": 48407, + "coyle": 45348, + "coyne": 44729, + "coyo": 16614, + "coyote": 26586, + "coyotes": 30423, + "coys": 19736, + "coz": 39922, + "coz": 14282, + "cozy": 14873, + "cp": 7905, + "cp": 9130, + "cpa": 30095, + "cpac": 45731, + "cpc": 26125, + "cpd": 23402, + "cpec": 48007, + "cpfc": 27553, + "cpi": 41795, + "cpl": 26852, + "cpr": 25134, + "cps": 27078, + "cpt": 32892, + "cpu": 27700, + "cq": 48910, + "cq": 48417, + "cr": 1075, + "cr": 3483, + "cra": 1184, + "cra": 18362, + "crab": 27382, + "crab": 11574, + "crabs": 30908, + "crack": 11222, + "crack": 10334, + "crackdown": 29527, + "cracked": 19826, + "cracker": 16298, + "crackers": 26200, + "cracking": 13008, + "cracks": 21426, + "cracy": 24749, + "cradle": 29384, + "crae": 40438, + "craf": 10873, + "craft": 7717, + "craft": 3588, + "craftbeer": 12371, + "crafted": 12424, + "crafthour": 42324, + "crafting": 26886, + "crafts": 33276, + "crafts": 13383, + "craftsman": 39528, + "craftsmanship": 36682, + "crafty": 32317, + "craic": 46962, + "craig": 14042, + "craig": 8061, + "craigslist": 43865, + "cram": 29809, + "cramer": 44592, + "cramps": 46106, + "cran": 7761, + "cranberries": 49361, + "cranberry": 23824, + "crane": 14626, + "cranes": 26979, + "crani": 45674, + "crank": 46246, + "crank": 32283, + "cranston": 44340, + "crap": 11899, + "crappy": 30475, + "crash": 37150, + "crash": 5033, + "crashed": 16638, + "crashes": 17013, + "crashing": 24991, + "crat": 46696, + "crate": 24756, + "crater": 22663, + "crates": 30172, + "cratic": 32175, + "crative": 39999, + "crats": 43056, + "crave": 33397, + "craven": 33625, + "craving": 18344, + "cravings": 34476, + "craw": 7400, + "crawfish": 42772, + "crawford": 15918, + "crawl": 20106, + "crawler": 41012, + "crawley": 42316, + "crawling": 37066, + "cray": 24184, + "cray": 27032, + "crayon": 41801, + "crayons": 43508, + "craz": 25776, + "craze": 30637, + "craziest": 32690, + "craziness": 46436, + "crazy": 17540, + "crazy": 3578, + "crc": 25618, + "cre": 798, + "cre": 17762, + "cream": 23184, + "cream": 3867, + "creams": 41447, + "creamy": 17206, + "crease": 48441, + "create": 30949, + "create": 3380, + "created": 4080, + "creates": 10361, + "creati": 6714, + "creating": 5524, + "creation": 38293, + "creation": 6900, + "creations": 17411, + "creative": 15237, + "creative": 4450, + "creatives": 29352, + "creativity": 9636, + "creator": 10173, + "creators": 17981, + "creature": 14317, + "creatures": 13938, + "cred": 7314, + "cred": 22377, + "credenti": 29487, + "credentials": 33422, + "credi": 21097, + "credibility": 34984, + "credible": 32983, + "credit": 21467, + "credit": 3900, + "credited": 32480, + "credits": 10654, + "creds": 43462, + "cree": 33961, + "cree": 36014, + "creed": 18845, + "creek": 26120, + "creek": 5526, + "creep": 8153, + "creep": 26084, + "creeper": 38662, + "creeping": 29697, + "creeps": 45135, + "creepy": 11943, + "creighton": 42823, + "creme": 22681, + "creole": 45632, + "crepe": 38611, + "crescent": 18211, + "cress": 39124, + "crest": 35985, + "crest": 15760, + "crested": 36656, + "crete": 8584, + "crew": 21560, + "crew": 3462, + "crewe": 43284, + "crews": 10463, + "cri": 1621, + "cri": 38962, + "crib": 23271, + "cric": 4328, + "cricke": 19098, + "cricket": 21859, + "cricket": 5373, + "cricketer": 28439, + "cricketers": 43986, + "cried": 15290, + "cries": 19769, + "crime": 13872, + "crime": 4896, + "crimea": 28614, + "crimes": 11827, + "crimin": 5874, + "criminal": 30197, + "criminal": 8255, + "criminals": 18783, + "crimson": 19437, + "cringe": 42588, + "cripp": 33588, + "cris": 37818, + "crises": 36403, + "crisis": 5712, + "crisp": 15145, + "crispr": 39784, + "crisps": 35744, + "crispy": 16458, + "criss": 29708, + "cristi": 12699, + "cristian": 48808, + "cristiano": 14807, + "cristina": 33395, + "cristo": 38315, + "crit": 3613, + "crit": 48130, + "criteri": 33627, + "criteria": 24849, + "criterion": 43841, + "criti": 25333, + "critic": 12417, + "critic": 19361, + "critical": 15314, + "critical": 6808, + "critically": 21570, + "criticalrole": 33606, + "criticalrole": 22742, + "criticalrolefanart": 43663, + "critici": 20333, + "criticism": 17405, + "criticize": 46081, + "criticized": 41557, + "critics": 16946, + "critique": 32982, + "critters": 35423, + "crm": 22610, + "cro": 1192, + "cro": 22522, + "croati": 28072, + "croatia": 13323, + "croatian": 34795, + "croc": 43350, + "croche": 35352, + "crochet": 17554, + "crock": 41685, + "crocker": 47843, + "crockett": 48313, + "crocod": 24519, + "crocodile": 24757, + "crocs": 38988, + "croft": 16657, + "croissant": 46011, + "croix": 44735, + "crom": 25082, + "crombie": 46162, + "cromwell": 45345, + "cron": 17361, + "croo": 16443, + "crook": 43744, + "crooked": 48473, + "crooked": 25644, + "crooks": 44226, + "crop": 40751, + "crop": 9955, + "cropped": 31139, + "crops": 16290, + "crore": 18274, + "crores": 37281, + "cros": 16670, + "crosby": 21095, + "cross": 5266, + "cross": 3417, + "crossed": 11731, + "crosses": 20473, + "crossfit": 47214, + "crossfit": 20395, + "crossing": 8673, + "crossings": 43517, + "crossover": 17194, + "crossroads": 27427, + "crossword": 32945, + "crou": 31206, + "crouch": 36506, + "crow": 3138, + "crow": 16019, + "crowd": 12036, + "crowd": 4570, + "crowded": 20182, + "crowdfunding": 17971, + "crowds": 16092, + "crowe": 33560, + "crowley": 32287, + "crown": 22190, + "crown": 6902, + "crowned": 16109, + "crowns": 33229, + "crows": 27134, + "croy": 21676, + "croydon": 27116, + "crs": 28449, + "crt": 43877, + "cru": 1815, + "cru": 29788, + "cruci": 18499, + "crucial": 12396, + "crude": 20677, + "cruel": 16073, + "cruel": 17573, + "cruelty": 20675, + "cruis": 27721, + "cruise": 36425, + "cruise": 6764, + "cruiser": 21394, + "cruises": 19214, + "cruising": 19743, + "crum": 43268, + "crumb": 48327, + "crumb": 39909, + "crumble": 36595, + "crumbs": 35893, + "crun": 17407, + "crunch": 16620, + "crunchy": 31366, + "crusad": 19133, + "crusade": 36846, + "crusader": 40171, + "crusaders": 31319, + "crush": 22296, + "crush": 7610, + "crushed": 18270, + "crusher": 44923, + "crushes": 35844, + "crushing": 20790, + "crust": 23136, + "crusted": 37314, + "cruz": 33689, + "cruz": 8403, + "cry": 2837, + "cry": 6290, + "crying": 6828, + "cryo": 32215, + "cryp": 4865, + "crypt": 37814, + "cryptic": 46925, + "crypto": 8080, + "crypto": 9608, + "cryptocurrencies": 33329, + "cryptocurrency": 12070, + "cryst": 15891, + "crystal": 17387, + "crystal": 6517, + "crystalli": 47551, + "crystals": 18350, + "cs": 11978, + "cs": 2804, + "csa": 26355, + "csc": 41727, + "csc": 37266, + "csd": 36913, + "cse": 41659, + "csg": 47085, + "csgo": 28928, + "csi": 41750, + "csi": 28070, + "csk": 43036, + "csm": 40061, + "csn": 46329, + "cso": 43864, + "csp": 39243, + "csr": 32105, + "csr": 24598, + "csrracing": 44193, + "css": 41418, + "css": 19846, + "cst": 17016, + "csu": 35948, + "csu": 31261, + "csw": 41031, + "ct": 3381, + "ct": 1122, + "cta": 28397, + "ctar": 27842, + "ctc": 34123, + "cte": 31410, + "cted": 2910, + "ctf": 35250, + "cthulhu": 41064, + "cting": 7985, + "ction": 17578, + "ction": 1569, + "ctions": 7021, + "ctive": 9313, + "cto": 17445, + "ctor": 8108, + "ctr": 35602, + "ctr": 18481, + "cts": 6936, + "ctto": 25118, + "ctu": 20834, + "cture": 17668, + "ctv": 21213, + "ctv": 27590, + "cu": 729, + "cu": 11224, + "cuando": 40388, + "cub": 16938, + "cub": 19972, + "cuba": 11576, + "cuban": 15536, + "cube": 47753, + "cube": 11353, + "cubes": 31413, + "cubic": 48159, + "cubic": 29614, + "cubs": 9858, + "cuck": 26364, + "cuckoo": 38062, + "cucu": 16705, + "cucumber": 19787, + "cucumbers": 48065, + "cud": 42684, + "cudd": 12820, + "cuddle": 19568, + "cuddles": 24001, + "cuddling": 29696, + "cuddly": 36208, + "cudi": 48713, + "cue": 13424, + "cuer": 39506, + "cues": 35719, + "cuff": 34693, + "cuff": 22414, + "cufflinks": 43938, + "cuffs": 37221, + "cuis": 9938, + "cuisine": 10605, + "cuk": 34838, + "cul": 1877, + "cula": 35935, + "cular": 10940, + "culars": 45719, + "cule": 31066, + "cules": 18984, + "culin": 14772, + "culinary": 16466, + "cull": 21880, + "cull": 42061, + "cullen": 25973, + "culmin": 33778, + "culo": 36305, + "culprit": 41593, + "cult": 11965, + "cultiv": 16781, + "cultivate": 42983, + "cultivated": 48901, + "cultivation": 41539, + "cultur": 20780, + "cultural": 34908, + "cultural": 6753, + "culturally": 36783, + "culture": 20197, + "culture": 3673, + "cultured": 40176, + "cultures": 19552, + "culver": 42103, + "cum": 20142, + "cum": 27119, + "cumb": 10858, + "cumber": 15309, + "cumberbatch": 27541, + "cumberland": 28747, + "cumbri": 32010, + "cumbria": 17953, + "cumin": 42285, + "cumple": 47050, + "cumul": 42961, + "cumulative": 47610, + "cumulus": 46313, + "cun": 12423, + "cun": 29532, + "cunningham": 25321, + "cuomo": 25681, + "cup": 5059, + "cup": 1937, + "cupboard": 32074, + "cupcake": 17025, + "cupcakes": 12747, + "cupid": 34885, + "cuppa": 28077, + "cups": 11463, + "cur": 1092, + "cur": 33073, + "curated": 20341, + "curator": 20753, + "curb": 21931, + "curd": 38881, + "cure": 36758, + "cure": 9088, + "cured": 26248, + "cures": 38204, + "curfew": 48826, + "curi": 12640, + "curing": 44169, + "curiosity": 21583, + "curious": 9865, + "curl": 24306, + "curled": 43734, + "curling": 18543, + "curls": 24340, + "curly": 20795, + "curran": 40999, + "currant": 43501, + "curren": 6142, + "currencies": 23530, + "currency": 7853, + "current": 3653, + "currently": 3792, + "currents": 35450, + "curric": 16201, + "curriculum": 17947, + "currie": 39385, + "curry": 49285, + "curry": 8051, + "curse": 18479, + "cursed": 26408, + "cursor": 46546, + "curt": 38137, + "curtain": 17223, + "curtains": 30223, + "curti": 39925, + "curtis": 13808, + "curve": 15792, + "curved": 25789, + "curves": 22814, + "curvy": 45788, + "cus": 2736, + "cusa": 47414, + "cuse": 37950, + "cush": 43731, + "cushi": 15333, + "cushion": 20853, + "cushions": 34163, + "cussion": 16658, + "cussions": 46853, + "cust": 20900, + "custard": 26516, + "custo": 4376, + "custody": 16176, + "custom": 2662, + "custom": 4996, + "custome": 41323, + "customer": 24035, + "customer": 5102, + "customerexperience": 45167, + "customers": 5528, + "customerservice": 40611, + "customiz": 41793, + "customizable": 48253, + "customization": 48244, + "customize": 32179, + "customized": 23229, + "customs": 16880, + "cut": 10511, + "cut": 3032, + "cute": 16031, + "cute": 2242, + "cuteness": 19342, + "cuter": 27151, + "cutest": 8032, + "cuth": 44328, + "cutie": 10733, + "cuties": 40939, + "cuties": 23420, + "cutiesaturday": 41883, + "cutler": 40428, + "cutlery": 49073, + "cutout": 45016, + "cuts": 7435, + "cutt": 27338, + "cutt": 47647, + "cutter": 19719, + "cutters": 44783, + "cutting": 7266, + "cuz": 9215, + "cv": 13531, + "cv": 13947, + "cvs": 29603, + "cw": 10652, + "cw": 11065, + "cwc": 19179, + "cwgc": 48527, + "cws": 45186, + "cx": 44457, + "cx": 14283, + "cy": 1470, + "cy": 1678, + "cyber": 5830, + "cyber": 10210, + "cybercrime": 41772, + "cybermonday": 36578, + "cyberpunk": 36896, + "cybersecurity": 10581, + "cyborg": 36650, + "cycl": 9791, + "cycle": 19083, + "cycle": 5072, + "cycled": 31055, + "cycles": 14605, + "cycli": 12201, + "cycling": 26353, + "cycling": 6321, + "cyclist": 20686, + "cyclists": 20303, + "cyclo": 18122, + "cyclone": 48094, + "cyclone": 20917, + "cyclones": 34669, + "cylin": 18569, + "cylinder": 22092, + "cylinders": 48888, + "cymb": 36677, + "cymru": 24005, + "cyn": 14324, + "cynthi": 41994, + "cynthia": 23748, + "cyp": 14809, + "cypress": 25347, + "cypri": 36481, + "cyprus": 15263, + "cyril": 36028, + "cyrus": 14204, + "cystic": 46131, + "cyto": 31864, + "cz": 22898, + "cz": 22921, + "cze": 12152, + "czech": 43151, + "czech": 16141, + "cé": 36454, + "cé": 18317, + "d": 67, + "d": 323, + "da": 925, + "da": 1140, + "daa": 32642, + "daan": 44814, + "dab": 10413, + "dab": 22900, + "dac": 16222, + "dac": 27478, + "daca": 28477, + "dach": 34166, + "dachsh": 41641, + "dachshund": 42720, + "dad": 4346, + "dad": 2639, + "dada": 31325, + "daddy": 29466, + "daddy": 6546, + "dade": 23299, + "dades": 28289, + "dads": 12741, + "dae": 23358, + "dae": 15422, + "daener": 46934, + "daes": 47282, + "daesh": 35047, + "daf": 9972, + "daf": 36704, + "daffodils": 44769, + "daft": 36347, + "dag": 11434, + "dag": 25650, + "dagger": 34251, + "dah": 16976, + "dah": 11776, + "dahl": 45816, + "dahl": 22621, + "dahlia": 41768, + "dai": 13559, + "dai": 10632, + "dail": 14676, + "dailies": 21260, + "daily": 6689, + "daily": 2873, + "dailynews": 43466, + "dailys": 43160, + "dailysketch": 46738, + "daim": 40421, + "dain": 32222, + "dain": 28315, + "daipur": 47631, + "dair": 19998, + "dair": 42078, + "dairy": 25243, + "dairy": 10302, + "dairyfree": 49366, + "dais": 10502, + "daisi": 39947, + "daisies": 40654, + "daisy": 39310, + "daisy": 12865, + "dak": 6999, + "dak": 16095, + "dakar": 31137, + "dakota": 38522, + "dakota": 12358, + "dal": 2476, + "dal": 5601, + "dala": 42675, + "dalai": 41222, + "dalail": 35169, + "dalailama": 35849, + "dale": 11533, + "dale": 4677, + "dalejr": 38207, + "dales": 29031, + "daley": 28544, + "dalgo": 43614, + "dali": 36735, + "dali": 25703, + "dalit": 45432, + "dall": 43631, + "dalla": 16772, + "dallas": 27414, + "dallas": 5759, + "dallascowboys": 33016, + "dalmati": 44275, + "dalton": 21488, + "daly": 24873, + "dam": 1880, + "dam": 4926, + "damage": 6822, + "damaged": 13568, + "damages": 28842, + "damaging": 20610, + "damas": 23345, + "damascus": 25396, + "dame": 10069, + "dames": 44548, + "dami": 17783, + "damian": 43307, + "damian": 25375, + "damien": 25090, + "dammit": 31057, + "damn": 37409, + "damn": 4451, + "damned": 28428, + "damon": 48503, + "damon": 18244, + "damp": 26520, + "dams": 37680, + "dan": 2257, + "dan": 2284, + "dana": 44834, + "dana": 13777, + "danao": 38598, + "danc": 3945, + "dance": 10619, + "dance": 2724, + "danced": 32891, + "dancehall": 33300, + "dancer": 11400, + "dancers": 13153, + "dances": 24083, + "dancing": 33280, + "dancing": 6226, + "dand": 12593, + "dandelion": 38903, + "dandy": 31932, + "dane": 19330, + "danes": 47477, + "dang": 4283, + "dang": 14992, + "danger": 20083, + "danger": 11212, + "dangerous": 7350, + "dangerously": 35012, + "dangers": 23726, + "dangle": 39907, + "dani": 3001, + "dani": 17009, + "daniel": 7859, + "daniel": 4981, + "daniela": 44466, + "danielle": 30396, + "danielle": 15292, + "danielpadilla": 34702, + "daniels": 16146, + "danish": 15467, + "dank": 31849, + "dann": 11951, + "danny": 14950, + "danny": 7621, + "dano": 29703, + "dans": 16241, + "dant": 48097, + "dant": 28237, + "dante": 21911, + "danube": 44594, + "dany": 47816, + "dao": 36099, + "dap": 12149, + "dap": 38034, + "daph": 24591, + "daphne": 31687, + "dapl": 34478, + "dapp": 46857, + "dapper": 26071, + "daq": 25381, + "dar": 1377, + "dar": 6242, + "dara": 17064, + "darby": 34366, + "darcy": 32916, + "dare": 14833, + "dare": 9863, + "daredevil": 28849, + "dares": 42973, + "dareto": 46794, + "dari": 16292, + "dari": 14552, + "daria": 45622, + "daries": 18184, + "daring": 28166, + "dario": 33918, + "darius": 32606, + "darje": 49089, + "dark": 5724, + "dark": 3144, + "darker": 18737, + "darkest": 25898, + "darkness": 10521, + "darling": 13048, + "darlings": 39961, + "darlington": 34565, + "darn": 26059, + "darrell": 33522, + "darren": 20263, + "darren": 12275, + "darry": 29200, + "darryl": 35359, + "darshan": 34564, + "dart": 14001, + "dart": 19841, + "darth": 41304, + "darth": 23164, + "dartmoor": 31477, + "dartmouth": 29667, + "darts": 15246, + "darwin": 43013, + "darwin": 20926, + "daryl": 45607, + "daryl": 24532, + "das": 9940, + "das": 7359, + "dash": 13858, + "dash": 10206, + "dashboard": 27679, + "dashi": 12876, + "dashing": 33825, + "dat": 1717, + "dat": 9445, + "data": 14876, + "data": 2281, + "datab": 11941, + "database": 14678, + "databases": 48384, + "datac": 27329, + "datacenter": 40133, + "datasci": 14496, + "datascience": 15748, + "dataviz": 28138, + "date": 34300, + "date": 1524, + "dated": 13564, + "dates": 7228, + "dating": 8534, + "dation": 15311, + "datlantic": 34270, + "dato": 36075, + "dats": 48674, + "dau": 3162, + "dau": 33828, + "daugh": 42523, + "daughter": 3944, + "daughters": 13585, + "daun": 29470, + "dav": 3700, + "dav": 46488, + "davao": 31502, + "dave": 10089, + "dave": 5077, + "daven": 28350, + "davenport": 34624, + "davey": 33391, + "davi": 1732, + "david": 4640, + "david": 2259, + "davidbowie": 44448, + "davido": 35989, + "davids": 46695, + "davidson": 13166, + "davies": 13120, + "davin": 43187, + "davis": 24426, + "davis": 5536, + "davison": 43725, + "davos": 31887, + "davy": 41565, + "daw": 5971, + "daw": 24404, + "dawg": 18660, + "dawgs": 26431, + "dawn": 30590, + "dawn": 7689, + "dawson": 18611, + "dax": 29458, + "day": 1405, + "day": 575, + "daya": 38165, + "daybreak": 33862, + "daycare": 36363, + "daydream": 41587, + "dayin": 20332, + "daylight": 20809, + "dayo": 29856, + "dayo": 46605, + "dayof": 16272, + "dayofthe": 38043, + "days": 1161, + "daysof": 12379, + "daysofcode": 36537, + "daysto": 29886, + "daystogo": 42198, + "dayswild": 42052, + "daytime": 22830, + "dayton": 35729, + "dayton": 20262, + "daytona": 16335, + "dayweekend": 44526, + "dayz": 35949, + "daz": 15449, + "daz": 43844, + "daze": 33591, + "dazz": 17149, + "dazzle": 41164, + "dazzling": 28821, + "db": 19100, + "db": 8128, + "dbacks": 31175, + "dbs": 40558, + "dbz": 49226, + "dc": 5074, + "dc": 2743, + "dca": 49107, + "dcc": 33747, + "dccomics": 17610, + "dcfc": 35526, + "dci": 35336, + "dcs": 42878, + "dcu": 42647, + "dd": 1353, + "dd": 3766, + "dda": 35202, + "ddad": 39049, + "dday": 32689, + "dday": 26243, + "ddc": 48513, + "ddd": 24183, + "dddd": 35362, + "dden": 5013, + "dder": 9300, + "dders": 24827, + "ddi": 44450, + "ddin": 17175, + "dding": 48101, + "dding": 8974, + "ddings": 49106, + "ddington": 29238, + "ddle": 17633, + "ddle": 8357, + "ddled": 38392, + "ddles": 33901, + "ddleston": 25647, + "ddling": 30981, + "ddlovato": 28244, + "ddos": 46463, + "ddr": 26027, + "dds": 48334, + "ddu": 43836, + "ddy": 14981, + "ddy": 7876, + "de": 561, + "de": 654, + "dea": 18477, + "deacon": 29155, + "dead": 3906, + "dead": 2747, + "deadliest": 40811, + "deadline": 47209, + "deadline": 8458, + "deadlines": 44959, + "deadly": 10756, + "deadpool": 21471, + "deaf": 28229, + "deaf": 18358, + "deal": 7249, + "deal": 2696, + "dealer": 15218, + "dealers": 21697, + "dealership": 32096, + "dealing": 13138, + "deals": 4469, + "dealt": 30101, + "dean": 13807, + "dean": 5828, + "deandre": 43635, + "deans": 46852, + "dear": 15696, + "dear": 3817, + "dearest": 24880, + "dearly": 31880, + "deas": 34715, + "death": 7163, + "death": 2767, + "deaths": 12253, + "deau": 12399, + "deaux": 19883, + "deb": 2987, + "deb": 25687, + "debat": 32082, + "debate": 5196, + "debates": 19239, + "debating": 23472, + "debbie": 47186, + "debbie": 16735, + "debit": 32410, + "debor": 16738, + "deborah": 40997, + "deborah": 22150, + "debra": 33233, + "debris": 19208, + "debt": 8932, + "debts": 38770, + "debu": 9790, + "debun": 33123, + "debut": 42608, + "debut": 4085, + "debuted": 25215, + "debuting": 34817, + "debuts": 17044, + "dec": 3063, + "dec": 4628, + "deca": 33428, + "decad": 29914, + "decade": 11099, + "decadent": 41716, + "decades": 10488, + "decal": 26678, + "decals": 37606, + "decan": 40677, + "decat": 35334, + "decath": 47455, + "decatur": 38540, + "decay": 22703, + "dece": 3534, + "deceased": 30035, + "december": 3864, + "decent": 10698, + "decentr": 28960, + "decentralized": 38485, + "decep": 33529, + "deception": 33046, + "deci": 2262, + "decide": 8447, + "decided": 4939, + "decides": 17269, + "deciding": 22513, + "decision": 5575, + "decisions": 9903, + "decisive": 28690, + "deck": 24885, + "deck": 6943, + "decked": 39096, + "decker": 21449, + "decks": 23968, + "decl": 7091, + "decla": 10739, + "declan": 42341, + "declar": 18040, + "declaration": 19714, + "declare": 19856, + "declared": 13845, + "declares": 23641, + "declaring": 33273, + "decline": 15084, + "declined": 28911, + "declines": 40478, + "declining": 29221, + "deco": 26412, + "deco": 16422, + "decor": 5148, + "decor": 6928, + "decorate": 23651, + "decorated": 15917, + "decorating": 16968, + "decoration": 16029, + "decorations": 19158, + "decorative": 19289, + "decre": 12284, + "decrease": 24703, + "decreased": 33913, + "decreasing": 43763, + "decree": 43327, + "ded": 16744, + "ded": 1241, + "dedic": 4701, + "dedicate": 27610, + "dedicated": 6770, + "dedication": 10188, + "dedly": 36204, + "deduc": 22799, + "dee": 5268, + "dee": 6705, + "deed": 30260, + "deeds": 24516, + "deejay": 48304, + "deejay": 44511, + "deemed": 28102, + "deen": 26456, + "deen": 12912, + "deep": 5462, + "deep": 3383, + "deepak": 45528, + "deeper": 15224, + "deepest": 22245, + "deephouse": 35684, + "deepi": 19371, + "deepika": 34120, + "deepikap": 29903, + "deepikapadukone": 30646, + "deeplear": 22181, + "deeplearning": 24362, + "deeply": 11449, + "deer": 19454, + "deer": 8700, + "deere": 32901, + "dees": 12547, + "deets": 35537, + "def": 2044, + "def": 11649, + "defam": 35670, + "defamation": 42741, + "default": 21650, + "defe": 4148, + "defeat": 8477, + "defeated": 8927, + "defeating": 22594, + "defeats": 16317, + "defect": 44013, + "defects": 37485, + "defen": 3619, + "defence": 30307, + "defence": 9659, + "defend": 21970, + "defend": 11397, + "defended": 27161, + "defender": 10618, + "defenders": 20063, + "defending": 13098, + "defends": 20134, + "defense": 45875, + "defense": 6021, + "defenseman": 43714, + "defenses": 49198, + "defensive": 10824, + "defi": 17244, + "defiance": 36186, + "defiant": 47597, + "defibrill": 47684, + "defic": 18022, + "defici": 23387, + "deficiency": 30685, + "deficit": 20156, + "defin": 3188, + "define": 14919, + "defined": 15278, + "defines": 28218, + "defining": 20504, + "definite": 40793, + "definitely": 4824, + "definition": 11405, + "definitive": 25298, + "defl": 31467, + "deforestation": 41330, + "defstar": 36427, + "defy": 39148, + "defying": 38496, + "deg": 38498, + "degra": 28939, + "degradation": 44468, + "degre": 4653, + "degree": 7119, + "degrees": 8000, + "deh": 35582, + "dei": 33833, + "dei": 23279, + "deir": 42948, + "deity": 42574, + "deja": 46902, + "dek": 23901, + "dekalb": 37775, + "del": 1233, + "del": 2003, + "dela": 37986, + "delaney": 31528, + "delav": 23706, + "delavin": 40477, + "delavin": 40776, + "delavinkisses": 40631, + "delaware": 17547, + "delay": 12955, + "delay": 10934, + "delayed": 14567, + "delaying": 43781, + "delays": 11232, + "dele": 7922, + "dele": 33431, + "delec": 38615, + "delectable": 45500, + "deleg": 8046, + "delegate": 27259, + "delegates": 14623, + "delegation": 14632, + "delete": 19204, + "deleted": 16588, + "deleting": 41857, + "delft": 42749, + "delgado": 49182, + "delhi": 26723, + "delhi": 5717, + "deli": 1932, + "deli": 18601, + "delia": 33193, + "deliber": 18316, + "deliberate": 38271, + "deliberately": 35163, + "delic": 13366, + "delicacy": 49181, + "delicate": 18768, + "delici": 19993, + "delicious": 3959, + "deliciously": 39589, + "deliciousness": 42819, + "delight": 46165, + "delight": 13073, + "delighted": 5943, + "delightful": 15513, + "delights": 25330, + "deline": 18797, + "delines": 13562, + "delish": 25093, + "deliver": 19561, + "deliver": 7396, + "delivered": 7278, + "deliveries": 29336, + "delivering": 9943, + "delivers": 11753, + "delivery": 5619, + "dell": 24381, + "dell": 10242, + "della": 22986, + "delle": 35963, + "deloit": 29428, + "deloitte": 38667, + "dels": 48636, + "delta": 32250, + "delta": 8768, + "delu": 18779, + "delusional": 48059, + "delux": 13709, + "deluxe": 14056, + "delve": 46008, + "dely": 15040, + "dem": 3251, + "dem": 7825, + "dema": 40268, + "dema": 45046, + "deman": 48366, + "demand": 13072, + "demand": 5650, + "demanded": 33699, + "demanding": 17099, + "demands": 14241, + "demar": 46566, + "demarcus": 47873, + "demb": 35930, + "demdebate": 43973, + "deme": 25143, + "demean": 37376, + "demen": 12604, + "dementi": 46028, + "dementia": 14047, + "demetri": 39553, + "demi": 32879, + "demi": 14480, + "demise": 28756, + "demo": 2930, + "demo": 7380, + "democr": 3573, + "democracy": 7758, + "democrat": 15431, + "democratic": 9149, + "democrats": 8865, + "demographic": 31308, + "demol": 19382, + "demolished": 26537, + "demolition": 22237, + "demon": 5635, + "demon": 12085, + "demonetisation": 41338, + "demonic": 46920, + "demons": 18388, + "demonstr": 8579, + "demonstrate": 22231, + "demonstrated": 29477, + "demonstrates": 24806, + "demonstrating": 22107, + "demonstration": 16722, + "demonstrations": 33964, + "demonstrators": 46450, + "demos": 19304, + "demp": 22490, + "dempsey": 30188, + "dems": 10989, + "demsin": 42664, + "demsinphilly": 43091, + "den": 1177, + "den": 1181, + "dena": 32431, + "denali": 48076, + "dence": 3370, + "dency": 11659, + "dend": 37447, + "dends": 43985, + "dene": 45128, + "dened": 19571, + "deng": 43098, + "deng": 41788, + "dengue": 41932, + "denham": 39180, + "deni": 21995, + "denial": 25716, + "denied": 15780, + "denies": 19565, + "denim": 13606, + "denis": 47630, + "denis": 18750, + "denise": 45900, + "denise": 20899, + "denmark": 13268, + "dennis": 32738, + "dennis": 10534, + "denny": 26808, + "denomin": 41016, + "dens": 16533, + "dense": 19353, + "density": 22431, + "dent": 3593, + "dent": 1258, + "dental": 24635, + "dental": 8382, + "dentally": 10346, + "dented": 21923, + "denti": 4418, + "dential": 5459, + "dentist": 17816, + "dentistry": 25754, + "dently": 28817, + "denton": 23567, + "dents": 1517, + "denver": 27847, + "denver": 8569, + "deny": 18679, + "denying": 32771, + "denzel": 42503, + "deo": 26406, + "deo": 12121, + "deodor": 47639, + "deol": 41902, + "deon": 31466, + "deon": 16079, + "dep": 6079, + "dep": 24370, + "depar": 10794, + "depart": 5343, + "depart": 30649, + "departed": 32541, + "departing": 26902, + "department": 5744, + "departments": 29523, + "departs": 38998, + "departure": 17850, + "depe": 36118, + "depend": 13894, + "depend": 27371, + "dependence": 40243, + "dependent": 23280, + "depending": 23673, + "depends": 20497, + "depic": 11307, + "depicted": 34637, + "depicting": 24970, + "depiction": 31071, + "depicts": 29340, + "deple": 38504, + "deplo": 9356, + "deplor": 39232, + "deploy": 26944, + "deployed": 20009, + "deploying": 42212, + "deployment": 20183, + "depo": 14276, + "depor": 36110, + "deport": 23389, + "deportation": 36617, + "deported": 39320, + "deportes": 47878, + "depos": 21266, + "deposit": 16775, + "deposits": 30740, + "depot": 12589, + "depp": 24941, + "depre": 7107, + "depress": 38869, + "depressed": 23269, + "depressing": 29235, + "depression": 10023, + "depri": 28587, + "depriv": 45809, + "deprivation": 47810, + "deprived": 39140, + "dept": 9201, + "depth": 10350, + "depths": 28855, + "depu": 6912, + "deputies": 24914, + "deputy": 7932, + "der": 839, + "der": 801, + "dera": 20696, + "derail": 48502, + "derby": 13904, + "derby": 7177, + "derbyshire": 22147, + "derdale": 21513, + "dere": 5701, + "dere": 44194, + "dered": 3776, + "derek": 22461, + "derek": 11205, + "derel": 46728, + "derer": 11289, + "derers": 20882, + "deri": 34573, + "derick": 33908, + "dering": 6076, + "deriv": 33458, + "derived": 26461, + "derland": 35488, + "derman": 29740, + "dermatology": 48051, + "dern": 30086, + "dero": 37203, + "dero": 34026, + "derrick": 21798, + "derry": 45777, + "derry": 20535, + "ders": 37307, + "ders": 1923, + "derson": 12677, + "dery": 17172, + "des": 6797, + "des": 1437, + "desai": 35316, + "desc": 13866, + "descen": 32318, + "descend": 26004, + "descend": 46241, + "descendants": 36323, + "descending": 36620, + "descent": 19375, + "desch": 49209, + "descri": 4637, + "describe": 10967, + "described": 14671, + "describes": 13678, + "describing": 24239, + "descrip": 41832, + "description": 13951, + "descriptions": 40653, + "desde": 42218, + "dese": 27195, + "deser": 3659, + "desert": 45776, + "desert": 7301, + "deserted": 41560, + "deserve": 7043, + "deserved": 10061, + "deserves": 9079, + "deserving": 26615, + "desh": 25320, + "desh": 7448, + "deshi": 42769, + "desi": 6772, + "desi": 26635, + "desig": 1250, + "design": 8359, + "design": 1681, + "designated": 24119, + "designation": 41155, + "designed": 4486, + "designer": 35640, + "designer": 5728, + "designers": 12720, + "designing": 13467, + "designs": 6747, + "designthinking": 32450, + "desirable": 32368, + "desire": 11858, + "desired": 28631, + "desires": 27598, + "desk": 11937, + "desk": 6550, + "desks": 41014, + "desktop": 14345, + "desmond": 27821, + "desol": 41258, + "desp": 3642, + "despair": 28097, + "desper": 10144, + "desperate": 15072, + "desperately": 21993, + "despic": 32442, + "despicable": 37158, + "despite": 5325, + "dess": 7096, + "dess": 10001, + "dessert": 9753, + "desserts": 22948, + "desses": 43913, + "dest": 6540, + "dest": 4549, + "destin": 4934, + "destination": 32191, + "destination": 9179, + "destinations": 16981, + "destined": 28525, + "destiny": 39875, + "destiny": 10867, + "destro": 8287, + "destroy": 8308, + "destroy": 11930, + "destroyed": 9965, + "destroyer": 25291, + "destroying": 19613, + "destroys": 27634, + "destruc": 22945, + "destruction": 14281, + "destructive": 29591, + "det": 28966, + "det": 15366, + "deta": 1914, + "detached": 26252, + "detail": 7657, + "detailed": 12609, + "detailing": 23163, + "details": 2353, + "detained": 20260, + "dete": 5606, + "detec": 17991, + "detect": 22744, + "detected": 26988, + "detecting": 41290, + "detection": 16220, + "detective": 13672, + "detectives": 27994, + "detector": 27689, + "detectors": 45063, + "detention": 16908, + "deter": 10742, + "deter": 47458, + "detergent": 46726, + "deterior": 28512, + "determin": 8325, + "determination": 17410, + "determine": 16768, + "determined": 14371, + "determines": 42192, + "determining": 39884, + "deth": 38375, + "deto": 39710, + "deton": 39335, + "detour": 31211, + "detox": 22459, + "detri": 47951, + "detro": 6210, + "detroit": 19404, + "detroit": 7073, + "detta": 45438, + "dette": 35750, + "deu": 21457, + "deuce": 45332, + "deus": 37625, + "deut": 14970, + "deutsch": 30389, + "deutsche": 32760, + "deutschland": 36878, + "deux": 47089, + "dev": 2797, + "dev": 3670, + "deva": 45179, + "devan": 37072, + "devast": 12913, + "devastated": 29865, + "devastating": 19280, + "devastation": 42452, + "devel": 1820, + "develop": 1966, + "develop": 7708, + "developed": 8763, + "developer": 10929, + "developers": 13248, + "developing": 8131, + "development": 2855, + "developmental": 29347, + "developments": 17393, + "develops": 29895, + "deven": 45537, + "devgn": 29871, + "devi": 12926, + "devi": 20717, + "deviant": 25593, + "deviantart": 26046, + "device": 8163, + "devices": 9067, + "devil": 8894, + "devil": 8043, + "deville": 34329, + "devils": 11683, + "devin": 31193, + "devin": 20996, + "devine": 33019, + "devlin": 48040, + "devo": 11861, + "devo": 43444, + "devon": 16205, + "devon": 10046, + "devops": 21504, + "devos": 40646, + "devote": 37777, + "devoted": 24561, + "devotees": 39759, + "devotion": 25821, + "devotional": 35456, + "devs": 27374, + "dew": 31952, + "dew": 16358, + "dewey": 40399, + "dex": 10030, + "dex": 13790, + "dexpo": 42502, + "dexter": 45049, + "dexter": 22781, + "dey": 11829, + "dez": 23190, + "dez": 8122, + "df": 12908, + "df": 10468, + "dfc": 41903, + "dfs": 32880, + "dfw": 20439, + "dg": 2394, + "dg": 9742, + "dgate": 41684, + "dge": 4016, + "dge": 1360, + "dged": 11830, + "dgeon": 45655, + "dgers": 8733, + "dges": 5432, + "dging": 9565, + "dh": 6669, + "dh": 9960, + "dha": 11629, + "dha": 27377, + "dhabi": 22349, + "dhaka": 32877, + "dham": 29635, + "dham": 30838, + "dhan": 12542, + "dhan": 28569, + "dhanush": 26162, + "dhanush": 36200, + "dhanushkraja": 29266, + "dhar": 12397, + "dharma": 30536, + "dhary": 28706, + "dhawan": 44699, + "dhe": 29706, + "dheim": 44280, + "dhi": 31553, + "dhi": 26166, + "dho": 37834, + "dhoni": 25698, + "dhru": 40257, + "dhry": 39960, + "dhs": 26849, + "dhu": 32387, + "di": 570, + "di": 1618, + "dia": 7351, + "dia": 3357, + "diab": 15954, + "diabe": 19167, + "diabete": 43826, + "diabetes": 10319, + "diabetic": 30230, + "diablo": 23931, + "diag": 6851, + "diagno": 7736, + "diagnose": 44429, + "diagnosed": 16979, + "diagnosis": 15715, + "diagnostic": 26351, + "diagnostics": 37723, + "diagram": 22697, + "dial": 18416, + "dial": 11381, + "dialo": 30709, + "dialog": 48945, + "dialogue": 11288, + "dialogues": 40330, + "dialysis": 44798, + "diam": 4347, + "diameter": 27189, + "diamon": 8873, + "diamond": 18535, + "diamond": 6235, + "diamonds": 12687, + "dian": 16021, + "dian": 4998, + "diana": 12803, + "diane": 15855, + "dianne": 42299, + "dians": 21041, + "diaper": 34382, + "diapers": 39659, + "diar": 25932, + "diaries": 15541, + "diary": 10380, + "dias": 22137, + "dias": 29354, + "diaspora": 28390, + "diaz": 17688, + "dic": 1404, + "dic": 6717, + "dicap": 30023, + "dicaprio": 30755, + "dice": 14406, + "dick": 14413, + "dick": 9554, + "dickens": 33421, + "dict": 45360, + "dict": 15159, + "dictat": 26156, + "dictator": 27399, + "dictatorship": 37989, + "dictionary": 19699, + "did": 1861, + "did": 1335, + "diddy": 33527, + "didi": 34396, + "didier": 45614, + "didn": 2376, + "didnt": 13057, + "dido": 31725, + "didyou": 12295, + "didyouknow": 12506, + "die": 3150, + "die": 2082, + "diec": 27729, + "diecast": 37936, + "died": 3622, + "diego": 30940, + "diego": 6306, + "diem": 45571, + "dience": 33686, + "dient": 27231, + "dier": 29702, + "dier": 16394, + "dies": 20104, + "dies": 1862, + "diesel": 46312, + "diesel": 10591, + "diest": 45739, + "diet": 21295, + "diet": 6582, + "dietary": 29009, + "dietrich": 47005, + "diets": 35173, + "dif": 18656, + "dif": 48731, + "diff": 44073, + "diff": 20331, + "diffe": 1967, + "differ": 34620, + "differen": 14903, + "difference": 4731, + "differences": 14003, + "different": 2731, + "differenti": 21729, + "differential": 34027, + "differentiate": 49032, + "differently": 18325, + "diffic": 6140, + "difficult": 7405, + "difficulties": 23468, + "difficulty": 25245, + "diffu": 31603, + "diffuser": 49400, + "dig": 1831, + "dig": 9887, + "dige": 17820, + "digest": 20413, + "digestion": 40533, + "digestive": 32304, + "digg": 43240, + "digger": 35919, + "diggin": 48466, + "digging": 14971, + "digi": 15627, + "digi": 39361, + "digimon": 44181, + "digit": 14899, + "digit": 27472, + "digital": 4704, + "digital": 2794, + "digitalart": 16987, + "digitalhealth": 32190, + "digitalindia": 46630, + "digitally": 27543, + "digitalmarketing": 15299, + "digitaltransformation": 20047, + "digiti": 25935, + "digits": 31710, + "digni": 45532, + "dignit": 39497, + "dignity": 17744, + "digo": 35701, + "digs": 26877, + "dih": 43089, + "dii": 32755, + "dijk": 44444, + "dik": 38854, + "dik": 37747, + "dike": 42683, + "dil": 7643, + "dil": 17942, + "dile": 25428, + "dilemma": 29787, + "dilig": 30664, + "dill": 12318, + "dill": 27206, + "dillon": 21056, + "dilu": 45242, + "dim": 19576, + "dim": 17523, + "dime": 24443, + "dimen": 10935, + "dimension": 20479, + "dimensional": 25252, + "dimensions": 25086, + "diment": 43500, + "dimes": 44888, + "dimini": 37459, + "dimit": 22250, + "dimitri": 48840, + "dimp": 38853, + "din": 1462, + "din": 5673, + "dina": 36815, + "dinah": 30903, + "dine": 20951, + "dine": 12989, + "diner": 16963, + "dinesh": 48341, + "ding": 7545, + "ding": 796, + "dinger": 45580, + "dingh": 48064, + "dings": 5473, + "dington": 24804, + "dinho": 47370, + "dini": 20196, + "dining": 8658, + "dinner": 27548, + "dinner": 2571, + "dinners": 33570, + "dino": 9692, + "dino": 14077, + "dinosa": 18955, + "dinosaur": 15095, + "dinosaurs": 20387, + "dio": 3779, + "dio": 1521, + "dioce": 20763, + "diocese": 27091, + "dion": 42899, + "dion": 16250, + "dior": 23655, + "dios": 37563, + "dious": 27417, + "dioxide": 38102, + "dip": 19918, + "dip": 11343, + "dipl": 8490, + "diplo": 38115, + "diplom": 11169, + "diploma": 21251, + "diplomacy": 23798, + "diplomat": 32828, + "diplomatic": 23782, + "diplomats": 44126, + "dipped": 30610, + "dipper": 49317, + "dipping": 33544, + "dips": 37522, + "dir": 4251, + "dir": 8478, + "dire": 38355, + "dire": 25664, + "direc": 1534, + "direct": 43224, + "direct": 6016, + "directed": 8392, + "directing": 21817, + "direction": 15923, + "direction": 5407, + "directional": 38687, + "directioner": 48042, + "directioners": 22055, + "directions": 16440, + "directive": 40630, + "directly": 9701, + "director": 20337, + "director": 2681, + "directorial": 45327, + "directors": 11940, + "directory": 25272, + "directs": 34349, + "directv": 48652, + "dirk": 28171, + "dirt": 31415, + "dirt": 11795, + "dirty": 20127, + "dirty": 7615, + "dis": 1518, + "dis": 6112, + "disa": 3882, + "disab": 47380, + "disabilities": 17350, + "disability": 48986, + "disability": 13261, + "disabled": 13613, + "disadvantaged": 40577, + "disagree": 23199, + "disapp": 5384, + "disappear": 21148, + "disappear": 25173, + "disappearance": 35929, + "disappeared": 23139, + "disappearing": 35819, + "disappears": 44406, + "disappo": 7605, + "disappoint": 25446, + "disappointed": 13794, + "disappointing": 21941, + "disappointment": 23884, + "disappoints": 48545, + "disappro": 48276, + "disar": 42971, + "disaster": 9072, + "disasters": 26976, + "disastrous": 35790, + "disc": 1472, + "disc": 10712, + "discar": 40532, + "discarded": 45197, + "discer": 49140, + "dischar": 22671, + "discharge": 32485, + "disci": 9559, + "discip": 38951, + "discipl": 10467, + "disciples": 39366, + "disciplinary": 20232, + "discipline": 18903, + "disciplines": 42032, + "discla": 40248, + "disclaimer": 46465, + "disclo": 17481, + "disclose": 46379, + "disclosed": 30905, + "disclosure": 26502, + "disco": 2475, + "disco": 11964, + "discography": 47545, + "discomfort": 48054, + "discord": 23582, + "discoun": 18515, + "discount": 7638, + "discounted": 20993, + "discounts": 18186, + "discoura": 45850, + "discourse": 29441, + "discover": 10539, + "discover": 4834, + "discovered": 6986, + "discoveries": 29308, + "discovering": 17967, + "discovers": 29719, + "discovery": 40491, + "discovery": 8027, + "discre": 20616, + "discrimin": 11721, + "discrimination": 14775, + "discs": 29270, + "discu": 1984, + "discus": 41828, + "discuss": 4312, + "discussed": 11300, + "discusses": 8116, + "discussing": 5900, + "discussion": 5060, + "discussions": 13806, + "dise": 4262, + "disease": 5336, + "diseases": 12035, + "disen": 46468, + "disgrace": 29877, + "disgraceful": 44146, + "disgu": 9793, + "disguise": 27803, + "disguised": 37149, + "disgusted": 41977, + "disgusting": 16218, + "dish": 11039, + "dish": 4531, + "disha": 42498, + "dishes": 11412, + "dishon": 30777, + "dishu": 44728, + "dishwasher": 40524, + "disin": 19484, + "disinfe": 48050, + "disintegr": 49275, + "disk": 17970, + "dislike": 30796, + "dism": 30836, + "dism": 38821, + "dismant": 36557, + "dismiss": 43287, + "dismissal": 42068, + "dismissed": 30087, + "dismisses": 45238, + "disney": 6729, + "disney": 4696, + "disneyland": 39481, + "disneyland": 13661, + "disneyworld": 28469, + "diso": 26305, + "disobe": 42841, + "dison": 19310, + "disorder": 12635, + "disorders": 17114, + "disp": 11073, + "dispar": 24633, + "disparities": 45122, + "dispat": 28652, + "dispatch": 26306, + "dispen": 19077, + "dispenser": 40116, + "disper": 34499, + "displa": 9326, + "displac": 17718, + "displaced": 22817, + "displacement": 37931, + "display": 4456, + "displayed": 18967, + "displaying": 26468, + "displays": 15648, + "dispo": 13651, + "dispon": 38872, + "disponible": 46130, + "dispos": 45177, + "disposable": 37275, + "disposal": 28231, + "dispro": 32927, + "dispropor": 40354, + "disproportion": 45492, + "disregard": 43869, + "disrespect": 34055, + "disrespectful": 41723, + "disru": 13763, + "disrup": 14641, + "disrupt": 25214, + "disrupted": 46674, + "disrupting": 42419, + "disruption": 19635, + "disruptive": 31554, + "diss": 10766, + "diss": 35688, + "dissec": 43879, + "dissemin": 40463, + "dissent": 45154, + "disser": 25560, + "dissertation": 29448, + "dissi": 25088, + "dissol": 27398, + "dissuper": 33461, + "dist": 5479, + "dist": 12116, + "distance": 7964, + "distances": 37078, + "distant": 18949, + "distill": 41586, + "distilled": 49179, + "distillery": 22200, + "distin": 11892, + "distinct": 25056, + "distinction": 28183, + "distinctive": 25486, + "distingui": 15053, + "distinguish": 45418, + "distinguished": 16513, + "distor": 23781, + "distortion": 43690, + "distr": 11885, + "distract": 39309, + "distracted": 24049, + "distraction": 32039, + "distress": 26866, + "distressed": 37515, + "distri": 5987, + "distribu": 6138, + "distribute": 32313, + "distributed": 16419, + "distributing": 35216, + "distribution": 10484, + "distributor": 28354, + "distributors": 44240, + "distric": 3208, + "district": 46683, + "district": 3506, + "districts": 17565, + "distur": 11732, + "disturb": 33018, + "disturb": 39449, + "disturbance": 42416, + "disturbed": 29967, + "disturbing": 21476, + "disupdates": 45667, + "dit": 5752, + "dit": 2524, + "dita": 47965, + "ditch": 43715, + "ditch": 19291, + "dited": 40392, + "diti": 2363, + "dition": 16452, + "dition": 3015, + "ditional": 4322, + "ditions": 4503, + "dito": 43705, + "dits": 49374, + "dity": 16436, + "dium": 2903, + "div": 5293, + "div": 14869, + "diva": 13605, + "divas": 23534, + "dive": 26042, + "dive": 9058, + "diver": 13119, + "diver": 22094, + "divergence": 48735, + "divergent": 36132, + "divers": 30241, + "divers": 27038, + "diverse": 11464, + "diversi": 24475, + "diversion": 38457, + "diversity": 35634, + "diversity": 6257, + "diverted": 41049, + "dives": 13893, + "divi": 8375, + "divid": 31337, + "divide": 18842, + "divided": 18689, + "dividend": 32067, + "dividends": 45146, + "dividing": 45605, + "divin": 21838, + "divine": 46919, + "divine": 10976, + "diving": 9886, + "divinity": 39754, + "divisi": 39196, + "division": 5378, + "divisional": 40912, + "divisions": 33715, + "divor": 13543, + "divorce": 17060, + "divorced": 39437, + "divya": 47767, + "diwali": 18218, + "dix": 45838, + "dix": 27620, + "dixie": 24484, + "dixit": 28279, + "dixon": 16086, + "diy": 28472, + "diy": 7845, + "diya": 36459, + "diz": 32740, + "dized": 36232, + "dizz": 40239, + "dizzy": 35464, + "dj": 3761, + "dj": 3723, + "djan": 35338, + "django": 46498, + "dji": 35284, + "dji": 28379, + "djing": 36113, + "djo": 19432, + "djoker": 42721, + "djokernole": 42830, + "djokovic": 27944, + "djs": 18117, + "dk": 20702, + "dk": 16196, + "dl": 12558, + "dl": 9373, + "dlc": 19079, + "dle": 11057, + "dle": 3287, + "dled": 23494, + "dler": 40279, + "dles": 7890, + "dless": 14997, + "dley": 12808, + "dling": 18221, + "dly": 3069, + "dm": 19070, + "dm": 4667, + "dma": 42903, + "dman": 18826, + "dmc": 28991, + "dmit": 31607, + "dmitry": 48326, + "dms": 19955, + "dmv": 27508, + "dmx": 45255, + "dn": 11552, + "dn": 7459, + "dna": 8790, + "dnb": 35422, + "dnc": 20237, + "dnd": 11678, + "dnr": 37051, + "dns": 39245, + "dnt": 26795, + "do": 639, + "do": 818, + "doa": 48332, + "dob": 29640, + "doba": 35605, + "dobbs": 43006, + "dobson": 46888, + "doc": 3009, + "doc": 7251, + "doch": 25101, + "dock": 17311, + "dock": 8997, + "docked": 46784, + "docker": 31152, + "docking": 40845, + "docks": 24091, + "docs": 15157, + "doctor": 7872, + "doctor": 5547, + "doctoral": 23649, + "doctorate": 39134, + "doctors": 9705, + "doctorwho": 12996, + "doctr": 28497, + "doctrine": 35612, + "docu": 4433, + "document": 29293, + "document": 15121, + "documentaries": 44209, + "documentary": 7881, + "documentation": 31560, + "documented": 22310, + "documenting": 37876, + "documents": 14105, + "dod": 13847, + "dod": 30187, + "dodd": 36748, + "dodge": 31263, + "dodge": 12093, + "dodgeball": 43244, + "dodger": 31641, + "dodgers": 12422, + "dodgy": 37727, + "doe": 13296, + "does": 2397, + "does": 1897, + "doesn": 2503, + "doesnt": 17937, + "dof": 8277, + "doff": 20193, + "dofficial": 42516, + "dog": 4326, + "dog": 1929, + "dogcelebration": 41819, + "dogday": 27475, + "doge": 42187, + "dogg": 20749, + "doggie": 32237, + "doggo": 42155, + "doggy": 26359, + "doglo": 40733, + "dogre": 40030, + "dogrescue": 44158, + "dogs": 42182, + "dogs": 3255, + "dogsoftwitter": 19415, + "doh": 23581, + "doha": 20908, + "doherty": 31774, + "doi": 36361, + "doin": 15412, + "doing": 37408, + "doing": 1960, + "doit": 32272, + "doit": 28109, + "doj": 25700, + "dojo": 35901, + "dok": 40547, + "dok": 41034, + "doka": 46528, + "dol": 2287, + "dol": 19170, + "dola": 38005, + "dolan": 27200, + "dolby": 42414, + "dolce": 30033, + "dolce": 30661, + "dole": 41040, + "doll": 27031, + "doll": 9286, + "dollar": 35092, + "dollar": 7474, + "dollars": 10669, + "dolls": 15090, + "dolly": 43281, + "dolly": 23821, + "dolom": 37137, + "dolores": 40741, + "dolph": 8900, + "dolph": 22257, + "dolphin": 42963, + "dolphin": 16464, + "dolphins": 14002, + "dom": 2164, + "dom": 1919, + "domain": 15492, + "domaine": 48744, + "domains": 36358, + "dome": 8515, + "dome": 9827, + "domen": 37584, + "domest": 21936, + "domestic": 28189, + "domestic": 9043, + "domin": 4361, + "dominance": 30546, + "dominant": 20565, + "dominate": 21431, + "dominated": 23048, + "dominates": 34043, + "dominating": 29303, + "domination": 30919, + "domingo": 24882, + "dominic": 39007, + "dominic": 19095, + "dominican": 22934, + "dominion": 27155, + "domino": 30752, + "dominos": 39770, + "domo": 44293, + "doms": 30126, + "don": 1067, + "don": 847, + "dona": 26789, + "donal": 42375, + "donald": 5990, + "donald": 4335, + "donaldson": 37783, + "donaldtrump": 6652, + "donat": 36384, + "donate": 6429, + "donated": 8705, + "donates": 26960, + "donating": 12621, + "donation": 7924, + "donations": 9928, + "doncaster": 38008, + "doncaster": 25352, + "doncasterisgreat": 47333, + "done": 5136, + "done": 1700, + "donegal": 24172, + "donesia": 41281, + "donet": 33724, + "donetsk": 33999, + "dong": 26242, + "dong": 31478, + "dongha": 28365, + "donghae": 28945, + "donia": 24014, + "donkey": 21415, + "donkeys": 44644, + "donna": 9158, + "donne": 30897, + "donnein": 38308, + "donneinarte": 40193, + "donnell": 35118, + "donnelly": 39070, + "donnie": 47058, + "donnie": 30609, + "donny": 37291, + "donny": 32887, + "dono": 14840, + "donor": 18013, + "donors": 17887, + "donovan": 21499, + "dons": 22127, + "dont": 8094, + "dont": 4632, + "donut": 18471, + "donuts": 13970, + "doo": 4543, + "doo": 11643, + "doodle": 9388, + "doodled": 41030, + "doodles": 22156, + "doodling": 37548, + "dooley": 47609, + "doom": 23263, + "doom": 14344, + "doomed": 33251, + "doomsday": 41791, + "doon": 36612, + "doop": 33886, + "door": 7188, + "door": 2489, + "doors": 4228, + "doorstep": 19533, + "doorway": 46575, + "dop": 42381, + "dop": 31722, + "dope": 42587, + "dope": 10094, + "doping": 30285, + "dopp": 21774, + "doppelg": 45216, + "doppler": 42540, + "dor": 2766, + "dor": 8695, + "dora": 18104, + "dorado": 32350, + "dorchester": 32656, + "dore": 39423, + "dores": 34323, + "dorf": 17296, + "dori": 49270, + "doria": 43186, + "dorian": 44016, + "doris": 24285, + "dork": 36206, + "dorm": 24263, + "doro": 15498, + "doro": 37389, + "dorothy": 20805, + "dors": 31240, + "dorset": 42109, + "dorset": 16047, + "dorsey": 41607, + "dortmund": 24290, + "dory": 36135, + "dos": 44258, + "dos": 5474, + "dose": 11497, + "doses": 37873, + "dossier": 46042, + "dost": 44222, + "dot": 7473, + "dot": 7004, + "dota": 23085, + "dotcom": 12443, + "dote": 31202, + "dothis": 47864, + "dotnet": 43124, + "dotorg": 46587, + "dots": 19019, + "dotted": 47950, + "dou": 1756, + "dou": 23608, + "doub": 19631, + "double": 13013, + "double": 3200, + "doubled": 24948, + "doubleheader": 34668, + "doubles": 12539, + "doubling": 36850, + "doubt": 37071, + "doubt": 8671, + "doubts": 30894, + "douche": 44292, + "doug": 20271, + "doug": 10758, + "dough": 15785, + "dough": 14983, + "doughnut": 32555, + "doughnuts": 31124, + "dougie": 46317, + "dougla": 9140, + "douglas": 10065, + "douglass": 45692, + "doun": 44785, + "dov": 38856, + "dova": 26551, + "dove": 27511, + "dove": 18281, + "dover": 43019, + "dover": 14683, + "doves": 47067, + "dow": 8022, + "dow": 10688, + "dowell": 27344, + "down": 1833, + "down": 1136, + "downe": 46501, + "downed": 35814, + "downer": 42522, + "downers": 43739, + "downey": 29429, + "downfall": 48702, + "downhill": 27387, + "downing": 28140, + "download": 35076, + "download": 3794, + "downloadable": 49105, + "downloaded": 22961, + "downloading": 30519, + "downloads": 26481, + "downpour": 39034, + "downpours": 40160, + "downs": 10706, + "downside": 41937, + "downstairs": 28174, + "downstream": 43822, + "downtime": 41964, + "downton": 45023, + "downton": 42668, + "downtown": 18230, + "downtown": 5061, + "downward": 37430, + "dowski": 43556, + "dox": 44786, + "dox": 14510, + "doyle": 17728, + "doyou": 27256, + "doz": 31106, + "dozen": 16401, + "dozens": 17883, + "dp": 23820, + "dp": 6465, + "dprint": 46644, + "dprinting": 16194, + "dprk": 47920, + "dps": 34288, + "dq": 28741, + "dr": 1084, + "dr": 1701, + "dra": 1114, + "dra": 7402, + "drac": 20168, + "dracing": 41253, + "dracula": 25405, + "draf": 37426, + "draft": 30624, + "draft": 5198, + "drafted": 19129, + "drafting": 33528, + "drafts": 29194, + "drag": 8452, + "drag": 12463, + "dragged": 27884, + "dragging": 37069, + "dragon": 9187, + "dragon": 5471, + "dragonball": 40959, + "dragoncon": 47802, + "dragonfly": 32824, + "dragons": 10203, + "dragrace": 40762, + "drags": 45368, + "drain": 23347, + "drain": 19467, + "drainage": 25953, + "drained": 44630, + "drains": 43638, + "drainthe": 47337, + "drake": 32504, + "drake": 8958, + "dral": 7503, + "dram": 6937, + "dram": 32170, + "drama": 5055, + "dramas": 33467, + "dramati": 43512, + "dramatic": 11240, + "dramatically": 24495, + "drank": 21712, + "draped": 49113, + "drastic": 43159, + "drastically": 35478, + "drau": 18621, + "draw": 17675, + "draw": 4001, + "drawer": 23219, + "drawers": 38975, + "drawing": 36996, + "drawing": 3610, + "drawings": 13397, + "drawn": 8893, + "draws": 12043, + "dray": 25562, + "drayton": 49044, + "drc": 21434, + "dre": 960, + "dre": 14584, + "dread": 17412, + "dread": 31403, + "dreaded": 47227, + "dreadful": 35846, + "dreality": 48367, + "dream": 4595, + "dream": 2984, + "dreambig": 46495, + "dreamcast": 47226, + "dreamed": 27984, + "dreamer": 25692, + "dreamers": 27194, + "dreaming": 11662, + "dreamliner": 49143, + "dreams": 4405, + "dreamt": 43743, + "dreamteam": 40090, + "dreamy": 23517, + "dred": 10903, + "dredge": 48783, + "dren": 29068, + "dren": 47309, + "drenched": 46378, + "dres": 48852, + "dres": 44697, + "dresden": 34836, + "dress": 12622, + "dress": 2595, + "dressage": 36144, + "dressed": 6559, + "dresser": 26346, + "dresses": 8184, + "dressing": 6348, + "drew": 18792, + "drew": 5281, + "drex": 33985, + "drey": 48271, + "dri": 1203, + "dri": 28833, + "drian": 36870, + "dribb": 42153, + "dric": 23448, + "dridge": 22956, + "drie": 40170, + "dried": 16037, + "drier": 39877, + "dries": 33857, + "drif": 33585, + "drift": 18194, + "drifting": 30276, + "drill": 11626, + "drilled": 46338, + "drilling": 18634, + "drills": 24378, + "drin": 3375, + "drin": 47133, + "drink": 14131, + "drink": 3979, + "drinking": 5778, + "drinklocal": 45998, + "drinks": 6732, + "drip": 24050, + "dripping": 38787, + "dris": 35804, + "drive": 11402, + "drive": 2620, + "driven": 9314, + "driver": 27563, + "driver": 4383, + "driverless": 46769, + "drivers": 7384, + "drives": 11441, + "driveway": 26273, + "driving": 37800, + "driving": 4161, + "drizzle": 28240, + "drm": 39674, + "dro": 1494, + "dro": 12442, + "drogba": 49199, + "droid": 38016, + "drome": 9157, + "dron": 43898, + "dron": 23360, + "drone": 33557, + "drone": 9397, + "drones": 14006, + "droo": 30715, + "drool": 41554, + "drooling": 44360, + "drop": 16407, + "drop": 3387, + "dropbox": 47216, + "dropped": 6792, + "dropping": 8339, + "drops": 6437, + "dros": 47033, + "drou": 38558, + "drought": 13935, + "drove": 13753, + "drow": 21159, + "drown": 28571, + "drowned": 34005, + "drowning": 24618, + "drs": 21257, + "dru": 2275, + "dru": 49048, + "drug": 20601, + "drug": 5600, + "drugs": 8021, + "druid": 40297, + "drum": 13353, + "drum": 8698, + "drummer": 13618, + "drummers": 46191, + "drumming": 35480, + "drummond": 42213, + "drums": 11690, + "drun": 15488, + "drunk": 37398, + "drunk": 8232, + "drunken": 28196, + "drupal": 46481, + "drush": 43009, + "drwho": 48342, + "dry": 13544, + "dry": 4501, + "dryer": 24425, + "drying": 23203, + "ds": 3361, + "ds": 646, + "dsa": 47607, + "dsb": 47168, + "dsb": 14257, + "dsburg": 47237, + "dsc": 37240, + "dsd": 45383, + "dsley": 40740, + "dslr": 33740, + "dsm": 39502, + "dson": 40310, + "dsp": 45291, + "dss": 41580, + "dstv": 35027, + "dt": 13104, + "dt": 7427, + "dthe": 13863, + "dtla": 31885, + "dtm": 42407, + "dts": 46233, + "du": 691, + "du": 3686, + "dua": 25244, + "dual": 39739, + "dual": 5347, + "duane": 38946, + "dub": 14526, + "dub": 13144, + "duba": 5485, + "dubai": 32599, + "dubai": 5985, + "dubbed": 27740, + "dublin": 20707, + "dublin": 6145, + "dubnation": 47329, + "dubois": 48046, + "dubrov": 46709, + "dubrovnik": 48724, + "dubs": 27013, + "dubstep": 38303, + "dubu": 43257, + "duc": 979, + "duc": 36446, + "ducati": 28570, + "ducation": 17197, + "duce": 3660, + "duchess": 21713, + "duck": 12708, + "duck": 6910, + "ducks": 11202, + "duct": 26829, + "dude": 48087, + "dude": 5710, + "dudes": 14449, + "dudley": 27324, + "due": 2887, + "duel": 27143, + "dues": 37646, + "duet": 25457, + "duf": 38713, + "duff": 38071, + "duff": 21934, + "duffy": 23599, + "dug": 22743, + "dug": 21000, + "dugg": 40523, + "duggan": 46169, + "dugout": 36831, + "duh": 26716, + "dui": 29693, + "duk": 14160, + "duke": 18402, + "duke": 7732, + "dukes": 27914, + "dul": 6738, + "dulce": 44872, + "dulil": 32565, + "dulkar": 47980, + "dull": 19433, + "dulu": 28865, + "duluth": 32109, + "dulwich": 47343, + "dum": 13400, + "dum": 11564, + "dumb": 15901, + "dumb": 12464, + "dumbass": 38980, + "dummies": 40899, + "dummy": 34246, + "dump": 12655, + "dump": 17146, + "dumped": 23768, + "dumping": 31707, + "dumplings": 35495, + "dumps": 45804, + "dumpster": 45467, + "dun": 2616, + "dun": 18284, + "dunbar": 41453, + "duncan": 31084, + "duncan": 13502, + "dundal": 38185, + "dundas": 39300, + "dundee": 18619, + "dune": 32833, + "dune": 28208, + "dunedin": 40121, + "dunes": 23526, + "dung": 33712, + "dungeon": 28812, + "dungeon": 22931, + "dungeons": 42572, + "dungeonsand": 34970, + "dungeonsanddragons": 35497, + "dunham": 42501, + "duni": 43454, + "dunk": 17222, + "dunkin": 48022, + "dunkin": 36415, + "dunkirk": 46928, + "dunks": 48977, + "dunlop": 34753, + "dunn": 19185, + "dunne": 38538, + "dunno": 24502, + "duo": 8696, + "dup": 36805, + "dup": 10445, + "duper": 44850, + "duplex": 41186, + "duplic": 28992, + "dupont": 35994, + "dur": 4355, + "dur": 23230, + "dura": 28173, + "dura": 47382, + "durability": 43671, + "durable": 22285, + "duran": 28185, + "durango": 44443, + "durant": 24861, + "duras": 27518, + "duration": 31663, + "durban": 24474, + "dure": 19108, + "durga": 38456, + "durham": 26765, + "durham": 14335, + "during": 1590, + "dus": 9931, + "dusa": 28546, + "dusk": 19708, + "dust": 29723, + "dust": 8349, + "dusted": 38274, + "duster": 46280, + "dustin": 42423, + "dustin": 21235, + "dusting": 41756, + "dusty": 22029, + "dut": 32625, + "dutch": 22277, + "dutch": 7991, + "duter": 21624, + "duterte": 22371, + "duties": 19603, + "dutt": 30081, + "dutton": 42771, + "duty": 6458, + "duval": 42459, + "duvet": 48006, + "dux": 28562, + "dv": 4288, + "dv": 26265, + "dvd": 7170, + "dvds": 36655, + "dvn": 29811, + "dvr": 29210, + "dw": 8455, + "dw": 19997, + "dwar": 13487, + "dwarf": 22643, + "dwayne": 31395, + "dwell": 27549, + "dwell": 18755, + "dwelling": 37098, + "dwight": 22473, + "dwp": 46976, + "dwts": 30220, + "dwyer": 43878, + "dx": 22717, + "dx": 15679, + "dy": 1444, + "dy": 907, + "dyce": 48325, + "dye": 37159, + "dye": 15997, + "dyed": 24906, + "dyer": 29495, + "dyes": 39874, + "dying": 5115, + "dyk": 12142, + "dyke": 32632, + "dylan": 21004, + "dylan": 9900, + "dyn": 44289, + "dyn": 30669, + "dynam": 5735, + "dynamic": 10057, + "dynamics": 14329, + "dynamite": 29003, + "dynamo": 28281, + "dynasty": 14593, + "dyne": 42756, + "dyou": 11484, + "dyour": 22525, + "dys": 11022, + "dys": 38384, + "dysfunction": 36865, + "dysfunctional": 40757, + "dysle": 33681, + "dyslexia": 43199, + "dyson": 34475, + "dyssey": 17435, + "dystop": 28276, + "dystopian": 38915, + "dz": 24421, + "dz": 22913, + "dé": 25466, + "dü": 46948, + "dÃŃ": 46988, + "e": 68, + "e": 324, + "ea": 2150, + "ea": 8100, + "eable": 20693, + "each": 31442, + "each": 2416, + "eachother": 40792, + "ead": 42556, + "ead": 45523, + "eae": 27446, + "eag": 3743, + "eager": 21551, + "eagerly": 30094, + "eagle": 20207, + "eagle": 7517, + "eagles": 6920, + "eal": 48872, + "ealing": 40484, + "eames": 49072, + "eamon": 45954, + "ean": 13327, + "ear": 1055, + "ear": 8373, + "earbuds": 47807, + "eared": 9127, + "earl": 30573, + "earl": 14235, + "earle": 40292, + "earlier": 4297, + "earliest": 22097, + "early": 15840, + "early": 2090, + "earn": 33977, + "earn": 8465, + "earned": 8898, + "earnest": 45422, + "earning": 14550, + "earnings": 15912, + "earns": 16760, + "earp": 35296, + "earphones": 44905, + "earring": 28664, + "earrings": 9136, + "ears": 9861, + "eart": 7086, + "earth": 5184, + "earth": 3475, + "earthand": 34229, + "earthandclouds": 34480, + "earthday": 19481, + "earthquake": 10060, + "earthquakes": 32895, + "earthy": 47139, + "earts": 38824, + "eas": 5740, + "ease": 13574, + "easier": 8817, + "easiest": 26314, + "easily": 8197, + "easing": 44825, + "easport": 42251, + "east": 5022, + "east": 2602, + "eastbound": 28827, + "eastbourne": 38455, + "eastenders": 23545, + "easter": 14783, + "easter": 4811, + "eastern": 34522, + "eastern": 6311, + "eastman": 48280, + "easton": 29619, + "eastside": 42650, + "eastwood": 28270, + "easy": 18308, + "easy": 3176, + "eat": 5418, + "eat": 3384, + "eaten": 16750, + "eater": 24060, + "eaters": 37645, + "eatery": 46559, + "eating": 4371, + "eatlocal": 42868, + "eaton": 28462, + "eats": 13188, + "eau": 17608, + "eazy": 36536, + "eb": 12283, + "eb": 8677, + "eba": 40889, + "ebay": 34412, + "ebay": 4099, + "eber": 34020, + "ebo": 46635, + "ebola": 15864, + "ebon": 22013, + "ebony": 30651, + "ebook": 13122, + "ebooks": 25774, + "ec": 747, + "ec": 10879, + "eca": 18465, + "ecar": 34500, + "ecb": 26205, + "ecc": 33128, + "eccc": 47401, + "eccentric": 43228, + "eccle": 27494, + "ece": 2163, + "eces": 5905, + "ecg": 45983, + "ech": 15797, + "ech": 31147, + "echel": 41233, + "echo": 17366, + "echo": 13989, + "echoes": 32564, + "eci": 31936, + "eck": 25866, + "eck": 15969, + "ecker": 39661, + "ecker": 40890, + "ecla": 47806, + "eclec": 25114, + "eclectic": 28382, + "eclip": 30841, + "eclipse": 11505, + "eclub": 38983, + "eco": 5106, + "eco": 10077, + "ecofriendly": 43412, + "ecol": 22706, + "ecological": 25127, + "ecology": 18578, + "ecommerce": 15529, + "econ": 26755, + "econ": 21158, + "econom": 2768, + "economic": 36649, + "economic": 5259, + "economical": 48782, + "economically": 39406, + "economics": 12625, + "economies": 27136, + "economist": 18836, + "economists": 43701, + "economy": 5644, + "ecor": 28962, + "ecosystem": 15788, + "ecosystems": 28725, + "ecoun": 27924, + "ecr": 48572, + "ecraft": 11439, + "ecs": 23485, + "ecstasy": 47286, + "ecstatic": 36244, + "ect": 25168, + "ecu": 13087, + "ecu": 32919, + "ecuador": 19813, + "ecz": 43530, + "ed": 843, + "ed": 538, + "eda": 10804, + "edad": 44724, + "eday": 39258, + "edc": 21245, + "edchat": 14702, + "edd": 35431, + "eddi": 42930, + "eddie": 22748, + "eddie": 9517, + "eddy": 25959, + "ede": 29632, + "eded": 19555, + "edel": 20460, + "edelman": 48139, + "eden": 23621, + "eden": 13741, + "eder": 16249, + "edes": 36247, + "edfringe": 27402, + "edg": 35955, + "edgar": 33543, + "edgar": 17914, + "edge": 16914, + "edge": 5461, + "edged": 39188, + "edges": 20938, + "edgy": 35393, + "edi": 8750, + "edi": 27148, + "edible": 19795, + "edic": 25184, + "edics": 30641, + "edin": 6524, + "edinburgh": 27574, + "edinburgh": 8068, + "eding": 5742, + "edison": 25846, + "edit": 8239, + "edit": 8013, + "edited": 13945, + "edith": 28597, + "editing": 10178, + "edition": 3062, + "editions": 21664, + "editor": 7661, + "editorial": 12325, + "editors": 19486, + "edits": 24945, + "edm": 37843, + "edm": 13539, + "edmon": 11275, + "edmond": 41581, + "edmonds": 46520, + "edmonton": 37311, + "edmonton": 15058, + "edmun": 36561, + "edmund": 27567, + "edna": 39002, + "edo": 29145, + "edo": 18096, + "edon": 41467, + "edor": 30184, + "edou": 47678, + "edp": 46066, + "eds": 1941, + "edsheeran": 30386, + "edt": 15071, + "edtech": 41825, + "edtech": 15262, + "edu": 11757, + "edu": 11799, + "eduardo": 30604, + "educ": 2200, + "educate": 17563, + "educated": 21447, + "education": 22358, + "education": 2806, + "educational": 10400, + "educator": 19875, + "educators": 15420, + "edwar": 27586, + "edward": 26184, + "edward": 7450, + "edwards": 12627, + "edwin": 48718, + "edwin": 22471, + "edy": 17072, + "edy": 4144, + "ee": 2644, + "ee": 4708, + "eed": 17513, + "eee": 24632, + "eee": 9361, + "eeee": 11696, + "eeee": 17570, + "eeeee": 26938, + "eeeeee": 41407, + "eek": 46591, + "eel": 27462, + "eels": 44416, + "eem": 27236, + "een": 47490, + "een": 21230, + "eer": 35409, + "eer": 31846, + "eera": 36664, + "eerie": 33846, + "ees": 40308, + "eet": 48935, + "eez": 39033, + "ef": 1490, + "ef": 1829, + "efa": 16999, + "eface": 48804, + "efan": 33556, + "efc": 22065, + "efcc": 46087, + "efer": 26199, + "eff": 20548, + "eff": 21715, + "effe": 2808, + "effec": 3943, + "effect": 5436, + "effective": 6837, + "effectively": 17516, + "effectiveness": 26847, + "effects": 7331, + "effic": 36004, + "efficacy": 39937, + "effici": 6670, + "efficiency": 11823, + "efficient": 11334, + "efficiently": 32915, + "effor": 6356, + "effort": 40078, + "effort": 6255, + "effortless": 41639, + "effortlessly": 42320, + "efforts": 6847, + "efish": 35813, + "efl": 27172, + "efron": 48111, + "efs": 7389, + "eg": 8053, + "eg": 14599, + "ega": 41193, + "egan": 42943, + "eger": 46704, + "eger": 22767, + "egg": 13778, + "egg": 5911, + "eggplant": 34906, + "eggs": 7099, + "ego": 34712, + "ego": 14250, + "egos": 43992, + "egre": 27044, + "egret": 42002, + "egy": 5224, + "egyp": 10250, + "egypt": 7267, + "egyptian": 12428, + "eh": 9277, + "eh": 9135, + "eha": 48563, + "ehealth": 48617, + "ehr": 45271, + "ehs": 44648, + "ei": 4006, + "ei": 18264, + "eic": 40251, + "eid": 28038, + "eid": 13979, + "eidmubarak": 46275, + "eiffel": 29720, + "eigh": 13468, + "eight": 7910, + "eighteen": 49316, + "eighth": 21237, + "eighty": 47449, + "eil": 29457, + "eileen": 31468, + "ein": 29944, + "ein": 24524, + "eindhoven": 47172, + "eing": 7702, + "einstein": 20587, + "eira": 47708, + "eis": 13802, + "eisen": 25273, + "eisenhower": 35562, + "either": 6036, + "ej": 19887, + "ej": 25009, + "ejec": 29771, + "ek": 4212, + "ek": 2092, + "el": 544, + "el": 832, + "ela": 11284, + "ela": 3787, + "elab": 38866, + "elabor": 26034, + "elaborate": 33855, + "elaine": 22523, + "elan": 17763, + "elan": 18399, + "eland": 24930, + "eland": 6275, + "elas": 41078, + "elast": 27479, + "elastic": 30282, + "elba": 48598, + "elbow": 21965, + "eld": 5684, + "elder": 11791, + "elder": 14416, + "elderly": 15455, + "elders": 28617, + "eldest": 33503, + "elding": 28223, + "elds": 13466, + "ele": 2084, + "ele": 9766, + "eleague": 36577, + "eleanor": 18604, + "elearning": 29969, + "elec": 1564, + "elec": 38768, + "elect": 15336, + "elected": 8828, + "election": 19312, + "election": 4247, + "electionday": 40540, + "elections": 6949, + "elector": 16465, + "electoral": 19544, + "electr": 3654, + "electra": 48959, + "electri": 23927, + "electric": 19547, + "electric": 5031, + "electrical": 12176, + "electrician": 46422, + "electricity": 10950, + "electrifying": 48843, + "electro": 11648, + "electro": 23244, + "electromagnetic": 46530, + "electron": 33396, + "electronic": 33865, + "electronic": 9273, + "electronica": 43119, + "electronics": 13081, + "eled": 20357, + "elee": 44112, + "eleg": 8075, + "elegance": 19146, + "elegant": 11124, + "elek": 34559, + "elem": 25406, + "element": 14909, + "elementary": 8143, + "elements": 10925, + "elen": 30654, + "elen": 39164, + "elena": 19421, + "eleng": 48180, + "eleph": 7554, + "elephant": 10299, + "elephants": 16871, + "eler": 24646, + "eless": 15244, + "eless": 30837, + "elets": 19400, + "elev": 7921, + "elevate": 26736, + "elevated": 23967, + "elevation": 23826, + "elevator": 19021, + "eleven": 31617, + "eleven": 17795, + "elf": 45961, + "elf": 11924, + "elfie": 39955, + "elg": 28790, + "elgin": 31868, + "eli": 1018, + "eli": 6292, + "elia": 10956, + "elian": 42508, + "elias": 47274, + "elias": 29902, + "elic": 34743, + "elic": 13492, + "elie": 38677, + "elie": 26501, + "elier": 14634, + "elife": 37429, + "elife": 12719, + "eligibility": 34937, + "eligible": 16978, + "elijah": 26065, + "elike": 48913, + "elim": 9296, + "elimin": 11386, + "eliminate": 19655, + "eliminated": 29075, + "eliminating": 36619, + "elimination": 24176, + "elin": 25353, + "elin": 13458, + "eline": 46199, + "eline": 7153, + "eling": 9990, + "elio": 47943, + "elion": 30682, + "elions": 44159, + "eliot": 33326, + "elis": 23411, + "elis": 48021, + "elisa": 25610, + "elisa": 44051, + "elisabeth": 33127, + "elise": 27124, + "elit": 40882, + "elite": 32277, + "elite": 6553, + "elited": 43943, + "elitedangerous": 47138, + "elites": 35975, + "elius": 35623, + "elive": 49338, + "elive": 23505, + "elives": 49174, + "elix": 32926, + "elixir": 42887, + "eliz": 42844, + "eliza": 6132, + "eliza": 29992, + "elizabeth": 22397, + "elizabeth": 7026, + "elk": 34013, + "elk": 21896, + "ell": 826, + "ell": 812, + "ella": 20692, + "ella": 2957, + "elland": 43326, + "ellar": 38443, + "ellas": 37053, + "elle": 12818, + "elle": 4765, + "elled": 13146, + "ellen": 14007, + "ellen": 12312, + "ellenshow": 34812, + "eller": 20927, + "eller": 4465, + "ellers": 19010, + "elles": 24431, + "elli": 3367, + "elli": 6673, + "ellic": 38905, + "ellie": 16769, + "ellier": 44054, + "ellin": 40374, + "elling": 2220, + "ellington": 34477, + "ellini": 43256, + "elliot": 20761, + "elliott": 44456, + "elliott": 13788, + "ellip": 44816, + "ellis": 11553, + "ellison": 32295, + "ello": 2512, + "ellor": 14594, + "ells": 2433, + "ellu": 35560, + "elly": 8041, + "elly": 20355, + "elm": 25199, + "elm": 22082, + "elman": 33622, + "elmer": 45958, + "elmo": 32150, + "elo": 6170, + "elo": 13490, + "elon": 26381, + "elon": 20406, + "elondon": 47377, + "elong": 44363, + "elonmusk": 37076, + "elope": 23367, + "eloqu": 37795, + "elos": 44733, + "elot": 43490, + "elove": 43319, + "elove": 19165, + "elover": 21732, + "elovers": 33946, + "els": 35958, + "els": 1645, + "elsa": 22050, + "else": 18857, + "else": 3344, + "elsewhere": 22906, + "elson": 19624, + "elt": 18692, + "elton": 20758, + "elu": 14208, + "elusive": 28903, + "elves": 29111, + "elvi": 47008, + "elvis": 47359, + "elvis": 14498, + "elxn": 37726, + "ely": 12189, + "ely": 1273, + "elyn": 29691, + "elyn": 18126, + "em": 908, + "em": 2270, + "ema": 7002, + "ema": 11131, + "emabiggest": 23101, + "emabiggestfans": 29587, + "email": 33537, + "email": 4462, + "emailed": 40470, + "emailmarketing": 40188, + "emails": 12871, + "eman": 24416, + "eman": 36868, + "emancip": 42996, + "emanuel": 35232, + "emb": 3692, + "embar": 8266, + "embaras": 48019, + "embark": 33953, + "embarra": 11382, + "embarrass": 27183, + "embarrassed": 28217, + "embarrassing": 19653, + "embarrassment": 41346, + "embassy": 13598, + "embe": 46041, + "embed": 19703, + "embedded": 22046, + "embelli": 32144, + "embellished": 46992, + "ember": 47049, + "emblem": 21163, + "embo": 23065, + "embr": 35267, + "embrac": 16928, + "embrace": 12118, + "embraced": 35739, + "embraces": 38404, + "embracing": 22196, + "embro": 12550, + "embroi": 18667, + "embroide": 21530, + "embroidered": 22381, + "embroidery": 20823, + "emc": 20897, + "emc": 31602, + "emcee": 42038, + "eme": 22910, + "eme": 21548, + "emea": 40352, + "emed": 11028, + "emen": 22033, + "ement": 40841, + "ement": 2057, + "ements": 11058, + "emer": 3132, + "emer": 25727, + "emerald": 46878, + "emerald": 16980, + "emerge": 22182, + "emerged": 26425, + "emergen": 24096, + "emergence": 39867, + "emergencies": 35759, + "emergency": 44038, + "emergency": 5897, + "emerges": 30801, + "emerging": 38174, + "emerging": 11113, + "emeritus": 35333, + "emerson": 24147, + "emery": 32678, + "emi": 44327, + "emi": 18525, + "emil": 26794, + "emil": 40624, + "emile": 43926, + "emili": 20709, + "emilia": 34238, + "emilio": 39722, + "emily": 14545, + "emily": 7640, + "emin": 17227, + "emin": 23995, + "eminem": 22129, + "eminent": 33779, + "eming": 40398, + "emir": 13337, + "emir": 47613, + "emirates": 47244, + "emirates": 17867, + "emission": 27761, + "emissions": 14172, + "emit": 49043, + "emma": 18177, + "emma": 7445, + "emmanuel": 48045, + "emmanuel": 20411, + "emmett": 45779, + "emmy": 35625, + "emmy": 17089, + "emmys": 21875, + "emo": 3738, + "emo": 19381, + "emoji": 16327, + "emojis": 27870, + "emon": 34406, + "emor": 45034, + "emory": 44274, + "emotion": 17464, + "emotional": 7357, + "emotionally": 24088, + "emotions": 12904, + "emp": 3831, + "emp": 41004, + "empathy": 22420, + "emper": 12522, + "emperor": 13828, + "empha": 16237, + "emphasi": 47176, + "emphasis": 29588, + "empire": 26212, + "empire": 7614, + "empires": 46510, + "emplo": 3409, + "employ": 37290, + "employ": 39626, + "employe": 5037, + "employed": 26567, + "employee": 36631, + "employee": 9560, + "employees": 7377, + "employer": 21296, + "employers": 17647, + "employment": 10959, + "empor": 27386, + "emporium": 48541, + "empower": 13612, + "empower": 17230, + "empowered": 29087, + "empowering": 20086, + "empowerment": 15747, + "empowers": 46206, + "empress": 26656, + "empty": 41203, + "empty": 7893, + "emra": 39259, + "ems": 2858, + "emt": 46360, + "emu": 48149, + "emu": 29296, + "emul": 23272, + "emy": 31076, + "en": 524, + "en": 576, + "ena": 3452, + "enab": 17308, + "enable": 15642, + "enabled": 23666, + "enables": 23417, + "enabling": 23590, + "enam": 41486, + "enamel": 22746, + "enary": 13132, + "enas": 34536, + "enation": 20860, + "enberg": 15658, + "enburg": 28430, + "enc": 33169, + "enca": 37774, + "encan": 30345, + "encapsul": 40874, + "ence": 6495, + "ence": 954, + "enced": 6549, + "ences": 3777, + "enchan": 17290, + "enchanted": 28258, + "enchanting": 32531, + "enchil": 47396, + "enci": 32207, + "encia": 30068, + "encies": 18729, + "encing": 10326, + "enclosed": 43243, + "enclosure": 37419, + "encom": 44026, + "encore": 20549, + "encoun": 17309, + "encounter": 13164, + "encountered": 32492, + "encounters": 25399, + "encoura": 6169, + "encourage": 12090, + "encouraged": 20299, + "encouragement": 24959, + "encourages": 23848, + "encouraging": 15875, + "encro": 45822, + "encry": 28600, + "encryp": 42928, + "encrypted": 48710, + "encryption": 31423, + "ency": 3484, + "encyclo": 32104, + "encyclopedia": 38376, + "end": 945, + "end": 806, + "enda": 6735, + "endale": 20290, + "endange": 13990, + "endangered": 14931, + "ende": 11373, + "ende": 40306, + "endeav": 18134, + "endeavor": 40502, + "endeavors": 44394, + "endeavour": 38035, + "ended": 2622, + "endemic": 41241, + "endent": 16265, + "ender": 48106, + "ender": 12383, + "enders": 7418, + "endez": 43850, + "endgame": 23042, + "endi": 31359, + "ending": 2695, + "endings": 36516, + "endish": 38841, + "endless": 12688, + "endlessly": 45145, + "endment": 45894, + "endo": 13476, + "endo": 15830, + "endocr": 36486, + "endof": 40786, + "endome": 46996, + "endon": 48018, + "endor": 8092, + "endorf": 37249, + "endorse": 28819, + "endorsed": 24307, + "endorsement": 21205, + "endorses": 34603, + "endorsing": 46779, + "endow": 45895, + "endra": 22321, + "ends": 1339, + "endthe": 46256, + "endu": 26032, + "endur": 19557, + "endurance": 21027, + "endure": 32419, + "enduring": 30851, + "enduro": 47042, + "ene": 3297, + "ene": 6049, + "ened": 2494, + "eneed": 45137, + "enegger": 33235, + "enei": 48906, + "enemies": 15824, + "enemy": 10310, + "enen": 45113, + "ener": 2244, + "ener": 13600, + "energ": 39451, + "energetic": 24197, + "energi": 23044, + "energies": 42374, + "energized": 48635, + "energy": 14974, + "energy": 2650, + "energye": 32271, + "energyefficiency": 40586, + "eners": 48208, + "enes": 42066, + "eness": 11806, + "enet": 46336, + "enew": 29672, + "enews": 13442, + "eney": 20706, + "enez": 33110, + "enf": 38167, + "enfield": 27808, + "enfor": 10592, + "enforce": 40224, + "enforced": 44597, + "enforcement": 12460, + "eng": 1035, + "eng": 6730, + "enga": 22297, + "engag": 6793, + "engage": 11089, + "engaged": 11475, + "engagement": 7281, + "engaging": 13060, + "enge": 26279, + "enge": 2742, + "engel": 38265, + "engen": 48286, + "enger": 6618, + "engers": 7533, + "engine": 3355, + "engine": 5857, + "engineer": 40151, + "engineer": 8517, + "engineered": 26580, + "engineering": 5273, + "engineers": 11494, + "engines": 14487, + "england": 20904, + "england": 3595, + "english": 15942, + "english": 3469, + "engra": 17560, + "engraved": 29421, + "engraving": 33309, + "engul": 43655, + "engv": 28401, + "enh": 7449, + "enhall": 48781, + "enham": 24592, + "enhan": 26827, + "enhance": 13993, + "enhanced": 16070, + "enhancement": 35601, + "enhances": 38259, + "enhancing": 25986, + "eni": 4395, + "eni": 17538, + "enic": 46780, + "enic": 28292, + "enig": 19754, + "enig": 48730, + "enight": 32848, + "enight": 20640, + "enigma": 34998, + "ening": 1133, + "enium": 34380, + "enix": 25720, + "enjo": 1498, + "enjoy": 12981, + "enjoy": 2218, + "enjoyable": 17444, + "enjoyed": 5045, + "enjoying": 3603, + "enjoyment": 34905, + "enjoys": 17024, + "enka": 43942, + "enko": 25312, + "enlar": 38136, + "enligh": 21364, + "enlighten": 28200, + "enlightened": 44032, + "enlightening": 44005, + "enlightenment": 29255, + "enlisted": 43555, + "enly": 43023, + "enn": 43563, + "enna": 8095, + "enne": 21176, + "enne": 11518, + "ennedy": 46266, + "ennes": 43613, + "enni": 7049, + "ennial": 14220, + "ennis": 48923, + "ennis": 26309, + "eno": 9429, + "eno": 12843, + "enoch": 47917, + "enor": 13955, + "enormous": 20129, + "enos": 44759, + "enote": 44955, + "enough": 2744, + "enow": 26876, + "enqu": 28417, + "enqui": 22810, + "enquire": 46658, + "enquiries": 31901, + "enquiry": 45141, + "enri": 18915, + "enrich": 20058, + "enrich": 45504, + "enriched": 45166, + "enrichment": 32903, + "enrique": 25489, + "enrol": 44279, + "enroll": 23739, + "enroll": 30366, + "enrolled": 36853, + "enrollment": 24875, + "enroute": 40548, + "ens": 41799, + "ens": 1323, + "ense": 12657, + "ense": 27658, + "ensemble": 14843, + "ensis": 32842, + "ensla": 37535, + "enslaved": 48675, + "ensure": 7492, + "ensures": 29707, + "ensuring": 19403, + "ent": 724, + "ent": 621, + "enta": 17681, + "ental": 32342, + "ental": 6168, + "entary": 9833, + "entation": 37412, + "ente": 17433, + "ente": 9935, + "ented": 3800, + "entennial": 43088, + "enter": 2963, + "enter": 3819, + "entered": 10679, + "entering": 12580, + "enterpri": 7339, + "enterprise": 9220, + "enterprises": 21219, + "enters": 15287, + "entertain": 5566, + "entertain": 23510, + "entertained": 30631, + "entertainer": 28674, + "entertaining": 13897, + "entertainment": 6166, + "entes": 24213, + "enthr": 36202, + "enthusi": 9631, + "enthusiasm": 20525, + "enthusiast": 27153, + "enthusiastic": 22068, + "enthusiasts": 27514, + "enti": 1938, + "ential": 5194, + "entially": 37695, + "entic": 10340, + "entine": 49212, + "enting": 20526, + "entire": 4709, + "entirely": 13911, + "entirety": 43242, + "entit": 15209, + "entities": 38134, + "entitled": 18680, + "entity": 28455, + "ently": 2922, + "ento": 21917, + "ento": 8762, + "entom": 31676, + "entourage": 47893, + "entr": 7129, + "entrance": 9129, + "entrata": 27304, + "entre": 34188, + "entre": 19600, + "entren": 46959, + "entrepre": 4583, + "entreprene": 4789, + "entrepreneu": 26784, + "entrepreneur": 12119, + "entrepreneur": 8033, + "entrepreneurial": 28261, + "entrepreneurs": 11054, + "entrepreneurship": 12858, + "entries": 13766, + "entry": 5362, + "ents": 870, + "entu": 6650, + "enty": 5657, + "enu": 23430, + "env": 32280, + "env": 39207, + "envel": 20052, + "envelope": 27358, + "envir": 3512, + "enviro": 46200, + "environ": 3599, + "environment": 33039, + "environment": 5501, + "environmental": 7831, + "environmentally": 32855, + "environments": 19577, + "envision": 49031, + "envoy": 29263, + "envy": 21017, + "eny": 20482, + "enya": 36509, + "enyc": 39520, + "enz": 25805, + "enz": 31873, + "enza": 25239, + "enzie": 14839, + "enzo": 31543, + "enzyme": 40348, + "enzymes": 47465, + "eo": 16054, + "eo": 11712, + "eoin": 48634, + "eon": 31915, + "eos": 17805, + "ep": 1178, + "ep": 1117, + "epa": 15866, + "epage": 26931, + "epaper": 33584, + "epcot": 32524, + "eper": 43071, + "eph": 45752, + "eph": 41240, + "ephe": 25129, + "epi": 7219, + "epi": 34641, + "epic": 12683, + "epic": 4991, + "epiconetsy": 49222, + "epide": 17382, + "epidemi": 44447, + "epidemic": 21522, + "epile": 23150, + "epilepsy": 29547, + "epilo": 31291, + "epilots": 39766, + "epiph": 40561, + "epiphany": 43251, + "epis": 24616, + "episcop": 28037, + "episcopal": 31221, + "episo": 2708, + "episode": 2965, + "episodes": 11837, + "epit": 21967, + "epitome": 35114, + "epl": 25950, + "epo": 25810, + "epp": 39054, + "epp": 39593, + "eps": 4090, + "epsilon": 40019, + "epsom": 40364, + "epstein": 34688, + "eq": 39331, + "eq": 33692, + "equ": 2563, + "equal": 17373, + "equal": 10433, + "equality": 48981, + "equality": 9578, + "equally": 18172, + "equals": 30278, + "equation": 28591, + "equations": 38225, + "eque": 19518, + "equestrian": 24728, + "equi": 8752, + "equili": 43262, + "equine": 33801, + "equinox": 32652, + "equip": 6526, + "equip": 36979, + "equipment": 6893, + "equipo": 45688, + "equipped": 18331, + "equitable": 44717, + "equities": 44015, + "equity": 11293, + "equivalent": 19489, + "er": 517, + "er": 528, + "era": 30548, + "era": 2072, + "erable": 18801, + "erad": 24194, + "eradic": 36346, + "eradicate": 46164, + "eral": 6222, + "eran": 13069, + "eras": 19325, + "eras": 39090, + "erase": 33893, + "erased": 46762, + "erasmus": 38935, + "erc": 5360, + "erc": 32382, + "erd": 25645, + "erdo": 21112, + "erdogan": 24453, + "ere": 17907, + "ere": 642, + "erec": 21526, + "erected": 39365, + "ered": 9097, + "eres": 15751, + "ergon": 38120, + "ergy": 19550, + "eri": 2769, + "eri": 9509, + "eria": 11634, + "erial": 5409, + "eric": 1206, + "eric": 5396, + "erica": 13208, + "erich": 26070, + "erick": 27434, + "erick": 36959, + "erickson": 45286, + "ericsson": 39645, + "eridge": 45408, + "erie": 7005, + "eries": 9099, + "erik": 22805, + "erik": 16532, + "erika": 25531, + "erin": 17532, + "erin": 11333, + "erina": 25176, + "ering": 1785, + "erit": 23335, + "eritrea": 30738, + "erjee": 41665, + "erly": 14380, + "erm": 31649, + "erman": 17990, + "ern": 6992, + "ern": 12140, + "ernal": 20868, + "ernan": 34617, + "ernation": 48796, + "erne": 33930, + "ernest": 23006, + "ernie": 23636, + "ernity": 14653, + "erno": 40812, + "ernst": 30099, + "ero": 3211, + "ero": 3732, + "erock": 38206, + "eron": 32837, + "eroom": 46690, + "eros": 30597, + "erose": 48657, + "erosion": 30174, + "erotic": 30708, + "erotica": 39126, + "erous": 6384, + "eroy": 36461, + "erp": 28268, + "err": 22479, + "err": 25346, + "erra": 48446, + "errands": 45485, + "error": 12097, + "errors": 21195, + "erry": 45236, + "erry": 24124, + "ers": 4840, + "ers": 612, + "ersfc": 37925, + "ership": 2884, + "erson": 25780, + "erson": 6811, + "ert": 40325, + "ert": 3112, + "erta": 32007, + "erton": 26245, + "erts": 12921, + "eru": 36068, + "erun": 41642, + "erup": 17093, + "erupted": 48862, + "eruption": 33705, + "erville": 37557, + "erwin": 43724, + "ery": 12467, + "ery": 1692, + "erz": 38711, + "es": 957, + "es": 542, + "esa": 46834, + "esa": 12489, + "esanders": 23099, + "esc": 3330, + "esc": 28420, + "escal": 15902, + "escap": 11499, + "escape": 32484, + "escape": 7568, + "escaped": 18707, + "escapes": 29916, + "escaping": 21767, + "escar": 39229, + "escence": 37972, + "esch": 46760, + "esch": 41945, + "esco": 32482, + "escobar": 48807, + "escor": 24360, + "escort": 24976, + "escorted": 47667, + "escorts": 48574, + "escu": 36517, + "esday": 19553, + "ese": 18766, + "ese": 2260, + "esg": 41674, + "esh": 17119, + "esh": 13407, + "esha": 28799, + "eshop": 38451, + "eshop": 45570, + "eshopsuk": 39349, + "esi": 30064, + "esis": 12414, + "esk": 19359, + "esl": 26201, + "eso": 29890, + "eso": 28921, + "esof": 17047, + "eson": 46845, + "esp": 3849, + "esp": 13870, + "espa": 37301, + "espan": 41731, + "españa": 41118, + "especially": 4878, + "esper": 29216, + "espino": 46633, + "espionage": 43498, + "espn": 22917, + "espn": 7540, + "espnu": 47747, + "espo": 34381, + "esports": 16035, + "espresso": 17098, + "esq": 47352, + "esqu": 34616, + "esque": 25877, + "ess": 3118, + "ess": 9764, + "essa": 39125, + "essay": 12751, + "essays": 27328, + "esse": 22305, + "essen": 30489, + "essence": 17830, + "essenti": 11163, + "essential": 47264, + "essential": 6895, + "essentially": 30042, + "essentials": 16191, + "essex": 30563, + "essex": 11623, + "est": 2291, + "est": 1509, + "esta": 41449, + "esta": 10135, + "estab": 7010, + "establi": 8412, + "establish": 19709, + "established": 13143, + "establishing": 29420, + "establishment": 20213, + "estas": 39072, + "estate": 47130, + "estate": 6159, + "estates": 26054, + "este": 12968, + "este": 20579, + "esteban": 48381, + "esteem": 31541, + "esteemed": 36293, + "ester": 45808, + "esthe": 18468, + "esther": 24393, + "estim": 8904, + "estimate": 21883, + "estimated": 16665, + "estimates": 21957, + "esto": 31589, + "esto": 23958, + "estonia": 26260, + "estonian": 48895, + "estrada": 48116, + "estre": 31271, + "estu": 26272, + "estuary": 35269, + "esur": 35758, + "esville": 39187, + "esy": 46268, + "et": 1169, + "et": 875, + "eta": 8761, + "etal": 25221, + "etary": 13074, + "etc": 5353, + "etched": 40411, + "etching": 41375, + "ete": 38820, + "ete": 40245, + "eter": 8587, + "eter": 17007, + "eternal": 13732, + "eternally": 48486, + "eternity": 23832, + "eters": 18392, + "etf": 31661, + "eth": 4819, + "eth": 5927, + "ethan": 24245, + "ethan": 15958, + "ethanol": 38166, + "ethe": 21312, + "ethel": 45921, + "ether": 23349, + "ethere": 18705, + "ethereal": 40925, + "ethereum": 19612, + "ethernet": 35026, + "ethi": 10327, + "ethic": 39104, + "ethical": 47041, + "ethical": 17679, + "ethics": 13355, + "ethiop": 10897, + "ethiopia": 13920, + "ethiopian": 24507, + "ethnic": 30522, + "ethnic": 16344, + "ethnicity": 46787, + "ethno": 34225, + "ethos": 48768, + "eti": 11188, + "eti": 30394, + "etienne": 46118, + "eties": 15137, + "etihad": 38489, + "etiquette": 37957, + "etis": 38216, + "etisation": 39733, + "etna": 41940, + "eto": 27829, + "eto": 33837, + "eton": 44339, + "etour": 41462, + "etr": 23012, + "etres": 42838, + "ets": 3442, + "etsy": 13237, + "etsy": 6282, + "etsym": 22902, + "etsymntt": 25416, + "etsyshop": 44643, + "ett": 32729, + "ett": 24998, + "etta": 30466, + "ette": 19981, + "ette": 5212, + "ettes": 35326, + "etto": 44219, + "etty": 40759, + "etu": 36593, + "etv": 49155, + "etv": 20325, + "etwork": 20585, + "ety": 25920, + "ety": 2746, + "etz": 36181, + "etz": 25301, + "eu": 1506, + "eu": 3238, + "eucalyp": 41068, + "eucalyptus": 42351, + "euchar": 38362, + "eugen": 30678, + "eugene": 17760, + "eul": 46749, + "eun": 16431, + "eun": 26219, + "eunhyuk": 47526, + "eup": 44435, + "euph": 21386, + "euphoria": 41051, + "eur": 18343, + "eur": 12018, + "eura": 32605, + "eure": 25311, + "euref": 48017, + "eureka": 31686, + "euro": 2039, + "euro": 8463, + "euroleague": 46821, + "europa": 18290, + "europale": 42473, + "europaleague": 44029, + "europarl": 44922, + "europe": 4198, + "europe": 3848, + "european": 26712, + "european": 4759, + "europeans": 37082, + "euros": 22274, + "eurovision": 17593, + "eurozone": 42555, + "eurusd": 40895, + "eus": 44214, + "euston": 46905, + "euthan": 43280, + "euve": 40652, + "eux": 25019, + "ev": 776, + "ev": 10133, + "eva": 6845, + "evacu": 13187, + "evacuated": 26806, + "evacuation": 27353, + "eval": 25139, + "eval": 9703, + "evalu": 10314, + "evaluate": 27174, + "evaluating": 34541, + "evaluation": 17640, + "evan": 12821, + "evan": 12847, + "evangel": 20518, + "evangeli": 21372, + "evangelical": 36151, + "evangelist": 42275, + "evankirstel": 46581, + "evans": 8836, + "evansville": 44782, + "evapor": 33352, + "evasion": 48795, + "eve": 5732, + "eve": 1866, + "eved": 19820, + "evel": 39315, + "evelyn": 26687, + "evement": 8210, + "even": 6359, + "even": 1427, + "evening": 34487, + "evening": 2285, + "evenings": 19994, + "evenly": 45974, + "event": 10612, + "event": 1655, + "eventful": 45628, + "evento": 38155, + "eventprofs": 24980, + "events": 3667, + "eventu": 14055, + "eventual": 45321, + "eventually": 14397, + "ever": 888, + "ever": 1247, + "everest": 21722, + "everett": 25456, + "everglades": 46294, + "evergreen": 23852, + "everlasting": 32849, + "evers": 31914, + "everton": 13315, + "every": 1091, + "every": 1505, + "everybody": 5901, + "everyday": 25049, + "everyday": 5160, + "everyone": 1584, + "everything": 36376, + "everything": 2410, + "everytime": 16911, + "everywhere": 6364, + "eves": 7323, + "evi": 5348, + "evi": 36989, + "evic": 21336, + "eviction": 37111, + "eviden": 46220, + "evidence": 6439, + "evident": 34529, + "evie": 47195, + "evil": 23218, + "evil": 6006, + "eville": 16143, + "eving": 24729, + "evo": 17962, + "evo": 13169, + "evoc": 43133, + "evol": 5350, + "evolu": 7725, + "evolution": 8902, + "evolutionary": 30629, + "evolve": 23406, + "evolved": 22613, + "evolving": 23675, + "evp": 46154, + "evs": 33576, + "ew": 11942, + "ew": 15428, + "ewan": 40247, + "ewe": 48438, + "ewing": 38873, + "ews": 9878, + "ex": 659, + "ex": 4118, + "exac": 5460, + "exact": 12651, + "exactly": 5840, + "exagger": 29766, + "exal": 49324, + "exam": 4428, + "exam": 8785, + "examination": 20970, + "examine": 25728, + "examined": 44004, + "examiner": 29149, + "examines": 28160, + "examining": 30616, + "example": 6228, + "examples": 14790, + "exams": 14028, + "exas": 47536, + "exc": 1302, + "excav": 20733, + "excavation": 45909, + "exce": 10999, + "exceed": 32521, + "exceeded": 36221, + "exceeding": 47213, + "exceeds": 49353, + "excel": 28351, + "excel": 18754, + "excell": 3298, + "excellence": 8171, + "excellency": 36503, + "excellent": 4239, + "excelsi": 47315, + "excep": 8882, + "except": 8541, + "exception": 25018, + "exceptional": 13425, + "exceptionally": 29306, + "excer": 17737, + "excerpt": 20586, + "excess": 22491, + "excessive": 21332, + "exchange": 6616, + "exchanged": 48919, + "exchanges": 29730, + "exchanging": 47760, + "excit": 10510, + "excite": 47711, + "excited": 1889, + "excitement": 11407, + "exciting": 4300, + "exclu": 3114, + "exclude": 49235, + "excluded": 46216, + "excluding": 44326, + "exclusion": 40219, + "exclusive": 3747, + "exclusively": 13565, + "exclusives": 47149, + "excu": 7324, + "excur": 27533, + "excursion": 34869, + "excuse": 9266, + "excuses": 19388, + "exe": 3554, + "exe": 48027, + "exec": 15052, + "execs": 35728, + "execu": 4360, + "execute": 36405, + "executed": 20432, + "execution": 18085, + "executive": 5944, + "executives": 24357, + "exem": 19753, + "exemp": 28602, + "exempl": 36371, + "exemplary": 39123, + "exempli": 41934, + "exempt": 44278, + "exemption": 47481, + "exer": 40295, + "exerc": 5932, + "exercise": 7016, + "exercises": 19669, + "exercising": 39036, + "exeter": 32137, + "exeter": 18837, + "exfoli": 38823, + "exhau": 11154, + "exhaust": 21812, + "exhausted": 21741, + "exhausting": 40035, + "exhaustion": 49221, + "exhi": 3022, + "exhib": 3783, + "exhibit": 24992, + "exhibit": 8209, + "exhibiting": 23889, + "exhibition": 4219, + "exhibitions": 28311, + "exhibitor": 44192, + "exhibitors": 38542, + "exhibits": 30093, + "exhilar": 40262, + "exhilarating": 49289, + "exi": 5297, + "exico": 38712, + "exile": 28566, + "exist": 10899, + "exist": 9645, + "existed": 23198, + "existence": 13832, + "existent": 43541, + "existential": 38752, + "existing": 12886, + "exists": 14608, + "exit": 9374, + "exited": 37581, + "exiting": 39577, + "exits": 34943, + "exmoor": 48260, + "exo": 15600, + "exo": 5842, + "exodus": 30098, + "exol": 42856, + "exop": 35288, + "exoplan": 37980, + "exor": 24506, + "exorcist": 46309, + "exotic": 15639, + "exp": 9923, + "exp": 19066, + "expan": 7512, + "expand": 10382, + "expand": 13141, + "expanded": 18390, + "expanding": 15755, + "expands": 22223, + "expanse": 46886, + "expansion": 10138, + "expansive": 49261, + "expat": 43900, + "expe": 2560, + "expect": 9802, + "expect": 5716, + "expectation": 34273, + "expectations": 12529, + "expected": 5573, + "expecting": 12525, + "expects": 24536, + "expedition": 16761, + "expeditions": 49327, + "expelled": 48834, + "expen": 7216, + "expend": 29302, + "expenditure": 47044, + "expense": 28473, + "expenses": 21797, + "expensive": 9649, + "exper": 1533, + "experi": 4723, + "experience": 31867, + "experience": 2415, + "experienced": 10417, + "experiences": 8233, + "experiencing": 16643, + "experiential": 44952, + "experim": 6697, + "experiment": 13079, + "experimental": 16539, + "experimenting": 28263, + "experiments": 21077, + "expert": 6284, + "expertise": 16555, + "experts": 6960, + "expi": 26850, + "expir": 35077, + "expire": 49315, + "expired": 30200, + "expires": 34739, + "expl": 3261, + "expla": 3517, + "explain": 48918, + "explain": 7304, + "explained": 14229, + "explaining": 13136, + "explains": 6655, + "explan": 13294, + "explanation": 16577, + "explanations": 34383, + "explic": 21011, + "explicit": 33228, + "explo": 3586, + "explode": 31262, + "exploded": 28947, + "explodes": 38119, + "exploding": 34683, + "exploit": 36953, + "exploited": 48554, + "explor": 11958, + "exploration": 14043, + "explore": 10405, + "explore": 5147, + "explorebc": 38754, + "explorecanada": 36600, + "explored": 25016, + "explorer": 15776, + "explorers": 28491, + "explores": 13996, + "exploring": 7584, + "explosion": 13785, + "explosions": 38646, + "explosive": 18888, + "explosives": 44705, + "expo": 7820, + "expo": 6344, + "expon": 27905, + "export": 14444, + "exporting": 47433, + "exports": 20088, + "expose": 23181, + "exposed": 12180, + "exposes": 33575, + "exposing": 28362, + "exposition": 36943, + "exposure": 11903, + "expre": 6085, + "express": 18553, + "express": 5642, + "expressed": 20777, + "expresses": 31931, + "expressing": 30207, + "expression": 11357, + "expressions": 20314, + "expressive": 42060, + "expressway": 31658, + "exquis": 16575, + "exquisite": 17958, + "ext": 5711, + "ext": 20072, + "exten": 5555, + "extend": 14492, + "extended": 9614, + "extending": 25652, + "extends": 20688, + "extension": 10275, + "extensions": 24525, + "extensive": 16870, + "extensively": 47365, + "extent": 24913, + "exter": 9797, + "exterior": 19352, + "extermin": 41671, + "external": 15028, + "extin": 13553, + "extinct": 24488, + "extinction": 21186, + "extingui": 38567, + "extor": 35620, + "extr": 29082, + "extra": 6416, + "extra": 4231, + "extrac": 18550, + "extract": 18962, + "extraction": 28789, + "extracts": 45576, + "extraordin": 23628, + "extraordinaire": 30909, + "extraordinary": 10982, + "extras": 29817, + "extravag": 22299, + "extravaganza": 29461, + "extre": 3978, + "extreme": 38357, + "extreme": 8331, + "extremely": 6519, + "extremism": 31493, + "extremist": 36383, + "extremists": 41425, + "extru": 43010, + "ey": 1541, + "ey": 1477, + "eyang": 28915, + "eye": 5034, + "eye": 3272, + "eyebrow": 34250, + "eyebrows": 19923, + "eyed": 15512, + "eyeing": 34916, + "eyel": 17075, + "eyelashes": 42074, + "eyeliner": 33354, + "eyeon": 25126, + "eyes": 3095, + "eyeshadow": 35213, + "eyewear": 30165, + "eyewitness": 36258, + "eyou": 31996, + "eyour": 40229, + "eyre": 44115, + "ez": 10082, + "ez": 8387, + "eze": 25993, + "eze": 27229, + "ezekiel": 41428, + "ezra": 27552, + "f": 69, + "f": 325, + "fa": 778, + "fa": 2800, + "faa": 27577, + "fab": 2833, + "fab": 5492, + "faber": 43461, + "faber": 42488, + "fabi": 29425, + "fabian": 34539, + "fabio": 31666, + "fabric": 16217, + "fabric": 10033, + "fabricated": 40851, + "fabrication": 33476, + "fabrics": 23159, + "fabulous": 5189, + "fac": 1053, + "fac": 35438, + "facade": 29217, + "face": 2545, + "face": 1710, + "facebook": 36156, + "facebook": 2943, + "faced": 10941, + "faceli": 32023, + "facelift": 36380, + "faceoff": 42710, + "facep": 45285, + "faces": 4905, + "faceted": 43435, + "facetime": 24076, + "facial": 11909, + "facil": 39973, + "facilit": 13567, + "facilitate": 26733, + "facilitated": 43853, + "facilitating": 34796, + "facilities": 10388, + "facility": 8165, + "facing": 7619, + "fact": 17189, + "fact": 3598, + "factfriday": 27953, + "faction": 14629, + "factor": 21082, + "factor": 8124, + "factories": 36492, + "factors": 12733, + "factory": 42483, + "factory": 6072, + "facts": 5085, + "factual": 45471, + "faculty": 9504, + "facup": 25283, + "fad": 12632, + "fad": 47669, + "fade": 20486, + "faded": 26051, + "fades": 40441, + "fading": 32882, + "fadnavis": 38945, + "faf": 31052, + "faf": 43903, + "fag": 25617, + "fag": 39305, + "fah": 25495, + "fah": 35429, + "fahren": 45527, + "fai": 20519, + "fai": 26384, + "fail": 7105, + "fail": 6801, + "failed": 8314, + "failing": 15757, + "fails": 13388, + "failure": 8732, + "failures": 25442, + "faint": 30807, + "fair": 3031, + "fair": 2849, + "fairbanks": 43962, + "faire": 34745, + "faire": 20798, + "fairfax": 29368, + "fairfield": 29664, + "fairgrounds": 38325, + "fairi": 28884, + "fairies": 33590, + "fairly": 14961, + "fairmont": 41547, + "fairness": 29388, + "fairs": 8655, + "fairtrade": 33361, + "fairview": 43479, + "fairway": 44022, + "fairy": 17021, + "fairy": 10444, + "fairytale": 28944, + "fais": 23542, + "faisal": 35459, + "fait": 20567, + "faith": 10653, + "faith": 5080, + "faithful": 15511, + "faiz": 41775, + "fake": 18794, + "fake": 5777, + "faken": 22853, + "fakenews": 26943, + "fakespeare": 49095, + "fal": 2778, + "fal": 40494, + "fala": 47120, + "falcon": 22498, + "falcon": 13571, + "falcons": 13834, + "falk": 34648, + "falkirk": 44080, + "fall": 6489, + "fall": 2359, + "fallen": 8688, + "falling": 48709, + "falling": 7293, + "fallon": 39596, + "fallon": 21281, + "fallontonight": 44627, + "fallout": 49365, + "fallout": 16009, + "falls": 4778, + "falmouth": 38261, + "false": 38948, + "false": 9078, + "falsely": 42321, + "fam": 1058, + "fam": 5128, + "fame": 6573, + "famed": 23302, + "famer": 24554, + "famil": 3395, + "famili": 8488, + "familia": 25622, + "familiar": 10020, + "families": 4612, + "family": 8137, + "family": 1315, + "familyfun": 46308, + "familytime": 47236, + "familytravel": 38222, + "famine": 35847, + "famous": 44811, + "famous": 4096, + "famously": 44505, + "fan": 1675, + "fan": 2261, + "fanart": 41059, + "fanart": 7855, + "fanartfriday": 45346, + "fanatic": 36643, + "fanatics": 39610, + "fanbase": 36921, + "fanboy": 43369, + "fanc": 29017, + "fancafe": 45080, + "fanci": 35908, + "fanclub": 31530, + "fancy": 47622, + "fancy": 6733, + "fand": 19684, + "fandom": 47634, + "fandom": 11534, + "fanfest": 42916, + "fanfic": 47243, + "fang": 14269, + "fang": 27428, + "fangirl": 28813, + "fangirling": 39463, + "fanning": 37282, + "fanny": 30401, + "fans": 32454, + "fans": 1840, + "fansign": 25288, + "fant": 4467, + "fanta": 2703, + "fantaken": 39412, + "fantasia": 49306, + "fantastic": 31289, + "fantastic": 2935, + "fantasy": 15124, + "fantasy": 5267, + "fantasyfootball": 35713, + "fao": 31155, + "faq": 28533, + "far": 1578, + "far": 2384, + "fara": 48562, + "farage": 28340, + "farah": 31547, + "fare": 8620, + "fare": 6461, + "fares": 27525, + "farewell": 10734, + "fargo": 18870, + "fari": 26197, + "farley": 43761, + "farm": 9066, + "farm": 3985, + "farmer": 19735, + "farmer": 10474, + "farmers": 29752, + "farmers": 6402, + "farmersmarket": 41808, + "farmhouse": 26293, + "farming": 10399, + "farmington": 49305, + "farmland": 45258, + "farms": 11277, + "farn": 27527, + "faroo": 39147, + "farra": 33657, + "farrakhan": 46293, + "farrell": 24234, + "fart": 34664, + "farther": 42233, + "fas": 4830, + "fas": 42995, + "fasci": 17191, + "fascin": 7327, + "fascinated": 32964, + "fascinating": 8640, + "fascism": 28213, + "fascist": 23870, + "fascists": 43598, + "fash": 42682, + "fashi": 2099, + "fashion": 6976, + "fashion": 2444, + "fashionable": 24597, + "fashionblogger": 31726, + "fashioned": 21563, + "fashioni": 26062, + "fashionista": 30415, + "fashions": 37601, + "fashionshow": 45653, + "fashionweek": 28684, + "fass": 42398, + "fast": 8509, + "fast": 1953, + "fasten": 44990, + "faster": 8835, + "fastest": 9808, + "fasting": 24656, + "fat": 4751, + "fat": 5484, + "fatal": 12124, + "fatalities": 44168, + "fatally": 34069, + "fate": 26315, + "fate": 11734, + "father": 11607, + "father": 3224, + "fathers": 12780, + "fathersday": 16731, + "fati": 13430, + "fatigue": 23747, + "fatima": 28202, + "fats": 30151, + "fatt": 44131, + "fatty": 22953, + "fau": 5571, + "fau": 31381, + "faucet": 44273, + "faul": 16230, + "faulkner": 37840, + "fault": 13862, + "faults": 42752, + "faulty": 47103, + "fauna": 30808, + "faust": 44772, + "faux": 19429, + "fav": 1355, + "fav": 5426, + "fave": 7272, + "faves": 18003, + "favor": 1766, + "favor": 12160, + "favorable": 35392, + "favored": 46640, + "favorite": 35262, + "favorite": 1916, + "favorited": 36926, + "favorites": 10564, + "favors": 36085, + "favour": 3111, + "favour": 20469, + "favourite": 3342, + "favourites": 16585, + "favs": 18879, + "faw": 21800, + "fawad": 46425, + "fawn": 48624, + "fax": 32535, + "fax": 9337, + "fay": 8939, + "fay": 40074, + "faye": 30257, + "fayette": 32043, + "fayette": 19782, + "fayetteville": 37771, + "fayre": 34982, + "faz": 26238, + "faze": 44880, + "fb": 22637, + "fb": 3307, + "fball": 29663, + "fbf": 20004, + "fbi": 10293, + "fbloggers": 41389, + "fbs": 48454, + "fc": 4278, + "fc": 1399, + "fca": 24540, + "fcb": 26639, + "fcb": 25045, + "fcbarcelona": 32174, + "fcbayern": 35033, + "fcblive": 44608, + "fcc": 21240, + "fck": 40080, + "fck": 49263, + "fcofficial": 27805, + "fcs": 32095, + "fcu": 47898, + "fd": 16972, + "fd": 11525, + "fda": 17823, + "fdi": 45579, + "fdn": 18563, + "fdny": 41084, + "fdr": 42298, + "fe": 623, + "fe": 873, + "fear": 8744, + "fear": 5402, + "feared": 31154, + "fearless": 17470, + "fears": 13867, + "fearthe": 33449, + "feasi": 34977, + "feast": 37963, + "feast": 9564, + "feat": 1703, + "feat": 5611, + "feather": 24905, + "feather": 17871, + "feathers": 21138, + "featherweight": 44939, + "feature": 30413, + "feature": 4527, + "featured": 4743, + "features": 4643, + "featuring": 3706, + "feb": 4317, + "febru": 4202, + "february": 4248, + "fect": 31293, + "fed": 22518, + "fed": 7035, + "feder": 4737, + "federal": 6369, + "federation": 15530, + "federer": 18246, + "federico": 40539, + "fedex": 32603, + "fedora": 45111, + "feds": 30593, + "fee": 28242, + "fee": 9224, + "feed": 6662, + "feed": 5839, + "feedback": 8683, + "feeder": 24482, + "feeders": 44523, + "feeding": 9879, + "feeds": 21788, + "feel": 2408, + "feel": 2051, + "feelin": 19903, + "feeling": 33087, + "feeling": 3045, + "feelings": 9452, + "feels": 4808, + "feelthe": 22322, + "feelthebern": 27743, + "fees": 11765, + "feet": 4804, + "fei": 23441, + "fei": 34217, + "fein": 46707, + "feinstein": 41313, + "fel": 2081, + "fel": 20304, + "feld": 45913, + "feld": 14219, + "feldman": 41942, + "feli": 7498, + "felic": 25845, + "felici": 23379, + "felicia": 41139, + "felicidades": 41648, + "felicity": 35123, + "feline": 29471, + "felipe": 27681, + "felix": 33455, + "felix": 16514, + "feliz": 26104, + "feliz": 20221, + "fell": 33540, + "fell": 6266, + "fella": 17586, + "fellas": 18787, + "feller": 29226, + "fellow": 12099, + "fellow": 5242, + "fellows": 15766, + "fellowship": 13857, + "felony": 31068, + "felt": 5413, + "fem": 24574, + "fem": 36615, + "fema": 41721, + "female": 22062, + "female": 3970, + "females": 21028, + "femi": 38607, + "femin": 11423, + "femini": 11894, + "feminine": 24911, + "feminism": 18784, + "feminist": 14921, + "feminists": 38809, + "femme": 31331, + "fen": 5509, + "fen": 25024, + "fence": 12679, + "fences": 34312, + "fencing": 23489, + "fender": 17117, + "fener": 41208, + "fenerbah": 46652, + "feng": 33291, + "fennel": 28689, + "fent": 26395, + "fenton": 47265, + "fenway": 29206, + "fer": 1765, + "fer": 2897, + "fera": 37705, + "feral": 29972, + "ferdin": 25541, + "ferdinand": 27591, + "fere": 43144, + "feren": 35652, + "ference": 19984, + "ferg": 44938, + "fergie": 39119, + "fergu": 10988, + "fergus": 42041, + "ferguson": 11904, + "fermentation": 45817, + "fermented": 36886, + "fern": 10747, + "fern": 21685, + "fernandes": 44391, + "fernandez": 23436, + "fernando": 17140, + "ferns": 38277, + "feroci": 45652, + "ferr": 7256, + "ferra": 47911, + "ferrari": 9606, + "ferre": 29626, + "ferred": 10432, + "ferreira": 48686, + "ferrell": 41112, + "ferrer": 38904, + "ferri": 42008, + "ferries": 28489, + "ferris": 27532, + "ferry": 38936, + "ferry": 10278, + "fers": 12378, + "fert": 14925, + "fert": 43662, + "fertil": 41987, + "fertile": 44837, + "fertili": 23912, + "fertility": 23528, + "fertilizer": 36786, + "fery": 47448, + "fes": 32300, + "fest": 17383, + "fest": 2590, + "festa": 42124, + "festi": 1943, + "festiv": 19222, + "festival": 20946, + "festival": 2240, + "festivals": 17834, + "festive": 9533, + "festivities": 21020, + "fet": 21409, + "feta": 31705, + "fetal": 42031, + "fetch": 30271, + "fete": 34629, + "fett": 37979, + "fetus": 26768, + "feu": 24912, + "feu": 32990, + "feud": 27365, + "fever": 40896, + "fever": 9989, + "fevre": 43861, + "few": 1939, + "fewer": 19128, + "fex": 41584, + "fex": 26392, + "fey": 39069, + "fey": 23298, + "fez": 43081, + "ff": 1021, + "ff": 1304, + "ffa": 15355, + "ffame": 42873, + "ffc": 19832, + "ffe": 1138, + "ffe": 8631, + "ffect": 29151, + "ffed": 8448, + "ffee": 26377, + "ffel": 22656, + "ffen": 46537, + "ffer": 27369, + "ffer": 11636, + "ffers": 32163, + "fferty": 44771, + "ffes": 46441, + "ffey": 30138, + "fff": 28106, + "ffi": 19961, + "ffic": 4762, + "ffice": 26044, + "ffici": 3639, + "fficial": 39818, + "fficial": 6463, + "fficiency": 27800, + "fficient": 20424, + "ffin": 12779, + "ffin": 7367, + "ffing": 16592, + "ffins": 17898, + "ffl": 39490, + "ffle": 7749, + "ffler": 39819, + "ffles": 19344, + "ffman": 15823, + "ffo": 42264, + "ffs": 4424, + "ffxiv": 26569, + "ffxv": 46786, + "ffy": 26404, + "ffy": 7795, + "fg": 45977, + "fg": 6823, + "fgm": 32178, + "fgo": 46113, + "fh": 21649, + "fh": 21010, + "fhs": 45094, + "fi": 701, + "fi": 3589, + "fia": 8827, + "fiable": 34373, + "fianc": 27752, + "fiance": 44114, + "fiancé": 34039, + "fiasco": 40944, + "fiat": 16740, + "fiawec": 39485, + "fib": 40594, + "fiba": 34993, + "fiber": 35074, + "fiber": 12612, + "fibers": 44587, + "fibre": 21401, + "fibro": 21294, + "fibrosis": 36307, + "fic": 1788, + "fic": 2059, + "fica": 26952, + "fically": 14854, + "fication": 4523, + "fications": 12512, + "ficial": 48192, + "fics": 42505, + "fiction": 6218, + "fictional": 25570, + "fid": 34197, + "fid": 23966, + "fidd": 25218, + "fiddle": 35968, + "fide": 45375, + "fidel": 21740, + "fidel": 36837, + "fidelity": 30109, + "fidget": 48664, + "fie": 28487, + "fie": 10348, + "fied": 29642, + "fied": 2853, + "fiel": 1361, + "field": 7571, + "field": 1570, + "fielder": 11046, + "fieldhouse": 37969, + "fielding": 30465, + "fields": 6494, + "fieldwork": 33155, + "fiends": 37869, + "fier": 11167, + "fier": 10598, + "fierc": 48609, + "fierce": 13896, + "fiercely": 49039, + "fiers": 16113, + "fiery": 24557, + "fies": 9537, + "fiesta": 14580, + "fif": 5309, + "fifa": 21976, + "fifa": 8516, + "fifaworldcup": 38819, + "fifawwc": 41329, + "fife": 24374, + "fifteen": 29504, + "fifth": 25515, + "fifth": 8772, + "fifthharmony": 31075, + "fifty": 24456, + "fifty": 15978, + "fig": 4814, + "fig": 20719, + "figaro": 48044, + "figh": 23274, + "fight": 5262, + "fight": 2757, + "fighter": 35884, + "fighter": 6438, + "fighters": 7371, + "fightfor": 48909, + "fightfor": 35740, + "fighting": 38625, + "fighting": 4652, + "fighton": 45578, + "fights": 12132, + "figs": 38882, + "figu": 6390, + "figur": 16948, + "figurative": 44042, + "figure": 48820, + "figure": 5274, + "figured": 15630, + "figures": 8739, + "figurine": 33306, + "figuring": 31513, + "fiji": 48270, + "fiji": 18285, + "fik": 46589, + "fil": 1142, + "fil": 14915, + "fila": 30992, + "filament": 49252, + "file": 12545, + "file": 4512, + "filed": 13864, + "files": 7850, + "filet": 43155, + "fili": 9590, + "filing": 16576, + "filip": 14368, + "filipino": 19153, + "fill": 15904, + "fill": 6277, + "filled": 5589, + "filler": 32816, + "fillers": 45005, + "fillet": 39276, + "filling": 9736, + "fillion": 38048, + "fillmore": 43922, + "fills": 21750, + "filly": 27690, + "film": 5117, + "film": 1860, + "filmed": 15801, + "filmfare": 42224, + "filmfest": 24508, + "filmfestival": 28066, + "filming": 6866, + "filmmaker": 17202, + "filmmakers": 24896, + "filmmaking": 18226, + "films": 5370, + "fils": 40271, + "filter": 7541, + "filtered": 29926, + "filtering": 47770, + "filters": 18385, + "filth": 39713, + "filthy": 26899, + "filtr": 21408, + "filtration": 42036, + "fim": 47525, + "fin": 735, + "fin": 10663, + "fina": 34497, + "final": 11968, + "final": 1755, + "finale": 7844, + "finalfantasy": 44543, + "finalfour": 46999, + "finalist": 12620, + "finalists": 13422, + "finalized": 48930, + "finally": 1992, + "finals": 4536, + "finan": 4807, + "finance": 6117, + "finances": 28767, + "financi": 12846, + "financial": 19783, + "financial": 4930, + "financially": 28124, + "financing": 18375, + "finch": 18523, + "find": 18638, + "find": 1416, + "finder": 15045, + "finders": 43884, + "findia": 47064, + "finding": 37455, + "finding": 6002, + "findings": 16529, + "findlay": 48227, + "findom": 36463, + "finds": 6680, + "findyour": 25936, + "findyourpark": 38924, + "fine": 12042, + "fine": 3797, + "fineart": 7484, + "fineart": 16005, + "fineartamerica": 7724, + "fined": 20094, + "finely": 46120, + "finer": 36681, + "fines": 25053, + "finesse": 46047, + "finest": 7707, + "fing": 6485, + "fing": 17955, + "finger": 13480, + "finger": 8895, + "fingerprint": 39579, + "fingers": 9690, + "fini": 2405, + "finish": 42178, + "finish": 3958, + "finished": 3078, + "finisher": 38636, + "finishers": 48661, + "finishes": 13078, + "finishing": 7912, + "finite": 48312, + "finity": 41463, + "finity": 21273, + "fink": 40158, + "finland": 10775, + "finley": 41652, + "finn": 28479, + "finn": 16925, + "finna": 35180, + "finnish": 19616, + "fino": 30083, + "fins": 32810, + "fintech": 48929, + "fintech": 8899, + "fion": 27476, + "fiona": 20099, + "fior": 37086, + "fiore": 44997, + "fioren": 33188, + "fiorentina": 43713, + "fios": 42521, + "fir": 770, + "fir": 16233, + "fire": 2951, + "fire": 1769, + "firearm": 40311, + "firearms": 23960, + "fireball": 40543, + "firec": 42806, + "fired": 8846, + "firefighter": 20498, + "firefighters": 12600, + "firefly": 33997, + "firefox": 35372, + "fireman": 46085, + "firen": 34752, + "firenze": 38445, + "fireplace": 23050, + "fires": 8749, + "fireside": 36185, + "firework": 40750, + "fireworks": 10641, + "firing": 15105, + "firm": 16936, + "firm": 7705, + "firmly": 29156, + "firms": 13655, + "firmware": 42691, + "first": 6853, + "first": 874, + "firstdayof": 44297, + "firsth": 48512, + "firsts": 47884, + "firth": 26078, + "fis": 7846, + "fis": 47683, + "fiscal": 20825, + "fischer": 26532, + "fish": 6431, + "fish": 2759, + "fisher": 11175, + "fisher": 9176, + "fisheries": 24612, + "fisherman": 25055, + "fishermen": 28547, + "fishers": 42065, + "fishery": 49057, + "fishes": 35470, + "fishing": 31703, + "fishing": 4935, + "fishy": 35665, + "fist": 48340, + "fist": 17085, + "fit": 2366, + "fit": 2478, + "fitbit": 33768, + "fitch": 44614, + "fitfam": 20662, + "fitnes": 47285, + "fitness": 20044, + "fitness": 4838, + "fits": 6401, + "fitt": 32994, + "fitted": 14863, + "fitter": 42096, + "fitters": 32364, + "fitting": 11769, + "fittings": 45787, + "fitz": 11120, + "fitz": 25913, + "fitzgerald": 20606, + "fitzpatrick": 37141, + "fiu": 38374, + "five": 19508, + "five": 3127, + "fives": 44066, + "fix": 4596, + "fix": 6028, + "fixed": 9393, + "fixes": 25473, + "fixing": 17423, + "fixture": 17317, + "fixtures": 19904, + "fizz": 31242, + "fj": 43183, + "fj": 46447, + "fjor": 31260, + "fk": 12410, + "fl": 1082, + "fl": 2685, + "fla": 1577, + "fla": 20292, + "flag": 11536, + "flag": 4859, + "flagged": 45012, + "flags": 12221, + "flagship": 19779, + "flagstaff": 40406, + "flair": 24938, + "flake": 21221, + "flakes": 20934, + "flam": 10559, + "flame": 40351, + "flame": 13484, + "flamen": 28826, + "flamenco": 37362, + "flames": 13441, + "flamin": 42693, + "flaming": 34782, + "flamingo": 30323, + "flan": 14572, + "flanagan": 28641, + "flanders": 34837, + "flank": 44553, + "flann": 39510, + "flannel": 37807, + "flap": 35253, + "flappy": 40241, + "flare": 21185, + "flares": 46088, + "flash": 6089, + "flash": 5815, + "flashback": 14616, + "flashback": 11988, + "flashbackfriday": 15014, + "flashbacks": 47056, + "flashes": 31259, + "flashing": 31764, + "flashlight": 37256, + "flask": 36194, + "flat": 8986, + "flat": 6313, + "flats": 17228, + "flatt": 45498, + "flattering": 43267, + "flaun": 41421, + "flav": 7191, + "flavo": 28895, + "flavor": 31835, + "flavor": 11818, + "flavored": 29350, + "flavorful": 49135, + "flavors": 16930, + "flavour": 17026, + "flavoured": 42397, + "flavours": 21083, + "flaw": 14268, + "flaw": 34978, + "flawed": 35136, + "flawless": 15531, + "flaws": 30492, + "flax": 43443, + "fle": 2428, + "fle": 44964, + "flea": 24883, + "fleck": 28143, + "fled": 26731, + "flee": 19427, + "flee": 30167, + "fleece": 25038, + "fleeing": 30543, + "fleek": 43513, + "fleet": 35922, + "fleet": 9147, + "fleetwood": 28883, + "fleming": 25769, + "fler": 48789, + "flesh": 17495, + "flet": 16102, + "fletcher": 19810, + "fleur": 28593, + "flew": 13768, + "flex": 16426, + "flex": 12038, + "flexi": 10032, + "flexibility": 22547, + "flexible": 14502, + "flexing": 48483, + "fli": 2472, + "flick": 13746, + "flick": 23414, + "flickr": 17755, + "flies": 8070, + "flight": 24701, + "flight": 3795, + "flights": 10515, + "flin": 24730, + "flin": 43816, + "flinders": 44647, + "fling": 22768, + "flint": 28306, + "flint": 18324, + "flip": 20385, + "flip": 11035, + "flipk": 30829, + "flipkart": 33154, + "flipped": 28144, + "flipping": 25881, + "flips": 35089, + "flir": 24330, + "flirt": 38352, + "flirting": 35243, + "flix": 40663, + "flo": 1945, + "flo": 20711, + "float": 16123, + "floating": 12619, + "floats": 33272, + "flock": 36297, + "flock": 21822, + "flondon": 47366, + "floo": 4062, + "flood": 23793, + "flood": 7148, + "flooded": 19706, + "flooding": 10204, + "floods": 16369, + "floor": 23657, + "floor": 4125, + "flooring": 19227, + "floors": 15671, + "flop": 22994, + "floppy": 38267, + "flops": 29146, + "flor": 15784, + "flor": 41669, + "flora": 18906, + "floral": 10732, + "florals": 48331, + "floren": 37706, + "florence": 11617, + "flores": 21537, + "flori": 3482, + "florian": 41861, + "florida": 34264, + "florida": 3966, + "florist": 38403, + "floss": 36453, + "flotus": 35181, + "flour": 18592, + "flouri": 23239, + "flourish": 36038, + "flow": 2180, + "flow": 5608, + "flower": 12772, + "flower": 4055, + "flowering": 19953, + "flowers": 4023, + "flowing": 14922, + "flown": 25659, + "flows": 16715, + "floyd": 46369, + "floyd": 13656, + "flu": 3698, + "flu": 13528, + "fluctu": 40181, + "fluence": 38169, + "fluent": 30025, + "fluff": 31174, + "fluffy": 40346, + "fluffy": 17054, + "fluid": 43803, + "fluid": 16717, + "fluids": 41490, + "fluor": 45127, + "fluore": 26974, + "fluorescent": 35036, + "fluori": 45611, + "flur": 31591, + "flush": 25777, + "flushing": 43754, + "flute": 23746, + "flux": 25249, + "flwx": 30907, + "fly": 5666, + "fly": 3228, + "flye": 30873, + "flyeagles": 39927, + "flyeaglesfly": 39931, + "flyer": 11875, + "flyers": 14181, + "flyfishing": 31800, + "flying": 20782, + "flying": 4610, + "flyn": 40676, + "flynn": 15721, + "flyo": 33506, + "flyover": 38083, + "fm": 13715, + "fm": 3689, + "fman": 25152, + "fml": 26730, + "fmr": 32875, + "fn": 22773, + "fn": 21763, + "fnc": 46506, + "fo": 898, + "fo": 6157, + "foal": 40386, + "foam": 30039, + "foam": 14587, + "foamed": 26711, + "fob": 40315, + "focal": 30934, + "focu": 5827, + "focus": 4353, + "focused": 9319, + "focuses": 20093, + "focusing": 15551, + "fod": 31015, + "fod": 43299, + "fodils": 44411, + "foe": 22952, + "foes": 46279, + "fog": 9417, + "foggy": 19770, + "foil": 17302, + "fol": 1106, + "fol": 48616, + "fold": 35201, + "fold": 11021, + "foldable": 48307, + "folded": 25233, + "folder": 25717, + "folding": 15464, + "folds": 24266, + "foley": 22850, + "foli": 7713, + "folia": 48964, + "foliage": 26350, + "folio": 10772, + "folk": 10665, + "folk": 6032, + "folke": 47190, + "folkl": 27273, + "folklore": 22133, + "folklore": 28620, + "folklorethursday": 23270, + "folks": 5422, + "follo": 41417, + "follow": 1964, + "follow": 1979, + "followart": 40957, + "followback": 33863, + "followed": 6499, + "follower": 17039, + "followers": 4856, + "following": 3473, + "followme": 29668, + "followparty": 44757, + "follows": 11287, + "followthe": 30747, + "folly": 41408, + "folsom": 42108, + "fom": 34540, + "fon": 5017, + "fon": 38318, + "fond": 19964, + "fonda": 44609, + "fondue": 48321, + "fone": 40672, + "font": 37610, + "font": 16248, + "fontaine": 37864, + "fontana": 43643, + "fontein": 45062, + "fonts": 32801, + "foo": 1183, + "foo": 23435, + "food": 4586, + "food": 1559, + "foodand": 38317, + "foodbank": 31926, + "foodie": 30762, + "foodie": 9847, + "foodies": 22416, + "foodnetwork": 46793, + "foods": 7057, + "foodsecurity": 49329, + "foodtruck": 47682, + "fool": 23959, + "fool": 12212, + "fooled": 28761, + "fooling": 47964, + "foolish": 33824, + "fools": 15946, + "foot": 6702, + "foot": 4738, + "footage": 11130, + "footb": 33466, + "football": 9376, + "football": 1882, + "footballer": 20646, + "footballers": 30269, + "footed": 38040, + "footh": 25951, + "foothills": 37020, + "footpath": 48858, + "footprint": 23206, + "footprints": 39640, + "footsteps": 27289, + "footwear": 22772, + "footy": 39866, + "footy": 18922, + "for": 645, + "for": 556, + "forage": 46871, + "foraging": 39056, + "forall": 17824, + "forbe": 49098, + "forbes": 13925, + "forbi": 24754, + "forbidden": 25164, + "force": 12068, + "force": 2869, + "forced": 8201, + "forces": 5381, + "forchange": 35848, + "forcing": 21573, + "ford": 3751, + "ford": 1623, + "fordfc": 28581, + "fordham": 48792, + "fords": 29351, + "fordshire": 14645, + "fore": 1484, + "fore": 1332, + "forec": 34155, + "forecast": 7361, + "forecasting": 38133, + "forecasts": 27696, + "foreclo": 44916, + "forefront": 37679, + "foreground": 35186, + "forehead": 25394, + "foreig": 26497, + "foreign": 42255, + "foreign": 6046, + "foreigners": 38549, + "foreman": 36174, + "foremost": 42128, + "foren": 16526, + "forensic": 23158, + "forensics": 38763, + "forest": 18760, + "forest": 4167, + "forestation": 33939, + "forestry": 26281, + "forests": 14095, + "forever": 14748, + "forever": 3225, + "forevery": 40605, + "forex": 40200, + "forex": 17395, + "forfe": 44871, + "forge": 19232, + "forged": 28105, + "forget": 46153, + "forget": 2678, + "forgets": 35613, + "forgetting": 25452, + "forgi": 22080, + "forgive": 15332, + "forgiven": 44894, + "forgiveness": 23585, + "forgood": 39169, + "forgot": 6483, + "forgotten": 7994, + "fork": 24501, + "fork": 13700, + "forkids": 48571, + "forklift": 43202, + "forks": 28769, + "forlife": 17624, + "form": 1157, + "form": 1907, + "forma": 38829, + "formal": 12978, + "formally": 24867, + "format": 16252, + "format": 11874, + "formation": 2510, + "formations": 37715, + "formative": 48882, + "formats": 32085, + "forme": 42085, + "formed": 6528, + "former": 2276, + "formerly": 20866, + "formid": 38599, + "formidable": 39834, + "forming": 15443, + "formity": 42290, + "forms": 5161, + "formu": 8689, + "formul": 23923, + "formula": 24485, + "formula": 10776, + "formulae": 34586, + "formulated": 45066, + "forre": 38876, + "forrest": 25205, + "forrester": 45338, + "forsa": 48958, + "forsale": 13303, + "forster": 42923, + "forsy": 29629, + "forsyth": 40952, + "fort": 12300, + "fort": 2921, + "forte": 44350, + "forte": 27367, + "forth": 17068, + "forth": 11932, + "forthcoming": 19989, + "forthe": 12521, + "forti": 26984, + "fortified": 46486, + "fortn": 14428, + "fortnight": 39235, + "fortnite": 38734, + "fortnite": 17890, + "fortress": 19988, + "fortun": 6950, + "fortunate": 19898, + "fortunately": 34358, + "fortune": 40931, + "fortune": 11451, + "fortunes": 41989, + "forty": 24399, + "forum": 37851, + "forum": 4538, + "forums": 31518, + "forwar": 34364, + "forward": 47031, + "forward": 2342, + "forwards": 38974, + "foryou": 35150, + "forz": 46056, + "forza": 33293, + "forza": 28089, + "fos": 36925, + "fos": 22081, + "foss": 14240, + "foss": 37911, + "fossil": 20419, + "fossil": 15202, + "fossilfriday": 26079, + "fossils": 30652, + "foster": 26778, + "foster": 8139, + "fostering": 35996, + "fosters": 37644, + "foto": 15908, + "foto": 12823, + "fotogra": 23687, + "fotografia": 40256, + "fotos": 26124, + "fou": 14516, + "fought": 10844, + "foul": 19784, + "foun": 3154, + "found": 3454, + "found": 1546, + "foundation": 4058, + "foundations": 25219, + "founded": 12240, + "founder": 5145, + "founders": 14602, + "founding": 15317, + "foundry": 31426, + "fountain": 44863, + "fountain": 13405, + "fountains": 37411, + "four": 5113, + "four": 2721, + "foursquare": 34484, + "fourteen": 46255, + "fourth": 7516, + "fourthofjuly": 47805, + "fow": 17084, + "fowl": 31685, + "fowler": 20980, + "fox": 5007, + "fox": 3240, + "foxandfriends": 45841, + "foxes": 24145, + "foxnews": 18830, + "foxsports": 39267, + "foxtv": 49396, + "foxx": 32993, + "foxy": 27945, + "foy": 30284, + "foyer": 38011, + "foyle": 47902, + "fp": 28058, + "fp": 8941, + "fpl": 27970, + "fpp": 36464, + "fps": 25300, + "fpv": 43175, + "fr": 936, + "fr": 5512, + "fra": 3368, + "fra": 15644, + "frac": 15607, + "fracking": 21894, + "fractal": 46471, + "fraction": 26788, + "fractu": 25847, + "fracture": 28995, + "fractured": 37421, + "fractures": 46213, + "frag": 13093, + "fragile": 23579, + "fragment": 39209, + "fragments": 41424, + "fragr": 15403, + "fragrance": 17874, + "fragrances": 44567, + "fragrant": 37030, + "fram": 27987, + "frame": 11029, + "frame": 6481, + "framed": 13135, + "frames": 15479, + "framework": 13195, + "frameworks": 43136, + "framing": 24539, + "frampton": 41733, + "fran": 2118, + "fran": 18878, + "franc": 3872, + "franc": 42340, + "franca": 48952, + "france": 12045, + "france": 3552, + "frances": 20803, + "francesca": 32327, + "francesco": 25816, + "franch": 11756, + "franchi": 46438, + "franchise": 13664, + "franci": 46458, + "francis": 22187, + "francis": 7660, + "francisco": 6887, + "franco": 17934, + "franco": 17052, + "francois": 29317, + "frank": 5390, + "frank": 5229, + "franken": 20487, + "franken": 48252, + "frankenstein": 26410, + "frankfur": 17442, + "frankfurt": 18598, + "franki": 39227, + "frankie": 38373, + "frankie": 16215, + "franklin": 40935, + "franklin": 9999, + "frankly": 38015, + "franks": 42855, + "frans": 47892, + "franz": 25449, + "franç": 38381, + "fraser": 39082, + "fraser": 16754, + "frat": 15225, + "frat": 39292, + "fraternity": 24433, + "frau": 23063, + "fraud": 40647, + "fraud": 9961, + "fraudul": 42655, + "fraudulent": 47408, + "fray": 41154, + "frazier": 32841, + "frc": 41507, + "fre": 821, + "fre": 43165, + "freak": 20352, + "freak": 13701, + "freaked": 43511, + "freakin": 23900, + "freaking": 11992, + "freaks": 27009, + "freaky": 31583, + "freck": 33328, + "freckles": 48036, + "fred": 9486, + "fred": 6678, + "freddie": 41890, + "freddie": 17014, + "freddy": 24394, + "freder": 10745, + "frederic": 41165, + "frederick": 37103, + "frederick": 18570, + "fredo": 48241, + "free": 2065, + "free": 1139, + "freebie": 35865, + "freebies": 28630, + "freec": 46569, + "freed": 12585, + "freed": 23392, + "freedom": 17992, + "freedom": 4511, + "freedoms": 32500, + "freef": 48678, + "freel": 14174, + "freelance": 21942, + "freely": 24436, + "freeman": 16450, + "freep": 32499, + "freepalestine": 39242, + "freer": 44676, + "frees": 27455, + "freestyle": 15594, + "freeway": 24927, + "freeze": 14187, + "freezer": 25390, + "freezing": 12499, + "frei": 30183, + "freight": 17023, + "fremantle": 48012, + "fremont": 34578, + "fren": 2919, + "french": 13118, + "french": 3461, + "frenzy": 30084, + "frequ": 9211, + "frequencies": 45319, + "frequency": 18825, + "frequent": 19836, + "frequently": 22434, + "fresco": 31609, + "fresh": 4065, + "fresh": 2975, + "fresher": 49284, + "freshers": 35810, + "freshest": 46809, + "freshly": 16081, + "freshman": 9381, + "freshmen": 21292, + "freshness": 45872, + "freshwater": 24803, + "fresno": 40879, + "fresno": 20995, + "fret": 40510, + "freud": 40787, + "frey": 22136, + "frey": 9082, + "fri": 815, + "fri": 6882, + "friars": 30513, + "fric": 18981, + "frick": 46304, + "friction": 38563, + "frid": 46388, + "frida": 36001, + "friday": 6350, + "friday": 1461, + "fridayfeeling": 11952, + "fridaymotivation": 38544, + "fridaynight": 44858, + "fridayreads": 37736, + "fridays": 15589, + "fridaythe": 47642, + "fridge": 13491, + "fridges": 40734, + "frie": 36999, + "fried": 13743, + "fried": 7310, + "friedman": 29402, + "friedrich": 34171, + "friend": 3017, + "friend": 1625, + "friendly": 44612, + "friendly": 4681, + "friends": 38875, + "friends": 1574, + "friendship": 42674, + "friendship": 7679, + "friendships": 28840, + "fries": 11369, + "frifotos": 40493, + "friger": 20785, + "friggin": 48300, + "frigh": 34831, + "fright": 24277, + "fright": 40207, + "frightened": 47136, + "frightening": 39290, + "fringe": 10640, + "fris": 37252, + "frisbee": 45768, + "frisco": 35945, + "frit": 34614, + "fritz": 29860, + "friyay": 38887, + "frm": 12951, + "fro": 626, + "fro": 26603, + "frock": 45306, + "frog": 26494, + "frog": 11438, + "frogs": 20781, + "from": 8330, + "from": 633, + "frome": 48691, + "fromhome": 41477, + "fromthe": 18756, + "fron": 1847, + "fron": 18036, + "front": 10996, + "front": 2184, + "frontal": 35794, + "frontier": 18253, + "frontiers": 38396, + "frontline": 29589, + "frontman": 36775, + "fronts": 26846, + "froome": 48560, + "frosh": 47069, + "frost": 39420, + "frost": 11619, + "frosted": 35988, + "frosting": 33872, + "frosty": 22760, + "froze": 47788, + "frozen": 42464, + "frozen": 8507, + "frs": 26216, + "fru": 3248, + "fruit": 16771, + "fruit": 5190, + "fruitful": 31494, + "fruits": 13282, + "fruity": 22320, + "frustr": 16046, + "frustrated": 25111, + "frustrating": 31342, + "frustration": 30535, + "fry": 33914, + "fry": 13686, + "fryer": 49217, + "frying": 38516, + "fs": 23699, + "fs": 3854, + "fsa": 33373, + "fsu": 44185, + "fsu": 19317, + "ft": 3391, + "ft": 981, + "fta": 41975, + "ftc": 33752, + "fted": 5612, + "fter": 25063, + "fthe": 22886, + "ftheday": 9823, + "fting": 6174, + "fton": 26605, + "ftp": 42649, + "fts": 3767, + "ftse": 46717, + "ftw": 19298, + "fty": 17494, + "fu": 665, + "fu": 9098, + "fuch": 42617, + "fudge": 24270, + "fue": 43723, + "fuego": 41500, + "fuel": 21113, + "fuel": 5945, + "fueled": 28792, + "fueling": 38793, + "fuelled": 48357, + "fuels": 19365, + "fuentes": 44393, + "fuer": 29645, + "fug": 29227, + "fugitive": 39257, + "fuji": 15573, + "fuji": 21634, + "fujifilm": 24765, + "fuk": 31051, + "fuku": 20728, + "fukushima": 33929, + "ful": 1814, + "ful": 857, + "fulbright": 41834, + "fulfill": 43675, + "fulfill": 27467, + "fulfilled": 29919, + "fulfilling": 30621, + "fulfillment": 45573, + "fulham": 25574, + "full": 9407, + "full": 1476, + "fuller": 20225, + "fullerton": 42822, + "fullest": 35603, + "fully": 39142, + "fully": 2401, + "fulness": 10526, + "fuls": 41606, + "fulton": 26725, + "fum": 38393, + "fumble": 49373, + "fun": 1229, + "fun": 1499, + "func": 8679, + "function": 8093, + "functional": 12885, + "functionality": 33316, + "functioning": 25479, + "functions": 18001, + "fund": 19089, + "fund": 4877, + "fundam": 11670, + "fundament": 18852, + "fundamental": 17627, + "fundamentally": 45378, + "fundamentals": 27887, + "funday": 15439, + "funded": 10588, + "funding": 5588, + "fundra": 6201, + "fundraiser": 10049, + "fundraising": 10755, + "funds": 7066, + "funer": 40693, + "funeral": 10606, + "funfact": 31596, + "funfactfriday": 40710, + "fungal": 38838, + "fungi": 27837, + "fungus": 30677, + "funk": 37353, + "funk": 13372, + "funko": 49402, + "funko": 23697, + "funky": 16492, + "funnel": 27862, + "funnier": 42232, + "funniest": 15557, + "funny": 19124, + "funny": 3789, + "funrun": 34185, + "fur": 2395, + "fur": 9686, + "furi": 40816, + "furious": 17522, + "furman": 49238, + "furn": 21348, + "furnace": 31913, + "furnished": 37388, + "furnitu": 45696, + "furniture": 7993, + "furry": 33414, + "furry": 15351, + "fursuit": 25306, + "fursuit": 43083, + "fursuitfriday": 27917, + "further": 5583, + "fury": 14404, + "fus": 18419, + "fuse": 23386, + "fused": 38994, + "fusion": 44661, + "fusion": 9364, + "fuss": 26331, + "fut": 21460, + "fut": 34049, + "futbol": 33014, + "futsal": 20558, + "futu": 33454, + "futur": 38840, + "future": 7959, + "future": 1904, + "futureof": 22599, + "futureofwork": 33202, + "futures": 13488, + "futuri": 19068, + "futurism": 48435, + "futurist": 48086, + "futuristic": 30987, + "fuzz": 47128, + "fuzz": 40443, + "fuzzy": 25876, + "fv": 29795, + "fw": 23934, + "fw": 5277, + "fwd": 27052, + "fx": 17807, + "fx": 9025, + "fy": 8440, + "fy": 2702, + "fyi": 16014, + "fying": 5294, + "fz": 46400, + "fé": 34072, + "g": 70, + "g": 326, + "ga": 1275, + "ga": 1531, + "gaa": 10715, + "gaal": 40867, + "gaard": 24645, + "gab": 3927, + "gab": 37382, + "gabbana": 36272, + "gabby": 48115, + "gabby": 24567, + "gabe": 18916, + "gabi": 41931, + "gable": 33387, + "gables": 40928, + "gabri": 8311, + "gabriel": 31684, + "gabriel": 13244, + "gabrielle": 33572, + "gaby": 46420, + "gac": 32520, + "gad": 7786, + "gad": 44651, + "gadget": 25525, + "gadgets": 22840, + "gado": 29489, + "gae": 22003, + "gael": 35663, + "gaelic": 31173, + "gaf": 21354, + "gaf": 32670, + "gag": 14121, + "gag": 18844, + "gaga": 9782, + "gage": 21081, + "gah": 27750, + "gai": 24214, + "gai": 25153, + "gaia": 41269, + "gail": 41160, + "gail": 27676, + "gain": 21536, + "gain": 6202, + "gaine": 35747, + "gained": 14489, + "gaines": 49225, + "gainesville": 40427, + "gaining": 15260, + "gains": 42751, + "gains": 12107, + "gal": 2001, + "gal": 4488, + "gala": 7211, + "galac": 18864, + "galactic": 25514, + "galap": 41115, + "galapagos": 44057, + "galat": 39853, + "galatasar": 42413, + "galatasaray": 47787, + "galax": 5647, + "galaxies": 32435, + "galaxy": 32130, + "galaxy": 6545, + "gale": 37658, + "gale": 21380, + "galerie": 44539, + "gales": 48633, + "gali": 17546, + "gali": 30552, + "galicia": 47927, + "galileo": 39671, + "gall": 3011, + "gall": 33374, + "galla": 16847, + "gallagher": 19168, + "galleria": 40656, + "galleries": 22304, + "gallery": 36648, + "gallery": 3830, + "galley": 48917, + "galli": 22568, + "gallipoli": 47249, + "gallo": 37350, + "gallo": 33265, + "gallon": 24615, + "gallons": 29335, + "galloway": 27796, + "galore": 22286, + "gals": 20125, + "galvani": 46046, + "galve": 34328, + "galveston": 36003, + "galway": 38045, + "galway": 17112, + "gam": 1162, + "gam": 34195, + "gama": 35873, + "gambia": 32988, + "gamble": 26121, + "gambling": 20287, + "game": 2882, + "game": 1063, + "gameart": 31490, + "gameboy": 40951, + "gamecube": 44079, + "gameday": 9241, + "gamedev": 7544, + "gameinsight": 42626, + "gameof": 10987, + "gameofthrones": 11822, + "gameon": 47691, + "gameplay": 16794, + "gamer": 12595, + "gamer": 11598, + "gamergate": 25961, + "gamers": 16166, + "gamersunite": 26423, + "games": 18551, + "games": 1955, + "gamescom": 37003, + "gamestop": 39436, + "gametime": 45899, + "gami": 42025, + "gamification": 48908, + "gaming": 28803, + "gaming": 4017, + "gamma": 22180, + "gamo": 39325, + "gan": 1822, + "gan": 1670, + "gand": 8399, + "ganda": 27261, + "gander": 44508, + "gandhi": 12322, + "ganesh": 30362, + "ganesha": 45185, + "gang": 8066, + "gang": 5674, + "ganga": 36275, + "gangnam": 46777, + "gangs": 29844, + "gangsta": 37365, + "gangster": 26514, + "gani": 48324, + "gann": 45665, + "gannon": 45837, + "gano": 25304, + "gao": 26556, + "gaon": 19279, + "gap": 29906, + "gap": 7609, + "gaps": 25296, + "gar": 1099, + "gar": 5824, + "gara": 28710, + "garage": 8474, + "garbage": 13760, + "garci": 44658, + "garcia": 10529, + "gard": 7751, + "gard": 21003, + "garda": 31906, + "garde": 22649, + "garden": 4674, + "garden": 2756, + "gardenchat": 46292, + "gardener": 28554, + "gardeners": 38205, + "gardening": 10483, + "gardens": 6152, + "gardiner": 43121, + "gardner": 18710, + "gare": 5633, + "gare": 48402, + "gareth": 37140, + "gareth": 18175, + "garfield": 26728, + "garh": 16762, + "gari": 40898, + "gari": 43080, + "garis": 37839, + "garland": 23418, + "garlic": 9685, + "garment": 31418, + "garments": 43341, + "garmin": 39885, + "garner": 20340, + "garnet": 37669, + "garo": 30388, + "garrett": 15881, + "garri": 21764, + "garrison": 30108, + "garros": 40425, + "garry": 24398, + "gars": 12055, + "gart": 18380, + "gart": 18751, + "garten": 14684, + "garter": 48420, + "garth": 45398, + "garth": 24469, + "gartner": 43334, + "gartner": 29678, + "garty": 46383, + "garu": 31140, + "garvey": 39511, + "garwal": 38623, + "gary": 10535, + "gary": 4516, + "garza": 49393, + "gas": 5047, + "gas": 2474, + "gases": 36971, + "gasoline": 27691, + "gasp": 43762, + "gaston": 40669, + "gastri": 49197, + "gastro": 23740, + "gastron": 30699, + "gastronomy": 46987, + "gat": 5314, + "gat": 18941, + "gata": 44575, + "gate": 8071, + "gate": 3302, + "gated": 23997, + "gates": 9472, + "gateshead": 40051, + "gateway": 45221, + "gateway": 14943, + "gather": 36345, + "gather": 12602, + "gathered": 14646, + "gathering": 9197, + "gatherings": 48096, + "gathers": 39250, + "gating": 27561, + "gation": 11095, + "gations": 33906, + "gato": 44492, + "gator": 20216, + "gator": 16390, + "gatorade": 36354, + "gators": 17173, + "gatory": 24796, + "gatsby": 32586, + "gatwick": 37122, + "gau": 5919, + "gau": 43068, + "gauge": 18728, + "gaunt": 31862, + "gauntlet": 37163, + "gautam": 45853, + "gautam": 31356, + "gauteng": 40333, + "gav": 8966, + "gave": 3485, + "gavin": 32974, + "gavin": 16389, + "gaw": 15405, + "gawd": 43239, + "gawx": 43420, + "gay": 7460, + "gay": 5627, + "gaya": 39477, + "gaye": 41401, + "gayle": 29998, + "gayo": 36768, + "gays": 28001, + "gaz": 4837, + "gaz": 36475, + "gaza": 38391, + "gaza": 10112, + "gazaunderattack": 42458, + "gaze": 23212, + "gazette": 20443, + "gazing": 28373, + "gb": 8727, + "gb": 4619, + "gba": 18528, + "gbbo": 34474, + "gbc": 42993, + "gbp": 27391, + "gbr": 31984, + "gby": 40509, + "gc": 8577, + "gc": 6043, + "gcc": 26804, + "gcse": 28763, + "gcu": 34137, + "gd": 13264, + "gd": 14604, + "gdc": 32793, + "gden": 44928, + "gdp": 17100, + "gdpr": 22963, + "ge": 619, + "ge": 710, + "gea": 26790, + "gear": 15532, + "gear": 4802, + "gearbox": 42454, + "geared": 33903, + "gearing": 19027, + "gears": 21147, + "geaux": 36313, + "gecko": 38616, + "ged": 17252, + "ged": 3480, + "geddon": 31720, + "gedly": 13991, + "gee": 9806, + "gee": 9071, + "geek": 17920, + "geek": 7135, + "geeks": 20110, + "geeky": 47332, + "geel": 25906, + "geelong": 34555, + "gees": 38088, + "geese": 26413, + "geez": 42394, + "geh": 30320, + "geist": 38290, + "gel": 7343, + "gel": 5697, + "gelato": 29577, + "gels": 42552, + "gely": 14637, + "gem": 14261, + "gem": 7613, + "gement": 19495, + "gemini": 23086, + "gemma": 23952, + "gems": 14355, + "gemstone": 27747, + "gemstones": 43972, + "gen": 1024, + "gen": 3278, + "gence": 16088, + "gency": 5245, + "gend": 33247, + "gender": 22976, + "gender": 5906, + "gendere": 35824, + "genderequality": 43338, + "gene": 5822, + "gene": 7962, + "genealo": 24142, + "genealogy": 29381, + "gener": 1832, + "general": 20576, + "general": 3658, + "generally": 19256, + "generals": 30296, + "generate": 16896, + "generated": 19450, + "generates": 33938, + "generating": 23882, + "generation": 41211, + "generation": 4883, + "generational": 34506, + "generations": 12247, + "generative": 29472, + "generator": 19399, + "generators": 41917, + "generic": 26978, + "generosity": 23015, + "generous": 12570, + "generously": 35113, + "genes": 19683, + "genesis": 13518, + "genetic": 47746, + "genetic": 13578, + "genetically": 36745, + "genetics": 18276, + "geneva": 14799, + "genevie": 41633, + "genevieve": 46584, + "geni": 22334, + "genic": 15750, + "genie": 24221, + "genital": 32960, + "genius": 8235, + "geniuses": 41406, + "geno": 41544, + "geno": 46776, + "genoa": 43993, + "genoci": 14687, + "genocide": 15903, + "genome": 23991, + "genomic": 44371, + "genomics": 26227, + "genre": 14249, + "genres": 30340, + "gens": 17449, + "gent": 3685, + "gent": 7139, + "gente": 34325, + "gentle": 7262, + "gentle": 13577, + "gentleman": 13293, + "gentlemen": 11692, + "gently": 17187, + "gento": 28320, + "gentri": 41148, + "gentry": 47225, + "gents": 18862, + "genu": 9182, + "genuine": 12184, + "genuinely": 20006, + "genus": 38161, + "geny": 35323, + "geo": 5038, + "geo": 11604, + "geocaching": 47908, + "geof": 20629, + "geoff": 33697, + "geoff": 20386, + "geoffrey": 29520, + "geograph": 45920, + "geographic": 22635, + "geographical": 39380, + "geography": 17101, + "geological": 38380, + "geology": 21578, + "geom": 46135, + "geome": 12958, + "geometric": 22419, + "geometry": 21731, + "geon": 20844, + "geon": 7295, + "geons": 15914, + "geopol": 39758, + "geor": 2549, + "georg": 43126, + "george": 8377, + "george": 3296, + "georges": 25042, + "georgetown": 22970, + "georgie": 42115, + "georgina": 43892, + "geospatial": 46238, + "geothermal": 38413, + "geous": 3068, + "ger": 1291, + "ger": 1502, + "gera": 48867, + "gerald": 29901, + "gerald": 13269, + "gerard": 35979, + "gerard": 20826, + "gerber": 45058, + "gered": 40179, + "geri": 41664, + "geri": 46214, + "gering": 24077, + "germain": 38786, + "german": 14972, + "german": 4710, + "germans": 28400, + "germany": 4464, + "germin": 44721, + "germs": 47731, + "geronimo": 45171, + "gerrard": 26538, + "gerry": 29825, + "gerry": 23026, + "gers": 3314, + "gertrude": 46950, + "gervais": 36527, + "gery": 32845, + "ges": 3316, + "gest": 11843, + "gest": 2033, + "gesture": 21780, + "gestures": 43524, + "get": 5670, + "get": 779, + "geta": 13155, + "getaway": 16131, + "gether": 27224, + "getic": 20661, + "getin": 25822, + "getit": 44891, + "getit": 48315, + "getoutside": 35644, + "gets": 39448, + "gets": 2127, + "gett": 6647, + "gett": 27965, + "gettable": 15620, + "gette": 29800, + "gettin": 13428, + "getting": 30885, + "getting": 1500, + "getty": 31185, + "getty": 13965, + "gettys": 35189, + "gettysburg": 37062, + "getyour": 42159, + "gey": 29289, + "gf": 28953, + "gf": 10846, + "gfriend": 35245, + "gfs": 37553, + "gg": 1129, + "gg": 3286, + "gga": 26003, + "ggan": 25626, + "gge": 21521, + "gge": 31659, + "gged": 6095, + "gger": 12367, + "gger": 3493, + "ggers": 7480, + "ggg": 20143, + "gggg": 33513, + "ggi": 21662, + "ggin": 17160, + "gging": 4966, + "ggins": 12444, + "ggle": 34981, + "ggle": 11430, + "ggled": 46328, + "ggles": 14703, + "ggling": 16523, + "ggly": 39407, + "ggs": 4797, + "ggy": 24935, + "ggy": 6476, + "gh": 583, + "gh": 790, + "gha": 10010, + "gha": 25183, + "gham": 21456, + "ghan": 18945, + "ghan": 6624, + "ghana": 30330, + "ghana": 9731, + "ghanaian": 34223, + "ghani": 36699, + "ghar": 37334, + "ghar": 36973, + "ghat": 43989, + "ghaz": 37493, + "ghc": 42139, + "ghe": 10754, + "ghe": 28561, + "ghead": 40783, + "ghee": 34794, + "gher": 21542, + "gher": 14796, + "ghet": 18447, + "ghetti": 17485, + "ghetto": 22403, + "ghi": 22436, + "ghi": 22279, + "ghibli": 40555, + "ghj": 38439, + "ghlin": 24131, + "gho": 4307, + "ghorn": 38094, + "ghosh": 43279, + "ghoshal": 49134, + "ghost": 11417, + "ghost": 7108, + "ghostbusters": 25462, + "ghostly": 44901, + "ghosts": 16737, + "ghou": 35843, + "ghoul": 45302, + "ghouse": 38238, + "ghs": 14157, + "ght": 1413, + "ght": 630, + "ghted": 4963, + "ghter": 2427, + "ghters": 12994, + "ghtful": 8334, + "ghting": 3019, + "ghtly": 6993, + "ghtning": 39740, + "ghton": 16353, + "ghts": 1259, + "ghty": 20968, + "ghty": 5866, + "ghu": 25808, + "ghue": 45675, + "ghyun": 25010, + "ghz": 24325, + "gi": 707, + "gi": 4478, + "gia": 8864, + "giac": 35444, + "giam": 39623, + "gian": 17274, + "gian": 12866, + "gianni": 46752, + "giant": 23668, + "giant": 4687, + "giants": 7076, + "giar": 34241, + "gib": 9816, + "gibb": 18964, + "gibbons": 31974, + "gibbs": 26488, + "gibility": 33297, + "gible": 13159, + "gibr": 20206, + "gibraltar": 23988, + "gibson": 37420, + "gibson": 12178, + "gic": 27900, + "gic": 2570, + "gical": 32973, + "gically": 26320, + "gid": 36774, + "gid": 21413, + "giddy": 40894, + "gideon": 43867, + "gidi": 30603, + "gie": 11459, + "gie": 3991, + "gier": 28974, + "gies": 5505, + "gif": 11363, + "gif": 11677, + "gifford": 47850, + "gifs": 37643, + "gift": 20569, + "gift": 2733, + "gifted": 15110, + "giftide": 20152, + "giftideas": 23487, + "gifting": 39546, + "gifts": 5836, + "gig": 26981, + "gig": 7471, + "gigab": 34530, + "gigan": 24104, + "gigantic": 31507, + "giggle": 36426, + "giggles": 42731, + "giggs": 44692, + "gigi": 44106, + "gigi": 26171, + "gigs": 20316, + "gil": 3997, + "gil": 10088, + "gila": 46952, + "gilbert": 14154, + "gilded": 44341, + "giles": 24802, + "gill": 14280, + "gill": 12003, + "gille": 29610, + "gilles": 39590, + "gillespie": 36242, + "gillette": 38603, + "gilli": 13695, + "gillian": 28753, + "gills": 48851, + "gilmore": 27603, + "gilt": 44378, + "gim": 31284, + "gimm": 40692, + "gimme": 21525, + "gin": 3374, + "gin": 4941, + "gina": 15604, + "gine": 27482, + "ging": 10829, + "ging": 3905, + "ginger": 16287, + "ginger": 9718, + "gingerbread": 23692, + "gini": 35768, + "gino": 36521, + "gins": 18328, + "gio": 16329, + "gio": 8050, + "gion": 41226, + "gior": 14920, + "giorgio": 33271, + "giorno": 33310, + "gios": 41927, + "gious": 14419, + "giov": 21404, + "giovanni": 26574, + "gipp": 41351, + "gir": 1077, + "gir": 25481, + "gira": 16949, + "giraffe": 22826, + "giri": 31709, + "girl": 3914, + "girl": 1611, + "girlfriend": 8217, + "girlfriends": 30736, + "girlpower": 37433, + "girls": 15480, + "girls": 1917, + "girly": 29605, + "giro": 39664, + "giro": 26454, + "girona": 47842, + "giroud": 41177, + "gis": 16266, + "gis": 12773, + "gist": 21241, + "git": 16060, + "git": 20918, + "gita": 40838, + "github": 31196, + "giu": 17931, + "giuli": 29762, + "giuliani": 47739, + "giuse": 29385, + "giuseppe": 33563, + "give": 4120, + "give": 1781, + "giveaway": 5310, + "giveaways": 18974, + "giveback": 41385, + "given": 33323, + "given": 4302, + "givenchy": 38245, + "giver": 43339, + "gives": 3926, + "giveup": 35485, + "giving": 14673, + "giving": 2339, + "givingback": 49300, + "givingtuesday": 23556, + "giz": 29237, + "gk": 38953, + "gk": 18719, + "gl": 1849, + "gl": 14751, + "gla": 1523, + "gla": 36904, + "glaci": 14924, + "glacial": 40782, + "glacier": 19282, + "glaciers": 42528, + "glad": 20841, + "glad": 4761, + "glades": 37432, + "gladi": 21742, + "gladiator": 38477, + "gladiators": 41087, + "gladly": 41598, + "gladys": 43168, + "glam": 8738, + "glam": 16905, + "glamorous": 22896, + "glamour": 42876, + "glamour": 17499, + "glamping": 46167, + "glan": 40482, + "glan": 45844, + "glance": 26557, + "gland": 41441, + "glar": 48535, + "glar": 41702, + "glare": 46035, + "glas": 29935, + "glas": 43654, + "glasgo": 6757, + "glasgow": 29990, + "glasgow": 7363, + "glass": 16305, + "glass": 3313, + "glasses": 6116, + "glaston": 26848, + "glastonbury": 28233, + "glau": 39171, + "glaze": 28112, + "glazed": 24122, + "gle": 7166, + "gle": 2865, + "glee": 32379, + "glee": 21614, + "glen": 6158, + "glen": 11049, + "glend": 38332, + "glendale": 33043, + "glenn": 32004, + "glenn": 12861, + "gler": 34649, + "gley": 21998, + "gli": 5896, + "gli": 28791, + "glia": 22217, + "glide": 37321, + "glider": 41636, + "glimp": 12888, + "glimpse": 13817, + "glio": 29785, + "glit": 21079, + "glitch": 29563, + "glitter": 16528, + "glitz": 44542, + "glo": 1721, + "glo": 30474, + "glob": 13363, + "global": 6707, + "global": 2779, + "globalgoals": 33211, + "globalhealth": 46751, + "globalization": 47680, + "globally": 17775, + "globalwarming": 46017, + "globe": 19436, + "globe": 9368, + "globes": 38085, + "glock": 38818, + "glomer": 43689, + "gloom": 48594, + "gloomy": 32199, + "glori": 7270, + "gloria": 19244, + "glorious": 9171, + "glory": 36107, + "glory": 7285, + "glos": 40633, + "gloss": 38258, + "gloss": 22014, + "glossy": 29802, + "glou": 15989, + "gloucester": 28133, + "gloucester": 23835, + "gloucestershire": 33789, + "glove": 16078, + "glover": 21594, + "gloves": 12363, + "glow": 30472, + "glow": 10111, + "glowing": 18437, + "glows": 48107, + "glu": 5952, + "glu": 32281, + "glucose": 34642, + "glue": 22103, + "glued": 38135, + "gluten": 15482, + "gluten": 15524, + "glutenfree": 16138, + "gly": 13027, + "glycer": 48914, + "gm": 18743, + "gm": 5918, + "gma": 18155, + "gmail": 11119, + "gman": 41043, + "gman": 36936, + "gmb": 35934, + "gmb": 31799, + "gmbh": 46877, + "gmc": 27257, + "gmo": 23486, + "gms": 36987, + "gmt": 13803, + "gn": 2455, + "gn": 9831, + "gna": 23009, + "gnation": 45912, + "gne": 25407, + "gni": 5104, + "gnment": 25110, + "gno": 23376, + "gno": 43686, + "gnocchi": 48299, + "gnome": 33643, + "gnon": 20561, + "go": 650, + "go": 861, + "goa": 14399, + "goal": 9003, + "goal": 3321, + "goalie": 20723, + "goalkeeper": 16601, + "goals": 3295, + "goalscorer": 43547, + "goaltender": 44151, + "goat": 34082, + "goat": 9530, + "goats": 18393, + "gob": 29559, + "gobeavs": 48285, + "goblin": 26223, + "goblue": 25232, + "gobucks": 29175, + "gocougs": 34202, + "god": 4190, + "god": 1731, + "godawgs": 40436, + "godbless": 46616, + "godbless": 44007, + "godd": 16589, + "goddamn": 28495, + "goddard": 37827, + "goddess": 10808, + "godfather": 26222, + "godfrey": 40148, + "godis": 38521, + "godly": 42438, + "gods": 33620, + "gods": 10328, + "goducks": 35889, + "godzilla": 23369, + "goe": 22084, + "goers": 27784, + "goes": 43581, + "goes": 2635, + "gof": 17537, + "goff": 34399, + "goftheday": 39360, + "gofund": 34445, + "gofundme": 34686, + "gog": 42949, + "goggles": 31027, + "gogh": 19697, + "gogo": 22688, + "gogreen": 36279, + "gohawks": 34884, + "goi": 24917, + "goin": 13939, + "going": 25787, + "going": 1245, + "goku": 29550, + "gol": 1537, + "gol": 18257, + "gola": 41090, + "gold": 4999, + "gold": 2209, + "goldberg": 25161, + "goldcoast": 34634, + "golden": 10763, + "golden": 3878, + "goldeng": 20650, + "goldenglobes": 26842, + "goldfish": 40293, + "goldie": 42805, + "goldman": 27164, + "golds": 30526, + "golds": 40283, + "goldsmith": 40214, + "gole": 41297, + "golf": 9096, + "golf": 3096, + "golfclub": 45742, + "golfer": 24579, + "golfers": 28441, + "golfing": 31379, + "goli": 29265, + "goliath": 41602, + "gom": 7051, + "goma": 46198, + "gomes": 39128, + "gomez": 16433, + "gon": 1854, + "gon": 3379, + "gona": 34835, + "gone": 35135, + "gone": 3601, + "gong": 28486, + "gonna": 2562, + "gonz": 10587, + "gonzaga": 36241, + "gonzale": 17512, + "gonzales": 31265, + "gonzalez": 18198, + "goo": 1381, + "goo": 17882, + "good": 2185, + "good": 886, + "goodbye": 6968, + "goodday": 46284, + "goode": 42076, + "goodfood": 46844, + "goodfriday": 40360, + "goodie": 29213, + "goodies": 13308, + "goodluck": 19718, + "goodman": 24146, + "goodmorning": 14421, + "goodness": 10531, + "goodnight": 8540, + "goodreads": 31629, + "goods": 9340, + "goodtimes": 22570, + "goodvibes": 43146, + "goodwill": 24902, + "goodwin": 28080, + "goodwood": 30008, + "goody": 35937, + "goodyear": 42858, + "goofy": 26879, + "goog": 18581, + "google": 12195, + "google": 3460, + "googled": 40345, + "googleplay": 37309, + "goon": 15267, + "goons": 30440, + "goooo": 35876, + "goooo": 48957, + "goose": 21445, + "goose": 13822, + "goosebumps": 32254, + "gop": 18942, + "gop": 6250, + "gopack": 46995, + "gopackgo": 47719, + "gopal": 47268, + "gopdebate": 39806, + "gopher": 47750, + "gopher": 48905, + "gophers": 31957, + "gopro": 17511, + "gor": 1747, + "gor": 29827, + "gordo": 47707, + "gordon": 20485, + "gordon": 8244, + "gore": 30311, + "gore": 17872, + "gorg": 46815, + "gorge": 35548, + "gorge": 20038, + "gorgeous": 3241, + "gori": 12461, + "goria": 43359, + "gorilla": 37910, + "gorilla": 21994, + "gorman": 35741, + "goro": 44977, + "gory": 7160, + "gos": 20517, + "gos": 5693, + "gosh": 15395, + "gosling": 35320, + "gosp": 9617, + "gospel": 11313, + "goss": 39734, + "goss": 36924, + "gossi": 15684, + "gossip": 18963, + "got": 10125, + "got": 1005, + "gota": 36693, + "gotcha": 43275, + "gote": 49345, + "goth": 48465, + "goth": 20437, + "gotham": 46123, + "gotham": 18299, + "gothic": 15426, + "goti": 9497, + "goto": 39715, + "gots": 35215, + "gott": 5089, + "gott": 36466, + "gotta": 4633, + "gotten": 5889, + "gotti": 41881, + "gotv": 36089, + "gou": 10520, + "gou": 36555, + "gouache": 43314, + "goul": 33187, + "gould": 31087, + "gour": 13580, + "gourmet": 19111, + "gov": 4022, + "gov": 4564, + "gove": 36997, + "govegan": 38886, + "gover": 10471, + "gover": 16759, + "govern": 2351, + "govern": 32404, + "governance": 13386, + "governing": 30946, + "government": 3149, + "governmental": 42609, + "governments": 19582, + "governor": 17459, + "governor": 6630, + "governors": 26881, + "govin": 42451, + "govt": 5345, + "govuk": 28830, + "gow": 21885, + "gow": 33788, + "gowan": 31307, + "gower": 43448, + "gown": 13719, + "gowns": 38029, + "goyal": 35105, + "gp": 19329, + "gp": 5051, + "gpa": 24098, + "gps": 13639, + "gpu": 38561, + "gq": 40286, + "gq": 31324, + "gr": 709, + "gr": 6062, + "gra": 782, + "gra": 15276, + "grab": 4646, + "grabbed": 22856, + "grabbing": 26440, + "grabs": 17076, + "grac": 11323, + "grace": 13225, + "grace": 5142, + "graced": 31894, + "graceful": 25242, + "graces": 38629, + "graci": 11174, + "gracias": 16463, + "gracie": 23235, + "gracing": 37263, + "gracious": 29044, + "grad": 19869, + "grad": 7291, + "gradable": 41529, + "grade": 45435, + "grade": 3394, + "graded": 13823, + "grader": 23930, + "graders": 10930, + "grades": 10838, + "gradient": 36885, + "grading": 19016, + "grads": 17811, + "gradu": 3230, + "gradual": 45210, + "gradually": 32192, + "graduate": 6675, + "graduated": 15128, + "graduates": 12236, + "graduating": 14819, + "graduation": 8060, + "grady": 33980, + "graeme": 30192, + "graf": 46478, + "graf": 39765, + "graff": 10656, + "graffiti": 11676, + "graft": 32698, + "grafton": 47347, + "graham": 19805, + "graham": 7711, + "grail": 37184, + "grain": 44003, + "grain": 12109, + "grains": 25791, + "gral": 25631, + "gram": 2949, + "gram": 2338, + "grammar": 16077, + "grammy": 15388, + "grammys": 18121, + "grams": 6294, + "gran": 3892, + "gran": 14493, + "granada": 31172, + "grand": 3058, + "grand": 2991, + "grandad": 29148, + "grandchildren": 36856, + "granddaughter": 29460, + "grande": 37514, + "grande": 10757, + "grandes": 36382, + "grandfather": 15346, + "grandma": 10525, + "grandmother": 17469, + "grandpa": 14582, + "grandparents": 21311, + "grandprix": 39358, + "grandson": 20766, + "grandstand": 43172, + "grange": 45027, + "grange": 23850, + "granger": 42968, + "granite": 18813, + "grann": 45585, + "granny": 22710, + "granola": 34271, + "grant": 18682, + "grant": 5442, + "granted": 14156, + "granth": 41283, + "grants": 15123, + "grape": 19131, + "grape": 15959, + "grapefruit": 28347, + "grapes": 18580, + "grapevine": 47619, + "graph": 1349, + "graph": 4407, + "graphene": 38387, + "grapher": 14987, + "graphers": 32088, + "graphic": 15653, + "graphic": 4245, + "graphical": 20878, + "graphicdesign": 21907, + "graphics": 9492, + "graphies": 40164, + "graphite": 29447, + "graphs": 24670, + "graphy": 4897, + "grapp": 30843, + "gras": 31517, + "gras": 17584, + "grasp": 34975, + "grass": 11584, + "grass": 5922, + "grasses": 46807, + "grasshopper": 48894, + "grassi": 42294, + "grasso": 34808, + "grassroots": 21991, + "grassy": 44140, + "grat": 9221, + "grate": 32463, + "grateful": 45659, + "grateful": 5730, + "grati": 36402, + "gratis": 33638, + "gratitude": 12614, + "grav": 20663, + "grave": 16606, + "grave": 9981, + "gravel": 27054, + "graves": 17665, + "graveyard": 31176, + "gravit": 26150, + "gravitational": 45268, + "gravity": 47426, + "gravity": 15160, + "gravy": 21225, + "gray": 12703, + "gray": 7048, + "grays": 46848, + "grayson": 45831, + "grayson": 25471, + "grazi": 42427, + "grazie": 38698, + "grazing": 29889, + "grc": 44069, + "gre": 689, + "gre": 17878, + "grease": 24132, + "greasy": 44376, + "great": 3265, + "great": 830, + "greate": 31930, + "greater": 32725, + "greater": 7033, + "greatest": 39080, + "greatest": 4153, + "greatly": 13978, + "greatness": 14189, + "greats": 21855, + "greaves": 42350, + "greco": 39103, + "gree": 9987, + "gree": 30774, + "greece": 6965, + "greed": 26147, + "greedy": 33301, + "greek": 23844, + "greek": 6842, + "greeks": 35866, + "green": 2762, + "green": 1901, + "greenberg": 46662, + "greene": 16383, + "greener": 31169, + "greenery": 42493, + "greenfield": 39924, + "greeng": 42077, + "greenhouse": 20819, + "greening": 48673, + "greenland": 27345, + "greenpeace": 44755, + "greens": 10235, + "greensboro": 33436, + "greenville": 25156, + "greenway": 35205, + "greenwich": 18658, + "greenwood": 25782, + "greer": 34345, + "greet": 11042, + "greet": 11997, + "greeted": 24546, + "greeting": 17754, + "greetings": 11569, + "greets": 25464, + "greg": 6894, + "greg": 7943, + "gregation": 20131, + "gregg": 39422, + "gregg": 22929, + "gregor": 33856, + "gregor": 16177, + "gregory": 16253, + "gren": 13941, + "gren": 20119, + "grenade": 33679, + "grenfell": 42107, + "gres": 39670, + "gress": 2752, + "gret": 30041, + "greta": 33443, + "gretchen": 45516, + "grette": 38774, + "grew": 10451, + "grey": 9190, + "grey": 5046, + "greyhound": 27363, + "greyhounds": 45718, + "greys": 44311, + "greysanatomy": 36833, + "gri": 2169, + "gri": 18484, + "grid": 29067, + "grid": 9882, + "gridi": 41063, + "gridiron": 47786, + "grids": 46500, + "grief": 21058, + "grier": 22016, + "griev": 36400, + "grieving": 42383, + "griez": 47962, + "griezmann": 48396, + "griff": 17855, + "griff": 35551, + "griffi": 28676, + "griffin": 46612, + "griffin": 13161, + "griffith": 24375, + "griffiths": 34182, + "gril": 49091, + "grill": 44083, + "grill": 9519, + "grille": 34748, + "grilled": 10691, + "grilling": 28324, + "grills": 39464, + "grim": 20383, + "grim": 23635, + "grime": 37101, + "grimes": 25057, + "grimm": 27865, + "grims": 34861, + "grimsby": 41513, + "grin": 11033, + "grin": 28697, + "grinch": 40527, + "grind": 25730, + "grind": 11810, + "grinder": 31733, + "grinding": 21541, + "gring": 40135, + "grip": 15521, + "gripping": 34567, + "grips": 27819, + "gris": 29150, + "grit": 22037, + "grit": 22087, + "grits": 44307, + "gritty": 33704, + "grizz": 14877, + "grizz": 44088, + "grizzlies": 25594, + "grizzly": 29676, + "grl": 48005, + "gro": 1464, + "gro": 12691, + "grocer": 11633, + "groceries": 32409, + "grocery": 13826, + "grom": 45284, + "gron": 22345, + "groningen": 45639, + "groo": 9015, + "groom": 39883, + "groom": 22813, + "grooming": 25575, + "groot": 37708, + "groove": 39484, + "groove": 17680, + "grooves": 43954, + "groovy": 30143, + "gros": 26834, + "gros": 32639, + "gross": 31080, + "gross": 11541, + "grosven": 46911, + "grote": 47207, + "grotto": 45260, + "grou": 1582, + "groun": 45110, + "ground": 9558, + "ground": 2461, + "groundbreaking": 21006, + "grounded": 27799, + "grounds": 8454, + "groundwater": 39457, + "group": 19045, + "group": 1771, + "groupe": 47654, + "groups": 6776, + "grouse": 36327, + "grove": 31756, + "grove": 7463, + "grover": 31345, + "groves": 27306, + "grow": 3179, + "grow": 4559, + "grower": 44925, + "growers": 25689, + "growing": 28429, + "growing": 4425, + "growingup": 43433, + "growler": 47096, + "grown": 41762, + "grown": 7120, + "grows": 13352, + "growth": 17925, + "growth": 4026, + "growthhacking": 25963, + "grp": 27321, + "grt": 28557, + "gru": 5957, + "grub": 34019, + "grue": 42047, + "gruesome": 47111, + "grum": 45454, + "grump": 49015, + "grumpy": 23610, + "grun": 16203, + "grunge": 33745, + "gry": 16140, + "gry": 5364, + "gs": 25818, + "gs": 1345, + "gsa": 40433, + "gsc": 47751, + "gshore": 43392, + "gsm": 32181, + "gsp": 49173, + "gst": 22239, + "gt": 16151, + "gt": 4725, + "gta": 14826, + "gta": 15338, + "gtaonline": 27292, + "gtav": 27283, + "gti": 39954, + "gto": 39071, + "gtr": 33407, + "gts": 37338, + "gtx": 35230, + "gu": 700, + "gu": 12916, + "gua": 23751, + "guacam": 37477, + "guacamole": 40115, + "guad": 22966, + "guadal": 46097, + "guadalu": 36994, + "guadalupe": 38360, + "guam": 37325, + "guan": 44191, + "guan": 42406, + "guang": 27019, + "guangzhou": 37857, + "guar": 4119, + "guaran": 9242, + "guarantee": 17421, + "guaranteed": 14731, + "guarantees": 40154, + "guard": 30776, + "guard": 4901, + "guarded": 40602, + "guardi": 12008, + "guardia": 43628, + "guardian": 23713, + "guardian": 9498, + "guardians": 21479, + "guarding": 24966, + "guardiola": 32100, + "guards": 12810, + "guatem": 19423, + "guatemala": 21670, + "guay": 48591, + "guay": 24247, + "gubernat": 41400, + "gubernatorial": 41618, + "gucci": 16779, + "gud": 48061, + "gud": 22378, + "gue": 2030, + "gue": 2917, + "gued": 38893, + "guel": 23146, + "guelph": 27660, + "guer": 10391, + "guern": 29277, + "guernsey": 33982, + "guerra": 38215, + "guerrero": 31967, + "guerrilla": 36715, + "gues": 39971, + "gues": 12601, + "guess": 35506, + "guess": 3135, + "guessed": 28005, + "guesses": 30623, + "guessing": 21891, + "guest": 27349, + "guest": 3781, + "guests": 6212, + "guet": 36797, + "guetta": 45904, + "guez": 12313, + "gug": 31358, + "guggen": 35086, + "guggenheim": 37135, + "gui": 2587, + "gui": 25746, + "guid": 11437, + "guidance": 12508, + "guide": 21845, + "guide": 3555, + "guided": 13194, + "guidelines": 16591, + "guides": 14375, + "guiding": 22759, + "guido": 41818, + "guil": 5008, + "guild": 19755, + "guild": 16597, + "guildford": 34450, + "guildhall": 47224, + "guillau": 41123, + "guillaume": 45394, + "guiller": 33660, + "guillermo": 39524, + "guilt": 26354, + "guilty": 9761, + "guin": 13284, + "guin": 47863, + "guine": 13759, + "guinea": 18537, + "guinness": 16648, + "guire": 18209, + "guise": 42024, + "guit": 3759, + "guitar": 21746, + "guitar": 5084, + "guitarist": 13035, + "guitars": 15023, + "guj": 34935, + "gujar": 12698, + "gujarat": 14714, + "guk": 20280, + "gul": 5530, + "gul": 21350, + "gula": 27426, + "gular": 34969, + "gulf": 22101, + "gulf": 11279, + "gull": 48764, + "gull": 28778, + "gulls": 37501, + "gully": 46112, + "gum": 22041, + "gum": 11235, + "gumb": 40147, + "gumbo": 47126, + "gummy": 34276, + "gums": 46609, + "gun": 2748, + "gun": 3496, + "guna": 43333, + "gundam": 26087, + "gundy": 21162, + "gunman": 32743, + "gunmen": 44738, + "gunn": 27473, + "gunna": 24002, + "gunnar": 45301, + "gunner": 35285, + "gunners": 37788, + "guns": 7591, + "gunsense": 44781, + "gunshot": 49250, + "gunsn": 49028, + "gup": 38632, + "gup": 47335, + "gupta": 15905, + "gur": 3218, + "gur": 30224, + "gura": 46836, + "gurgaon": 33240, + "guri": 43888, + "gurl": 25445, + "gurmee": 35482, + "gurmeetramrahim": 36549, + "guru": 18629, + "guru": 10800, + "gurudev": 48647, + "gus": 8018, + "gust": 24629, + "gusta": 23024, + "gusta": 44196, + "gustav": 32062, + "gustav": 37921, + "gustave": 43170, + "gustavo": 45943, + "gusto": 37937, + "gusts": 20896, + "gusty": 27589, + "gut": 24780, + "gut": 13486, + "guter": 44963, + "guterres": 48738, + "guth": 31696, + "guthrie": 33164, + "gutier": 32773, + "gutierrez": 33739, + "guts": 25983, + "gutted": 26524, + "gutter": 40537, + "guwa": 43063, + "guwahati": 45045, + "guy": 10008, + "guy": 2149, + "guyana": 45215, + "guyen": 28031, + "guys": 43588, + "guys": 1791, + "guyz": 48170, + "guzman": 37960, + "gv": 15462, + "gv": 17336, + "gw": 7172, + "gw": 15717, + "gwen": 32165, + "gwen": 24182, + "gwin": 43005, + "gwy": 32226, + "gwyne": 36923, + "gx": 40227, + "gy": 2168, + "gy": 1164, + "gya": 43214, + "gyan": 43814, + "gye": 21728, + "gyllen": 49348, + "gym": 9902, + "gym": 5222, + "gymna": 13517, + "gymnasium": 42847, + "gymnast": 42658, + "gymnastics": 20116, + "gyn": 39603, + "gyne": 45836, + "gyp": 40053, + "gypsy": 22354, + "gypt": 41921, + "gz": 45937, + "gz": 35841, + "gö": 40778, + "gü": 31907, + "h": 71, + "h": 327, + "ha": 560, + "ha": 1429, + "haa": 26814, + "haal": 35869, + "haan": 36284, + "haar": 45247, + "haar": 35859, + "haas": 27443, + "haasan": 26601, + "hab": 20573, + "hab": 20002, + "haban": 46225, + "haber": 44737, + "habit": 8491, + "habit": 17215, + "habitat": 11747, + "habitats": 35344, + "habits": 14540, + "habs": 27489, + "hac": 20343, + "hace": 43623, + "haci": 40674, + "hack": 6610, + "hack": 11182, + "hackathon": 25182, + "hacked": 19575, + "hacker": 22376, + "hackers": 21498, + "hacking": 12939, + "hackney": 48811, + "hackney": 24928, + "hacks": 19965, + "had": 10660, + "had": 1100, + "hadi": 39058, + "hadid": 26415, + "hadith": 46907, + "hadley": 44995, + "hadn": 21480, + "hadoop": 43868, + "hae": 30723, + "hae": 27193, + "hafi": 39914, + "hag": 26855, + "hag": 43207, + "hagan": 47489, + "hagen": 14664, + "hager": 48773, + "hagg": 26324, + "hague": 28988, + "hah": 18108, + "hah": 13680, + "haha": 1913, + "haha": 3060, + "hahah": 27253, + "hahah": 15441, + "hahaha": 4722, + "hahahah": 37513, + "hahahah": 20096, + "hahahaha": 8058, + "hahahaha": 9501, + "hahahahah": 33334, + "hahahahaha": 16347, + "hahahahahaha": 26487, + "hahahahahahaha": 43653, + "hahahahahahahaha": 36126, + "hahahha": 49205, + "hahn": 35596, + "hai": 8734, + "hai": 5234, + "haider": 42200, + "haiku": 19542, + "hail": 15272, + "hail": 8634, + "hailed": 44604, + "hailey": 27703, + "hailing": 47288, + "hails": 32571, + "hailstate": 35063, + "hain": 23861, + "hair": 4658, + "hair": 2225, + "haircare": 43682, + "haircut": 14711, + "hairdresser": 47468, + "haired": 27202, + "hairs": 27951, + "hairstyle": 22324, + "hairstyles": 40627, + "hairy": 26513, + "haiti": 17368, + "haitian": 37577, + "haj": 27885, + "haj": 43191, + "haji": 41889, + "hajj": 35576, + "hak": 25142, + "hak": 40671, + "haka": 44011, + "hake": 41663, + "hal": 1296, + "hal": 8708, + "hala": 25918, + "halal": 34216, + "halam": 29061, + "halamadrid": 31132, + "halder": 32201, + "hale": 37038, + "hale": 14701, + "halen": 39204, + "halep": 49017, + "haley": 37330, + "haley": 16839, + "half": 7453, + "half": 2349, + "halftime": 13742, + "halfway": 16736, + "hali": 9860, + "hali": 43030, + "halibut": 49030, + "halifax": 13411, + "hall": 6850, + "hall": 2140, + "halla": 29569, + "halle": 27763, + "halle": 32239, + "hallelujah": 36993, + "halli": 32665, + "hallmark": 31040, + "hallmark": 32053, + "hallmarkchannel": 36840, + "hallo": 3463, + "halloffame": 48578, + "halloween": 28537, + "halloween": 3739, + "halls": 18052, + "hallucin": 35385, + "hallway": 26845, + "halo": 33331, + "halo": 11918, + "halsey": 34256, + "halt": 25640, + "halter": 47194, + "halton": 45445, + "ham": 1522, + "ham": 1714, + "hama": 17944, + "hamas": 14818, + "hamburg": 18409, + "hamburger": 33928, + "hamid": 32377, + "hamil": 6725, + "hamill": 45784, + "hamill": 48729, + "hamillhimself": 47324, + "hamilton": 22448, + "hamilton": 7684, + "hamlet": 27722, + "hamlin": 49326, + "hamm": 46110, + "hammer": 15331, + "hammer": 9401, + "hammered": 37251, + "hammers": 35649, + "hammersmith": 42127, + "hammock": 33682, + "hammond": 21761, + "hamont": 18518, + "hamp": 6665, + "hamper": 27692, + "hampshire": 16006, + "hampstead": 37340, + "hampton": 36582, + "hampton": 12285, + "hamptons": 42415, + "hamr": 47979, + "hamradio": 36712, + "hams": 25619, + "hamster": 33313, + "hamstring": 39990, + "hamza": 45762, + "han": 1545, + "han": 3565, + "hana": 16801, + "hand": 1722, + "hand": 2463, + "handbag": 22654, + "handbags": 35667, + "handball": 27988, + "handbook": 25147, + "handcrafted": 22185, + "handed": 10881, + "handedly": 48656, + "handel": 40072, + "handful": 23725, + "handheld": 26812, + "handic": 17812, + "handicap": 27063, + "handicapp": 42349, + "handing": 19196, + "handle": 43681, + "handle": 7245, + "handled": 26824, + "handler": 29097, + "handles": 22124, + "handling": 14071, + "handmade": 18054, + "handmade": 6737, + "handmadehour": 25724, + "handover": 46922, + "hands": 3500, + "handshake": 38418, + "handsome": 7438, + "handwriting": 29986, + "handwritten": 35192, + "handy": 13479, + "hane": 28411, + "hang": 3351, + "hang": 5592, + "hangar": 33439, + "hanged": 40807, + "hanger": 28905, + "hangin": 22670, + "hanging": 4850, + "hangout": 17572, + "hangover": 20755, + "hangs": 21785, + "hani": 39944, + "hani": 18374, + "hank": 35993, + "hank": 17655, + "hanks": 29943, + "hanley": 47284, + "hann": 5584, + "hanna": 10075, + "hannah": 18622, + "hannah": 9142, + "hannel": 43477, + "hanni": 19493, + "hannibal": 25149, + "hannity": 24569, + "hannover": 39976, + "hanoi": 36134, + "hanover": 33246, + "hans": 35172, + "hans": 16628, + "hansen": 19729, + "hanson": 24602, + "hant": 40641, + "hanuk": 32774, + "hanukkah": 34247, + "hanuman": 46975, + "hao": 27184, + "hap": 44981, + "hap": 47988, + "happ": 784, + "happen": 21486, + "happen": 4506, + "happened": 4402, + "happening": 4284, + "happeningnow": 43107, + "happenings": 41998, + "happens": 4988, + "happier": 14118, + "happiest": 13811, + "happily": 17316, + "happiness": 5096, + "happy": 2952, + "happy": 900, + "happybirthday": 9651, + "happybirthday": 12207, + "happydays": 25106, + "happye": 33922, + "happyeaster": 38745, + "happyfathersday": 43534, + "happyfriday": 33340, + "happyhalloween": 28750, + "happyholidays": 32186, + "happyhour": 32036, + "happymonday": 47364, + "happymothersday": 42425, + "happynewyear": 18655, + "happythanksgiving": 40593, + "happyvalentinesday": 42403, + "haps": 9114, + "haq": 32445, + "har": 915, + "har": 5888, + "hara": 10367, + "haram": 35732, + "haram": 22950, + "haran": 27921, + "harare": 43562, + "haras": 26644, + "harass": 16481, + "harassed": 43067, + "harassment": 16641, + "harat": 28984, + "harb": 5856, + "harbaugh": 45220, + "harbor": 40686, + "harbor": 10202, + "harbour": 35430, + "harbour": 10011, + "harcourt": 48093, + "hard": 3312, + "hard": 1626, + "hardcover": 31123, + "harden": 27350, + "harder": 12274, + "hardest": 15258, + "hardin": 43802, + "harding": 24382, + "hardly": 17363, + "hardro": 28126, + "hardrock": 48365, + "hardrock": 40739, + "hards": 44048, + "hardship": 45085, + "hardt": 17922, + "hardware": 11957, + "hardwell": 45572, + "hardwick": 46864, + "hardwood": 28167, + "hardwork": 42554, + "hardwork": 27404, + "hardworking": 28095, + "hardworkpaysoff": 49193, + "hardy": 48179, + "hardy": 14113, + "hare": 27903, + "hare": 18464, + "harga": 39738, + "hari": 25472, + "hari": 8981, + "harlan": 49133, + "harle": 29096, + "harlem": 17771, + "harley": 24702, + "harley": 13632, + "harleydavidson": 39183, + "harlow": 34113, + "harm": 16656, + "harm": 14452, + "harman": 42434, + "harmed": 39637, + "harmful": 21725, + "harmless": 44369, + "harmon": 10828, + "harmon": 28729, + "harmony": 10785, + "harms": 46703, + "harne": 43323, + "harness": 23205, + "harold": 16917, + "harp": 27339, + "harper": 31288, + "harper": 12634, + "harri": 6639, + "harrier": 37372, + "harriet": 27154, + "harrington": 34340, + "harris": 25356, + "harris": 6925, + "harrisburg": 40590, + "harrison": 34389, + "harrison": 10540, + "harro": 18939, + "harrogate": 30842, + "harrow": 38807, + "harry": 11094, + "harry": 3600, + "harrypotter": 23375, + "harsh": 30596, + "harsh": 16944, + "hart": 9335, + "hart": 7752, + "hartford": 23434, + "harth": 35619, + "hartle": 47482, + "hartley": 31268, + "hartman": 43294, + "haru": 35099, + "harvard": 28118, + "harvard": 12848, + "harve": 6405, + "harvest": 44495, + "harvest": 8971, + "harvested": 35899, + "harvesting": 26674, + "harvey": 33289, + "harvey": 9586, + "harvick": 46983, + "haryana": 27661, + "has": 13855, + "has": 791, + "hasan": 30049, + "hasbro": 37405, + "hash": 6338, + "hash": 19199, + "hashi": 41831, + "hashmi": 35852, + "hashtag": 34015, + "hashtag": 9238, + "hashtags": 23514, + "haskell": 48550, + "hasn": 9143, + "hass": 9298, + "hassan": 15829, + "hassee": 37117, + "hassel": 32204, + "hassle": 35762, + "hast": 18146, + "hasta": 36623, + "hastings": 22035, + "hat": 3447, + "hat": 3801, + "hatch": 24202, + "hatch": 17809, + "hatchback": 42348, + "hatched": 42158, + "hate": 23546, + "hate": 3753, + "hated": 21298, + "hateful": 36418, + "hater": 36917, + "haters": 14027, + "hates": 14957, + "hatfield": 38448, + "hath": 27894, + "hath": 34416, + "hathaway": 31801, + "hati": 26045, + "hating": 25668, + "hatred": 19046, + "hats": 9812, + "hatt": 8747, + "hatton": 44861, + "hau": 5152, + "hauer": 48751, + "haul": 23743, + "haul": 12332, + "hauled": 46620, + "hauling": 43132, + "haun": 9676, + "haunt": 31039, + "haunted": 14944, + "haunting": 24034, + "haunts": 48035, + "haus": 41755, + "haus": 16478, + "hausen": 33338, + "hauser": 46586, + "haute": 28854, + "hav": 13443, + "hav": 20447, + "havan": 36304, + "havana": 23357, + "havas": 46261, + "have": 18053, + "have": 720, + "haven": 33074, + "haven": 3871, + "havent": 29130, + "haver": 27876, + "haves": 49088, + "havin": 31937, + "having": 1977, + "havoc": 24447, + "haw": 2788, + "haw": 26954, + "hawa": 6067, + "hawa": 46278, + "hawai": 15800, + "hawaii": 32413, + "hawaii": 8265, + "hawaiian": 17734, + "hawan": 27765, + "hawk": 14704, + "hawk": 8218, + "hawke": 38178, + "hawker": 39051, + "hawkeye": 38666, + "hawkeyes": 34266, + "hawking": 33437, + "hawkins": 19740, + "hawks": 44806, + "hawks": 5841, + "hawthorn": 45372, + "hawthorne": 36730, + "hay": 4871, + "hay": 11367, + "haya": 41325, + "hayat": 49360, + "hayden": 19806, + "haydn": 48207, + "haye": 36583, + "hayes": 13555, + "hayley": 39986, + "hayley": 22204, + "haynes": 30496, + "hays": 41524, + "hayward": 29400, + "haz": 5040, + "haz": 39921, + "hazard": 26174, + "hazard": 15178, + "hazardous": 27102, + "hazards": 30639, + "haze": 22785, + "hazel": 19838, + "hazel": 21882, + "hazelnut": 35816, + "hazi": 22740, + "hazmat": 48887, + "hazrat": 45775, + "hazy": 32655, + "hb": 6854, + "hb": 12576, + "hbcu": 40008, + "hbd": 25277, + "hbd": 13594, + "hbo": 15252, + "hc": 15831, + "hc": 7821, + "hcs": 46850, + "hd": 11601, + "hd": 4414, + "hdd": 40508, + "hdmi": 33302, + "hdr": 28065, + "he": 651, + "he": 797, + "hea": 27150, + "hea": 32790, + "head": 1603, + "head": 1375, + "headache": 23849, + "headaches": 38025, + "headband": 28556, + "headed": 6153, + "header": 11077, + "heading": 4409, + "headless": 45219, + "headlights": 42422, + "headline": 10891, + "headliner": 38880, + "headlines": 14706, + "headlining": 26971, + "headphone": 37524, + "headphones": 14906, + "headquarters": 13041, + "heads": 5174, + "headset": 23883, + "headshot": 34890, + "heal": 1231, + "heal": 13833, + "healed": 31456, + "healer": 38328, + "healey": 38985, + "healing": 9295, + "heals": 32384, + "health": 2145, + "health": 1728, + "healthand": 43704, + "healthcare": 42500, + "healthcare": 6023, + "healthier": 18242, + "healthtech": 42694, + "healthy": 10330, + "healthy": 3782, + "healthye": 31532, + "healthyeating": 33761, + "healthyfood": 39996, + "healthylifestyle": 46254, + "healthyliving": 27293, + "healy": 34299, + "heap": 34781, + "heaps": 44446, + "hear": 2749, + "hear": 2584, + "heard": 4063, + "hearing": 46353, + "hearing": 5541, + "hearings": 33175, + "hearn": 36613, + "hears": 25395, + "heart": 4975, + "heart": 1936, + "heartbeat": 29154, + "heartbreak": 29281, + "heartbreaking": 21322, + "heartbroken": 35383, + "hearted": 21679, + "heartfelt": 22904, + "hearth": 31563, + "hearthstone": 34054, + "hearti": 29345, + "hearties": 44572, + "heartland": 31923, + "heartless": 47022, + "heartnews": 40426, + "hearts": 5516, + "heartw": 30002, + "heartwarming": 34080, + "hearty": 26994, + "heat": 12175, + "heat": 4403, + "heated": 17057, + "heater": 23246, + "heath": 12794, + "heath": 11719, + "heather": 20230, + "heather": 12470, + "heathrow": 24171, + "heating": 12478, + "heaton": 34557, + "heats": 36106, + "heatwave": 25726, + "heav": 2409, + "heaven": 15520, + "heaven": 5545, + "heavenly": 19117, + "heavens": 26026, + "heavier": 31253, + "heaviest": 33268, + "heavily": 14123, + "heavy": 12048, + "heavy": 4200, + "heavymetal": 39804, + "heavyweight": 17448, + "heb": 24700, + "heb": 34515, + "hebdo": 41817, + "hebrew": 27298, + "hebrides": 45121, + "hebron": 45725, + "hec": 18932, + "heck": 22985, + "heck": 14427, + "hectares": 44162, + "hectic": 37245, + "hector": 25852, + "hed": 18271, + "hedge": 16229, + "hedge": 20294, + "hedgehog": 21940, + "hedges": 41345, + "hee": 18364, + "hee": 15773, + "heechul": 42487, + "heed": 15118, + "heel": 33646, + "heel": 16861, + "heels": 10909, + "heem": 30061, + "heer": 40473, + "hef": 29473, + "heff": 48756, + "hefty": 48584, + "heg": 41995, + "heh": 25834, + "hehe": 48723, + "hehe": 10658, + "hehehe": 24138, + "hei": 6101, + "hei": 29051, + "heidel": 42927, + "heidelberg": 48445, + "heidi": 44860, + "heidi": 23867, + "heifer": 48219, + "heigh": 43883, + "height": 10788, + "heights": 8418, + "heim": 10931, + "heim": 9768, + "heimer": 39517, + "hein": 15487, + "hein": 43206, + "heine": 28742, + "heineken": 36874, + "heinrich": 47877, + "heinz": 32359, + "heir": 27083, + "heir": 34007, + "heirloom": 34232, + "heirs": 43834, + "heis": 21849, + "heisman": 34537, + "heist": 31035, + "heit": 37255, + "hel": 919, + "hel": 11579, + "hela": 48212, + "held": 4042, + "hele": 46129, + "helen": 17576, + "helen": 11291, + "helena": 23109, + "helene": 41591, + "helens": 45940, + "heli": 33874, + "heli": 40183, + "helicop": 10035, + "helicopter": 11956, + "helicopters": 26922, + "helium": 46505, + "helix": 35247, + "hell": 8410, + "hell": 4141, + "hella": 19800, + "hellboy": 48428, + "helle": 48600, + "helle": 46968, + "hellenic": 42544, + "heller": 44464, + "hello": 12887, + "hello": 3306, + "hells": 47989, + "helly": 48690, + "helm": 47970, + "helm": 19520, + "helmet": 11122, + "helmets": 21843, + "help": 8641, + "help": 1318, + "helped": 4845, + "helper": 29321, + "helpers": 36316, + "helpful": 12695, + "helping": 3875, + "helpless": 47638, + "helpline": 43101, + "helps": 5144, + "helsin": 17842, + "helsinki": 19626, + "hem": 20270, + "hem": 11148, + "hemi": 14256, + "hemi": 46856, + "heming": 30819, + "hemingway": 33470, + "hemisphere": 32767, + "hemmings": 34882, + "hemo": 43788, + "hemp": 28225, + "hemp": 18467, + "hems": 32451, + "hemsworth": 39428, + "hen": 2385, + "hen": 8047, + "hence": 23640, + "hend": 11560, + "hender": 49248, + "henderson": 14348, + "hendrick": 45296, + "hendricks": 37588, + "hendrix": 23605, + "henge": 33104, + "henley": 27853, + "henna": 39455, + "hennessy": 42667, + "henri": 19431, + "henri": 21610, + "henrik": 35772, + "henry": 16018, + "henry": 5508, + "hens": 31742, + "henson": 32935, + "hep": 17724, + "hep": 48791, + "hepat": 23767, + "hepatitis": 32169, + "hepburn": 26348, + "her": 1223, + "her": 899, + "hera": 38724, + "heral": 37809, + "herald": 27625, + "herald": 12851, + "herb": 26116, + "herb": 15302, + "herbal": 21868, + "herbali": 44087, + "herbalife": 48364, + "herbert": 19935, + "herbs": 17320, + "hercules": 26539, + "herd": 36142, + "herd": 18589, + "here": 9134, + "here": 763, + "hered": 47976, + "hereford": 35543, + "heres": 13566, + "hereto": 47673, + "heri": 31392, + "herit": 4720, + "heritag": 38273, + "heritage": 20962, + "heritage": 5455, + "herman": 31890, + "herman": 21568, + "hermann": 40942, + "hermes": 34563, + "hermi": 35265, + "hermione": 45502, + "hermit": 43953, + "hermitage": 47706, + "hermo": 40967, + "hermosa": 42531, + "hern": 30571, + "hern": 43576, + "hernandez": 17707, + "hero": 7338, + "hero": 3756, + "heroes": 38010, + "heroes": 5506, + "heroic": 24255, + "heroin": 23841, + "heroine": 27420, + "heron": 22593, + "heros": 37642, + "herr": 38537, + "herrera": 27755, + "herring": 30211, + "hers": 25359, + "herself": 9207, + "hersh": 20379, + "hershey": 29734, + "hert": 26744, + "hertfordshire": 41070, + "herts": 35784, + "herty": 23454, + "hertz": 49383, + "hes": 30553, + "hes": 12784, + "hesit": 23933, + "hesitate": 34967, + "hess": 41888, + "hester": 31105, + "het": 37527, + "het": 19678, + "hetero": 26405, + "heu": 20105, + "heughan": 32298, + "hew": 48141, + "hew": 43051, + "hewitt": 28871, + "hex": 16255, + "hex": 31241, + "hey": 10759, + "hey": 2189, + "hez": 34591, + "hezbollah": 37636, + "hf": 26606, + "hf": 20603, + "hfx": 47297, + "hg": 23986, + "hg": 26237, + "hgtv": 47657, + "hh": 3280, + "hh": 5180, + "hhh": 8281, + "hhhh": 19391, + "hhhh": 13121, + "hhhhh": 24246, + "hhhhhh": 37278, + "hhs": 27006, + "hi": 677, + "hi": 1883, + "hia": 20672, + "hiatus": 27823, + "hib": 15922, + "hiber": 38799, + "hibis": 36226, + "hibiscus": 36460, + "hibition": 24658, + "hibs": 42814, + "hic": 3549, + "hic": 38079, + "hick": 14813, + "hickman": 49148, + "hickory": 29905, + "hicks": 23429, + "hid": 15552, + "hid": 14451, + "hidalgo": 47464, + "hidden": 28305, + "hidden": 7029, + "hiddleston": 31444, + "hide": 17725, + "hide": 9379, + "hideous": 46588, + "hides": 30800, + "hiding": 11371, + "hie": 15763, + "hier": 23433, + "hier": 29913, + "hierarchy": 44442, + "hifi": 38168, + "hig": 38108, + "higgins": 21783, + "high": 1487, + "high": 1400, + "higher": 5321, + "highered": 27072, + "highest": 5317, + "highland": 32244, + "highland": 16062, + "highlander": 46251, + "highlanders": 40445, + "highlands": 16883, + "highlight": 8264, + "highlighted": 22252, + "highlighter": 45460, + "highlighting": 17344, + "highlights": 6173, + "highly": 5302, + "highness": 38694, + "highs": 15144, + "highschool": 23102, + "highway": 45344, + "highway": 7620, + "highways": 28007, + "higu": 39115, + "hihi": 36240, + "hii": 42315, + "hijab": 31407, + "hika": 41356, + "hikari": 44624, + "hike": 9404, + "hiked": 36471, + "hiker": 40947, + "hikers": 46090, + "hikes": 27076, + "hiking": 9118, + "hiko": 48708, + "hil": 3508, + "hil": 17927, + "hila": 38837, + "hilar": 37337, + "hilari": 7784, + "hilarious": 8358, + "hilariously": 43476, + "hilary": 45898, + "hilary": 25415, + "hilde": 45382, + "hill": 3671, + "hill": 2682, + "hillary": 13257, + "hillary": 7074, + "hillaryclinton": 15357, + "hilli": 32513, + "hills": 24178, + "hills": 5289, + "hillsborough": 32157, + "hillside": 37194, + "hilltop": 45858, + "hilly": 32483, + "hilton": 33621, + "hilton": 14012, + "him": 4128, + "him": 1269, + "himach": 29132, + "himachal": 35461, + "himalay": 17552, + "himalayan": 30318, + "himalayas": 32872, + "hime": 45892, + "himself": 4530, + "himss": 41730, + "hin": 1676, + "hin": 37930, + "hina": 40571, + "hinakhan": 45518, + "hinch": 49320, + "hind": 34460, + "hind": 23293, + "hindi": 14967, + "hinds": 47859, + "hindu": 17587, + "hindu": 12053, + "hinduism": 40592, + "hindus": 25701, + "hindustan": 46553, + "hines": 37462, + "hing": 37968, + "hini": 33564, + "hino": 45343, + "hint": 11868, + "hinton": 47165, + "hints": 20594, + "hio": 32897, + "hip": 11725, + "hip": 6584, + "hipho": 8819, + "hiphop": 26598, + "hiphop": 10914, + "hipp": 13607, + "hippie": 28637, + "hippo": 28398, + "hippo": 36729, + "hips": 30191, + "hipstamatic": 31002, + "hipster": 19987, + "hipsters": 48265, + "hir": 4959, + "hir": 14728, + "hira": 42577, + "hire": 32356, + "hire": 8243, + "hired": 17602, + "hires": 24133, + "hiring": 7835, + "hiro": 17396, + "hiro": 20588, + "hiroshima": 33867, + "hirsch": 46967, + "his": 15211, + "his": 787, + "hism": 23502, + "hispan": 16843, + "hispanic": 22676, + "hist": 21710, + "hist": 13779, + "histo": 33479, + "histor": 2993, + "historia": 46010, + "historian": 20697, + "historians": 35200, + "historic": 30195, + "historic": 5726, + "historical": 34154, + "historical": 8039, + "historically": 30445, + "histories": 34736, + "history": 11142, + "history": 1695, + "historymonth": 19356, + "historyof": 35905, + "hit": 5453, + "hit": 2341, + "hitch": 22937, + "hitch": 36203, + "hitler": 16518, + "hitman": 33290, + "hits": 4712, + "hitter": 23538, + "hitters": 39724, + "hitting": 7957, + "hiv": 44410, + "hiv": 11018, + "hive": 38162, + "hive": 18521, + "hiya": 42393, + "hk": 22648, + "hk": 12307, + "hl": 8297, + "hl": 5956, + "hle": 32389, + "hler": 35418, + "hm": 17913, + "hm": 7631, + "hmm": 13725, + "hmmm": 17032, + "hmmmm": 34598, + "hms": 14625, + "hmu": 21630, + "hmv": 49288, + "hn": 22905, + "hn": 7478, + "hns": 48412, + "ho": 606, + "ho": 2971, + "hoa": 37517, + "hoar": 31628, + "hoax": 33438, + "hob": 18212, + "hobart": 31646, + "hobb": 16175, + "hobbies": 36370, + "hobbit": 23207, + "hobbs": 34343, + "hobby": 41120, + "hobby": 17557, + "hobo": 34613, + "hobo": 41334, + "hoboken": 41568, + "hoc": 35880, + "hoch": 43772, + "hock": 34914, + "hock": 46574, + "hockey": 16499, + "hockey": 4111, + "hoco": 34771, + "hod": 31062, + "hodg": 23660, + "hodge": 40585, + "hodges": 35061, + "hodgson": 37044, + "hoe": 32502, + "hoe": 11262, + "hoek": 40073, + "hoes": 21164, + "hof": 20186, + "hof": 12789, + "hofer": 38654, + "hoff": 32860, + "hoff": 22751, + "hofficial": 41949, + "hoffman": 22026, + "hog": 12075, + "hog": 13255, + "hogan": 19757, + "hogg": 42005, + "hogs": 23242, + "hogwarts": 29168, + "hoh": 43947, + "hoi": 39295, + "hok": 26942, + "hok": 47167, + "hokies": 35168, + "hokkaido": 49145, + "hol": 1187, + "hol": 7349, + "hola": 28724, + "hold": 36496, + "hold": 3254, + "holden": 21869, + "holder": 7862, + "holders": 10074, + "holding": 5050, + "holdings": 24832, + "holds": 7286, + "hole": 47242, + "hole": 5341, + "holes": 11266, + "holi": 2093, + "holi": 21926, + "holic": 16348, + "holics": 29782, + "holiday": 13168, + "holiday": 2878, + "holidays": 5372, + "holiness": 37259, + "holistic": 26300, + "holl": 27699, + "holla": 26500, + "holland": 31608, + "holland": 9978, + "hollande": 47690, + "holler": 49047, + "holli": 24019, + "holliday": 41624, + "hollow": 41221, + "hollow": 16691, + "holloway": 29435, + "holly": 12731, + "holly": 11923, + "hollyo": 41525, + "hollyoaks": 43352, + "hollywood": 24655, + "hollywood": 5518, + "holm": 34758, + "holm": 12739, + "holme": 46149, + "holmes": 12756, + "holo": 10317, + "holocau": 14688, + "holocaust": 16476, + "hols": 33344, + "holt": 18868, + "holtz": 44743, + "holy": 13910, + "holy": 4874, + "hom": 906, + "hom": 47397, + "homa": 9557, + "homage": 17746, + "home": 2143, + "home": 1137, + "homebrew": 35046, + "homec": 33869, + "homecoming": 9008, + "homedecor": 15695, + "homedepot": 38707, + "homegrown": 32554, + "homeitems": 42972, + "homeland": 21633, + "homeless": 18403, + "homeless": 9661, + "homelessness": 19851, + "homemade": 7889, + "homeof": 48856, + "homeowner": 37267, + "homeowners": 29882, + "homepage": 29828, + "homer": 29307, + "homer": 16931, + "homers": 38333, + "homes": 19480, + "homes": 5416, + "homeschool": 40994, + "homestead": 32609, + "homeswee": 46298, + "hometown": 12238, + "homework": 12495, + "homicide": 21520, + "homie": 12540, + "homies": 18893, + "homme": 26193, + "homo": 18129, + "homo": 30504, + "homophobia": 37875, + "homophobic": 40975, + "homosexual": 44288, + "homosexuality": 46720, + "homs": 45413, + "hon": 1279, + "hon": 10296, + "honda": 8553, + "honduras": 29715, + "hone": 38640, + "honest": 7814, + "honest": 9602, + "honestly": 9155, + "honesty": 24939, + "honey": 9843, + "honey": 6406, + "honeycomb": 48583, + "honeymoon": 22527, + "hong": 12144, + "hong": 8598, + "hongkong": 16659, + "honi": 17918, + "honolulu": 28096, + "honor": 9206, + "honor": 3402, + "honorable": 19498, + "honorary": 15675, + "honore": 25868, + "honored": 5494, + "honoree": 38993, + "honorees": 43012, + "honoring": 10771, + "honors": 10248, + "honour": 8240, + "honourable": 29855, + "honoured": 11945, + "honouring": 37754, + "honours": 22558, + "hoo": 2300, + "hoo": 7920, + "hood": 18681, + "hood": 3222, + "hooded": 33631, + "hoodie": 13444, + "hoodies": 25974, + "hoods": 16664, + "hoof": 44555, + "hook": 30488, + "hook": 10395, + "hookah": 34214, + "hooked": 18138, + "hookem": 31465, + "hooker": 37891, + "hooking": 35240, + "hooks": 25068, + "hooligans": 48176, + "hoon": 21368, + "hooo": 44538, + "hoop": 31516, + "hoop": 19573, + "hooper": 35221, + "hoops": 9351, + "hoor": 22155, + "hooray": 24940, + "hoos": 46462, + "hoosier": 48886, + "hoosiers": 42780, + "hoot": 29164, + "hoover": 25691, + "hop": 10848, + "hop": 5833, + "hope": 5263, + "hope": 1683, + "hoped": 30628, + "hopeful": 21453, + "hopefully": 7602, + "hopeless": 35586, + "hopes": 10018, + "hoping": 7207, + "hopkins": 17821, + "hopp": 48839, + "hopped": 34220, + "hopper": 21748, + "hopping": 27606, + "hoppy": 38359, + "hops": 21137, + "hor": 1407, + "hor": 33847, + "hora": 26013, + "horace": 39282, + "horan": 26857, + "horde": 44947, + "hore": 15380, + "horiz": 8144, + "horizon": 17924, + "horizon": 11920, + "horizons": 29685, + "horizontal": 25775, + "hormon": 27096, + "hormone": 31283, + "hormones": 35162, + "horn": 15771, + "horn": 9607, + "horne": 38143, + "horned": 34526, + "hornet": 28739, + "hornets": 20124, + "horns": 22109, + "horny": 32622, + "horo": 21500, + "horoscope": 38453, + "horowitz": 44669, + "horri": 8656, + "horrible": 13726, + "horribly": 45484, + "horrific": 25314, + "horrifying": 38901, + "horror": 13787, + "horror": 5032, + "horrormovies": 46682, + "horrors": 33321, + "horse": 8562, + "horse": 4558, + "horseback": 43673, + "horseman": 48885, + "horsepower": 36882, + "horser": 23096, + "horseracing": 30693, + "horses": 8809, + "horseshoe": 29242, + "horst": 37182, + "hort": 19482, + "horticul": 27141, + "horticulture": 39998, + "horton": 25945, + "hortons": 38422, + "horus": 29794, + "hos": 44320, + "hos": 25008, + "hosa": 44618, + "hose": 19662, + "hoseok": 38817, + "hosp": 2847, + "hosp": 37853, + "hospice": 20533, + "hospit": 7180, + "hospital": 29399, + "hospital": 3851, + "hospitality": 11657, + "hospitalized": 36915, + "hospitals": 13816, + "host": 17403, + "host": 3953, + "hostage": 26119, + "hoste": 31700, + "hosted": 6017, + "hostel": 27225, + "hostess": 39692, + "hostile": 28074, + "hosting": 4857, + "hosts": 8718, + "hot": 2851, + "hot": 2069, + "hota": 43289, + "hotdog": 43758, + "hotel": 14591, + "hotel": 2738, + "hotels": 8654, + "hotline": 30516, + "hotmail": 46427, + "hotness": 39803, + "hotra": 27109, + "hotro": 47823, + "hotspot": 36606, + "hotspur": 35176, + "hotter": 23591, + "hottest": 8279, + "hottie": 22804, + "hotties": 46027, + "hou": 1011, + "hou": 10122, + "hough": 44529, + "houghton": 36133, + "houn": 39273, + "houn": 33607, + "hound": 33996, + "hound": 13561, + "hounds": 21178, + "hounews": 48373, + "hour": 14930, + "hour": 2232, + "hourly": 30918, + "hours": 2382, + "house": 4107, + "house": 1212, + "housed": 37518, + "household": 12412, + "households": 27167, + "housel": 48685, + "housemusic": 28468, + "houseof": 19928, + "houses": 7791, + "housewives": 38523, + "housing": 32924, + "housing": 5734, + "houston": 16564, + "houston": 5663, + "hov": 40291, + "hove": 29674, + "hoven": 35559, + "hover": 36252, + "hover": 49016, + "hovering": 43437, + "how": 7470, + "how": 829, + "howar": 37672, + "howard": 25447, + "howard": 7632, + "howdy": 42216, + "howe": 8179, + "howe": 24614, + "howell": 25297, + "hower": 32920, + "however": 8467, + "howi": 47883, + "howie": 42939, + "howl": 40332, + "howling": 41771, + "howto": 38191, + "howto": 44060, + "hoy": 39625, + "hoy": 13278, + "hoya": 40978, + "hp": 23753, + "hp": 6371, + "hpa": 30983, + "hpc": 39936, + "hpe": 33787, + "hpv": 45765, + "hq": 33571, + "hq": 4693, + "hr": 4810, + "hr": 4086, + "hra": 21320, + "hra": 17212, + "hrc": 18139, + "hrh": 29103, + "hri": 21068, + "hrithik": 45371, + "hrs": 7157, + "hru": 24127, + "hrw": 25064, + "hs": 9343, + "hs": 2466, + "hsbc": 31508, + "hsc": 43510, + "hse": 34057, + "hsfb": 29539, + "hsv": 47311, + "ht": 11123, + "ht": 7801, + "hta": 23452, + "hta": 49384, + "htafc": 42821, + "htc": 48942, + "htc": 17635, + "html": 18231, + "hts": 43710, + "htt": 10620, + "http": 15066, + "https": 30901, + "httr": 49372, + "httweets": 43198, + "hu": 845, + "hu": 5949, + "hua": 22138, + "huan": 41405, + "huang": 32013, + "huar": 46916, + "huawe": 17709, + "huawei": 21128, + "hub": 18775, + "hub": 7028, + "hubb": 23183, + "hubbard": 33288, + "hubble": 30421, + "hubby": 16947, + "hubert": 40699, + "hubs": 29327, + "huck": 22909, + "huckabee": 43666, + "hud": 7169, + "hud": 28563, + "hudder": 22629, + "huddersfield": 24220, + "huddle": 33435, + "hudson": 25873, + "hudson": 11260, + "hue": 48380, + "hue": 21465, + "hues": 38003, + "huey": 39663, + "huff": 18746, + "huff": 44999, + "huffpost": 45887, + "hug": 40790, + "hug": 10359, + "huge": 2699, + "hugely": 24648, + "hugged": 41333, + "hugging": 27058, + "hugh": 8723, + "hugh": 15385, + "hughes": 11418, + "hugo": 43935, + "hugo": 17132, + "hugs": 14248, + "huh": 13348, + "huhu": 32134, + "hui": 29978, + "hul": 7911, + "hula": 40145, + "hulk": 17637, + "hull": 25154, + "hull": 10375, + "hulu": 24666, + "hum": 5823, + "hum": 16283, + "human": 3175, + "human": 2751, + "humane": 20220, + "humanitarian": 14170, + "humanities": 24949, + "humanity": 9420, + "humanright": 44385, + "humanrights": 14148, + "humans": 8324, + "humb": 9988, + "humber": 30602, + "humber": 38063, + "humble": 38703, + "humble": 10889, + "humbled": 19682, + "humbling": 39757, + "humbold": 24739, + "humboldt": 31389, + "hume": 38197, + "humid": 14778, + "humid": 27447, + "humidi": 47666, + "humidity": 15469, + "humil": 27205, + "humili": 25332, + "humility": 28535, + "humming": 26515, + "hummingbird": 33072, + "hummus": 31785, + "humor": 29369, + "humor": 11186, + "humorous": 38173, + "humour": 19161, + "hump": 16673, + "hump": 24529, + "humpback": 47662, + "humpday": 27693, + "humph": 19767, + "humphrey": 31549, + "hun": 1616, + "hun": 10795, + "hundre": 8505, + "hundred": 11898, + "hundreds": 8879, + "hung": 13825, + "hungar": 19420, + "hungarian": 23325, + "hungary": 17232, + "hunger": 25565, + "hunger": 10184, + "hungergames": 47507, + "hungover": 41110, + "hungry": 44845, + "hungry": 8451, + "hunk": 33912, + "hunt": 16498, + "hunt": 5774, + "hunted": 37373, + "hunter": 16531, + "hunter": 6099, + "hunters": 16115, + "hunting": 27830, + "hunting": 7507, + "huntington": 23521, + "hunts": 34041, + "huntsville": 34544, + "hur": 2305, + "hur": 34523, + "hurd": 44915, + "hurdle": 27486, + "hurdles": 25440, + "huri": 42486, + "hurley": 30166, + "hurling": 24738, + "huron": 36147, + "hurrah": 40599, + "hurric": 6543, + "hurrican": 36105, + "hurricane": 24051, + "hurricane": 8782, + "hurricanes": 22357, + "hurry": 10921, + "hurst": 44742, + "hurst": 11760, + "hurt": 7413, + "hurting": 24017, + "hurts": 13059, + "hus": 5111, + "hus": 35853, + "husband": 6179, + "husbands": 33612, + "hush": 28728, + "husk": 19246, + "huskers": 26946, + "huskies": 20988, + "husky": 20421, + "huss": 13733, + "hussain": 17940, + "hussein": 31336, + "hust": 27279, + "hustle": 15709, + "huston": 46480, + "hut": 20924, + "hut": 16503, + "hutch": 31018, + "hutch": 33203, + "hutchinson": 35721, + "hutto": 27662, + "hutton": 38321, + "hv": 17209, + "hv": 18593, + "hvac": 27492, + "hw": 27491, + "hw": 18876, + "hwa": 32352, + "hwan": 44390, + "hwang": 46775, + "hwy": 13812, + "hy": 1441, + "hy": 17827, + "hya": 31600, + "hyacin": 47263, + "hyatt": 44856, + "hyatt": 25146, + "hybri": 9084, + "hybrid": 10156, + "hyd": 42382, + "hyde": 46484, + "hyde": 16343, + "hyder": 13960, + "hyderabad": 14801, + "hydr": 8031, + "hydra": 44414, + "hydra": 40420, + "hydrange": 43298, + "hydrate": 29628, + "hydrated": 23300, + "hydrating": 47653, + "hydration": 24174, + "hydrau": 26017, + "hydraulic": 26189, + "hydro": 8368, + "hydro": 22595, + "hydrogen": 20974, + "hye": 32724, + "hye": 25792, + "hygi": 16277, + "hygiene": 19591, + "hymn": 41350, + "hyo": 38960, + "hyo": 35078, + "hyp": 16964, + "hype": 30353, + "hype": 11111, + "hyped": 22507, + "hyper": 7997, + "hyper": 22146, + "hypertension": 40698, + "hypno": 23355, + "hypnosis": 48138, + "hypnoti": 40440, + "hypo": 10252, + "hypocr": 30711, + "hypocri": 25606, + "hypocrisy": 26296, + "hypocrite": 44125, + "hypothe": 46966, + "hypothesis": 44956, + "hyster": 24235, + "hysteria": 45965, + "hysterical": 48627, + "hyuk": 20452, + "hyun": 11831, + "hyun": 8589, + "hyundai": 17094, + "hyung": 46901, + "hyung": 16551, + "hz": 32533, + "i": 72, + "i": 328, + "ia": 12486, + "ia": 1073, + "iac": 32838, + "iac": 44063, + "iaf": 40789, + "iah": 35052, + "iain": 30103, + "ial": 11530, + "ial": 1974, + "ials": 20940, + "iam": 3579, + "iam": 11415, + "iambic": 43668, + "iambicpent": 43891, + "iamsrk": 15103, + "ian": 7723, + "ian": 1800, + "ians": 6451, + "iansomerhalder": 47077, + "iart": 18413, + "iartg": 18669, + "ias": 32303, + "ias": 14620, + "ib": 3962, + "ib": 13554, + "iba": 39763, + "ibadan": 44691, + "iban": 47145, + "ibc": 49014, + "ibd": 40732, + "iber": 23814, + "ibi": 12337, + "ibis": 47048, + "ibiza": 13853, + "ible": 37792, + "ibles": 44102, + "ibm": 23415, + "ibm": 13918, + "ibn": 25729, + "ibooks": 46887, + "ibra": 15476, + "ibrahi": 40350, + "ibrahim": 20816, + "ibrox": 46883, + "ibs": 41993, + "ibu": 43587, + "ibu": 46117, + "ic": 535, + "ic": 1029, + "ica": 2576, + "icago": 37492, + "ical": 6082, + "ical": 1110, + "ically": 3161, + "icals": 13999, + "ican": 17653, + "ican": 5246, + "icans": 20511, + "icar": 37211, + "ication": 21629, + "icc": 12945, + "ice": 2739, + "ice": 733, + "iceberg": 33662, + "icec": 13636, + "icecream": 21334, + "iced": 8049, + "icelan": 34114, + "iceland": 46716, + "iceland": 11935, + "icelandic": 34705, + "ices": 1931, + "ich": 5333, + "ich": 1232, + "icha": 31453, + "iche": 28972, + "iche": 21143, + "ichi": 21669, + "ichi": 14647, + "ichick": 45022, + "ichiro": 43787, + "ici": 948, + "ici": 22189, + "icia": 11774, + "icial": 17543, + "icial": 6397, + "ician": 40522, + "ician": 5374, + "icians": 6264, + "iciary": 21329, + "icic": 46006, + "icide": 6558, + "icides": 28253, + "icing": 7676, + "icio": 24207, + "icion": 45905, + "icious": 3325, + "icist": 21165, + "icists": 42171, + "icity": 7243, + "ick": 1168, + "ick": 1068, + "icked": 39799, + "icker": 40357, + "ickers": 30701, + "icki": 35468, + "icking": 6619, + "icks": 3727, + "icky": 11587, + "icn": 44516, + "ico": 13697, + "ico": 3040, + "icom": 17693, + "icom": 29796, + "icon": 13843, + "icon": 5646, + "iconic": 6959, + "icons": 15553, + "icop": 9389, + "icos": 32002, + "ics": 1324, + "ict": 6349, + "icted": 36515, + "iction": 40560, + "icton": 36548, + "icu": 45118, + "icu": 30443, + "icular": 40660, + "icus": 31459, + "icy": 28780, + "icy": 3495, + "icymi": 5315, + "icz": 46387, + "id": 1568, + "id": 1014, + "ida": 11032, + "ida": 11600, + "idad": 22462, + "idaho": 48817, + "idaho": 15165, + "idal": 39684, + "idan": 17929, + "idc": 22386, + "ide": 1909, + "ide": 14104, + "idea": 3612, + "ideal": 8789, + "ideally": 48247, + "ideals": 45096, + "ideas": 4452, + "ident": 7113, + "identi": 6009, + "identical": 25587, + "identification": 23337, + "identified": 15217, + "identifies": 35712, + "identify": 10949, + "identifying": 23589, + "identities": 34292, + "identity": 8892, + "ideology": 25840, + "iders": 8980, + "ides": 31791, + "idf": 28987, + "idge": 35567, + "idh": 44325, + "idi": 9611, + "idi": 14264, + "idio": 15994, + "idiot": 14087, + "idiots": 20856, + "idk": 8972, + "idle": 34754, + "idlib": 36199, + "ido": 6763, + "ido": 29641, + "idol": 24866, + "idol": 8884, + "idols": 21398, + "idr": 10106, + "idri": 46435, + "idris": 41312, + "ids": 6111, + "idu": 28655, + "idy": 33058, + "idyl": 44879, + "idyllic": 46632, + "ie": 6789, + "ie": 1718, + "iec": 44773, + "ied": 10059, + "ieee": 39860, + "iel": 27875, + "iel": 22729, + "ience": 1542, + "ient": 13115, + "ier": 33173, + "ier": 5912, + "iers": 45060, + "ies": 27912, + "ies": 963, + "iest": 10818, + "if": 8063, + "if": 878, + "ifa": 37574, + "ifc": 36524, + "ife": 41172, + "ife": 19590, + "iff": 35753, + "ification": 35755, + "ified": 41403, + "ift": 31143, + "iftar": 35153, + "ifu": 41523, + "ify": 32807, + "ig": 1089, + "ig": 3072, + "iga": 16493, + "igan": 27468, + "igans": 25419, + "igbo": 44591, + "ige": 10806, + "igen": 33070, + "iger": 30758, + "iger": 20685, + "igers": 40755, + "igers": 48928, + "iggy": 46219, + "iggy": 27604, + "igh": 2712, + "igh": 5451, + "ight": 14571, + "ight": 897, + "ighton": 35292, + "igi": 21901, + "igle": 29912, + "iglesias": 39432, + "ign": 7303, + "ign": 2326, + "ignati": 37573, + "ignatius": 48318, + "igne": 45843, + "ignite": 25210, + "ignition": 36115, + "igno": 15375, + "ignor": 7653, + "ignorance": 22735, + "ignorant": 26933, + "ignore": 12304, + "ignored": 20428, + "ignores": 40129, + "ignoring": 23969, + "igor": 33024, + "igs": 31344, + "igu": 21279, + "ih": 12162, + "ih": 34135, + "ihear": 13043, + "iheart": 30332, + "iheartawards": 18811, + "iheartradio": 25934, + "ihop": 45511, + "ihri": 39108, + "ihrithik": 39326, + "ii": 5103, + "ii": 2329, + "iii": 46236, + "iii": 6572, + "iiii": 20133, + "iiii": 45393, + "iiot": 30704, + "iit": 39330, + "iit": 33238, + "ij": 7337, + "ija": 42802, + "ik": 3903, + "ik": 10177, + "ika": 18188, + "ike": 12329, + "ike": 19696, + "ikea": 20528, + "iker": 38653, + "ikh": 44655, + "ikh": 12758, + "iklan": 32028, + "iklan": 29584, + "iko": 35659, + "iko": 39272, + "ikon": 38543, + "ikon": 19156, + "iku": 17780, + "il": 543, + "il": 958, + "ila": 4344, + "ilah": 32211, + "ilan": 13889, + "ilan": 28076, + "iland": 20957, + "ilation": 16180, + "ilay": 45093, + "ild": 22278, + "ild": 17164, + "ile": 18398, + "ile": 989, + "iled": 3358, + "iler": 22446, + "iler": 3615, + "ilers": 8975, + "iles": 42274, + "ili": 2076, + "ili": 19601, + "ilia": 14855, + "ilian": 10272, + "iliary": 32585, + "ilife": 42835, + "ilike": 44989, + "ilinan": 48497, + "iling": 3299, + "ilio": 47256, + "ilion": 12561, + "ilis": 43442, + "ilit": 11178, + "ilities": 5446, + "ility": 1787, + "ilive": 26478, + "ill": 828, + "ill": 660, + "illa": 8877, + "illa": 3043, + "illac": 17218, + "illage": 48922, + "illard": 21920, + "illary": 33667, + "illas": 23404, + "ille": 18213, + "ille": 5559, + "illed": 2527, + "illeg": 35808, + "illegal": 7983, + "illegally": 24466, + "illegals": 40490, + "iller": 23341, + "iller": 2956, + "illers": 30547, + "illery": 14514, + "illes": 20037, + "illi": 1086, + "illi": 25187, + "illia": 48776, + "illiams": 30301, + "illian": 48775, + "illian": 17355, + "illic": 37152, + "illicit": 40998, + "illie": 26083, + "illin": 35868, + "illing": 2803, + "illini": 28957, + "illino": 8920, + "illinois": 9414, + "illion": 35542, + "illion": 2035, + "illness": 11145, + "illnesses": 33861, + "illo": 34153, + "illo": 7588, + "illon": 20516, + "ills": 1900, + "illu": 3025, + "illumin": 11446, + "illuminate": 43261, + "illuminated": 28814, + "illuminati": 34551, + "illuminating": 46601, + "illumination": 43680, + "illus": 41386, + "illusion": 20318, + "illusions": 47429, + "illustr": 6268, + "illustrate": 37468, + "illustrated": 13151, + "illustrates": 38129, + "illustrating": 43322, + "illustration": 6052, + "illustrations": 17852, + "illustrator": 16649, + "illustri": 43116, + "illustrious": 44304, + "illy": 11707, + "illy": 9532, + "ilm": 36326, + "ilo": 4220, + "ilo": 14835, + "ilove": 7183, + "ilove": 32914, + "iloveart": 41114, + "ilovemy": 28863, + "iloveyou": 28829, + "ils": 1543, + "ilt": 25334, + "ilton": 28494, + "ilu": 27337, + "ilwx": 43777, + "ily": 4881, + "ily": 1026, + "ilya": 33377, + "ilysm": 29228, + "im": 732, + "im": 1496, + "ima": 2414, + "ima": 6432, + "imac": 40675, + "imacele": 47281, + "imag": 2316, + "image": 24101, + "image": 2867, + "imagery": 22828, + "images": 4952, + "imagin": 18178, + "imaginary": 30417, + "imagination": 13783, + "imaginative": 47233, + "imagine": 35752, + "imagine": 4826, + "imagined": 18478, + "imagines": 47379, + "imaging": 14231, + "imagining": 27384, + "imam": 37552, + "imam": 19024, + "iman": 45684, + "iman": 16247, + "imation": 44566, + "imax": 32066, + "imc": 45616, + "imdanielpadilla": 36357, + "imdb": 30407, + "ime": 44937, + "ime": 31151, + "imel": 31594, + "iment": 37157, + "imer": 21802, + "imes": 47744, + "imf": 28403, + "img": 24157, + "imi": 23559, + "imin": 23942, + "imit": 23462, + "imitation": 41630, + "imma": 19487, + "immac": 25085, + "immaculate": 29649, + "immature": 45531, + "immedi": 7366, + "immediate": 14440, + "immediately": 10108, + "immen": 17278, + "immense": 22722, + "immensely": 35013, + "immer": 13954, + "immerse": 46240, + "immersion": 31861, + "immersive": 27521, + "immigr": 5851, + "immigrant": 16474, + "immigrants": 14460, + "immigration": 9588, + "imminent": 27299, + "immort": 39244, + "immortal": 24717, + "immun": 8961, + "immune": 15606, + "immuni": 44571, + "immunity": 26254, + "immuno": 24361, + "immunology": 44483, + "immunotherapy": 39185, + "imo": 26349, + "imo": 13738, + "imp": 3335, + "imp": 31037, + "impac": 7573, + "impact": 33036, + "impact": 3844, + "impacted": 21424, + "impactful": 41631, + "impacting": 29359, + "impacts": 15069, + "impair": 36451, + "impaired": 28028, + "impairment": 44501, + "impala": 36641, + "impe": 23612, + "impeach": 16874, + "impeach": 43497, + "impeachment": 32979, + "impeachtrump": 38006, + "impecc": 34511, + "impeccable": 40111, + "impending": 34486, + "imper": 7727, + "imperative": 39833, + "imperfect": 46034, + "imperi": 30911, + "imperial": 32425, + "imperial": 12361, + "imperialism": 48855, + "imperson": 25551, + "implant": 33106, + "implants": 32202, + "imple": 7423, + "implement": 17966, + "implementation": 15102, + "implemented": 24315, + "implementing": 22862, + "implic": 15269, + "implications": 19229, + "implo": 40337, + "impo": 45704, + "import": 2336, + "import": 16294, + "importance": 6821, + "important": 2829, + "importantly": 21580, + "imported": 28798, + "imports": 25286, + "impose": 35879, + "imposed": 25871, + "imposing": 42289, + "impossible": 9815, + "impre": 3763, + "impress": 20015, + "impressed": 9689, + "impression": 14468, + "impressionism": 36114, + "impressionist": 44904, + "impressions": 22276, + "impressive": 6634, + "imprint": 43863, + "imprison": 22141, + "imprisoned": 32999, + "imprisonment": 39024, + "impro": 2531, + "impromp": 28100, + "impromptu": 28611, + "improv": 22868, + "improve": 4971, + "improved": 9446, + "improvement": 10790, + "improvements": 16320, + "improves": 18035, + "improving": 10381, + "improvis": 32343, + "improvised": 40886, + "impulse": 29683, + "impy": 42690, + "imran": 19647, + "imran": 19212, + "imrankhan": 25956, + "imrankhanpti": 26688, + "ims": 17800, + "imsa": 37262, + "imv": 35731, + "imvkohli": 37136, + "imwith": 26822, + "imwithher": 32651, + "in": 512, + "in": 530, + "ina": 18026, + "ina": 1366, + "inability": 47517, + "inaccurate": 49192, + "inaction": 41916, + "inactive": 49274, + "inadequate": 43403, + "inak": 46549, + "inal": 19178, + "inals": 26438, + "inan": 26204, + "inappropriate": 26722, + "inari": 48620, + "inary": 11337, + "inas": 36731, + "inas": 12362, + "inated": 38530, + "ination": 4706, + "inau": 10832, + "inaugu": 11309, + "inaugur": 11448, + "inaugural": 11340, + "inaugurated": 29011, + "inauguration": 16805, + "inbound": 24420, + "inbox": 18683, + "inc": 14570, + "inc": 4438, + "incan": 45964, + "incar": 18070, + "incarcer": 26334, + "incarcerated": 49178, + "incarceration": 39887, + "incase": 30463, + "ince": 44303, + "incen": 13259, + "incense": 35059, + "incentive": 29024, + "incentives": 29813, + "inception": 36653, + "inch": 6523, + "incheon": 30645, + "inches": 10809, + "inci": 5747, + "incidence": 43371, + "incident": 10103, + "incidents": 22120, + "incindia": 26161, + "inciner": 46434, + "incl": 27857, + "incl": 13338, + "inclined": 45470, + "inclu": 1738, + "include": 5942, + "included": 7414, + "includes": 6197, + "including": 2814, + "inclusion": 12079, + "inclusive": 13393, + "income": 8044, + "incoming": 15416, + "incomparable": 36027, + "incompetent": 45069, + "incomplete": 34040, + "incon": 42372, + "inconvenience": 40563, + "incorpor": 19335, + "incorporate": 34168, + "incorporated": 29494, + "incorporating": 40303, + "incorrect": 31872, + "incre": 1870, + "increase": 5230, + "increased": 9156, + "increases": 13797, + "increasing": 10270, + "increasingly": 16106, + "incredi": 2883, + "incredible": 22128, + "incredible": 3457, + "incredibleindia": 24680, + "incredibles": 48641, + "incredibly": 9513, + "incu": 38830, + "incub": 24587, + "incubator": 35736, + "incumb": 32246, + "incumbent": 38038, + "incur": 42356, + "ind": 5386, + "ind": 4655, + "inda": 15710, + "inde": 2645, + "indeed": 10031, + "indefin": 29501, + "indefinitely": 43750, + "independ": 4147, + "independence": 23117, + "independence": 7955, + "independenceday": 25971, + "independent": 33844, + "independent": 7088, + "independently": 39831, + "inder": 29225, + "index": 35209, + "index": 9458, + "indhoven": 44229, + "indi": 1098, + "indi": 46536, + "india": 27067, + "india": 1762, + "indian": 7685, + "indian": 3606, + "indiana": 8615, + "indianapolis": 17196, + "indianfootball": 45979, + "indians": 10271, + "indic": 7136, + "indicate": 26679, + "indicated": 39416, + "indicates": 29412, + "indication": 38539, + "indicator": 24776, + "indicators": 30054, + "indicted": 34992, + "indictment": 42278, + "indie": 5260, + "indie": 9383, + "indiedev": 10863, + "indiefilm": 22588, + "indiegame": 17969, + "indiegamedev": 40466, + "indiegames": 35864, + "indiegogo": 38057, + "indies": 23618, + "indiffe": 41372, + "indigen": 8348, + "indigenous": 9303, + "indigo": 21002, + "indira": 43887, + "indirec": 26398, + "indirect": 35416, + "indivi": 5649, + "individu": 9574, + "individual": 8512, + "individually": 33782, + "individuals": 11990, + "indo": 26303, + "indo": 18297, + "indom": 42926, + "indone": 6180, + "indonesia": 7229, + "indonesian": 19593, + "indoor": 44478, + "indoor": 9546, + "indoors": 22973, + "indore": 46143, + "indu": 2298, + "induc": 7973, + "induced": 24103, + "inducted": 20596, + "inductee": 39558, + "inductees": 44796, + "induction": 18338, + "indul": 19402, + "indulg": 28388, + "indulge": 24851, + "indulgence": 40856, + "indulgent": 49147, + "industri": 5082, + "industrial": 30853, + "industrial": 7520, + "industries": 11700, + "industry": 47407, + "industry": 3318, + "indv": 16942, + "indy": 9821, + "indy": 10098, + "indycar": 20484, + "indyref": 22569, + "ine": 855, + "ine": 715, + "ineau": 38122, + "inec": 45214, + "ined": 2038, + "inee": 43252, + "inee": 7986, + "inees": 13056, + "ineffe": 47202, + "inely": 18234, + "inem": 48876, + "inema": 29232, + "inen": 44365, + "inequalities": 45507, + "inequality": 17372, + "iner": 17438, + "iner": 5155, + "iners": 41863, + "ines": 2137, + "inese": 35966, + "iness": 1463, + "inet": 8121, + "inette": 38911, + "inev": 19527, + "inevit": 45871, + "inevitable": 25004, + "inews": 24300, + "inexpensive": 38614, + "iney": 30254, + "inez": 12700, + "inf": 1529, + "inf": 35241, + "infamous": 18688, + "infan": 17219, + "infant": 19192, + "infantry": 21655, + "infants": 34726, + "infe": 7164, + "infec": 26088, + "infected": 26136, + "infection": 14774, + "infections": 22227, + "infectious": 29157, + "infeld": 25035, + "infer": 16258, + "inferno": 31290, + "infertility": 40701, + "infield": 48933, + "infiltr": 28683, + "infin": 6246, + "infinite": 12748, + "infiniti": 34644, + "infinity": 34863, + "infinity": 12895, + "infl": 7627, + "inflam": 16080, + "inflammation": 24893, + "inflammatory": 26831, + "inflatable": 30135, + "inflation": 17497, + "inflicted": 48188, + "influ": 4835, + "influen": 13229, + "influence": 9199, + "influenced": 21183, + "influencer": 25013, + "influencers": 29891, + "influences": 24926, + "influencing": 45126, + "influential": 17553, + "influenza": 39897, + "info": 5680, + "info": 2222, + "infographic": 10076, + "infographics": 33172, + "infor": 31773, + "inform": 10241, + "inform": 19449, + "informal": 25705, + "informat": 29625, + "informatics": 35685, + "information": 3204, + "informative": 19364, + "informed": 13876, + "informing": 45388, + "informs": 48440, + "infosec": 17863, + "infr": 29718, + "infra": 7312, + "infra": 45877, + "infrared": 22867, + "infrastructure": 9034, + "infringe": 44882, + "infringement": 48712, + "infront": 37668, + "infu": 15048, + "infuri": 48461, + "infused": 21461, + "infusion": 43464, + "ing": 653, + "ing": 519, + "inga": 15233, + "ingco": 40444, + "ingday": 16561, + "ingdon": 38731, + "inge": 11790, + "inge": 7071, + "inged": 30046, + "ingen": 19088, + "ingeni": 36884, + "inger": 33883, + "inger": 3541, + "ingfor": 33430, + "ingh": 9170, + "ingh": 30495, + "ingham": 24497, + "ingham": 4291, + "inghamshire": 39289, + "inghour": 42728, + "inging": 4066, + "ingl": 45662, + "ingle": 22228, + "ingle": 17005, + "ingles": 24490, + "ingley": 44428, + "inglis": 46327, + "ingly": 4796, + "ingnow": 34766, + "ingo": 30175, + "ingo": 9012, + "ingra": 45165, + "ingrad": 44124, + "ingram": 26998, + "ingredi": 9272, + "ingredient": 19799, + "ingredients": 11788, + "ingrid": 33496, + "ings": 895, + "ingthe": 20170, + "ingtips": 39373, + "ington": 11846, + "ington": 2156, + "ingu": 8714, + "ingual": 22795, + "ingue": 36838, + "ingui": 12788, + "inguish": 36146, + "inha": 32612, + "inhabit": 36189, + "inhabitants": 44968, + "inhal": 30786, + "inhe": 32617, + "inher": 24611, + "inherent": 47327, + "inherit": 34322, + "inheritance": 39341, + "inherited": 39111, + "inhi": 25557, + "inhibit": 32196, + "inho": 12984, + "ini": 6154, + "ini": 3581, + "inian": 36638, + "inim": 38717, + "inindia": 34021, + "ining": 1389, + "inist": 30976, + "init": 42670, + "initi": 4580, + "initial": 13980, + "initially": 28123, + "initials": 48794, + "initiated": 27756, + "initiation": 41009, + "initiative": 8152, + "initiatives": 16549, + "inity": 22126, + "inj": 5112, + "injec": 13688, + "injection": 21438, + "inju": 5006, + "injured": 7505, + "injuries": 9481, + "injury": 6223, + "injustice": 20541, + "ink": 4547, + "ink": 967, + "inka": 40685, + "inked": 29356, + "inki": 46176, + "inkigayo": 47882, + "inking": 37586, + "inks": 20966, + "inktober": 9387, + "inland": 21943, + "inlet": 35161, + "inline": 45004, + "inlove": 28415, + "inmate": 32341, + "inmates": 28216, + "inmy": 42657, + "inn": 27260, + "inn": 5569, + "inna": 35088, + "inner": 24512, + "inner": 6955, + "inning": 4415, + "innings": 11580, + "innis": 44059, + "inno": 7961, + "innocence": 26383, + "innocent": 11241, + "innov": 2890, + "innovate": 24549, + "innovation": 33063, + "innovation": 4272, + "innovations": 18817, + "innovative": 8494, + "innovator": 34735, + "innovators": 27834, + "ino": 4211, + "ino": 2691, + "inoa": 25649, + "inos": 21828, + "inous": 47801, + "inox": 22698, + "input": 16952, + "inputs": 48763, + "inqu": 10628, + "inqui": 18527, + "inquirer": 45172, + "inquiries": 29469, + "inquiry": 15865, + "inquis": 31171, + "inr": 36325, + "ins": 12786, + "ins": 1041, + "insan": 7875, + "insane": 10260, + "insanely": 27846, + "insanity": 26645, + "inscribed": 49168, + "inscription": 41127, + "insec": 15744, + "insect": 21297, + "insects": 18714, + "insecure": 35112, + "insecurity": 36964, + "inser": 13830, + "insert": 18807, + "insi": 3453, + "inside": 19141, + "inside": 2912, + "insider": 13300, + "insiders": 32171, + "insig": 40503, + "insight": 8795, + "insightful": 20354, + "insights": 8729, + "insignia": 48864, + "insist": 35504, + "insisted": 40423, + "insists": 27255, + "inski": 32630, + "insky": 24607, + "insol": 42366, + "insom": 21755, + "insomni": 42040, + "insomnia": 30598, + "inson": 21007, + "insp": 1597, + "inspec": 7915, + "inspect": 40815, + "inspecting": 40565, + "inspection": 15142, + "inspections": 39513, + "inspector": 20514, + "inspir": 2573, + "inspiration": 4195, + "inspirational": 41936, + "inspirational": 9855, + "inspirations": 35093, + "inspire": 27901, + "inspire": 8583, + "inspired": 39849, + "inspired": 3516, + "inspires": 17245, + "inspiring": 41847, + "inspiring": 5705, + "inspo": 26897, + "inst": 1264, + "inst": 1581, + "insta": 22411, + "insta": 11694, + "instability": 41377, + "instac": 46678, + "instaf": 33800, + "instag": 14612, + "instagood": 23718, + "instagram": 27910, + "instagram": 2659, + "instal": 38805, + "install": 6940, + "install": 11168, + "installation": 9358, + "installations": 27909, + "installed": 8807, + "installing": 18301, + "installment": 25315, + "installs": 45568, + "instalment": 47766, + "instance": 34572, + "instant": 38810, + "instant": 10635, + "instantly": 17703, + "instap": 23758, + "instapic": 34378, + "instaweather": 43078, + "instaweatherpro": 43150, + "inste": 3571, + "instead": 4191, + "instein": 13421, + "instem": 27030, + "instin": 23382, + "instinct": 30544, + "institu": 4257, + "institute": 5861, + "institutes": 43674, + "institution": 18823, + "institutional": 27442, + "institutions": 15207, + "instore": 41679, + "instru": 4544, + "instruc": 19648, + "instruction": 19407, + "instructional": 31022, + "instructions": 17040, + "instructor": 16087, + "instructors": 31998, + "instrument": 42196, + "instrument": 15806, + "instrumental": 23041, + "instruments": 14793, + "instyle": 41321, + "insu": 8805, + "insul": 9615, + "insulated": 42051, + "insulation": 28194, + "insulin": 29311, + "insult": 26673, + "insulting": 39646, + "insults": 40451, + "insur": 5024, + "insurance": 5870, + "insured": 31321, + "insurers": 43142, + "insurtech": 28716, + "int": 1828, + "int": 1207, + "inta": 38314, + "intact": 26870, + "intake": 19539, + "intan": 47695, + "inte": 1598, + "inte": 41900, + "intech": 26504, + "inted": 6147, + "integr": 5151, + "integral": 27018, + "integrate": 25735, + "integrated": 12797, + "integrating": 31555, + "integration": 12583, + "integrity": 14791, + "intel": 11778, + "intel": 11426, + "intellec": 13281, + "intellect": 47828, + "intellectu": 31966, + "intellectual": 18069, + "intelli": 5324, + "intellig": 5632, + "intelligence": 6846, + "intelligent": 14063, + "inten": 2967, + "intend": 36674, + "intended": 16812, + "intense": 10258, + "intensi": 22928, + "intensity": 19956, + "intensive": 21049, + "intent": 18881, + "intention": 26786, + "intentional": 29536, + "intentionally": 31215, + "intentions": 26710, + "inter": 1006, + "inter": 10093, + "interact": 21736, + "interacting": 35045, + "interaction": 17650, + "interactions": 22162, + "interactive": 9456, + "intercep": 23676, + "interception": 48762, + "interceptions": 45313, + "interchange": 34222, + "intercontinental": 31983, + "interdisciplinary": 38132, + "intere": 2008, + "interest": 5095, + "interested": 4620, + "interesting": 3628, + "interests": 16425, + "interface": 18753, + "interfaith": 38399, + "interference": 29099, + "interim": 19509, + "interior": 10700, + "interior": 7305, + "interiordesign": 12902, + "interiors": 14836, + "intermedi": 20246, + "intermediate": 24304, + "intermission": 44805, + "intermitt": 44946, + "intern": 9976, + "intern": 14068, + "internal": 11285, + "internally": 41134, + "internation": 42534, + "international": 8566, + "international": 2436, + "internationaldayof": 41518, + "internationally": 24059, + "internationalwomensday": 17682, + "interne": 32713, + "internet": 30180, + "internet": 4757, + "internetof": 44449, + "internetofthings": 45925, + "interns": 19902, + "internship": 16661, + "internships": 39410, + "interoper": 45754, + "interpre": 11162, + "interpret": 49154, + "interpret": 40459, + "interpretation": 20652, + "interpreted": 42157, + "interpreting": 46525, + "interro": 29548, + "interrup": 21609, + "interrupt": 48449, + "interrupted": 30288, + "intersec": 45246, + "intersection": 19210, + "interstate": 21963, + "interstellar": 41506, + "interval": 36032, + "intervals": 44884, + "interven": 18245, + "intervention": 16804, + "interventions": 28848, + "interview": 2885, + "interviewed": 11688, + "interviewing": 16399, + "interviews": 9910, + "intestin": 37938, + "intestinal": 38896, + "inthe": 7486, + "inti": 14459, + "intim": 38832, + "intimacy": 46430, + "intimate": 16382, + "intimid": 24041, + "intimidating": 44405, + "intimidation": 49258, + "inting": 15571, + "intl": 38186, + "intl": 14224, + "intment": 9020, + "intments": 21420, + "into": 35235, + "into": 1095, + "intoler": 28534, + "intolerance": 37808, + "intothe": 38511, + "intra": 20922, + "intrac": 46195, + "intram": 40956, + "intre": 29397, + "intrepid": 39127, + "intri": 15421, + "intric": 23763, + "intricate": 29616, + "intrigu": 18856, + "intrigue": 45140, + "intrigued": 40034, + "intriguing": 24334, + "intrin": 45181, + "intro": 2999, + "intro": 13224, + "introduc": 3621, + "introduce": 9813, + "introduced": 10446, + "introduces": 12933, + "introducing": 6256, + "introduction": 11812, + "introductory": 38121, + "intru": 22949, + "ints": 2514, + "intu": 17225, + "intuition": 40897, + "intuitive": 35224, + "inu": 21131, + "inuit": 41250, + "inus": 45857, + "inv": 2279, + "inv": 43786, + "inva": 10084, + "invade": 34609, + "invaded": 32596, + "invaders": 35188, + "invading": 40101, + "invali": 31592, + "invalid": 46998, + "invaluable": 33976, + "invasi": 38100, + "invasion": 13378, + "invasive": 19554, + "inve": 2024, + "inven": 26233, + "invent": 11665, + "invent": 23558, + "invented": 14100, + "invention": 23607, + "inventions": 44914, + "inventor": 22836, + "inventory": 19444, + "inver": 12061, + "inverness": 33080, + "inverte": 46397, + "inverted": 40709, + "invest": 4180, + "invest": 9716, + "invested": 22536, + "investig": 4626, + "investigate": 15703, + "investigated": 29180, + "investigates": 29621, + "investigating": 13713, + "investigation": 8194, + "investigations": 24020, + "investigative": 30233, + "investigator": 30528, + "investigators": 24121, + "investin": 40195, + "investing": 10554, + "investment": 5605, + "investments": 14675, + "investor": 15490, + "investors": 10486, + "invests": 38378, + "invic": 25253, + "invigor": 48722, + "invin": 30252, + "invincible": 38052, + "invisible": 16093, + "invit": 12454, + "invitation": 15032, + "invitational": 14511, + "invitations": 40120, + "invite": 8109, + "invited": 7731, + "invites": 16034, + "inviting": 14349, + "invo": 29417, + "invol": 4000, + "involve": 26325, + "involved": 5320, + "involvement": 19502, + "involves": 22652, + "involving": 14786, + "inwx": 35674, + "iny": 23257, + "inyour": 47954, + "io": 3167, + "io": 3752, + "ioc": 43018, + "iom": 33000, + "iom": 31135, + "ion": 14871, + "ion": 3668, + "ions": 26289, + "ior": 7354, + "ior": 2498, + "iority": 46016, + "iors": 6427, + "ios": 6614, + "iot": 32694, + "iot": 6627, + "iota": 37294, + "ious": 6994, + "iously": 38233, + "iow": 7439, + "iowa": 38847, + "iowa": 8290, + "ip": 1719, + "ip": 8600, + "ipa": 11199, + "ipad": 39067, + "ipad": 7491, + "ipads": 35281, + "ipc": 41981, + "iphone": 26030, + "iphone": 4314, + "iphones": 37561, + "ipl": 13440, + "ipment": 37824, + "ipo": 40218, + "ipo": 24090, + "ipod": 17889, + "ipp": 31706, + "ips": 26910, + "ipsw": 22221, + "ipswich": 24494, + "iq": 15554, + "iq": 19996, + "iqbal": 33553, + "ir": 582, + "ir": 742, + "ira": 4923, + "ira": 5371, + "irah": 35724, + "iran": 19273, + "iran": 5075, + "irandeal": 46533, + "irani": 37984, + "iranian": 14158, + "iraq": 8543, + "iraqi": 18617, + "irc": 41527, + "ird": 2770, + "ire": 3013, + "ire": 1454, + "ired": 32728, + "ired": 2995, + "ireland": 32806, + "ireland": 4157, + "irene": 21600, + "ires": 12435, + "irez": 21581, + "irgc": 47942, + "iri": 2155, + "iri": 13880, + "irical": 33366, + "irie": 42979, + "irina": 46664, + "iring": 10169, + "iris": 16437, + "irish": 9386, + "irish": 4889, + "irl": 34494, + "irl": 8570, + "irling": 26493, + "irls": 24344, + "irma": 22406, + "irn": 42603, + "iro": 23209, + "iro": 7280, + "iron": 7699, + "iron": 5391, + "ironic": 24518, + "ironically": 36779, + "ironing": 46655, + "ironman": 20330, + "irons": 30032, + "irony": 20681, + "irport": 27769, + "irr": 24641, + "irrational": 47413, + "irregular": 38692, + "irrelevant": 34677, + "irresi": 31200, + "irresistible": 35252, + "irresponsible": 44714, + "irri": 21484, + "irrigation": 23761, + "irrit": 24218, + "irs": 6086, + "irst": 32701, + "iru": 48206, + "irvin": 47053, + "irvine": 24201, + "irving": 19738, + "irwin": 23750, + "iry": 7239, + "is": 595, + "is": 533, + "isa": 11034, + "isa": 6536, + "isaac": 37544, + "isaac": 13659, + "isab": 13357, + "isabel": 27466, + "isabella": 26192, + "isabelle": 31072, + "isable": 46631, + "isai": 15365, + "isaiah": 17952, + "isak": 40619, + "isance": 46893, + "isation": 7194, + "isback": 43811, + "isc": 39316, + "isch": 47888, + "isco": 5736, + "iscoming": 26458, + "isd": 46816, + "isd": 12002, + "ise": 7669, + "ise": 1479, + "ised": 2861, + "iselle": 48491, + "iser": 23080, + "iser": 5626, + "isers": 34879, + "ises": 5153, + "isf": 44036, + "isgreat": 34595, + "ish": 6844, + "ish": 1061, + "isha": 28050, + "ishable": 37949, + "ished": 35341, + "ishere": 46053, + "ishi": 26224, + "ishq": 27996, + "ishqba": 32503, + "ishqbaaaz": 36591, + "isi": 7233, + "isi": 17880, + "isil": 34636, + "isin": 37676, + "ising": 3426, + "isis": 7531, + "isk": 30171, + "isl": 31368, + "isla": 22807, + "islam": 6003, + "islam": 8770, + "islamabad": 19959, + "islamic": 31627, + "islamic": 9552, + "islamist": 38798, + "islamophobia": 43459, + "island": 13408, + "island": 2619, + "islander": 45651, + "islanders": 27804, + "islands": 7145, + "islay": 49279, + "isle": 19082, + "isle": 11849, + "isleof": 24718, + "isles": 21816, + "islife": 26433, + "islington": 34945, + "ism": 47730, + "ism": 1935, + "isma": 43937, + "ismail": 36140, + "isme": 43570, + "ismo": 41926, + "isms": 18700, + "isn": 2923, + "isner": 48246, + "isnow": 43694, + "isnt": 19416, + "iso": 2462, + "iso": 12263, + "isol": 11414, + "isolated": 19044, + "isolation": 26400, + "ison": 12949, + "ison": 4553, + "isons": 33318, + "isoo": 35857, + "isp": 31397, + "isp": 39041, + "isra": 3591, + "israel": 20837, + "israel": 4779, + "israeli": 8994, + "israelis": 45713, + "isreal": 47147, + "isro": 44841, + "iss": 11738, + "iss": 4950, + "issa": 38579, + "issa": 7560, + "issan": 49358, + "issance": 40828, + "issant": 38828, + "isse": 18986, + "ission": 37946, + "issu": 2049, + "issue": 3202, + "issued": 9246, + "issues": 4082, + "issuing": 37226, + "ist": 9751, + "ist": 2304, + "istanbul": 12258, + "istandwith": 33820, + "iste": 32563, + "ister": 14555, + "isthe": 46748, + "istic": 29556, + "ists": 8426, + "isu": 17030, + "isu": 23328, + "it": 529, + "it": 585, + "ita": 36920, + "ita": 2864, + "itable": 8915, + "ital": 2306, + "ital": 1660, + "itali": 11644, + "italia": 11025, + "italian": 20264, + "italian": 5175, + "italians": 44744, + "italk": 32894, + "italy": 4052, + "itan": 18383, + "itans": 40711, + "itar": 47161, + "itarian": 11599, + "itary": 17604, + "itas": 31634, + "itas": 13436, + "itate": 42457, + "itated": 36744, + "itation": 5070, + "itative": 22892, + "itc": 36449, + "itch": 2387, + "itch": 8147, + "itchen": 32664, + "itchy": 41980, + "ite": 2732, + "ite": 802, + "iteam": 37828, + "itec": 3099, + "itec": 43936, + "itech": 44215, + "itech": 23040, + "ited": 8603, + "ited": 1108, + "itel": 44638, + "itely": 4605, + "item": 8532, + "items": 6207, + "iter": 7938, + "iter": 19773, + "iteracy": 39634, + "iterate": 43106, + "iteration": 38790, + "ites": 2454, + "itez": 42131, + "itf": 35436, + "itfc": 36519, + "ith": 6133, + "ith": 1757, + "ithaca": 46257, + "iti": 760, + "iti": 6165, + "itia": 22634, + "itian": 23365, + "itic": 11950, + "itical": 48767, + "itics": 33967, + "ities": 41423, + "ities": 1480, + "itim": 15676, + "itiner": 32803, + "itinerary": 41564, + "iting": 1257, + "ition": 25263, + "ition": 1104, + "itions": 5540, + "itious": 13329, + "itis": 33539, + "itis": 8388, + "itive": 3067, + "itly": 42240, + "ito": 22167, + "ito": 4661, + "iton": 21119, + "itor": 47267, + "itor": 4584, + "itors": 22005, + "itos": 24560, + "its": 7140, + "its": 902, + "itsa": 45032, + "itself": 7290, + "itsme": 41125, + "itss": 47040, + "itt": 1031, + "itt": 11228, + "itta": 21233, + "itte": 31962, + "itted": 24429, + "itten": 30014, + "itten": 4343, + "itter": 11456, + "itters": 13082, + "itti": 28629, + "ittin": 25646, + "itting": 3147, + "ittle": 24208, + "ittle": 21366, + "ittles": 38989, + "itton": 25707, + "itty": 35096, + "itu": 1668, + "itu": 32128, + "itude": 43382, + "itude": 5012, + "itudes": 20459, + "itunes": 7007, + "itup": 35838, + "iture": 25547, + "itus": 24364, + "itutes": 32883, + "itv": 20159, + "itv": 12805, + "ity": 2480, + "ity": 696, + "itya": 32055, + "itz": 14544, + "itz": 7807, + "iu": 14292, + "iu": 15575, + "ium": 10762, + "ius": 6740, + "iv": 6775, + "iv": 9315, + "iva": 42463, + "ivan": 15544, + "ivan": 15689, + "ivanka": 37914, + "ive": 26885, + "ive": 8653, + "ived": 15654, + "iver": 36849, + "iver": 44254, + "ives": 27333, + "ivf": 39159, + "iving": 45136, + "ivory": 16776, + "ivote": 45835, + "ivy": 36939, + "ivy": 16045, + "iw": 13058, + "iw": 46604, + "iwant": 42747, + "iwd": 16815, + "iwm": 44237, + "ix": 13272, + "ix": 8756, + "iy": 13704, + "iya": 18595, + "iyaki": 48395, + "iz": 2845, + "iz": 8407, + "iza": 37704, + "ization": 10847, + "ize": 10885, + "ized": 7690, + "izen": 34776, + "izer": 23895, + "izes": 45434, + "izing": 17354, + "izo": 46910, + "izz": 31779, + "izz": 46128, + "izzy": 28861, + "j": 73, + "j": 329, + "ja": 1586, + "ja": 2641, + "jaan": 25052, + "jab": 8059, + "jab": 9439, + "jac": 2293, + "jac": 30198, + "jace": 43286, + "jack": 2679, + "jack": 3267, + "jacked": 27923, + "jacket": 6164, + "jackets": 14745, + "jacki": 47418, + "jackie": 28023, + "jackie": 11716, + "jacking": 40929, + "jackman": 35723, + "jackpot": 23926, + "jacks": 19649, + "jackson": 12321, + "jackson": 4363, + "jacksonville": 19263, + "jaco": 6840, + "jacob": 14385, + "jacob": 9222, + "jacobs": 17482, + "jacobson": 46826, + "jacqu": 14495, + "jacqueline": 22843, + "jacques": 17799, + "jad": 12976, + "jad": 38691, + "jada": 37416, + "jade": 25123, + "jade": 14513, + "jaden": 37174, + "jadine": 37445, + "jae": 16869, + "jae": 15765, + "jaejoong": 43610, + "jaf": 19362, + "jag": 7984, + "jag": 36236, + "jagan": 48530, + "jagger": 30835, + "jags": 31086, + "jagu": 10096, + "jaguar": 44777, + "jaguar": 14757, + "jaguars": 21854, + "jah": 20067, + "jah": 11084, + "jahan": 44404, + "jahan": 47827, + "jai": 10542, + "jai": 13819, + "jail": 18574, + "jail": 9332, + "jailbreak": 45990, + "jailed": 19456, + "jails": 47833, + "jaime": 24716, + "jain": 21999, + "jaipur": 23593, + "jais": 48607, + "jait": 28910, + "jaitley": 32776, + "jak": 9225, + "jak": 30589, + "jakarta": 15471, + "jake": 13140, + "jake": 7419, + "jakob": 47358, + "jal": 8380, + "jal": 26773, + "jalan": 27270, + "jalap": 49081, + "jalape": 34263, + "jalapeño": 43017, + "jalen": 33548, + "jam": 1434, + "jam": 5201, + "jama": 8977, + "jama": 35366, + "jamaica": 13019, + "jamaican": 25144, + "jamal": 26108, + "jambo": 35599, + "jamboree": 38506, + "jame": 12341, + "james": 6963, + "james": 2392, + "jamesbond": 44704, + "jamesc": 47004, + "jameson": 31731, + "jami": 15092, + "jamie": 16454, + "jamie": 8078, + "jamiedor": 34310, + "jamiedornan": 34896, + "jammed": 35590, + "jammin": 35223, + "jamming": 25862, + "jammu": 25926, + "jams": 20243, + "jan": 1891, + "jan": 3334, + "jana": 18182, + "jane": 12389, + "jane": 6736, + "janeiro": 31740, + "janet": 29665, + "janet": 15872, + "jang": 41526, + "jang": 22074, + "jani": 22606, + "janice": 36048, + "janine": 46896, + "janis": 44233, + "jann": 35377, + "jans": 22578, + "jansen": 45354, + "janu": 3623, + "january": 3697, + "jap": 2299, + "jap": 49062, + "japan": 4502, + "japan": 3400, + "japanese": 27211, + "japanese": 4925, + "japs": 42121, + "jar": 5120, + "jar": 10837, + "jard": 25778, + "jardin": 37371, + "jare": 17654, + "jared": 35597, + "jared": 12571, + "jaredle": 36739, + "jaredleto": 37106, + "jaro": 35505, + "jarpad": 44497, + "jarre": 23385, + "jarrett": 30531, + "jars": 27583, + "jarvis": 29286, + "jas": 4492, + "jas": 17559, + "jasmin": 42989, + "jasmin": 47700, + "jasmine": 17056, + "jason": 10009, + "jason": 5395, + "jasper": 19827, + "jat": 26106, + "jau": 26932, + "jauregui": 48175, + "jav": 6234, + "java": 12918, + "javascri": 16289, + "javascript": 16423, + "jave": 46218, + "javed": 42268, + "javelin": 41701, + "javi": 47627, + "javier": 23307, + "jaw": 14804, + "jaw": 17307, + "jawa": 44790, + "jaws": 25491, + "jax": 22348, + "jax": 12390, + "jay": 3427, + "jay": 4155, + "jaya": 21960, + "jayanti": 37732, + "jaye": 45703, + "jayne": 35228, + "jays": 12393, + "jaz": 3465, + "jaz": 32874, + "jazeera": 38260, + "jazz": 11488, + "jazz": 4528, + "jazzfest": 36683, + "jazzy": 28191, + "jb": 21915, + "jb": 13637, + "jc": 14991, + "jc": 11517, + "jd": 18289, + "jd": 14125, + "jdm": 42013, + "je": 1013, + "je": 8776, + "jeal": 9964, + "jealous": 11093, + "jealousy": 37654, + "jean": 13943, + "jean": 6473, + "jeanette": 48167, + "jeanne": 29201, + "jeans": 10157, + "jeb": 35101, + "jec": 1347, + "ject": 6070, + "jed": 12166, + "jed": 38748, + "jeddah": 40982, + "jedi": 16681, + "jee": 29250, + "jee": 14870, + "jeep": 16593, + "jeep": 11286, + "jeeplife": 43100, + "jeet": 45542, + "jeet": 30944, + "jef": 10276, + "jeff": 6245, + "jeff": 5550, + "jefferson": 44711, + "jefferson": 13976, + "jeffery": 41470, + "jeffree": 45994, + "jeffrey": 32886, + "jeffrey": 16027, + "jeho": 42437, + "jeky": 43893, + "jekyll": 49405, + "jel": 9794, + "jelena": 48218, + "jelly": 19110, + "jelly": 13762, + "jellyfish": 30988, + "jem": 46326, + "jem": 37530, + "jen": 2554, + "jen": 12997, + "jenkins": 16162, + "jenn": 33921, + "jenn": 29869, + "jenna": 17125, + "jenner": 14260, + "jenni": 6774, + "jennie": 28875, + "jennifer": 19786, + "jennifer": 8613, + "jennings": 21564, + "jenny": 20165, + "jenny": 13414, + "jens": 40806, + "jensen": 35558, + "jensen": 19004, + "jensenackles": 41011, + "jeon": 45200, + "jeon": 43337, + "jeong": 47146, + "jeong": 39264, + "jeopar": 22988, + "jeopardy": 29613, + "jer": 2310, + "jer": 35307, + "jere": 5614, + "jeremi": 22362, + "jeremiah": 27301, + "jeremy": 14656, + "jeremy": 8127, + "jeremycorbyn": 37484, + "jeric": 25084, + "jericho": 28892, + "jerk": 23917, + "jerky": 40079, + "jermaine": 40722, + "jerome": 19876, + "jerry": 18163, + "jerry": 9164, + "jersey": 21921, + "jersey": 4471, + "jerseys": 15518, + "jerus": 12257, + "jerusalem": 12557, + "jes": 7686, + "jes": 35826, + "jess": 5313, + "jess": 13758, + "jesse": 23112, + "jesse": 11770, + "jessi": 24373, + "jessic": 14881, + "jessica": 45421, + "jessica": 8178, + "jessie": 19424, + "jester": 44225, + "jesu": 19777, + "jesuit": 33234, + "jesus": 4070, + "jet": 11515, + "jet": 6565, + "jetblue": 45021, + "jeter": 38450, + "jets": 38584, + "jets": 10025, + "jett": 44541, + "jetty": 46382, + "jew": 27450, + "jewel": 4880, + "jewel": 17591, + "jewell": 9777, + "jewellers": 46265, + "jewellery": 11192, + "jewelry": 28018, + "jewelry": 6039, + "jewels": 20205, + "jewish": 29594, + "jewish": 9104, + "jews": 14200, + "jf": 31130, + "jf": 33718, + "jfc": 43652, + "jfk": 18486, + "jg": 41986, + "jg": 35138, + "jh": 24858, + "jh": 21485, + "jha": 47012, + "jha": 38092, + "jhal": 45695, + "jhar": 31546, + "jharkhand": 39001, + "jhb": 34631, + "ji": 3252, + "ji": 2697, + "jia": 32907, + "jian": 33427, + "jiang": 43309, + "jiang": 25762, + "jic": 48350, + "jic": 40215, + "jid": 24403, + "jie": 40005, + "jig": 15136, + "jig": 47430, + "jigsaw": 32987, + "jiha": 23194, + "jihad": 29637, + "jihoon": 44765, + "jil": 36225, + "jill": 24136, + "jill": 15254, + "jillian": 37820, + "jim": 3190, + "jim": 4550, + "jima": 20679, + "jimcantore": 43950, + "jimenez": 35947, + "jimi": 30565, + "jimin": 16286, + "jimmie": 45679, + "jimmy": 12215, + "jimmy": 6817, + "jimmyfallon": 45265, + "jin": 7927, + "jin": 8485, + "jind": 40609, + "jing": 34933, + "jing": 28607, + "jingle": 28699, + "jinnah": 43141, + "jinping": 39308, + "jinx": 42977, + "jinyoung": 38051, + "jio": 40501, + "jis": 25988, + "jis": 23515, + "jisoo": 43070, + "jit": 11947, + "jit": 20308, + "jitsu": 24530, + "jiu": 43351, + "jiu": 44123, + "jj": 12502, + "jj": 12790, + "jk": 20189, + "jk": 9702, + "jkt": 21494, + "jl": 25027, + "jl": 22911, + "jlo": 31017, + "jm": 24044, + "jm": 18657, + "jn": 24576, + "jn": 21717, + "jnr": 37145, + "jnu": 47142, + "jo": 683, + "jo": 3804, + "joachim": 48979, + "joan": 28064, + "joan": 12710, + "joann": 35484, + "joanna": 25357, + "joanne": 43736, + "joanne": 25092, + "joao": 45666, + "joaqu": 25140, + "joaquin": 30745, + "job": 13114, + "job": 2075, + "jobs": 3735, + "jobsearch": 45459, + "joburg": 39343, + "jocel": 36879, + "jocelyn": 47259, + "jock": 34485, + "jockey": 20126, + "jodh": 48689, + "jodi": 36812, + "jodi": 26888, + "jodie": 33100, + "jody": 32959, + "joe": 9309, + "joe": 3305, + "joel": 19819, + "joel": 11429, + "joes": 34756, + "joey": 16281, + "joey": 10455, + "jog": 37967, + "jog": 31691, + "jogging": 37922, + "joh": 1201, + "johan": 17416, + "johan": 27789, + "johann": 31180, + "johanna": 41494, + "johannes": 37779, + "johannesburg": 28377, + "johansson": 41512, + "johar": 34871, + "john": 2004, + "john": 1742, + "johncena": 46820, + "johnnie": 47947, + "johnny": 14464, + "johnny": 6904, + "johns": 14515, + "johnson": 26036, + "johnson": 4010, + "johnston": 19791, + "johnstone": 40766, + "johor": 34750, + "join": 14737, + "join": 1384, + "joined": 4954, + "joining": 5118, + "joins": 5681, + "joint": 6640, + "jointhe": 30422, + "jointly": 37471, + "joints": 27204, + "jojo": 41484, + "jojo": 22075, + "joke": 7198, + "joker": 18200, + "jokers": 44101, + "jokes": 11336, + "joking": 26112, + "joko": 44975, + "jol": 9174, + "jol": 36470, + "jolie": 31633, + "jolla": 46109, + "jolly": 21516, + "jom": 32152, + "jon": 3026, + "jon": 6139, + "jona": 6629, + "jonah": 47934, + "jonah": 27556, + "jonas": 42373, + "jonas": 13650, + "jonathan": 19026, + "jonathan": 7762, + "jone": 33934, + "jones": 19091, + "jones": 3538, + "jong": 20214, + "jong": 14726, + "jonghyun": 29023, + "jongin": 36957, + "joni": 43177, + "jonny": 28454, + "jonny": 21895, + "joo": 25807, + "joo": 27680, + "joom": 47543, + "joon": 18547, + "joong": 26544, + "jop": 30486, + "joplin": 42688, + "jor": 2482, + "jor": 31595, + "jordan": 14644, + "jordan": 4388, + "jordani": 46898, + "jordi": 44795, + "jorge": 48761, + "jorge": 18225, + "jos": 20560, + "jos": 19661, + "jose": 4647, + "jose": 7075, + "josef": 36584, + "josel": 47800, + "joseph": 14163, + "joseph": 6478, + "josephine": 34866, + "josh": 9998, + "josh": 5679, + "joshi": 24786, + "joshu": 9112, + "joshua": 11852, + "josi": 33583, + "josie": 33167, + "joss": 42834, + "josé": 27922, + "jou": 19921, + "jou": 32029, + "jour": 2078, + "jour": 17142, + "journ": 4563, + "journal": 6626, + "journalism": 10123, + "journalist": 9914, + "journalists": 12249, + "journals": 24391, + "journe": 48833, + "journey": 32156, + "journey": 3749, + "journeys": 23329, + "journo": 37034, + "journos": 46437, + "jovi": 33866, + "joy": 6308, + "joy": 4273, + "joyce": 43753, + "joyce": 15275, + "joye": 34052, + "joyeux": 41876, + "joyful": 24139, + "joyous": 32245, + "joyride": 46949, + "joys": 22996, + "jp": 18249, + "jp": 10557, + "jpg": 36950, + "jpn": 36212, + "jr": 13973, + "jr": 3605, + "js": 46243, + "js": 8006, + "jst": 26523, + "jt": 39480, + "jt": 18119, + "ju": 669, + "ju": 9970, + "jual": 38720, + "juan": 17148, + "juan": 9274, + "juana": 9081, + "jubi": 15485, + "jubil": 47743, + "jubilee": 16907, + "juco": 31570, + "jud": 8363, + "juda": 32478, + "judah": 41066, + "judaism": 42217, + "judas": 39532, + "judd": 29770, + "judg": 20012, + "judge": 16824, + "judge": 5656, + "judged": 33453, + "judgement": 25246, + "judges": 12575, + "judging": 16570, + "judgment": 24191, + "judi": 42546, + "judice": 28032, + "judicial": 19579, + "judiciary": 24545, + "judith": 24047, + "judo": 27011, + "judy": 34663, + "judy": 16510, + "jug": 27619, + "jugg": 38628, + "juic": 38761, + "juice": 37954, + "juice": 6916, + "juices": 36757, + "juicy": 17623, + "juju": 43020, + "juke": 32519, + "jukebox": 36411, + "jul": 34662, + "jul": 15975, + "jule": 40819, + "jules": 21996, + "juli": 3614, + "juli": 49160, + "julia": 10207, + "julian": 25459, + "julian": 12643, + "juliana": 46059, + "julie": 22534, + "julie": 10505, + "julien": 32595, + "juliet": 20641, + "juliette": 44804, + "julio": 24888, + "julius": 20870, + "july": 2272, + "jum": 20791, + "jumbo": 24678, + "jume": 45989, + "jump": 5519, + "jump": 6423, + "jumped": 16901, + "jumper": 16558, + "jumpers": 36485, + "jumping": 11476, + "jumpman": 48803, + "jumps": 18911, + "jumpsuit": 31044, + "jun": 1637, + "jun": 7719, + "junction": 11320, + "june": 23188, + "june": 2345, + "jung": 13086, + "jung": 13031, + "jungkook": 20040, + "jungle": 42421, + "jungle": 10865, + "juni": 4029, + "junior": 21167, + "junior": 5027, + "juniors": 16811, + "juniper": 33829, + "junk": 16000, + "junkie": 27613, + "junkies": 41207, + "juno": 28845, + "junto": 34282, + "jupit": 15270, + "jupiter": 16212, + "jur": 15896, + "jura": 14715, + "jurassic": 28844, + "jurassic": 21255, + "jurgen": 39263, + "juris": 37010, + "jurisdic": 37714, + "jury": 12931, + "jus": 14999, + "just": 1770, + "just": 761, + "justi": 14700, + "justic": 30399, + "justice": 16904, + "justice": 3604, + "justicefor": 25812, + "justiceleague": 41929, + "justices": 44356, + "justified": 34546, + "justify": 28192, + "justin": 7537, + "justin": 4394, + "justinbieber": 12501, + "justine": 34418, + "justintrudeau": 32184, + "justsaying": 42922, + "juve": 47717, + "juve": 23092, + "juven": 12944, + "juvenile": 19333, + "juvent": 13908, + "juventus": 47378, + "juventus": 16208, + "jux": 33552, + "juxta": 34964, + "jv": 37932, + "jv": 11805, + "jw": 30221, + "jw": 24215, + "jy": 20979, + "jyo": 27378, + "jyoti": 48696, + "jä": 45381, + "k": 74, + "k": 330, + "ka": 1595, + "ka": 1525, + "kaa": 34496, + "kab": 6554, + "kab": 45134, + "kabaddi": 41749, + "kabir": 38619, + "kabo": 47974, + "kabul": 26160, + "kac": 21693, + "kach": 14341, + "kad": 10901, + "kade": 41130, + "kaduna": 38053, + "kae": 22542, + "kaeper": 30070, + "kaepernick": 30713, + "kaf": 19870, + "kag": 13666, + "kag": 31003, + "kah": 16068, + "kah": 15463, + "kahn": 35397, + "kai": 12752, + "kai": 9601, + "kaido": 40255, + "kail": 23623, + "kaine": 39028, + "kair": 33027, + "kaiser": 43685, + "kaiser": 29960, + "kait": 19326, + "kaitlyn": 34948, + "kaj": 44788, + "kaj": 40381, + "kak": 10401, + "kak": 40128, + "kaka": 47689, + "kaku": 30900, + "kal": 4187, + "kal": 18712, + "kala": 45453, + "kala": 33105, + "kalam": 40142, + "kalamaz": 42328, + "kalamazoo": 46264, + "kalb": 34483, + "kale": 17162, + "kale": 16625, + "kaleido": 41144, + "kali": 17844, + "kali": 26964, + "kalin": 42776, + "kalyan": 23825, + "kam": 4104, + "kam": 26011, + "kamal": 31371, + "kamal": 28619, + "kamala": 45003, + "kame": 45235, + "kamen": 40738, + "kami": 28707, + "kamloops": 36602, + "kamp": 35179, + "kamp": 29522, + "kampala": 37134, + "kan": 2532, + "kan": 8101, + "kana": 35178, + "kand": 17478, + "kane": 32218, + "kane": 9765, + "kang": 12226, + "kang": 20789, + "kangar": 20622, + "kangaroo": 25513, + "kani": 40907, + "kani": 41948, + "kann": 18533, + "kannada": 30053, + "kano": 28201, + "kans": 34012, + "kansas": 25507, + "kansas": 6539, + "kansascity": 46134, + "kant": 39923, + "kant": 47132, + "kanth": 24427, + "kanu": 44565, + "kany": 13590, + "kanye": 29680, + "kanye": 14965, + "kanyewest": 31943, + "kap": 6804, + "kap": 45279, + "kapam": 48561, + "kapil": 32337, + "kapil": 42709, + "kapilshar": 48978, + "kaplan": 37401, + "kapoor": 9117, + "kapp": 36717, + "kappa": 20239, + "kapur": 42371, + "kar": 1813, + "kar": 5933, + "kara": 12552, + "karab": 40916, + "karachi": 13671, + "karak": 40372, + "karan": 20077, + "karan": 20931, + "karanjohar": 47621, + "karao": 16262, + "karaoke": 16640, + "karate": 21211, + "kardashi": 13619, + "kardashian": 14578, + "kare": 14310, + "kare": 38354, + "kareem": 38885, + "kareena": 41569, + "karen": 17719, + "karen": 10349, + "kari": 15339, + "kari": 15161, + "karim": 33477, + "karin": 43917, + "karina": 40250, + "karl": 20967, + "karl": 13134, + "karla": 42309, + "karma": 17658, + "karnat": 13994, + "karnataka": 15515, + "karo": 45305, + "kart": 47841, + "kart": 21310, + "karthik": 41397, + "karti": 23053, + "kartikeyan": 32584, + "karting": 41655, + "kas": 6119, + "kas": 14372, + "kasa": 46111, + "kash": 6954, + "kash": 21371, + "kashi": 47945, + "kashmir": 20251, + "kashmir": 10783, + "kashmiri": 35331, + "kasi": 45870, + "kasi": 32819, + "kasich": 39666, + "kat": 2844, + "kat": 9341, + "kata": 14558, + "kate": 11620, + "kate": 6699, + "katelyn": 45963, + "kath": 7386, + "kath": 19745, + "katharine": 41473, + "katherine": 17687, + "kathle": 18721, + "kathleen": 21709, + "kathmandu": 34456, + "kathniel": 36159, + "kathr": 14905, + "kathryn": 33142, + "kathryn": 19999, + "kathy": 34775, + "kathy": 18795, + "kati": 6515, + "kati": 29928, + "katic": 48058, + "katie": 24117, + "katie": 9076, + "katniss": 47916, + "kato": 27573, + "katrin": 31282, + "katrina": 21397, + "katrinakaif": 45845, + "kats": 44213, + "katsu": 49296, + "katsu": 43712, + "katy": 17609, + "katy": 14435, + "katyperry": 28309, + "katz": 30790, + "kau": 9299, + "kau": 36895, + "kauai": 44050, + "kaufman": 37188, + "kaur": 30518, + "kav": 10228, + "kavan": 18576, + "kavanaugh": 20252, + "kaw": 10842, + "kaw": 42719, + "kawa": 33244, + "kawaii": 26891, + "kawasaki": 28227, + "kawhi": 41220, + "kay": 4673, + "kay": 9862, + "kaya": 22752, + "kayak": 27043, + "kayaking": 28977, + "kaye": 33003, + "kayla": 17139, + "kaylee": 47215, + "kayo": 37021, + "kaz": 8812, + "kaz": 39622, + "kazakh": 25451, + "kazakhstan": 26720, + "kazan": 47641, + "kb": 27381, + "kb": 19960, + "kbs": 27418, + "kc": 10869, + "kc": 8638, + "kca": 14347, + "kcon": 39970, + "kcr": 46181, + "kd": 21826, + "kd": 15597, + "kday": 31074, + "kdrama": 48628, + "ke": 643, + "ke": 618, + "kea": 47926, + "kean": 43288, + "keane": 28635, + "keanu": 40608, + "kear": 21562, + "kearney": 36435, + "keating": 40045, + "keaton": 29975, + "kebab": 36497, + "ked": 11730, + "ked": 1243, + "kee": 9724, + "kee": 6760, + "keef": 42323, + "keefe": 46965, + "keegan": 31122, + "keel": 48376, + "keen": 17714, + "keen": 13218, + "keenan": 36276, + "keep": 2924, + "keep": 1726, + "keeper": 7650, + "keepers": 16130, + "keepin": 41712, + "keeping": 38371, + "keeping": 4873, + "keepit": 28044, + "keeps": 6333, + "keer": 27412, + "keerth": 47500, + "keerthyofficial": 48185, + "kees": 10791, + "keg": 32785, + "keh": 41272, + "keh": 36983, + "kei": 18735, + "kei": 24835, + "keith": 18762, + "keith": 8252, + "kej": 15674, + "kejri": 16617, + "kejriwal": 17334, + "keke": 39195, + "kel": 2825, + "kel": 7553, + "kele": 41765, + "kell": 16082, + "kell": 40103, + "keller": 21407, + "kelley": 23776, + "kelli": 45852, + "kelli": 46190, + "kellie": 49224, + "kellogg": 44218, + "kelly": 13417, + "kelly": 5220, + "kelown": 31708, + "kelowna": 32963, + "kelsey": 42295, + "kelsey": 23018, + "kelvin": 32859, + "kem": 31013, + "kem": 17349, + "kemp": 18302, + "kemp": 25325, + "ken": 1838, + "ken": 1702, + "kend": 7497, + "kendal": 44836, + "kendall": 34607, + "kendall": 16238, + "kendra": 36074, + "kendrick": 41787, + "kendrick": 21953, + "kendricklamar": 47020, + "kenne": 6209, + "kennedy": 38631, + "kennedy": 9004, + "kennel": 39595, + "kenneth": 46900, + "kenneth": 17839, + "kenney": 41373, + "kenny": 20185, + "kenny": 9595, + "kens": 29765, + "kensing": 21505, + "kensington": 24988, + "kent": 13875, + "kent": 8214, + "kentu": 9045, + "kentucky": 32230, + "kentucky": 10014, + "keny": 17374, + "kenya": 6181, + "kenyan": 22624, + "kenyans": 36263, + "kenyatta": 31012, + "kenzie": 38087, + "keo": 43062, + "kept": 7737, + "ker": 2352, + "ker": 1485, + "keral": 35122, + "kerala": 11881, + "kered": 26690, + "kerel": 32232, + "keri": 43447, + "kermit": 40908, + "kern": 40150, + "kernel": 40684, + "kerr": 20491, + "kerri": 41849, + "kerry": 24795, + "kerry": 13097, + "kers": 30347, + "kers": 2880, + "kershaw": 40785, + "kerson": 42810, + "kerswednesday": 48152, + "kert": 47279, + "kes": 38398, + "kes": 1115, + "kesh": 19751, + "kesha": 36526, + "kest": 15080, + "ket": 2715, + "ket": 1236, + "ketball": 38240, + "ketch": 22590, + "ketch": 35371, + "ketchup": 26724, + "kete": 25404, + "keted": 41396, + "keting": 15951, + "keto": 27485, + "keto": 28754, + "kets": 1632, + "kett": 23124, + "kett": 10312, + "kettering": 43779, + "kettle": 41992, + "kettle": 24303, + "kev": 22758, + "kev": 29419, + "kevin": 9419, + "kevin": 4685, + "kew": 38014, + "kew": 31409, + "kex": 30251, + "key": 2891, + "key": 1458, + "keyan": 27617, + "keyboard": 13017, + "keyboards": 49237, + "keychain": 31050, + "keye": 40516, + "keye": 20635, + "keyes": 18336, + "keynes": 32462, + "keynote": 7556, + "keys": 48912, + "keys": 6355, + "keystone": 30688, + "keyword": 42284, + "keywords": 48122, + "kf": 33308, + "kf": 42119, + "kfc": 22032, + "kg": 36772, + "kg": 7817, + "kgs": 46629, + "kh": 2166, + "kh": 7452, + "kha": 7333, + "kha": 18929, + "khair": 43742, + "khaki": 41646, + "khal": 13070, + "khaled": 29343, + "khali": 11324, + "khalid": 27166, + "khalifa": 21389, + "khalil": 36229, + "kham": 24892, + "khan": 13318, + "khan": 3873, + "khand": 43384, + "khand": 31110, + "khanna": 29931, + "khar": 18340, + "khar": 28578, + "khart": 37458, + "khat": 43290, + "khe": 26360, + "kher": 43843, + "khi": 39062, + "khi": 42925, + "khil": 34101, + "khloe": 45312, + "kho": 14022, + "kho": 28774, + "khou": 30656, + "khs": 21239, + "khtar": 45593, + "khu": 14041, + "khur": 32083, + "khy": 40917, + "khz": 45604, + "ki": 848, + "ki": 2608, + "kia": 8712, + "kian": 43961, + "kian": 25708, + "kians": 44010, + "kib": 43108, + "kiba": 37207, + "kic": 24003, + "kic": 27633, + "kicchasu": 44665, + "kicchasudeep": 45560, + "kick": 4102, + "kick": 4289, + "kickass": 39299, + "kickboxing": 36041, + "kicked": 12479, + "kicker": 26338, + "kickin": 34597, + "kicking": 7802, + "kickoff": 10245, + "kicks": 6989, + "kickstart": 40780, + "kickstarter": 13228, + "kid": 3948, + "kid": 3551, + "kidd": 24082, + "kidding": 14535, + "kiddo": 36360, + "kiddos": 29205, + "kidlit": 39064, + "kidlit": 33515, + "kidlitart": 41600, + "kidman": 44931, + "kidnap": 45100, + "kidnapp": 16183, + "kidnapped": 24737, + "kidnapping": 32361, + "kidney": 37835, + "kidney": 14610, + "kids": 15561, + "kids": 1911, + "kidz": 41938, + "kie": 8544, + "kie": 3094, + "kiefer": 48026, + "kiel": 40940, + "kiel": 25509, + "kien": 28782, + "kier": 20403, + "kier": 35575, + "kieran": 29231, + "kies": 36601, + "kies": 4993, + "kiest": 29755, + "kiev": 24585, + "kiewicz": 47574, + "kigali": 40278, + "kii": 39340, + "kik": 36176, + "kiki": 23962, + "kiko": 40861, + "kil": 4912, + "kil": 39337, + "kildare": 45541, + "kili": 24386, + "kilig": 49172, + "kilimanjaro": 43470, + "kilkenny": 33805, + "kill": 6163, + "kill": 4367, + "killa": 41355, + "killarney": 48813, + "killed": 3733, + "killer": 28230, + "killer": 6613, + "killers": 17614, + "killin": 25903, + "killing": 37977, + "killing": 5923, + "killings": 24918, + "kills": 9795, + "kiln": 44150, + "kilo": 39281, + "kilom": 26285, + "kilometers": 39192, + "kilometres": 43278, + "kilt": 49319, + "kim": 4639, + "kim": 4606, + "kimber": 16796, + "kimberley": 39859, + "kimberly": 27465, + "kimchi": 41027, + "kimi": 31536, + "kimkardashian": 35400, + "kimmel": 27820, + "kimono": 40024, + "kin": 1442, + "kin": 2667, + "kina": 28518, + "kind": 7204, + "kind": 3044, + "kinda": 6612, + "kinder": 12711, + "kinder": 24159, + "kindergarten": 16749, + "kindle": 24704, + "kindle": 10746, + "kindleunlimited": 32164, + "kindly": 13952, + "kindness": 45112, + "kindness": 10614, + "kinds": 14879, + "kine": 17607, + "kineni": 49080, + "kinetic": 37699, + "king": 2365, + "king": 674, + "kingdom": 21870, + "kingdom": 7364, + "kingdomhearts": 48570, + "kingdoms": 43890, + "kingfisher": 34330, + "kingjames": 33153, + "kingly": 33642, + "kingof": 27878, + "kings": 18590, + "kings": 4232, + "kingsley": 41807, + "kingston": 40736, + "kingston": 15393, + "kini": 41644, + "kinky": 37006, + "kinney": 37233, + "kino": 39000, + "kins": 31060, + "kins": 4386, + "kinson": 12095, + "kio": 28210, + "kio": 39401, + "kiosk": 39146, + "kip": 27636, + "kip": 15986, + "kipp": 43329, + "kir": 3476, + "kir": 32949, + "kira": 33038, + "kiran": 43234, + "kiran": 36603, + "kirby": 17065, + "kiri": 34170, + "kiri": 45826, + "kirk": 10639, + "kirk": 11508, + "kirkland": 43061, + "kiro": 39749, + "kirstel": 46483, + "kirsten": 31813, + "kirsty": 37787, + "kis": 3199, + "kis": 22796, + "kish": 25662, + "kiss": 43757, + "kiss": 5946, + "kissed": 22561, + "kisses": 47876, + "kisses": 11220, + "kissing": 18637, + "kistan": 29580, + "kit": 4566, + "kit": 4274, + "kita": 29961, + "kitch": 3850, + "kitchen": 18131, + "kitchen": 4485, + "kitchener": 34428, + "kitchens": 28301, + "kite": 47777, + "kite": 19867, + "kites": 45829, + "kits": 13730, + "kitt": 10840, + "kitten": 13063, + "kittens": 17216, + "kitties": 36013, + "kitty": 25067, + "kitty": 8417, + "kiwan": 38709, + "kiwanis": 46513, + "kiwi": 22440, + "kiwis": 48108, + "kiya": 41610, + "kj": 27385, + "kj": 28238, + "kja": 41048, + "kjv": 37387, + "kk": 4390, + "kk": 10849, + "kka": 19002, + "kke": 44239, + "kker": 32399, + "kki": 44672, + "kkk": 20073, + "kkkk": 15834, + "kkkk": 47160, + "kkkkkkkk": 31042, + "kko": 43965, + "kkr": 40855, + "kl": 8498, + "kl": 14134, + "kla": 11249, + "klan": 46935, + "klar": 41374, + "klaus": 31788, + "kle": 7612, + "kle": 7432, + "klein": 33475, + "klein": 17579, + "kley": 18594, + "kli": 31640, + "klin": 44809, + "klin": 41647, + "kline": 47580, + "kling": 40270, + "klm": 38859, + "klo": 15296, + "klopp": 26446, + "kltu": 25978, + "klu": 21852, + "kly": 45090, + "km": 29954, + "km": 4590, + "kman": 33312, + "kms": 24996, + "kn": 4825, + "kn": 23693, + "knapp": 33945, + "kne": 6358, + "knee": 9897, + "knees": 19115, + "kner": 31578, + "knew": 5009, + "kni": 6312, + "knick": 33286, + "knicks": 17657, + "knife": 44176, + "knife": 8960, + "knigh": 43099, + "knight": 17949, + "knight": 7355, + "knights": 10385, + "knit": 18745, + "knit": 14313, + "knitted": 28151, + "knitting": 18863, + "knives": 20910, + "kno": 1482, + "kno": 25362, + "knob": 29736, + "knobs": 47504, + "knock": 14195, + "knock": 11583, + "knocked": 15325, + "knocking": 20380, + "knockout": 22602, + "knocks": 24296, + "knoll": 43882, + "knot": 18412, + "knots": 32428, + "know": 4179, + "know": 1038, + "knowing": 9267, + "knowledge": 27864, + "knowledge": 5510, + "knowledgeable": 43391, + "knowles": 32631, + "known": 3102, + "knows": 4309, + "knowyour": 30773, + "knox": 18630, + "knox": 21833, + "knoxville": 23232, + "knu": 14812, + "knuck": 21333, + "knuckle": 42023, + "knuckles": 40127, + "knw": 40803, + "ko": 1313, + "ko": 2448, + "koala": 36654, + "kobe": 42644, + "kobe": 14470, + "kobo": 42390, + "koch": 25331, + "kochi": 36710, + "kodak": 30425, + "kodi": 46611, + "kof": 17528, + "koff": 47303, + "kofi": 40400, + "koh": 13379, + "koh": 31216, + "kohl": 48479, + "kohli": 17549, + "koi": 28150, + "kojima": 46419, + "kok": 32045, + "kok": 11225, + "koko": 42426, + "koko": 40003, + "kol": 7142, + "kol": 31023, + "kolkata": 18011, + "kom": 6686, + "kom": 24181, + "kombat": 29670, + "kombucha": 48615, + "komo": 31820, + "kon": 5743, + "kon": 29519, + "kona": 30203, + "kong": 31784, + "kong": 6506, + "konstant": 46583, + "koo": 12225, + "koo": 40472, + "kook": 16003, + "kool": 36755, + "kool": 26444, + "kop": 16623, + "kop": 38999, + "kor": 6428, + "kor": 24175, + "kore": 3919, + "korea": 5915, + "korean": 31949, + "korean": 8034, + "kori": 42842, + "korn": 45412, + "korn": 31492, + "kors": 34535, + "kos": 47438, + "kos": 22951, + "kosh": 45233, + "kosher": 36502, + "koso": 23892, + "kosovo": 28343, + "kot": 23323, + "kot": 20701, + "kota": 21735, + "koto": 40945, + "koto": 29977, + "kou": 18502, + "kou": 39614, + "kour": 34134, + "kov": 17733, + "kov": 15156, + "kova": 26185, + "koval": 47903, + "kovic": 16886, + "kovich": 44794, + "kovsky": 33384, + "kow": 29764, + "kow": 23919, + "kowski": 17649, + "koz": 29598, + "kp": 16174, + "kp": 16894, + "kpa": 38759, + "kph": 41138, + "kpk": 42094, + "kpmg": 38243, + "kpop": 29534, + "kpop": 15859, + "kprc": 47832, + "kprs": 46253, + "kr": 7309, + "kr": 14107, + "kra": 5762, + "kraft": 28057, + "kraja": 29016, + "kraken": 48408, + "krakow": 40033, + "kram": 19075, + "kramer": 27495, + "kran": 33243, + "kranti": 47969, + "krat": 30470, + "kre": 8362, + "kreme": 43140, + "kremlin": 33979, + "kri": 3679, + "kris": 35251, + "kris": 12261, + "krish": 11487, + "krishna": 15863, + "krishnan": 46535, + "krispy": 49292, + "krist": 16490, + "kristen": 28881, + "kristen": 16644, + "kristi": 26895, + "kristin": 35408, + "kristin": 26785, + "kristina": 33180, + "krit": 36265, + "kro": 16193, + "kroger": 36344, + "kron": 25999, + "kru": 10609, + "kruger": 32948, + "krun": 43084, + "kry": 13995, + "krystal": 36554, + "ks": 10470, + "ks": 662, + "ksa": 25439, + "ksh": 36594, + "kst": 17420, + "kstate": 48590, + "ksu": 43496, + "kswx": 36180, + "kt": 17238, + "kt": 7792, + "ktm": 33989, + "ktn": 42170, + "kton": 37848, + "kts": 48577, + "ktv": 36444, + "ku": 1836, + "ku": 4827, + "kuala": 30336, + "kubball": 48995, + "kuber": 41336, + "kubernetes": 45144, + "kubrick": 37032, + "kuch": 39394, + "kud": 40818, + "kudos": 14481, + "kul": 11325, + "kul": 31514, + "kum": 18086, + "kum": 28148, + "kuma": 43139, + "kuma": 33920, + "kumar": 22329, + "kumar": 7674, + "kumb": 31391, + "kun": 6849, + "kun": 21842, + "kung": 39656, + "kung": 22347, + "kunst": 37881, + "kup": 39023, + "kups": 27240, + "kur": 4862, + "kurdi": 23504, + "kurdish": 21644, + "kurdistan": 24459, + "kurds": 20888, + "kuri": 46375, + "kuro": 28239, + "kuro": 47826, + "kurt": 31903, + "kurt": 14527, + "kus": 27618, + "kus": 27505, + "kush": 22264, + "kush": 24594, + "kushner": 36716, + "kut": 17283, + "kut": 36965, + "kuwait": 19679, + "kuya": 34815, + "kuz": 33253, + "kv": 27594, + "kv": 34249, + "kw": 10072, + "kw": 18339, + "kwa": 32784, + "kwa": 48576, + "kwame": 46681, + "kwan": 37100, + "kwan": 39447, + "kwang": 40260, + "kwe": 26050, + "kwi": 35327, + "kwon": 36369, + "kx": 28190, + "kx": 46442, + "ky": 2018, + "ky": 2383, + "kya": 29142, + "kyc": 37758, + "kyiv": 36422, + "kyle": 15847, + "kyle": 7539, + "kylie": 28282, + "kylie": 17983, + "kyliejenner": 47232, + "kylo": 47704, + "kyo": 13150, + "kyo": 6281, + "kyoto": 23223, + "kyr": 26329, + "kyrgy": 40013, + "kyrgyz": 48346, + "kyrie": 21857, + "kyu": 28296, + "kyu": 25490, + "kyuhyun": 37229, + "kyung": 41058, + "kyungsoo": 30280, + "kywx": 39940, + "kz": 48743, + "kz": 36848, + "kzn": 38264, + "kö": 32437, + "l": 75, + "l": 331, + "la": 572, + "la": 1210, + "laa": 44642, + "lab": 3537, + "lab": 4352, + "labe": 25749, + "label": 12235, + "label": 9093, + "labeled": 32720, + "labeling": 36825, + "labelled": 45188, + "labels": 17413, + "lable": 31879, + "labor": 11201, + "labor": 7878, + "laboratories": 43421, + "laboratory": 17664, + "laborday": 39324, + "labou": 32700, + "labour": 19586, + "labour": 6019, + "labourdoorstep": 37008, + "labout": 35961, + "labra": 37067, + "labrador": 25409, + "labs": 12021, + "laby": 29131, + "labyrin": 31782, + "labyrinth": 35594, + "lac": 4477, + "lac": 16189, + "lace": 30012, + "lace": 5421, + "laced": 36800, + "laces": 23281, + "lacey": 31754, + "lach": 30558, + "lack": 24915, + "lack": 8069, + "lacking": 30080, + "lacks": 34388, + "laco": 45882, + "lacrosse": 12915, + "lacy": 38645, + "lad": 15991, + "lad": 10707, + "ladak": 42312, + "ladakh": 45295, + "ladder": 16637, + "ladders": 47125, + "lade": 26447, + "laden": 28634, + "ladi": 12934, + "ladies": 28932, + "ladies": 3431, + "lads": 9803, + "lady": 7275, + "lady": 2909, + "ladybird": 43389, + "ladybug": 40038, + "ladygaga": 21232, + "laf": 47555, + "lafayette": 22683, + "lag": 30932, + "lag": 20394, + "laga": 30161, + "lage": 24369, + "lager": 36811, + "lager": 22989, + "lagh": 37237, + "laghate": 47565, + "laghateparth": 48780, + "lagi": 39786, + "lago": 42698, + "lago": 31476, + "lagoon": 22753, + "lagos": 12728, + "lagun": 18500, + "laguna": 23609, + "lah": 27315, + "lah": 4299, + "lahat": 42164, + "lahore": 16733, + "lai": 23947, + "laid": 42560, + "laid": 11160, + "lain": 46958, + "lain": 17151, + "laine": 35860, + "lair": 31981, + "lais": 34923, + "lak": 12890, + "lak": 26793, + "lake": 6441, + "lake": 2553, + "lakedistrict": 26437, + "lakel": 26133, + "lakeland": 34306, + "laker": 45717, + "lakers": 13570, + "lakes": 9265, + "lakeshore": 42595, + "lakeside": 30915, + "lakewood": 36417, + "lakh": 21487, + "lakhs": 37985, + "lakings": 34289, + "lakota": 45510, + "laksh": 24937, + "lakshmi": 39682, + "lal": 12301, + "lal": 19430, + "lala": 33661, + "lali": 21726, + "laliga": 32383, + "lam": 2022, + "lam": 5704, + "lama": 26049, + "lamar": 28678, + "lamar": 17284, + "lamb": 19863, + "lamb": 10034, + "lambda": 36687, + "lambert": 14574, + "lambeth": 43410, + "lambo": 45464, + "lamborgh": 18709, + "lamborghini": 19462, + "lambs": 30361, + "lame": 23192, + "lamin": 22337, + "laminated": 49079, + "lamo": 41461, + "lamont": 46719, + "lamp": 26700, + "lamp": 10725, + "lampard": 39989, + "lamps": 23424, + "lan": 1193, + "lan": 4872, + "lana": 15406, + "lanapar": 47437, + "lanaparrilla": 47819, + "lanc": 11872, + "lanca": 15694, + "lancashire": 20939, + "lancaster": 16446, + "lance": 26025, + "lance": 11609, + "lancer": 38195, + "lancers": 46392, + "lancia": 48698, + "lancs": 47540, + "land": 1567, + "land": 973, + "lande": 36556, + "landed": 9873, + "lander": 37247, + "lander": 9666, + "landers": 20019, + "landfall": 38465, + "landfill": 34947, + "landia": 41384, + "landing": 8292, + "landings": 46104, + "landlord": 28938, + "landlords": 35283, + "landmark": 15208, + "landmarks": 30393, + "lando": 25463, + "lando": 7065, + "landon": 32748, + "landrover": 38125, + "landry": 36137, + "lands": 40223, + "lands": 2961, + "landsc": 4384, + "landscape": 21123, + "landscape": 5727, + "landscapephotography": 28125, + "landscapes": 15344, + "landscaping": 25642, + "landslide": 31954, + "lane": 25534, + "lane": 3980, + "lanes": 10345, + "laney": 38552, + "lang": 7969, + "lang": 8578, + "lange": 32021, + "langford": 45615, + "langley": 28595, + "langu": 4095, + "language": 46103, + "language": 4781, + "languages": 13527, + "lani": 22964, + "lanka": 16221, + "lankan": 40531, + "lannister": 49056, + "lans": 43550, + "lansing": 30805, + "lant": 44504, + "lanta": 44768, + "lantern": 17185, + "lanterns": 33676, + "lantic": 32601, + "lantic": 27678, + "lants": 38425, + "lanyard": 46808, + "lao": 32475, + "lao": 29521, + "laos": 34353, + "lap": 7213, + "lap": 8639, + "lapd": 32557, + "lapel": 47961, + "lapland": 43633, + "laps": 18711, + "lapse": 33365, + "laptop": 10464, + "laptops": 32189, + "laq": 45026, + "lar": 1592, + "lar": 1652, + "lara": 19435, + "lard": 40347, + "lare": 22415, + "laredo": 48427, + "large": 40234, + "large": 3638, + "largely": 21418, + "larger": 12567, + "largest": 4960, + "largo": 44161, + "lari": 34676, + "lark": 43164, + "lark": 23536, + "larkin": 34769, + "larry": 18642, + "larry": 8242, + "lars": 8669, + "larsen": 39721, + "larson": 27973, + "larvae": 44840, + "las": 8295, + "las": 2552, + "lasag": 31210, + "lasagna": 40683, + "lasalle": 43866, + "laser": 25607, + "laser": 9885, + "lasers": 37060, + "lash": 31995, + "lash": 18480, + "lashes": 21015, + "lass": 24203, + "lass": 18263, + "lassic": 39430, + "last": 10600, + "last": 952, + "lasted": 25711, + "lasting": 13434, + "lastnight": 30159, + "lasts": 20141, + "lasvegas": 17789, + "lat": 1591, + "lat": 28437, + "lata": 47114, + "latam": 40012, + "late": 13267, + "late": 2325, + "latel": 49035, + "lately": 11824, + "latepost": 48328, + "later": 24109, + "later": 2941, + "lateral": 26646, + "latest": 46805, + "latest": 2053, + "latex": 27520, + "lati": 16357, + "latimes": 43356, + "latin": 16695, + "latin": 9888, + "latina": 27936, + "latino": 45734, + "latino": 19470, + "latinos": 40233, + "lation": 6191, + "latitude": 37392, + "lative": 15719, + "lator": 9291, + "lators": 28278, + "latt": 33561, + "latte": 17697, + "latter": 26198, + "latvia": 30034, + "lau": 1853, + "lau": 23090, + "lauderdale": 24352, + "laugh": 4969, + "laugh": 6332, + "laughed": 16746, + "laughing": 8301, + "laughs": 14322, + "laughter": 10722, + "laun": 2944, + "launch": 31168, + "launch": 2904, + "launched": 6125, + "launcher": 35782, + "launches": 7023, + "launching": 8565, + "laundering": 34079, + "laundry": 14797, + "laur": 15256, + "laura": 17091, + "laura": 7763, + "laure": 16932, + "laureate": 25675, + "laurel": 43370, + "laurel": 19942, + "lauren": 10456, + "lauren": 7634, + "laurence": 29353, + "laurent": 23226, + "laurie": 20326, + "laus": 38895, + "laus": 28111, + "lause": 22269, + "laut": 47688, + "lav": 13767, + "lav": 26919, + "lava": 16765, + "laven": 15047, + "lavender": 16033, + "laver": 28188, + "lavish": 35443, + "law": 2874, + "law": 2606, + "lawful": 33845, + "lawler": 47862, + "lawless": 39468, + "lawmaker": 37169, + "lawmakers": 21190, + "lawn": 31675, + "lawn": 11024, + "lawrence": 32221, + "lawrence": 8820, + "laws": 7306, + "lawson": 22152, + "lawsuit": 14346, + "lawsuits": 44331, + "lawyer": 10552, + "lawyers": 14232, + "lax": 17750, + "lax": 10024, + "lay": 7205, + "lay": 6360, + "laye": 25995, + "layer": 12411, + "layered": 28520, + "layers": 15900, + "laying": 12333, + "layla": 45050, + "layne": 48721, + "layo": 21738, + "layoffs": 29019, + "layout": 17314, + "lays": 19546, + "layton": 38061, + "laz": 18806, + "lazar": 33075, + "lazarus": 49126, + "laze": 41559, + "lazer": 43735, + "lazio": 33010, + "lazy": 32614, + "lazy": 10753, + "lb": 21958, + "lb": 7422, + "lbc": 37694, + "lbj": 45683, + "lbloggers": 48695, + "lbs": 8912, + "lc": 9584, + "lc": 7225, + "lcd": 21356, + "lcfc": 25339, + "lcs": 32279, + "ld": 1431, + "ld": 730, + "lder": 6945, + "lders": 43221, + "ldn": 37050, + "ldn": 2517, + "ldnont": 25827, + "ldnt": 21690, + "ldr": 37279, + "lds": 31235, + "le": 534, + "le": 579, + "lea": 2246, + "lea": 13324, + "leach": 35527, + "lead": 1328, + "lead": 2784, + "leader": 14806, + "leader": 3236, + "leaderboard": 34519, + "leaders": 3546, + "leadership": 36876, + "leadership": 3652, + "leading": 3833, + "leads": 5335, + "leaf": 9377, + "leaf": 7232, + "leaflet": 38289, + "leaflets": 39014, + "leafs": 16688, + "leafy": 42616, + "leagu": 13317, + "league": 16635, + "league": 2313, + "leagueof": 26022, + "leagueoflegends": 31737, + "leagues": 19888, + "leah": 24350, + "leah": 19308, + "leak": 42900, + "leak": 15489, + "leaked": 14353, + "leaking": 34097, + "leaks": 15657, + "leam": 39606, + "lean": 12447, + "lean": 8208, + "leaning": 24411, + "leanne": 41448, + "leans": 9357, + "leap": 29129, + "leap": 15392, + "leaps": 48080, + "lear": 1146, + "lear": 27663, + "learn": 16959, + "learn": 1768, + "learned": 6048, + "learnenglish": 49040, + "learner": 33547, + "learners": 19572, + "learning": 22632, + "learning": 2378, + "learns": 17569, + "learnt": 18959, + "leary": 36051, + "lease": 49041, + "lease": 14394, + "leased": 48352, + "leash": 36192, + "leasing": 29160, + "least": 3651, + "leather": 21417, + "leather": 5862, + "leau": 26498, + "leav": 3198, + "leave": 37512, + "leave": 3258, + "leaves": 5579, + "leaving": 5216, + "leban": 9360, + "lebanese": 23819, + "lebanon": 11695, + "leblanc": 46381, + "lebo": 44184, + "lebron": 11971, + "lebu": 47030, + "lec": 944, + "lec": 35374, + "leche": 46197, + "lect": 45392, + "lection": 18252, + "lections": 30995, + "lecture": 6617, + "lecturer": 23795, + "lectures": 21118, + "led": 8767, + "led": 912, + "ledge": 23647, + "ledge": 4815, + "ledger": 26817, + "leds": 36763, + "lee": 6224, + "lee": 2592, + "leed": 16483, + "leed": 40206, + "leeds": 38900, + "leeds": 7420, + "leek": 34585, + "leeminho": 37831, + "leen": 35311, + "leen": 15940, + "leep": 48875, + "leep": 10191, + "lees": 29324, + "lees": 34056, + "lef": 9152, + "left": 33949, + "left": 1823, + "leftist": 35143, + "lefto": 17437, + "leftover": 26414, + "leftovers": 28481, + "lefty": 33935, + "leg": 1211, + "leg": 4924, + "lega": 38674, + "legacy": 44108, + "legacy": 6447, + "legal": 17743, + "legal": 3998, + "legalization": 40584, + "legalize": 42921, + "legally": 14152, + "legate": 46009, + "lege": 8065, + "legen": 6105, + "legend": 5480, + "legend": 3539, + "legendary": 6053, + "legendof": 47915, + "legends": 6396, + "leges": 15356, + "legg": 18474, + "legg": 32511, + "legged": 25830, + "leggings": 22895, + "leggo": 43441, + "legi": 11183, + "legion": 35503, + "legion": 14525, + "legis": 7200, + "legislat": 16486, + "legislation": 14143, + "legislative": 16755, + "legislators": 31572, + "legislature": 22309, + "legit": 12563, + "legitim": 17656, + "legitimate": 24491, + "lego": 28117, + "lego": 7849, + "legos": 45359, + "legs": 7072, + "leh": 19105, + "leh": 29298, + "lehead": 28090, + "lehigh": 34527, + "lehman": 46094, + "lei": 15828, + "lei": 21830, + "leia": 32723, + "leic": 35073, + "leica": 30206, + "leice": 10026, + "leicester": 28795, + "leicester": 11510, + "leicestershire": 45358, + "leigh": 14849, + "leigh": 9292, + "leighton": 30782, + "leila": 41342, + "lein": 20026, + "lein": 28551, + "leinster": 32242, + "leip": 36401, + "leipzig": 41860, + "leis": 13133, + "leisure": 15849, + "leit": 35446, + "leith": 34141, + "lek": 26626, + "lek": 36535, + "lel": 46623, + "lele": 26075, + "lem": 10213, + "lem": 8428, + "leman": 24478, + "lemans": 26694, + "lement": 9693, + "lements": 15833, + "lemme": 23318, + "lemon": 12272, + "lemon": 7184, + "lemonade": 18884, + "lemons": 29576, + "lemore": 41147, + "len": 3687, + "len": 2159, + "lena": 22038, + "lend": 45397, + "lend": 24987, + "lender": 44734, + "lenders": 42443, + "lending": 20209, + "lene": 17628, + "leness": 36551, + "leng": 7861, + "length": 10130, + "lengths": 31858, + "lengthy": 32624, + "lenin": 41760, + "lennon": 18360, + "lennox": 45748, + "lenny": 48448, + "lenny": 30124, + "leno": 45357, + "lenovo": 25886, + "lens": 8666, + "lenses": 21264, + "lent": 20943, + "lent": 22605, + "lentil": 41511, + "lentils": 44269, + "leo": 24008, + "leo": 8312, + "leon": 6581, + "leon": 9763, + "leonard": 43849, + "leonard": 13142, + "leonardo": 20282, + "leone": 22864, + "leop": 11234, + "leopard": 15931, + "leopards": 40996, + "leopold": 45501, + "lep": 48884, + "leppard": 41656, + "lepre": 45641, + "ler": 5587, + "ler": 1803, + "lero": 15067, + "lerosis": 35455, + "leroy": 32441, + "lers": 6247, + "lery": 38184, + "les": 4339, + "les": 840, + "lesbian": 17419, + "lesbians": 43182, + "lesh": 32282, + "lesley": 25506, + "lesli": 13649, + "leslie": 16244, + "lesn": 39568, + "lesnar": 42223, + "less": 3242, + "less": 1285, + "lesser": 20369, + "lessly": 13103, + "lessness": 24847, + "lesson": 7714, + "lessons": 7199, + "lest": 24372, + "lest": 6794, + "lester": 23157, + "lester": 24023, + "lestwe": 29726, + "lestweforget": 30273, + "let": 1898, + "let": 1094, + "leta": 34319, + "lete": 34078, + "letes": 6815, + "leth": 30022, + "leth": 42462, + "lethal": 21905, + "lethbridge": 48390, + "leti": 34176, + "letics": 14504, + "letit": 46423, + "leto": 32203, + "leton": 37674, + "leton": 7462, + "lets": 10448, + "lets": 3243, + "letsgo": 16967, + "letsgo": 29789, + "letstalk": 35591, + "lett": 22428, + "lett": 9778, + "lette": 41798, + "lette": 10301, + "letter": 15567, + "letter": 4861, + "lettering": 26382, + "letterman": 38447, + "letters": 9181, + "letting": 9510, + "letto": 35449, + "lettu": 17933, + "lettuce": 18573, + "leu": 15691, + "leuke": 31031, + "leukemia": 32097, + "leum": 21571, + "leur": 45806, + "lev": 17022, + "lev": 29950, + "levan": 42543, + "leve": 36271, + "level": 21682, + "level": 2931, + "leveled": 48453, + "levels": 6295, + "leven": 44792, + "leven": 34729, + "lever": 20178, + "lever": 23094, + "leverage": 24030, + "leveraging": 37948, + "levi": 25630, + "levi": 19113, + "leviathan": 41736, + "levin": 36949, + "levine": 26594, + "levit": 22715, + "levy": 17147, + "lew": 5063, + "lew": 25329, + "lewan": 48349, + "lewd": 45241, + "lewes": 40431, + "lewi": 19589, + "lewis": 22043, + "lewis": 6020, + "lewisham": 37385, + "lewisham": 47633, + "lewishamilton": 42960, + "lewood": 37951, + "lex": 6586, + "lex": 9658, + "lexa": 48259, + "lexi": 44231, + "lexi": 24679, + "lexington": 22308, + "lexus": 20694, + "ley": 2565, + "ley": 1066, + "leye": 37061, + "leys": 45609, + "leys": 14834, + "leyton": 46573, + "lez": 26442, + "lf": 33960, + "lf": 22078, + "lfc": 37826, + "lfc": 8267, + "lfw": 28514, + "lg": 4546, + "lg": 11368, + "lga": 39348, + "lgb": 25401, + "lgbt": 11743, + "lgbt": 9592, + "lgbti": 42730, + "lgbtq": 47625, + "lgbtq": 14939, + "lgm": 39389, + "lh": 27794, + "lh": 31159, + "lhp": 45092, + "lhs": 33170, + "li": 554, + "li": 4250, + "lia": 26118, + "lia": 6964, + "liability": 29139, + "liaison": 39294, + "liam": 5258, + "liam": 7167, + "lian": 18058, + "liance": 40864, + "liar": 16334, + "liars": 23863, + "lias": 46021, + "lib": 10249, + "lib": 13345, + "libby": 36832, + "libdems": 40869, + "liber": 3425, + "liberal": 48032, + "liberal": 9985, + "liberalism": 40018, + "liberals": 15981, + "liberated": 38690, + "liberation": 19507, + "liberia": 32208, + "libertarian": 35067, + "liberties": 48623, + "liberty": 23397, + "liberty": 8480, + "libr": 2856, + "libra": 43038, + "librarian": 25148, + "librarians": 37806, + "libraries": 14277, + "library": 25713, + "library": 3519, + "libre": 49210, + "libre": 31681, + "libs": 26401, + "liby": 36390, + "libya": 16417, + "libyan": 42319, + "lic": 2508, + "lic": 3376, + "lice": 45691, + "licen": 6706, + "licence": 20550, + "license": 10337, + "licensed": 18752, + "licenses": 36414, + "licensing": 24219, + "lich": 23979, + "lich": 25875, + "lick": 29197, + "lick": 17541, + "licking": 33013, + "licks": 42117, + "lics": 44552, + "lid": 39369, + "lid": 17678, + "lidge": 45558, + "lido": 35683, + "lids": 41609, + "lie": 6570, + "lie": 2538, + "lieb": 45387, + "liebe": 37749, + "lied": 6486, + "lief": 38428, + "lien": 45716, + "lier": 3626, + "liers": 19303, + "lies": 37236, + "lies": 3205, + "liest": 14020, + "liet": 41107, + "lieu": 20401, + "lieu": 35313, + "lieutenant": 22538, + "lif": 16456, + "life": 2666, + "life": 970, + "lifeat": 27801, + "lifeboat": 37404, + "lifecycle": 49171, + "lifein": 48447, + "lifeis": 24824, + "lifeisgood": 46433, + "lifel": 15025, + "lifeline": 38438, + "lifelong": 21358, + "lifeof": 36061, + "lifesaving": 48016, + "lifespan": 49257, + "lifestyle": 46512, + "lifestyle": 7037, + "lifestyles": 48521, + "lifetime": 48737, + "lifetime": 9107, + "liff": 34404, + "liffe": 38942, + "lift": 33146, + "lift": 6779, + "lifted": 16783, + "lifter": 38555, + "lifting": 10857, + "lifts": 18291, + "lig": 19915, + "lig": 38493, + "liga": 16802, + "ligam": 31077, + "ligament": 48705, + "ligan": 27962, + "ligans": 42133, + "ligh": 7510, + "light": 3885, + "light": 1395, + "lighted": 18404, + "lighten": 32717, + "lightening": 28170, + "lighter": 14102, + "lighthouse": 13717, + "lighting": 5799, + "lightly": 26878, + "lightning": 7756, + "lightroom": 41454, + "lights": 3073, + "lightweight": 16278, + "ligu": 42920, + "ligue": 29196, + "lik": 4831, + "lik": 18495, + "like": 9175, + "like": 789, + "liked": 7112, + "likefor": 48444, + "likeli": 40666, + "likelihood": 48158, + "likely": 5256, + "liken": 36084, + "likes": 4724, + "liking": 16810, + "lil": 6012, + "lil": 4461, + "lilac": 33647, + "lili": 26686, + "lili": 48411, + "lilies": 38110, + "lillard": 47016, + "lille": 38705, + "lilli": 40920, + "lillian": 41563, + "lilly": 47825, + "lilly": 21815, + "lily": 23803, + "lily": 10647, + "lim": 2377, + "lim": 17204, + "lima": 17589, + "limb": 27061, + "limb": 32363, + "limbo": 46179, + "limbs": 34886, + "lime": 17385, + "lime": 11193, + "limel": 48658, + "limer": 16915, + "limerick": 19501, + "limestone": 27272, + "limit": 18933, + "limit": 9973, + "limitations": 32730, + "limited": 49229, + "limited": 3472, + "limiting": 35812, + "limitless": 35833, + "limits": 11966, + "limo": 33166, + "limous": 47287, + "limpopo": 47175, + "lin": 1254, + "lin": 2424, + "lina": 26110, + "lincol": 6239, + "lincoln": 16957, + "lincoln": 7454, + "lincolnshire": 29014, + "lind": 6492, + "linda": 45410, + "linda": 10760, + "linden": 44076, + "linden": 34832, + "lindo": 38467, + "lindsay": 29846, + "lindsay": 16858, + "lindsey": 29475, + "lindsey": 18128, + "line": 3674, + "line": 1148, + "linear": 19816, + "linebacker": 29848, + "lined": 11842, + "lineman": 31501, + "linen": 20032, + "liner": 11618, + "liners": 24463, + "lines": 3418, + "liness": 28633, + "lineup": 7316, + "lineups": 33589, + "ling": 4851, + "ling": 1358, + "linger": 29593, + "lingerie": 18473, + "lingering": 46494, + "lings": 11390, + "lington": 27673, + "lington": 9002, + "lingu": 34449, + "lingui": 29942, + "linguistic": 46847, + "linguistics": 48651, + "lining": 11589, + "link": 18433, + "link": 2468, + "linke": 15088, + "linked": 11059, + "linkedin": 16302, + "linkin": 40287, + "linkin": 49291, + "linking": 23296, + "links": 8113, + "linn": 37431, + "lino": 41189, + "lino": 34995, + "lins": 6567, + "linson": 15401, + "linton": 36479, + "linus": 49303, + "linux": 14061, + "lio": 19395, + "lion": 8872, + "lion": 5567, + "lionel": 19441, + "lions": 7093, + "lip": 8630, + "lip": 8546, + "lipo": 38795, + "lipp": 38074, + "lips": 8847, + "lipse": 10351, + "lipstick": 15618, + "liqu": 6310, + "lique": 32680, + "liqueur": 43612, + "liqui": 33817, + "liquid": 18366, + "liquid": 10158, + "liquidity": 42812, + "liquor": 17828, + "lis": 7297, + "lis": 12749, + "lisa": 25236, + "lisa": 7424, + "lisam": 43072, + "lisboa": 40052, + "lisbon": 17708, + "lish": 12658, + "lish": 2354, + "lished": 22620, + "lisle": 21529, + "lism": 34390, + "liss": 45489, + "liss": 35433, + "lisse": 49309, + "list": 1734, + "list": 1998, + "lista": 37812, + "listed": 6457, + "listen": 17454, + "listen": 2672, + "listened": 15347, + "listener": 34819, + "listeners": 26901, + "listening": 3656, + "listens": 25912, + "lister": 45109, + "listing": 8145, + "listings": 21987, + "liston": 48041, + "lists": 12281, + "lit": 2213, + "lit": 4350, + "lita": 30100, + "lite": 29273, + "lite": 13694, + "litecoin": 39063, + "liter": 3085, + "liter": 34904, + "literacy": 12841, + "literal": 24269, + "literally": 4719, + "literary": 13586, + "literature": 11072, + "litfest": 40369, + "lith": 37005, + "lithium": 22794, + "litho": 31088, + "lithograph": 49022, + "lithu": 21045, + "lithuania": 27068, + "liti": 24292, + "litigation": 31769, + "lito": 47381, + "litre": 25786, + "litres": 39919, + "litt": 1216, + "litt": 47583, + "litter": 45431, + "litter": 17118, + "litters": 45300, + "little": 7024, + "little": 1274, + "littlemix": 29731, + "littlest": 48969, + "litur": 36830, + "litz": 30357, + "liu": 20466, + "liv": 13895, + "liv": 19901, + "livan": 12785, + "live": 3215, + "live": 1064, + "lived": 8867, + "livel": 17973, + "liveli": 26566, + "livelihood": 46497, + "livelihoods": 47716, + "lively": 19663, + "liveme": 35396, + "livemusic": 15688, + "liven": 41057, + "liveon": 22815, + "livepd": 38742, + "livepd": 31899, + "liver": 4755, + "liver": 12639, + "liverpool": 29778, + "liverpool": 5366, + "livery": 23248, + "lives": 3247, + "livesmatter": 20348, + "livestock": 22079, + "livestream": 16844, + "livetweet": 38546, + "livin": 28061, + "living": 10965, + "living": 2815, + "livingston": 30551, + "lix": 45068, + "liz": 8632, + "liz": 12242, + "liza": 28787, + "lizard": 17221, + "lizards": 41991, + "lizasober": 44487, + "lizasoberano": 45076, + "lizz": 34430, + "lizzie": 29530, + "lizzy": 32306, + "lj": 34211, + "lj": 32273, + "lju": 44562, + "lk": 39110, + "lk": 26596, + "lka": 21881, + "ll": 1657, + "ll": 865, + "lla": 15419, + "llama": 36679, + "llan": 17281, + "llan": 38728, + "lland": 31150, + "llc": 17161, + "lle": 26550, + "lle": 29732, + "llen": 41197, + "ller": 7722, + "llers": 26426, + "lli": 47015, + "lli": 13368, + "llis": 25518, + "lll": 27177, + "llll": 34874, + "llll": 43485, + "llo": 19293, + "lloy": 10092, + "lloyd": 33339, + "lloyd": 12400, + "llp": 28042, + "lls": 40535, + "lly": 26379, + "lm": 6981, + "lm": 15282, + "lma": 4493, + "lmao": 5121, + "lmaoo": 32623, + "lmaooo": 33362, + "lmaoooo": 45232, + "lmfa": 8928, + "lmfao": 11068, + "lmfaooo": 47658, + "lmp": 43575, + "lms": 30381, + "ln": 31644, + "ln": 18654, + "lng": 22339, + "lnp": 39679, + "lo": 549, + "lo": 2982, + "loa": 39678, + "load": 4515, + "load": 2834, + "loaded": 6756, + "loader": 28492, + "loading": 9975, + "loads": 8691, + "loaf": 26467, + "loaf": 18273, + "loan": 28431, + "loan": 8176, + "loans": 14206, + "lob": 11197, + "lob": 46606, + "lobal": 34574, + "lobb": 27698, + "lobby": 12449, + "lobbying": 36047, + "lobe": 46325, + "lobes": 24148, + "lobo": 39323, + "lobos": 36586, + "lobster": 13793, + "loc": 1378, + "loc": 25826, + "local": 9202, + "local": 2029, + "localized": 49399, + "locally": 15603, + "locals": 15041, + "locate": 20490, + "located": 5677, + "location": 4372, + "locations": 9580, + "loch": 20188, + "loch": 14101, + "lock": 7201, + "lock": 4381, + "lockdown": 35636, + "locke": 29698, + "locked": 8371, + "locker": 14053, + "lockhart": 48642, + "lockheed": 36637, + "locking": 19978, + "locks": 13212, + "lockscreen": 42439, + "loco": 25555, + "locom": 22798, + "locomo": 46147, + "locomotive": 30439, + "locu": 33635, + "locust": 46237, + "lod": 45650, + "lodge": 10504, + "loe": 30113, + "loe": 25484, + "loeb": 49334, + "lof": 15011, + "loff": 31008, + "loft": 35707, + "loft": 20049, + "loftus": 46689, + "log": 3239, + "log": 7383, + "logan": 20655, + "logan": 10569, + "logans": 40752, + "logg": 43002, + "logged": 31457, + "logger": 39089, + "logging": 24444, + "logi": 3177, + "logia": 48031, + "logic": 10670, + "logical": 4791, + "logically": 24782, + "logie": 33445, + "logies": 7378, + "login": 31121, + "logist": 7407, + "logistics": 14755, + "logists": 12233, + "logne": 19911, + "logo": 31480, + "logo": 5750, + "logos": 24879, + "logs": 22745, + "logue": 27785, + "logy": 22721, + "logy": 1659, + "loh": 49129, + "loh": 37983, + "loi": 35128, + "loid": 31408, + "loin": 21760, + "loire": 46040, + "lois": 27040, + "lok": 19908, + "lok": 23575, + "loki": 24435, + "lol": 10721, + "lol": 1824, + "lola": 19065, + "lolita": 42615, + "lolla": 45483, + "lolli": 27906, + "lollipop": 34605, + "lolly": 48264, + "lolo": 16895, + "lolo": 37481, + "lolol": 25280, + "lololol": 34738, + "lolz": 35260, + "lom": 9279, + "loma": 42889, + "lombar": 25493, + "lombard": 46461, + "lombardi": 44346, + "lomond": 48941, + "lon": 1235, + "lon": 6507, + "london": 6835, + "london": 1789, + "londonmarathon": 35018, + "lone": 22220, + "lone": 13576, + "lonel": 28872, + "loneliness": 30310, + "lonely": 34509, + "lonely": 12368, + "lonelyplanet": 44984, + "long": 4792, + "long": 1538, + "longe": 25793, + "longer": 5349, + "longest": 10731, + "longevity": 35354, + "longh": 20286, + "longhorn": 41047, + "longhorns": 38295, + "longing": 38482, + "longlive": 47840, + "longs": 43618, + "longtime": 19685, + "loo": 731, + "loo": 11804, + "look": 8874, + "look": 1012, + "lookalike": 38307, + "lookbook": 39184, + "looked": 4913, + "lookin": 11254, + "looking": 36898, + "looking": 1312, + "lookout": 18330, + "looks": 1606, + "lool": 33125, + "loom": 37440, + "loom": 17199, + "looming": 35384, + "looms": 30550, + "loon": 28222, + "loona": 48137, + "looney": 45315, + "looo": 20902, + "loool": 36016, + "looool": 47038, + "looooo": 31484, + "loop": 19606, + "loop": 10408, + "loops": 21625, + "loos": 45723, + "loose": 43815, + "loose": 9786, + "loot": 21518, + "lop": 36734, + "lop": 17066, + "lopes": 49269, + "lopez": 12982, + "lor": 2179, + "lor": 11335, + "lord": 18896, + "lord": 3486, + "lorde": 35483, + "lords": 14969, + "lore": 12880, + "lore": 27218, + "loren": 13602, + "loren": 33398, + "lorenzo": 21342, + "lores": 34510, + "loretta": 40863, + "lori": 20164, + "lori": 23095, + "lorna": 46316, + "lorraine": 27602, + "lorry": 31354, + "los": 32217, + "los": 3087, + "losange": 14037, + "losangeles": 14638, + "lose": 43318, + "lose": 5354, + "loser": 18168, + "losers": 23201, + "loses": 14263, + "losing": 7918, + "loss": 34761, + "loss": 4327, + "losses": 16909, + "lost": 14258, + "lost": 2624, + "lostdog": 48482, + "lot": 5132, + "lot": 1954, + "loth": 43625, + "lothian": 31360, + "lothing": 42058, + "lotion": 25260, + "lotr": 34165, + "lots": 2958, + "lott": 42854, + "lotta": 29125, + "lotte": 16535, + "lotte": 7274, + "lottery": 16975, + "lottie": 48517, + "lotto": 28265, + "lotus": 13824, + "lou": 2207, + "lou": 9745, + "loubout": 38369, + "loud": 22884, + "loud": 7464, + "louder": 25904, + "loudest": 49214, + "loudly": 39256, + "lough": 21927, + "lough": 28045, + "loughborough": 49153, + "loui": 42173, + "louie": 25790, + "louis": 8916, + "louis": 4459, + "louisa": 40011, + "louise": 32275, + "louise": 13076, + "louisi": 12187, + "louisiana": 12946, + "louisville": 13860, + "louisvuitton": 44911, + "loun": 6466, + "lounge": 7141, + "lounging": 45430, + "lour": 29383, + "lourdes": 45071, + "louvre": 36995, + "lov": 8923, + "lov": 21229, + "lova": 37394, + "lovable": 38565, + "lovato": 18960, + "love": 2618, + "love": 793, + "lovecraft": 42405, + "loved": 3249, + "lovefl": 38884, + "loveher": 38306, + "lovehim": 45733, + "loveis": 30931, + "loveisland": 30970, + "loveislove": 43603, + "loveit": 24764, + "lovel": 8999, + "lovelies": 31412, + "lovelondon": 46493, + "lovely": 33250, + "lovely": 2165, + "lovemy": 20041, + "lovemyjob": 40130, + "loven": 33754, + "lover": 28508, + "lover": 7168, + "lovers": 48416, + "lovers": 5973, + "loves": 37773, + "loves": 3925, + "lovethe": 33040, + "lovethem": 48298, + "lovett": 47095, + "lovewins": 47687, + "loveyou": 39226, + "loveyou": 25964, + "loveyour": 26462, + "lovin": 33442, + "lovin": 16354, + "loving": 29568, + "loving": 3721, + "lovingly": 44100, + "low": 1049, + "low": 1042, + "loway": 16104, + "lowe": 17910, + "lowed": 22733, + "lowell": 24458, + "lower": 32578, + "lower": 4909, + "lowered": 34968, + "lowering": 35261, + "lowers": 36398, + "lowes": 38515, + "lowest": 12098, + "lowing": 8283, + "lowkey": 29481, + "lowry": 27444, + "lows": 4406, + "lox": 41725, + "loy": 4519, + "loy": 23929, + "loyal": 13032, + "loyalty": 14686, + "loyd": 44212, + "loyed": 29279, + "loyment": 18307, + "loyola": 32569, + "lp": 22282, + "lp": 6392, + "lpc": 44092, + "lpg": 47905, + "lpga": 34295, + "lps": 32094, + "lr": 20572, + "lr": 7041, + "lrt": 32996, + "ls": 19051, + "ls": 1268, + "lsd": 43766, + "lse": 46127, + "lse": 43886, + "lsu": 35428, + "lsu": 15672, + "lt": 13642, + "lt": 3333, + "ltc": 27664, + "ltd": 6802, + "lte": 25202, + "lton": 14237, + "lu": 664, + "lu": 9657, + "lub": 22469, + "lub": 11836, + "lubbock": 37660, + "lubric": 40963, + "luc": 7013, + "luc": 28014, + "luca": 21053, + "lucas": 23425, + "lucas": 10225, + "lucci": 45849, + "luce": 46217, + "lucent": 41552, + "lucer": 36042, + "luch": 36646, + "lucha": 38449, + "luci": 8787, + "lucia": 22290, + "luciano": 46365, + "lucid": 44540, + "lucie": 39461, + "lucifer": 46224, + "lucifer": 27687, + "lucille": 47454, + "lucin": 27523, + "luck": 9647, + "luck": 2820, + "luckiest": 42469, + "luckily": 20100, + "lucknow": 29407, + "lucky": 20495, + "lucky": 4133, + "lucrative": 41485, + "lucy": 17262, + "lucy": 10120, + "lud": 14288, + "lude": 28755, + "ludo": 40141, + "ludwig": 30633, + "lue": 45199, + "luf": 25264, + "lufc": 17818, + "luffy": 39047, + "lufthan": 37769, + "lufthansa": 39145, + "lug": 45521, + "lugg": 19673, + "luggage": 20138, + "luhan": 20975, + "luigi": 28444, + "luis": 25231, + "luis": 11339, + "luiz": 39633, + "lujah": 31639, + "luk": 21652, + "luka": 34878, + "lukaku": 37177, + "lukas": 37941, + "luke": 11970, + "luke": 5652, + "lul": 20861, + "lulla": 37019, + "lullaby": 41676, + "lulu": 32052, + "lulu": 26935, + "lum": 18112, + "lum": 5997, + "lumb": 36231, + "lumber": 27421, + "lumber": 34692, + "lumi": 41437, + "lumia": 31912, + "lumin": 15867, + "luminous": 37913, + "lump": 38704, + "lumpur": 34411, + "lun": 3221, + "lun": 49390, + "luna": 14425, + "lunar": 16043, + "lunatic": 45874, + "lunch": 10954, + "lunch": 2772, + "luncheon": 15104, + "lunches": 29705, + "lunchtime": 14330, + "lund": 30975, + "lund": 20181, + "lunes": 35648, + "lung": 38479, + "lung": 16271, + "lungs": 27366, + "lup": 27413, + "lupita": 49352, + "lupus": 36017, + "lur": 14439, + "lure": 31376, + "lures": 46747, + "lurking": 29941, + "lus": 7158, + "lusci": 38004, + "luscious": 39935, + "lush": 40382, + "lush": 16263, + "lust": 42071, + "lust": 12662, + "lustre": 46673, + "luther": 21848, + "luther": 17208, + "lutheran": 27341, + "luton": 28288, + "luv": 24726, + "luv": 8502, + "lux": 3439, + "lux": 16704, + "luxe": 26373, + "luxemb": 21314, + "luxembour": 22712, + "luxembourg": 23949, + "luxu": 16112, + "luxurious": 17292, + "luxury": 12083, + "luxury": 5247, + "luxurytravel": 29010, + "luz": 41008, + "lv": 10862, + "lv": 11184, + "lvl": 31256, + "lw": 40515, + "lw": 35115, + "lx": 30789, + "ly": 1251, + "ly": 597, + "lydia": 24316, + "lyf": 43688, + "lyfe": 30787, + "lyft": 32944, + "lying": 7175, + "lyk": 46376, + "lyle": 36828, + "lym": 20087, + "lyme": 31167, + "lymph": 30073, + "lymphoma": 37648, + "lyn": 3957, + "lyn": 5054, + "lynch": 31586, + "lynch": 13560, + "lynd": 33416, + "lynda": 42959, + "lyndon": 48518, + "lynn": 25303, + "lynn": 10667, + "lynne": 26900, + "lynx": 28941, + "lyon": 17176, + "lyons": 29453, + "lyric": 24366, + "lyric": 21291, + "lyrical": 33358, + "lyricist": 49013, + "lyrics": 9551, + "lyrix": 46814, + "lys": 45054, + "lyte": 40059, + "lywood": 4012, + "lz": 30818, + "lé": 39641, + "m": 76, + "m": 332, + "ma": 577, + "ma": 1226, + "maa": 42774, + "maa": 21555, + "maan": 33668, + "maar": 48927, + "maas": 43332, + "mab": 35639, + "mabel": 47319, + "mable": 23001, + "mably": 40082, + "mabu": 44682, + "mac": 1961, + "mac": 4945, + "macar": 21558, + "macaroni": 41824, + "macarthur": 36785, + "macau": 43984, + "macau": 33370, + "macbeth": 36321, + "macbook": 20617, + "macdonald": 20315, + "mace": 44869, + "maced": 21102, + "macedonia": 27071, + "macfar": 45374, + "macfarlane": 48825, + "mach": 2637, + "mach": 35091, + "machado": 42318, + "mache": 43220, + "macher": 29330, + "machi": 41783, + "machin": 17972, + "machine": 11539, + "machine": 4169, + "machinelearning": 13621, + "machinery": 21858, + "machines": 11108, + "machining": 45562, + "macho": 43977, + "macht": 45225, + "macin": 36533, + "mack": 8590, + "mack": 12145, + "mackay": 32497, + "macken": 48057, + "mackenzie": 22351, + "mackerel": 35002, + "mackin": 26010, + "macklemore": 41758, + "macle": 33843, + "maclean": 47137, + "macleod": 43684, + "macmillan": 36364, + "macmillan": 35191, + "macon": 35818, + "macos": 45469, + "macqu": 38365, + "macquarie": 40858, + "macro": 20891, + "macro": 16626, + "macron": 24859, + "macs": 46548, + "macy": 17113, + "macys": 47652, + "mad": 2740, + "mad": 3843, + "mada": 37799, + "madagas": 24758, + "madagascar": 25744, + "madam": 33634, + "madam": 27538, + "madame": 23507, + "madd": 31717, + "madden": 19093, + "maddie": 39959, + "maddie": 18875, + "maddow": 32644, + "maddy": 31734, + "made": 5388, + "made": 1105, + "madein": 13670, + "madeira": 33810, + "madel": 34532, + "madele": 29831, + "madeleine": 33264, + "madeline": 33905, + "madewith": 28627, + "madewithunity": 43190, + "madhu": 23000, + "madhuri": 38346, + "madhuridixit": 43889, + "madhya": 48302, + "madi": 6527, + "madi": 27282, + "madison": 24798, + "madison": 8791, + "madmen": 45452, + "madness": 8755, + "madon": 44852, + "madonna": 14137, + "madra": 27416, + "madras": 42046, + "madre": 42130, + "madri": 5529, + "madrid": 5909, + "mads": 41201, + "madu": 34913, + "madurai": 49159, + "maduro": 32912, + "mae": 16898, + "mae": 17339, + "maer": 47088, + "maestro": 24140, + "mafi": 47164, + "mafia": 14890, + "mag": 1191, + "mag": 4508, + "maga": 8694, + "magaz": 2974, + "magazine": 3113, + "magazines": 22253, + "magdal": 29673, + "mage": 46568, + "mage": 10923, + "magee": 43872, + "magenta": 38091, + "magento": 42442, + "mages": 31059, + "maggi": 29611, + "maggie": 41443, + "maggie": 14524, + "maggio": 49087, + "magh": 45555, + "magi": 19270, + "magic": 13061, + "magic": 3778, + "magical": 36408, + "magical": 7823, + "magician": 26368, + "magin": 42678, + "maging": 41310, + "magn": 10290, + "magna": 34076, + "magne": 9921, + "magnesium": 36379, + "magnet": 18240, + "magnetic": 13838, + "magnets": 33030, + "magni": 24297, + "magnific": 9725, + "magnificent": 10724, + "magnitude": 22955, + "magno": 21184, + "magnolia": 27123, + "magnu": 45198, + "magnum": 23496, + "magnus": 26275, + "magpie": 45973, + "mags": 31021, + "maguire": 26470, + "mah": 7206, + "mah": 10801, + "maha": 12237, + "maha": 33983, + "mahal": 22301, + "mahan": 45191, + "mahar": 11635, + "maharaj": 38488, + "maharashtra": 19328, + "mahat": 32434, + "mahatma": 40530, + "mahe": 15756, + "maher": 29826, + "mahesh": 33448, + "mahesh": 22095, + "mahi": 32529, + "mahi": 38659, + "mahin": 24113, + "mahindra": 31285, + "mahmoud": 41361, + "mahog": 30804, + "mahogany": 33084, + "mahon": 45864, + "mahon": 20371, + "mahone": 26634, + "mai": 7138, + "mai": 14595, + "maia": 46585, + "maid": 23148, + "maid": 10226, + "maidan": 37346, + "maiden": 37011, + "maiden": 13809, + "maids": 27305, + "maidstone": 44395, + "mail": 10478, + "mail": 2614, + "mailbox": 31482, + "mailed": 42314, + "mailing": 26680, + "mailonline": 26021, + "mails": 45213, + "main": 3904, + "main": 2623, + "maine": 18639, + "maine": 7836, + "mained": 15609, + "mainedcm": 15845, + "mainland": 27629, + "mainly": 15280, + "mains": 33656, + "mainst": 42102, + "mainstream": 18034, + "maintain": 12954, + "maintained": 26665, + "maintaining": 21964, + "maintains": 38335, + "mainten": 9399, + "maintenance": 9610, + "mais": 28153, + "maisie": 47355, + "maison": 37065, + "maison": 27626, + "mait": 26387, + "maize": 35386, + "maj": 2948, + "maj": 28723, + "maja": 47498, + "maje": 9852, + "majestic": 15335, + "majesty": 21188, + "major": 8008, + "major": 3350, + "majority": 10508, + "majors": 23597, + "mak": 11271, + "mak": 19253, + "makar": 42242, + "makati": 39402, + "make": 3232, + "make": 1078, + "makeaw": 45859, + "makeinindia": 42739, + "makeit": 26308, + "maken": 47093, + "makeover": 17926, + "maker": 15196, + "maker": 4836, + "makers": 6577, + "makerspace": 42400, + "makes": 2088, + "makeshift": 43274, + "makeu": 41707, + "makeup": 26402, + "makeup": 5853, + "makeyourown": 34090, + "makeyourownlane": 34823, + "maki": 34514, + "makin": 43096, + "makin": 22407, + "making": 17976, + "making": 1665, + "makk": 39852, + "maknae": 44118, + "mako": 49061, + "mal": 1662, + "mal": 3796, + "mala": 28290, + "malade": 36928, + "malaga": 35395, + "malala": 41137, + "malam": 48956, + "malaria": 24929, + "malawi": 23405, + "malay": 5323, + "malay": 42430, + "malayalam": 34860, + "malaysi": 39668, + "malaysia": 8146, + "malaysian": 21136, + "malbec": 47741, + "malcol": 12645, + "malcolm": 14139, + "maldives": 16795, + "male": 11326, + "male": 2801, + "males": 14426, + "malhotra": 28866, + "mali": 6701, + "mali": 22669, + "malia": 46714, + "malibu": 21723, + "malicious": 42147, + "malign": 41122, + "malik": 11394, + "mall": 10984, + "mall": 6220, + "mallorca": 28082, + "mallory": 38968, + "malls": 36447, + "malm": 44071, + "malnutrition": 41153, + "malo": 43518, + "malone": 19852, + "maloney": 45897, + "mals": 25370, + "malt": 21688, + "malta": 16989, + "maltese": 39838, + "malvern": 39356, + "malware": 24153, + "mam": 4404, + "mam": 17778, + "mama": 7133, + "mamamoo": 36012, + "mamas": 42395, + "mamba": 44189, + "mament": 45690, + "mami": 43858, + "mamma": 34893, + "mammal": 33385, + "mammals": 31987, + "mammoth": 28022, + "man": 723, + "man": 786, + "mana": 29467, + "mana": 15837, + "manafort": 40108, + "manag": 1830, + "manage": 9770, + "managed": 7928, + "management": 3319, + "manager": 3898, + "managerial": 44261, + "managers": 12853, + "manages": 29699, + "managing": 10892, + "manas": 44188, + "manatee": 46558, + "mance": 2324, + "manchester": 24424, + "manchester": 4651, + "mancini": 47681, + "mancity": 31538, + "mancrush": 36945, + "mancrushmonday": 39307, + "mand": 4325, + "mand": 27244, + "mandala": 41106, + "mandarin": 26455, + "mandate": 26228, + "mandatory": 19934, + "mandel": 34960, + "mandela": 16280, + "mandi": 38961, + "mandir": 35815, + "mando": 34006, + "mands": 12340, + "mandu": 31440, + "mandy": 41505, + "mandy": 24302, + "mane": 44471, + "mane": 16044, + "maneu": 33216, + "mang": 25616, + "mang": 31096, + "manga": 11873, + "mangal": 43027, + "manger": 48251, + "mango": 43831, + "mango": 13962, + "mangrove": 47180, + "manhatt": 10152, + "manhattan": 10961, + "mani": 5654, + "mani": 10718, + "mania": 8435, + "maniac": 31814, + "maniacs": 41444, + "manian": 40077, + "manic": 23017, + "manic": 37825, + "manicure": 33637, + "manife": 14379, + "manifest": 34422, + "manifestation": 48348, + "manifesto": 20907, + "manil": 38827, + "manila": 10969, + "manipu": 40261, + "manipul": 19237, + "manipulation": 30277, + "manipur": 47757, + "manish": 41759, + "manish": 44720, + "manit": 15693, + "manitoba": 20342, + "manjaro": 41489, + "mankind": 24155, + "manly": 25194, + "mann": 19396, + "mann": 4783, + "manne": 30160, + "manned": 26139, + "mannequin": 43388, + "manner": 20700, + "manners": 31693, + "manning": 15996, + "manny": 37054, + "manny": 20933, + "mano": 15753, + "mano": 24016, + "manoj": 41146, + "manor": 41830, + "manor": 13614, + "mans": 28422, + "mans": 7746, + "mansfield": 25543, + "manship": 15460, + "mansion": 13404, + "manslaughter": 48632, + "manson": 26715, + "mant": 25122, + "mant": 27037, + "manta": 41431, + "mantis": 39946, + "mantle": 22159, + "mantra": 25162, + "manu": 3404, + "manu": 25799, + "manual": 12268, + "manuel": 29171, + "manuel": 9567, + "manufac": 5105, + "manufacture": 27741, + "manufactured": 24010, + "manufacturer": 15668, + "manufacturers": 18763, + "manufacturing": 8386, + "manure": 47907, + "manus": 28181, + "manuscript": 24365, + "manuscripts": 40765, + "manutd": 20994, + "many": 28484, + "many": 1346, + "manziel": 40637, + "mao": 47447, + "mao": 25605, + "maori": 43400, + "map": 25180, + "map": 3923, + "maple": 21980, + "maple": 10570, + "mapleleafs": 41257, + "mapoli": 28768, + "mapp": 36894, + "mapped": 41596, + "mapping": 15231, + "maps": 8765, + "mapu": 42082, + "mar": 675, + "mar": 3091, + "mara": 15655, + "marais": 47913, + "maran": 44732, + "marath": 16274, + "marathi": 34102, + "marathon": 40764, + "marathon": 5910, + "marau": 38475, + "marbella": 36182, + "marble": 45429, + "marble": 13071, + "marbles": 42931, + "marc": 14054, + "marc": 9075, + "marca": 38242, + "marcel": 17726, + "marcel": 24652, + "marcelo": 35939, + "march": 10638, + "march": 2227, + "marche": 36173, + "marched": 37976, + "marches": 38249, + "marchfor": 31721, + "marching": 15082, + "marchmadness": 28555, + "marci": 36698, + "marcia": 41075, + "marck": 47733, + "marco": 24719, + "marco": 10924, + "marcor": 39945, + "marcorubio": 41143, + "marcos": 21696, + "marcu": 20760, + "marcus": 48955, + "marcus": 9895, + "mardi": 39728, + "mardi": 29229, + "mardigras": 43343, + "mare": 26512, + "mare": 8870, + "mares": 19724, + "marg": 44014, + "margar": 16838, + "margare": 10232, + "margaret": 12185, + "margarita": 25958, + "margaritas": 42679, + "margate": 37428, + "margin": 19464, + "margin": 21357, + "marginal": 38320, + "margins": 33763, + "margot": 37144, + "mari": 2603, + "mari": 19322, + "maria": 41109, + "maria": 6595, + "mariachi": 44299, + "mariah": 31214, + "mariah": 24789, + "mariahcarey": 36538, + "marian": 41129, + "marian": 24677, + "mariana": 44224, + "marianne": 32214, + "mariano": 43988, + "marie": 20657, + "marie": 7864, + "marietta": 46634, + "marig": 41002, + "marijuana": 9864, + "maril": 14611, + "marilyn": 38959, + "marilyn": 18489, + "marin": 8910, + "marin": 23992, + "marina": 12060, + "marinated": 33406, + "marine": 20674, + "marine": 5746, + "mariner": 39972, + "mariners": 19086, + "marines": 15018, + "marino": 30878, + "mario": 39176, + "mario": 7600, + "marion": 37765, + "marion": 18397, + "maris": 21512, + "maris": 33093, + "marisa": 42938, + "mariska": 44703, + "marissa": 31219, + "marist": 48223, + "mariti": 13124, + "maritime": 14331, + "marj": 38639, + "mark": 3805, + "mark": 2110, + "marke": 2399, + "marked": 12360, + "marker": 18170, + "markers": 23664, + "market": 11614, + "market": 2196, + "marketer": 33482, + "marketers": 23682, + "marketing": 19535, + "marketing": 2905, + "marketplace": 18241, + "markets": 7292, + "markham": 39817, + "marking": 14705, + "markings": 41046, + "markle": 32672, + "marko": 38338, + "marks": 5466, + "markus": 33725, + "marl": 24922, + "marlborough": 43515, + "marlene": 45117, + "marley": 16504, + "marlin": 34275, + "marlins": 23309, + "marlon": 32995, + "marmalade": 39068, + "marnock": 48305, + "maro": 27029, + "maroon": 20501, + "marqu": 20704, + "marque": 13012, + "marquee": 27725, + "marquette": 37624, + "marquez": 27317, + "marquis": 33530, + "marr": 32871, + "marrake": 37125, + "marrakech": 39006, + "marri": 3839, + "marriage": 38047, + "marriage": 7040, + "marriages": 38190, + "married": 6791, + "marries": 46283, + "marriott": 19211, + "marrow": 31030, + "marry": 13288, + "marrying": 40507, + "mars": 41469, + "mars": 7496, + "marsden": 43344, + "marse": 26577, + "marseille": 30365, + "marsh": 9237, + "marsh": 13505, + "marsha": 21491, + "marshal": 26608, + "marshall": 30939, + "marshall": 9811, + "marshals": 44175, + "marshes": 43450, + "marshmal": 21069, + "marshmallow": 28530, + "marshmallows": 39471, + "mart": 2348, + "mart": 7772, + "marta": 32858, + "martens": 43211, + "marth": 34493, + "martha": 16427, + "marti": 20577, + "martial": 17088, + "martialarts": 35895, + "martian": 30214, + "martin": 6929, + "martin": 3690, + "martina": 34393, + "martinez": 13913, + "marting": 47570, + "martini": 22199, + "martino": 41675, + "martins": 30569, + "marty": 9926, + "marty": 17169, + "martyn": 44075, + "martyr": 36155, + "martyr": 26067, + "martyrdom": 43110, + "martyred": 39114, + "martyrs": 24707, + "maru": 37413, + "maru": 31838, + "marvel": 13835, + "marvel": 5996, + "marvelcomics": 46897, + "marvell": 26576, + "marvellous": 28402, + "marvelous": 25487, + "marvin": 19675, + "marx": 30559, + "marx": 26001, + "marxist": 45205, + "mary": 5146, + "mary": 2676, + "maryam": 33636, + "maryam": 36393, + "maryland": 11379, + "marys": 40905, + "marys": 40228, + "mas": 5226, + "mas": 1412, + "masa": 24995, + "masa": 41868, + "masala": 31483, + "masc": 23564, + "mascar": 46984, + "mascara": 31635, + "mascot": 13983, + "mascots": 43266, + "mascul": 25589, + "masculine": 48269, + "masculinity": 40465, + "mase": 49128, + "maser": 25798, + "maserati": 30442, + "mash": 12317, + "mash": 15680, + "mashable": 41026, + "mashed": 27395, + "mashup": 27079, + "masi": 35965, + "masjid": 31420, + "mask": 19262, + "mask": 8306, + "masked": 25757, + "masking": 47046, + "masks": 19055, + "maslow": 44359, + "mason": 17424, + "mason": 9699, + "masonic": 36491, + "masonry": 30764, + "masons": 37195, + "masqu": 26593, + "masquer": 29604, + "masquerade": 36944, + "mass": 4636, + "mass": 4854, + "massach": 14484, + "massachuse": 14577, + "massachusetts": 14756, + "massacre": 14696, + "massage": 13055, + "masse": 41735, + "masses": 22978, + "massey": 29868, + "massi": 17239, + "massimo": 45821, + "massive": 4818, + "massively": 34297, + "mast": 45916, + "mast": 27920, + "master": 4534, + "master": 3498, + "mastercard": 40542, + "masterchef": 34809, + "masterclass": 17529, + "mastered": 32616, + "masterful": 46823, + "mastering": 28326, + "mastermind": 34029, + "masterpiece": 12066, + "masterpieces": 37596, + "masters": 6913, + "mastery": 34800, + "mastiff": 42311, + "maswar": 47887, + "mat": 905, + "mat": 9063, + "mata": 17270, + "match": 7733, + "match": 2439, + "matcha": 32433, + "matchday": 15947, + "matched": 17792, + "matches": 8609, + "matching": 11840, + "matchup": 19355, + "matchups": 49162, + "mate": 6137, + "mate": 2936, + "mated": 33813, + "mateo": 34991, + "mater": 23724, + "materi": 7084, + "material": 7118, + "materials": 8161, + "maternal": 26131, + "maternity": 23894, + "mates": 5817, + "math": 13277, + "math": 6025, + "mathe": 8725, + "mathemat": 11901, + "mathematical": 25609, + "mathematician": 41036, + "mathematics": 20113, + "mathew": 36333, + "mathews": 37120, + "mathi": 23014, + "mathieu": 40417, + "maths": 14763, + "mati": 12716, + "mati": 32268, + "matic": 36859, + "matic": 7900, + "matically": 38282, + "matics": 23634, + "matil": 26751, + "matilda": 36308, + "matin": 44849, + "matinee": 38525, + "mating": 34346, + "mation": 11701, + "matisse": 43446, + "mato": 13127, + "matologist": 48842, + "matology": 27940, + "matory": 25519, + "matri": 27041, + "matrix": 18078, + "mats": 22259, + "matsu": 30242, + "matt": 7972, + "matt": 3972, + "mattb": 42791, + "matte": 31237, + "matte": 19771, + "mattel": 35365, + "matteo": 33120, + "matter": 30471, + "matter": 3828, + "matters": 5708, + "matth": 41846, + "matthe": 5116, + "matthew": 17588, + "matthew": 7008, + "matthews": 16739, + "matthi": 29853, + "matthias": 45104, + "matti": 39840, + "mattress": 23438, + "matty": 31233, + "matty": 29176, + "matu": 40616, + "matur": 22897, + "mature": 14417, + "maturity": 28047, + "mau": 8134, + "mau": 23033, + "maui": 20463, + "maul": 30725, + "maur": 10574, + "maure": 25191, + "maureen": 31723, + "maurice": 20200, + "mauricio": 39066, + "mauriti": 28406, + "mauritius": 29305, + "mauro": 41691, + "mav": 25697, + "maver": 16700, + "maverick": 27425, + "mavericks": 30092, + "mavs": 30665, + "maw": 39351, + "maw": 42271, + "mawards": 37682, + "max": 4898, + "max": 3902, + "maxi": 8554, + "maxi": 23266, + "maxim": 19892, + "maxim": 38574, + "maximize": 28673, + "maximum": 13162, + "maximus": 44312, + "maxine": 38468, + "maxwell": 19611, + "maxx": 37466, + "may": 1686, + "may": 1270, + "maya": 45783, + "maya": 12987, + "mayan": 37952, + "maybe": 3746, + "mayday": 29957, + "mayer": 21196, + "mayfair": 35171, + "mayfield": 33933, + "mayhem": 21502, + "maymay": 26600, + "maymay": 33853, + "maymayentrata": 30480, + "maynard": 32487, + "mayne": 35771, + "mayo": 22449, + "mayo": 11280, + "mayor": 15429, + "mayor": 4676, + "mayoral": 28983, + "mayorof": 43533, + "mayors": 28501, + "mays": 35445, + "maythe": 42281, + "mayward": 45751, + "mayward": 23519, + "mayweather": 22774, + "maz": 9177, + "maz": 36215, + "mazda": 18506, + "maze": 21988, + "mazz": 29439, + "mañ": 37059, + "mañana": 39354, + "mb": 758, + "mb": 3996, + "mba": 8329, + "mban": 46685, + "mbar": 44452, + "mbb": 10736, + "mbc": 20137, + "mbe": 38395, + "mbe": 27004, + "mber": 5467, + "mber": 1034, + "mberg": 26372, + "mbers": 5443, + "mbi": 45347, + "mble": 20310, + "mble": 4756, + "mbles": 28693, + "mbling": 28604, + "mbo": 25733, + "mbo": 11319, + "mbps": 44896, + "mbs": 10370, + "mbta": 38979, + "mbu": 42228, + "mbuhari": 36752, + "mc": 1278, + "mc": 4126, + "mca": 40570, + "mca": 14635, + "mcal": 28663, + "mcar": 43776, + "mcbride": 35080, + "mcc": 21192, + "mccabe": 37628, + "mccaf": 47385, + "mccain": 20397, + "mccall": 34844, + "mccann": 27140, + "mccar": 9570, + "mccarthy": 16974, + "mccartney": 19958, + "mccl": 24709, + "mccla": 43672, + "mccle": 40139, + "mcclure": 44945, + "mcco": 46152, + "mccon": 32638, + "mccor": 23057, + "mccormack": 45164, + "mccormick": 39088, + "mccoy": 20218, + "mccr": 41996, + "mccre": 25393, + "mccul": 38833, + "mccull": 41782, + "mcd": 28930, + "mcder": 27355, + "mcdermott": 34504, + "mcdon": 12171, + "mcdonald": 10741, + "mcdonalds": 17674, + "mcdonnell": 34360, + "mcdowell": 34119, + "mce": 26864, + "mcel": 28752, + "mcen": 47423, + "mcfad": 36976, + "mcfadden": 42105, + "mcfar": 29020, + "mcfarlane": 47174, + "mcfc": 16416, + "mcfly": 38211, + "mcg": 42507, + "mcg": 27995, + "mcgee": 29223, + "mcgill": 46524, + "mcgill": 35511, + "mcgin": 29596, + "mcgowan": 40462, + "mcgr": 25169, + "mcgra": 29367, + "mcgrath": 28759, + "mcgraw": 40950, + "mcgregor": 19642, + "mcgu": 34294, + "mcguinness": 45299, + "mcguire": 32635, + "mci": 46212, + "mci": 45491, + "mcil": 30481, + "mcin": 18770, + "mcintosh": 45353, + "mcintyre": 33369, + "mck": 6781, + "mckay": 33611, + "mcke": 27424, + "mckee": 43529, + "mcken": 42619, + "mckenna": 24924, + "mckenzie": 25502, + "mckin": 15437, + "mckinley": 39891, + "mckinney": 33554, + "mckinnon": 48736, + "mckinsey": 48143, + "mcl": 49021, + "mcla": 12565, + "mclaren": 37381, + "mclaren": 16789, + "mclau": 32285, + "mclaughlin": 35346, + "mcle": 25299, + "mclean": 28666, + "mcleod": 40259, + "mcm": 12251, + "mcmahon": 24026, + "mcmaster": 42703, + "mcmillan": 45603, + "mcn": 42919, + "mcnam": 32682, + "mcnamara": 37506, + "mcne": 42545, + "mco": 33723, + "mcqueen": 22544, + "mcr": 29884, + "mcr": 16966, + "mcs": 27020, + "mcu": 30403, + "md": 8637, + "md": 4732, + "mdc": 38773, + "mdc": 41761, + "mds": 48746, + "mdt": 40822, + "me": 613, + "me": 614, + "mea": 46045, + "mea": 17711, + "mead": 12134, + "mead": 21567, + "meade": 37218, + "meado": 16402, + "meadow": 25213, + "meadow": 17195, + "meadows": 17178, + "meal": 29662, + "meal": 5478, + "meals": 11229, + "mean": 4189, + "mean": 3450, + "meand": 48015, + "meaning": 14586, + "meaning": 8342, + "meaningful": 17480, + "meaningless": 48932, + "meanings": 45814, + "means": 3494, + "meant": 8674, + "meantime": 27499, + "meanwhile": 9650, + "meas": 5867, + "measles": 38230, + "measurable": 48010, + "measure": 15261, + "measure": 10579, + "measured": 23154, + "measurement": 20973, + "measurements": 29894, + "measures": 11936, + "measuring": 18064, + "meat": 10805, + "meat": 6480, + "meatball": 43642, + "meatballs": 29233, + "meath": 37920, + "meatless": 48085, + "meats": 29558, + "mec": 27432, + "mecca": 36095, + "mech": 38305, + "mechan": 6715, + "mechanic": 24582, + "mechanical": 14467, + "mechanics": 20536, + "mechanism": 22576, + "mechanisms": 28610, + "meck": 41908, + "med": 1948, + "med": 2177, + "meda": 33614, + "medal": 29714, + "medal": 6974, + "medalist": 21040, + "medalists": 43397, + "medalli": 31349, + "medallion": 43469, + "medallist": 41472, + "medals": 14710, + "mede": 48225, + "meded": 27627, + "medi": 1436, + "media": 22064, + "media": 1895, + "mediac": 37490, + "median": 30491, + "mediation": 42829, + "medic": 3602, + "medic": 35441, + "medicaid": 25421, + "medical": 18432, + "medical": 4116, + "medicare": 23710, + "medication": 23771, + "medications": 37181, + "medicinal": 28772, + "medicine": 5616, + "medicines": 26541, + "medics": 46688, + "medieval": 38956, + "medieval": 10789, + "medina": 27281, + "mediocre": 41170, + "medit": 19130, + "meditate": 38039, + "meditation": 10827, + "mediter": 14194, + "mediterran": 14358, + "mediterranean": 15327, + "medium": 8675, + "medley": 24793, + "meds": 25075, + "medtech": 42044, + "medusa": 44216, + "medway": 42286, + "mee": 1725, + "mee": 14075, + "meek": 28935, + "meen": 37940, + "meen": 46515, + "meer": 26714, + "meer": 27555, + "meet": 5714, + "meet": 1633, + "meeting": 48566, + "meeting": 2071, + "meetings": 9980, + "meets": 5972, + "meetthe": 27575, + "meetup": 15430, + "meg": 11500, + "meg": 16186, + "mega": 15979, + "mega": 9068, + "megab": 38103, + "megadeth": 46741, + "megal": 37650, + "megam": 26073, + "megan": 19127, + "megan": 11503, + "megap": 33624, + "megat": 35581, + "megh": 31192, + "meghan": 39939, + "meghan": 18261, + "meh": 10512, + "meh": 22211, + "mehta": 25031, + "mei": 22564, + "mei": 25198, + "meier": 29812, + "mein": 28857, + "mein": 21466, + "meister": 28407, + "mek": 44645, + "mel": 1902, + "mel": 6834, + "mela": 35032, + "melan": 22261, + "melanch": 44818, + "melancholy": 47821, + "melani": 34031, + "melania": 32796, + "melanie": 22153, + "melanoma": 40862, + "melb": 47007, + "melb": 28980, + "melbourne": 28387, + "melbourne": 6995, + "melee": 45108, + "meli": 28885, + "melinda": 46303, + "melis": 18913, + "melissa": 41866, + "melissa": 13030, + "mell": 22531, + "mell": 41583, + "mello": 47594, + "mellon": 45162, + "mellow": 32034, + "melo": 10354, + "melo": 22374, + "melodic": 41877, + "melodies": 38412, + "melody": 19119, + "melon": 12146, + "melrose": 36296, + "melt": 22209, + "melt": 15957, + "meltdown": 30613, + "melted": 23037, + "melting": 19247, + "melton": 46062, + "melts": 31446, + "melville": 46030, + "melvin": 31544, + "mely": 6373, + "mem": 4937, + "mem": 34944, + "memb": 2114, + "member": 29566, + "member": 1640, + "members": 2567, + "membership": 11562, + "membrane": 34088, + "meme": 35157, + "meme": 9169, + "memes": 12828, + "memo": 15967, + "memo": 19334, + "memoir": 20532, + "memoirs": 45311, + "memor": 1858, + "memorab": 26271, + "memorabilia": 27488, + "memorable": 13172, + "memorial": 16285, + "memorial": 4642, + "memorialday": 21598, + "memoriam": 48191, + "memories": 4304, + "memory": 44766, + "memory": 5137, + "memph": 10285, + "memphis": 38432, + "memphis": 11298, + "men": 1552, + "men": 1656, + "mena": 23052, + "menace": 29949, + "mend": 8151, + "mend": 46927, + "mendel": 49268, + "mendes": 18060, + "mendez": 48275, + "mendo": 19327, + "mendoza": 23680, + "meng": 37102, + "meng": 37450, + "mening": 46428, + "menon": 38255, + "menopau": 34974, + "menopause": 46026, + "mens": 16924, + "mens": 10495, + "mensfashion": 27578, + "menstru": 28345, + "menstrual": 40915, + "menswear": 18803, + "ment": 1585, + "ment": 777, + "mental": 8611, + "mental": 3448, + "mentalhealth": 20593, + "mentalhealth": 13022, + "mentality": 26647, + "mentally": 14307, + "mentary": 4468, + "mentation": 9512, + "mentday": 40397, + "mente": 40302, + "mente": 36396, + "mented": 9249, + "menting": 14471, + "mention": 43881, + "mention": 6762, + "mentioned": 11948, + "mentioning": 34290, + "mentions": 12334, + "mento": 30582, + "mentor": 45342, + "mentor": 11642, + "mentoring": 19610, + "mentors": 20945, + "mentorship": 33878, + "ments": 1827, + "menu": 6225, + "menus": 33534, + "meo": 30792, + "meow": 39965, + "meow": 17246, + "mep": 27095, + "mer": 1316, + "mer": 2452, + "mera": 20028, + "merc": 34357, + "merc": 44399, + "mercado": 45479, + "merce": 8409, + "mercede": 34959, + "mercedes": 26403, + "mercedes": 10685, + "mercedesam": 40107, + "mercedesbenz": 32347, + "mercen": 40301, + "mercer": 21632, + "merch": 11504, + "merchandi": 14954, + "merchandise": 16808, + "merchandising": 49196, + "merchant": 19563, + "merchants": 34427, + "merci": 23364, + "merci": 29378, + "mercur": 11471, + "mercury": 45203, + "mercury": 12653, + "mercy": 33249, + "mercy": 10815, + "mere": 29657, + "mere": 10342, + "mered": 24657, + "mered": 32297, + "meredith": 25103, + "merely": 28718, + "merge": 30406, + "merged": 46492, + "merger": 24744, + "merging": 49256, + "meri": 17993, + "meri": 36109, + "meria": 48433, + "meric": 27097, + "merica": 30561, + "meridi": 37901, + "meridian": 31195, + "mering": 41060, + "meringue": 41661, + "merino": 42648, + "merit": 20830, + "merkel": 24715, + "merle": 48586, + "merlin": 26517, + "merlot": 40424, + "mermaid": 16064, + "mermaids": 43617, + "mero": 19097, + "merr": 48288, + "merri": 21462, + "merrill": 47713, + "merritt": 36462, + "merry": 14167, + "merry": 5779, + "merrychristmas": 19672, + "mers": 4199, + "mersal": 36711, + "mersey": 25248, + "mersey": 46239, + "merseyside": 35382, + "mert": 48496, + "merton": 35315, + "mery": 40873, + "meryl": 35787, + "mes": 28432, + "mes": 3029, + "mesa": 18956, + "mese": 42018, + "mesh": 15030, + "mesm": 18695, + "mesmer": 38435, + "mesmeri": 25985, + "mesmerizing": 35637, + "meso": 25537, + "mesqu": 46819, + "mess": 2490, + "mess": 8188, + "message": 3918, + "messages": 9390, + "messaging": 23234, + "messe": 40391, + "messed": 23580, + "messenger": 17389, + "messi": 19394, + "messi": 11252, + "messiah": 28737, + "messing": 23144, + "messy": 15987, + "mest": 23780, + "mester": 47349, + "mesut": 49177, + "met": 5249, + "met": 2340, + "meta": 14803, + "meta": 22701, + "metab": 16150, + "metabol": 48389, + "metaboli": 25573, + "metabolic": 34311, + "metabolism": 27824, + "metal": 8935, + "metal": 4044, + "metall": 19084, + "metallic": 17257, + "metallica": 24079, + "metals": 21375, + "metam": 28862, + "metamor": 39030, + "metamorpho": 47601, + "metaph": 24189, + "metaphor": 34233, + "metast": 41973, + "mete": 11226, + "meteor": 26429, + "meteor": 26823, + "meteoro": 25948, + "meteorologist": 42849, + "meter": 10104, + "meters": 13247, + "metgala": 30089, + "meth": 21867, + "meth": 26177, + "methane": 37565, + "metho": 5770, + "method": 10284, + "methodist": 25165, + "methodo": 28488, + "methodology": 37316, + "methods": 12200, + "methyl": 48999, + "metmuseum": 28207, + "meto": 25679, + "metoo": 24722, + "metr": 15086, + "metre": 27889, + "metres": 19798, + "metric": 19950, + "metrical": 40704, + "metrics": 24396, + "metro": 7257, + "metro": 6784, + "metroid": 39957, + "metropolis": 40476, + "metropolitan": 19013, + "metry": 20039, + "mets": 9633, + "mett": 28081, + "metz": 40506, + "meu": 34520, + "mew": 40368, + "mex": 3213, + "mex": 18387, + "mexic": 31728, + "mexican": 37442, + "mexican": 8186, + "mexicans": 47729, + "mexico": 31834, + "mexico": 4604, + "mey": 28584, + "mey": 27777, + "meyer": 13963, + "meyers": 32326, + "mez": 30615, + "mez": 46833, + "mezz": 38771, + "mf": 18199, + "mf": 11067, + "mfa": 24107, + "mfc": 39474, + "mfg": 21912, + "mfw": 27309, + "mg": 10003, + "mg": 8014, + "mga": 23954, + "mgm": 27572, + "mgmt": 22288, + "mgr": 31500, + "mgs": 48073, + "mgt": 48663, + "mh": 9962, + "mh": 10834, + "mha": 41944, + "mhealth": 41225, + "mhs": 28815, + "mhz": 31550, + "mi": 714, + "mi": 2251, + "mia": 5852, + "miam": 31053, + "miami": 15106, + "miami": 4891, + "mian": 24792, + "miaw": 36046, + "mib": 48178, + "mic": 1213, + "mic": 3816, + "mica": 41551, + "micah": 33870, + "mice": 19030, + "mich": 25628, + "mich": 23029, + "micha": 2083, + "michael": 6051, + "michael": 2511, + "michaela": 41897, + "michaeljackson": 33532, + "michaels": 23868, + "michal": 47144, + "miche": 37966, + "micheal": 43709, + "michel": 5158, + "michel": 17153, + "michelangelo": 41245, + "michele": 20642, + "michelin": 26330, + "michelle": 19028, + "michelle": 8625, + "michi": 5658, + "michigan": 32344, + "michigan": 6296, + "mick": 15171, + "mick": 12592, + "mickey": 41813, + "mickey": 13053, + "micky": 43011, + "micro": 3160, + "micro": 11374, + "microbes": 44671, + "microbi": 19496, + "microbial": 30335, + "microbiology": 35348, + "microbiome": 35148, + "micron": 48742, + "microphone": 24643, + "micropoetry": 35997, + "microscope": 29114, + "microscopy": 38431, + "microsof": 42424, + "microsoft": 38650, + "microsoft": 7254, + "microwave": 24240, + "mics": 16554, + "mid": 2192, + "mid": 4734, + "midcentury": 48988, + "midd": 2983, + "midday": 23390, + "middle": 9849, + "middle": 3694, + "middleeast": 32783, + "middles": 29769, + "middlesbrough": 32436, + "middlesex": 39154, + "middleton": 23627, + "middleweight": 35829, + "midfield": 28116, + "midfielder": 13423, + "midget": 30734, + "midi": 39496, + "midi": 27326, + "midland": 24822, + "midlands": 18062, + "midnight": 35746, + "midnight": 6302, + "mids": 40821, + "midst": 24752, + "midsummer": 35234, + "midterm": 34365, + "midterms": 32015, + "midtown": 26069, + "midway": 26536, + "midweek": 29120, + "midwest": 16627, + "midwi": 44802, + "midwife": 37681, + "midwives": 42355, + "mie": 20865, + "mie": 10555, + "miento": 46482, + "mier": 36490, + "mies": 8840, + "miff": 49398, + "mig": 28743, + "might": 2727, + "mighty": 26632, + "mighty": 7815, + "mign": 41678, + "migos": 44640, + "migr": 3736, + "migra": 28186, + "migraine": 35360, + "migrant": 18902, + "migrants": 15814, + "migrate": 41804, + "migrating": 43604, + "migration": 11891, + "migu": 12279, + "miguel": 33672, + "miguel": 14436, + "miho": 46870, + "mii": 39896, + "mik": 15096, + "mik": 46203, + "mika": 28609, + "mika": 25185, + "mike": 5884, + "mike": 3178, + "mikel": 48865, + "mikequind": 33508, + "mikequindazzi": 33551, + "mikey": 34934, + "mikey": 23368, + "mikha": 30999, + "mikhail": 38327, + "miki": 48863, + "miko": 35413, + "miku": 37703, + "mil": 1469, + "mil": 12826, + "mila": 26183, + "milan": 30380, + "milan": 8552, + "milano": 18585, + "milb": 42248, + "mild": 16085, + "mildly": 49059, + "mile": 7833, + "mile": 6243, + "mileage": 30579, + "miler": 44680, + "miles": 3446, + "milestone": 13485, + "milestones": 34025, + "miley": 25336, + "miley": 14321, + "mileycyrus": 28528, + "milf": 45386, + "milford": 35840, + "mili": 16698, + "miliband": 41440, + "milit": 3715, + "militant": 33629, + "militants": 23974, + "military": 24498, + "military": 4323, + "militi": 46625, + "militia": 32114, + "milk": 13409, + "milk": 5205, + "milkshake": 29066, + "milky": 37320, + "milky": 21120, + "milkyway": 43246, + "mill": 4221, + "mill": 6637, + "milla": 49381, + "millan": 34930, + "millan": 22188, + "millar": 41851, + "mille": 34066, + "millen": 48501, + "millenni": 10406, + "millennial": 28357, + "millennials": 18804, + "millennium": 21116, + "miller": 21699, + "miller": 5733, + "milli": 5340, + "millie": 29283, + "milling": 39133, + "million": 13154, + "million": 2506, + "millionaire": 25179, + "millionaires": 47159, + "millions": 8492, + "mills": 10331, + "millwall": 35902, + "milly": 45794, + "milne": 44590, + "milner": 45230, + "milo": 24548, + "milton": 39004, + "milton": 17360, + "milwau": 13452, + "milwaukee": 14259, + "mim": 39379, + "mimi": 27086, + "mimic": 47116, + "mimic": 46519, + "mimo": 45551, + "min": 771, + "min": 3331, + "mina": 15281, + "minaj": 25136, + "minal": 40222, + "minat": 33275, + "mince": 32396, + "mind": 5890, + "mind": 2575, + "mindanao": 44228, + "minded": 21330, + "mindful": 28457, + "mindfulness": 15707, + "minding": 45337, + "minds": 9244, + "mindset": 14217, + "mindy": 46875, + "mindy": 38551, + "mine": 20149, + "mine": 3347, + "minecraft": 15678, + "mined": 48034, + "minent": 12533, + "miner": 14109, + "miner": 26572, + "mineral": 17692, + "minerals": 21169, + "miners": 22119, + "mines": 16211, + "ming": 10868, + "ming": 2107, + "mingham": 7590, + "mingle": 38437, + "mingly": 36909, + "mington": 49283, + "mington": 23119, + "minh": 48734, + "minho": 21318, + "mini": 1810, + "mini": 3954, + "miniature": 44298, + "miniature": 16377, + "miniatures": 38816, + "minic": 31522, + "minim": 10005, + "minimal": 18458, + "minimalism": 42594, + "minimalist": 26641, + "minimize": 38697, + "minimum": 12244, + "minindia": 28458, + "mining": 8473, + "minion": 28622, + "minions": 27035, + "minis": 33409, + "minis": 35976, + "minister": 25688, + "minister": 3569, + "ministerial": 33008, + "ministers": 16406, + "ministries": 27895, + "ministry": 8742, + "mink": 42017, + "minn": 45991, + "minn": 47318, + "minne": 7083, + "minneapolis": 16977, + "minneso": 9380, + "minnesota": 9968, + "minnie": 24493, + "mino": 22791, + "minogue": 44202, + "minor": 8522, + "minorities": 28119, + "minority": 16210, + "minors": 36789, + "mins": 6196, + "minsk": 46151, + "minster": 11189, + "mint": 48084, + "mint": 7506, + "minted": 49377, + "minton": 20050, + "minu": 29064, + "minus": 15358, + "minute": 28931, + "minute": 4497, + "minutes": 3056, + "mio": 26366, + "mir": 2750, + "mir": 6585, + "mira": 21665, + "mira": 22762, + "mirac": 13685, + "miracle": 49208, + "miracle": 11543, + "miracles": 23478, + "miraculous": 38671, + "mirage": 28679, + "mirai": 49060, + "mirand": 32367, + "miranda": 17590, + "mire": 38140, + "mire": 30140, + "miri": 22273, + "miriam": 30950, + "miro": 34851, + "miro": 48317, + "mirren": 47600, + "mirro": 48500, + "mirror": 29823, + "mirror": 7220, + "mirrors": 21823, + "mirza": 36440, + "mis": 866, + "mis": 11239, + "mischief": 33896, + "misconceptions": 48681, + "misconduct": 30601, + "mise": 46567, + "mise": 17267, + "miser": 33394, + "miserable": 26196, + "misery": 28360, + "mises": 24390, + "misfits": 42708, + "mish": 15494, + "mish": 20981, + "misha": 35434, + "mishra": 33042, + "misleading": 30862, + "mism": 15948, + "miso": 27657, + "miso": 33441, + "misogy": 31315, + "misogyny": 48415, + "miss": 6984, + "miss": 1526, + "missal": 38337, + "missed": 3955, + "misses": 15844, + "missi": 3008, + "missile": 14411, + "missiles": 27868, + "missin": 36209, + "missing": 23509, + "missing": 3423, + "mission": 12738, + "mission": 2406, + "missionaries": 40580, + "missionary": 27915, + "missions": 6990, + "mississ": 26483, + "mississauga": 28393, + "mississi": 11687, + "mississippi": 12232, + "missou": 30710, + "missoula": 48549, + "missouri": 11835, + "missuni": 26347, + "missuniverse": 28766, + "missy": 48105, + "missy": 31515, + "missyou": 45799, + "mist": 12610, + "mist": 11946, + "mistak": 20478, + "mistake": 11303, + "mistaken": 29182, + "mistakenly": 48494, + "mistakes": 12824, + "mister": 26949, + "mister": 18895, + "mistle": 46800, + "mistletoe": 48569, + "mistre": 42039, + "mistress": 24349, + "mists": 28636, + "misty": 18799, + "misunderstood": 41574, + "misuse": 40970, + "mit": 3303, + "mit": 4551, + "mita": 47514, + "mitage": 27964, + "mitch": 6969, + "mitch": 14150, + "mitchell": 39339, + "mitchell": 9007, + "mite": 26929, + "mith": 21752, + "mith": 17948, + "miti": 17857, + "mitigate": 42273, + "mitigation": 35514, + "mito": 38254, + "mitochondri": 42132, + "mitra": 47703, + "mits": 24086, + "mitsu": 17905, + "mitsubi": 21604, + "mitsubishi": 23030, + "mitt": 17321, + "mitt": 21341, + "mitted": 10307, + "mitting": 27938, + "mitz": 41827, + "mium": 35891, + "miwx": 43941, + "mix": 3210, + "mix": 3285, + "mixed": 29376, + "mixed": 6780, + "mixer": 17200, + "mixers": 39175, + "mixes": 19061, + "mixing": 15588, + "mixtape": 11044, + "mixture": 28286, + "miy": 25695, + "miya": 36257, + "miz": 20881, + "miz": 30795, + "mize": 19076, + "mized": 43418, + "mizing": 38715, + "mizz": 19985, + "mizzou": 26165, + "mj": 13117, + "mj": 14733, + "mk": 11581, + "mk": 8937, + "mke": 36642, + "mkt": 24814, + "ml": 3627, + "ml": 5780, + "mla": 16723, + "mlas": 48464, + "mlb": 21039, + "mlb": 7482, + "mley": 40329, + "mlg": 45801, + "mlin": 24556, + "mlk": 17941, + "mlkday": 39905, + "mlm": 37611, + "mln": 18971, + "mlp": 23620, + "mlpfi": 45475, + "mlpfim": 45640, + "mls": 13077, + "mm": 1028, + "mm": 2848, + "mma": 34140, + "mma": 6096, + "mmc": 44253, + "mme": 13105, + "mmed": 19570, + "mmer": 35717, + "mmer": 7508, + "mmers": 28128, + "mmes": 42862, + "mmi": 34147, + "mming": 21038, + "mming": 16507, + "mmings": 31357, + "mmit": 41050, + "mmj": 43015, + "mmm": 37908, + "mmm": 7641, + "mmmm": 36312, + "mmmm": 13180, + "mmmmm": 21808, + "mmmmmm": 43740, + "mmo": 30418, + "mmon": 41131, + "mmor": 36657, + "mmorpg": 39476, + "mms": 37803, + "mmva": 42666, + "mmy": 28837, + "mmy": 8722, + "mn": 5086, + "mn": 4057, + "mna": 34877, + "mnd": 44776, + "mnet": 34129, + "mnf": 41105, + "mnl": 32980, + "mnleg": 42653, + "mns": 39040, + "mnt": 21477, + "mntwins": 45448, + "mnwild": 39044, + "mnwx": 39592, + "mo": 617, + "mo": 2080, + "moa": 33174, + "moana": 43241, + "mob": 2818, + "mob": 12754, + "mobi": 9451, + "mobil": 26343, + "mobil": 29815, + "mobile": 12935, + "mobile": 3451, + "mobiles": 44302, + "mobili": 20770, + "mobility": 12546, + "mobilization": 48916, + "moby": 47219, + "moc": 41439, + "moc": 36992, + "mocha": 28425, + "mochi": 47973, + "mock": 15641, + "mock": 12759, + "mocked": 47400, + "mocking": 28692, + "mocking": 37870, + "mocks": 35142, + "mod": 6362, + "mod": 10893, + "moda": 25814, + "modal": 33157, + "mode": 20402, + "mode": 6493, + "model": 4591, + "model": 2863, + "modeled": 39527, + "modeling": 13706, + "modelling": 19946, + "models": 6176, + "moder": 2894, + "moderate": 16435, + "moderated": 27928, + "moderating": 34242, + "moderator": 32659, + "modern": 11706, + "modern": 4077, + "modernart": 34417, + "moderni": 24328, + "modernism": 39601, + "modernist": 36773, + "modernization": 47294, + "modes": 30454, + "modest": 25436, + "modi": 9047, + "modi": 7774, + "modification": 37630, + "modified": 17964, + "modo": 36820, + "mods": 23843, + "modu": 9036, + "modular": 22437, + "module": 16757, + "modules": 30575, + "moe": 38655, + "moe": 17938, + "mof": 30798, + "moff": 27160, + "mog": 42362, + "moga": 41732, + "mogadishu": 45133, + "mogul": 41320, + "moh": 18979, + "moh": 35388, + "moha": 46892, + "moham": 7923, + "mohamed": 18472, + "mohammad": 19926, + "mohammed": 16168, + "mohan": 26521, + "mohan": 23586, + "mohawk": 34942, + "mohd": 49094, + "mohsin": 48861, + "moi": 20691, + "moi": 21825, + "moil": 30349, + "moines": 32091, + "moist": 19831, + "moist": 33263, + "moisture": 20412, + "moisturi": 25942, + "moj": 34505, + "moja": 49055, + "mojito": 46830, + "mojo": 25204, + "mok": 49146, + "mol": 4246, + "mol": 31582, + "mold": 21846, + "molding": 46274, + "moldova": 47317, + "mole": 9927, + "mole": 23529, + "molecular": 19370, + "molecule": 39233, + "molecules": 35643, + "molina": 34201, + "mollie": 48203, + "molly": 24368, + "molly": 12573, + "molo": 41510, + "mology": 32255, + "molten": 46071, + "moly": 47083, + "mom": 1614, + "mom": 2543, + "moma": 33605, + "mombasa": 40340, + "moment": 12197, + "moment": 2495, + "momento": 30078, + "moments": 5251, + "momentum": 15722, + "momlife": 43825, + "momma": 14508, + "mommy": 12456, + "momo": 48490, + "momo": 25980, + "moms": 28446, + "moms": 10042, + "momsdemand": 33744, + "mon": 749, + "mon": 2173, + "mona": 19143, + "monaco": 14938, + "monaghan": 39797, + "monarch": 27235, + "monarch": 22619, + "monarchs": 36750, + "monarchy": 47503, + "monaster": 19422, + "monastery": 21850, + "monc": 34847, + "moncton": 44962, + "mond": 14522, + "mond": 4475, + "monday": 6205, + "monday": 2098, + "mondaymorning": 40089, + "mondaymotiv": 45488, + "mondaymotivation": 8198, + "mondaymotivaton": 47034, + "mondays": 13815, + "monde": 29339, + "mondo": 36207, + "monds": 20317, + "mone": 25990, + "monet": 24499, + "monetary": 26394, + "moneti": 38056, + "money": 12743, + "money": 2327, + "mong": 43566, + "monger": 38928, + "mongers": 27670, + "mongo": 20680, + "mongolia": 27144, + "mongolian": 46335, + "moni": 46851, + "monia": 31161, + "monic": 30893, + "monica": 13540, + "monit": 9014, + "monitor": 10198, + "monitored": 45828, + "monitoring": 11030, + "monitors": 30478, + "monk": 30557, + "monk": 16424, + "monkey": 29597, + "monkey": 9465, + "monkeys": 15781, + "monks": 29090, + "monmouth": 36929, + "mono": 8220, + "mono": 22537, + "monochrome": 25576, + "monogram": 39665, + "monologue": 47776, + "monopoly": 25241, + "monoxide": 49314, + "monro": 45750, + "monroe": 13625, + "mons": 19885, + "monsanto": 37592, + "monsi": 46677, + "monsieur": 48879, + "monsoon": 18872, + "monsta": 30718, + "monstax": 45631, + "monste": 47045, + "monster": 14454, + "monster": 6060, + "monsters": 11546, + "mont": 5186, + "mont": 5382, + "montag": 37202, + "montage": 32325, + "montal": 42126, + "montan": 28405, + "montana": 11436, + "monte": 8711, + "monte": 14667, + "montene": 28538, + "montenegro": 30378, + "monter": 36673, + "monterey": 23388, + "monterrey": 45254, + "montess": 43205, + "montessori": 45443, + "montgom": 13852, + "montgomery": 14951, + "month": 7680, + "month": 1924, + "monthly": 8764, + "months": 3109, + "monthsary": 42420, + "monton": 41961, + "montp": 39523, + "montre": 8434, + "montreal": 9262, + "montrose": 42347, + "monty": 43997, + "monty": 24038, + "monu": 9748, + "monument": 12019, + "monumental": 31297, + "monuments": 26916, + "mony": 4117, + "monza": 40380, + "moo": 4953, + "moo": 24626, + "mood": 42358, + "mood": 5394, + "moods": 43727, + "moody": 17170, + "moom": 36887, + "moon": 6334, + "moon": 3293, + "mooney": 37942, + "moonlight": 20001, + "moons": 29887, + "moonshine": 46706, + "moor": 14817, + "moor": 11877, + "moore": 28613, + "moore": 6708, + "moors": 32577, + "moose": 37562, + "moose": 17338, + "moot": 46895, + "mop": 33900, + "mopar": 41166, + "mor": 657, + "mor": 18614, + "mora": 29262, + "moral": 11246, + "morale": 39404, + "morales": 27117, + "morality": 34133, + "morally": 42519, + "morals": 46223, + "moran": 21557, + "moray": 44569, + "more": 5434, + "more": 750, + "morecam": 37305, + "morecambe": 43414, + "mored": 20195, + "moreland": 44135, + "moreno": 24826, + "morethan": 30889, + "morg": 34284, + "morgan": 15432, + "morgan": 6075, + "morgen": 35106, + "mori": 25710, + "mori": 29514, + "moris": 43131, + "moritz": 45594, + "morley": 40439, + "mormon": 27715, + "morn": 22393, + "mornin": 28327, + "morning": 10769, + "morning": 1119, + "mornings": 12106, + "moro": 31613, + "moroc": 11996, + "moroccan": 27546, + "morocco": 15228, + "moron": 31875, + "morons": 46477, + "morow": 40779, + "morph": 23915, + "morph": 41700, + "morphe": 38978, + "morpho": 38622, + "morrha": 43044, + "morri": 9876, + "morris": 22560, + "morris": 9090, + "morrison": 40961, + "morrison": 14094, + "morrisons": 40965, + "morrissey": 30040, + "morro": 48363, + "morrow": 21611, + "mors": 13064, + "morse": 25282, + "mort": 24257, + "mort": 30583, + "mortal": 31883, + "mortal": 14680, + "mortality": 20347, + "mortar": 27258, + "mortg": 12069, + "mortgage": 13988, + "mortgages": 45391, + "mortimer": 47836, + "morton": 20698, + "morty": 37391, + "mory": 22633, + "mos": 28658, + "mos": 9593, + "mosa": 14164, + "mosa": 23809, + "mosaic": 17506, + "mosch": 47003, + "mosco": 9840, + "moscow": 10371, + "moseley": 47080, + "moses": 18451, + "mosley": 46228, + "mosqu": 15215, + "mosque": 12694, + "mosques": 41214, + "mosquit": 39699, + "mosquito": 25083, + "mosquitoes": 41870, + "moss": 25107, + "moss": 12815, + "most": 7034, + "most": 1096, + "mostly": 8829, + "mosul": 29165, + "mot": 16352, + "mot": 15452, + "mota": 42499, + "motd": 46232, + "motel": 26191, + "moth": 33208, + "moth": 11736, + "mother": 7455, + "mother": 3050, + "motherhood": 32274, + "motherland": 46774, + "mothers": 10546, + "mothersday": 15583, + "motherwell": 48104, + "moths": 29086, + "moti": 38210, + "motif": 35373, + "motion": 32139, + "motion": 7860, + "motiv": 3183, + "motivate": 26771, + "motivated": 16521, + "motivates": 44684, + "motivating": 37720, + "motivation": 26117, + "motivation": 4193, + "motivational": 32832, + "motivational": 20472, + "motivationmonday": 28703, + "motive": 36669, + "motley": 42553, + "motm": 41192, + "moto": 10646, + "moto": 11431, + "motocross": 34562, + "motogp": 16615, + "motor": 3975, + "motor": 7659, + "motorbike": 33341, + "motorcycle": 10297, + "motorcycles": 24869, + "motoring": 44491, + "motorists": 32766, + "motorola": 33738, + "motors": 14989, + "motorsport": 18371, + "motorsports": 24264, + "motorway": 31808, + "motown": 32685, + "mott": 44570, + "mott": 21708, + "motto": 23338, + "mou": 2809, + "mou": 25289, + "moud": 37698, + "moul": 25725, + "mould": 36743, + "moulin": 47656, + "moun": 2023, + "mound": 21414, + "mount": 20553, + "mount": 5532, + "mountain": 14547, + "mountain": 3965, + "mountaine": 24841, + "mountaineer": 49255, + "mountains": 5873, + "mounted": 17897, + "mounting": 29910, + "mounts": 36767, + "mour": 9053, + "mour": 42446, + "moured": 29555, + "mourinho": 18536, + "mourn": 33592, + "mourning": 24169, + "mourns": 42811, + "mous": 24837, + "mous": 17425, + "mouse": 33032, + "mouse": 9301, + "mousse": 31869, + "moustache": 32795, + "mouth": 15152, + "mouth": 4932, + "mouths": 38518, + "mov": 23950, + "move": 16624, + "move": 2783, + "moved": 6997, + "movember": 23474, + "movement": 5208, + "movements": 19665, + "mover": 37673, + "movers": 33957, + "moves": 6880, + "movi": 1707, + "movic": 43838, + "movie": 11247, + "movie": 2016, + "movies": 4772, + "moving": 32160, + "moving": 3584, + "mow": 31006, + "mow": 36329, + "mower": 30895, + "mowing": 46424, + "mowx": 44263, + "moy": 27276, + "moy": 34205, + "moyes": 37119, + "moz": 14761, + "moz": 43738, + "mozam": 26648, + "mozambique": 28831, + "mozart": 22132, + "mozz": 26317, + "mozzarella": 27845, + "mp": 1037, + "mp": 1246, + "mpa": 30749, + "mpc": 38560, + "mpd": 33814, + "mped": 28134, + "mper": 22803, + "mpg": 39830, + "mpg": 37454, + "mpgvip": 42149, + "mph": 5306, + "mpi": 43263, + "mping": 27999, + "mple": 21139, + "mplo": 47071, + "mpls": 34298, + "mpo": 33674, + "mpp": 39570, + "mps": 5504, + "mption": 9717, + "mpton": 27448, + "mpu": 47156, + "mpus": 25864, + "mpy": 17192, + "mq": 19103, + "mqm": 24687, + "mr": 3139, + "mr": 1982, + "mra": 44568, + "mrc": 25897, + "mri": 24773, + "mrs": 25003, + "mrs": 4255, + "mrt": 30256, + "mru": 22370, + "mrw": 15303, + "ms": 3525, + "ms": 988, + "msa": 36306, + "msc": 31826, + "msc": 20529, + "msd": 25804, + "msd": 36407, + "msdhoni": 32850, + "msf": 36239, + "msg": 44430, + "msg": 10928, + "msh": 41751, + "msi": 43597, + "msi": 45278, + "msk": 38501, + "msl": 42736, + "msm": 22210, + "msn": 18824, + "msn": 41042, + "msnbc": 20245, + "mson": 27773, + "mson": 12298, + "msp": 41445, + "msp": 22318, + "mss": 42136, + "mss": 48610, + "mst": 26335, + "msu": 26763, + "msu": 17298, + "mswx": 42957, + "msy": 43919, + "mt": 4252, + "mt": 3284, + "mta": 28691, + "mtb": 48306, + "mtb": 18747, + "mtc": 42482, + "mtg": 49142, + "mtg": 13648, + "mth": 48151, + "mtl": 22135, + "mtn": 26041, + "mtn": 18953, + "mtr": 46650, + "mts": 38751, + "mtv": 8099, + "mtv": 12555, + "mtvbr": 47258, + "mtvhottest": 16751, + "mtvstars": 19948, + "mu": 670, + "mu": 6411, + "mua": 21395, + "muay": 44910, + "muaythai": 47763, + "mubarak": 17957, + "muc": 49115, + "much": 14300, + "much": 1238, + "mucha": 42191, + "muchas": 26278, + "mucho": 19864, + "muck": 44731, + "muck": 45330, + "mud": 17491, + "mud": 11673, + "mudder": 49104, + "muddy": 21524, + "mue": 44383, + "mue": 40717, + "mueller": 46863, + "mueller": 14719, + "muen": 48646, + "muer": 33840, + "muf": 33852, + "mufc": 9013, + "muffin": 22696, + "muffins": 25922, + "mufti": 44930, + "mug": 16339, + "mug": 9722, + "mugabe": 36441, + "mughal": 37508, + "mugs": 22852, + "mugshot": 40028, + "muh": 36335, + "muh": 46475, + "muham": 10043, + "muhammad": 12259, + "muir": 44650, + "muir": 24745, + "muj": 44635, + "muk": 17327, + "muk": 32600, + "mukher": 34575, + "mukherjee": 37862, + "mul": 1899, + "mul": 43193, + "mula": 40937, + "mulator": 17463, + "mulberry": 39221, + "mule": 28695, + "mull": 17313, + "mull": 35310, + "mulled": 44641, + "mullen": 30797, + "muller": 33956, + "mullet": 35010, + "mulligan": 44336, + "mullins": 41265, + "mult": 34219, + "multi": 3947, + "multi": 6400, + "multic": 21683, + "multicul": 28004, + "multicultural": 34667, + "multil": 27975, + "multimedia": 27977, + "multin": 38996, + "multinational": 46540, + "multip": 40314, + "multiplayer": 27460, + "multiple": 6470, + "multipurpose": 47665, + "multit": 27814, + "multitasking": 48684, + "mulus": 26180, + "mum": 15565, + "mum": 4030, + "mumb": 5850, + "mumbai": 24279, + "mumbai": 6971, + "mumford": 46184, + "mummy": 16301, + "mums": 17868, + "mun": 2617, + "mun": 21059, + "muna": 48424, + "munch": 23587, + "munch": 33299, + "munchies": 44324, + "munchkin": 41305, + "mund": 14244, + "mundo": 20990, + "muni": 27327, + "muni": 39795, + "munich": 13526, + "munici": 12159, + "municipal": 43667, + "municipal": 16600, + "municipality": 29987, + "munition": 32668, + "munro": 36501, + "munster": 27201, + "mup": 21966, + "muppet": 40598, + "muppets": 40187, + "mups": 42195, + "mur": 2144, + "mur": 18293, + "mura": 45176, + "mural": 12315, + "murals": 31499, + "murder": 28136, + "murder": 5787, + "murdered": 13158, + "murderer": 26956, + "murderers": 48472, + "murdering": 36055, + "murders": 22409, + "murdoch": 29037, + "murphy": 48976, + "murphy": 8914, + "murray": 31978, + "murray": 7513, + "murs": 38783, + "mus": 2198, + "mus": 8103, + "musa": 30540, + "musc": 5696, + "muscat": 33322, + "muscle": 27323, + "muscle": 9269, + "muscles": 16786, + "muscular": 30606, + "muse": 2369, + "muse": 15686, + "museo": 36457, + "muses": 48243, + "museu": 27087, + "museum": 15602, + "museum": 2786, + "museums": 15542, + "museumweek": 37996, + "mush": 7635, + "mushroom": 13011, + "mushrooms": 14730, + "musi": 15628, + "music": 4110, + "music": 1179, + "musica": 26668, + "musical": 36002, + "musical": 5173, + "musically": 48893, + "musicals": 36974, + "musichistory": 37890, + "musician": 11179, + "musicians": 12498, + "musicislife": 43311, + "musicmonday": 35887, + "musicvideo": 26764, + "musik": 32986, + "musings": 44961, + "musique": 42250, + "musk": 32143, + "musk": 19063, + "muskete": 32775, + "musketeers": 37993, + "musko": 34987, + "muskoka": 40832, + "musli": 4958, + "muslim": 43795, + "muslim": 7060, + "muslims": 10513, + "muss": 41493, + "mussels": 33393, + "must": 6783, + "must": 2048, + "mustache": 23451, + "mustaf": 23596, + "mustafa": 29000, + "mustang": 42361, + "mustang": 13309, + "mustangs": 22500, + "mustard": 15794, + "muster": 47361, + "mustread": 28978, + "mut": 12598, + "mut": 22839, + "mutant": 28384, + "mutation": 38626, + "mutations": 39651, + "mute": 31252, + "muted": 48028, + "muth": 34280, + "mutil": 39950, + "mutt": 45924, + "mutu": 17574, + "mutual": 15055, + "mutuals": 31158, + "muy": 44625, + "mv": 10580, + "mv": 8269, + "mvc": 40549, + "mvp": 8905, + "mw": 16725, + "mw": 11206, + "mwc": 24289, + "mwf": 48565, + "mx": 21947, + "mx": 9575, + "my": 1152, + "my": 607, + "mya": 31401, + "myal": 42735, + "myan": 13761, + "myanmar": 14764, + "myart": 38826, + "myco": 48362, + "mydayin": 41896, + "mydayinla": 42801, + "mydubai": 43475, + "mye": 27551, + "myel": 40084, + "myers": 15993, + "myjaps": 47939, + "myle": 43700, + "myles": 25511, + "mylife": 30537, + "mylittle": 37757, + "mylittlepony": 45107, + "myo": 16206, + "myr": 20272, + "myra": 35694, + "myri": 34972, + "myrt": 47785, + "myrtle": 27768, + "mys": 11724, + "myself": 3245, + "mysore": 44924, + "myspace": 41382, + "myster": 4669, + "mysteries": 20605, + "mysterious": 12650, + "mystery": 39828, + "mystery": 6711, + "mysti": 28711, + "mystic": 36264, + "mystic": 23722, + "mystical": 34122, + "myth": 20322, + "myth": 13878, + "mythical": 34377, + "mytho": 43857, + "mythology": 22496, + "myths": 18675, + "mz": 29509, + "mz": 33400, + "mzan": 36322, + "mzansi": 43301, + "má": 36842, + "mé": 21890, + "méxico": 46159, + "mü": 28142, + "mün": 41235, + "n": 77, + "n": 333, + "na": 1097, + "na": 1272, + "naa": 37738, + "naacp": 32176, + "nab": 6951, + "nab": 19440, + "nabe": 35111, + "naby": 24800, + "nac": 14557, + "nac": 18950, + "nach": 12168, + "nach": 43622, + "nacho": 35647, + "nachos": 32847, + "nacht": 37261, + "nacional": 38782, + "nad": 6204, + "nad": 43928, + "nada": 31683, + "nadal": 20814, + "nade": 24908, + "nadi": 30512, + "nadia": 27487, + "nadine": 23356, + "nadu": 20936, + "nae": 19374, + "naf": 16161, + "naf": 45956, + "nafta": 43123, + "nag": 6694, + "nag": 23902, + "naga": 45953, + "naga": 38997, + "nagar": 17490, + "nage": 41219, + "nago": 38349, + "nagoya": 43303, + "nagpur": 43328, + "nah": 26421, + "nah": 11129, + "nahi": 35244, + "nai": 6230, + "nai": 10692, + "naia": 31340, + "naidu": 42429, + "naija": 16326, + "naik": 34424, + "nail": 19459, + "nail": 9059, + "nailart": 43532, + "nailed": 19035, + "nails": 8469, + "nair": 27107, + "naira": 39450, + "naire": 48892, + "nairobi": 17756, + "nais": 46396, + "naissance": 44761, + "naive": 43362, + "naj": 30985, + "naji": 32589, + "nak": 9248, + "nak": 25550, + "naked": 46371, + "naked": 11478, + "naku": 39864, + "nal": 14132, + "nal": 3119, + "nale": 27198, + "nall": 32869, + "nally": 26158, + "nam": 1410, + "nam": 12344, + "nama": 39586, + "naman": 27635, + "namaste": 35549, + "name": 18160, + "name": 1981, + "named": 3194, + "nameis": 40831, + "nament": 3916, + "naments": 16540, + "names": 6130, + "namesake": 41298, + "nami": 20393, + "namibia": 23731, + "naming": 19367, + "namjoon": 31986, + "namm": 35524, + "namo": 46013, + "namo": 24854, + "nan": 4375, + "nan": 7750, + "nana": 18761, + "nanaimo": 40518, + "nancy": 21511, + "nancy": 11425, + "nand": 20435, + "nandez": 12764, + "nando": 46044, + "nang": 48148, + "nani": 27980, + "nanny": 31104, + "nano": 15835, + "nano": 22006, + "nanop": 34177, + "nanotechnology": 42235, + "nanow": 46734, + "nant": 22526, + "nantes": 47533, + "nantucket": 41573, + "nao": 39319, + "naom": 34955, + "naomi": 20173, + "nap": 6568, + "nap": 11012, + "napa": 20545, + "napier": 40875, + "napkin": 38930, + "naples": 23560, + "napo": 18715, + "napol": 20122, + "napoleon": 24969, + "napoli": 22445, + "napp": 11359, + "napping": 37657, + "naps": 31317, + "naq": 46453, + "nar": 2977, + "nar": 20145, + "nara": 33823, + "narcis": 25229, + "narcissi": 35442, + "narco": 38461, + "nard": 18216, + "nare": 34853, + "naren": 8468, + "narendr": 9807, + "narendra": 25848, + "narendramodi": 9853, + "narnia": 48693, + "narr": 11845, + "narrated": 43609, + "narrative": 15933, + "narratives": 35117, + "narrator": 46529, + "narrow": 24006, + "narrow": 16652, + "narrowly": 29747, + "naruto": 22732, + "nas": 3090, + "nas": 15250, + "nasa": 6841, + "nasal": 42853, + "nascar": 25723, + "nascar": 7868, + "nasdaq": 26629, + "nash": 6771, + "nash": 13620, + "nasheed": 49176, + "nashgrier": 33372, + "nashville": 45356, + "nashville": 8585, + "nasi": 47987, + "nasir": 47509, + "nassau": 34048, + "nasser": 43559, + "nasty": 32930, + "nasty": 8709, + "nat": 1276, + "nat": 11310, + "nata": 39392, + "natal": 28516, + "natali": 20296, + "natalia": 32978, + "natalie": 36634, + "natalie": 13595, + "natash": 48701, + "natasha": 23093, + "nate": 26643, + "nate": 7587, + "natgeo": 33009, + "natgeo": 25046, + "nath": 22203, + "nath": 19843, + "nathan": 13028, + "nathan": 9711, + "nathanfillion": 47422, + "nathaniel": 32667, + "nati": 1060, + "nati": 13384, + "natic": 44944, + "natin": 44358, + "nation": 2317, + "nation": 2670, + "national": 3126, + "national": 1362, + "nationalbestfriend": 42222, + "nationaldogday": 32227, + "nationalism": 29867, + "nationalist": 25058, + "nationality": 44451, + "nationally": 15130, + "nationalpark": 33060, + "nationalparks": 41204, + "nationals": 10784, + "nationaltrust": 34051, + "nations": 7654, + "nationwide": 13795, + "native": 20639, + "native": 4562, + "natives": 36060, + "nativity": 33988, + "natl": 39225, + "natl": 34465, + "nato": 13139, + "nats": 21106, + "natu": 2775, + "natur": 6800, + "natural": 13198, + "natural": 3288, + "naturally": 12995, + "naturals": 44686, + "nature": 9382, + "nature": 2625, + "naturelovers": 41514, + "naturephotography": 22533, + "natures": 15616, + "natureuk": 46193, + "nau": 5955, + "nau": 32878, + "naught": 41001, + "naughty": 47255, + "naughty": 15101, + "nautical": 31660, + "nav": 3413, + "nav": 25308, + "navajo": 35523, + "naval": 44725, + "naval": 13273, + "navar": 24848, + "navarro": 37104, + "nave": 42704, + "naveen": 43837, + "naver": 32534, + "navi": 16159, + "navi": 44848, + "navig": 12507, + "navigate": 24400, + "navigating": 33134, + "navigation": 20148, + "navigator": 38910, + "navis": 36377, + "navratri": 45428, + "navy": 28414, + "navy": 5598, + "naw": 16259, + "naw": 30500, + "nawaz": 49161, + "nawaz": 19523, + "nax": 38299, + "nay": 11704, + "nay": 16182, + "naya": 38917, + "nayanth": 38157, + "nayanthara": 45184, + "naz": 6363, + "naz": 35534, + "nazi": 12972, + "nazis": 21778, + "nb": 6459, + "nb": 6813, + "nba": 22524, + "nba": 5139, + "nbad": 43458, + "nbaf": 30127, + "nbafinals": 33803, + "nbap": 41956, + "nbaplayoffs": 43860, + "nbat": 46291, + "nbc": 9352, + "nbc": 8799, + "nbd": 24526, + "nbl": 42652, + "nc": 5021, + "nc": 4911, + "nca": 6921, + "ncaa": 9418, + "ncbd": 47221, + "ncc": 33195, + "ncc": 36686, + "ncds": 47573, + "ncfc": 31274, + "ncis": 33617, + "ncpol": 40562, + "ncr": 38474, + "ncs": 42689, + "nct": 27723, + "nct": 20319, + "ncwx": 36166, + "nd": 5625, + "nd": 1764, + "nda": 32862, + "ndc": 47564, + "ndi": 48229, + "ndp": 19257, + "nds": 31347, + "ndtv": 26261, + "ne": 557, + "ne": 1422, + "nea": 24068, + "neal": 33652, + "neal": 16730, + "near": 11296, + "near": 2252, + "nearby": 13314, + "nearest": 18985, + "nearing": 26571, + "nearly": 4816, + "nears": 37710, + "neat": 43201, + "neat": 15465, + "neath": 18315, + "neau": 31559, + "neb": 40209, + "nebra": 13371, + "nebraska": 14565, + "nebu": 49295, + "nebula": 22532, + "nec": 25109, + "nec": 22992, + "necess": 6961, + "necessarily": 25853, + "necessary": 8955, + "necessities": 43483, + "necessity": 33163, + "neck": 6066, + "neck": 6906, + "necklace": 7385, + "necklaces": 32276, + "necks": 29701, + "nectar": 33683, + "ned": 16030, + "ned": 1369, + "nederland": 49058, + "nee": 20494, + "nee": 10601, + "need": 3229, + "need": 1262, + "needed": 4049, + "needing": 22894, + "needle": 44490, + "needle": 19886, + "needles": 27250, + "needless": 39984, + "needs": 2536, + "needy": 30150, + "neel": 33092, + "neel": 46043, + "neer": 34245, + "nees": 47248, + "neet": 46362, + "neg": 5513, + "negan": 42623, + "negative": 8869, + "negatively": 40254, + "negativity": 34658, + "neglec": 18827, + "neglect": 33680, + "neglected": 31893, + "negli": 32594, + "negligence": 45658, + "negoti": 10216, + "negotiate": 32969, + "negotiating": 35510, + "negotiation": 36504, + "negotiations": 20433, + "negr": 42190, + "negro": 26554, + "neh": 40416, + "neh": 41697, + "neha": 44463, + "nehru": 30316, + "nei": 9366, + "neigh": 4061, + "neighb": 6534, + "neighbor": 7759, + "neighbor": 14485, + "neighborhood": 9471, + "neighborhoods": 26713, + "neighboring": 44754, + "neighbors": 13037, + "neighbour": 15858, + "neighbour": 23719, + "neighbourhood": 20312, + "neighbours": 17594, + "neil": 13591, + "neil": 8030, + "neilhimself": 45682, + "neill": 19324, + "neither": 14398, + "nek": 47727, + "neko": 47066, + "nel": 5476, + "nel": 2693, + "nell": 27081, + "nell": 8117, + "nelly": 21166, + "nels": 19296, + "nelson": 24774, + "nelson": 8586, + "nem": 45153, + "neman": 48553, + "neme": 30993, + "nemesis": 37811, + "nemo": 30441, + "nen": 17817, + "nen": 15451, + "nene": 44167, + "neo": 14562, + "neo": 11017, + "neon": 21043, + "neon": 13919, + "neonatal": 46464, + "neop": 49069, + "nep": 20739, + "nep": 41960, + "nepal": 25597, + "nepal": 10066, + "nepali": 47579, + "neph": 27926, + "nephe": 41810, + "nephew": 11689, + "nephews": 43747, + "nephro": 43054, + "neptune": 30566, + "ner": 2064, + "ner": 998, + "nerd": 24452, + "nerd": 12273, + "nerds": 22609, + "nerdy": 33124, + "nered": 17583, + "nerf": 42914, + "nering": 20226, + "nero": 29048, + "ners": 2129, + "nerve": 18571, + "nerves": 27813, + "nervous": 13928, + "nery": 48597, + "nes": 5457, + "nes": 4980, + "nesburg": 27159, + "nese": 32220, + "ness": 7187, + "ness": 1294, + "nesses": 20107, + "nessy": 32939, + "nest": 20302, + "nest": 8719, + "nesting": 28860, + "nestle": 43967, + "nestled": 38107, + "nests": 41133, + "net": 1851, + "net": 2315, + "netany": 23137, + "netanyahu": 23583, + "netball": 19761, + "netes": 44335, + "netfli": 6304, + "netflix": 35325, + "netflix": 6600, + "nether": 9946, + "netherlands": 11060, + "neti": 43980, + "netneutrality": 47794, + "nets": 8582, + "nett": 23403, + "nett": 6975, + "nette": 13271, + "network": 23285, + "network": 3304, + "networking": 9818, + "networks": 10004, + "neu": 3855, + "neu": 43342, + "neue": 45764, + "neur": 19001, + "neur": 31976, + "neural": 26388, + "neuro": 7401, + "neuro": 36000, + "neurological": 41718, + "neurology": 43197, + "neurons": 40442, + "neuroscience": 23381, + "neutr": 17207, + "neutral": 17011, + "neutrality": 26511, + "neutron": 44056, + "nev": 10236, + "nev": 43645, + "neva": 43304, + "nevada": 13499, + "neve": 44099, + "neve": 44023, + "never": 6746, + "never": 1426, + "neveragain": 45053, + "neverforget": 19242, + "nevergiveup": 42497, + "neverland": 41483, + "nevertheless": 48355, + "nevertrump": 47494, + "neville": 19269, + "nevis": 43670, + "new": 1218, + "new": 686, + "newark": 20240, + "newbie": 45427, + "newborn": 18320, + "newbury": 34169, + "newcastle": 41955, + "newcastle": 9302, + "newcomer": 30648, + "newcomers": 44037, + "newe": 40068, + "newell": 41436, + "newer": 33099, + "newest": 4990, + "newfound": 25250, + "newfoundland": 28079, + "newh": 18546, + "newin": 31911, + "newjersey": 32621, + "newly": 42186, + "newly": 7056, + "newman": 15815, + "newmarket": 38617, + "newmexico": 35238, + "newmusic": 32510, + "newmusic": 17201, + "newor": 25969, + "neworleans": 31205, + "newport": 42580, + "newport": 14846, + "newprofile": 14633, + "newprofilepic": 14754, + "newrelease": 34793, + "news": 6216, + "news": 1120, + "newsat": 43979, + "newsc": 28656, + "newscast": 45031, + "newsle": 10727, + "newsletter": 11069, + "newsnow": 48650, + "newsp": 7109, + "newspaper": 8786, + "newspapers": 22423, + "newsroom": 23200, + "newt": 37224, + "newton": 33122, + "newton": 12606, + "newtown": 31747, + "newyear": 22161, + "newyear": 12999, + "newyearseve": 37587, + "newyork": 18140, + "newyork": 10454, + "newyorkcity": 30460, + "newyorker": 39732, + "newzealand": 21117, + "nex": 6897, + "nex": 39720, + "next": 12434, + "next": 1131, + "nextgen": 41933, + "nexus": 19053, + "ney": 3857, + "ney": 1438, + "neymar": 21878, + "neys": 12616, + "nez": 27388, + "nf": 15195, + "nf": 25643, + "nfamily": 20098, + "nfc": 23695, + "nffc": 27893, + "nfl": 11219, + "nfl": 4691, + "nfldraft": 25002, + "ng": 10352, + "ng": 5215, + "nga": 35477, + "ngc": 29046, + "ngo": 38740, + "ngo": 24821, + "ngos": 34627, + "nguyen": 29947, + "nh": 3760, + "nh": 10803, + "nhc": 44817, + "nhl": 12290, + "nhl": 8167, + "nhlbruins": 39081, + "nhljets": 49357, + "nhm": 39483, + "nhpolitics": 36125, + "nhq": 42368, + "nhra": 30052, + "nhs": 23282, + "nhs": 7695, + "ni": 697, + "ni": 3256, + "nia": 3098, + "niag": 18071, + "niagar": 39298, + "niagara": 18965, + "niall": 41354, + "niall": 8327, + "niallo": 22855, + "niallofficial": 23084, + "niam": 39347, + "nian": 46003, + "nib": 31049, + "nic": 2109, + "nic": 6651, + "nica": 29040, + "nicar": 25119, + "nicaragua": 28423, + "nice": 28386, + "nice": 1805, + "nicely": 12303, + "nicer": 29488, + "nicest": 22967, + "niche": 25279, + "nichol": 7668, + "nicholas": 39814, + "nicholas": 13148, + "nicholls": 38846, + "nichols": 22730, + "nicholson": 28745, + "nick": 4209, + "nick": 4253, + "nickel": 22034, + "nickelo": 28668, + "nickelodeon": 33279, + "nicki": 17738, + "nickimin": 27390, + "nickiminaj": 27593, + "nickjonas": 43862, + "nickname": 24731, + "nicknamed": 45190, + "nicks": 15049, + "nicky": 28893, + "nicky": 22091, + "nico": 20850, + "nico": 17779, + "nicol": 9919, + "nicol": 48274, + "nicola": 21791, + "nicolas": 43813, + "nicolas": 18918, + "nicole": 21246, + "nicole": 10000, + "nicot": 45099, + "nicotine": 46697, + "nie": 9524, + "nie": 3501, + "niece": 12795, + "nieces": 44877, + "niel": 19109, + "niel": 26837, + "niels": 37154, + "nielsen": 28372, + "nier": 13014, + "nies": 10586, + "niest": 15007, + "nieu": 29781, + "nific": 4748, + "nifty": 25604, + "nig": 27933, + "nig": 28099, + "nigan": 48516, + "nigel": 33919, + "nigel": 15153, + "niger": 4524, + "niger": 29920, + "nigeri": 40913, + "nigeria": 6106, + "nigerian": 12167, + "nigerians": 25358, + "nigh": 13525, + "nigh": 48157, + "night": 3870, + "night": 930, + "nightclub": 20418, + "nighter": 41349, + "nighting": 36211, + "nightingale": 40696, + "nightlife": 28823, + "nightly": 28868, + "nightmare": 12867, + "nightmares": 24032, + "nightout": 44257, + "nights": 4296, + "nighttime": 38147, + "nightw": 39956, + "nih": 25783, + "nik": 5126, + "nik": 13705, + "nike": 16300, + "nike": 5783, + "nikeplus": 43154, + "niki": 36136, + "nikita": 37118, + "nikk": 38596, + "nikki": 23156, + "nikki": 16689, + "niko": 43771, + "nikol": 27430, + "nikola": 42146, + "nikon": 25488, + "nikon": 13849, + "nikov": 43960, + "nil": 16852, + "nil": 35030, + "nile": 24252, + "nim": 30402, + "nim": 42093, + "nima": 42586, + "nin": 5794, + "nin": 14145, + "nina": 13891, + "nine": 16213, + "nine": 7330, + "ninety": 48214, + "ning": 6050, + "ning": 762, + "ningham": 23395, + "ningly": 43537, + "nings": 4588, + "nington": 26214, + "ninj": 23225, + "ninja": 11969, + "ninjas": 42796, + "nino": 25633, + "ninten": 6184, + "nintendo": 13969, + "nintendo": 7886, + "nintendoswitch": 16404, + "ninth": 22770, + "nip": 33889, + "nip": 22333, + "nipp": 24634, + "nipple": 45987, + "nipples": 44774, + "nippon": 47960, + "nips": 49241, + "nir": 15503, + "nir": 40057, + "nireland": 45763, + "niro": 47373, + "nirvana": 28300, + "nis": 5609, + "nis": 3786, + "nish": 19834, + "nish": 13256, + "nished": 24141, + "nishi": 32386, + "nishings": 49247, + "nison": 45700, + "niss": 39043, + "nissan": 37635, + "nissan": 11082, + "nist": 17782, + "nister": 36640, + "nit": 4087, + "nit": 19011, + "nite": 8427, + "niti": 43964, + "niti": 45355, + "nitin": 37529, + "nitro": 30726, + "nitrogen": 30706, + "niture": 7840, + "nity": 12707, + "niu": 48187, + "niv": 47300, + "niversary": 29643, + "nix": 48552, + "nix": 32278, + "nixon": 20671, + "nj": 8343, + "nj": 6672, + "njcaa": 48992, + "njpw": 38992, + "nk": 22708, + "nk": 17456, + "nko": 36353, + "nl": 12057, + "nl": 7655, + "nli": 37502, + "nlp": 35680, + "nlwx": 49260, + "nm": 15956, + "nm": 11370, + "nmd": 43331, + "nme": 40454, + "nmwx": 47967, + "nn": 8947, + "nn": 12925, + "nnn": 26277, + "nnnn": 41420, + "no": 578, + "no": 871, + "noaa": 27557, + "noah": 28806, + "noah": 11519, + "nobel": 33742, + "nobel": 15605, + "nobelprize": 46074, + "noble": 29430, + "noble": 12051, + "nobody": 7009, + "noc": 16988, + "noc": 44420, + "nocchi": 46359, + "noch": 38672, + "noche": 29689, + "noches": 44166, + "nock": 16993, + "noctur": 26291, + "nocturnal": 41738, + "nod": 18648, + "nodapl": 39079, + "node": 31434, + "node": 24871, + "nodejs": 39262, + "nodes": 40534, + "noel": 38406, + "noel": 17496, + "nof": 29505, + "noff": 46979, + "nofilter": 16418, + "nog": 31157, + "noh": 40775, + "noi": 43115, + "noi": 39889, + "noida": 33404, + "noir": 39291, + "noir": 12953, + "nois": 22057, + "noise": 41018, + "noise": 9307, + "noises": 31575, + "noisse": 45686, + "noisy": 33495, + "nokia": 17731, + "nol": 8055, + "nola": 13289, + "nolan": 17323, + "nold": 40322, + "nole": 34654, + "noles": 40569, + "nollywood": 43145, + "nology": 42221, + "nom": 2981, + "nom": 12799, + "nomad": 27849, + "noman": 45592, + "nomin": 5643, + "nominate": 17122, + "nominated": 8710, + "nominating": 45747, + "nomination": 14136, + "nominations": 17124, + "nominee": 14122, + "nominees": 17873, + "nomnom": 26962, + "nomore": 35126, + "noms": 35706, + "non": 4282, + "non": 3353, + "none": 29644, + "none": 8906, + "nonetheless": 39675, + "nonfiction": 31654, + "nonprofit": 19315, + "nonprofits": 37935, + "nonsense": 19136, + "nonstop": 30300, + "nont": 25207, + "noo": 6759, + "noo": 46672, + "noodle": 19521, + "noodles": 15782, + "nook": 30088, + "noon": 37693, + "noon": 2347, + "noor": 46978, + "noor": 31323, + "nope": 15625, + "nor": 1062, + "nor": 6190, + "nora": 25890, + "norcal": 41970, + "nord": 19261, + "nord": 36067, + "nordic": 36439, + "nordic": 20734, + "nordstrom": 38562, + "norfolk": 30232, + "norfolk": 12202, + "norm": 10990, + "norm": 22457, + "norma": 35757, + "normal": 28748, + "normal": 5967, + "normali": 45157, + "normally": 15870, + "norman": 22027, + "norman": 11338, + "normandy": 23840, + "normani": 44596, + "norms": 33011, + "norris": 21814, + "norse": 36559, + "norte": 35638, + "north": 3468, + "north": 2188, + "northampton": 49246, + "northampton": 26175, + "northan": 37081, + "northbound": 24228, + "northcarolina": 43386, + "northe": 24675, + "northeast": 42673, + "northeast": 13009, + "northeastern": 28297, + "northeasthour": 42869, + "norther": 26908, + "northern": 17210, + "northern": 5049, + "northernlights": 48940, + "northkorea": 38495, + "northside": 45957, + "northumber": 22295, + "northumberland": 22922, + "northwales": 49371, + "northwest": 12894, + "northwestern": 23685, + "norton": 18032, + "norway": 8780, + "norwe": 14414, + "norwegian": 15971, + "norwich": 37629, + "norwich": 15812, + "norwood": 37889, + "nos": 13420, + "nose": 24192, + "nose": 8231, + "noses": 48163, + "nostal": 12076, + "nostalgia": 16622, + "nostalgic": 24468, + "not": 2534, + "not": 783, + "notable": 22023, + "notch": 19476, + "notdead": 42059, + "note": 10910, + "note": 3246, + "notebook": 16365, + "notebooks": 37623, + "noted": 22501, + "notes": 5795, + "nothin": 24291, + "nothing": 28412, + "nothing": 2586, + "noti": 10686, + "notic": 6915, + "notice": 6683, + "noticeable": 40857, + "noticed": 9324, + "notices": 33459, + "noticias": 47759, + "noticing": 37571, + "notification": 22512, + "notifications": 23169, + "notified": 39454, + "noting": 38649, + "notion": 37856, + "notjust": 33212, + "notjustlakes": 45803, + "notmy": 39301, + "noto": 29878, + "noton": 48258, + "notor": 21711, + "notori": 44065, + "notorious": 22489, + "notre": 24397, + "notre": 15306, + "notredame": 34077, + "notsorry": 34361, + "nott": 9333, + "nott": 34989, + "notte": 47308, + "nottingham": 12852, + "notts": 25598, + "nou": 8751, + "nou": 30953, + "noun": 33663, + "nouri": 23796, + "nourish": 46025, + "nourished": 48354, + "nous": 29485, + "nouveau": 29948, + "nouvel": 34215, + "nov": 2264, + "nov": 4293, + "nova": 11236, + "novak": 26465, + "novasco": 33785, + "novascotia": 34744, + "novation": 39753, + "nove": 30507, + "novel": 15044, + "novel": 6080, + "novelist": 27314, + "novella": 42770, + "novels": 16040, + "novelty": 37750, + "november": 3680, + "nover": 37465, + "novi": 47957, + "novice": 33743, + "novo": 27504, + "novo": 36581, + "now": 2040, + "now": 692, + "nowadays": 26155, + "nowhere": 14108, + "nowplaying": 3708, + "nowwatching": 30852, + "nox": 27406, + "noxi": 39304, + "noxious": 42833, + "noy": 32787, + "np": 18205, + "np": 6314, + "npa": 42378, + "npc": 33966, + "npr": 39941, + "npr": 24078, + "nps": 22025, + "npt": 47231, + "nr": 6574, + "nr": 9713, + "nra": 17286, + "nrc": 45786, + "nrf": 47982, + "nrg": 48662, + "nrl": 27142, + "nrl": 18127, + "ns": 12405, + "ns": 1373, + "nsa": 23004, + "nsc": 32792, + "nsd": 36659, + "nsf": 34180, + "nsfw": 19847, + "nsi": 47824, + "nsw": 21301, + "nsw": 11693, + "nswpol": 44434, + "nt": 10902, + "nt": 3207, + "ntr": 30845, + "nts": 43775, + "ntt": 22859, + "ntv": 24807, + "ntv": 45304, + "nu": 1156, + "nu": 9444, + "nucle": 25693, + "nuclear": 34136, + "nuclear": 7279, + "nude": 16630, + "nudes": 32122, + "nue": 22834, + "nuestra": 45649, + "nuestro": 38590, + "nuev": 47861, + "nueva": 48810, + "nuevo": 30265, + "nufc": 15720, + "nuff": 37324, + "nug": 13471, + "nugent": 47457, + "nugget": 25448, + "nuggets": 18970, + "nuh": 45950, + "nuit": 38815, + "nuk": 39228, + "nuke": 39399, + "nul": 29358, + "null": 47376, + "num": 17896, + "num": 30534, + "numb": 34639, + "numb": 39427, + "number": 44078, + "number": 2842, + "numbered": 25975, + "numbers": 6121, + "numer": 11442, + "numerous": 17082, + "numis": 39100, + "nun": 12511, + "nun": 28540, + "nunavut": 48626, + "nunes": 40697, + "nuns": 44061, + "nup": 46757, + "nur": 3920, + "nur": 33493, + "nure": 42480, + "nurse": 37547, + "nurse": 10058, + "nursery": 15540, + "nurses": 12938, + "nursing": 11126, + "nurture": 38865, + "nurturing": 45229, + "nus": 25157, + "nus": 18239, + "nut": 10358, + "nut": 6491, + "nutcracker": 36733, + "nutella": 27312, + "nutr": 6198, + "nutri": 15470, + "nutrient": 32900, + "nutrients": 24668, + "nutriti": 17978, + "nutrition": 41546, + "nutrition": 7989, + "nutritional": 26457, + "nutritious": 30387, + "nuts": 8644, + "nutshell": 26659, + "nutty": 39846, + "nv": 17217, + "nv": 16985, + "nvi": 22847, + "nvidia": 27325, + "nw": 7826, + "nw": 7030, + "nwa": 34237, + "nwo": 40976, + "nws": 23333, + "nws": 30998, + "nwsl": 48394, + "nwt": 25029, + "nx": 18810, + "nx": 16997, + "nxt": 35037, + "nxt": 17804, + "ny": 1383, + "ny": 1350, + "nya": 24165, + "nyc": 13304, + "nyc": 2832, + "nycc": 27187, + "nycfc": 47497, + "nye": 40723, + "nye": 13416, + "nyfw": 21089, + "nyk": 46841, + "nylon": 25915, + "nyo": 41534, + "nyo": 44586, + "nypd": 42293, + "nypd": 18279, + "nyr": 32538, + "nyrd": 47936, + "nys": 36375, + "nys": 23423, + "nyse": 32650, + "nyt": 46311, + "nyt": 12816, + "nytimes": 13772, + "nyu": 43143, + "nyu": 31355, + "nz": 10142, + "nz": 7082, + "o": 78, + "o": 334, + "oa": 11994, + "oahu": 37790, + "oak": 6010, + "oak": 7221, + "oakland": 42663, + "oakland": 12077, + "oakley": 27810, + "oaks": 16734, + "oakville": 38500, + "oasis": 18185, + "oat": 20095, + "oat": 34132, + "oates": 47094, + "oath": 20108, + "oatmeal": 26374, + "oats": 24150, + "oax": 43090, + "oaxaca": 47818, + "ob": 1411, + "ob": 14908, + "oba": 42902, + "oba": 15147, + "obam": 13174, + "obama": 4276, + "obamacare": 18005, + "obe": 11897, + "obe": 29117, + "obedience": 48921, + "ober": 15284, + "obese": 41757, + "obesity": 19499, + "obey": 26926, + "obi": 21454, + "obi": 18414, + "obile": 20513, + "obitu": 39218, + "obituary": 43580, + "objec": 7970, + "object": 14115, + "objective": 23663, + "objectives": 30238, + "objects": 13770, + "obl": 31452, + "oblast": 42672, + "obli": 11416, + "obligation": 34473, + "obligations": 38232, + "obligatory": 35020, + "oblivion": 45323, + "obo": 46001, + "obo": 26618, + "obrien": 31946, + "obs": 39162, + "obsc": 20392, + "obscure": 33337, + "obse": 8433, + "observ": 9050, + "observation": 20250, + "observations": 27409, + "observatory": 21236, + "observe": 23217, + "observed": 21267, + "observer": 22077, + "observers": 47544, + "observing": 28359, + "obsessed": 9744, + "obsession": 15718, + "obsi": 47323, + "obsole": 35561, + "obsolete": 40628, + "obst": 29398, + "obstac": 24075, + "obstacle": 29751, + "obstacles": 24480, + "obste": 49103, + "obstru": 44876, + "obstruc": 38762, + "obstruction": 40240, + "obtain": 26555, + "obtained": 29322, + "obvious": 13959, + "obviously": 10068, + "oc": 1566, + "oc": 6603, + "oca": 31120, + "ocal": 38148, + "occ": 43940, + "occa": 8530, + "occasion": 12280, + "occasional": 33059, + "occasionally": 32479, + "occasions": 26154, + "occer": 20804, + "occi": 42994, + "occu": 7863, + "occult": 42529, + "occup": 11152, + "occupation": 18624, + "occupational": 30644, + "occupied": 17271, + "occupy": 22453, + "occupy": 24210, + "occur": 11264, + "occur": 21813, + "occurred": 19850, + "occurrence": 40615, + "occurring": 31335, + "occurs": 26563, + "ocd": 35904, + "oce": 3509, + "ocean": 12941, + "ocean": 4918, + "oceans": 16792, + "och": 29334, + "och": 32011, + "oche": 33045, + "oci": 9891, + "ocity": 46039, + "ock": 33579, + "ock": 21313, + "ocks": 22410, + "oclock": 36274, + "oco": 32553, + "ocon": 33090, + "ocr": 45813, + "ocre": 40320, + "ocs": 27297, + "oct": 4565, + "octa": 23444, + "octag": 37768, + "octagon": 49167, + "octane": 43040, + "octavia": 47416, + "octo": 31032, + "october": 3481, + "octopus": 22327, + "ocu": 22709, + "oculus": 30082, + "od": 4886, + "od": 9719, + "oda": 24777, + "oday": 41954, + "odd": 15525, + "odd": 11387, + "oddly": 34213, + "odds": 11555, + "ode": 19125, + "ode": 19639, + "odell": 41556, + "odessa": 43574, + "odi": 12223, + "odi": 18853, + "odin": 35175, + "odisha": 15737, + "odo": 49188, + "odo": 40993, + "odor": 39509, + "odu": 35095, + "odu": 39904, + "odyssey": 19991, + "oe": 24251, + "oe": 11667, + "oec": 24288, + "oecd": 30816, + "oem": 29650, + "oes": 3643, + "of": 684, + "of": 539, + "ofa": 29774, + "ofc": 19877, + "ofe": 30000, + "ofer": 47322, + "off": 892, + "off": 1007, + "offe": 8261, + "offee": 34059, + "offen": 7231, + "offence": 34594, + "offences": 33972, + "offended": 30765, + "offender": 48294, + "offenders": 35878, + "offense": 15253, + "offensive": 11037, + "offer": 20607, + "offer": 3271, + "offered": 9395, + "offering": 6896, + "offerings": 24535, + "offers": 4679, + "offic": 3276, + "office": 18033, + "office": 2171, + "officeof": 38750, + "officeofrg": 47100, + "officer": 4683, + "officers": 6335, + "offices": 10933, + "offici": 1401, + "official": 5768, + "official": 1868, + "officially": 4226, + "officials": 7658, + "officiel": 26548, + "offl": 16851, + "offline": 22724, + "offro": 32198, + "offroad": 37173, + "offs": 23987, + "offseason": 25485, + "offset": 28843, + "offshore": 15496, + "offside": 49347, + "offspring": 38635, + "offthe": 38189, + "ofi": 36692, + "ofi": 49090, + "oficial": 18061, + "oft": 16693, + "oftball": 39768, + "often": 4864, + "ofthe": 7592, + "oftheday": 6988, + "oftheweek": 20654, + "oftheyear": 33975, + "og": 11542, + "og": 8555, + "oga": 47312, + "ogden": 42011, + "ogil": 39013, + "ography": 22399, + "ogue": 24761, + "ogun": 48970, + "oh": 5648, + "oh": 1779, + "ohana": 48330, + "ohh": 23076, + "ohhh": 27697, + "ohhhh": 40201, + "ohi": 5207, + "ohio": 18951, + "ohio": 6155, + "ohiostate": 41324, + "ohl": 45547, + "ohl": 41095, + "ohmy": 29758, + "ohn": 48043, + "ohs": 39542, + "ohwx": 47993, + "oi": 27357, + "oi": 13934, + "oic": 45554, + "oid": 14758, + "oids": 21847, + "oil": 11973, + "oil": 2870, + "oiland": 32316, + "oilandgas": 34130, + "oilers": 21627, + "oilpainting": 34279, + "oils": 17886, + "oily": 47550, + "oir": 48079, + "oir": 37113, + "ois": 23262, + "oit": 18453, + "oitnb": 34865, + "oj": 30986, + "oj": 34553, + "ok": 1944, + "ok": 2481, + "oka": 42258, + "oka": 19092, + "okan": 41263, + "okanagan": 43233, + "okay": 4917, + "okc": 42418, + "okc": 18357, + "oke": 26636, + "oke": 23598, + "oki": 20390, + "okin": 30687, + "okinawa": 35877, + "okla": 9431, + "oklahoma": 10170, + "oko": 26892, + "oko": 26095, + "okstate": 36356, + "oktoberfest": 32026, + "oku": 45010, + "oku": 43829, + "okwx": 27336, + "ol": 562, + "ol": 2985, + "ola": 20499, + "ola": 3373, + "olaf": 39709, + "olan": 48489, + "olan": 24227, + "oland": 26452, + "olas": 40800, + "old": 4931, + "old": 896, + "olde": 37731, + "older": 7700, + "oldest": 9285, + "oldham": 29929, + "oldie": 35280, + "oldies": 36278, + "oldman": 48614, + "olds": 8580, + "oldschool": 44384, + "oldschool": 25133, + "oldsmobile": 45396, + "ole": 9089, + "ole": 1947, + "oled": 46768, + "oler": 24069, + "oles": 16962, + "olf": 16346, + "olga": 34779, + "oli": 3811, + "oli": 8810, + "olic": 31341, + "oligar": 46185, + "olim": 47769, + "olin": 37823, + "olin": 18283, + "olina": 34711, + "oline": 17441, + "oling": 38033, + "olini": 36040, + "olis": 49397, + "olithic": 35574, + "olive": 22486, + "olive": 9898, + "oliver": 22882, + "oliver": 9261, + "olives": 27149, + "olivi": 20773, + "olivia": 11697, + "olivier": 23891, + "oll": 32270, + "oll": 15510, + "olla": 31908, + "ollie": 24434, + "olls": 42697, + "olly": 23998, + "olo": 14628, + "olo": 7606, + "ological": 12345, + "ologist": 23442, + "ologists": 30912, + "ology": 4627, + "olor": 29245, + "olph": 25077, + "ols": 2236, + "olsen": 26307, + "olson": 28046, + "olt": 46252, + "olu": 16502, + "olu": 46302, + "olulu": 27645, + "oly": 20323, + "oly": 24823, + "olym": 3594, + "olympi": 13597, + "olympia": 23965, + "olympiad": 47694, + "olympian": 25420, + "olympians": 44583, + "olympic": 26099, + "olympic": 6388, + "olympics": 7629, + "olympus": 30960, + "om": 547, + "om": 3932, + "oma": 44603, + "oma": 5358, + "omaha": 16509, + "oman": 22088, + "oman": 10871, + "omar": 19488, + "omar": 13367, + "omars": 37099, + "omas": 36023, + "omat": 40788, + "omb": 34447, + "ombe": 35967, + "omd": 49346, + "ome": 3693, + "ome": 5832, + "omed": 16835, + "omega": 13465, + "omelette": 38789, + "omen": 9969, + "omen": 25469, + "oment": 43683, + "omeo": 39844, + "omer": 24087, + "omer": 17902, + "omes": 25736, + "ometer": 20060, + "ometric": 38702, + "omez": 12541, + "omf": 47496, + "omfg": 12523, + "omg": 35233, + "omg": 3186, + "omi": 24097, + "omi": 10341, + "omic": 40536, + "omic": 12793, + "omics": 15138, + "omile": 46915, + "omin": 16457, + "omination": 42571, + "oming": 10796, + "ominous": 40914, + "omni": 18793, + "omni": 39489, + "omnibus": 44760, + "omnic": 48383, + "omo": 14478, + "omo": 11066, + "omon": 48758, + "omor": 29431, + "oms": 3770, + "omusic": 38965, + "omy": 40805, + "omy": 6884, + "on": 521, + "on": 525, + "ona": 2687, + "onair": 29511, + "onal": 918, + "onboard": 21689, + "once": 16331, + "once": 2654, + "onceupon": 28122, + "onceuponatime": 33505, + "onco": 46700, + "oncology": 24593, + "ond": 27918, + "ond": 2636, + "onda": 32643, + "onday": 29864, + "onde": 44532, + "ondo": 29529, + "ondon": 42043, + "ondon": 11851, + "one": 1980, + "one": 637, + "onec": 27746, + "oned": 28012, + "oned": 4698, + "onedirection": 16245, + "onee": 44433, + "oneill": 44808, + "onelove": 47417, + "onent": 12147, + "onents": 11709, + "oneof": 48478, + "onep": 20440, + "onepiece": 43153, + "oneplus": 25981, + "oner": 30055, + "oner": 6071, + "oners": 12324, + "ones": 20757, + "ones": 1575, + "oneself": 46874, + "onesie": 33237, + "oness": 25379, + "onet": 36058, + "oneteam": 41094, + "onetsy": 33392, + "onew": 43848, + "onews": 18696, + "onex": 49116, + "oney": 44498, + "oney": 9408, + "onf": 41790, + "onfox": 29874, + "ong": 2787, + "ong": 846, + "onga": 30259, + "ongchang": 35071, + "ongi": 21754, + "ongo": 31226, + "ongoing": 10393, + "ongs": 12143, + "oni": 4385, + "oni": 8048, + "onia": 8001, + "onial": 27599, + "onian": 21090, + "onic": 15838, + "onic": 3711, + "onica": 14631, + "onics": 9779, + "onie": 35249, + "onies": 22601, + "onimo": 41271, + "oning": 5197, + "onion": 10985, + "onions": 15255, + "onist": 10099, + "onists": 19659, + "onix": 27370, + "onized": 43657, + "onlin": 31103, + "online": 12940, + "online": 2027, + "onlinemarketing": 41820, + "onlineshopping": 38587, + "only": 11646, + "only": 1033, + "onlyin": 32947, + "onna": 25438, + "onna": 35458, + "onnaise": 48934, + "onne": 23466, + "onnell": 45613, + "ono": 28165, + "ono": 14388, + "onom": 48014, + "onomy": 36873, + "onpoli": 20708, + "ons": 26076, + "ons": 708, + "onsale": 36324, + "onset": 30527, + "onsite": 37336, + "onstage": 21821, + "onstorm": 49333, + "ont": 34303, + "ont": 11157, + "ontari": 6739, + "ontario": 42766, + "ontario": 7436, + "onte": 34723, + "onthe": 12241, + "onther": 46563, + "ontheroad": 47516, + "onthisday": 6862, + "onto": 11745, + "onto": 3141, + "ontology": 37364, + "ontour": 32155, + "onu": 44142, + "onward": 34827, + "onwards": 20682, + "ony": 9490, + "ony": 2926, + "onym": 11483, + "onymous": 13038, + "onyx": 31353, + "oo": 574, + "oo": 2822, + "ood": 16429, + "ood": 738, + "oodle": 45289, + "oods": 44660, + "oof": 42270, + "ooh": 16806, + "ook": 22326, + "ook": 8394, + "ooks": 31082, + "ool": 37702, + "ool": 929, + "oom": 22786, + "oom": 15002, + "oomf": 40607, + "oon": 35651, + "oon": 7100, + "ooo": 9571, + "oooh": 28927, + "oooo": 4002, + "oooo": 13643, + "ooooo": 12532, + "oooooo": 43590, + "oooooo": 20372, + "ooooooo": 30859, + "oooooooo": 15473, + "oooooooo": 43408, + "oooooooooooooooo": 48645, + "oop": 7326, + "ooper": 39906, + "oops": 9116, + "oor": 35239, + "oos": 9896, + "oosa": 30834, + "oose": 38941, + "oot": 17667, + "ootball": 28914, + "ootd": 16547, + "ooth": 12682, + "oott": 34316, + "ooza": 22809, + "op": 676, + "op": 3691, + "opa": 28949, + "opal": 28982, + "opar": 18167, + "opath": 33079, + "opathic": 37521, + "opathy": 28466, + "opau": 27239, + "opd": 38288, + "ope": 31694, + "ope": 11440, + "opec": 33138, + "opel": 36952, + "open": 3647, + "open": 1488, + "openaccess": 26591, + "opend": 28069, + "opendata": 35709, + "openday": 46991, + "opened": 5303, + "opener": 8998, + "openhouse": 36091, + "opening": 33728, + "opening": 2516, + "openingday": 36359, + "openings": 27643, + "openly": 23005, + "opens": 4801, + "opensource": 29930, + "oper": 2796, + "oper": 37533, + "opera": 8056, + "operate": 19306, + "operated": 23031, + "operates": 38675, + "operating": 12218, + "operation": 27173, + "operation": 7639, + "operational": 18237, + "operations": 8106, + "operative": 28380, + "operator": 15972, + "operators": 19267, + "opers": 48728, + "opes": 37258, + "oph": 6796, + "opha": 38634, + "ophel": 45017, + "ophelia": 49118, + "ophi": 44547, + "ophile": 35915, + "opho": 12900, + "ophobia": 21111, + "ophobic": 29934, + "ophon": 25120, + "ophone": 26345, + "ophthal": 33135, + "ophy": 28539, + "opi": 40056, + "opi": 48994, + "opin": 7636, + "opini": 14825, + "opinion": 7843, + "opinions": 16192, + "opio": 17371, + "opioid": 22833, + "opioids": 47578, + "opla": 36270, + "ople": 25663, + "opol": 15173, + "opoly": 23729, + "opor": 39650, + "opoulos": 42020, + "opp": 2020, + "opp": 21024, + "oppa": 23637, + "oppo": 7399, + "oppo": 41770, + "opponent": 17002, + "opponents": 19664, + "oppor": 2914, + "opportun": 2939, + "opportunities": 5978, + "opportunity": 4004, + "oppos": 10091, + "oppose": 23617, + "opposed": 22509, + "opposes": 47471, + "opposing": 24376, + "opposite": 12872, + "opposition": 11062, + "oppre": 17341, + "oppressed": 41492, + "oppression": 30650, + "opra": 28291, + "oprah": 22562, + "opry": 35340, + "ops": 3054, + "opt": 45103, + "opt": 27188, + "opted": 42035, + "opti": 6580, + "optic": 25190, + "optic": 24755, + "optical": 16822, + "optics": 27165, + "optim": 22331, + "optimal": 25235, + "optimi": 9737, + "optimis": 39459, + "optimism": 25226, + "optimist": 44581, + "optimistic": 23104, + "optimization": 25125, + "optimize": 30456, + "optimized": 43939, + "optimizing": 49157, + "optimum": 35974, + "optimus": 43453, + "option": 8464, + "optional": 25411, + "options": 7063, + "optome": 35533, + "opul": 39858, + "opus": 33295, + "opy": 21835, + "or": 523, + "or": 541, + "ora": 4301, + "orac": 24673, + "oracle": 37308, + "oracle": 15966, + "orah": 40820, + "orail": 45120, + "oral": 32490, + "oral": 6007, + "orama": 33619, + "oran": 32209, + "oran": 28395, + "orang": 22116, + "orange": 13957, + "orange": 4287, + "oranges": 32417, + "orangu": 36112, + "orb": 28894, + "orb": 36958, + "orbit": 19713, + "orbital": 40312, + "orc": 44305, + "orca": 18631, + "orcas": 47676, + "orch": 11893, + "orchar": 40226, + "orchard": 19530, + "orche": 8004, + "orchestr": 42937, + "orchestra": 9573, + "orchestral": 40285, + "orchi": 23696, + "orchid": 18678, + "orchids": 28376, + "ord": 26903, + "ord": 11502, + "orda": 33462, + "ordained": 38302, + "order": 24613, + "order": 2191, + "ordered": 8335, + "ordering": 19588, + "orderly": 43457, + "orders": 6187, + "ordin": 4378, + "ordinance": 38583, + "ordinary": 8012, + "ore": 3580, + "ore": 1423, + "orean": 36696, + "ored": 5133, + "oregon": 21759, + "oregon": 8035, + "oren": 21645, + "oreo": 21873, + "oreos": 41688, + "ores": 17328, + "org": 3401, + "org": 5593, + "organ": 3338, + "organ": 13213, + "organi": 3636, + "organic": 24080, + "organic": 5980, + "organics": 44199, + "organis": 13204, + "organisation": 15868, + "organisations": 20651, + "organise": 36073, + "organised": 13191, + "organiser": 49141, + "organisers": 35778, + "organising": 22787, + "organisms": 37041, + "organiz": 11107, + "organization": 8064, + "organizational": 29510, + "organizations": 13453, + "organize": 19973, + "organized": 10681, + "organizer": 23905, + "organizers": 27191, + "organizing": 15779, + "organs": 29872, + "orgs": 29500, + "ori": 1540, + "ori": 8693, + "oria": 11474, + "orial": 8648, + "orian": 21193, + "oric": 43810, + "orice": 41341, + "orie": 18815, + "orient": 13149, + "orient": 30770, + "oriental": 23056, + "orientation": 16873, + "oriente": 40390, + "oriented": 24596, + "orienteering": 42985, + "ories": 5934, + "orig": 2273, + "orig": 38463, + "origami": 31832, + "origin": 2555, + "origin": 12372, + "original": 18496, + "original": 3117, + "originally": 12849, + "originals": 16953, + "originated": 41823, + "origins": 16291, + "orin": 39863, + "oring": 3006, + "orio": 24308, + "orioles": 21430, + "orion": 21765, + "oris": 37064, + "orities": 7903, + "ority": 5556, + "orium": 12015, + "ork": 22202, + "ork": 37235, + "orkney": 34254, + "orl": 39465, + "orlando": 32247, + "orlando": 7827, + "orleans": 11127, + "orm": 38464, + "orn": 25412, + "orn": 8130, + "ornam": 36122, + "ornament": 23409, + "ornamental": 46270, + "ornaments": 28968, + "ornate": 46865, + "orni": 27713, + "ornithology": 38275, + "orns": 19340, + "oro": 9848, + "oro": 14573, + "orous": 19286, + "orph": 17318, + "orphan": 22718, + "orphan": 28994, + "orphanage": 45196, + "orphaned": 46792, + "orphans": 36588, + "orphe": 39186, + "orr": 32977, + "ors": 1127, + "orship": 20846, + "ort": 1019, + "ortega": 39727, + "orth": 22584, + "orth": 24461, + "ortho": 11366, + "orthodon": 37730, + "orthodox": 19008, + "orthop": 42123, + "orthopedic": 49341, + "ortiz": 23544, + "orton": 37238, + "oru": 44629, + "oru": 31281, + "orum": 42724, + "orwell": 41218, + "ory": 16983, + "ory": 1985, + "os": 2211, + "os": 1299, + "osa": 16340, + "osa": 17237, + "osaka": 21347, + "osborne": 22402, + "osbourne": 43376, + "osc": 5092, + "oscar": 21157, + "oscar": 8191, + "oscars": 11098, + "osce": 37303, + "oscill": 38272, + "ose": 46942, + "ose": 22541, + "osh": 30717, + "osh": 35011, + "osha": 33907, + "oshi": 34770, + "osi": 25247, + "osi": 17636, + "osis": 13903, + "osity": 12730, + "oslo": 20547, + "osm": 31626, + "osman": 46539, + "oso": 42793, + "oso": 21285, + "osp": 24387, + "ospre": 49001, + "osprey": 37893, + "oss": 29362, + "oss": 34640, + "ost": 23701, + "ost": 18749, + "oste": 20632, + "osteo": 43163, + "oster": 31781, + "ostr": 33673, + "ostrich": 47640, + "osu": 29480, + "osu": 19818, + "oswald": 38471, + "ot": 1863, + "ot": 2062, + "ota": 17509, + "ota": 8741, + "otago": 45919, + "otaku": 40743, + "otas": 47616, + "otc": 37934, + "otd": 5683, + "ote": 28511, + "ote": 19744, + "otes": 27280, + "oth": 33262, + "oth": 33519, + "other": 9758, + "other": 1010, + "others": 3326, + "otherwise": 12376, + "oti": 19567, + "oti": 45564, + "otic": 9671, + "otis": 28246, + "otive": 10877, + "oto": 23946, + "oto": 23399, + "otp": 29822, + "otr": 38685, + "ots": 5769, + "ott": 10167, + "ott": 7936, + "otta": 7623, + "otta": 20941, + "ottawa": 49027, + "ottawa": 9019, + "otte": 35214, + "otter": 34710, + "otter": 22456, + "otters": 38883, + "otti": 36721, + "ottnews": 33995, + "otto": 17730, + "ottoman": 27503, + "otw": 35259, + "otwol": 46868, + "ou": 520, + "ou": 6544, + "ouat": 32954, + "ouch": 13493, + "oud": 1359, + "oue": 48838, + "ouf": 34618, + "ough": 4204, + "ough": 991, + "ought": 2253, + "oughton": 36860, + "oui": 39421, + "ouk": 21796, + "oul": 20253, + "oul": 8081, + "ould": 859, + "oulos": 32808, + "oun": 636, + "oun": 20960, + "ounce": 15027, + "ounces": 30299, + "ound": 2013, + "ound": 853, + "oundation": 40132, + "ounded": 9634, + "ounding": 11944, + "ounds": 2753, + "oung": 35875, + "oung": 25341, + "ounge": 29427, + "ount": 43801, + "ount": 4172, + "ounts": 10963, + "oup": 32815, + "our": 727, + "our": 581, + "oura": 29806, + "oura": 36352, + "ourable": 24126, + "ourage": 34525, + "oural": 45840, + "oured": 6956, + "ouri": 12696, + "ouring": 12000, + "ourism": 25496, + "ourke": 26480, + "ourlives": 37541, + "ouro": 41224, + "ours": 1491, + "ourse": 15415, + "ourselves": 10124, + "ourt": 22960, + "oury": 29484, + "ous": 1987, + "ous": 879, + "ouse": 32048, + "ouse": 7603, + "ouses": 33666, + "ously": 2501, + "ousness": 10689, + "ousy": 28302, + "out": 1130, + "out": 620, + "outa": 35187, + "outage": 27320, + "outages": 40353, + "outback": 28532, + "outbound": 41256, + "outbreak": 20103, + "outcome": 16552, + "outcomes": 14016, + "outdated": 38313, + "outdoor": 19184, + "outdoor": 6368, + "outdoors": 10469, + "oute": 44180, + "outed": 34435, + "outer": 30499, + "outer": 14188, + "outes": 39600, + "outfield": 41826, + "outfit": 6525, + "outfits": 16366, + "outfitters": 37725, + "outfy": 34920, + "outgoing": 27302, + "outh": 16933, + "outh": 8111, + "outine": 35452, + "outing": 11251, + "outlander": 45820, + "outlander": 17095, + "outlaw": 37498, + "outlaw": 27340, + "outlaws": 30935, + "outlet": 16855, + "outlets": 20822, + "outline": 26894, + "outlines": 29159, + "outlining": 45960, + "outlook": 12983, + "outof": 43958, + "outpatient": 46603, + "outpost": 44622, + "output": 17255, + "outra": 14262, + "outrage": 23577, + "outraged": 43402, + "outrageous": 29342, + "outre": 14373, + "outreach": 15297, + "outright": 38200, + "outs": 5790, + "outsi": 22515, + "outside": 47693, + "outside": 2782, + "outsider": 41196, + "outsiders": 41742, + "outskirts": 42088, + "outsourcing": 34543, + "outstanding": 6387, + "outta": 15807, + "outtuesday": 48692, + "outw": 34650, + "oux": 40960, + "oux": 14228, + "ov": 6420, + "ov": 8479, + "ova": 12762, + "oval": 15039, + "ovarian": 42913, + "ovation": 24333, + "ove": 8649, + "ove": 15456, + "oven": 44620, + "oven": 12579, + "over": 1658, + "over": 962, + "overall": 6914, + "overboard": 42982, + "overcame": 47235, + "overcast": 36942, + "overcome": 14365, + "overcoming": 29348, + "overdose": 27017, + "overdrive": 40088, + "overdue": 30240, + "overflow": 32885, + "overflowing": 45370, + "overhaul": 31531, + "overhead": 20321, + "overland": 38808, + "overlay": 44827, + "overload": 24327, + "overlook": 35767, + "overlooked": 27632, + "overlooking": 17319, + "overly": 28820, + "overnight": 9913, + "overpass": 44310, + "overrated": 38214, + "overs": 45774, + "overs": 17329, + "overseas": 15100, + "oversight": 32494, + "oversized": 31557, + "overtime": 19347, + "overturned": 31048, + "overview": 14789, + "overwatch": 18124, + "overweight": 43465, + "overwhel": 12204, + "overwhelmed": 23459, + "overwhelming": 20306, + "overwhelmingly": 43549, + "ovi": 32508, + "ovic": 22417, + "ovich": 27623, + "ovie": 47677, + "ovo": 41920, + "ovo": 18065, + "ovski": 26167, + "ow": 2032, + "ow": 2250, + "owa": 32770, + "owe": 19073, + "owed": 37641, + "owen": 24838, + "owen": 12056, + "owens": 20664, + "owes": 35069, + "owing": 48582, + "owl": 34332, + "owl": 9899, + "owls": 18247, + "own": 3845, + "own": 1758, + "owned": 8536, + "owner": 5019, + "owners": 7712, + "ownership": 16583, + "owning": 24661, + "owns": 17533, + "owo": 46142, + "ows": 27423, + "owski": 22573, + "ox": 3282, + "ox": 12071, + "oxfam": 45466, + "oxford": 28588, + "oxford": 8824, + "oxfordshire": 37855, + "oxi": 33731, + "oxi": 48147, + "oxid": 17701, + "oxide": 28235, + "oxo": 37088, + "oxy": 12432, + "oxygen": 16214, + "oy": 6638, + "oy": 12437, + "oya": 38894, + "oye": 48677, + "oyster": 40545, + "oyster": 17253, + "oysters": 22672, + "oz": 10584, + "oz": 6044, + "ozar": 31848, + "ozil": 41365, + "ozone": 37052, + "ozzy": 39549, + "p": 79, + "p": 335, + "pa": 765, + "pa": 2217, + "paa": 32812, + "pab": 9354, + "pablo": 42172, + "pablo": 14473, + "pac": 2332, + "pac": 7608, + "pace": 40600, + "pace": 9450, + "paced": 32611, + "pacers": 23976, + "paces": 43001, + "paci": 5699, + "pacific": 19723, + "pacific": 6654, + "pacing": 45202, + "pack": 2711, + "pack": 3420, + "package": 7053, + "packaged": 29656, + "packages": 14305, + "packaging": 11658, + "packard": 46421, + "packed": 5883, + "packer": 28209, + "packers": 14294, + "packet": 25022, + "packets": 40448, + "packing": 9829, + "packs": 11086, + "paco": 41364, + "pacqui": 28456, + "pacquiao": 30485, + "pact": 27182, + "pad": 3798, + "pad": 7601, + "padded": 42253, + "paddington": 33162, + "paddle": 38276, + "paddle": 20811, + "paddling": 40645, + "paddock": 29590, + "paddy": 33103, + "paddy": 19855, + "padi": 47037, + "padilla": 22380, + "padma": 44595, + "padma": 46457, + "padre": 38343, + "padres": 22829, + "pads": 17353, + "paedi": 41488, + "paella": 46924, + "paf": 47185, + "pafc": 49259, + "pag": 4151, + "pag": 30525, + "pagan": 27854, + "page": 14996, + "page": 2504, + "pageant": 22139, + "pages": 8082, + "pagoda": 44309, + "pah": 41054, + "pah": 26884, + "pai": 20624, + "pai": 21198, + "paid": 5057, + "paige": 33659, + "paige": 16022, + "paign": 31796, + "pain": 2141, + "pain": 4495, + "paine": 38069, + "painful": 16361, + "pains": 25639, + "paint": 7948, + "paint": 5185, + "paintball": 39730, + "painted": 6433, + "painter": 10888, + "painters": 35703, + "painting": 49164, + "painting": 3086, + "paintings": 9956, + "paints": 21672, + "pair": 19848, + "pair": 4038, + "paired": 12433, + "pairing": 16313, + "pairings": 41152, + "pairs": 9950, + "pais": 16878, + "paisley": 22954, + "pajam": 24110, + "pajama": 40244, + "pajamas": 37231, + "pak": 13186, + "pak": 9094, + "paki": 3438, + "pakistan": 10713, + "pakistan": 3994, + "pakistani": 14050, + "pakistanis": 45707, + "pakv": 38196, + "pal": 1850, + "pal": 3611, + "pala": 17895, + "palace": 6381, + "palaces": 45625, + "palad": 28371, + "palae": 43379, + "palais": 35673, + "palate": 34666, + "palawan": 48202, + "palazzo": 36006, + "pale": 4768, + "pale": 12518, + "paleo": 36741, + "paleo": 22198, + "paler": 38028, + "palermo": 40635, + "palestin": 9449, + "palestine": 11682, + "palestinian": 11764, + "palestinians": 21874, + "palette": 13901, + "pali": 48063, + "palin": 40153, + "palis": 44256, + "pality": 27296, + "pall": 35817, + "palla": 21208, + "palladium": 37888, + "pallet": 39057, + "palli": 28954, + "palliative": 46014, + "pally": 46073, + "palm": 19651, + "palm": 8612, + "palma": 29888, + "palmer": 40112, + "palmer": 13633, + "palms": 27059, + "palo": 31562, + "palom": 47698, + "palooza": 25861, + "pals": 11043, + "palsy": 46651, + "pam": 8228, + "pam": 18513, + "pamela": 26991, + "pamp": 37653, + "pamper": 44345, + "pamph": 41332, + "pan": 1072, + "pan": 7437, + "panam": 24606, + "panama": 15522, + "panas": 26207, + "panasonic": 29750, + "pancake": 18723, + "pancakes": 15308, + "panch": 27251, + "pancra": 42472, + "pancre": 27708, + "pancreatic": 49337, + "pancy": 41625, + "pand": 5631, + "panda": 12952, + "pandas": 35119, + "pande": 38419, + "pandey": 34895, + "pandit": 41191, + "pandor": 30250, + "pandora": 17727, + "pandoramusic": 42344, + "pane": 27470, + "panel": 3724, + "paneli": 19410, + "panelist": 39719, + "panelists": 24619, + "panels": 12735, + "panera": 48471, + "pang": 16756, + "pang": 23672, + "panhandle": 40919, + "pani": 36092, + "panic": 46671, + "panic": 14124, + "panini": 30410, + "pann": 42302, + "panna": 49065, + "pano": 36165, + "panor": 12962, + "panorama": 19763, + "panoramic": 22563, + "pans": 35204, + "pant": 22550, + "panther": 22825, + "panther": 13262, + "panthers": 10494, + "panties": 32515, + "panto": 28776, + "pantry": 25608, + "pants": 5003, + "panty": 44217, + "pany": 45567, + "panzer": 41159, + "pao": 33790, + "paola": 44689, + "paolo": 48488, + "paolo": 21133, + "pap": 1884, + "pap": 30756, + "papa": 12211, + "papar": 32782, + "paparazzi": 37842, + "papaya": 44098, + "paper": 8680, + "paper": 2802, + "paperback": 17928, + "papers": 8204, + "paperwork": 35785, + "papi": 35177, + "papp": 26361, + "paprika": 44793, + "papua": 32629, + "par": 699, + "par": 9163, + "para": 18355, + "para": 8976, + "parach": 23147, + "parachute": 30122, + "parad": 37143, + "parade": 5809, + "parades": 46479, + "paradi": 6658, + "paradig": 27786, + "paradigm": 33485, + "paradise": 45869, + "paradise": 7247, + "paradox": 33109, + "parag": 11866, + "paragon": 48099, + "paragra": 24903, + "paragraph": 28499, + "paragu": 38021, + "paraguay": 43579, + "paral": 15143, + "paralle": 13184, + "parallel": 18201, + "paralleled": 42520, + "parallels": 46101, + "paraly": 30255, + "paralym": 18727, + "paralympic": 30806, + "paralympics": 37162, + "paralysis": 45702, + "param": 12250, + "parame": 27106, + "paramedic": 34630, + "paramedics": 35991, + "parameters": 44890, + "paramore": 34401, + "paramount": 26642, + "parano": 30283, + "paranoid": 43029, + "paranor": 16940, + "paranormal": 19047, + "parap": 41091, + "paras": 15198, + "parasite": 42460, + "parasites": 46175, + "parc": 30914, + "parcel": 30367, + "parcels": 45589, + "pard": 18773, + "pardon": 47606, + "pardon": 26565, + "pare": 18202, + "pared": 5498, + "paren": 3106, + "parent": 47848, + "parent": 10183, + "parental": 28339, + "parenthood": 23887, + "parenting": 14529, + "parents": 3731, + "pares": 12420, + "parfait": 46140, + "pari": 17961, + "pari": 27979, + "paris": 13982, + "paris": 3445, + "parisagreement": 47405, + "parish": 47328, + "parish": 13020, + "parisi": 45081, + "parisian": 38512, + "parity": 42734, + "park": 4985, + "park": 1452, + "parked": 16487, + "parker": 31119, + "parker": 8365, + "parkin": 34868, + "parking": 5984, + "parkinson": 28129, + "parkland": 31287, + "parkrun": 25747, + "parks": 6873, + "parkway": 19882, + "parl": 30373, + "parl": 29897, + "parliam": 5941, + "parliament": 41599, + "parliament": 7151, + "parliamentary": 17912, + "parlor": 38253, + "parlour": 37829, + "parma": 36077, + "parme": 26295, + "parmesan": 27274, + "paro": 17429, + "parody": 24318, + "parole": 32158, + "parr": 44113, + "parrish": 43043, + "parrot": 23565, + "parry": 40604, + "parsley": 30077, + "parsons": 22505, + "part": 1872, + "part": 1551, + "parte": 48508, + "parth": 34790, + "parti": 10509, + "partial": 18957, + "partially": 21269, + "partic": 2871, + "partici": 9540, + "particip": 4400, + "participant": 27674, + "participants": 10237, + "participate": 9433, + "participated": 14252, + "participates": 46414, + "participating": 11535, + "participation": 13529, + "particle": 27716, + "particles": 27012, + "particul": 11408, + "particular": 14098, + "particularly": 12170, + "parties": 9032, + "parting": 32844, + "partisan": 20772, + "partist": 44713, + "partition": 42219, + "partly": 21459, + "partner": 5210, + "partner": 4568, + "partnered": 21402, + "partnering": 21182, + "partners": 5568, + "partnership": 6123, + "partnerships": 17418, + "parton": 43245, + "partridge": 34872, + "parts": 5149, + "party": 12877, + "party": 1580, + "partying": 25702, + "pas": 1341, + "pas": 9525, + "pasadena": 25892, + "pascal": 28626, + "pasco": 49220, + "pascu": 42692, + "pash": 23936, + "pasha": 46986, + "paso": 18542, + "pasqu": 44941, + "pass": 5016, + "pass": 3511, + "passage": 16477, + "passages": 48937, + "passed": 4957, + "passenger": 12311, + "passengers": 12781, + "passer": 48544, + "passes": 7633, + "passi": 32471, + "passing": 6589, + "passion": 8822, + "passion": 5332, + "passionate": 10947, + "passionately": 44028, + "passions": 38441, + "passive": 23171, + "passover": 38426, + "passport": 14739, + "passports": 46368, + "password": 20258, + "passwords": 43095, + "past": 7315, + "past": 2729, + "pasta": 10441, + "paste": 34765, + "paste": 17038, + "pastel": 19457, + "pastels": 45699, + "pastor": 19792, + "pastor": 9664, + "pastoral": 37191, + "pastors": 30959, + "pastr": 45478, + "pastries": 39409, + "pastry": 18582, + "pasture": 34764, + "pastures": 47793, + "pat": 1300, + "pat": 7036, + "patag": 29862, + "patagonia": 32786, + "patch": 29284, + "patch": 8721, + "patches": 22104, + "patchwork": 44675, + "patchy": 47488, + "pate": 42122, + "pate": 42098, + "patel": 14168, + "patent": 14692, + "patented": 37277, + "patents": 33911, + "paterson": 36560, + "path": 7408, + "path": 5035, + "pathetic": 18222, + "pathfinder": 35415, + "pathi": 34976, + "pathi": 27347, + "pathic": 49025, + "patho": 18534, + "pathology": 23290, + "paths": 16333, + "pathway": 23488, + "pathways": 24690, + "pathy": 13330, + "pati": 2799, + "pati": 26708, + "patience": 13575, + "patient": 30139, + "patient": 6262, + "patiently": 22980, + "patients": 5543, + "patil": 49187, + "patio": 14304, + "pational": 30627, + "patna": 45025, + "patory": 41859, + "patreon": 17165, + "patri": 4771, + "patriarch": 49054, + "patriarchy": 48806, + "patric": 12569, + "patrice": 40731, + "patricia": 18143, + "patrick": 12078, + "patrick": 5286, + "patricks": 46783, + "patriot": 28896, + "patriot": 15692, + "patrioti": 35520, + "patriotic": 20217, + "patriotism": 35807, + "patriots": 8707, + "patro": 31650, + "patrol": 10073, + "patrolling": 39344, + "patrols": 35978, + "patron": 26658, + "patron": 17683, + "patrons": 28308, + "pats": 24874, + "patsy": 46093, + "patt": 12637, + "patter": 4982, + "pattern": 7447, + "patterned": 47212, + "patterns": 11637, + "patterson": 21384, + "patti": 44927, + "patti": 26123, + "pattinson": 32474, + "patton": 29026, + "patty": 48741, + "patty": 18321, + "pau": 1834, + "pau": 35970, + "paul": 6035, + "paul": 2597, + "paula": 37363, + "paula": 16777, + "pauline": 30438, + "paulo": 48002, + "paulo": 21628, + "pauls": 41413, + "pauls": 40010, + "paulson": 48201, + "pause": 19439, + "paused": 46782, + "pav": 6661, + "pave": 37107, + "paved": 27898, + "pavel": 43152, + "pavement": 27669, + "pavilion": 13374, + "paving": 28651, + "paw": 14009, + "paw": 16016, + "pawan": 29754, + "pawankalyan": 33702, + "pawn": 43195, + "paws": 16714, + "pax": 20007, + "pax": 19033, + "paxton": 38347, + "pay": 2642, + "pay": 3345, + "payback": 36413, + "paycheck": 45078, + "payday": 26957, + "payee": 46985, + "payer": 41503, + "paying": 8341, + "payment": 10596, + "payments": 11832, + "payne": 12775, + "paypal": 21442, + "payroll": 31610, + "pays": 10845, + "paysoff": 48174, + "paytm": 45352, + "payton": 27348, + "paz": 22267, + "pb": 20112, + "pb": 10981, + "pba": 28205, + "pbb": 48567, + "pbb": 40589, + "pbc": 49191, + "pbl": 35166, + "pbr": 32998, + "pbs": 17908, + "pc": 6782, + "pc": 3808, + "pca": 35705, + "pcb": 26235, + "pcc": 36059, + "pci": 38957, + "pcm": 47436, + "pcr": 35704, + "pcs": 11917, + "pcso": 31963, + "pct": 22168, + "pd": 4387, + "pd": 4675, + "pdates": 16842, + "pdc": 40498, + "pdf": 15181, + "pdp": 24601, + "pdt": 21743, + "pdx": 25470, + "pdx": 16153, + "pe": 661, + "pe": 956, + "pea": 13915, + "peabo": 34083, + "peabody": 41244, + "peac": 34615, + "peace": 6249, + "peace": 3021, + "peaceful": 9461, + "peacefully": 30530, + "peacekeeping": 43630, + "peach": 10522, + "peach": 11538, + "peaches": 27216, + "peak": 18572, + "peak": 6026, + "peakdistrict": 41289, + "peake": 24810, + "peaked": 36391, + "peaks": 14067, + "pean": 11563, + "peanu": 25843, + "peanut": 12491, + "peanuts": 26503, + "pear": 4910, + "pear": 18820, + "pearce": 25996, + "pearl": 21806, + "pearl": 8560, + "pearljam": 46739, + "pearls": 19581, + "pears": 39565, + "pearson": 20461, + "peas": 15937, + "peasant": 40621, + "peasants": 48788, + "peat": 26914, + "pebble": 28056, + "pebbles": 40155, + "pec": 32447, + "pec": 17611, + "pecan": 32177, + "peck": 25186, + "peck": 29234, + "pecker": 30169, + "peckham": 45863, + "pecu": 34200, + "peculiar": 42808, + "ped": 13197, + "ped": 2966, + "pedago": 34590, + "pedagogy": 48072, + "pedal": 32943, + "pedal": 19621, + "pedals": 38535, + "pede": 12862, + "pede": 19560, + "pedestri": 30027, + "pedestrian": 18256, + "pedestrians": 33895, + "pedi": 12967, + "pedia": 11733, + "pediatric": 48431, + "pediatric": 22071, + "pedic": 35319, + "pedic": 44528, + "pedro": 29963, + "pedro": 15114, + "peds": 45377, + "pee": 12988, + "pee": 11196, + "peed": 47369, + "peek": 46323, + "peek": 7569, + "peeking": 48771, + "peel": 34386, + "peel": 17158, + "peeled": 33533, + "peeling": 48649, + "peep": 25425, + "peep": 16857, + "peeps": 11681, + "peer": 32416, + "peer": 14432, + "peers": 21626, + "pees": 31830, + "peg": 32182, + "peg": 11207, + "pegas": 30018, + "pegasus": 37822, + "peggy": 24271, + "pei": 48166, + "pei": 12917, + "pel": 4286, + "pel": 7006, + "pele": 44105, + "pelican": 34131, + "pelicans": 29363, + "pell": 46981, + "pelle": 31267, + "pelled": 32506, + "pellegr": 38529, + "pellets": 48240, + "pelo": 40192, + "pelo": 40238, + "pelosi": 22169, + "pelvic": 45646, + "pemb": 19880, + "pembro": 24084, + "pembroke": 36702, + "pembroke": 40044, + "pembrokeshire": 40695, + "pen": 1501, + "pen": 5356, + "pena": 35788, + "penalties": 25417, + "penalty": 11491, + "penang": 29545, + "penc": 20065, + "pence": 18002, + "pencil": 41303, + "pencil": 11200, + "pencils": 21909, + "pend": 3052, + "pendant": 12415, + "pendants": 44117, + "pending": 12770, + "pendleton": 44272, + "pendu": 45336, + "penelope": 36703, + "penetr": 26058, + "peng": 42955, + "peng": 39200, + "pengu": 8854, + "penguin": 28249, + "penguin": 14952, + "penguins": 16557, + "peninsu": 13464, + "peninsula": 14070, + "penn": 7760, + "penn": 11128, + "pennant": 43971, + "penned": 45077, + "penney": 47856, + "pennies": 43094, + "pennsylvania": 13673, + "penny": 20400, + "penny": 11388, + "pens": 13307, + "pens": 13310, + "pensac": 30925, + "pensacola": 33573, + "pension": 32840, + "pension": 17764, + "pensions": 29773, + "penske": 47154, + "pent": 10699, + "pent": 22725, + "pentagon": 23133, + "pente": 33165, + "penthouse": 32673, + "penultimate": 36553, + "peop": 1030, + "people": 10573, + "people": 1047, + "peoples": 28241, + "peoples": 14627, + "peopleschoice": 32418, + "peoplesvote": 45830, + "peoria": 36985, + "pep": 12761, + "pep": 14898, + "pepe": 24778, + "pepp": 34425, + "pepper": 14861, + "pepper": 8253, + "peppermint": 30321, + "pepperoni": 47307, + "peppers": 14650, + "pepsi": 21307, + "per": 703, + "per": 1284, + "pera": 26294, + "perce": 24135, + "perceived": 38436, + "percent": 16328, + "percent": 9017, + "percentage": 19477, + "percep": 28017, + "perception": 20591, + "perceptions": 38138, + "perch": 34281, + "perched": 40071, + "percu": 41722, + "percussion": 23980, + "percy": 23940, + "pere": 8665, + "pere": 36300, + "pered": 24509, + "peregr": 37479, + "peregrine": 44546, + "pereira": 43927, + "peren": 24564, + "perenni": 26996, + "perennial": 34038, + "perez": 15107, + "perf": 22816, + "perfe": 1624, + "perfec": 6599, + "perfect": 17261, + "perfect": 1878, + "perfection": 9646, + "perfectly": 8037, + "perfecto": 42898, + "perfor": 2311, + "perform": 3866, + "perform": 5940, + "performan": 8973, + "performance": 2714, + "performances": 9553, + "performed": 9997, + "performer": 17061, + "performers": 18476, + "performing": 5170, + "performs": 13839, + "perfu": 14214, + "perfume": 17525, + "perhaps": 9297, + "peri": 12618, + "peri": 44068, + "perience": 19302, + "peril": 40119, + "peril": 48301, + "perimeter": 38499, + "pering": 29746, + "perio": 5101, + "period": 6131, + "periodic": 36476, + "periods": 24401, + "periph": 35308, + "peripheral": 43901, + "peris": 19461, + "periscope": 21668, + "perk": 33424, + "perkins": 20057, + "perks": 17660, + "perl": 44018, + "perm": 47847, + "perman": 9018, + "permanent": 11144, + "permanently": 25584, + "perme": 42456, + "permission": 15822, + "permit": 21950, + "permits": 33267, + "permitted": 44380, + "pero": 23551, + "perpe": 15749, + "perpetr": 33376, + "perpetu": 30132, + "perpetual": 32018, + "perrie": 32691, + "perry": 28478, + "perry": 7899, + "pers": 3688, + "pers": 10710, + "perse": 27498, + "persecu": 22878, + "persecution": 32009, + "perseverance": 29820, + "persi": 11509, + "persian": 19859, + "persist": 19412, + "persist": 40938, + "persistence": 34588, + "persistent": 29028, + "person": 3510, + "person": 2533, + "persona": 18401, + "personal": 10114, + "personal": 4121, + "personalised": 24186, + "personalities": 27888, + "personality": 10386, + "personalized": 17845, + "personally": 13885, + "personnel": 14546, + "persons": 14592, + "perspec": 17997, + "perspective": 8996, + "perspectives": 18777, + "persu": 20972, + "pert": 36970, + "pert": 16306, + "perth": 19067, + "perth": 11011, + "peru": 20612, + "peru": 12964, + "peruvian": 30822, + "pes": 38368, + "pes": 2598, + "pesa": 47409, + "pesc": 44044, + "pesh": 33184, + "peshaw": 28524, + "peshawar": 29230, + "pesky": 42512, + "pesos": 47872, + "pessi": 43902, + "pest": 20130, + "pest": 9425, + "pesticide": 48481, + "pesticides": 37868, + "pesto": 26186, + "pests": 41919, + "pet": 2167, + "pet": 3703, + "peta": 28785, + "petal": 38430, + "petal": 40469, + "petals": 26064, + "petday": 45314, + "pete": 14479, + "pete": 8571, + "peter": 5093, + "peter": 3696, + "peterborough": 26012, + "peters": 16336, + "petersburg": 21052, + "petersen": 39794, + "peterson": 16877, + "peth": 48920, + "petit": 36437, + "petit": 21276, + "petite": 27213, + "petition": 10975, + "petitions": 43536, + "petr": 29808, + "petra": 31300, + "petre": 47179, + "petri": 31831, + "petro": 8716, + "petrol": 18149, + "petroleum": 22063, + "petron": 42875, + "pets": 7663, + "pett": 27051, + "petti": 48001, + "petting": 44334, + "petty": 17324, + "peu": 21411, + "peuge": 22893, + "peugeot": 24129, + "pew": 21608, + "pew": 30783, + "pewdie": 41882, + "pewdiepie": 42563, + "pex": 43765, + "pey": 14966, + "pey": 30933, + "peyton": 49254, + "peyton": 20307, + "pez": 45798, + "pez": 10482, + "pf": 16680, + "pf": 12572, + "pfa": 47839, + "pfc": 35007, + "pff": 44121, + "pfi": 29810, + "pfw": 31229, + "pg": 12476, + "pg": 5211, + "pga": 13351, + "pgat": 36514, + "pgatour": 40094, + "pgh": 44862, + "pgh": 30031, + "pgs": 49204, + "ph": 745, + "ph": 2042, + "pha": 4443, + "pha": 26255, + "phal": 19962, + "phan": 8731, + "phan": 40126, + "phant": 36998, + "phantom": 37688, + "phantom": 14490, + "phar": 5570, + "phara": 35792, + "pharaoh": 40437, + "pharm": 45761, + "pharma": 17831, + "pharmac": 8193, + "pharmaceu": 19490, + "pharmaceutical": 25217, + "pharmaceuticals": 44623, + "pharmacist": 41024, + "pharmacists": 44337, + "pharmacy": 15293, + "pharo": 42308, + "pharoah": 49287, + "pharrell": 31316, + "phase": 8304, + "phases": 35337, + "phat": 42492, + "phc": 41102, + "phd": 20875, + "phd": 8472, + "phdchat": 39564, + "phdlife": 39638, + "phe": 4787, + "phe": 19853, + "pheasant": 41983, + "phee": 41292, + "phel": 23711, + "phelps": 27128, + "phen": 7718, + "pheno": 47336, + "phenom": 31673, + "phenom": 39618, + "phenomen": 11304, + "phenomena": 41538, + "phenomenal": 15035, + "phenomenon": 24464, + "pher": 9194, + "pher": 19828, + "phers": 29531, + "pherson": 36421, + "phew": 10295, + "phi": 2239, + "phi": 12220, + "phia": 9228, + "phic": 3977, + "phie": 30237, + "phies": 17062, + "phil": 2821, + "phil": 6199, + "phila": 47443, + "philadel": 9428, + "philadelphia": 9749, + "philanthro": 16587, + "philanthropist": 44153, + "philanthropy": 25047, + "philately": 33695, + "phile": 36543, + "philharmon": 25228, + "philharmonic": 31699, + "phili": 4277, + "philia": 46654, + "philip": 20748, + "philip": 11074, + "philipp": 5623, + "philipp": 47591, + "philippe": 20942, + "philippine": 17629, + "philippines": 8149, + "philips": 25175, + "phill": 42346, + "phill": 48272, + "philli": 6456, + "phillies": 18748, + "phillip": 48832, + "phillip": 19323, + "phillips": 11041, + "philly": 19545, + "philly": 7785, + "philos": 8395, + "philosop": 20349, + "philosoph": 10187, + "philosopher": 25220, + "philosophical": 32628, + "philosophy": 12213, + "phils": 38573, + "phin": 33816, + "phine": 40985, + "phins": 40210, + "phish": 36897, + "phishing": 36546, + "phl": 25603, + "pho": 816, + "pho": 22707, + "phobia": 28749, + "phoe": 22673, + "phoebe": 27582, + "phoeni": 6778, + "phoenix": 20615, + "phoenix": 7793, + "phol": 48140, + "phon": 19602, + "phon": 31115, + "phone": 15486, + "phone": 1951, + "phones": 6351, + "phony": 31925, + "phora": 31363, + "phosp": 22638, + "photo": 1153, + "photo": 1125, + "photobomb": 37075, + "photobook": 41894, + "photog": 28115, + "photogenic": 36108, + "photogra": 36754, + "photograph": 1688, + "photograph": 8853, + "photographed": 11573, + "photographer": 5748, + "photographers": 17141, + "photographic": 22053, + "photographing": 30074, + "photographs": 15759, + "photography": 33183, + "photography": 2108, + "photom": 32223, + "photoo": 11106, + "photooftheday": 11933, + "photos": 2479, + "photoshoot": 11121, + "photoshop": 12419, + "photoshopped": 35738, + "phouse": 27848, + "php": 17370, + "phra": 12777, + "phrase": 18809, + "phrases": 35264, + "phs": 16495, + "phu": 21274, + "phuket": 34028, + "phx": 35466, + "phx": 29507, + "phy": 6484, + "phy": 4292, + "phyl": 35600, + "phyllis": 37844, + "phys": 3734, + "phys": 37894, + "physi": 13782, + "physic": 46641, + "physical": 44127, + "physical": 6671, + "physically": 18105, + "physician": 21055, + "physicians": 26702, + "physicist": 29052, + "physics": 9369, + "physio": 29574, + "physio": 29177, + "physiology": 32349, + "physique": 42884, + "phyto": 42197, + "pi": 741, + "pi": 5357, + "pia": 8918, + "pian": 24637, + "pianist": 21048, + "piano": 49278, + "piano": 7894, + "pianos": 47904, + "piazza": 28496, + "pic": 901, + "pic": 1282, + "pical": 5482, + "picard": 48507, + "picasso": 21481, + "piccad": 33876, + "piccadilly": 37287, + "piccollage": 43621, + "pick": 6379, + "pick": 3142, + "picked": 6018, + "picker": 43105, + "pickering": 47605, + "picket": 33559, + "picking": 9545, + "pickle": 24570, + "pickled": 21705, + "pickles": 25001, + "picks": 8551, + "pickup": 15382, + "pickups": 33383, + "picnic": 12007, + "pico": 23363, + "picoftheday": 18319, + "pics": 2559, + "pict": 18778, + "pictorial": 40640, + "picture": 11663, + "picture": 1674, + "pictured": 7647, + "pictures": 3646, + "picturesque": 24894, + "pid": 5225, + "piday": 48056, + "pie": 12065, + "pie": 5319, + "piece": 39632, + "piece": 2754, + "pieces": 6194, + "pied": 24686, + "pied": 12713, + "piedmont": 39691, + "pier": 5641, + "pier": 11348, + "pierc": 49216, + "pierce": 48462, + "pierce": 16782, + "pierced": 32799, + "piercing": 22557, + "piero": 43125, + "pierre": 34670, + "pierre": 11985, + "piers": 29030, + "pies": 6898, + "pieter": 44801, + "pietro": 42169, + "piff": 40719, + "pig": 12009, + "pig": 9619, + "pigeon": 18008, + "pigeons": 32910, + "piggy": 28245, + "pigment": 40284, + "pigs": 16228, + "pik": 48539, + "pika": 47372, + "pikach": 27268, + "pikachu": 28107, + "pike": 33457, + "pike": 14011, + "pil": 2893, + "pil": 20645, + "pilates": 29518, + "pile": 44403, + "pile": 13930, + "piled": 26873, + "piles": 31968, + "pilgri": 13966, + "pilgrim": 32662, + "pilgrimage": 24335, + "pilgrims": 31370, + "piling": 43050, + "pilip": 27234, + "pilipinas": 32392, + "pill": 14830, + "pill": 19226, + "pillar": 17322, + "pillars": 22054, + "pillow": 42237, + "pillow": 12182, + "pillows": 26499, + "pills": 23964, + "pilo": 37526, + "pilot": 31619, + "pilot": 6687, + "pilots": 15586, + "pilsner": 47153, + "pim": 15285, + "pim": 35472, + "pimp": 35789, + "pin": 2629, + "pin": 5164, + "pinball": 31679, + "pinch": 26114, + "pine": 9398, + "pine": 7374, + "pineapple": 14831, + "pines": 20338, + "ping": 23720, + "ping": 2089, + "pinion": 40557, + "pink": 11151, + "pink": 3360, + "pinkfloyd": 48520, + "pinky": 29803, + "pinn": 31448, + "pinnacle": 32754, + "pinned": 12165, + "pinning": 44515, + "pino": 36633, + "pinot": 41399, + "pinot": 21146, + "pinoy": 43578, + "pinoy": 35258, + "pins": 14619, + "pinst": 41173, + "pint": 42537, + "pint": 13584, + "pinterest": 15379, + "pinto": 35992, + "pints": 27935, + "pinup": 37349, + "pio": 22108, + "pion": 36728, + "pion": 29190, + "pione": 7975, + "pioneer": 34892, + "pioneer": 12459, + "pioneering": 25933, + "pioneers": 22383, + "pious": 42441, + "pip": 30854, + "pipe": 29333, + "pipe": 10459, + "pipel": 12387, + "pipeline": 14151, + "pipelines": 39683, + "piper": 47052, + "piper": 16293, + "pipes": 16991, + "piping": 40744, + "pippa": 47672, + "pir": 4351, + "pir": 38899, + "piracy": 39452, + "piran": 49034, + "pirate": 38680, + "pirate": 13592, + "pirates": 10442, + "pire": 16613, + "pires": 14988, + "pis": 9230, + "pis": 44441, + "pisa": 43632, + "pisces": 45982, + "piss": 20818, + "pissed": 17989, + "pist": 15556, + "pist": 32826, + "pistachi": 29760, + "pistachio": 36320, + "pistol": 20480, + "piston": 48236, + "pistons": 27242, + "pistor": 48162, + "pit": 2946, + "pit": 7476, + "pita": 27070, + "pitbull": 25295, + "pitch": 8992, + "pitch": 5872, + "pitched": 28447, + "pitcher": 13445, + "pitchers": 27835, + "pitches": 21005, + "pitching": 16455, + "piti": 47568, + "pits": 24144, + "pitt": 7607, + "pitt": 15599, + "pitts": 9531, + "pittsburgh": 10453, + "pity": 24380, + "pius": 39988, + "pivo": 18009, + "pivot": 31805, + "pivotal": 31432, + "pix": 6185, + "pix": 13088, + "pixar": 27493, + "pixel": 14384, + "pixel": 13241, + "pixelart": 18516, + "pixels": 34099, + "pixie": 35573, + "piyu": 30772, + "piyush": 36191, + "piyushgoyal": 45318, + "pizz": 3897, + "pizza": 4474, + "pizzas": 30647, + "pizzeria": 44174, + "pj": 12524, + "pj": 17179, + "pjnet": 22011, + "pjs": 36009, + "pk": 10149, + "pk": 10991, + "pkg": 49011, + "pkk": 47480, + "pknot": 41779, + "pkwy": 36827, + "pl": 712, + "pl": 5678, + "pla": 841, + "pla": 19945, + "plac": 2331, + "place": 14884, + "place": 1445, + "placed": 9729, + "placement": 16724, + "placements": 43885, + "placer": 49170, + "places": 4448, + "placing": 18531, + "plague": 25360, + "plaid": 23291, + "plain": 22776, + "plain": 10709, + "plains": 16345, + "plan": 1740, + "plan": 2970, + "pland": 24801, + "plane": 22728, + "plane": 5363, + "planes": 12581, + "planet": 16833, + "planet": 5172, + "planetary": 28361, + "planets": 22315, + "plank": 30991, + "plankton": 48249, + "plann": 6409, + "planned": 8169, + "planner": 18083, + "planners": 33664, + "planning": 4446, + "plano": 34063, + "plans": 4181, + "plant": 8521, + "plant": 3912, + "plantation": 20014, + "plantbased": 33720, + "planted": 14286, + "planter": 34453, + "planters": 43661, + "planting": 13922, + "plants": 5829, + "plaque": 16097, + "plaques": 45610, + "plar": 26754, + "plas": 45673, + "plasma": 24999, + "plaster": 31980, + "plastic": 15645, + "plastic": 6102, + "plasticpollution": 47129, + "plastics": 20999, + "plasticsurgery": 48555, + "plat": 3172, + "plata": 46456, + "plate": 28744, + "plate": 5135, + "plateau": 29301, + "plated": 21161, + "plates": 11485, + "platform": 5549, + "platforms": 13551, + "platin": 10267, + "plating": 44564, + "platinum": 10979, + "plato": 41101, + "platoon": 41254, + "platt": 44459, + "platt": 40097, + "platte": 46785, + "platter": 29071, + "platz": 40878, + "plau": 39139, + "play": 1222, + "play": 1453, + "playa": 23756, + "playable": 33885, + "playback": 39194, + "playbook": 34856, + "playboy": 24383, + "played": 3432, + "player": 24503, + "player": 2477, + "players": 3030, + "playful": 23871, + "playground": 15861, + "playhouse": 23254, + "playin": 24674, + "playing": 47368, + "playing": 1629, + "playlist": 9180, + "playlists": 47183, + "playo": 5804, + "playoff": 9655, + "playoffs": 9548, + "plays": 5134, + "playstation": 11332, + "playtime": 43037, + "playwright": 32070, + "plaza": 8943, + "plc": 16827, + "ple": 926, + "ple": 1619, + "plea": 21956, + "plead": 47539, + "pleads": 31425, + "plear": 21362, + "pleas": 8481, + "pleas": 48740, + "pleasant": 12271, + "please": 41074, + "please": 1474, + "pleased": 6107, + "pleasing": 32893, + "pleasure": 5854, + "pleasures": 29513, + "pledge": 11507, + "pledged": 36799, + "pledges": 26746, + "pledis": 41202, + "plein": 43429, + "plenary": 19891, + "plenty": 7524, + "pler": 17677, + "ples": 6248, + "pless": 39821, + "pless": 17059, + "plets": 43230, + "plex": 23765, + "plex": 15241, + "pley": 19543, + "pli": 30001, + "pli": 45797, + "plic": 5806, + "plicity": 19823, + "plight": 40317, + "plin": 44531, + "plin": 32335, + "pline": 25376, + "pling": 12899, + "plings": 31184, + "pll": 47629, + "pll": 25266, + "pln": 48755, + "plo": 1778, + "plo": 43523, + "plor": 34695, + "plot": 9918, + "plots": 25672, + "plotting": 30751, + "plough": 33811, + "plow": 38363, + "pls": 5572, + "plu": 2052, + "plug": 12628, + "plugged": 23261, + "plugin": 31278, + "plugins": 48797, + "plugs": 28083, + "plum": 26267, + "plum": 16202, + "plumb": 21769, + "plumber": 43478, + "plumbing": 24647, + "plume": 39495, + "plun": 15122, + "plunge": 26506, + "plur": 44664, + "plus": 3097, + "plush": 18926, + "pluto": 26380, + "ply": 17249, + "ply": 28705, + "plying": 36071, + "plym": 11907, + "plymouth": 13786, + "plz": 10538, + "pm": 13699, + "pm": 990, + "pmi": 41206, + "pmln": 23208, + "pmo": 18782, + "pmoindia": 20374, + "pms": 44223, + "pn": 14431, + "pn": 13774, + "pnc": 37148, + "pne": 30966, + "pneu": 28714, + "pneumonia": 42906, + "png": 20992, + "pnp": 25972, + "pnpp": 42175, + "pnw": 31521, + "po": 628, + "po": 3057, + "poa": 43912, + "poached": 27665, + "poaching": 35140, + "poc": 13232, + "poc": 27780, + "pocaly": 37987, + "pocalypse": 42307, + "poche": 38336, + "poche": 39022, + "pocket": 29147, + "pocket": 8504, + "pockets": 19566, + "pocon": 41850, + "pod": 3583, + "pod": 7446, + "podcast": 39654, + "podcast": 4294, + "podcasting": 40106, + "podcasts": 19392, + "pode": 33368, + "poder": 24960, + "podernfamily": 26620, + "podi": 32853, + "podium": 14093, + "pods": 18776, + "poe": 4746, + "poe": 19254, + "poem": 9436, + "poems": 15577, + "poet": 41019, + "poet": 9872, + "poetic": 26365, + "poetry": 20192, + "poetry": 6038, + "poetryday": 39255, + "poets": 19804, + "pof": 40850, + "poff": 28236, + "pogba": 25998, + "poign": 29682, + "poignant": 32138, + "poin": 9074, + "point": 13280, + "point": 2301, + "pointe": 24631, + "pointed": 20703, + "pointer": 29883, + "pointers": 36760, + "pointing": 19233, + "pointless": 33586, + "points": 3396, + "pois": 17008, + "poise": 45087, + "poised": 27354, + "poison": 30722, + "poison": 17074, + "poisoned": 43624, + "poisoning": 25750, + "poisonous": 37131, + "pok": 15387, + "poke": 6892, + "poke": 23186, + "pokemon": 16239, + "pokemon": 9528, + "pokemongo": 23985, + "poker": 30735, + "poker": 11865, + "pokes": 40221, + "poking": 49169, + "poké": 20656, + "pokémon": 22066, + "pol": 977, + "pol": 7649, + "pola": 43876, + "poland": 9834, + "polar": 21432, + "polar": 12214, + "polari": 27919, + "polaris": 37965, + "polarized": 48437, + "polaro": 25237, + "polaroid": 30427, + "poldark": 41322, + "pole": 26682, + "pole": 8170, + "poles": 22585, + "poli": 9675, + "poli": 5414, + "polic": 16126, + "police": 15535, + "police": 2120, + "policeman": 37713, + "policemen": 47946, + "polici": 10819, + "policies": 10993, + "policing": 20969, + "policy": 30173, + "policy": 4660, + "polio": 30533, + "polis": 16133, + "polish": 46941, + "polish": 9632, + "polished": 21478, + "polishing": 43629, + "polit": 2247, + "politan": 15337, + "polite": 31497, + "politi": 40597, + "politic": 33333, + "political": 37744, + "political": 4197, + "politically": 24323, + "politician": 15960, + "politicians": 12914, + "politico": 39403, + "politics": 4929, + "polk": 33317, + "polka": 29476, + "poll": 7032, + "pollen": 27651, + "pollin": 19152, + "pollinators": 36599, + "polling": 18024, + "pollo": 42755, + "pollock": 37614, + "polls": 11813, + "pollu": 8370, + "polluted": 43346, + "pollution": 10384, + "polly": 31204, + "polo": 35928, + "polo": 10229, + "poly": 6833, + "poly": 18367, + "polye": 31730, + "polyester": 38514, + "polym": 23626, + "polymer": 29993, + "polyne": 38892, + "polyvore": 24771, + "pom": 7548, + "pom": 24280, + "pome": 27963, + "pomegran": 29326, + "pomegranate": 32415, + "pomer": 35156, + "pomona": 41690, + "pompe": 18352, + "pompeii": 47775, + "pompeo": 34351, + "pompey": 35079, + "pon": 3809, + "pon": 22391, + "ponce": 43637, + "pond": 10750, + "ponder": 36863, + "pondering": 47395, + "ponds": 31033, + "pone": 32183, + "pong": 40546, + "pong": 17710, + "ponies": 34157, + "pons": 41255, + "pont": 47563, + "pont": 22997, + "ponte": 40892, + "ponti": 15527, + "pontiac": 25373, + "pontifex": 33566, + "ponty": 45152, + "pony": 24438, + "pony": 12678, + "ponytail": 43265, + "poo": 6601, + "poo": 14389, + "pooch": 37037, + "poodle": 34961, + "pooh": 27103, + "pooja": 35676, + "pool": 12484, + "pool": 2831, + "poole": 26290, + "pools": 18736, + "poolside": 35509, + "poon": 33799, + "poon": 36178, + "poop": 23310, + "poor": 14528, + "poor": 3665, + "poorest": 40771, + "poorly": 21101, + "pop": 6530, + "pop": 2852, + "popart": 47425, + "popcorn": 15034, + "pope": 16994, + "pope": 9283, + "popefrancis": 37254, + "poplar": 38726, + "popo": 38835, + "popo": 35572, + "popp": 13156, + "popped": 14934, + "poppies": 30385, + "poppin": 28536, + "popping": 18152, + "poppins": 41216, + "poppy": 32194, + "poppy": 15447, + "pops": 11705, + "popsic": 38481, + "popu": 3785, + "popul": 6593, + "popular": 15854, + "popular": 4368, + "popularity": 19235, + "populated": 38420, + "population": 8423, + "populations": 23797, + "populism": 48998, + "populist": 49376, + "popup": 33053, + "por": 817, + "por": 7697, + "pora": 23537, + "porcel": 19409, + "porcelain": 20451, + "porch": 17154, + "pore": 28267, + "pork": 40379, + "pork": 7897, + "poro": 48110, + "porridge": 34924, + "porsch": 48009, + "porsche": 44049, + "porsche": 8783, + "port": 1641, + "port": 1418, + "porta": 45037, + "portable": 11949, + "portage": 32087, + "portal": 14982, + "porte": 28654, + "ported": 16879, + "porter": 28319, + "porter": 10318, + "porters": 15670, + "portfoli": 45766, + "portfolio": 11938, + "porth": 37425, + "porti": 45760, + "porting": 26052, + "portion": 13739, + "portions": 22914, + "portland": 38366, + "portland": 8880, + "portman": 34755, + "porto": 24853, + "porto": 18947, + "portobello": 48025, + "portra": 4175, + "portrait": 39312, + "portrait": 5352, + "portraits": 14203, + "portray": 46282, + "portrayal": 39238, + "portrayed": 36093, + "ports": 7734, + "portsm": 17063, + "portsmouth": 19074, + "portu": 7159, + "portugal": 9503, + "portugue": 17498, + "portuguese": 18019, + "pos": 1780, + "pos": 11839, + "pose": 25478, + "pose": 4230, + "posed": 5206, + "posei": 47270, + "poser": 46899, + "poses": 9773, + "posey": 34852, + "posh": 26748, + "posing": 10518, + "posit": 28793, + "positi": 7895, + "position": 4657, + "positioned": 34482, + "positioning": 30657, + "positions": 12188, + "positive": 21811, + "positive": 4844, + "positively": 24688, + "positivity": 19966, + "poss": 39745, + "posse": 17414, + "posse": 28413, + "possess": 36810, + "possessed": 36220, + "possession": 16154, + "possessions": 40588, + "possi": 2521, + "possibilities": 17932, + "possibility": 18517, + "possible": 3134, + "possibly": 8601, + "possum": 38575, + "post": 3489, + "post": 1549, + "postage": 27570, + "postal": 21687, + "postcard": 14785, + "postcards": 23922, + "postdoc": 41013, + "posted": 4752, + "poster": 22881, + "poster": 3574, + "posters": 9673, + "postgame": 34873, + "postgraduate": 31997, + "posthum": 42410, + "posting": 7559, + "postman": 38285, + "postpon": 23247, + "postponed": 25097, + "posts": 7824, + "postseason": 24521, + "posture": 29681, + "posure": 35539, + "pot": 3547, + "pot": 5168, + "potam": 45825, + "potassi": 36889, + "potassium": 37147, + "potat": 5975, + "potato": 8527, + "potatoes": 11567, + "potd": 28765, + "pote": 41869, + "poten": 4454, + "potent": 26082, + "potenti": 44104, + "potential": 5100, + "potentially": 16508, + "potholes": 47506, + "potion": 46055, + "potom": 38848, + "potomac": 43372, + "pots": 19234, + "pott": 28698, + "potted": 48581, + "potter": 24975, + "potter": 9026, + "pottery": 18396, + "potts": 39839, + "potty": 43569, + "potus": 8740, + "pou": 9423, + "pouch": 26811, + "poul": 22485, + "poultry": 31005, + "poun": 33719, + "pound": 33809, + "pound": 10674, + "pounding": 46544, + "pounds": 10752, + "pour": 33112, + "pour": 8180, + "poured": 26621, + "pouring": 16098, + "pours": 26005, + "pout": 39621, + "poutine": 43768, + "pov": 25731, + "pover": 8432, + "pover": 29464, + "poverty": 9095, + "pow": 1317, + "pow": 17745, + "powder": 32427, + "powder": 9674, + "powe": 36955, + "powell": 13305, + "power": 2789, + "power": 1807, + "powerball": 47803, + "powered": 45442, + "powered": 7332, + "powerful": 4875, + "powerhouse": 22858, + "powering": 16231, + "powerof": 31961, + "powerpoint": 38940, + "powerrangers": 40620, + "powers": 9422, + "pox": 43649, + "poy": 34737, + "poyn": 47655, + "poz": 39953, + "pp": 604, + "pp": 4186, + "ppa": 10416, + "ppard": 23391, + "ppc": 27778, + "ppe": 24573, + "ppe": 11867, + "pped": 1873, + "ppel": 46523, + "ppen": 30663, + "pper": 6719, + "pper": 2440, + "ppers": 5232, + "ppery": 27833, + "ppet": 20744, + "ppets": 25849, + "ppg": 27433, + "ppi": 9594, + "ppie": 33795, + "ppin": 8076, + "pping": 22214, + "pping": 1682, + "ppings": 35687, + "ppl": 6758, + "pple": 12302, + "ppm": 42053, + "ppo": 10215, + "ppor": 37613, + "ppp": 14017, + "pps": 10683, + "ppv": 38864, + "ppy": 30360, + "ppy": 3860, + "pr": 766, + "pr": 4150, + "pra": 1865, + "pra": 19285, + "prab": 17901, + "prabhas": 29959, + "prabhu": 31529, + "prac": 2243, + "practi": 29995, + "practic": 5495, + "practical": 10792, + "practically": 25588, + "practice": 3349, + "practiced": 36749, + "practices": 9040, + "practicing": 12750, + "practise": 38938, + "practising": 36478, + "practiti": 19909, + "practitioner": 32591, + "practitioners": 29045, + "prada": 29456, + "pradesh": 15384, + "prado": 44141, + "prag": 31025, + "prague": 14940, + "prairi": 12629, + "prairie": 14753, + "praise": 10013, + "praised": 27649, + "praises": 23049, + "praising": 36961, + "prakash": 43708, + "prakash": 25366, + "pram": 47774, + "pran": 20048, + "prank": 23654, + "pras": 41562, + "prasad": 29562, + "prat": 23069, + "prati": 45773, + "pratt": 37863, + "pratt": 23396, + "prawn": 33102, + "prawns": 34903, + "pray": 12671, + "pray": 6041, + "prayed": 34665, + "prayer": 41452, + "prayer": 6583, + "prayers": 8393, + "prayfor": 18443, + "praying": 11550, + "prays": 46602, + "prc": 28781, + "pre": 679, + "pre": 2900, + "preach": 22545, + "preacher": 29357, + "preaching": 23642, + "precau": 36532, + "precautions": 47845, + "prece": 15361, + "preci": 5470, + "precin": 27908, + "precinct": 32587, + "precious": 8226, + "precipit": 27463, + "precipitation": 33399, + "precise": 24457, + "precisely": 34954, + "precision": 44021, + "precision": 15621, + "pred": 40370, + "predat": 13364, + "predator": 20653, + "predators": 25569, + "prede": 38454, + "predecess": 38963, + "predic": 4876, + "predict": 16900, + "predictable": 25344, + "predicted": 18702, + "predicting": 30414, + "prediction": 16296, + "predictions": 15125, + "predictive": 29798, + "predicts": 25960, + "preds": 40125, + "pree": 47026, + "preet": 30131, + "prefe": 14542, + "prefecture": 32890, + "prefer": 33426, + "prefer": 11450, + "preference": 35057, + "preferences": 38118, + "preferred": 18772, + "prefers": 38528, + "pregame": 18575, + "pregn": 7190, + "pregnancy": 12769, + "pregnant": 11195, + "prehistoric": 32750, + "prejudice": 28337, + "preli": 15523, + "prelimin": 19990, + "preliminary": 20997, + "prelims": 43223, + "prelude": 42966, + "prem": 32090, + "prem": 21724, + "premature": 39253, + "premi": 2413, + "premier": 16996, + "premier": 5539, + "premiere": 5367, + "premiered": 27652, + "premieres": 19907, + "premiering": 32615, + "premierleague": 22608, + "premiers": 44883, + "premiership": 23665, + "premiosm": 38460, + "premiosmtvmiaw": 38630, + "premise": 45952, + "premises": 27266, + "premium": 8011, + "pren": 20801, + "preneur": 46288, + "preorder": 16703, + "preorders": 45985, + "prep": 6430, + "prep": 7277, + "prepa": 26270, + "prepaid": 42934, + "prepar": 4968, + "preparation": 11651, + "preparations": 19135, + "prepare": 7014, + "prepared": 7677, + "preparedness": 29492, + "prepares": 16375, + "preparing": 7365, + "prepped": 34379, + "prepping": 16459, + "preps": 14765, + "prequel": 40461, + "pres": 1385, + "pres": 8529, + "presale": 27135, + "presby": 30447, + "presbyter": 33959, + "presbyterian": 35370, + "preschool": 24354, + "prescott": 29392, + "prescri": 14851, + "prescribed": 36968, + "prescription": 23061, + "preseason": 13813, + "presen": 16742, + "presence": 8848, + "present": 2344, + "present": 2881, + "presentation": 4594, + "presentations": 16998, + "presented": 4587, + "presenter": 18587, + "presenters": 32759, + "presenting": 5339, + "presents": 4215, + "preserv": 17616, + "preservation": 21074, + "preserve": 15570, + "preserved": 23161, + "preserves": 44881, + "preserving": 32315, + "presi": 1697, + "presiden": 43374, + "presidency": 18077, + "president": 19900, + "president": 1940, + "presidente": 47363, + "presidenti": 48297, + "presidential": 8503, + "presidents": 16726, + "presiding": 45298, + "presley": 30013, + "press": 4124, + "press": 2124, + "pressed": 20080, + "presser": 27826, + "presses": 33748, + "pressing": 20893, + "pressure": 6083, + "pressures": 38487, + "prest": 41840, + "presti": 12245, + "prestige": 29328, + "prestigious": 15888, + "presto": 42211, + "preston": 37335, + "preston": 15179, + "presu": 21667, + "presumably": 42562, + "pret": 9652, + "preten": 15871, + "pretend": 18111, + "pretending": 21306, + "pretoria": 36080, + "prett": 46667, + "prettier": 31745, + "prettiest": 22866, + "pretty": 18286, + "pretty": 2111, + "pretz": 24890, + "pretzel": 36707, + "pretzels": 45468, + "prev": 20274, + "prevail": 31637, + "prevalence": 41729, + "prevalent": 46260, + "preven": 29382, + "prevent": 26436, + "prevent": 7968, + "preventable": 44250, + "prevented": 35356, + "preventing": 21756, + "prevention": 9500, + "preventive": 40949, + "prevents": 31746, + "preview": 4449, + "previews": 20279, + "previous": 9252, + "previously": 13359, + "prey": 17131, + "prez": 17956, + "pri": 955, + "pri": 23400, + "pric": 24275, + "price": 13254, + "price": 2827, + "priced": 16934, + "priceless": 15743, + "prices": 5954, + "pricing": 14800, + "prick": 43921, + "prick": 46516, + "pride": 15323, + "pride": 3436, + "pridemonth": 41410, + "prie": 22477, + "priest": 38756, + "priest": 14222, + "priests": 30005, + "prim": 22004, + "prima": 35611, + "prima": 33277, + "primal": 36604, + "primar": 21579, + "primaries": 46126, + "primarily": 29465, + "primark": 48329, + "primary": 35024, + "primary": 5814, + "primavera": 44899, + "prime": 14162, + "prime": 5183, + "primed": 45694, + "primer": 22388, + "primetime": 29763, + "primitive": 37467, + "primo": 43215, + "primrose": 45891, + "prin": 1588, + "prince": 9457, + "prince": 4735, + "princes": 45329, + "princes": 30136, + "princess": 24123, + "princess": 5079, + "princesses": 34161, + "princeton": 22433, + "princi": 5129, + "principal": 33599, + "principal": 8860, + "principals": 27524, + "principle": 19595, + "principles": 13755, + "print": 17851, + "print": 3557, + "printable": 29648, + "printed": 7978, + "printer": 14521, + "printers": 27881, + "printing": 7369, + "printmaking": 38669, + "prints": 7704, + "prior": 20328, + "prior": 10572, + "priorit": 47773, + "prioriti": 28822, + "priorities": 15232, + "prioritize": 46715, + "priority": 12451, + "priory": 38665, + "prisc": 32468, + "priscilla": 42396, + "prise": 23343, + "prism": 49311, + "prism": 34356, + "prison": 9281, + "prison": 6622, + "prisoner": 21427, + "prisoners": 17460, + "prisons": 26607, + "pristine": 30618, + "prit": 41668, + "prit": 37523, + "prith": 39173, + "prius": 43561, + "priv": 3270, + "privacy": 10437, + "private": 20362, + "private": 4439, + "privately": 32970, + "privati": 27379, + "privi": 8367, + "privileg": 18015, + "privilege": 11537, + "privileged": 18166, + "prix": 10875, + "priya": 31275, + "priyan": 16488, + "priyanka": 31959, + "priyankach": 30030, + "priyankachopra": 30264, + "prize": 48222, + "prize": 4521, + "prized": 38769, + "prizes": 9268, + "prk": 37094, + "pro": 644, + "pro": 2630, + "proactive": 33364, + "prob": 17706, + "prob": 24007, + "probab": 3907, + "probability": 32637, + "probable": 42444, + "probably": 4047, + "probation": 36531, + "probe": 14359, + "probes": 48564, + "probiotics": 49395, + "proble": 2719, + "problem": 4324, + "problematic": 33767, + "problems": 4671, + "probs": 16330, + "probz": 34243, + "proc": 38417, + "proce": 4076, + "procedu": 18204, + "procedural": 48177, + "procedure": 20163, + "procedures": 21109, + "proceed": 26664, + "proceed": 33894, + "proceedings": 26953, + "proceeds": 11882, + "process": 17291, + "process": 4078, + "processed": 23816, + "processes": 15169, + "processing": 11737, + "procession": 26288, + "processor": 22838, + "processors": 43634, + "proclaimed": 34489, + "proclamation": 32065, + "procra": 25361, + "procrastin": 25586, + "procrastination": 42825, + "procreate": 39336, + "proctor": 47204, + "procu": 21001, + "procurement": 23733, + "prod": 44349, + "prod": 11991, + "prodi": 27759, + "prodigy": 31973, + "produ": 27852, + "produc": 1471, + "produce": 7529, + "produced": 7479, + "producer": 7064, + "producers": 13883, + "produces": 19940, + "producing": 13579, + "product": 32602, + "product": 4306, + "production": 4146, + "productions": 14166, + "productive": 9697, + "productivity": 12800, + "products": 3964, + "prof": 15043, + "prof": 5488, + "profe": 2611, + "profess": 5486, + "professi": 3705, + "profession": 8104, + "profession": 19671, + "professional": 46007, + "professional": 4774, + "professionalism": 41252, + "professionally": 33892, + "professionals": 10165, + "professor": 47302, + "professor": 6092, + "professors": 27758, + "profici": 34685, + "profile": 14291, + "profile": 6444, + "profiles": 22070, + "profiling": 37123, + "profit": 16941, + "profit": 7909, + "profitable": 25465, + "profits": 13410, + "profound": 48245, + "profound": 22998, + "profs": 19260, + "prog": 22219, + "progno": 46070, + "program": 4162, + "program": 2737, + "programme": 6322, + "programmer": 37001, + "programmes": 20468, + "programming": 10831, + "programs": 7345, + "progre": 7069, + "progress": 4421, + "progressi": 23297, + "progressing": 32346, + "progression": 24772, + "progressive": 12208, + "progressives": 41709, + "prohi": 41124, + "prohib": 45040, + "prohibition": 34440, + "proj": 39156, + "proje": 48345, + "projec": 1610, + "project": 15911, + "project": 1965, + "projected": 22873, + "projection": 22384, + "projections": 34638, + "projector": 27816, + "projects": 5090, + "proli": 19710, + "prolife": 32126, + "prolifer": 39018, + "prolific": 27839, + "prolly": 45968, + "prolon": 35379, + "prolonged": 41972, + "prom": 40363, + "prom": 7944, + "prome": 34355, + "promen": 33578, + "promenade": 35522, + "promethe": 44183, + "promin": 35217, + "prominent": 19172, + "promis": 3963, + "promise": 6745, + "promised": 11516, + "promises": 12064, + "promising": 14183, + "promo": 3037, + "promo": 6755, + "promos": 35044, + "promote": 47384, + "promote": 8003, + "promoted": 16395, + "promoter": 33081, + "promotes": 20169, + "promoting": 9695, + "promotion": 9259, + "promotional": 17619, + "promotions": 19142, + "promp": 11671, + "prompt": 20198, + "prompted": 45746, + "prompts": 33490, + "proms": 37759, + "pron": 13285, + "prone": 30964, + "pronoun": 23022, + "pronounce": 40489, + "pronounced": 34109, + "pronto": 44296, + "proof": 17020, + "proof": 5248, + "proofing": 35679, + "proofs": 41023, + "prop": 19123, + "prop": 16254, + "propag": 12151, + "propaganda": 14718, + "propane": 45546, + "propel": 48439, + "propeller": 47404, + "proper": 3577, + "proper": 8205, + "properly": 12560, + "properties": 10922, + "property": 26486, + "property": 5043, + "prophe": 9662, + "prophecy": 32501, + "prophet": 15549, + "prophetic": 47476, + "prophets": 39441, + "propor": 35016, + "proportion": 35775, + "proportions": 39391, + "propos": 9455, + "proposal": 12139, + "proposals": 20568, + "propose": 28471, + "proposed": 10615, + "proposes": 27133, + "proposing": 42631, + "proposition": 44780, + "propri": 28243, + "props": 15249, + "propulsion": 49380, + "pros": 33925, + "pros": 14147, + "prosciutto": 46565, + "prose": 47063, + "prose": 28675, + "prosecco": 28839, + "prosecu": 12136, + "prosecution": 30902, + "prosecutor": 23736, + "prosecutors": 31656, + "prosp": 24242, + "prospec": 12693, + "prospect": 11211, + "prospective": 28034, + "prospects": 15372, + "prosper": 16121, + "prosper": 33526, + "prosperity": 17203, + "prosperous": 28252, + "prost": 47923, + "prostate": 28808, + "prostatec": 49064, + "prosthetic": 44602, + "prostitu": 37333, + "protag": 28950, + "protagonist": 38183, + "prote": 1845, + "protec": 5640, + "protect": 25563, + "protect": 4817, + "protected": 12266, + "protecting": 11710, + "protection": 6238, + "protections": 33772, + "protective": 17028, + "protector": 20441, + "protectors": 45039, + "protects": 21889, + "protein": 8088, + "proteins": 28661, + "protest": 6279, + "protestant": 46945, + "protested": 48089, + "protester": 42073, + "protesters": 12660, + "protesting": 18788, + "protestors": 27822, + "protests": 12450, + "proto": 8672, + "proto": 44958, + "protocol": 19938, + "protocols": 39631, + "proton": 40009, + "prototype": 16675, + "prototyping": 42081, + "prou": 5739, + "proud": 11080, + "proud": 1679, + "prouder": 39585, + "proudest": 46806, + "proudly": 11203, + "proudof": 48184, + "proudtobe": 35043, + "prov": 23772, + "prov": 35021, + "prove": 10107, + "proved": 16473, + "proven": 35405, + "proven": 14569, + "provence": 28067, + "prover": 18312, + "proverb": 34419, + "proverbs": 27016, + "proves": 16119, + "provi": 2289, + "provide": 4832, + "provided": 9046, + "providence": 19331, + "provider": 14409, + "providers": 17120, + "provides": 7161, + "providing": 7250, + "provin": 12074, + "province": 8978, + "provinces": 35050, + "provincial": 16002, + "proving": 18055, + "provision": 30148, + "provisional": 36008, + "provisions": 39269, + "provo": 15367, + "provoc": 31618, + "provocative": 43809, + "provoking": 25510, + "provost": 36627, + "prow": 38737, + "prowrestling": 39825, + "prox": 41616, + "proxim": 31436, + "proximity": 38298, + "proxy": 31680, + "prs": 23879, + "pru": 12961, + "pruitt": 39453, + "prun": 29029, + "pruning": 48133, + "pry": 31965, + "pryor": 43375, + "ps": 3982, + "ps": 814, + "psa": 14031, + "psal": 13859, + "psalm": 17995, + "psalms": 35003, + "psb": 37017, + "psc": 43118, + "psd": 28810, + "pse": 19737, + "pse": 5423, + "pseu": 24919, + "pseudo": 46618, + "psg": 17123, + "psi": 45848, + "psi": 24533, + "psic": 29299, + "psis": 33041, + "psl": 21373, + "psn": 36781, + "pso": 27045, + "pson": 7487, + "psori": 44688, + "psp": 32769, + "pss": 35718, + "pss": 42535, + "psst": 47814, + "pst": 12692, + "psu": 41286, + "psu": 28338, + "psv": 44530, + "psy": 3576, + "psy": 11056, + "psych": 31041, + "psych": 20509, + "psyched": 19932, + "psyched": 35199, + "psychedelic": 23292, + "psychi": 18147, + "psychiatric": 30578, + "psychiatry": 39706, + "psychic": 24916, + "psycho": 6472, + "psycho": 22154, + "psychological": 18153, + "psychologist": 32827, + "psychology": 12352, + "psychop": 30112, + "psychotic": 48774, + "pt": 11139, + "pt": 1459, + "pta": 11586, + "ptbo": 40481, + "ptc": 44646, + "pte": 47804, + "pter": 49323, + "pti": 29375, + "pti": 10491, + "ptic": 20670, + "ption": 3479, + "ptions": 24963, + "pto": 31372, + "pto": 34092, + "pton": 19780, + "pts": 5886, + "ptsd": 23973, + "ptv": 42402, + "pu": 755, + "pu": 11780, + "pub": 20720, + "pub": 6301, + "puberty": 44122, + "pubg": 31496, + "publ": 3434, + "publi": 1617, + "public": 3592, + "public": 2122, + "publica": 49007, + "publication": 13538, + "publications": 27334, + "publichealth": 35872, + "publicity": 20831, + "publicly": 18554, + "publish": 19032, + "published": 4311, + "publisher": 20455, + "publishers": 25222, + "publishes": 35633, + "publishing": 10994, + "publix": 47985, + "pubs": 21099, + "puc": 48779, + "puck": 17550, + "pud": 39234, + "pudding": 14025, + "puddle": 33545, + "pue": 20161, + "pueblo": 33076, + "puer": 8968, + "puerto": 12289, + "puertor": 22757, + "puertorico": 26356, + "puff": 44477, + "puff": 17184, + "puffin": 47632, + "puffs": 47453, + "puffy": 49245, + "pug": 20950, + "pug": 17739, + "pugchat": 42266, + "pugh": 41302, + "puglia": 38345, + "pugs": 39425, + "puj": 46163, + "puja": 33753, + "puk": 31811, + "pul": 2469, + "pul": 40512, + "pula": 45856, + "puli": 47293, + "pulit": 27745, + "pulitzer": 31419, + "pull": 20155, + "pull": 6857, + "pulled": 8525, + "pulling": 12897, + "pullman": 40203, + "pullover": 44020, + "pulls": 16041, + "pulmon": 32613, + "pulmonary": 39132, + "pulp": 25410, + "pulse": 40091, + "pulse": 12485, + "pulses": 42177, + "pulsion": 35398, + "pum": 37497, + "puma": 20858, + "pump": 5179, + "pump": 9173, + "pumped": 12796, + "pumping": 25150, + "pumpkin": 36386, + "pumpkin": 8842, + "pumpkins": 23787, + "pumps": 18540, + "pun": 2707, + "pun": 19929, + "punc": 43907, + "punch": 29332, + "punch": 10730, + "punched": 31689, + "punches": 35279, + "punching": 33468, + "punctu": 31565, + "punctuation": 47051, + "pundit": 41466, + "pune": 32593, + "pune": 14488, + "pung": 45420, + "puni": 11479, + "punish": 34569, + "punished": 31598, + "punisher": 38509, + "punishment": 19099, + "punjab": 19405, + "punjab": 12883, + "punjabi": 25430, + "punk": 28933, + "punk": 7246, + "punks": 47171, + "puns": 35231, + "punt": 32699, + "punta": 34112, + "punter": 47092, + "pup": 11926, + "pup": 11302, + "pupil": 27265, + "pupils": 13628, + "pupp": 7116, + "puppet": 18439, + "puppets": 28475, + "puppies": 14820, + "puppy": 25431, + "puppy": 6829, + "puppylove": 40849, + "pups": 20778, + "pur": 1727, + "pur": 6265, + "pura": 25596, + "puram": 46174, + "purcell": 46065, + "purch": 8384, + "purchase": 5481, + "purchased": 13399, + "purchases": 21887, + "purchasing": 20718, + "purdu": 40691, + "purdue": 22280, + "pure": 14202, + "pure": 5979, + "puree": 45474, + "purely": 32459, + "puremichigan": 39783, + "purest": 45497, + "purge": 33514, + "puri": 16910, + "puri": 21974, + "purification": 47724, + "purity": 29780, + "purple": 17837, + "purple": 5496, + "purpose": 33492, + "purpose": 7391, + "purposes": 22020, + "purr": 49262, + "purr": 46343, + "purse": 16480, + "pursue": 19463, + "pursuing": 26424, + "pursuit": 16469, + "purée": 40981, + "pus": 13841, + "pusa": 40825, + "push": 16028, + "push": 6831, + "pushaw": 35407, + "pushaward": 35448, + "pushawards": 47184, + "pushed": 16155, + "pushes": 23828, + "pushing": 11549, + "put": 29535, + "put": 1983, + "putin": 10693, + "putnam": 40235, + "puts": 7898, + "putt": 30279, + "putter": 44723, + "putting": 5154, + "puzz": 19760, + "puzzle": 12875, + "puzzles": 27986, + "pv": 14517, + "pv": 13495, + "pvc": 26959, + "pvp": 44172, + "pvt": 29898, + "pw": 19419, + "pw": 16067, + "pwc": 22965, + "px": 24790, + "px": 10262, + "pxrtg": 36262, + "py": 4005, + "py": 7504, + "pye": 31099, + "pyeongchang": 36066, + "pyg": 41450, + "pyram": 14405, + "pyramid": 18725, + "pyramids": 36877, + "pyrene": 36740, + "pyrenees": 39744, + "pyro": 39762, + "python": 13370, + "pz": 48361, + "pé": 43167, + "q": 80, + "q": 336, + "qa": 24944, + "qa": 16360, + "qad": 27844, + "qadri": 35672, + "qaeda": 31246, + "qanda": 48672, + "qanon": 19182, + "qant": 35404, + "qantas": 43250, + "qatar": 32804, + "qatar": 10872, + "qb": 8073, + "qbs": 38188, + "qc": 17406, + "qe": 30974, + "qf": 27215, + "qi": 25054, + "qi": 11256, + "qing": 46522, + "qing": 34339, + "ql": 28366, + "qld": 23039, + "qld": 13765, + "qldpol": 42296, + "qm": 42148, + "qotd": 24504, + "qpr": 24788, + "qq": 31960, + "qr": 18193, + "qs": 14364, + "qt": 15013, + "qtr": 44803, + "qu": 666, + "qu": 28646, + "qua": 20363, + "quack": 45575, + "quad": 11656, + "quad": 13419, + "quadcopter": 39792, + "quadru": 35831, + "quaid": 34265, + "quail": 34392, + "quaint": 45976, + "quake": 8421, + "quaker": 43395, + "quakes": 24572, + "qual": 9979, + "qual": 32405, + "qualcomm": 38683, + "quali": 4574, + "qualification": 21508, + "qualifications": 35225, + "qualified": 11927, + "qualifier": 18733, + "qualifiers": 21388, + "qualifies": 35820, + "qualify": 17019, + "qualifying": 11895, + "qualitative": 45847, + "qualities": 20488, + "quality": 28545, + "quality": 3027, + "quan": 11669, + "quan": 27490, + "quand": 28198, + "quant": 15050, + "quanti": 31540, + "quantitative": 40583, + "quantities": 33917, + "quantity": 26920, + "quantum": 15320, + "quar": 3856, + "quare": 42549, + "quarry": 27601, + "quart": 7851, + "quarter": 8816, + "quarter": 6632, + "quarterback": 16545, + "quarterfinal": 37992, + "quarterfinals": 28971, + "quarterly": 23350, + "quarters": 10146, + "quartet": 18056, + "quartz": 17752, + "quat": 25715, + "quattro": 40300, + "quay": 40276, + "quay": 17304, + "que": 1147, + "que": 2319, + "quebec": 15373, + "queen": 6407, + "queen": 2997, + "queenof": 44398, + "queens": 22943, + "queens": 9330, + "queensland": 15168, + "queer": 38874, + "queer": 18161, + "quel": 39774, + "quel": 21879, + "quen": 23876, + "quen": 38324, + "quent": 23808, + "quentin": 27530, + "quer": 17378, + "quer": 26859, + "quered": 23210, + "queries": 32958, + "querque": 30338, + "query": 27464, + "ques": 25328, + "ques": 7715, + "queso": 40110, + "quest": 31653, + "quest": 4846, + "questi": 2391, + "question": 18961, + "question": 4382, + "questionable": 30733, + "questioned": 31847, + "questioning": 24887, + "questions": 3883, + "quests": 44611, + "quet": 8513, + "quets": 39055, + "quetta": 38326, + "quette": 18993, + "queu": 32705, + "queue": 18549, + "queues": 40649, + "queuing": 44082, + "quez": 18677, + "quezon": 41117, + "qui": 1912, + "qui": 18046, + "quic": 26474, + "quiche": 47723, + "quick": 5969, + "quick": 3712, + "quicker": 29211, + "quickest": 37734, + "quickly": 7787, + "quid": 30732, + "quie": 43875, + "quien": 43482, + "quiere": 42723, + "quiero": 32567, + "quiet": 17853, + "quiet": 7557, + "quietly": 22208, + "quig": 44690, + "quil": 12305, + "quill": 48951, + "quilt": 23977, + "quilted": 46052, + "quin": 8607, + "quin": 17167, + "quincy": 27640, + "quind": 32339, + "quinn": 12306, + "quinoa": 26703, + "quins": 39701, + "quint": 26898, + "quinta": 47446, + "quinte": 22098, + "quintess": 37538, + "quintet": 35125, + "quipment": 42813, + "quir": 15943, + "quirky": 25044, + "quis": 15064, + "quist": 25128, + "quit": 19358, + "quit": 11140, + "quite": 4135, + "quito": 35828, + "quits": 32505, + "quitting": 33871, + "quity": 33133, + "quiz": 31197, + "quiz": 8344, + "quizz": 35041, + "quo": 3046, + "quo": 28127, + "quoi": 45549, + "quot": 5452, + "quot": 47587, + "quota": 42097, + "quotation": 49195, + "quote": 15446, + "quote": 4020, + "quoted": 27706, + "quoteoftheday": 19975, + "quotes": 5808, + "quoting": 31651, + "qur": 37782, + "quran": 19690, + "qureshi": 46307, + "qvist": 42322, + "qx": 45038, + "r": 81, + "r": 337, + "ra": 559, + "ra": 1735, + "raa": 44344, + "rab": 14816, + "rab": 33224, + "rabb": 6875, + "rabbi": 20959, + "rabbit": 10274, + "rabbits": 27028, + "rabhu": 25806, + "rable": 10182, + "rac": 1773, + "rac": 30462, + "raccoon": 29516, + "race": 10978, + "race": 2471, + "racec": 18814, + "racecourse": 25036, + "raced": 36021, + "racer": 16798, + "racers": 33603, + "races": 8605, + "raceway": 24650, + "rach": 6876, + "rach": 33429, + "racha": 21952, + "racha": 35022, + "rachael": 29095, + "rachel": 13511, + "rachel": 8029, + "raci": 33381, + "racial": 13801, + "racially": 43577, + "racing": 23306, + "racing": 3699, + "racism": 11276, + "racist": 9684, + "racists": 41777, + "rack": 24600, + "rack": 12034, + "racket": 37691, + "racks": 21191, + "rad": 4473, + "rad": 8238, + "rada": 30437, + "radar": 9672, + "radcliffe": 33096, + "rade": 44494, + "rade": 17911, + "rader": 45002, + "radford": 45800, + "radha": 43122, + "radi": 5772, + "radial": 42028, + "radiance": 45670, + "radiant": 25614, + "radiation": 18210, + "radiator": 39372, + "radic": 18082, + "radical": 13712, + "radicals": 45903, + "radio": 7176, + "radio": 2638, + "radioactive": 34704, + "radiodisney": 36483, + "radiohead": 39472, + "radiology": 29684, + "radios": 43669, + "radish": 37789, + "radius": 37570, + "rado": 29784, + "rae": 21646, + "rae": 15051, + "rael": 45390, + "raer": 44561, + "raf": 11495, + "raf": 11490, + "rafa": 14352, + "rafa": 24850, + "rafael": 38221, + "rafael": 19216, + "rafaelnadal": 49219, + "raff": 34900, + "raffic": 32928, + "raffle": 13752, + "raffles": 43489, + "rafi": 35304, + "raft": 9233, + "rafting": 36309, + "rag": 13958, + "rag": 20687, + "rage": 8593, + "rages": 34253, + "ragh": 35642, + "ragha": 40972, + "raging": 25015, + "ragn": 24125, + "ragnar": 34385, + "ragnarok": 41856, + "ragon": 34768, + "rags": 47838, + "rah": 12277, + "rah": 8766, + "raheem": 43317, + "rahim": 24152, + "rahman": 19680, + "rahu": 13129, + "rahul": 37239, + "rahul": 17440, + "rahulg": 27510, + "rahulgandhi": 28293, + "rai": 9165, + "rai": 9638, + "raid": 6877, + "raided": 43417, + "raider": 27368, + "raider": 21455, + "raidernation": 47901, + "raiders": 11817, + "raids": 26655, + "rail": 4573, + "rail": 6879, + "raila": 47273, + "railminindia": 35557, + "railroad": 17080, + "rails": 23427, + "railway": 27614, + "railway": 7856, + "railwayana": 46750, + "railways": 20765, + "raim": 45785, + "rain": 3128, + "rain": 2443, + "raina": 30564, + "rainbow": 24562, + "rainbow": 6286, + "rainbows": 30483, + "raine": 49038, + "raine": 6871, + "rained": 32310, + "rainf": 15024, + "rainfall": 15350, + "rainforest": 22823, + "rainier": 37850, + "raining": 13964, + "rains": 14272, + "rainy": 10222, + "rais": 14729, + "raise": 24249, + "raise": 5078, + "raised": 6027, + "raiser": 33555, + "raises": 13297, + "raisethe": 47109, + "raisin": 36864, + "raising": 6883, + "raj": 5958, + "raj": 10813, + "raja": 46069, + "raja": 19150, + "rajan": 46595, + "rajas": 16185, + "rajasthan": 18017, + "raje": 21899, + "rajesh": 43602, + "raji": 27569, + "rajini": 29600, + "rajini": 40622, + "rajinikanth": 32922, + "rajiv": 40197, + "rajkumar": 49304, + "rajput": 47572, + "raju": 47029, + "rak": 13523, + "rak": 26287, + "rake": 26825, + "rake": 32712, + "rakesh": 41083, + "ral": 8062, + "ral": 1406, + "rale": 14192, + "raleigh": 18207, + "rall": 23249, + "rallies": 25230, + "rally": 18882, + "rally": 5041, + "rallying": 36836, + "ralph": 25290, + "ralph": 12234, + "ram": 1976, + "ram": 2007, + "rama": 22112, + "ramad": 12736, + "ramadan": 15547, + "ramadhan": 47415, + "raman": 39816, + "ramapho": 43963, + "ramaphosa": 44993, + "ramatta": 49112, + "rambo": 41855, + "ramcharan": 45275, + "rame": 47745, + "ramen": 18892, + "ramesh": 48640, + "ramesh": 40186, + "rami": 43016, + "ramirez": 23877, + "ramon": 27958, + "ramone": 47201, + "ramos": 21046, + "ramp": 14271, + "rampage": 32077, + "rampant": 41985, + "ramps": 35257, + "rams": 10292, + "ramsay": 26259, + "ramsey": 19215, + "ran": 1433, + "ran": 4031, + "rana": 22143, + "ranbir": 40881, + "rance": 29034, + "ranch": 43955, + "ranch": 10659, + "rancho": 26258, + "rand": 5628, + "rand": 18718, + "randall": 23639, + "rande": 21469, + "randolph": 29899, + "random": 11396, + "random": 6160, + "randomly": 17272, + "rands": 39153, + "randy": 29479, + "randy": 13279, + "rane": 28852, + "rang": 4043, + "rang": 24377, + "range": 13627, + "range": 3818, + "ranger": 31472, + "ranger": 13593, + "rangers": 7664, + "ranges": 25685, + "ranging": 25946, + "rani": 29264, + "rani": 22631, + "rank": 11501, + "ranked": 8307, + "rankin": 37539, + "ranking": 12347, + "rankings": 12596, + "ranks": 14469, + "rano": 18608, + "rans": 46259, + "ransom": 28523, + "ransom": 34646, + "ransomware": 33815, + "rant": 46467, + "rant": 9819, + "rants": 34014, + "ranveer": 32402, + "ranveer": 41482, + "ranveerofficial": 42116, + "rao": 16913, + "rap": 7773, + "rap": 7348, + "rape": 46099, + "rape": 10070, + "raped": 23700, + "rapha": 22754, + "raphael": 30091, + "rapi": 8610, + "rapid": 47697, + "rapid": 12205, + "rapidly": 16710, + "rapids": 18848, + "raping": 44926, + "rapist": 33360, + "rapp": 19283, + "rapper": 11860, + "rappers": 30315, + "rapping": 42864, + "raps": 37887, + "raptor": 26762, + "raptors": 17035, + "raq": 39787, + "raq": 43312, + "raqqa": 47074, + "raquel": 44338, + "rar": 26819, + "rar": 24605, + "rard": 21012, + "rare": 18992, + "rare": 3865, + "rarely": 17315, + "rarest": 43237, + "rarity": 45862, + "ras": 23492, + "ras": 8224, + "rasc": 30085, + "rascal": 43481, + "rash": 14917, + "rash": 30608, + "rashad": 46527, + "rasheed": 41638, + "rashi": 19426, + "rashid": 26757, + "rasp": 10487, + "raspberries": 37742, + "raspberry": 40162, + "raspberry": 13615, + "raspberrypi": 43934, + "rass": 45654, + "rasta": 47002, + "rat": 3806, + "rat": 8985, + "rata": 28568, + "ratchet": 25078, + "rate": 5068, + "rated": 8183, + "rates": 6864, + "rath": 18268, + "rath": 39772, + "rather": 5252, + "rati": 11486, + "rating": 10567, + "ratings": 14176, + "ratio": 15893, + "ration": 27002, + "ration": 35662, + "rational": 33086, + "ratna": 49078, + "ratri": 32288, + "rats": 19043, + "ratt": 20737, + "ratt": 34785, + "rattle": 40824, + "rattle": 41839, + "rau": 27744, + "raul": 30218, + "raun": 41169, + "rav": 14367, + "rav": 23606, + "rave": 38784, + "rave": 17601, + "ravel": 27927, + "raven": 10269, + "raven": 16803, + "ravens": 17946, + "ravi": 22947, + "ravi": 19538, + "ravin": 39099, + "raving": 45807, + "raviol": 41104, + "ravioli": 43460, + "raw": 10166, + "raw": 6323, + "rawlings": 40662, + "rax": 38520, + "ray": 5312, + "ray": 3077, + "raya": 29991, + "raymond": 16683, + "rayn": 47852, + "rayon": 47900, + "rays": 11064, + "raz": 9700, + "raz": 19087, + "raza": 37724, + "razer": 33832, + "razor": 24934, + "razor": 21300, + "razz": 43769, + "rb": 12740, + "rb": 7477, + "rbc": 37500, + "rbi": 15687, + "rbs": 29102, + "rc": 7575, + "rc": 7457, + "rca": 33942, + "rcb": 45240, + "rcmp": 31489, + "rcn": 49370, + "rctid": 49223, + "rd": 13501, + "rd": 1973, + "rda": 45755, + "rdr": 44364, + "rds": 32378, + "re": 515, + "re": 810, + "rea": 11521, + "reach": 4483, + "reach": 4279, + "reached": 6878, + "reaches": 14462, + "reaching": 11358, + "react": 36566, + "react": 15065, + "reacted": 42515, + "reacting": 40595, + "reaction": 7189, + "reactions": 18438, + "reactive": 42072, + "reactjs": 46173, + "reactor": 32037, + "reacts": 23115, + "read": 933, + "read": 1199, + "reader": 9884, + "readers": 10335, + "readiness": 28131, + "reading": 17556, + "reading": 2337, + "readingfc": 47428, + "readings": 23361, + "reads": 6597, + "ready": 17351, + "ready": 1112, + "reagan": 17767, + "real": 2017, + "real": 1532, + "realdonaldtrump": 7025, + "reale": 5930, + "realest": 45855, + "realestate": 32937, + "realestate": 6569, + "reali": 4185, + "realis": 38114, + "realise": 14773, + "realised": 17945, + "realising": 39537, + "realism": 20024, + "realist": 30248, + "realistic": 16157, + "realities": 32443, + "reality": 46802, + "reality": 5004, + "realization": 40402, + "realize": 7538, + "realized": 10489, + "realizes": 42918, + "realizing": 23284, + "reall": 39686, + "really": 43249, + "really": 1414, + "realm": 23083, + "realmadrid": 27866, + "realms": 43033, + "realness": 46761, + "realtime": 44002, + "realtime": 38203, + "realtor": 18038, + "realtors": 31759, + "realty": 20471, + "ream": 37242, + "ream": 15219, + "rean": 48477, + "reap": 31334, + "reaper": 29922, + "rear": 39652, + "rear": 10223, + "reas": 9121, + "reason": 12882, + "reason": 3893, + "reasonable": 18558, + "reasonably": 38589, + "reasoning": 30341, + "reasons": 5686, + "reau": 32398, + "reb": 12370, + "reb": 18796, + "reba": 48543, + "rebate": 43817, + "rebe": 25227, + "rebec": 10774, + "rebecca": 12892, + "rebel": 8185, + "rebel": 12248, + "rebellion": 22170, + "rebels": 13623, + "rebirth": 33303, + "reboot": 22385, + "reborn": 30229, + "reboun": 43381, + "rebound": 31280, + "rebounds": 19190, + "rebs": 28164, + "rebu": 43162, + "rebuild": 20022, + "rebuilding": 30880, + "rebuilt": 33137, + "rec": 1020, + "rec": 11243, + "recall": 15151, + "recalled": 32142, + "recalling": 47855, + "recalls": 24740, + "recap": 29816, + "recap": 8337, + "recaps": 47997, + "recard": 35536, + "rece": 1890, + "recei": 2148, + "receip": 38503, + "receipt": 30479, + "receipts": 41181, + "receive": 4800, + "received": 4178, + "receiver": 17659, + "receivers": 45294, + "receives": 10027, + "receiving": 7252, + "recent": 3969, + "recently": 4482, + "recep": 17450, + "reception": 8364, + "receptions": 46881, + "receptor": 41835, + "recess": 38182, + "recession": 27176, + "recharge": 29396, + "rechargeable": 37516, + "reci": 2037, + "recipe": 28923, + "recipe": 4614, + "recipeoftheday": 38727, + "recipes": 9243, + "recipi": 10136, + "recipient": 13703, + "recipients": 18940, + "recipro": 41789, + "recital": 23457, + "recite": 48824, + "reck": 11715, + "reckless": 26284, + "reckon": 23854, + "recl": 42277, + "reclaim": 35969, + "reclaimed": 32648, + "reco": 2535, + "reco": 46038, + "recogn": 6343, + "recogni": 5329, + "recognise": 19824, + "recognised": 20986, + "recognising": 48423, + "recognition": 9415, + "recognizable": 47240, + "recognize": 10905, + "recognized": 9929, + "recognizes": 26909, + "recognizing": 19666, + "recomm": 4540, + "recommend": 11628, + "recommend": 8942, + "recommendation": 20118, + "recommendations": 16516, + "recommended": 11100, + "recommending": 44301, + "recommends": 22940, + "recon": 15371, + "recon": 28996, + "reconciliation": 26451, + "reconstruction": 24955, + "recor": 1723, + "record": 21328, + "record": 2717, + "recorded": 9392, + "recorder": 26747, + "recording": 48237, + "recording": 6942, + "recordings": 19715, + "records": 4529, + "recover": 16785, + "recovered": 16444, + "recovering": 19005, + "recovers": 47935, + "recovery": 6591, + "recre": 22148, + "recreate": 29775, + "recreated": 40888, + "recreating": 48224, + "recreation": 17331, + "recreational": 24329, + "recru": 4745, + "recruit": 9011, + "recruit": 15585, + "recruited": 36518, + "recruiter": 43120, + "recruiters": 46542, + "recruiting": 10533, + "recruitment": 10541, + "recruits": 22647, + "recs": 33069, + "rectan": 43041, + "rectangular": 43321, + "rector": 41585, + "recu": 26798, + "recur": 19983, + "recurring": 35912, + "recy": 6790, + "recycla": 40659, + "recyclable": 48907, + "recycle": 19366, + "recycled": 16829, + "recycling": 12566, + "red": 1893, + "red": 736, + "redbubble": 46137, + "redbull": 29483, + "redbull": 29219, + "redcarpet": 32259, + "redcross": 30659, + "redd": 22149, + "redd": 40618, + "redding": 41061, + "reddish": 43383, + "reddit": 15226, + "reddy": 23028, + "rede": 10913, + "redeem": 37449, + "redefining": 46352, + "redemption": 20233, + "redesign": 24188, + "redesigned": 33111, + "redevelopment": 30322, + "redhead": 36267, + "redi": 7976, + "redman": 44753, + "redmond": 39627, + "rednation": 28180, + "rednationrising": 28262, + "redneck": 39105, + "redness": 22626, + "redo": 42524, + "redon": 48506, + "redro": 37722, + "reds": 11221, + "redskins": 19023, + "redsox": 19144, + "reduc": 5015, + "reduce": 6604, + "reduced": 10821, + "reduces": 20539, + "reducing": 13836, + "reduction": 12219, + "reductions": 48263, + "redux": 43014, + "redvelvet": 41845, + "redwings": 31058, + "redwood": 31748, + "ree": 9282, + "ree": 5813, + "reebok": 26734, + "reece": 30457, + "reed": 26209, + "reed": 10435, + "reedus": 32865, + "reef": 46557, + "reef": 15624, + "reefs": 34459, + "reel": 34467, + "reel": 17166, + "reels": 48127, + "reem": 48891, + "reen": 21638, + "reen": 23679, + "rees": 18314, + "reese": 20929, + "reeves": 23060, + "ref": 4067, + "ref": 9591, + "refe": 5624, + "refer": 18425, + "refer": 22325, + "referee": 20398, + "referees": 45583, + "referen": 13535, + "reference": 10214, + "references": 24009, + "referendum": 16732, + "referr": 47784, + "referral": 30219, + "referred": 22969, + "referring": 29797, + "refers": 30069, + "refill": 37859, + "refin": 13455, + "refined": 26098, + "refinery": 31393, + "refining": 48406, + "reflec": 4608, + "reflect": 13373, + "reflected": 28732, + "reflecting": 19700, + "reflection": 11884, + "reflections": 16647, + "reflective": 27008, + "reflects": 15821, + "reflex": 45756, + "reflex": 36050, + "reform": 45678, + "reform": 8875, + "reformation": 45119, + "reformed": 40880, + "reforms": 19274, + "refr": 34850, + "refre": 11995, + "refresh": 17836, + "refresh": 23288, + "refreshed": 35925, + "refresher": 41481, + "refreshing": 14159, + "refreshments": 31127, + "refriger": 21076, + "refrigerator": 36662, + "refs": 35595, + "refu": 3545, + "refuge": 5638, + "refuge": 17432, + "refugee": 11556, + "refugees": 42687, + "refugees": 8316, + "refund": 28899, + "refur": 15519, + "refurbi": 18259, + "refurbished": 26190, + "refurbishment": 35803, + "refusal": 46547, + "refuse": 16412, + "refused": 17190, + "refuses": 20085, + "refusing": 26704, + "reg": 5472, + "reg": 12353, + "regain": 37510, + "regal": 31512, + "regal": 25028, + "regan": 34062, + "regar": 5881, + "regard": 21801, + "regarded": 32017, + "regarding": 8493, + "regardless": 17220, + "regards": 23079, + "regatta": 26316, + "regen": 46545, + "regency": 29341, + "regeneration": 29257, + "regent": 30455, + "regents": 46710, + "regg": 12757, + "reggae": 37821, + "reggae": 15214, + "reggie": 21872, + "regi": 1608, + "regime": 11378, + "regiment": 18603, + "regin": 23287, + "regina": 16841, + "region": 16542, + "region": 4341, + "regional": 5552, + "regionals": 26043, + "regions": 14530, + "regis": 28094, + "register": 3967, + "registered": 10254, + "registering": 33510, + "registr": 29193, + "registration": 7302, + "registrations": 38423, + "registry": 30020, + "rego": 47351, + "regram": 30329, + "regrann": 48802, + "regre": 8627, + "regression": 43733, + "regret": 14374, + "regrets": 23231, + "regu": 3411, + "regui": 46722, + "regul": 11847, + "regular": 14882, + "regular": 6307, + "regularly": 17263, + "regulat": 14575, + "regulate": 33494, + "regulated": 31384, + "regulating": 48156, + "regulation": 14267, + "regulations": 16654, + "regulator": 30364, + "regulators": 35837, + "regulatory": 17717, + "reh": 21492, + "reha": 10193, + "rehab": 16973, + "rehabil": 17930, + "rehabilitation": 21042, + "rehear": 7273, + "rehearsal": 11482, + "rehearsals": 17977, + "rehearsing": 23125, + "rehman": 39206, + "rei": 15343, + "rei": 26033, + "reic": 41230, + "reich": 48589, + "reich": 28929, + "reid": 45125, + "reid": 11744, + "reig": 13092, + "reign": 41419, + "reign": 14827, + "reigning": 28409, + "reigns": 21217, + "reiki": 46960, + "reilly": 28120, + "reim": 35421, + "reimagined": 46799, + "reimbur": 39857, + "rein": 9240, + "rein": 45009, + "reina": 43847, + "reinde": 23810, + "reindeer": 25072, + "reinfor": 48161, + "reinforced": 41909, + "reinst": 33969, + "reinvent": 38171, + "reissue": 34042, + "reiter": 35394, + "rejec": 9958, + "reject": 22435, + "rejected": 17505, + "rejection": 32264, + "rejects": 23155, + "rejo": 20150, + "rejoice": 24712, + "rejuven": 26332, + "rek": 47542, + "rek": 19201, + "rel": 1825, + "rel": 5233, + "rela": 4362, + "reland": 15220, + "relat": 27192, + "relatable": 31010, + "relate": 17520, + "related": 5880, + "relates": 36064, + "relating": 27373, + "relation": 4561, + "relation": 16207, + "relations": 10100, + "relationship": 47239, + "relationship": 5837, + "relationships": 10610, + "relative": 17265, + "relatively": 18351, + "relatives": 21981, + "relax": 6777, + "relax": 9035, + "relaxation": 22194, + "relaxed": 18999, + "relaxing": 10256, + "relay": 12403, + "relays": 28404, + "rele": 1602, + "release": 29100, + "release": 2706, + "released": 3410, + "releases": 7393, + "releasethe": 44008, + "releasing": 10321, + "releg": 23378, + "relegated": 45884, + "relegation": 35040, + "relent": 22213, + "relentless": 27207, + "relessly": 33927, + "relev": 9349, + "relevance": 31400, + "relevant": 10568, + "reli": 2674, + "reliability": 27220, + "reliable": 13714, + "reliance": 27727, + "relic": 27802, + "relics": 43208, + "relief": 7518, + "relies": 41579, + "relieve": 28623, + "relieved": 36597, + "religi": 4940, + "religion": 8803, + "religions": 31189, + "religious": 8289, + "relish": 35550, + "relive": 23939, + "reliving": 47558, + "rell": 28802, + "rell": 7127, + "rella": 9952, + "relle": 31390, + "reloaded": 38908, + "relocated": 46791, + "relocation": 39198, + "rels": 23320, + "relu": 32058, + "reluct": 32549, + "reluctant": 45552, + "rely": 4158, + "relying": 42168, + "rem": 15098, + "rem": 21637, + "rema": 4569, + "remain": 29144, + "remain": 6415, + "remainder": 41672, + "remained": 23714, + "remaining": 11392, + "remains": 6807, + "remake": 16234, + "remark": 11136, + "remarkable": 12404, + "remarkably": 39087, + "remarks": 15001, + "remastered": 24932, + "rematch": 26473, + "rembrandt": 45972, + "reme": 20071, + "remedi": 18442, + "remedies": 25581, + "remedy": 25794, + "remem": 7966, + "rememb": 7062, + "remember": 22045, + "remember": 2195, + "remembered": 11763, + "remembering": 8135, + "remembers": 12551, + "remembrance": 40321, + "remembrance": 15860, + "remembranceday": 48333, + "rement": 7173, + "rements": 12667, + "remi": 41693, + "remin": 3216, + "remind": 9868, + "reminded": 12309, + "reminder": 5565, + "reminders": 34121, + "reminding": 19976, + "reminds": 8303, + "remington": 43527, + "reminis": 17723, + "reminiscent": 41704, + "reminiscing": 32552, + "remix": 8519, + "remixes": 31011, + "remn": 29127, + "remnants": 39032, + "remo": 4064, + "remo": 33259, + "remodel": 34159, + "remodel": 37495, + "remodeling": 41432, + "remote": 47163, + "remote": 9687, + "remotely": 32375, + "removable": 44095, + "removal": 13679, + "remove": 9709, + "removed": 10289, + "remover": 44267, + "removes": 29018, + "removing": 18504, + "remy": 30434, + "ren": 737, + "ren": 2596, + "rena": 12591, + "renais": 15409, + "renaissance": 16007, + "renal": 36096, + "renamed": 31535, + "renault": 17600, + "rence": 19245, + "rence": 1553, + "rences": 8545, + "rend": 33932, + "rend": 22851, + "render": 39752, + "render": 13024, + "rendered": 23652, + "rendering": 21339, + "renders": 39419, + "rendez": 43293, + "rendezvous": 45644, + "rendition": 28891, + "rendon": 46272, + "rendous": 49403, + "rends": 38842, + "rene": 15438, + "rene": 12597, + "renee": 23480, + "reneg": 29909, + "renegade": 41229, + "renergy": 37151, + "renew": 6645, + "renew": 22015, + "renewable": 31269, + "renewable": 15941, + "renewableenergy": 33357, + "renewables": 21619, + "renewal": 21270, + "renewed": 20524, + "renfre": 45043, + "reng": 36795, + "reno": 11520, + "reno": 12831, + "renov": 9984, + "renovated": 23839, + "renovation": 17121, + "renovations": 31311, + "renowned": 14727, + "rens": 18183, + "renshaw": 44445, + "rent": 17377, + "rent": 1609, + "rental": 12193, + "rentals": 24105, + "rented": 35932, + "rential": 31692, + "renting": 37662, + "rently": 2615, + "rents": 31109, + "reo": 15963, + "reo": 26854, + "reon": 15761, + "reopen": 26883, + "reopened": 32868, + "reopening": 36663, + "reopens": 40644, + "rep": 4229, + "rep": 6487, + "repair": 8419, + "repaired": 32953, + "repairing": 38534, + "repairs": 16297, + "repar": 34065, + "repe": 5785, + "repeal": 42622, + "repeal": 23938, + "repeat": 10192, + "repeated": 27904, + "repeatedly": 26630, + "repeating": 33834, + "repeats": 39158, + "repell": 46235, + "repent": 47261, + "reper": 29085, + "repet": 38533, + "repl": 13047, + "replac": 6069, + "replace": 9466, + "replaceable": 47762, + "replaced": 13200, + "replacement": 10835, + "replaces": 27781, + "replacing": 18647, + "replay": 16875, + "repleni": 44839, + "replic": 21651, + "replica": 18125, + "replied": 24238, + "replies": 18808, + "reply": 8965, + "replying": 47599, + "repor": 2628, + "report": 2417, + "reported": 7598, + "reportedly": 10953, + "reporter": 11019, + "reporters": 18454, + "reporting": 9218, + "reports": 4908, + "reposit": 41276, + "repository": 46977, + "repost": 33147, + "repost": 7217, + "repostapp": 38388, + "reposting": 20223, + "reppin": 19163, + "repping": 22574, + "repre": 3397, + "represent": 8293, + "represent": 8406, + "representation": 13520, + "representative": 13175, + "representatives": 15591, + "represented": 12299, + "representing": 7561, + "represents": 14433, + "repri": 31854, + "reproduction": 35714, + "reproductive": 25522, + "reps": 14265, + "reptile": 36938, + "reptiles": 38679, + "republic": 6376, + "republic": 7185, + "republican": 9842, + "republicans": 12384, + "repur": 41852, + "req": 42411, + "requ": 10664, + "reque": 9539, + "request": 7813, + "requested": 16199, + "requesting": 33245, + "requests": 17087, + "requi": 4863, + "requiem": 40316, + "require": 14437, + "required": 8500, + "requirement": 27146, + "requirements": 12860, + "requires": 13396, + "requiring": 33425, + "requis": 42602, + "rer": 41295, + "rer": 3407, + "rera": 14301, + "rero": 21860, + "rers": 18869, + "res": 4466, + "res": 934, + "resc": 3956, + "rescheduled": 43553, + "rescu": 8618, + "rescue": 28567, + "rescue": 5718, + "rescued": 11919, + "rescues": 32439, + "rescuing": 43770, + "rese": 13000, + "resear": 6090, + "research": 25694, + "research": 2379, + "researched": 42733, + "researcher": 18334, + "researchers": 9522, + "researching": 24544, + "reseller": 35391, + "resemb": 16916, + "resemblance": 26856, + "resemble": 37230, + "resembles": 35417, + "reser": 16420, + "reserv": 11906, + "reservation": 20289, + "reservations": 19307, + "reserve": 6911, + "reserved": 19796, + "reserves": 19705, + "reservoir": 20574, + "reset": 26250, + "resh": 47432, + "reshi": 39435, + "resi": 2152, + "residen": 22311, + "residence": 11672, + "residences": 38855, + "residency": 18545, + "resident": 9016, + "residente": 44637, + "residentevil": 48393, + "residential": 11002, + "residents": 6008, + "resign": 23584, + "resignation": 24779, + "resigned": 31014, + "resigns": 29738, + "resil": 10932, + "resili": 39212, + "resilience": 15271, + "resilient": 24694, + "resin": 24156, + "resist": 37345, + "resist": 9587, + "resistance": 7392, + "resistant": 17542, + "resisting": 43679, + "resolution": 9977, + "resolutions": 26816, + "resolve": 20787, + "resolved": 28807, + "reson": 18092, + "resonance": 42310, + "resort": 6594, + "resorts": 18839, + "resource": 43729, + "resource": 9760, + "resources": 6723, + "respec": 7466, + "respect": 31411, + "respect": 4916, + "respected": 19126, + "respectful": 24379, + "respecting": 36172, + "respective": 25817, + "respectively": 28794, + "respects": 23553, + "respir": 20771, + "respiratory": 24483, + "respon": 2421, + "respond": 12355, + "responded": 21121, + "respondents": 49253, + "responders": 25155, + "responding": 18037, + "responds": 17436, + "response": 5399, + "responses": 19006, + "responsi": 5490, + "responsibilities": 30375, + "responsibility": 11272, + "responsible": 8936, + "responsibly": 33675, + "responsive": 21544, + "ress": 34651, + "ress": 13629, + "resso": 15133, + "rest": 10974, + "rest": 2539, + "restart": 37378, + "restaur": 3775, + "restaurant": 41930, + "restaurant": 4489, + "restaurants": 11714, + "rested": 46020, + "resting": 18044, + "restless": 36724, + "restling": 30076, + "resto": 11118, + "resto": 41666, + "restock": 34060, + "restocked": 36966, + "restor": 8984, + "restoration": 11989, + "restorative": 46509, + "restore": 14008, + "restored": 14238, + "restoring": 24406, + "restra": 25424, + "restric": 11036, + "restricted": 27197, + "restriction": 44282, + "restrictions": 19884, + "restroom": 43423, + "restructuring": 43260, + "rests": 33775, + "resu": 10095, + "resul": 2655, + "result": 5659, + "resulted": 26449, + "resulting": 24581, + "results": 3790, + "resume": 15077, + "resumes": 30268, + "resur": 14865, + "resurg": 45962, + "resurgence": 47692, + "resurrec": 18487, + "resurrection": 25811, + "resusc": 47523, + "ret": 20500, + "ret": 10048, + "reta": 20153, + "retail": 14910, + "retail": 6455, + "retailer": 22549, + "retailers": 19418, + "retain": 24430, + "retained": 42737, + "retaining": 35571, + "retains": 42583, + "retali": 33101, + "retar": 29964, + "retarded": 44111, + "retention": 26247, + "rethink": 29078, + "rethinking": 42951, + "reti": 4721, + "retin": 31270, + "retina": 36919, + "retire": 18846, + "retired": 11477, + "retirement": 9205, + "retires": 29060, + "retiring": 21200, + "retrac": 32735, + "retreat": 11210, + "retri": 16918, + "retriever": 28394, + "retro": 6535, + "retro": 7755, + "retrogamer": 47220, + "retrogaming": 11316, + "retrospective": 27105, + "rett": 41082, + "rett": 8425, + "rette": 33066, + "return": 43042, + "return": 3458, + "returned": 10476, + "returning": 9290, + "returns": 5020, + "retwee": 48190, + "retweet": 3195, + "retweeted": 12705, + "retweeting": 32345, + "retweets": 10160, + "rety": 41550, + "reu": 20255, + "reu": 40371, + "reuben": 40450, + "reunion": 10247, + "reunite": 26179, + "reunited": 13516, + "reusable": 30395, + "reuse": 26535, + "reut": 15210, + "reuters": 15569, + "rev": 8424, + "rev": 11789, + "revamp": 29819, + "revamped": 36420, + "revan": 45277, + "reve": 3115, + "reveal": 8052, + "revealed": 7171, + "revealing": 21321, + "reveals": 6621, + "revel": 14133, + "revelation": 24053, + "revelations": 36163, + "reven": 10171, + "revenge": 12717, + "revenue": 10637, + "revenues": 33348, + "rever": 14829, + "rever": 41913, + "revere": 44187, + "reverend": 34407, + "revers": 20726, + "reversal": 33367, + "reverse": 12812, + "reversed": 42485, + "reversi": 31601, + "reversible": 34212, + "revi": 8317, + "review": 2268, + "reviewed": 16678, + "reviewer": 36409, + "reviewers": 48195, + "reviewing": 20458, + "reviews": 7227, + "revise": 46801, + "revised": 22806, + "revising": 46882, + "revision": 20335, + "revisit": 26568, + "revisited": 34302, + "revisiting": 33144, + "revit": 26367, + "revitalization": 46923, + "revival": 14142, + "revive": 26450, + "revived": 42912, + "revo": 28660, + "revol": 13447, + "revolt": 31697, + "revolu": 4900, + "revolution": 17699, + "revolution": 6644, + "revolutionary": 14734, + "revolver": 38747, + "revolving": 47230, + "revs": 49286, + "revue": 43428, + "rew": 37564, + "rewar": 15857, + "reward": 11223, + "rewarded": 27163, + "rewarding": 23351, + "rewards": 15235, + "rewatch": 35610, + "rewatching": 41287, + "rewind": 26867, + "rewrite": 45218, + "rex": 13002, + "rex": 10904, + "rexperience": 33924, + "rey": 9681, + "rey": 4517, + "reyes": 18255, + "reykja": 47571, + "reyn": 11998, + "reynolds": 14309, + "reys": 48284, + "rez": 27597, + "rez": 15192, + "reza": 35888, + "rf": 35529, + "rf": 16368, + "rfc": 19003, + "rfid": 40204, + "rg": 33055, + "rg": 14897, + "rgb": 36128, + "rgv": 33685, + "rh": 8745, + "rh": 22404, + "rha": 19473, + "rhapso": 32532, + "rhapsody": 35774, + "rhe": 9186, + "rhea": 28612, + "rhetor": 24359, + "rhetoric": 29985, + "rhett": 42984, + "rheu": 42953, + "rhi": 21212, + "rhin": 12269, + "rhine": 22863, + "rhine": 44833, + "rhinestone": 30450, + "rhino": 41744, + "rhino": 20056, + "rhinos": 30671, + "rho": 7637, + "rhode": 39302, + "rhode": 27907, + "rhodes": 17785, + "rhon": 25882, + "rhonda": 46100, + "rhp": 27199, + "rhs": 24551, + "rhu": 23897, + "rhubarb": 30213, + "rhy": 7740, + "rhyme": 37356, + "rhymes": 33143, + "rhys": 28647, + "rhyth": 27069, + "rhythm": 16172, + "rhythmic": 46386, + "rhythms": 40872, + "ri": 553, + "ri": 2574, + "ria": 3650, + "rial": 15200, + "rian": 7788, + "rib": 44634, + "rib": 18298, + "riba": 44992, + "ribb": 10081, + "ribbon": 12114, + "ribbons": 35271, + "ribe": 46115, + "ribs": 17519, + "ric": 920, + "ric": 4798, + "rica": 14230, + "rical": 18109, + "rican": 30958, + "ricardo": 23140, + "ricci": 35783, + "ricciardo": 49282, + "rice": 36362, + "rice": 4741, + "rich": 5223, + "rich": 4021, + "richar": 9350, + "richard": 9080, + "richard": 4470, + "richards": 11372, + "richardson": 15984, + "riche": 23286, + "richer": 34138, + "riches": 37093, + "richest": 25572, + "richi": 38934, + "richie": 19797, + "richland": 43079, + "richmond": 34143, + "richmond": 11292, + "richter": 37591, + "rick": 6237, + "rick": 3064, + "ricket": 46161, + "ricket": 23671, + "ricks": 23111, + "ricky": 19188, + "ricky": 12814, + "rico": 37962, + "rico": 11362, + "ricotta": 38473, + "rics": 7353, + "ricul": 6980, + "rid": 18103, + "rid": 9874, + "ridd": 21990, + "ridden": 32025, + "riddle": 31839, + "ride": 15816, + "ride": 2994, + "rider": 31056, + "rider": 9707, + "riders": 10826, + "rides": 11308, + "ridg": 42646, + "ridge": 16580, + "ridge": 6352, + "ridic": 9624, + "ridiculous": 12659, + "ridiculously": 25661, + "ridin": 47869, + "riding": 6765, + "ridley": 27883, + "rie": 14824, + "rie": 5322, + "ried": 7552, + "riel": 26696, + "rien": 35237, + "rier": 40714, + "rier": 13336, + "ries": 28179, + "ries": 3059, + "riesling": 36372, + "rif": 7044, + "riff": 30359, + "rifle": 15354, + "rifles": 25678, + "rift": 26681, + "rig": 18462, + "rig": 13871, + "riga": 36626, + "rigged": 35897, + "rigging": 38160, + "riggs": 40328, + "righ": 15391, + "right": 13341, + "right": 1155, + "righte": 20762, + "righteous": 28169, + "righteousness": 42481, + "rightful": 42601, + "rightly": 42669, + "rights": 3336, + "rigid": 43138, + "rigor": 36788, + "rigorous": 41654, + "rigs": 42893, + "rihanna": 13744, + "rij": 41097, + "rik": 31136, + "rik": 27832, + "rika": 28580, + "ril": 12270, + "ril": 2388, + "riley": 35056, + "riley": 12260, + "rill": 23705, + "rilla": 43956, + "rilla": 18685, + "rim": 28147, + "rim": 12199, + "rime": 27064, + "rimin": 11527, + "rimo": 47817, + "rims": 34327, + "rin": 5859, + "rin": 11739, + "rina": 12869, + "rine": 24952, + "ring": 8318, + "ring": 2540, + "ringed": 44712, + "ringer": 35761, + "ringing": 26035, + "ringo": 38845, + "rings": 5751, + "rington": 12455, + "rink": 21497, + "rinka": 47316, + "rino": 47188, + "rinse": 48320, + "rio": 15681, + "rio": 5782, + "rion": 31623, + "rion": 34046, + "rios": 32814, + "riot": 32636, + "riot": 14218, + "riots": 24844, + "rious": 6340, + "rip": 10353, + "rip": 4243, + "ripe": 22832, + "ripley": 41589, + "ripp": 25276, + "ripped": 17815, + "ripper": 35347, + "ripping": 29126, + "ripple": 24825, + "rips": 30182, + "rir": 36792, + "ris": 6108, + "ris": 1999, + "rise": 13641, + "rise": 3151, + "risen": 23653, + "risers": 44983, + "rises": 13362, + "riseup": 35760, + "rish": 18378, + "rish": 18927, + "rishi": 48434, + "rising": 30452, + "rising": 5448, + "risis": 37998, + "risk": 27967, + "risk": 4213, + "risking": 48155, + "risks": 12474, + "risky": 27630, + "risotto": 31471, + "rist": 40610, + "rit": 5156, + "rit": 17333, + "rita": 16178, + "ritchie": 30997, + "rite": 39318, + "rite": 18429, + "rites": 36160, + "rith": 48169, + "rith": 48850, + "riti": 32904, + "rito": 19379, + "ritos": 33507, + "ritt": 26092, + "ritter": 34854, + "ritu": 13391, + "ritual": 19712, + "rituals": 31145, + "ritz": 39151, + "ritz": 25627, + "rium": 33884, + "riv": 25113, + "rival": 13412, + "rival": 15629, + "rivalry": 19511, + "rivals": 15135, + "rive": 27588, + "rive": 34917, + "river": 5239, + "river": 2473, + "rivera": 18275, + "riverdale": 28304, + "riverfront": 44439, + "rivers": 10723, + "riverside": 15809, + "riveting": 44024, + "riviera": 25851, + "rix": 43407, + "rix": 9483, + "riya": 36908, + "riyad": 31564, + "riyadh": 33577, + "riz": 18426, + "riz": 35411, + "rizal": 41555, + "rizio": 40191, + "rizz": 34826, + "rizzo": 49076, + "rj": 26016, + "rj": 20949, + "rk": 38725, + "rk": 21422, + "rl": 18041, + "rl": 14590, + "rlly": 43222, + "rly": 25954, + "rm": 20202, + "rm": 8431, + "rmb": 49097, + "rms": 40529, + "rn": 13206, + "rn": 7666, + "rna": 24566, + "rnb": 31556, + "rnc": 35309, + "rnli": 29748, + "ro": 532, + "ro": 2795, + "roa": 8313, + "roach": 31073, + "road": 4370, + "road": 1759, + "roadhouse": 47891, + "roadmap": 30111, + "roads": 6189, + "roadsafety": 39992, + "roadshow": 21168, + "roadside": 26928, + "roadster": 28920, + "roadto": 24681, + "roadtrip": 15094, + "roadway": 42744, + "roam": 34045, + "roaming": 29240, + "roano": 34184, + "roanoke": 36587, + "roar": 34193, + "roar": 18483, + "roaring": 26428, + "roast": 11404, + "roasted": 10479, + "roasting": 32228, + "rob": 2668, + "rob": 6442, + "robb": 14059, + "robb": 39673, + "robbed": 24163, + "robber": 35545, + "robbers": 40852, + "robbery": 16393, + "robbi": 44898, + "robbie": 37200, + "robbie": 15970, + "robbing": 47569, + "robbins": 23461, + "robby": 44128, + "robe": 23116, + "rober": 4532, + "robert": 8811, + "robert": 3929, + "roberta": 43373, + "roberto": 42645, + "roberto": 16227, + "roberts": 10366, + "robertson": 17643, + "robes": 29304, + "robi": 16743, + "robin": 6681, + "robin": 7988, + "robins": 35502, + "robinson": 8523, + "robles": 47646, + "roblo": 27481, + "roblox": 37798, + "robo": 4672, + "robo": 36057, + "robot": 46089, + "robot": 8797, + "robotic": 23975, + "robotics": 13546, + "robots": 13473, + "robson": 31113, + "robust": 22780, + "robyn": 34533, + "roc": 3268, + "roc": 13776, + "rocco": 30009, + "roch": 23788, + "rochdale": 41880, + "roche": 31776, + "rochelle": 40161, + "rochester": 18057, + "rock": 2640, + "rock": 2172, + "rockab": 39353, + "rockabilly": 45019, + "rocke": 19914, + "rocked": 16116, + "rockefeller": 35476, + "rocker": 29008, + "rockers": 32338, + "rocket": 25435, + "rocket": 8383, + "rockets": 13292, + "rockford": 41039, + "rockies": 20621, + "rockin": 12073, + "rocking": 7081, + "rockn": 24442, + "rocknroll": 27840, + "rocks": 6135, + "rockstar": 23603, + "rockstar": 18000, + "rockstargames": 27516, + "rockstars": 46639, + "rockthe": 49363, + "rockwell": 34747, + "rocky": 33481, + "rocky": 9648, + "rod": 9712, + "rod": 8291, + "roddy": 42332, + "rode": 18449, + "rodeo": 18250, + "rodgers": 17612, + "rodi": 49100, + "rodney": 21753, + "rodri": 11053, + "rodrigo": 33944, + "rodriguez": 14057, + "rods": 28618, + "roe": 27671, + "roe": 9996, + "rof": 33029, + "rofl": 48228, + "roft": 45212, + "rog": 34269, + "rog": 34017, + "rogen": 23380, + "roger": 13929, + "roger": 7735, + "rogerfederer": 40182, + "rogers": 10661, + "rogue": 32575, + "rogue": 15162, + "roh": 14933, + "roh": 29840, + "rohan": 39848, + "rohing": 23600, + "rohingya": 26146, + "rohit": 44649, + "rohit": 24299, + "roi": 21877, + "rok": 36807, + "rol": 3393, + "rol": 7818, + "roland": 33713, + "roland": 19569, + "role": 18485, + "role": 3414, + "roles": 11871, + "rolex": 21093, + "rolf": 48606, + "roll": 4711, + "roll": 3341, + "rolled": 11982, + "roller": 21034, + "roller": 12342, + "rollercoaster": 38248, + "rollers": 36941, + "rollin": 27545, + "rolling": 24250, + "rolling": 6347, + "rollingstones": 41309, + "rollins": 27724, + "rollout": 47710, + "rollover": 39214, + "rolls": 8614, + "rolltide": 28101, + "rom": 11377, + "rom": 19205, + "roma": 44134, + "roma": 11631, + "romain": 48897, + "roman": 4416, + "roman": 7370, + "romance": 7215, + "romania": 15884, + "romanian": 30866, + "romano": 38409, + "romans": 23066, + "romantic": 41457, + "romantic": 8821, + "rome": 9406, + "rome": 5243, + "romeo": 14429, + "romero": 23694, + "romney": 19287, + "romo": 32248, + "romper": 43699, + "ron": 2393, + "ron": 3372, + "rona": 42385, + "ronal": 46194, + "ronald": 15683, + "ronaldo": 13463, + "ronan": 34971, + "rond": 31935, + "ronda": 37436, + "rondo": 43756, + "rone": 48082, + "rone": 32763, + "roni": 47234, + "ronnie": 45257, + "ronnie": 16421, + "rons": 19536, + "ront": 48881, + "roo": 1249, + "roo": 31227, + "rood": 38007, + "roof": 9120, + "roof": 6449, + "roofing": 24415, + "roofs": 34635, + "rooftop": 16319, + "rook": 35918, + "rookie": 9771, + "rookies": 31917, + "room": 8845, + "room": 1530, + "roomie": 36851, + "roommate": 19825, + "roommates": 37323, + "rooms": 6328, + "rooney": 17712, + "roos": 32938, + "roosevel": 17644, + "roosevelt": 18488, + "rooster": 46263, + "rooster": 30926, + "roosters": 43693, + "root": 25930, + "root": 9728, + "rooted": 30428, + "rooting": 25523, + "roots": 8084, + "rop": 43401, + "rope": 9953, + "ropes": 30506, + "ror": 8668, + "ror": 2843, + "rors": 12072, + "rory": 42804, + "rory": 17813, + "ros": 5288, + "ros": 6930, + "rosa": 14393, + "rosal": 30397, + "rosario": 33640, + "rosary": 33098, + "rosberg": 46037, + "rose": 6146, + "rose": 3568, + "roseanne": 47528, + "rosel": 33616, + "rosemary": 19472, + "rosen": 13214, + "rosen": 36424, + "rosenberg": 43558, + "rosenthal": 46990, + "roses": 9061, + "rosetta": 43800, + "rosewood": 38686, + "rosie": 43049, + "rosie": 16888, + "ross": 8801, + "ross": 2158, + "rosse": 11602, + "rossi": 24817, + "rosso": 33023, + "roster": 12487, + "roswell": 45116, + "rosy": 46705, + "rosé": 28006, + "rot": 10055, + "rot": 9643, + "rotar": 45959, + "rotary": 14654, + "rotating": 32265, + "rotation": 18089, + "rotc": 32252, + "roth": 17741, + "roth": 19139, + "rother": 23174, + "rotherham": 37687, + "rothschild": 45089, + "roti": 46940, + "roto": 34698, + "rotor": 42991, + "rots": 16642, + "rott": 34806, + "rotten": 24324, + "rotter": 22614, + "rotterdam": 23422, + "rotun": 42970, + "rou": 2964, + "rou": 34783, + "roud": 28375, + "rouge": 16209, + "rough": 11699, + "rough": 8511, + "roughly": 21910, + "roughs": 37598, + "rouhani": 39912, + "roulette": 39930, + "roun": 5602, + "round": 9403, + "round": 2522, + "roundabout": 29953, + "rounded": 26973, + "rounder": 37024, + "rounding": 40208, + "rounds": 11242, + "roundtable": 19386, + "roundup": 17503, + "roup": 29220, + "rourke": 38753, + "rous": 33645, + "rous": 34531, + "rousey": 46267, + "rout": 7502, + "rout": 41778, + "route": 5261, + "router": 29962, + "routes": 14923, + "routine": 12319, + "routines": 44074, + "routing": 44086, + "roux": 43416, + "rov": 23971, + "rove": 30130, + "rover": 12776, + "rovers": 16373, + "row": 5275, + "row": 1044, + "rowan": 26240, + "rowdy": 32141, + "rowe": 28323, + "rowed": 22615, + "rower": 43345, + "rowers": 41806, + "rowing": 12807, + "rowland": 33037, + "rowley": 48793, + "rowling": 29371, + "rown": 22287, + "rown": 25060, + "rows": 9409, + "rox": 14111, + "rox": 41033, + "roxy": 28093, + "roy": 2128, + "roy": 6354, + "royal": 6691, + "royal": 3853, + "royale": 20630, + "royalnavy": 41545, + "royals": 13335, + "royalties": 48660, + "royalty": 18296, + "royalwedding": 27461, + "royce": 18444, + "royd": 41476, + "royo": 39357, + "roz": 28989, + "roz": 37250, + "rp": 17305, + "rp": 8174, + "rpa": 41872, + "rpg": 12445, + "rpm": 23715, + "rps": 49215, + "rr": 5311, + "rr": 9126, + "rrp": 36967, + "rrr": 18267, + "rrrr": 25561, + "rrrr": 34444, + "rs": 6978, + "rs": 1724, + "rsa": 29437, + "rsc": 48524, + "rsd": 34426, + "rsi": 39046, + "rsl": 44752, + "rsp": 16381, + "rspb": 38508, + "rspb": 36727, + "rspca": 45643, + "rss": 46466, + "rss": 22350, + "rstats": 38700, + "rsvp": 9774, + "rt": 8959, + "rt": 8991, + "rtc": 31648, + "rte": 33822, + "rte": 23322, + "rtg": 22028, + "rti": 47549, + "rtr": 43999, + "rts": 8496, + "rtw": 34673, + "ru": 681, + "ru": 13735, + "rub": 15862, + "rub": 22586, + "rubb": 19597, + "rubbed": 45239, + "rubber": 31131, + "rubber": 11331, + "rubbing": 41262, + "rubbish": 21108, + "rubble": 42230, + "ruben": 44058, + "ruben": 29722, + "rubi": 27856, + "rubin": 34128, + "rubio": 24244, + "rubs": 43422, + "ruby": 24552, + "ruby": 11493, + "ruck": 27449, + "rucker": 45402, + "rud": 35256, + "rudd": 31836, + "rude": 16548, + "rudi": 48360, + "rudol": 40927, + "rudolf": 46835, + "rudolph": 30119, + "rudy": 38226, + "rudy": 22131, + "rue": 38024, + "rue": 19276, + "rufc": 45084, + "ruff": 28177, + "ruff": 30304, + "rufus": 39322, + "rug": 4217, + "rug": 19220, + "rugby": 15091, + "rugby": 4964, + "rugbyleague": 44419, + "ruger": 48655, + "rugged": 25225, + "rugs": 29946, + "rui": 46974, + "ruin": 16256, + "ruined": 17231, + "ruining": 29952, + "ruins": 16094, + "ruiz": 27873, + "ruk": 46628, + "rukh": 43075, + "rukh": 27631, + "rule": 31643, + "rule": 6175, + "ruled": 16324, + "ruler": 26286, + "rulers": 45328, + "rules": 5272, + "ruling": 14690, + "rum": 9223, + "rum": 11233, + "rumb": 42432, + "rumble": 18900, + "rumi": 31428, + "rumor": 22254, + "rumored": 36694, + "rumors": 16160, + "rumour": 34296, + "rumours": 20716, + "rump": 29366, + "run": 1639, + "run": 1934, + "runaway": 28851, + "runchat": 25838, + "rundown": 41100, + "rune": 33882, + "rune": 49244, + "runner": 37370, + "runner": 7913, + "runners": 10571, + "runnin": 43130, + "running": 24451, + "running": 2761, + "runoff": 38564, + "runs": 5586, + "runway": 13927, + "rup": 7996, + "rup": 14980, + "rupaul": 44211, + "rupee": 43916, + "rupees": 44110, + "rupert": 25625, + "rupt": 23055, + "ruption": 35403, + "rural": 28801, + "rural": 8737, + "rus": 35811, + "rus": 5998, + "rush": 12148, + "rush": 6973, + "rushed": 28104, + "rusher": 48745, + "rushes": 47217, + "rushing": 20284, + "russ": 6285, + "russ": 20764, + "russell": 26122, + "russell": 8150, + "russi": 2600, + "russia": 4018, + "russian": 30731, + "russian": 4868, + "russians": 25413, + "russo": 30679, + "rust": 28682, + "rust": 14212, + "rustic": 19822, + "rusty": 43966, + "rusty": 22646, + "rut": 14973, + "rut": 39102, + "rutger": 49029, + "rutgers": 28934, + "ruth": 15798, + "ruth": 12029, + "ruther": 26676, + "rutherford": 31070, + "ruthless": 36063, + "rutland": 46024, + "ruto": 43702, + "ruz": 23275, + "rv": 17135, + "rv": 17951, + "rva": 24278, + "rw": 9085, + "rw": 22926, + "rwa": 47452, + "rwand": 31758, + "rwanda": 15427, + "rwby": 39698, + "rwc": 32321, + "rx": 41188, + "rx": 15945, + "ry": 1511, + "ry": 913, + "ryan": 8682, + "ryan": 4053, + "ryanair": 43526, + "ryder": 43564, + "ryder": 21805, + "rye": 24015, + "rye": 17409, + "rying": 7838, + "ryn": 37728, + "ryo": 24460, + "rys": 21654, + "ryu": 46656, + "ryu": 34604, + "ré": 29106, + "s": 82, + "s": 338, + "sa": 774, + "sa": 1344, + "saa": 13429, + "saab": 27158, + "saad": 36530, + "saas": 25761, + "saat": 33151, + "sab": 3233, + "sab": 23213, + "saba": 38344, + "sabah": 32854, + "saban": 41620, + "sabar": 47102, + "sabbath": 26008, + "sabc": 30010, + "sabcnews": 41093, + "saber": 46822, + "saber": 25624, + "sabha": 23431, + "sabi": 47073, + "sabine": 44062, + "sable": 19224, + "sabot": 30700, + "sabotage": 40496, + "sabre": 35110, + "sabres": 29620, + "sabrin": 37029, + "sabrina": 24994, + "sac": 3632, + "sac": 12905, + "sach": 30168, + "sacha": 49010, + "sachin": 47527, + "sachin": 30297, + "sachs": 31451, + "sack": 28964, + "sack": 14979, + "sacked": 27519, + "sacks": 26441, + "sacram": 13334, + "sacramento": 16065, + "sacred": 40612, + "sacred": 12477, + "sacri": 15283, + "sacrif": 12117, + "sacrific": 16919, + "sacrifice": 12556, + "sacrificed": 31116, + "sacrifices": 28858, + "sacrificing": 48146, + "sad": 2810, + "sad": 3719, + "saddened": 27720, + "saddest": 34925, + "saddle": 30469, + "saddle": 20283, + "sade": 27429, + "sadh": 40955, + "sadi": 22207, + "sadie": 30333, + "sadiq": 44107, + "sadler": 45600, + "sadly": 11603, + "sadness": 20399, + "sae": 38633, + "sae": 34883, + "saeed": 29745, + "saf": 2125, + "saf": 25760, + "safar": 23443, + "safari": 14091, + "safarilive": 34816, + "safc": 27998, + "safe": 2901, + "safe": 2996, + "safeguard": 42249, + "safeguarding": 47451, + "safely": 11513, + "safer": 40124, + "safer": 15504, + "safest": 38973, + "safety": 19050, + "safety": 3406, + "safetyfirst": 43608, + "saffron": 27529, + "sag": 6609, + "sag": 30048, + "saga": 15758, + "sagan": 37193, + "sagar": 42518, + "sage": 25800, + "sage": 7509, + "sages": 25979, + "sagin": 47097, + "sagitt": 44685, + "sagu": 44708, + "sah": 30943, + "sah": 26342, + "saha": 36062, + "sahara": 24599, + "saharan": 44255, + "sahi": 24608, + "sahib": 34150, + "sai": 16048, + "sai": 10886, + "said": 40319, + "said": 1946, + "saif": 44164, + "saig": 36328, + "saigon": 41081, + "sail": 7528, + "sail": 12156, + "sailed": 43047, + "sailing": 11003, + "sailor": 28002, + "sailor": 16076, + "sailormoon": 40673, + "sailors": 25355, + "sails": 27526, + "sain": 21226, + "sain": 40378, + "sains": 24860, + "sainsbury": 45879, + "sainsburys": 36934, + "saint": 11274, + "saint": 5599, + "saints": 8769, + "saintsfc": 31102, + "sair": 46600, + "sair": 30971, + "saire": 28087, + "saison": 33256, + "sait": 48008, + "saj": 33580, + "sak": 11511, + "sak": 35900, + "saka": 33609, + "sake": 12874, + "sakh": 43945, + "saki": 40514, + "saku": 37550, + "sakura": 24162, + "sal": 980, + "sal": 6126, + "sala": 17300, + "salaam": 46773, + "salad": 6188, + "salads": 30948, + "salah": 22516, + "salam": 19007, + "salam": 33963, + "salamat": 44696, + "salami": 46885, + "salaries": 33132, + "salary": 16312, + "salazar": 45988, + "sale": 17786, + "sale": 1690, + "saleh": 38353, + "salem": 48194, + "salem": 16884, + "sales": 13347, + "sales": 3765, + "salesforce": 22680, + "salesman": 37633, + "salford": 25629, + "sali": 15411, + "salim": 42760, + "salinas": 41990, + "saline": 46918, + "salis": 20667, + "salis": 39378, + "salisbury": 24763, + "sall": 27122, + "sall": 20883, + "salle": 23738, + "sally": 29542, + "sally": 13349, + "salman": 13754, + "salman": 16219, + "salmankhan": 15177, + "salmon": 37040, + "salmon": 9137, + "salom": 38268, + "salon": 33916, + "salon": 11105, + "saloon": 26038, + "sals": 16307, + "salsa": 16442, + "salt": 12763, + "salt": 6611, + "salted": 26313, + "saltlife": 47809, + "salts": 40559, + "saltwater": 43616, + "salty": 20678, + "salu": 31711, + "salud": 46867, + "salut": 44998, + "salute": 44908, + "salute": 9747, + "salutes": 32762, + "salv": 8299, + "salvador": 20874, + "salvage": 33131, + "salvation": 19534, + "salvatore": 38772, + "salz": 33594, + "salzburg": 43396, + "sam": 1644, + "sam": 3730, + "sama": 19272, + "samanth": 11465, + "samantha": 15466, + "samanthap": 38266, + "samanthaprabhu": 38643, + "samar": 21820, + "samaritan": 45495, + "samba": 37190, + "same": 23062, + "same": 2208, + "samheughan": 36255, + "sami": 48400, + "sami": 24322, + "sammy": 31091, + "sammy": 16758, + "samo": 30006, + "samoa": 34932, + "samp": 31225, + "sample": 9542, + "sampler": 40629, + "samples": 13387, + "sampling": 19522, + "sampson": 39983, + "sams": 44667, + "samson": 34659, + "samsun": 47875, + "samsung": 35369, + "samsung": 8115, + "samu": 7646, + "samuel": 30612, + "samuel": 12787, + "samurai": 21739, + "san": 1489, + "san": 2223, + "sana": 19434, + "sanantonio": 34714, + "sanat": 29091, + "sanatomy": 36052, + "sanc": 7398, + "sance": 15930, + "sanchez": 13971, + "sanctioned": 43032, + "sanctions": 17790, + "sanctu": 12712, + "sanctuary": 14044, + "sand": 2147, + "sand": 5094, + "sandal": 36445, + "sandal": 42185, + "sandals": 20731, + "sandalwood": 47502, + "sandeep": 46973, + "sander": 34111, + "sanders": 10429, + "sanderson": 36198, + "sandi": 44249, + "sandiego": 45997, + "sandiego": 15793, + "sandman": 45730, + "sando": 35921, + "sandoval": 44157, + "sandra": 33733, + "sandra": 13415, + "sandro": 42389, + "sands": 5936, + "sandstone": 36796, + "sandwich": 17050, + "sandwich": 8687, + "sandwiches": 19667, + "sandy": 29679, + "sandy": 10355, + "sane": 23419, + "sanford": 32330, + "sanfrancisco": 20254, + "sang": 13235, + "sang": 11684, + "sange": 12466, + "sangria": 42665, + "sani": 39137, + "sani": 34492, + "sanitary": 33842, + "sanitation": 25414, + "saniti": 43987, + "sanity": 30517, + "sanjay": 31712, + "sanjay": 25796, + "sanje": 40405, + "sanjose": 45971, + "sank": 43692, + "sano": 34053, + "sans": 16982, + "sansk": 39689, + "sanskrit": 48083, + "sant": 8356, + "sant": 23120, + "santa": 22175, + "santa": 4555, + "santac": 28876, + "santam": 45627, + "santana": 27033, + "santander": 46476, + "santi": 13856, + "santiago": 16568, + "santo": 29631, + "santo": 18400, + "santor": 28448, + "santorini": 39573, + "santos": 16582, + "sany": 47679, + "sao": 28026, + "sap": 8089, + "sap": 11591, + "sapi": 40016, + "sapp": 13427, + "sapp": 40729, + "sapphire": 22044, + "sar": 1808, + "sar": 9424, + "sara": 37196, + "sara": 10063, + "sarab": 40716, + "sarac": 35722, + "sarah": 9086, + "sarah": 5327, + "saraj": 42592, + "sarajevo": 48211, + "saras": 20373, + "sarasota": 31990, + "sarato": 24845, + "saratoga": 29496, + "sarawak": 47331, + "sarcasm": 37246, + "sarcastic": 48639, + "sardar": 41786, + "sarde": 43925, + "sardin": 27383, + "sardinia": 41025, + "sare": 13051, + "saree": 30860, + "sargent": 34864, + "sari": 42327, + "sari": 20261, + "saries": 47586, + "sarkar": 30673, + "sarko": 33658, + "sarkodie": 42848, + "sarmy": 20954, + "sart": 33006, + "sary": 15398, + "sas": 3960, + "sas": 5235, + "sash": 35656, + "sasha": 46078, + "sasha": 20894, + "sasia": 44751, + "sask": 47091, + "sask": 30416, + "saskat": 17102, + "saskatchewan": 23899, + "saskatoon": 31128, + "sass": 31351, + "sassy": 20827, + "sat": 1382, + "sat": 3279, + "sata": 41520, + "satan": 19446, + "satanic": 38224, + "satchel": 45908, + "sate": 35749, + "satell": 9031, + "satellite": 10316, + "satellites": 28483, + "sath": 29675, + "sathletics": 30154, + "sati": 7038, + "satin": 21803, + "sation": 23674, + "sations": 31232, + "satire": 29875, + "satis": 9906, + "satisf": 22941, + "satisfaction": 19925, + "satisfied": 18101, + "satisfy": 29444, + "satisfying": 23755, + "sato": 34376, + "satu": 45283, + "satur": 1634, + "saturated": 32466, + "saturday": 12537, + "saturday": 1748, + "saturdaymorning": 29053, + "saturdaymotivation": 40843, + "saturdays": 18930, + "saturn": 17312, + "saty": 39426, + "sau": 2096, + "sau": 19455, + "sauce": 5520, + "saucer": 42272, + "sauces": 40367, + "saucy": 46684, + "saudi": 24511, + "saudi": 8548, + "saudiarabia": 28680, + "sauer": 46333, + "saul": 47623, + "saul": 23252, + "sault": 40361, + "sauna": 35460, + "saunders": 23794, + "saur": 13227, + "saura": 46532, + "saurus": 22118, + "saus": 36121, + "sausage": 11855, + "sausages": 31593, + "sauté": 36290, + "sautéed": 38517, + "sauvi": 30116, + "sauvignon": 32745, + "sav": 2248, + "sav": 26533, + "sava": 40198, + "savag": 43039, + "savage": 11859, + "savannah": 18662, + "save": 5895, + "save": 2673, + "saved": 7137, + "saveour": 33390, + "saver": 20987, + "savers": 31416, + "saves": 12907, + "savethe": 18031, + "savi": 14721, + "saving": 28498, + "saving": 6979, + "savings": 10651, + "savior": 24762, + "saviour": 35800, + "savor": 48071, + "savory": 32992, + "savoury": 49071, + "savoy": 39552, + "savvy": 29278, + "saw": 12429, + "saw": 2425, + "sawa": 39613, + "sawards": 29012, + "sawyer": 27726, + "sax": 14169, + "sax": 23766, + "saxon": 31856, + "saxophon": 43760, + "saxophone": 32296, + "say": 3047, + "say": 1451, + "saya": 35170, + "sayang": 46322, + "sayers": 44116, + "sayin": 23662, + "saying": 4455, + "says": 1563, + "saz": 35577, + "sb": 5576, + "sb": 4977, + "sba": 44970, + "sback": 43840, + "sband": 27539, + "sbaseball": 46491, + "sbball": 39190, + "sbc": 31404, + "sberg": 20358, + "sbi": 41369, + "sbk": 39211, + "sboro": 18909, + "sbridge": 49228, + "sbs": 18883, + "sbu": 48075, + "sbu": 46281, + "sburg": 7390, + "sburgh": 48205, + "sbury": 14081, + "sby": 26519, + "sby": 10287, + "sc": 663, + "sc": 3219, + "sca": 11001, + "scab": 31716, + "scaf": 28981, + "scafe": 45574, + "scaffolding": 41687, + "scal": 10859, + "scala": 37997, + "scalable": 44084, + "scale": 37817, + "scale": 5879, + "scaled": 41923, + "scales": 22891, + "scaling": 29116, + "scallo": 19936, + "scallop": 39544, + "scallops": 31430, + "scalp": 38898, + "scam": 17620, + "scam": 13215, + "scamp": 28451, + "scams": 34395, + "scan": 10650, + "scan": 11261, + "scanada": 27121, + "scand": 8110, + "scandal": 35420, + "scandal": 11622, + "scandals": 45490, + "scandin": 32014, + "scandinavian": 35661, + "scanned": 43719, + "scanner": 24185, + "scanning": 24092, + "scans": 31251, + "scap": 35883, + "scape": 36005, + "scape": 12314, + "scapes": 31933, + "scar": 4171, + "scar": 18088, + "scarborough": 24254, + "scarce": 38572, + "scarcity": 45812, + "scare": 33536, + "scare": 15920, + "scarec": 38814, + "scarecrow": 46504, + "scared": 9870, + "scares": 34096, + "scarf": 13365, + "scari": 27050, + "scariest": 37213, + "scarlet": 20389, + "scarlett": 28325, + "scars": 20747, + "scarves": 29249, + "scary": 9250, + "scat": 13899, + "scattered": 22090, + "scavenger": 36778, + "scc": 19458, + "scd": 48422, + "scen": 2204, + "scenario": 20456, + "scenarios": 31346, + "scence": 33418, + "scene": 3562, + "scenery": 16025, + "scenes": 5415, + "scenic": 15394, + "scent": 36277, + "scent": 7683, + "scented": 27190, + "scenter": 23059, + "scentre": 39371, + "scents": 26336, + "scep": 24439, + "scfc": 38578, + "sch": 844, + "sch": 7542, + "scha": 42809, + "schaf": 45588, + "schaft": 41010, + "schal": 35568, + "schalke": 41029, + "schallenge": 43665, + "schan": 31328, + "schar": 15085, + "schat": 31842, + "schau": 35830, + "sche": 3038, + "sche": 7289, + "schedu": 4207, + "schedule": 5521, + "scheduled": 10986, + "schedules": 28986, + "scheduling": 32216, + "scheer": 26776, + "schel": 39881, + "schel": 38569, + "schem": 17720, + "scheme": 9024, + "schemes": 22958, + "schen": 22738, + "scher": 21925, + "scher": 21299, + "schi": 13731, + "schi": 24984, + "schicago": 46230, + "schiff": 39431, + "schild": 32148, + "schiz": 33230, + "schizoph": 40004, + "schizophre": 41163, + "schle": 32022, + "schmid": 17375, + "schmidt": 18463, + "schnau": 45745, + "schnei": 19941, + "schneider": 22972, + "schnit": 40903, + "scho": 2493, + "schoice": 23860, + "schol": 4498, + "scholar": 7192, + "scholar": 12830, + "scholarly": 41065, + "scholars": 13818, + "scholarship": 9070, + "scholarships": 17866, + "scholastic": 35743, + "schoo": 20721, + "school": 6063, + "school": 1228, + "schooled": 44722, + "schoolers": 31455, + "schooling": 28608, + "schools": 3513, + "schre": 47685, + "schri": 25453, + "schro": 32381, + "schu": 11318, + "schubert": 46939, + "schul": 14945, + "schultz": 30308, + "schulz": 39572, + "schumacher": 39208, + "schumer": 25313, + "schur": 42475, + "schwab": 47602, + "schwar": 13985, + "schwartz": 30617, + "schwarz": 27074, + "schwarzenegger": 33860, + "schwe": 25324, + "sci": 2267, + "sci": 8309, + "sciart": 31704, + "scicom": 28606, + "scicomm": 29573, + "scien": 39261, + "science": 10201, + "science": 2497, + "sciencefiction": 39170, + "sciences": 11481, + "scienti": 4338, + "scientific": 9750, + "scientist": 11083, + "scientists": 8045, + "sciento": 36193, + "scientology": 44694, + "scifi": 41862, + "scifi": 12230, + "scion": 47208, + "sciss": 25667, + "scissors": 30867, + "sciutto": 44392, + "sclerosis": 39446, + "sclub": 20017, + "sco": 1065, + "sco": 4763, + "scoe": 31164, + "scol": 13599, + "scoll": 44895, + "scollege": 39536, + "scom": 26407, + "scon": 17163, + "scon": 29272, + "scones": 36443, + "sconf": 39704, + "scoo": 14199, + "scooby": 34469, + "scoop": 13829, + "scoops": 41360, + "scope": 7979, + "scopes": 30328, + "scopic": 23869, + "scopy": 20018, + "scor": 8442, + "score": 12067, + "score": 4431, + "scoreboard": 30104, + "scorecard": 38128, + "scored": 6143, + "scoreless": 33469, + "scorer": 16572, + "scorers": 26699, + "scores": 7039, + "scoring": 9198, + "scorpi": 15445, + "scorpio": 34331, + "scorpion": 28461, + "scorpions": 45401, + "scorsese": 45975, + "scot": 2496, + "scot": 9271, + "scotch": 16687, + "scoti": 46446, + "scotia": 27859, + "scotland": 29174, + "scotland": 4203, + "scots": 17260, + "scotsman": 39612, + "scott": 7775, + "scott": 3664, + "scotti": 6227, + "scottish": 18039, + "scottish": 7442, + "scottsdale": 27817, + "scotty": 39697, + "scotty": 26836, + "scotus": 21720, + "scou": 44909, + "scoun": 16110, + "scouncil": 48787, + "scountry": 40432, + "scour": 46172, + "scout": 32213, + "scout": 10786, + "scouting": 19072, + "scouts": 14837, + "scow": 27929, + "scowboys": 31386, + "scp": 45030, + "scr": 36131, + "scra": 11187, + "scrabble": 39488, + "scram": 17289, + "scramble": 32688, + "scrambled": 39026, + "scran": 41774, + "scranton": 45274, + "scrap": 27950, + "scrap": 21695, + "scrapbook": 48733, + "scrapped": 43325, + "scraps": 40809, + "scrat": 9572, + "scratch": 13258, + "scratched": 48831, + "scratches": 46556, + "scratching": 44617, + "scre": 1795, + "scream": 31645, + "scream": 13239, + "screamed": 35427, + "screaming": 12891, + "screams": 23989, + "screen": 5351, + "screen": 3750, + "screened": 31450, + "screening": 6688, + "screenings": 27655, + "screenplay": 30058, + "screens": 12689, + "screenshot": 20637, + "screenshot": 12646, + "screenshots": 26783, + "screenshotsaturday": 21406, + "screenwriter": 37293, + "screenwriting": 35465, + "screw": 25529, + "screw": 14225, + "screwdriver": 48748, + "screwed": 30592, + "screws": 38292, + "scri": 2139, + "scrib": 34259, + "scribe": 36228, + "scribed": 38334, + "scricket": 45947, + "scrim": 21978, + "scrimmage": 25216, + "scrip": 11955, + "script": 8374, + "scripted": 40513, + "scription": 26604, + "scriptions": 39512, + "scripts": 20109, + "scripture": 27186, + "scro": 30768, + "scroll": 24160, + "scrolling": 28889, + "scrolls": 38113, + "scroo": 42263, + "scru": 7589, + "scrub": 23432, + "scrubs": 37919, + "scrum": 29047, + "scrump": 39791, + "scrumptious": 40987, + "scrutiny": 34305, + "scs": 26853, + "sct": 39284, + "scu": 8181, + "scu": 32135, + "scuba": 39053, + "scuba": 20559, + "scubadiving": 49046, + "scue": 25955, + "scul": 4948, + "scully": 36598, + "sculp": 6093, + "sculpt": 45044, + "sculpted": 41296, + "sculpting": 44389, + "sculptor": 29409, + "sculpture": 8757, + "sculptures": 20378, + "scum": 29655, + "scumb": 44525, + "scup": 21506, + "scur": 32742, + "scwx": 41966, + "scy": 27471, + "sd": 3080, + "sd": 4159, + "sda": 25548, + "sdale": 12327, + "sday": 5902, + "sday": 1376, + "sdays": 14491, + "sdc": 40992, + "sdcc": 13246, + "sden": 17241, + "sdf": 34681, + "sdg": 20177, + "sdgs": 16261, + "sdk": 40015, + "sdlive": 34561, + "sdn": 41925, + "sdsu": 41284, + "se": 567, + "se": 611, + "sea": 5970, + "sea": 2102, + "seab": 15728, + "seabir": 42558, + "seac": 35626, + "seaf": 9336, + "seafood": 12472, + "seag": 15730, + "seagu": 38076, + "seagull": 38858, + "seagulls": 42215, + "seahawks": 15341, + "seal": 21381, + "seal": 10159, + "sealed": 13358, + "sealing": 42992, + "seals": 18179, + "seam": 13710, + "seam": 44201, + "seaman": 47513, + "seamless": 29373, + "seamus": 40175, + "sean": 11406, + "sean": 6077, + "seanhannity": 43316, + "seap": 29983, + "seaport": 46418, + "sear": 1612, + "search": 23129, + "search": 1920, + "searched": 28961, + "searches": 26378, + "searching": 10626, + "seared": 29727, + "sears": 26693, + "seas": 7329, + "seas": 9556, + "seascape": 42593, + "seaside": 18867, + "season": 19288, + "season": 1367, + "seasonal": 14215, + "seasoned": 28399, + "seasoning": 43439, + "seasons": 8635, + "seat": 19670, + "seat": 4922, + "seated": 23953, + "seater": 37543, + "seating": 16240, + "seats": 6944, + "seattle": 24388, + "seattle": 6274, + "seau": 32263, + "seaw": 32658, + "seaweed": 30204, + "seaworld": 27422, + "seb": 35766, + "seb": 25171, + "sebasti": 10324, + "sebastian": 43792, + "sebastian": 13181, + "sebring": 41086, + "sec": 2875, + "sec": 5338, + "seca": 37847, + "secco": 27394, + "sece": 46297, + "seclu": 42392, + "secon": 1846, + "second": 9329, + "second": 2241, + "secondary": 13107, + "seconds": 6541, + "secre": 2460, + "secret": 20710, + "secret": 4145, + "secretari": 29515, + "secretariat": 31767, + "secretary": 6552, + "secretly": 21400, + "secrets": 9735, + "secs": 28665, + "sect": 15772, + "section": 34986, + "section": 4853, + "sectional": 21876, + "sections": 20061, + "sector": 6579, + "sectors": 22173, + "secu": 4894, + "secular": 47483, + "secular": 27560, + "secur": 2557, + "secure": 44763, + "secure": 7515, + "secured": 16848, + "secures": 31567, + "securing": 24759, + "securities": 25080, + "security": 31245, + "security": 2741, + "sed": 14034, + "sed": 1252, + "sedan": 24237, + "sedg": 46926, + "sedge": 45288, + "sedi": 29269, + "sedly": 31771, + "sedona": 46862, + "seduc": 19933, + "seductive": 43721, + "see": 1751, + "see": 862, + "seed": 14064, + "seed": 6488, + "seeded": 33688, + "seeding": 40050, + "seedlings": 47933, + "seeds": 9128, + "seeing": 3214, + "seek": 8839, + "seeker": 28011, + "seekers": 20732, + "seeking": 8592, + "seeks": 12594, + "seem": 20043, + "seem": 7523, + "seemed": 17240, + "seemingly": 25917, + "seems": 4453, + "seen": 36273, + "seen": 2041, + "seer": 32486, + "sees": 7594, + "seeyou": 41279, + "sef": 27453, + "seg": 10551, + "sega": 16122, + "segment": 15615, + "segments": 43053, + "segreg": 49117, + "segregation": 39086, + "segu": 33156, + "segun": 43087, + "seh": 27536, + "seh": 41430, + "sehun": 17705, + "sei": 13130, + "sei": 15907, + "sein": 24669, + "seine": 41378, + "seinfeld": 33706, + "seis": 25559, + "seismic": 38459, + "seiz": 22171, + "seize": 26624, + "seized": 15826, + "seizure": 36804, + "seizures": 47199, + "sek": 45515, + "sek": 25880, + "sel": 1000, + "sel": 4098, + "sela": 47006, + "selamat": 37692, + "selangor": 44402, + "selby": 43546, + "selca": 38606, + "selcaday": 35924, + "seldom": 48322, + "sele": 29137, + "selec": 3014, + "select": 8690, + "selected": 6881, + "selecting": 32696, + "selection": 6724, + "selections": 24099, + "selective": 28686, + "selects": 32902, + "selen": 19970, + "selena": 14677, + "selenagomez": 27653, + "seley": 30556, + "self": 10139, + "self": 1322, + "selfcare": 39560, + "selfi": 3007, + "selfie": 26735, + "selfie": 3666, + "selfies": 46058, + "selfies": 10050, + "selfish": 26907, + "selfless": 34236, + "sell": 10279, + "sell": 5119, + "seller": 11779, + "sellers": 16562, + "selling": 4396, + "sells": 14306, + "selma": 36652, + "sels": 42070, + "selves": 4505, + "sely": 8402, + "sem": 8645, + "sem": 17106, + "sema": 31816, + "seman": 29119, + "seman": 28378, + "semana": 41780, + "semb": 36054, + "seme": 10855, + "sement": 10714, + "sements": 31449, + "semester": 11905, + "semi": 11023, + "semi": 6684, + "semic": 26967, + "semicon": 34315, + "semiconduc": 35646, + "semiconductor": 43551, + "semifinal": 22935, + "semifinals": 21863, + "semin": 5595, + "seminar": 7269, + "seminars": 34870, + "seminary": 31655, + "seminole": 42956, + "semis": 24013, + "semit": 22628, + "semite": 23721, + "semitic": 34894, + "semitism": 25911, + "semper": 47391, + "sen": 1057, + "sen": 2249, + "sena": 21584, + "senate": 30703, + "senate": 6843, + "senator": 20871, + "senator": 8495, + "senators": 16889, + "send": 27684, + "send": 3625, + "sending": 6985, + "sends": 10817, + "sene": 25269, + "seneca": 33419, + "senegal": 28255, + "senew": 49313, + "seng": 43022, + "seng": 29971, + "senior": 19865, + "senior": 3415, + "seniors": 8138, + "senna": 36195, + "senpai": 46562, + "sens": 5218, + "sens": 22837, + "sensation": 19383, + "sensational": 23051, + "sense": 29162, + "sense": 4747, + "sensei": 36158, + "senses": 21809, + "sensi": 38802, + "sensible": 30635, + "sensing": 29236, + "sensiti": 20531, + "sensitive": 13734, + "sensitivity": 27788, + "sensor": 15330, + "sensors": 20356, + "sensory": 21831, + "sensu": 28157, + "sensual": 40860, + "sent": 6200, + "sent": 3676, + "sentence": 12737, + "sentenced": 17773, + "sentences": 25858, + "sentencing": 34394, + "senti": 19042, + "sentim": 25102, + "sentiment": 25949, + "sentimental": 40070, + "sentiments": 47450, + "sentin": 20042, + "sentinel": 23123, + "senting": 3924, + "seo": 24743, + "seo": 8622, + "seok": 34697, + "seok": 22482, + "seokjin": 45584, + "seoul": 13253, + "sep": 3212, + "sep": 10434, + "separ": 6859, + "separate": 13886, + "separated": 22163, + "separately": 41904, + "separates": 45365, + "separati": 39377, + "separating": 43480, + "separation": 22007, + "sephora": 38414, + "sepsis": 40205, + "sept": 5380, + "septe": 3672, + "september": 3707, + "septic": 34690, + "sepul": 47360, + "seq": 44379, + "sequ": 5491, + "seque": 44662, + "sequel": 15701, + "sequence": 18833, + "sequences": 47306, + "sequencing": 33484, + "sequo": 32781, + "sequoia": 42404, + "ser": 803, + "ser": 2771, + "sera": 28250, + "serbia": 19038, + "serbian": 33687, + "sere": 35770, + "seren": 7880, + "serena": 19519, + "serenawilliams": 48316, + "serendip": 45805, + "serendipity": 49386, + "serene": 28269, + "serenity": 24187, + "serge": 13477, + "serge": 35700, + "sergeant": 22049, + "sergei": 39870, + "sergey": 35390, + "sergi": 47675, + "sergio": 18359, + "seri": 2763, + "seri": 37509, + "serial": 14216, + "serie": 19752, + "seriea": 32660, + "series": 1857, + "serious": 47421, + "serious": 4770, + "seriously": 4885, + "sermon": 24884, + "sero": 48883, + "serpent": 37084, + "serpent": 35364, + "serra": 39851, + "serrano": 44236, + "sers": 13509, + "serum": 25385, + "serv": 1297, + "serv": 24571, + "servant": 20810, + "servants": 29652, + "serve": 39202, + "serve": 2838, + "served": 4740, + "server": 36458, + "server": 8398, + "serverless": 49243, + "servers": 22262, + "serves": 9915, + "servic": 27115, + "service": 21496, + "service": 2086, + "serviced": 44687, + "services": 3100, + "servicing": 41300, + "serving": 5722, + "sery": 14279, + "ses": 23708, + "ses": 1386, + "sesame": 21706, + "sese": 37128, + "sesh": 24274, + "session": 2550, + "sessions": 6327, + "set": 7965, + "set": 1167, + "setback": 43605, + "seth": 20005, + "seth": 11870, + "sethu": 38933, + "setlist": 33141, + "seton": 43799, + "sets": 4650, + "sett": 4984, + "sett": 17567, + "sette": 14613, + "setter": 23153, + "settes": 44145, + "setti": 45170, + "setting": 5264, + "settings": 18628, + "settle": 15075, + "settled": 18310, + "settlement": 16494, + "settlements": 36605, + "settlers": 35671, + "settles": 41498, + "settling": 22036, + "setup": 11092, + "seu": 31539, + "seul": 48975, + "seum": 18838, + "seun": 24209, + "seung": 32393, + "seung": 33711, + "seungri": 41627, + "seuss": 34441, + "sev": 26585, + "sev": 37600, + "seva": 42604, + "seve": 21458, + "seve": 22468, + "sevel": 17439, + "seven": 7874, + "seven": 5757, + "sevens": 29911, + "sevent": 43048, + "seventeen": 19337, + "seventh": 17568, + "seventy": 47170, + "sever": 3250, + "sever": 45557, + "several": 5560, + "severance": 26194, + "severe": 6215, + "severely": 24417, + "severn": 34626, + "severy": 34207, + "sevilla": 24947, + "seville": 34988, + "sew": 28640, + "sewage": 32777, + "sewer": 28294, + "sewing": 15974, + "sewn": 42118, + "sex": 3548, + "sex": 5937, + "sexi": 20562, + "sexiest": 25426, + "sexism": 32059, + "sexist": 33047, + "sexu": 14741, + "sexual": 6749, + "sexuality": 21244, + "sexually": 23032, + "sexy": 21019, + "sexy": 38127, + "sey": 6317, + "sey": 2258, + "seychel": 36809, + "seychelles": 38519, + "seye": 35604, + "seym": 22657, + "seymour": 25850, + "seys": 15081, + "sez": 42377, + "señ": 43368, + "sf": 4435, + "sf": 4915, + "sfa": 32675, + "sfam": 37649, + "sfb": 27930, + "sfc": 14129, + "sfest": 49024, + "sff": 42056, + "sfgiants": 20923, + "sfield": 11801, + "sfo": 39182, + "sfootball": 45259, + "sfor": 9115, + "sford": 28917, + "sforsale": 28888, + "sfw": 18073, + "sfx": 37995, + "sg": 9599, + "sg": 7611, + "sga": 33049, + "sgate": 27558, + "sgh": 47590, + "sgo": 5393, + "sgo": 21044, + "sgt": 13748, + "sh": 552, + "sh": 849, + "sha": 1514, + "sha": 3337, + "shaa": 44221, + "shab": 8323, + "shabbat": 38042, + "shabby": 28838, + "shack": 23866, + "shack": 18785, + "shad": 3182, + "shad": 23874, + "shade": 34554, + "shade": 10097, + "shaded": 43506, + "shades": 46608, + "shades": 9270, + "shadesof": 45180, + "shading": 37348, + "shado": 9325, + "shadow": 15243, + "shadow": 7068, + "shadowhun": 19931, + "shadowhunters": 24834, + "shadowing": 46092, + "shadows": 12971, + "shady": 22158, + "shaf": 12032, + "shaft": 21545, + "shag": 22439, + "shaggy": 42662, + "shah": 13203, + "shah": 8439, + "shahe": 23643, + "shaheed": 30060, + "shaheer": 43969, + "shahi": 46972, + "shahid": 25696, + "shahid": 27138, + "shahidkapoor": 29892, + "shahzad": 45915, + "shai": 47941, + "shaikh": 45712, + "shail": 37603, + "shair": 43135, + "shak": 8385, + "shake": 8206, + "shake": 8251, + "shaken": 38237, + "shaker": 26210, + "shakers": 38411, + "shakes": 19668, + "shakespe": 9890, + "shakespeare": 22499, + "shakespeare": 12488, + "shakespearesunday": 32320, + "shaking": 19101, + "shakira": 40795, + "shakti": 48593, + "shakti": 32458, + "shakur": 48915, + "shal": 15056, + "shal": 28175, + "shale": 32864, + "shall": 4742, + "shallow": 23730, + "shalom": 31339, + "sham": 6453, + "sham": 9005, + "shaman": 48727, + "shambles": 40799, + "shame": 14776, + "shame": 7593, + "shameful": 28283, + "shameless": 25380, + "shaming": 40553, + "shampoo": 23944, + "shamrock": 34199, + "shan": 5171, + "shan": 8834, + "shana": 44835, + "shand": 29101, + "shane": 26863, + "shane": 11572, + "shang": 11141, + "shanghai": 12742, + "shani": 46665, + "shank": 24685, + "shankar": 24108, + "shann": 9932, + "shannon": 22842, + "shannon": 13581, + "shant": 36610, + "shap": 5581, + "shape": 26925, + "shape": 6448, + "shaped": 10127, + "shapes": 15377, + "shaping": 18632, + "shapiro": 32110, + "shaq": 46402, + "shaq": 26843, + "shar": 1669, + "shar": 36542, + "shara": 48849, + "sharapo": 36489, + "sharapova": 36671, + "shard": 42207, + "share": 7585, + "share": 1978, + "shared": 5368, + "shareholder": 38241, + "shareholders": 34778, + "sharepoint": 39213, + "shares": 4974, + "sharethe": 49277, + "shareyour": 45890, + "shari": 27738, + "shari": 47390, + "sharia": 37244, + "sharif": 15501, + "sharing": 3567, + "sharjah": 33420, + "shark": 15836, + "shark": 7980, + "sharks": 10047, + "sharkweek": 39571, + "sharma": 10105, + "sharon": 28722, + "sharon": 14138, + "sharp": 17126, + "sharp": 8157, + "sharpe": 34374, + "sharpen": 41465, + "sharpie": 46858, + "sharply": 37185, + "shasta": 46727, + "shat": 12169, + "shat": 44388, + "shatter": 45008, + "shattered": 26820, + "shau": 13750, + "shaun": 23446, + "shaun": 16669, + "shav": 11410, + "shave": 17735, + "shaved": 25571, + "shaving": 24261, + "shaw": 6122, + "shaw": 6805, + "shawa": 46413, + "shawl": 35132, + "shawn": 16677, + "shawn": 10970, + "shawnee": 48060, + "shawnmendes": 27277, + "shawty": 38026, + "shay": 10778, + "shay": 18361, + "shaykh": 47223, + "shaz": 18618, + "shazam": 29063, + "shc": 43419, + "shd": 37729, + "she": 1729, + "she": 1043, + "shea": 20407, + "shead": 44287, + "shead": 20434, + "shealth": 41743, + "shealth": 22197, + "shear": 27974, + "shear": 32108, + "shearer": 40505, + "sheath": 45637, + "shed": 16586, + "shed": 1492, + "shedding": 33608, + "sheds": 25921, + "shee": 23450, + "shee": 34321, + "sheed": 26105, + "sheehan": 41809, + "sheen": 25025, + "sheep": 23604, + "sheep": 9629, + "sheer": 17577, + "sheeran": 18561, + "sheet": 7298, + "sheets": 12744, + "shef": 8237, + "sheff": 38844, + "sheff": 43821, + "sheffiel": 26940, + "sheffield": 41763, + "sheffield": 10420, + "sheffieldissuper": 33628, + "sheh": 31667, + "sheikh": 15031, + "sheil": 42765, + "sheila": 25734, + "shek": 33285, + "shel": 3159, + "shelby": 36906, + "shelby": 16885, + "sheldon": 25079, + "shelf": 10955, + "shell": 23374, + "shell": 6648, + "shelley": 22497, + "shelling": 43166, + "shells": 19265, + "shelly": 37461, + "shelter": 8599, + "sheltered": 48070, + "shelters": 24312, + "shelton": 24471, + "shelves": 16225, + "shem": 40299, + "shen": 10154, + "shen": 31098, + "shenan": 20965, + "shenando": 44666, + "shenanigans": 26590, + "shenko": 39751, + "shenmue": 48279, + "shenzhen": 38970, + "shep": 33757, + "shep": 44857, + "shepard": 26810, + "shepher": 11008, + "shepherd": 13242, + "shepherds": 42792, + "sheppard": 37304, + "sher": 3570, + "sher": 4510, + "sheraton": 39400, + "shere": 21507, + "sheri": 9235, + "sheridan": 27085, + "sheriff": 10309, + "sherlock": 17294, + "sherman": 17822, + "sherry": 44348, + "sherry": 24689, + "shers": 14141, + "sherwood": 24527, + "sheryl": 39773, + "shes": 45514, + "shes": 2502, + "shet": 15850, + "shetland": 29595, + "shetty": 25533, + "shev": 45182, + "sheva": 45132, + "shh": 35025, + "shhh": 36932, + "shi": 823, + "shi": 3533, + "shia": 23791, + "shibu": 36177, + "shibuya": 41623, + "shie": 26638, + "shiel": 33413, + "shield": 8670, + "shields": 19085, + "shies": 35312, + "shif": 35317, + "shift": 43767, + "shift": 6905, + "shifted": 34429, + "shifter": 48944, + "shifting": 21992, + "shifts": 23957, + "shik": 36980, + "shil": 14370, + "shill": 32121, + "shill": 30090, + "shilpa": 47062, + "shilpa": 40690, + "shim": 11986, + "shim": 32780, + "shima": 14382, + "shimano": 48904, + "shimi": 40517, + "shimmer": 38792, + "shin": 5664, + "shin": 11784, + "shinde": 41516, + "shine": 17582, + "shine": 3780, + "shinee": 19660, + "shines": 16015, + "shing": 38641, + "shing": 1743, + "shining": 10485, + "shino": 43074, + "shiny": 12190, + "ship": 7645, + "ship": 1158, + "shipment": 28553, + "shipp": 34709, + "shipped": 15279, + "shippers": 44789, + "shipping": 5721, + "ships": 3262, + "shipwreck": 48878, + "shipy": 26828, + "shipyard": 31273, + "shir": 1956, + "shiraz": 35618, + "shire": 11975, + "shire": 2968, + "shirehour": 32456, + "shirley": 18189, + "shiro": 26048, + "shirt": 27576, + "shirt": 2523, + "shirtless": 28959, + "shirts": 5803, + "shistory": 34979, + "shiv": 18042, + "shiv": 37121, + "shiva": 33881, + "shiva": 21174, + "shka": 38944, + "shld": 49359, + "shma": 48074, + "shment": 8802, + "shments": 18822, + "sho": 719, + "sho": 13756, + "shock": 19617, + "shock": 8736, + "shocked": 15787, + "shocker": 37971, + "shockey": 22258, + "shocking": 13394, + "shocks": 31886, + "shoe": 16308, + "shoe": 7342, + "shoes": 49391, + "shoes": 4079, + "shol": 21472, + "sholm": 44139, + "shome": 42701, + "shon": 19526, + "shon": 37621, + "shone": 47173, + "shoo": 1975, + "shook": 20730, + "shoops": 29956, + "shoot": 12531, + "shoot": 3704, + "shooter": 13645, + "shooters": 31902, + "shooting": 3992, + "shootings": 26753, + "shootout": 20666, + "shoots": 14144, + "shop": 5738, + "shop": 1557, + "shopify": 47949, + "shoplocal": 21775, + "shopp": 38486, + "shoppe": 38236, + "shopped": 28088, + "shopper": 24346, + "shoppers": 22316, + "shopping": 42101, + "shopping": 4266, + "shops": 6467, + "shopsmall": 35942, + "shor": 3209, + "shore": 14717, + "shore": 5928, + "shored": 33140, + "shoreditch": 35042, + "shoreline": 34807, + "shores": 18102, + "short": 6803, + "short": 3005, + "shortage": 19910, + "shortages": 38730, + "shortcuts": 45793, + "shorten": 41711, + "shorter": 20350, + "shortest": 33717, + "shortfilm": 37204, + "shorth": 37397, + "shortlist": 28163, + "shortlisted": 20631, + "shortly": 11967, + "shorts": 9680, + "shorty": 33502, + "shot": 9805, + "shot": 2000, + "shotel": 42365, + "shotgun": 21643, + "shots": 5342, + "shou": 3890, + "shoul": 29847, + "should": 14947, + "should": 1535, + "shoulder": 8476, + "shoulders": 18738, + "shouldn": 9416, + "shour": 20025, + "shouse": 28671, + "shout": 7335, + "shout": 5214, + "shouted": 44397, + "shouting": 26464, + "shoutout": 8274, + "shouts": 26709, + "shovel": 31778, + "show": 2133, + "show": 1080, + "showbiz": 34156, + "showcas": 14290, + "showcase": 7265, + "showcased": 35786, + "showcases": 26266, + "showcasing": 17036, + "showdown": 15576, + "showed": 7150, + "shower": 7777, + "showers": 9893, + "showing": 3649, + "shown": 8506, + "showroom": 16821, + "shows": 2665, + "showtime": 40576, + "showtime": 15442, + "showyour": 46733, + "shp": 38341, + "shq": 21145, + "shr": 10118, + "shra": 21360, + "shradd": 28172, + "shraddha": 35208, + "shraddhakapoor": 40385, + "shre": 12101, + "shred": 19756, + "shred": 33017, + "shredded": 31772, + "shredding": 45534, + "shree": 37410, + "shrek": 35009, + "shrews": 26411, + "shrewsbury": 30921, + "shri": 8838, + "shri": 11424, + "shrimp": 12727, + "shrin": 24865, + "shrine": 16156, + "shrink": 34957, + "shrinking": 41243, + "shrm": 44163, + "shro": 15259, + "shroff": 32081, + "shrop": 22630, + "shropshire": 26344, + "shru": 14911, + "shrub": 41464, + "shrubs": 47975, + "shrun": 46767, + "shs": 16184, + "sht": 44210, + "shti": 38927, + "shu": 2872, + "shu": 17651, + "shua": 33771, + "shub": 40552, + "shud": 45782, + "shuff": 42641, + "shuffle": 21681, + "shui": 45473, + "shuk": 29927, + "shukla": 46829, + "shul": 30721, + "shum": 37383, + "shun": 24479, + "shun": 39594, + "shur": 41032, + "shut": 8702, + "shut": 8282, + "shutdown": 16051, + "shutout": 24385, + "shuts": 28313, + "shutt": 31866, + "shutter": 36235, + "shutter": 33902, + "shutters": 46894, + "shutting": 31383, + "shuttle": 15842, + "shwar": 41640, + "shy": 22678, + "shy": 9682, + "si": 564, + "si": 2990, + "sia": 2357, + "siam": 29686, + "siam": 48248, + "siamese": 43161, + "sian": 28510, + "sian": 6221, + "sians": 26583, + "sias": 28645, + "siber": 22206, + "siberia": 39969, + "siberian": 34058, + "sibl": 14338, + "sible": 14507, + "sibling": 43060, + "sibling": 23779, + "siblings": 17156, + "sic": 8278, + "sic": 1118, + "sica": 34125, + "sical": 33875, + "sichuan": 48950, + "sicilian": 45292, + "sicily": 23179, + "sick": 11143, + "sick": 5359, + "sickest": 47972, + "sickle": 41459, + "sickness": 28898, + "sics": 26297, + "sid": 10117, + "sid": 15119, + "sidd": 19842, + "siddi": 35227, + "side": 5869, + "side": 1145, + "sided": 21061, + "sidekick": 44683, + "sidel": 43557, + "sideline": 32056, + "sidelines": 31046, + "sider": 30581, + "siders": 41249, + "sides": 7578, + "sideshow": 46789, + "sidewalk": 23278, + "sidewalks": 43583, + "sideways": 35593, + "siding": 38758, + "sidney": 22598, + "sie": 8533, + "sie": 5685, + "sieg": 49203, + "siege": 18460, + "siegel": 48559, + "siem": 18434, + "siemens": 30147, + "siempre": 44030, + "siena": 33336, + "sienna": 40373, + "sier": 10028, + "sier": 7444, + "sierra": 13552, + "siers": 35923, + "sies": 16367, + "siest": 18323, + "sif": 29300, + "sig": 872, + "sig": 19145, + "sigh": 36303, + "sigh": 15505, + "sighs": 44579, + "sight": 16897, + "sight": 6329, + "sighted": 33034, + "sighting": 17507, + "sightings": 30004, + "sights": 17364, + "sightseeing": 34210, + "sigma": 45075, + "sigma": 15697, + "sign": 5538, + "sign": 2292, + "signage": 21156, + "signal": 10781, + "signaling": 38492, + "signalling": 48426, + "signals": 17150, + "signation": 24347, + "signature": 9189, + "signatures": 21865, + "signed": 3163, + "signee": 39778, + "signi": 34023, + "signific": 6374, + "significance": 23769, + "significant": 8735, + "significantly": 16187, + "signing": 4401, + "signingday": 40282, + "signings": 27731, + "signs": 4659, + "signup": 40791, + "sigue": 49401, + "sii": 36672, + "sik": 19974, + "sik": 22413, + "sika": 31144, + "sikh": 21829, + "sikhs": 45426, + "sil": 1556, + "sil": 8315, + "sila": 41754, + "sile": 37620, + "silen": 39048, + "silence": 8462, + "silenced": 45415, + "silent": 30352, + "silent": 8487, + "silently": 42640, + "silhou": 20589, + "silhouette": 26149, + "silic": 23830, + "silicon": 32412, + "silicon": 17888, + "silicone": 28221, + "silk": 25891, + "silk": 9743, + "silky": 29554, + "sill": 42468, + "sill": 48024, + "silly": 11883, + "silon": 31841, + "sils": 39708, + "silva": 16489, + "silve": 37697, + "silver": 7525, + "silver": 3467, + "silverado": 46160, + "silverstone": 29666, + "silvia": 37289, + "sim": 5026, + "sim": 10740, + "sima": 35871, + "simba": 39492, + "simcoe": 47148, + "sime": 28329, + "simi": 38073, + "simil": 7202, + "similar": 8547, + "similarities": 34716, + "simm": 13001, + "simmons": 14699, + "simo": 37171, + "simon": 8796, + "simon": 6668, + "simona": 46277, + "simone": 19062, + "simons": 33097, + "simp": 2542, + "simple": 19018, + "simple": 4129, + "simpler": 35489, + "simplest": 39588, + "simpli": 16868, + "simplicity": 21262, + "simplified": 36647, + "simplify": 35479, + "simply": 25637, + "simply": 6151, + "simpson": 41805, + "simpson": 11750, + "simpsons": 21092, + "sims": 14021, + "simul": 9845, + "simulated": 46395, + "simulation": 18610, + "simulator": 20821, + "simultaneous": 48816, + "simultaneously": 28575, + "sin": 1303, + "sin": 3421, + "sina": 19541, + "sinai": 33226, + "sinatra": 27262, + "sinc": 30464, + "since": 1855, + "sincere": 24513, + "sincere": 24886, + "sincerely": 25673, + "sinclair": 23100, + "sind": 39598, + "sind": 30877, + "sindh": 20754, + "sindia": 48038, + "sine": 22741, + "sine": 33793, + "sinfo": 47178, + "sing": 1387, + "sing": 1197, + "singapo": 27861, + "singapore": 28879, + "singapore": 6754, + "singer": 33880, + "singer": 5108, + "singers": 15613, + "singersongwriter": 44585, + "singh": 19445, + "singh": 5715, + "singing": 5864, + "single": 19524, + "single": 2688, + "singles": 12025, + "singleton": 46247, + "singly": 16619, + "sings": 13635, + "singul": 34003, + "singular": 44009, + "singularity": 48410, + "sinha": 29416, + "sini": 41781, + "sini": 26319, + "sinister": 31313, + "sink": 37232, + "sink": 14551, + "sinking": 27949, + "sinks": 32710, + "sinn": 36315, + "sinner": 45380, + "sinners": 43436, + "sino": 29759, + "sins": 9345, + "sinthe": 30737, + "sinu": 37351, + "sinus": 47535, + "sio": 10807, + "siob": 40954, + "siology": 46315, + "sion": 5676, + "sion": 1015, + "sional": 14533, + "sionally": 30754, + "sions": 4060, + "sioux": 44695, + "sioux": 24954, + "sip": 16096, + "sipping": 28527, + "sir": 10708, + "sir": 3846, + "sire": 28450, + "siren": 33026, + "sirens": 35907, + "siri": 13986, + "siri": 18394, + "sirius": 23574, + "sirius": 34999, + "siriusxm": 29833, + "sirloin": 46828, + "sis": 18132, + "sis": 2580, + "sisd": 27132, + "sisi": 37892, + "siss": 42929, + "sissy": 27564, + "sist": 20520, + "sista": 37448, + "sister": 17417, + "sister": 3677, + "sisterhood": 37313, + "sisters": 6404, + "sit": 7387, + "sit": 4037, + "sitcom": 30426, + "site": 26792, + "site": 1988, + "sites": 7236, + "sith": 41499, + "sito": 42613, + "sits": 12726, + "sitt": 42988, + "sitter": 40777, + "sittin": 40887, + "sitting": 4919, + "situ": 5562, + "situ": 42536, + "situated": 22030, + "situation": 7144, + "situations": 19096, + "sity": 38177, + "sity": 5477, + "siu": 40174, + "sium": 8090, + "sius": 27595, + "siva": 20991, + "sivan": 36931, + "sive": 23572, + "sive": 1875, + "sively": 10343, + "siveness": 39667, + "sives": 23896, + "sivity": 42738, + "siwon": 29055, + "six": 5968, + "six": 4093, + "sixers": 25941, + "sixteen": 28677, + "sixth": 12909, + "sixties": 44948, + "sixty": 32588, + "siya": 44440, + "size": 38377, + "size": 3235, + "sized": 9832, + "sizes": 10253, + "sizing": 28330, + "sizz": 23778, + "sizzle": 47890, + "sizzling": 35799, + "sj": 7536, + "sj": 16010, + "sjo": 42012, + "sk": 909, + "sk": 2058, + "ska": 7495, + "skag": 31948, + "skan": 46772, + "skar": 27587, + "skar": 26835, + "skate": 13740, + "skate": 12745, + "skateboard": 31777, + "skateboarding": 31352, + "skater": 30337, + "skaters": 39824, + "skates": 31479, + "skc": 44551, + "ske": 6261, + "ske": 25516, + "skel": 36564, + "skelet": 27075, + "skeletal": 37369, + "skeleton": 20062, + "skeletons": 48874, + "skell": 40801, + "skep": 27772, + "skeptical": 44934, + "sker": 37640, + "sker": 33600, + "sket": 3744, + "sketch": 11767, + "sketch": 5269, + "sketchbook": 18899, + "sketched": 38581, + "sketches": 17622, + "sketching": 23228, + "sketchy": 41582, + "skey": 37453, + "ski": 3327, + "ski": 3428, + "skid": 36574, + "skid": 32099, + "skier": 42585, + "skies": 7244, + "skiing": 14400, + "skil": 24543, + "skill": 15598, + "skill": 10604, + "skilled": 17535, + "skillet": 40568, + "skills": 4113, + "skim": 33191, + "skin": 5821, + "skin": 3575, + "skincare": 12648, + "skine": 37300, + "sking": 46215, + "skinned": 42199, + "skinner": 30261, + "skinny": 42729, + "skinny": 15457, + "skins": 11594, + "skip": 39793, + "skip": 14296, + "skipped": 40639, + "skipper": 22226, + "skipping": 34867, + "skir": 8919, + "skirt": 12386, + "skirts": 24840, + "skis": 32843, + "skit": 43573, + "skitchen": 42820, + "skittles": 43213, + "sko": 15141, + "sko": 23493, + "skoda": 38668, + "skool": 26743, + "skril": 43149, + "skrillex": 43651, + "sks": 48136, + "sku": 10836, + "skul": 17561, + "skull": 34068, + "skull": 12092, + "skulls": 31804, + "skunk": 42194, + "sky": 3075, + "sky": 2390, + "skybet": 45540, + "skye": 21475, + "skyl": 43554, + "skylar": 45411, + "skyline": 14606, + "skymap": 41734, + "skynews": 40977, + "skype": 17069, + "skyrim": 33693, + "skysports": 39845, + "skysports": 46725, + "skywalker": 32936, + "sl": 2621, + "sl": 7489, + "sla": 2725, + "sla": 26707, + "slab": 24241, + "slabs": 42818, + "slack": 37108, + "slack": 30142, + "slade": 33546, + "slain": 35972, + "slalom": 43540, + "slam": 14891, + "slam": 10131, + "slammed": 29772, + "slams": 18907, + "slan": 44663, + "slan": 47193, + "sland": 11294, + "slang": 33655, + "slap": 48830, + "slap": 21751, + "slapped": 38861, + "slaps": 46796, + "slash": 19749, + "slat": 38966, + "slate": 17919, + "slated": 36094, + "slater": 25968, + "slaugh": 26782, + "slaughter": 19815, + "slaughtered": 46615, + "slav": 47292, + "slava": 41797, + "slave": 14029, + "slavery": 15754, + "slaves": 23833, + "slaw": 28178, + "slay": 48319, + "slay": 19380, + "slayed": 44870, + "slayer": 21605, + "slaying": 27812, + "slays": 45648, + "slc": 21972, + "sle": 1709, + "sleague": 23336, + "sled": 28438, + "sledge": 48750, + "slee": 17642, + "slee": 38977, + "sleek": 23187, + "sleep": 4656, + "sleep": 3840, + "sleeper": 28709, + "sleeping": 6982, + "sleepless": 39779, + "sleepover": 39415, + "sleeps": 16610, + "sleepy": 32572, + "sleepy": 14497, + "sleet": 36948, + "sleeve": 35270, + "sleeve": 10536, + "sleeveless": 38049, + "sleeves": 19691, + "sleg": 47650, + "sleigh": 30865, + "slender": 40331, + "slept": 20388, + "sler": 14066, + "sley": 17198, + "sley": 6496, + "sli": 1811, + "sli": 44824, + "slic": 19692, + "slice": 13431, + "sliced": 28121, + "slices": 28424, + "slick": 18341, + "slide": 27828, + "slide": 8837, + "slider": 37861, + "sliders": 40700, + "slides": 15939, + "slideshow": 42817, + "sliding": 21468, + "slife": 15448, + "sliga": 21080, + "slight": 14297, + "slightly": 8456, + "sligo": 30424, + "slike": 38744, + "slim": 35226, + "slim": 12364, + "slime": 29107, + "sling": 28021, + "sling": 32607, + "slinger": 47269, + "slions": 43363, + "slip": 39785, + "slip": 12105, + "slipknot": 41816, + "slipped": 30344, + "slipper": 39644, + "slippers": 26509, + "slippery": 30814, + "slipping": 36301, + "slips": 30632, + "slist": 33749, + "slit": 47011, + "slive": 31652, + "slo": 4303, + "slo": 36083, + "sloan": 29110, + "sloane": 41553, + "slogan": 23398, + "slogans": 42795, + "slope": 22769, + "slopes": 24066, + "sloppy": 36154, + "slot": 14500, + "sloth": 30007, + "slots": 19238, + "slou": 48493, + "slovak": 23315, + "slovakia": 25994, + "sloven": 17018, + "slovenia": 21037, + "slow": 6674, + "slow": 5444, + "slowdown": 38421, + "slowed": 43793, + "slower": 29181, + "slowing": 29839, + "slowly": 9568, + "slows": 46855, + "slp": 45599, + "slr": 21325, + "sls": 33651, + "slt": 39283, + "sltd": 36388, + "slu": 7224, + "slu": 47456, + "slug": 34190, + "slugger": 48671, + "slum": 46754, + "slumber": 44295, + "slump": 35588, + "slur": 30476, + "slush": 39815, + "slv": 45526, + "sly": 28145, + "sly": 21062, + "sm": 978, + "sm": 2764, + "sma": 4357, + "sma": 11854, + "smack": 21280, + "smack": 30026, + "smackdown": 26138, + "smafia": 47686, + "smag": 32212, + "smal": 48379, + "small": 5244, + "small": 2442, + "smallbiz": 41724, + "smallbiz": 18987, + "smallbusiness": 21316, + "smalle": 18490, + "smaller": 12431, + "smallest": 18686, + "smalls": 41696, + "sman": 9612, + "smar": 3201, + "smart": 5383, + "smart": 4115, + "smartcities": 34822, + "smartcity": 33973, + "smarter": 18990, + "smartest": 37092, + "smarthome": 47726, + "smartphone": 11290, + "smartphones": 22212, + "smartwatch": 35798, + "smash": 17258, + "smash": 10332, + "smashbros": 44897, + "smashed": 18410, + "smashes": 45657, + "smashing": 19632, + "smatter": 16537, + "smb": 30446, + "smc": 31375, + "smc": 28312, + "smd": 34582, + "sme": 11758, + "sme": 15650, + "smear": 37546, + "smel": 28476, + "smell": 9688, + "smelling": 32493, + "smells": 14668, + "smelly": 46145, + "smen": 15961, + "smer": 48526, + "smere": 39629, + "smes": 26141, + "smg": 46876, + "smh": 9623, + "smi": 5655, + "smi": 40049, + "smil": 33937, + "smile": 27641, + "smile": 3490, + "smiled": 34362, + "smiles": 8726, + "smiley": 22925, + "smiling": 9200, + "smir": 24667, + "smith": 10527, + "smith": 2915, + "smiths": 27872, + "smithson": 25372, + "smithsonian": 31209, + "smm": 19510, + "smma": 42370, + "smo": 2513, + "smo": 13437, + "smobile": 38923, + "smog": 44425, + "smoke": 20381, + "smoke": 6664, + "smoked": 11161, + "smoker": 32348, + "smokers": 29571, + "smokes": 40336, + "smokey": 23670, + "smokin": 32825, + "smoking": 9038, + "smoky": 25549, + "smol": 29939, + "smol": 40403, + "smoo": 5430, + "smooth": 10958, + "smooth": 8990, + "smoother": 44271, + "smoothie": 16668, + "smoothies": 34458, + "smoothly": 32380, + "smore": 48323, + "smp": 32260, + "smriti": 49227, + "sms": 10409, + "smt": 26672, + "smtown": 26072, + "smu": 10878, + "smu": 30458, + "smug": 41021, + "smugg": 28130, + "smuggling": 34146, + "smur": 24708, + "smusic": 19191, + "smw": 44929, + "smx": 46699, + "smy": 14381, + "smyth": 44822, + "sn": 1672, + "sn": 5844, + "sna": 4032, + "snack": 47548, + "snack": 10039, + "snacking": 46474, + "snacks": 12349, + "snag": 34789, + "snag": 28043, + "snagged": 48534, + "snail": 23132, + "snails": 34928, + "snake": 30133, + "snake": 8798, + "snakes": 19605, + "snap": 4578, + "snap": 7404, + "snapback": 31234, + "snapchat": 7799, + "snapmatic": 45907, + "snapp": 10185, + "snapped": 15543, + "snapper": 31677, + "snapping": 31581, + "snaps": 16890, + "snapshot": 18243, + "snar": 30810, + "snare": 40651, + "snat": 18457, + "snatch": 35302, + "snatched": 44821, + "snation": 14362, + "snazzy": 48963, + "snc": 39918, + "sne": 3791, + "sne": 46503, + "sneak": 27871, + "sneak": 6917, + "sneaker": 31698, + "sneaker": 24781, + "sneakers": 17397, + "sneaking": 34633, + "sneakpeek": 47831, + "sneaks": 40926, + "sneaky": 21293, + "snee": 42095, + "snell": 46410, + "sner": 31424, + "snes": 26667, + "snews": 18623, + "snf": 47651, + "sng": 41549, + "snhl": 43093, + "sni": 7186, + "sni": 35570, + "snickers": 49127, + "sniff": 37841, + "snip": 42954, + "sniper": 22157, + "snippet": 37531, + "snippets": 44001, + "snl": 16011, + "sno": 8567, + "sno": 17802, + "snoo": 11352, + "snooker": 25657, + "snoop": 44503, + "snoop": 27754, + "snoopdogg": 48388, + "snoopy": 41967, + "snooze": 40718, + "snor": 16590, + "snoring": 44560, + "snorkel": 44285, + "snorkeling": 48103, + "snow": 3880, + "snow": 2583, + "snowball": 39254, + "snowboard": 33403, + "snowboarding": 32397, + "snowday": 37982, + "snowden": 32154, + "snowdon": 47107, + "snowdonia": 36088, + "snowed": 45073, + "snowfall": 21714, + "snowflake": 33447, + "snowflakes": 38618, + "snowing": 21443, + "snowman": 22668, + "snowstorm": 38777, + "snowy": 14191, + "snp": 15301, + "sns": 36343, + "snsd": 27961, + "snt": 34834, + "snu": 9694, + "snuck": 36522, + "snug": 45169, + "snuggle": 31327, + "snuggles": 48165, + "sny": 17526, + "snyder": 22106, + "snz": 37678, + "so": 759, + "so": 706, + "soa": 39584, + "soak": 24839, + "soaked": 26592, + "soaking": 26750, + "soap": 26086, + "soap": 11088, + "soaps": 40958, + "soar": 48997, + "soar": 22241, + "soaring": 27968, + "soars": 41348, + "sob": 24900, + "sob": 35507, + "sobbing": 36691, + "sober": 30969, + "sober": 24487, + "sobre": 42768, + "sobri": 49308, + "sobs": 43636, + "soc": 3253, + "soc": 7741, + "soca": 49239, + "socal": 46470, + "socal": 20450, + "soccer": 16268, + "soccer": 4233, + "socceroos": 41997, + "socent": 30831, + "sochi": 21014, + "soci": 1720, + "social": 4803, + "social": 2346, + "socialism": 23372, + "socialist": 18450, + "socialists": 43839, + "socially": 24555, + "socialmedi": 23813, + "socialmedia": 9600, + "socialmediamarketing": 31790, + "societal": 40058, + "societies": 25855, + "society": 3757, + "socio": 44319, + "socio": 42790, + "sociology": 32373, + "sock": 29801, + "sock": 18277, + "socket": 28657, + "socks": 8774, + "socorro": 46409, + "socute": 45086, + "sod": 31435, + "soda": 13533, + "sodium": 29070, + "soe": 44136, + "soe": 25498, + "soever": 34024, + "sof": 1571, + "sof": 41187, + "sofa": 15723, + "soff": 35290, + "soff": 30684, + "sofficial": 20563, + "sofi": 41537, + "sofia": 18914, + "sofinstagram": 17301, + "soft": 12778, + "soft": 3773, + "softball": 8369, + "softer": 44462, + "softhe": 23127, + "softly": 34958, + "software": 35941, + "software": 5847, + "softwitter": 11311, + "sog": 44775, + "soggy": 41168, + "sohn": 49267, + "soho": 47749, + "soho": 17592, + "soi": 40495, + "soil": 33417, + "soil": 9216, + "soils": 34891, + "soir": 43427, + "sok": 43456, + "sol": 1175, + "sol": 9941, + "sola": 40086, + "solace": 42567, + "solar": 16990, + "solar": 5199, + "solareclipse": 44727, + "sold": 33116, + "sold": 3939, + "soldi": 5098, + "soldier": 9355, + "soldiers": 7547, + "sole": 10519, + "sole": 8576, + "soleil": 33148, + "solely": 27913, + "solent": 47783, + "soles": 22682, + "soli": 3911, + "solic": 19369, + "solicitor": 45647, + "solicitors": 46000, + "solid": 30626, + "solid": 6148, + "solidar": 10415, + "solidarity": 10983, + "solidi": 46136, + "solids": 49070, + "solihull": 45293, + "solit": 37039, + "solitaire": 47257, + "solitary": 33094, + "solitude": 33199, + "solo": 17626, + "solo": 5797, + "soloist": 46391, + "solom": 15768, + "solomon": 19785, + "solos": 44868, + "solst": 20298, + "solstice": 21359, + "solu": 2487, + "solution": 4575, + "solutions": 5140, + "solve": 8917, + "solved": 13451, + "solves": 42740, + "solving": 15581, + "som": 734, + "som": 10672, + "soma": 36170, + "somal": 40281, + "somali": 26231, + "somalia": 17051, + "somaliland": 43315, + "some": 1132, + "some": 836, + "somebody": 8305, + "someday": 17127, + "somehow": 11735, + "someone": 2100, + "somer": 9656, + "somerhalder": 33990, + "somerset": 14926, + "somerville": 41409, + "somes": 38124, + "somethin": 33541, + "something": 28316, + "something": 2006, + "sometime": 21464, + "sometimes": 4237, + "somewhat": 17864, + "somewhere": 8119, + "somm": 42726, + "somme": 30625, + "sommer": 44954, + "somos": 24951, + "son": 1176, + "son": 825, + "sona": 21249, + "sonam": 40096, + "sonar": 48235, + "sonata": 37009, + "sone": 29599, + "song": 6868, + "song": 2295, + "songs": 4641, + "songwriter": 13034, + "songwriters": 39583, + "songwriting": 33567, + "songz": 49302, + "soni": 34899, + "soni": 35911, + "sonia": 20409, + "sonic": 23785, + "sonic": 9132, + "sonics": 48511, + "sonja": 46102, + "sonline": 23412, + "sonny": 43000, + "sonny": 20880, + "sono": 44109, + "sonom": 48596, + "sonoma": 26269, + "sons": 5502, + "sonsof": 46676, + "sont": 31063, + "sonthe": 40923, + "sony": 16042, + "sony": 8748, + "sonya": 39172, + "soo": 5517, + "soo": 8602, + "soom": 39771, + "soon": 27559, + "soon": 1745, + "sooner": 18968, + "sooners": 30449, + "sooo": 11526, + "soooo": 13658, + "sooooo": 21199, + "soooooo": 34859, + "soor": 46698, + "soothe": 44424, + "soothing": 27730, + "sop": 3974, + "sop": 19194, + "soph": 34963, + "sophi": 6192, + "sophia": 16790, + "sophie": 38648, + "sophie": 12357, + "sophistic": 17646, + "sophisticated": 20833, + "sophom": 13696, + "sophomore": 15242, + "sophomores": 47645, + "soprano": 28880, + "soproud": 44479, + "sor": 1852, + "sor": 16872, + "sora": 38719, + "sorbet": 39994, + "sore": 43330, + "sore": 15454, + "sored": 6731, + "soren": 38907, + "sorg": 28152, + "sori": 38588, + "sorority": 30059, + "soros": 33248, + "sorren": 44012, + "sorrow": 28020, + "sorrows": 47924, + "sorry": 25745, + "sorry": 3675, + "sorrynotsorry": 37105, + "sort": 8450, + "sorta": 34700, + "sorted": 13221, + "sorting": 19198, + "sorts": 12577, + "sory": 16257, + "sos": 25145, + "sos": 5792, + "sosa": 45433, + "sosfam": 47709, + "sot": 41542, + "sot": 34116, + "sothe": 32145, + "sotho": 45496, + "soto": 27947, + "sotto": 26047, + "sotu": 32286, + "sou": 1101, + "sou": 24293, + "sought": 18874, + "soul": 8701, + "soul": 3755, + "soulful": 30196, + "soulmate": 38130, + "souls": 10951, + "soun": 19474, + "sound": 5236, + "sound": 3608, + "soundcheck": 31394, + "soundcloud": 15190, + "sounded": 28287, + "sounders": 44933, + "sounding": 21351, + "sounds": 5694, + "soundtrack": 11389, + "soup": 7077, + "soups": 45052, + "sour": 2235, + "sour": 12049, + "source": 23698, + "source": 3634, + "sourced": 23340, + "sources": 5124, + "sourcing": 19574, + "sourdough": 29921, + "souri": 11674, + "sous": 32093, + "sousa": 46296, + "sout": 38156, + "sout": 32732, + "south": 2938, + "south": 2045, + "southafrica": 15184, + "southampton": 15767, + "southbank": 44173, + "southbound": 22932, + "southeast": 13942, + "southeastern": 26813, + "southend": 25583, + "souther": 33330, + "southern": 17704, + "southern": 5036, + "southgate": 47262, + "southkorea": 43552, + "southport": 37446, + "southside": 36436, + "southsudan": 30419, + "southwark": 39098, + "southwe": 46443, + "southwest": 13320, + "southwestern": 30157, + "souven": 20210, + "souvenir": 24811, + "souvenirs": 48460, + "souza": 29424, + "sov": 29737, + "sover": 31876, + "sovere": 17736, + "sovereign": 29418, + "sovereign": 26337, + "sovereignty": 31701, + "soviet": 14274, + "sow": 33089, + "sowe": 36130, + "soweto": 47070, + "sown": 49369, + "sox": 39556, + "sox": 8657, + "soy": 16524, + "soy": 15010, + "soybean": 34606, + "soybeans": 40840, + "soyu": 39578, + "soyuz": 43842, + "sp": 588, + "sp": 4393, + "spa": 7852, + "spa": 6692, + "spac": 10336, + "space": 7857, + "space": 2138, + "spacecraft": 25940, + "spaces": 9006, + "spaceship": 34317, + "spacex": 22511, + "spacey": 48770, + "spacious": 24769, + "spad": 45362, + "spade": 32562, + "spades": 48368, + "spaghetti": 18440, + "spain": 5083, + "spal": 26018, + "spam": 29712, + "spam": 14624, + "span": 4270, + "span": 14537, + "spandex": 41686, + "spani": 16721, + "spaniel": 35435, + "spanish": 29966, + "spanish": 6013, + "spann": 25323, + "spanning": 38638, + "spans": 45407, + "spaper": 34548, + "spar": 3378, + "spar": 34576, + "spare": 12615, + "spares": 39505, + "spark": 9555, + "spark": 11047, + "sparked": 32647, + "sparkle": 18287, + "sparkles": 36410, + "sparkling": 17893, + "sparkly": 30542, + "sparks": 15046, + "sparky": 47198, + "sparring": 42161, + "sparrow": 22888, + "spart": 10143, + "sparta": 38401, + "spartan": 26582, + "spartan": 24225, + "spartans": 20457, + "sparty": 36477, + "spas": 31714, + "spati": 19200, + "spatial": 22022, + "spaw": 31605, + "spawn": 29166, + "spay": 40634, + "spc": 20492, + "spca": 37018, + "spd": 37717, + "spd": 28307, + "spdwy": 45981, + "spe": 876, + "spe": 36676, + "speak": 20599, + "speak": 4208, + "speake": 46077, + "speaker": 25764, + "speaker": 4914, + "speakers": 7675, + "speaking": 3714, + "speaks": 5661, + "spear": 23277, + "spear": 30420, + "speare": 43859, + "spears": 20242, + "spec": 1711, + "spec": 18596, + "speci": 1969, + "special": 11422, + "special": 1689, + "specialist": 10630, + "specialists": 21719, + "speciality": 46904, + "specialized": 23265, + "specializes": 48533, + "specially": 4513, + "specials": 11983, + "specialty": 18262, + "species": 6330, + "specific": 10528, + "specifically": 17174, + "specification": 46394, + "specifications": 39705, + "specified": 48114, + "specimen": 30263, + "specimens": 42715, + "specs": 24093, + "spect": 3416, + "spectac": 7242, + "spectacle": 34342, + "spectacular": 8404, + "spectator": 32372, + "spectators": 39306, + "spective": 6633, + "spector": 48676, + "spectral": 45441, + "spectre": 35998, + "spectro": 27646, + "spectrum": 13532, + "specul": 19209, + "speculation": 30898, + "sped": 38813, + "spee": 4050, + "speech": 19556, + "speech": 4902, + "speeches": 25208, + "speechless": 23152, + "speed": 6860, + "speed": 4163, + "speeding": 27264, + "speeds": 22017, + "speedway": 11480, + "speedy": 21603, + "spel": 41887, + "spell": 22784, + "spell": 11230, + "spelled": 24339, + "spelling": 15614, + "spells": 25335, + "spelt": 38316, + "spen": 5087, + "spence": 33324, + "spencer": 27509, + "spencer": 10678, + "spend": 4664, + "spending": 5961, + "spends": 22508, + "spent": 4429, + "speople": 33035, + "sper": 8213, + "sper": 15313, + "sperm": 35781, + "sperson": 22687, + "spf": 34973, + "spg": 34623, + "sph": 28909, + "sph": 24684, + "sphe": 33691, + "spher": 18349, + "sphere": 6987, + "spheres": 37478, + "spheric": 21744, + "sphin": 39237, + "sphinx": 46487, + "spho": 20442, + "sphoto": 38594, + "sphy": 43808, + "spi": 3174, + "spi": 37080, + "spic": 17264, + "spice": 29761, + "spice": 10141, + "spiced": 24267, + "spicer": 37627, + "spices": 21194, + "spicy": 10915, + "spide": 36801, + "spider": 11963, + "spider": 7622, + "spiderman": 39808, + "spiderman": 18427, + "spiders": 23141, + "spidey": 41706, + "spie": 28573, + "spie": 28746, + "spied": 43998, + "spiegel": 45351, + "spiel": 28435, + "spiel": 37690, + "spielberg": 37569, + "spies": 25374, + "spieth": 43254, + "spike": 35306, + "spike": 15310, + "spiked": 47014, + "spikes": 29582, + "spil": 47765, + "spill": 43933, + "spill": 18006, + "spilled": 33206, + "spilling": 49006, + "spills": 35796, + "spin": 6288, + "spin": 9226, + "spinach": 14747, + "spinal": 23925, + "spine": 48221, + "spine": 19646, + "sping": 47113, + "spinner": 29924, + "spinning": 13987, + "spino": 40848, + "spinoff": 42513, + "spinrilla": 46064, + "spins": 27243, + "spion": 39604, + "spionage": 41838, + "spir": 3745, + "spiral": 19873, + "spiration": 38126, + "spire": 27439, + "spired": 40650, + "spires": 46938, + "spiri": 4024, + "spirit": 18224, + "spirit": 4071, + "spirited": 34701, + "spirits": 13192, + "spiritu": 7237, + "spiritual": 46076, + "spiritual": 9473, + "spirituality": 22165, + "spiro": 40085, + "spit": 18115, + "spit": 23177, + "spite": 26060, + "spitfire": 31126, + "spitting": 40721, + "spl": 2470, + "spl": 33052, + "spla": 4809, + "splac": 16059, + "splace": 38743, + "splash": 43641, + "splash": 11879, + "splat": 15733, + "splatoon": 22565, + "splay": 3169, + "splen": 18552, + "splend": 29861, + "splendid": 21016, + "splendor": 46262, + "splin": 38090, + "split": 25443, + "split": 9109, + "splits": 34897, + "splitting": 37210, + "splus": 40866, + "spn": 35467, + "spn": 19414, + "spnfamily": 38566, + "spo": 1261, + "spo": 21085, + "spock": 43918, + "spoil": 25600, + "spoiled": 21399, + "spoiler": 16512, + "spoilers": 18326, + "spoils": 42436, + "spoilt": 35358, + "spokane": 24528, + "spoke": 13890, + "spoke": 6518, + "spoken": 12979, + "spokesman": 31632, + "spokesperson": 26234, + "spol": 22476, + "spol": 8132, + "spoli": 34301, + "spolice": 37406, + "spon": 1715, + "spon": 48216, + "sponge": 22861, + "sponge": 24345, + "spongebob": 25089, + "spons": 5597, + "sponsor": 10424, + "sponsor": 7574, + "sponsored": 7197, + "sponsoring": 16181, + "sponsors": 11005, + "sponsorship": 17632, + "spontaneous": 32465, + "spoo": 11248, + "spooky": 15369, + "spool": 49152, + "spoon": 27001, + "spoon": 14024, + "spoons": 29661, + "spor": 1475, + "spor": 33746, + "sport": 4379, + "sport": 2364, + "sporting": 32620, + "sporting": 8944, + "sports": 6436, + "sports": 2054, + "sportsc": 40114, + "sportscar": 46931, + "sportscenter": 39157, + "sportsman": 39020, + "sportsmanship": 34858, + "sportsnet": 34144, + "sportswear": 39747, + "sporty": 33346, + "spot": 3223, + "spot": 3049, + "spotify": 7193, + "spotlight": 7901, + "spots": 7670, + "spotted": 4533, + "spotter": 30742, + "spotting": 15885, + "spouse": 24724, + "spout": 48993, + "spp": 47567, + "spr": 1536, + "spr": 19417, + "spra": 12966, + "spraw": 46590, + "spray": 37885, + "spray": 10449, + "sprayed": 40022, + "spraying": 39224, + "spre": 18740, + "spread": 20620, + "spread": 5284, + "spreading": 11821, + "spreads": 27579, + "spree": 21851, + "spri": 35498, + "spride": 26685, + "spring": 5166, + "spring": 2420, + "springbreak": 37753, + "springer": 30117, + "springfield": 16599, + "springs": 7308, + "springst": 32132, + "springsteen": 28367, + "springtime": 28285, + "springtraining": 49364, + "springwatch": 29239, + "sprink": 15817, + "sprinkle": 42897, + "sprinkler": 48754, + "sprinkles": 37326, + "sprint": 29248, + "sprint": 10751, + "sprinter": 36947, + "sprints": 36404, + "sprite": 32544, + "spro": 13902, + "spro": 37403, + "sproject": 37802, + "sproud": 37686, + "sprout": 35863, + "sprouts": 25756, + "spru": 17041, + "spruce": 23812, + "sprung": 32968, + "sps": 13869, + "spu": 23566, + "spun": 47922, + "spun": 32852, + "spur": 15206, + "spur": 20361, + "spurs": 10916, + "spursofficial": 45290, + "sput": 47521, + "spx": 20584, + "spy": 13861, + "spy": 6656, + "spyder": 39952, + "spying": 36227, + "sq": 9370, + "sq": 11590, + "sqft": 41912, + "sql": 42759, + "sql": 18938, + "sqm": 47978, + "sqn": 41209, + "squ": 1653, + "squad": 13892, + "squad": 4234, + "squadron": 18579, + "squads": 36590, + "square": 19314, + "square": 3999, + "squared": 32967, + "squares": 26972, + "squash": 13312, + "squat": 44628, + "squat": 30680, + "squats": 40213, + "sque": 9721, + "sque": 8097, + "squee": 14420, + "squeeze": 21684, + "squeezed": 40413, + "squid": 42057, + "squid": 22553, + "squir": 9683, + "squire": 48090, + "squirrel": 14004, + "squirrels": 26623, + "squish": 42607, + "squishy": 47001, + "sr": 3437, + "sr": 5428, + "srbachchan": 32353, + "src": 23445, + "sre": 17748, + "sri": 11051, + "sri": 9276, + "sridevi": 46301, + "srilan": 15559, + "srilanka": 16922, + "srin": 26818, + "srinagar": 33671, + "srini": 41899, + "sriracha": 42743, + "sris": 27851, + "srisri": 32966, + "srk": 44982, + "srk": 11216, + "srl": 33808, + "srp": 43004, + "srs": 41764, + "srsly": 44179, + "srt": 28139, + "sru": 44152, + "srugby": 40526, + "ss": 690, + "ss": 632, + "ssa": 6088, + "ssal": 31330, + "ssal": 35936, + "ssb": 37511, + "ssc": 21692, + "ssc": 20364, + "ssd": 23107, + "sse": 9030, + "sse": 8938, + "ssed": 38755, + "ssed": 1804, + "ssel": 17402, + "ssel": 19373, + "sseldorf": 47792, + "ssell": 42388, + "ssels": 8355, + "ssen": 39408, + "ssen": 22645, + "sser": 20445, + "sses": 1802, + "ssett": 44103, + "ssf": 33239, + "ssg": 40707, + "ssh": 48866, + "ssi": 834, + "ssi": 14953, + "ssia": 22238, + "ssian": 31218, + "ssible": 47099, + "ssic": 27774, + "ssic": 17077, + "ssie": 7572, + "ssier": 26422, + "ssil": 15026, + "ssin": 42660, + "ssing": 2112, + "ssion": 16050, + "ssion": 1627, + "ssional": 13727, + "ssionism": 24787, + "ssionist": 27682, + "ssions": 4137, + "ssive": 2734, + "ssively": 28060, + "ssl": 32195, + "ssler": 30287, + "ssly": 24904, + "ssn": 39116, + "ssnhq": 47998, + "sso": 25900, + "sso": 7914, + "ssoccer": 32546, + "sson": 36124, + "sson": 7271, + "ssor": 35152, + "ssp": 31101, + "ssr": 39880, + "sss": 11176, + "ssss": 30676, + "ssss": 15880, + "sssss": 24298, + "sst": 40396, + "ssu": 35351, + "ssummit": 49301, + "ssus": 31286, + "ssw": 36937, + "ssy": 22519, + "ssy": 8661, + "st": 522, + "st": 545, + "sta": 1363, + "sta": 2745, + "stab": 7726, + "stab": 29974, + "stabbed": 24534, + "stabbing": 25474, + "stabil": 42576, + "stabili": 23903, + "stability": 16716, + "stable": 44427, + "stable": 10492, + "stables": 34218, + "stac": 10175, + "stacey": 41653, + "stacey": 24262, + "stache": 23616, + "stack": 24723, + "stack": 11257, + "stacked": 24990, + "stacking": 39836, + "stacks": 24734, + "stacy": 26628, + "stad": 15832, + "stad": 16485, + "stade": 38198, + "stadi": 26587, + "stadion": 48815, + "stadium": 3390, + "stadiums": 38852, + "stadt": 22713, + "staf": 2367, + "staff": 31188, + "staff": 2813, + "staffer": 38494, + "staffers": 44994, + "staffing": 32932, + "stafford": 25006, + "staffordshire": 29198, + "staffs": 36098, + "stag": 12088, + "stag": 20277, + "stage": 23182, + "stage": 2170, + "staged": 19906, + "stages": 12297, + "staggering": 37315, + "staging": 27026, + "stagram": 19503, + "stags": 45936, + "stain": 3933, + "stain": 14603, + "stained": 13751, + "staining": 32523, + "stainless": 12320, + "stains": 32008, + "stair": 7240, + "stair": 17662, + "staircase": 22777, + "stairs": 9577, + "stairway": 45559, + "stak": 39144, + "stake": 15955, + "stake": 7937, + "stakeholder": 39122, + "stakeholders": 22968, + "stakes": 7519, + "staking": 47082, + "stal": 3861, + "stal": 5535, + "stale": 42471, + "stalert": 25450, + "stalin": 28346, + "stalk": 40826, + "stalk": 14878, + "stalker": 26777, + "stalking": 24721, + "stalks": 45886, + "stall": 24636, + "stall": 12058, + "stalled": 40362, + "stallion": 28273, + "stallions": 44787, + "stallone": 40969, + "stalls": 25427, + "stam": 4663, + "stamatic": 30904, + "stamford": 27843, + "stamina": 48753, + "stamp": 28694, + "stamp": 12771, + "stampcollecting": 42852, + "stamped": 38356, + "stampede": 25384, + "stamps": 13827, + "stan": 2203, + "stan": 2434, + "stana": 33311, + "stanbul": 11231, + "stance": 48900, + "stance": 3542, + "stances": 15054, + "stand": 1819, + "stand": 2087, + "standalone": 44887, + "standard": 35780, + "standard": 5807, + "standardi": 30247, + "standards": 9022, + "standby": 36184, + "standing": 39934, + "standing": 2862, + "standings": 19835, + "standoff": 31821, + "standout": 23131, + "standre": 48309, + "stands": 6446, + "standup": 35108, + "standup": 24964, + "standwith": 19540, + "stanford": 36219, + "stanford": 15087, + "stang": 12536, + "stani": 38228, + "stanis": 37711, + "stanley": 19048, + "stanley": 10079, + "stanleycup": 28662, + "stans": 26564, + "stant": 41576, + "stant": 4906, + "stanton": 25400, + "stap": 10438, + "staple": 22695, + "staples": 23646, + "stapleton": 45228, + "star": 993, + "star": 1565, + "starbuck": 48519, + "starbucks": 9499, + "starch": 47837, + "starcraft": 48871, + "stardom": 44616, + "stardust": 34337, + "stare": 18094, + "stared": 47772, + "stares": 37916, + "starfish": 44283, + "stargate": 41099, + "stargazing": 49328, + "staring": 13800, + "stark": 40446, + "stark": 15353, + "starlight": 32197, + "starling": 46205, + "starmagic": 48023, + "starplus": 37815, + "starr": 19186, + "starred": 24180, + "starrer": 41311, + "starring": 6660, + "starry": 30963, + "stars": 2895, + "starship": 37166, + "start": 17466, + "start": 1572, + "started": 2760, + "starter": 7800, + "starters": 22222, + "starting": 2530, + "startrek": 30642, + "startrek": 15349, + "starts": 3105, + "startu": 6996, + "startup": 18049, + "startup": 5882, + "startups": 9056, + "starve": 46957, + "starving": 30473, + "starwar": 17287, + "starwars": 26239, + "starwars": 7887, + "starz": 25928, + "stas": 19866, + "stash": 27711, + "stasy": 45942, + "stat": 3004, + "stat": 15216, + "state": 3492, + "state": 1295, + "statec": 33931, + "stated": 19629, + "statedept": 41458, + "statefair": 40305, + "statement": 5401, + "statements": 19513, + "staten": 38263, + "stateof": 35195, + "states": 22125, + "states": 4218, + "statesman": 35301, + "stateu": 44248, + "statewide": 29561, + "stati": 9622, + "static": 16363, + "stating": 35147, + "station": 13498, + "station": 2631, + "stationary": 29493, + "stationed": 47618, + "stationery": 33851, + "stations": 10051, + "statistical": 29349, + "statistics": 14165, + "stats": 7294, + "statu": 32481, + "statue": 8222, + "statues": 24363, + "status": 6414, + "stau": 28550, + "staur": 3709, + "stav": 20285, + "stax": 32235, + "stay": 4714, + "stay": 2277, + "stayed": 13805, + "staying": 8993, + "stays": 13311, + "staytuned": 39285, + "stc": 29859, + "std": 30477, + "ste": 795, + "ste": 2686, + "stea": 46614, + "stead": 16101, + "stead": 11031, + "steadily": 35049, + "steady": 12937, + "steak": 26955, + "steak": 8913, + "steakhouse": 35031, + "steaks": 30655, + "steal": 37070, + "steal": 10181, + "stealing": 14242, + "steals": 20224, + "stealth": 25327, + "steam": 10962, + "steam": 6972, + "steamboat": 41121, + "steamed": 29007, + "steamer": 49075, + "steaming": 43746, + "steampunk": 24130, + "steamy": 43104, + "stec": 46713, + "stech": 48949, + "stech": 32455, + "sted": 20426, + "sted": 1356, + "stee": 31793, + "steed": 48293, + "steel": 6938, + "steel": 4726, + "steele": 19460, + "steelers": 14430, + "steen": 42851, + "steen": 18625, + "steep": 28648, + "steep": 20714, + "steer": 27612, + "steering": 19833, + "stef": 29158, + "stefan": 15004, + "stefan": 18829, + "stefani": 38319, + "stefano": 30719, + "steff": 30075, + "stein": 13653, + "stein": 5818, + "steiner": 36314, + "stel": 9102, + "stel": 10798, + "stell": 22355, + "stella": 46178, + "stella": 17869, + "stellar": 13810, + "stellen": 42754, + "stem": 24342, + "stem": 6761, + "stemc": 40486, + "stems": 31503, + "sten": 7652, + "sten": 7877, + "stencil": 47854, + "stennis": 45636, + "step": 15572, + "step": 3348, + "steph": 3522, + "steph": 16251, + "stephan": 37312, + "stephani": 48121, + "stephanie": 14361, + "stephen": 10421, + "stephen": 6078, + "stephenking": 46361, + "stephens": 22256, + "stephenson": 37280, + "stepped": 18384, + "stepping": 15906, + "steps": 5408, + "ster": 1022, + "ster": 881, + "stere": 9229, + "stered": 6935, + "stereo": 15992, + "stereo": 17400, + "stereotypes": 27890, + "steria": 38804, + "stering": 14175, + "sterling": 45790, + "sterling": 9378, + "stern": 36254, + "stern": 2945, + "steroids": 37670, + "sterone": 39418, + "sters": 2132, + "stery": 24232, + "stest": 8556, + "stev": 11640, + "steve": 7412, + "steve": 3803, + "steven": 10973, + "steven": 8016, + "stevens": 13877, + "stevenson": 25091, + "stevie": 42104, + "stevie": 18969, + "stew": 17906, + "stewar": 28453, + "steward": 34980, + "steward": 43355, + "stewards": 49294, + "stewardship": 36720, + "stewart": 8120, + "stfu": 47000, + "stg": 48387, + "stgeorge": 43698, + "sth": 13456, + "sth": 34004, + "sthe": 16491, + "sthel": 42863, + "sti": 860, + "sti": 12439, + "stia": 26492, + "stible": 25835, + "stic": 5868, + "stic": 1561, + "stical": 16660, + "stically": 19041, + "stick": 5483, + "stick": 4987, + "sticker": 11270, + "stickers": 11613, + "sticking": 21021, + "sticks": 10016, + "sticky": 18887, + "stics": 5449, + "stie": 38164, + "stie": 11000, + "stier": 42069, + "sties": 16428, + "stiff": 43471, + "stiff": 21441, + "stig": 4088, + "stig": 42551, + "stigate": 15390, + "stigma": 20619, + "stik": 42247, + "stil": 21790, + "stil": 37519, + "stiles": 33028, + "still": 13209, + "still": 1170, + "stills": 20259, + "stim": 18269, + "stime": 24711, + "stimul": 16434, + "stimulate": 42380, + "stimulating": 41237, + "stimulation": 39530, + "stimulus": 47283, + "stin": 2588, + "stin": 4025, + "stina": 22359, + "stine": 7098, + "sting": 19868, + "sting": 1271, + "stingly": 49332, + "stingray": 43229, + "stink": 38213, + "stinky": 44957, + "stino": 40658, + "stint": 33531, + "stion": 10812, + "stip": 39869, + "stips": 44756, + "stique": 43305, + "stir": 12416, + "stir": 19564, + "stirling": 23128, + "stirring": 39205, + "stis": 45224, + "stit": 14110, + "stitch": 30003, + "stitch": 14771, + "stitched": 36540, + "stitcher": 48204, + "stitches": 32360, + "stitching": 45208, + "stitu": 14585, + "stitutes": 40479, + "stive": 22426, + "stix": 48829, + "stjohn": 36153, + "stl": 14179, + "stl": 12527, + "stlblues": 44138, + "stlcards": 28644, + "stle": 7698, + "stles": 48638, + "stlouis": 40358, + "stlouis": 39516, + "stm": 28333, + "stn": 27175, + "sto": 928, + "sto": 5723, + "stock": 5899, + "stock": 3206, + "stocked": 23552, + "stockholm": 16024, + "stocki": 42944, + "stocking": 17335, + "stockings": 28040, + "stockmarket": 40359, + "stockport": 35569, + "stocks": 9321, + "stockton": 26130, + "stoday": 22392, + "stok": 43782, + "stoke": 31338, + "stoke": 13550, + "stoked": 13160, + "stokes": 27512, + "stol": 11401, + "stol": 6700, + "stole": 10995, + "stolen": 8704, + "stolic": 45020, + "stom": 2343, + "stom": 38068, + "stoma": 43545, + "stomach": 14722, + "stomp": 40165, + "stomping": 46144, + "ston": 4101, + "ston": 1839, + "stone": 7694, + "stone": 2441, + "stoned": 36248, + "stonehenge": 42417, + "stoner": 35131, + "stoner": 29115, + "stones": 42659, + "stones": 6885, + "stonewall": 39688, + "stoney": 44198, + "stony": 41717, + "stony": 35691, + "stoo": 24505, + "stood": 9151, + "stool": 34413, + "stool": 22314, + "stop": 6005, + "stop": 1691, + "stopbrexit": 48680, + "stopp": 15738, + "stopped": 6015, + "stopper": 32147, + "stoppers": 34457, + "stopping": 10735, + "stops": 9822, + "stopthe": 26463, + "stor": 809, + "stor": 17740, + "storage": 6824, + "store": 17769, + "store": 2183, + "stored": 28257, + "stores": 6370, + "storey": 24025, + "storians": 34628, + "stories": 3784, + "storing": 40087, + "stork": 46452, + "storm": 7434, + "storm": 2819, + "stormed": 45939, + "stormhour": 12161, + "storming": 24842, + "storms": 6464, + "stormtrooper": 49218, + "stormy": 20075, + "stors": 7178, + "story": 6512, + "story": 1134, + "storyline": 37079, + "storymonth": 23717, + "storyteller": 35882, + "storytelling": 14457, + "storytime": 44197, + "stos": 19281, + "stou": 37168, + "stour": 37361, + "stour": 21928, + "stout": 16550, + "stove": 21423, + "stow": 44284, + "stow": 17046, + "stowe": 34196, + "stown": 28071, + "stown": 7939, + "stp": 30576, + "stpatrick": 21343, + "stpatricksday": 22747, + "str": 807, + "str": 15913, + "stra": 1894, + "stra": 6253, + "strack": 46861, + "strada": 31134, + "strade": 48968, + "straigh": 31016, + "straight": 22114, + "straight": 4241, + "strain": 16887, + "strains": 38067, + "strait": 22946, + "straits": 41984, + "stral": 23289, + "stralia": 42510, + "stran": 18411, + "strand": 18214, + "strand": 17826, + "stranded": 22975, + "strang": 11138, + "strange": 33380, + "strange": 7288, + "strangely": 37566, + "stranger": 35541, + "stranger": 14149, + "strangers": 20684, + "strangerthings": 43271, + "strangest": 46740, + "strap": 13946, + "strapped": 40922, + "straps": 31213, + "stras": 36814, + "stras": 42125, + "strasbourg": 39576, + "strat": 11345, + "strat": 32925, + "strata": 47278, + "strate": 3532, + "strate": 28758, + "strategi": 49102, + "strategic": 10246, + "strategically": 45706, + "strategies": 9942, + "strategist": 37180, + "strategy": 5637, + "strates": 45724, + "stratford": 23955, + "strath": 21997, + "stration": 3156, + "strato": 28878, + "strauss": 32033, + "strava": 34625, + "stravel": 43494, + "straw": 7430, + "straw": 16438, + "strawberries": 17796, + "strawberry": 10233, + "straws": 33048, + "stray": 30784, + "stray": 15712, + "stre": 1079, + "stre": 19652, + "stread": 27797, + "streak": 11749, + "streaks": 42092, + "stream": 8659, + "stream": 3322, + "streamed": 26280, + "streamer": 25178, + "streamers": 19937, + "streaming": 6278, + "streamline": 44917, + "streams": 13545, + "stree": 35082, + "stree": 32438, + "streep": 38701, + "street": 4839, + "street": 2012, + "streetart": 12948, + "streetcar": 34268, + "streetfood": 44486, + "streetphotography": 20786, + "streets": 6058, + "streetstyle": 39118, + "streetwear": 37298, + "strel": 39685, + "stren": 4349, + "streng": 4472, + "strength": 15475, + "strength": 5959, + "strengthen": 16318, + "strengthened": 47131, + "strengthening": 23475, + "strengthens": 40280, + "strengths": 29268, + "stress": 17297, + "stress": 5843, + "stressed": 16497, + "stresses": 32112, + "stressful": 24268, + "stressing": 35917, + "stret": 12265, + "stretch": 10064, + "stretched": 29393, + "stretches": 32231, + "stretching": 24423, + "stri": 1493, + "stri": 27795, + "stria": 39620, + "strial": 30217, + "strian": 12924, + "stric": 2607, + "strick": 25181, + "strickland": 48939, + "strict": 21585, + "strictly": 16475, + "stride": 36024, + "strides": 37355, + "stries": 18171, + "strife": 46473, + "strike": 20774, + "strike": 5767, + "striker": 12448, + "strikers": 33465, + "strikes": 9280, + "striking": 13392, + "string": 25512, + "string": 9696, + "strings": 15699, + "strip": 9317, + "stripe": 19368, + "striped": 22192, + "stripes": 14239, + "stripped": 26602, + "stripper": 45759, + "stripping": 48588, + "strips": 19000, + "strive": 22140, + "striving": 37671, + "stro": 3121, + "stro": 6186, + "stroke": 44621, + "stroke": 10403, + "strokes": 26595, + "strol": 30123, + "stroll": 15924, + "stroller": 47076, + "strolling": 40911, + "strom": 14707, + "stron": 4165, + "strong": 10436, + "strong": 2389, + "stronger": 27760, + "stronger": 9245, + "strongertogether": 38532, + "strongest": 16171, + "strongh": 38678, + "strongly": 15507, + "strophy": 47912, + "strou": 48425, + "stroud": 39895, + "strous": 23752, + "stru": 1666, + "struc": 3311, + "struck": 10861, + "struction": 12497, + "structural": 16899, + "structure": 5285, + "structured": 27147, + "structures": 14171, + "structuring": 37496, + "strugg": 5176, + "struggle": 8443, + "struggled": 32921, + "struggles": 17446, + "struggling": 12135, + "struly": 34118, + "strum": 37632, + "strung": 46033, + "strust": 23920, + "strut": 48375, + "stry": 17325, + "stry": 2245, + "sts": 1088, + "stu": 858, + "stu": 23531, + "stuart": 32054, + "stuart": 11723, + "stub": 27066, + "stubborn": 38955, + "stuck": 6596, + "stud": 22368, + "stud": 13319, + "studded": 29153, + "studen": 44156, + "student": 14681, + "student": 2556, + "students": 1712, + "studi": 5691, + "studied": 21369, + "studies": 6426, + "studio": 17798, + "studio": 3155, + "studios": 6231, + "studs": 27571, + "study": 21051, + "study": 3123, + "studyabroad": 45425, + "studying": 8826, + "stuff": 46072, + "stuff": 3487, + "stuffed": 11781, + "stuffing": 31612, + "stuffs": 43455, + "stuk": 32424, + "stumb": 16784, + "stumble": 39045, + "stumbled": 21776, + "stump": 32064, + "stun": 3088, + "stun": 37959, + "stunned": 34034, + "stunner": 29965, + "stunning": 3769, + "stunningly": 47515, + "stuns": 43796, + "stunt": 19905, + "stunts": 40118, + "stupi": 18975, + "stupid": 42600, + "stupid": 8085, + "stupidity": 33766, + "stur": 10676, + "sturdy": 43780, + "stures": 27223, + "sturgeon": 31580, + "sturi": 21747, + "sturridge": 45331, + "stutt": 30444, + "stuttgart": 32219, + "stv": 27060, + "stv": 9708, + "stweet": 46832, + "stweets": 39174, + "stx": 42548, + "sty": 1421, + "sty": 2920, + "style": 12356, + "style": 1844, + "styled": 17974, + "styles": 6948, + "styli": 38577, + "styling": 14597, + "stylish": 10378, + "stylist": 15928, + "styn": 41394, + "su": 605, + "su": 2937, + "sua": 42448, + "suarez": 21437, + "suave": 47305, + "sub": 1783, + "sub": 7765, + "subaru": 21319, + "subjec": 16090, + "subject": 10300, + "subjects": 22099, + "subli": 16350, + "sublime": 22367, + "submarine": 19968, + "submer": 27156, + "submerged": 43171, + "submission": 16571, + "submissions": 21566, + "submit": 10423, + "submitted": 15189, + "submitting": 38788, + "subram": 49207, + "subs": 16398, + "subscri": 5838, + "subscribe": 9839, + "subscribed": 44867, + "subscriber": 36292, + "subscribers": 17337, + "subscription": 17979, + "subscriptions": 47162, + "subsequ": 33598, + "subsequent": 44323, + "subsi": 14856, + "subsidi": 45029, + "subsidiary": 45506, + "subsidies": 37685, + "subsidy": 47462, + "substan": 17487, + "substance": 19309, + "substances": 36834, + "substantial": 27171, + "substantially": 47577, + "substitu": 18529, + "substitute": 25340, + "subtitles": 39479, + "subtle": 16536, + "subur": 12517, + "suburb": 37664, + "suburban": 23570, + "suburbs": 25317, + "subway": 12196, + "suc": 1869, + "succe": 7981, + "succeed": 13556, + "succeeded": 41077, + "succes": 39019, + "success": 3695, + "success": 3034, + "successes": 29436, + "successful": 4670, + "successfully": 9934, + "succession": 38491, + "successive": 41319, + "successor": 34774, + "succu": 45253, + "succul": 25671, + "succulent": 35236, + "such": 2046, + "suction": 42786, + "sud": 8067, + "sud": 33714, + "sudan": 31149, + "sudan": 13474, + "sudanese": 42837, + "sudbury": 32488, + "sudden": 10833, + "sudden": 15433, + "suddenly": 11076, + "sue": 14045, + "sue": 6641, + "sued": 22225, + "suede": 21036, + "sues": 17105, + "suf": 21204, + "suf": 22579, + "sufc": 37091, + "suff": 4866, + "suffe": 13510, + "suffer": 13557, + "suffered": 14766, + "suffering": 10140, + "suffers": 22389, + "sufficient": 28410, + "suffol": 13775, + "suffolk": 46408, + "suffolk": 15685, + "suffra": 34596, + "suffrage": 39567, + "sufi": 39756, + "sug": 3189, + "suga": 28757, + "sugar": 12418, + "sugar": 5574, + "sugge": 6345, + "suggest": 13356, + "suggested": 18790, + "suggesti": 15033, + "suggesting": 29792, + "suggestion": 23741, + "suggestions": 16052, + "suggests": 13333, + "suho": 32744, + "sui": 24972, + "suici": 16372, + "suicidal": 37165, + "suicide": 31310, + "suicide": 8247, + "suing": 18309, + "suisse": 35964, + "suit": 11887, + "suit": 3940, + "suitable": 17476, + "suitcase": 27792, + "suite": 9346, + "suited": 25919, + "suites": 21523, + "suits": 9949, + "suk": 24820, + "suk": 6886, + "suka": 44017, + "suke": 25590, + "sukh": 46961, + "suki": 32704, + "sul": 1767, + "sul": 19879, + "sula": 34713, + "sula": 26143, + "sullivan": 14477, + "sully": 37752, + "sulph": 37234, + "sulphur": 47659, + "sultan": 35650, + "sultan": 17049, + "sum": 7054, + "sum": 8257, + "suma": 47938, + "sumat": 32640, + "sumatra": 47346, + "sume": 45457, + "sumi": 41248, + "summ": 1309, + "summar": 34657, + "summari": 31993, + "summary": 13435, + "summed": 34912, + "summer": 5500, + "summer": 1673, + "summers": 18254, + "summerslam": 40264, + "summertime": 19025, + "summit": 30011, + "summit": 3768, + "summon": 27622, + "summon": 39782, + "sumner": 46813, + "sumo": 33734, + "sump": 34252, + "sumptuous": 47354, + "sums": 13325, + "sun": 968, + "sun": 2176, + "sunbathing": 46994, + "sunburn": 45767, + "sund": 40735, + "sundae": 38078, + "sundance": 24128, + "sundar": 44936, + "sunday": 6649, + "sunday": 1706, + "sundayfunday": 21565, + "sundaymorning": 24809, + "sundaymotivation": 46227, + "sundays": 15827, + "sundaywith": 26469, + "sundaywithmarsha": 26662, + "sunder": 15097, + "sunderland": 45727, + "sunderland": 18851, + "sundown": 44438, + "sune": 41096, + "sunflower": 21559, + "sunflowers": 39809, + "sung": 16903, + "sung": 6047, + "sunglasses": 12906, + "suni": 17663, + "suni": 47010, + "sunil": 32861, + "sunite": 21382, + "sunited": 35276, + "sunk": 37534, + "sunken": 43473, + "sunlight": 17996, + "sunni": 44315, + "sunny": 15632, + "sunny": 5438, + "sunrise": 5610, + "suns": 18322, + "sunscreen": 29355, + "sunset": 37880, + "sunset": 3424, + "sunsets": 17721, + "sunshine": 32761, + "sunshine": 5385, + "suny": 41308, + "sup": 19078, + "sup": 8249, + "supdates": 24177, + "super": 1642, + "super": 1994, + "superb": 8930, + "superbike": 45709, + "superbowl": 47461, + "superbowl": 16467, + "supercar": 27021, + "supercars": 32185, + "supercell": 43227, + "supercharged": 47479, + "supere": 46831, + "superfood": 41715, + "supergirl": 25771, + "superhero": 14049, + "superheroes": 23334, + "superint": 17615, + "superintendent": 19020, + "superior": 13205, + "superjunior": 40475, + "superleague": 45539, + "superman": 11237, + "supermarket": 19897, + "supermarkets": 45106, + "supermodel": 41963, + "supermoon": 36571, + "supernatural": 15484, + "supernova": 39843, + "superrugby": 48717, + "supersonic": 42019, + "supersport": 46319, + "superst": 38202, + "superstar": 32551, + "superstar": 10472, + "superstars": 25797, + "supervis": 12709, + "supervised": 41316, + "supervision": 36234, + "supervisor": 20366, + "supervisors": 37958, + "superyacht": 42714, + "supp": 1023, + "supper": 15727, + "supple": 31431, + "supplement": 19924, + "supplements": 21265, + "supplied": 24106, + "supplier": 18043, + "suppliers": 24196, + "supplies": 9384, + "supply": 25074, + "supply": 6389, + "supplychain": 31224, + "supplying": 32739, + "suppo": 6941, + "suppor": 2104, + "support": 12062, + "support": 1425, + "supported": 8038, + "supporter": 12992, + "supporters": 7403, + "supportindiefilm": 43976, + "supporting": 3976, + "supportive": 18313, + "supportlocal": 43852, + "supports": 8336, + "supportsmall": 30941, + "supportsmallstreamers": 36097, + "suppose": 18924, + "supposed": 9119, + "supposedly": 32302, + "suppre": 20542, + "suppression": 36508, + "supra": 48485, + "supre": 5875, + "supremac": 28643, + "supremacist": 39005, + "supremacy": 28913, + "supreme": 35222, + "supreme": 7468, + "supt": 23625, + "sur": 1090, + "sur": 7123, + "sura": 33412, + "sura": 49125, + "surabaya": 45227, + "surance": 22184, + "surat": 30201, + "sure": 14320, + "sure": 1650, + "sured": 36869, + "surely": 11409, + "sures": 12725, + "suresh": 32118, + "suresh": 31464, + "sureshpp": 41924, + "sureshpprabhu": 42050, + "surf": 10176, + "surf": 10322, + "surface": 7744, + "surfaces": 20746, + "surfer": 24925, + "surfers": 34842, + "surfing": 15762, + "surg": 13045, + "surge": 17457, + "surgeon": 16039, + "surgeons": 26000, + "surger": 5122, + "surgeries": 34940, + "surgery": 5344, + "surgical": 16386, + "suri": 14130, + "suri": 33952, + "suring": 16817, + "suriya": 17832, + "surpass": 45494, + "surpassed": 25648, + "surplus": 29413, + "surpri": 3244, + "surprise": 5099, + "surprised": 8949, + "surprises": 16920, + "surprising": 14964, + "surprisingly": 17367, + "surreal": 18408, + "surrealism": 41773, + "surrender": 20964, + "surrendered": 44601, + "surrey": 26489, + "surrey": 14315, + "surro": 47499, + "surroun": 8250, + "surround": 26543, + "surround": 22999, + "surrounded": 13589, + "surrounding": 12544, + "surroundings": 26915, + "surrounds": 39012, + "suru": 49240, + "surve": 8952, + "surveill": 15408, + "surveillance": 15578, + "survey": 45914, + "survey": 6809, + "surveying": 33085, + "surveys": 25096, + "survi": 3440, + "surviv": 12922, + "survival": 10172, + "survive": 10431, + "survived": 13483, + "survives": 30927, + "surviving": 18609, + "survivor": 31934, + "survivor": 10944, + "survivors": 13711, + "surya": 37767, + "sus": 8091, + "sus": 3036, + "susa": 20546, + "susan": 19922, + "susan": 10168, + "suscep": 44270, + "sush": 22298, + "sushi": 11729, + "sushmaswar": 48200, + "susie": 32284, + "susp": 7971, + "suspec": 10298, + "suspect": 9065, + "suspected": 15579, + "suspects": 18265, + "suspen": 10578, + "suspend": 41007, + "suspended": 13126, + "suspends": 39535, + "suspense": 21556, + "suspension": 15417, + "suspici": 25714, + "suspicion": 34910, + "suspicious": 19862, + "sussex": 31244, + "sussex": 13266, + "sustain": 4644, + "sustain": 28156, + "sustainability": 9635, + "sustainable": 23645, + "sustainable": 7078, + "sustained": 22699, + "sustaining": 44418, + "sut": 23984, + "sut": 28956, + "sutherland": 27592, + "sutton": 39359, + "sutton": 18564, + "suv": 15985, + "suz": 9957, + "suzanne": 24617, + "suzu": 36289, + "suzuki": 16892, + "suzy": 26552, + "sv": 6508, + "sv": 17083, + "svc": 45065, + "sve": 47637, + "sven": 37786, + "sven": 45183, + "sver": 45923, + "sville": 44580, + "sville": 6741, + "svp": 28465, + "svt": 42014, + "svu": 32123, + "sw": 1220, + "sw": 4457, + "swa": 4707, + "swa": 31916, + "swach": 20862, + "swachhb": 31898, + "swachhbharat": 36927, + "swag": 8852, + "swag": 8177, + "swagg": 47702, + "swagger": 35797, + "swain": 43226, + "swal": 13433, + "swallow": 28979, + "swallowed": 46956, + "swallows": 45124, + "swam": 42539, + "swami": 25021, + "swamp": 41953, + "swamp": 16595, + "swamy": 28445, + "swan": 8215, + "swan": 12530, + "swana": 24699, + "swans": 19516, + "swansea": 16567, + "swanson": 34797, + "swap": 15234, + "swapped": 39077, + "swapping": 44702, + "swaps": 49242, + "swar": 11680, + "swarm": 31577, + "swarovski": 28515, + "swat": 32547, + "swat": 26482, + "swatch": 48053, + "sway": 26443, + "sway": 26617, + "swc": 42231, + "swe": 2350, + "swe": 38070, + "swear": 7406, + "swearing": 32627, + "sweat": 10282, + "sweat": 12663, + "sweater": 11455, + "sweaters": 31303, + "sweating": 33215, + "sweats": 39321, + "sweatshirt": 22442, + "sweaty": 28419, + "sweden": 8760, + "swedish": 11585, + "swee": 1812, + "sweek": 30017, + "sweeney": 27286, + "sweep": 23220, + "sweep": 13669, + "sweeping": 25719, + "sweeps": 26887, + "sweepstakes": 25992, + "sweet": 10957, + "sweet": 2418, + "sweetened": 45577, + "sweeter": 32873, + "sweetest": 15180, + "sweethe": 16316, + "sweetheart": 18079, + "sweetie": 24450, + "sweetness": 29713, + "sweets": 18045, + "swel": 48470, + "swell": 35538, + "swell": 21490, + "swelling": 46578, + "swept": 23311, + "swer": 30514, + "swfc": 30227, + "swfl": 46607, + "swi": 3881, + "swi": 45223, + "swick": 17159, + "swif": 28548, + "swift": 34843, + "swift": 8229, + "swild": 33909, + "swild": 38696, + "swildlife": 46818, + "swim": 4928, + "swim": 7681, + "swimmer": 25475, + "swimmers": 27776, + "swimming": 7411, + "swims": 46798, + "swimsuit": 25504, + "swimwear": 31889, + "swin": 14554, + "swin": 40798, + "swindon": 29540, + "swine": 31166, + "swing": 25292, + "swing": 7429, + "swinging": 26760, + "swings": 29141, + "swipe": 31828, + "swire": 42753, + "swirl": 35795, + "swis": 23611, + "swish": 38571, + "swiss": 37917, + "swiss": 9287, + "swit": 3726, + "switch": 22480, + "switch": 5893, + "switched": 22869, + "switches": 33569, + "switching": 21155, + "swith": 17299, + "switzer": 9835, + "switzerland": 9912, + "swivel": 48256, + "swo": 38673, + "swol": 29575, + "swollen": 36129, + "swoo": 29744, + "swood": 24158, + "swoon": 37028, + "swoop": 45661, + "sword": 33294, + "sword": 11356, + "swords": 27181, + "swork": 42722, + "sworld": 33305, + "sworn": 21130, + "sworth": 13322, + "swt": 38878, + "swx": 20597, + "sx": 9402, + "sx": 17806, + "sxsw": 13369, + "sy": 974, + "sy": 2126, + "sya": 35017, + "sycam": 34911, + "sycamore": 43086, + "syd": 4525, + "syd": 22504, + "sydney": 15878, + "sydney": 5278, + "syed": 27624, + "syfy": 32047, + "sykes": 27287, + "syl": 6452, + "sylla": 41708, + "sylvania": 12011, + "sylve": 28369, + "sylvester": 37214, + "sylvia": 25670, + "sym": 3645, + "sym": 40327, + "symb": 22987, + "symbol": 13085, + "symboli": 22019, + "symbolic": 33177, + "symbolism": 44679, + "symbols": 25476, + "symmetry": 31427, + "symp": 11468, + "sympathi": 47493, + "sympathy": 32477, + "symph": 9544, + "symphonic": 42639, + "symphony": 11180, + "sympo": 9730, + "symposium": 9971, + "symptom": 47799, + "symptoms": 12956, + "syn": 3758, + "syn": 36090, + "synago": 30945, + "synagogue": 33518, + "sync": 20081, + "synchron": 23943, + "syndic": 21098, + "syndicate": 28779, + "syndrome": 10927, + "syner": 22283, + "synergy": 32012, + "syno": 31533, + "synod": 47712, + "synopsis": 47018, + "synth": 33841, + "synth": 24462, + "synthe": 22604, + "synthesi": 33565, + "synthesis": 21602, + "synthesizer": 44077, + "synthetic": 19917, + "syou": 26742, + "syour": 21718, + "syrac": 17279, + "syracuse": 19640, + "syrah": 45364, + "syri": 18917, + "syria": 5563, + "syrian": 47562, + "syrian": 10041, + "syrians": 41392, + "syrup": 16611, + "sys": 26726, + "syste": 1933, + "system": 47813, + "system": 2422, + "systematic": 28586, + "systemic": 33807, + "systems": 4828, + "sz": 13438, + "sz": 15879, + "sze": 44507, + "szn": 48092, + "são": 45911, + "sé": 37879, + "t": 83, + "t": 339, + "ta": 648, + "ta": 1397, + "taa": 43874, + "tab": 2648, + "tab": 14724, + "tabby": 36145, + "tabern": 48991, + "tability": 15770, + "table": 12108, + "table": 2175, + "tableau": 39723, + "tables": 7822, + "tablet": 12494, + "tabletop": 46843, + "tabletop": 25773, + "tablets": 20436, + "tably": 24440, + "taboo": 38400, + "tabs": 29163, + "tac": 3145, + "tac": 22653, + "tache": 39239, + "tack": 6339, + "tack": 34446, + "tackle": 10294, + "tackled": 47218, + "tackles": 18021, + "tackling": 19628, + "taco": 31924, + "taco": 12436, + "tacoma": 25397, + "tacos": 14090, + "tactic": 40377, + "tactical": 17137, + "tactics": 16410, + "tacular": 48985, + "tad": 15890, + "tad": 19860, + "tado": 40846, + "tae": 15257, + "tae": 15580, + "taehyung": 24642, + "taek": 30753, + "taekwondo": 39963, + "taemin": 30600, + "taeyang": 45802, + "taeyeon": 27389, + "taf": 29660, + "taft": 42141, + "tag": 3456, + "tag": 3640, + "tage": 2669, + "tages": 39902, + "tagged": 12969, + "tagging": 25138, + "tagne": 47467, + "tags": 11606, + "tah": 14822, + "tah": 7090, + "tahit": 45385, + "tahoe": 26140, + "tai": 6511, + "tai": 13040, + "taiji": 30185, + "tail": 7156, + "tail": 4132, + "tailed": 20626, + "tailgate": 23168, + "tailgating": 42625, + "tailo": 27230, + "tailor": 29870, + "tailored": 28275, + "tailoring": 46357, + "tails": 16066, + "tain": 2841, + "tain": 1908, + "taine": 21214, + "taine": 32299, + "tained": 10212, + "taining": 7565, + "tainment": 30063, + "tains": 3952, + "tainted": 47211, + "taipei": 24356, + "tair": 29143, + "tairp": 43707, + "tait": 45325, + "taiwan": 36319, + "taiwan": 12626, + "taiwanese": 41416, + "taj": 28937, + "taj": 24805, + "taji": 46358, + "tak": 15070, + "tak": 14458, + "taka": 24070, + "taka": 40968, + "take": 5052, + "take": 1172, + "takeaway": 25737, + "takeaways": 32080, + "takeme": 41748, + "taken": 2807, + "takeoff": 32789, + "takeover": 11863, + "taker": 17939, + "takers": 30775, + "takes": 2633, + "takin": 30890, + "taking": 2019, + "taku": 48168, + "tal": 976, + "tal": 2066, + "tala": 29845, + "talaga": 35349, + "talbot": 30585, + "tale": 33971, + "tale": 7798, + "talent": 30435, + "talent": 5114, + "talented": 5331, + "talents": 16136, + "tales": 9469, + "tali": 12122, + "tali": 45406, + "taliban": 20788, + "talis": 36480, + "tality": 15631, + "talk": 12462, + "talk": 1841, + "talked": 10153, + "talkin": 26040, + "talking": 31463, + "talking": 2578, + "talks": 3237, + "tall": 11664, + "tall": 7771, + "talla": 21528, + "tallade": 44220, + "tallahassee": 37832, + "taller": 23470, + "tallest": 19774, + "tallinn": 45079, + "tally": 16323, + "talon": 47897, + "tam": 2661, + "tam": 12246, + "tama": 45424, + "tamanna": 48055, + "tamar": 22901, + "tamara": 35697, + "tame": 38557, + "tame": 32778, + "tamed": 40575, + "tami": 39429, + "tamil": 23046, + "tamil": 14033, + "tamilnadu": 32371, + "tamine": 42566, + "tammy": 28396, + "tampa": 10906, + "tampab": 37852, + "tamu": 34105, + "tan": 2123, + "tan": 5039, + "tana": 21396, + "tand": 20244, + "tandem": 33756, + "tane": 13344, + "tane": 24923, + "taneous": 22275, + "taneously": 24422, + "tang": 10425, + "tang": 20794, + "tanger": 31844, + "tangerine": 42045, + "tangible": 44823, + "tangle": 36568, + "tangled": 33587, + "tango": 24089, + "tani": 31374, + "tani": 32985, + "tania": 45369, + "tank": 29858, + "tank": 6172, + "tanker": 25020, + "tanks": 14223, + "tann": 19174, + "tanner": 22001, + "tanning": 27985, + "tans": 27332, + "tant": 41383, + "tant": 41695, + "tante": 48262, + "tanto": 45685, + "tany": 34410, + "tanya": 26800, + "tanz": 47399, + "tanzania": 15711, + "tao": 29084, + "tao": 18923, + "tap": 17923, + "tap": 7888, + "tapas": 27361, + "tape": 18332, + "tape": 5749, + "taped": 33219, + "tapes": 17903, + "tapestry": 33525, + "taping": 24355, + "tapp": 27644, + "tapp": 27764, + "tapped": 26649, + "tapping": 27882, + "tapro": 34415, + "taproom": 40266, + "taps": 23267, + "tar": 2002, + "tar": 6977, + "tara": 15264, + "tarak": 37813, + "taran": 32370, + "tarantino": 41180, + "tarde": 48670, + "tardis": 35410, + "tares": 34587, + "targe": 9620, + "target": 38556, + "target": 5400, + "targeted": 14968, + "targeting": 15818, + "targets": 12468, + "tari": 4238, + "tari": 38012, + "tarian": 11762, + "tarians": 42789, + "taries": 47291, + "tariff": 40220, + "tariffs": 28335, + "tariq": 42526, + "tarmac": 44294, + "taro": 26264, + "tarot": 23702, + "tart": 16707, + "tart": 14120, + "tartan": 35064, + "tarts": 29799, + "tary": 31729, + "tary": 5065, + "tarzan": 45463, + "tas": 6538, + "tas": 10163, + "tash": 35272, + "tasha": 44967, + "task": 39189, + "task": 10549, + "tasks": 19453, + "tasmania": 22429, + "tasmanian": 45102, + "tassel": 49276, + "tast": 10839, + "taste": 14314, + "taste": 5219, + "tasted": 22827, + "tasteof": 38097, + "taster": 29743, + "tastes": 13736, + "tastic": 21337, + "tasting": 7656, + "tastings": 49273, + "tasty": 43390, + "tasty": 8568, + "tat": 2652, + "tat": 21592, + "tata": 19300, + "tate": 44476, + "tate": 13295, + "tath": 27566, + "tati": 31433, + "tatiana": 48837, + "tation": 5280, + "tations": 32324, + "tator": 18791, + "tators": 37206, + "tats": 44557, + "tatt": 9232, + "tatted": 41605, + "tattoo": 15980, + "tattoo": 6325, + "tattooed": 28541, + "tattoos": 14900, + "tatum": 26103, + "tau": 6620, + "tau": 20510, + "taught": 9306, + "taun": 23910, + "taunton": 40681, + "taurus": 32881, + "taver": 37776, + "tavern": 18644, + "taw": 33868, + "taw": 40289, + "tawa": 29035, + "tawards": 14351, + "tax": 4581, + "tax": 3879, + "taxation": 36847, + "taxes": 11462, + "taxi": 25160, + "taxi": 11380, + "taxider": 47420, + "taxis": 34009, + "taxpay": 17986, + "taxpayer": 30978, + "taxpayers": 25503, + "tay": 6542, + "tay": 15073, + "taya": 38484, + "tayl": 3913, + "taylor": 9044, + "taylor": 3961, + "taylorswift": 18936, + "tayo": 33941, + "taz": 41475, + "taz": 31870, + "tb": 1990, + "tb": 7490, + "tba": 34363, + "tball": 8390, + "tball": 1467, + "tbc": 31807, + "tbd": 45548, + "tbh": 13238, + "tbi": 45868, + "tbl": 42962, + "tbli": 43664, + "tblightning": 44178, + "tbo": 34255, + "tbr": 46643, + "tbs": 37368, + "tbt": 2950, + "tc": 6820, + "tc": 5454, + "tca": 35116, + "tch": 10744, + "tch": 4048, + "tches": 42001, + "tcm": 21501, + "tcm": 26588, + "tcmparty": 24338, + "tcot": 8995, + "tcs": 39107, + "tcu": 26791, + "td": 20578, + "td": 3192, + "tdf": 21844, + "tdi": 45621, + "tdp": 47009, + "tds": 20238, + "tdsb": 29836, + "te": 600, + "te": 756, + "tea": 41053, + "tea": 3274, + "teach": 2043, + "teach": 6865, + "teacher": 18051, + "teacher": 4008, + "teachers": 5069, + "teaches": 17110, + "teaching": 5141, + "teachings": 32119, + "teal": 22821, + "team": 2085, + "team": 1027, + "teamcanada": 46636, + "teamed": 20590, + "teamgb": 40971, + "teaming": 24392, + "teammate": 17900, + "teammates": 13921, + "teams": 3891, + "teamsisd": 34703, + "teamusa": 28625, + "teamwork": 14657, + "teaparty": 33065, + "teapo": 35745, + "teapot": 40749, + "tear": 15802, + "tear": 11862, + "tearful": 46873, + "tearing": 24785, + "tears": 7688, + "teas": 23003, + "teas": 29314, + "tease": 25163, + "teased": 49122, + "teaser": 8982, + "teasers": 48990, + "teases": 28509, + "teasing": 36507, + "teat": 26376, + "teatime": 48948, + "teatro": 35756, + "teau": 24931, + "tebow": 37797, + "tec": 17381, + "tec": 11612, + "tech": 1782, + "tech": 2061, + "techcrunch": 42110, + "techn": 6252, + "technews": 31787, + "technic": 16639, + "technic": 37666, + "technical": 49231, + "technical": 7582, + "technically": 23180, + "technician": 22540, + "technicians": 35513, + "techno": 2599, + "techno": 17564, + "technological": 23068, + "technologies": 10040, + "technology": 3089, + "techs": 41353, + "ted": 4841, + "ted": 775, + "tedcruz": 27517, + "teddy": 25758, + "teddy": 11798, + "tedly": 8539, + "tedu": 42517, + "tedx": 17950, + "tedx": 41504, + "tee": 12676, + "tee": 3385, + "teed": 13692, + "teen": 5398, + "teen": 4697, + "teenage": 14069, + "teenager": 19338, + "teenagers": 25989, + "teenchoice": 28203, + "teens": 12375, + "teenth": 20249, + "teenwolf": 40067, + "teeny": 41622, + "teer": 48648, + "tees": 9641, + "teessi": 43295, + "teeth": 8225, + "tega": 29508, + "tegr": 39801, + "teh": 18720, + "teh": 29601, + "tehran": 26399, + "tein": 33223, + "tej": 46724, + "tek": 17489, + "tek": 18294, + "tekken": 29843, + "tel": 4978, + "tel": 2226, + "telang": 23469, + "telangana": 26386, + "tele": 3103, + "tele": 32851, + "telecom": 21057, + "telecommunications": 39900, + "telegram": 26780, + "telegraph": 14713, + "telephone": 17243, + "telescope": 19037, + "telethon": 49266, + "televised": 39470, + "television": 8608, + "telford": 38323, + "tell": 16069, + "tell": 2330, + "teller": 20415, + "tellers": 42707, + "telling": 5507, + "tells": 5217, + "tellu": 42511, + "telly": 31475, + "tels": 43607, + "telugu": 22927, + "tely": 5630, + "tem": 2404, + "tem": 17536, + "tema": 45881, + "teme": 43378, + "temp": 2684, + "temp": 11097, + "tempe": 36723, + "temper": 5981, + "temper": 35521, + "temperature": 9543, + "temperatures": 11575, + "tempered": 40521, + "tempest": 36053, + "templ": 16679, + "template": 18591, + "templates": 30498, + "temple": 21841, + "temple": 5620, + "temples": 24024, + "tempo": 19625, + "tempor": 4858, + "temporal": 43656, + "temporarily": 23189, + "temporary": 6513, + "temps": 11668, + "tempt": 28460, + "temptation": 30118, + "tempted": 26226, + "tempting": 34876, + "ten": 1149, + "ten": 2581, + "tenant": 16954, + "tenants": 26023, + "tenay": 45384, + "tenberg": 31329, + "tend": 17630, + "tend": 21252, + "tendency": 47277, + "tender": 23020, + "tender": 9838, + "tenderloin": 42750, + "tenders": 44741, + "tending": 35084, + "tendon": 48459, + "tends": 39962, + "tene": 24868, + "tened": 13682, + "tener": 29054, + "teneri": 28000, + "tenerife": 29401, + "teners": 41307, + "teness": 18018, + "teng": 34016, + "teng": 28474, + "tennant": 29310, + "tennes": 9514, + "tennessee": 10053, + "tennis": 31504, + "tennis": 5298, + "tenor": 30521, + "tens": 14062, + "tense": 23518, + "tension": 15221, + "tensions": 24224, + "tenstein": 49139, + "tent": 18505, + "tent": 10782, + "tentative": 48238, + "tenth": 27483, + "tention": 12191, + "tents": 30730, + "tenure": 30739, + "teo": 18665, + "tep": 31806, + "tequ": 17502, + "tequila": 18510, + "ter": 704, + "ter": 652, + "tera": 15155, + "teras": 44830, + "tere": 11329, + "tered": 49272, + "tered": 4389, + "terence": 33806, + "teresa": 19081, + "teri": 30917, + "teria": 22685, + "terie": 42276, + "tering": 7929, + "term": 40991, + "term": 4780, + "termin": 4766, + "terminal": 11816, + "terminals": 44091, + "terminator": 29609, + "terminology": 48896, + "terms": 8663, + "tern": 41572, + "tern": 12959, + "terns": 25251, + "tero": 20727, + "tero": 24697, + "terps": 41471, + "terr": 3921, + "terra": 22366, + "terra": 18816, + "terrac": 28549, + "terrace": 13820, + "terraces": 47508, + "terracotta": 45123, + "terrain": 20184, + "terran": 43726, + "terre": 33888, + "terre": 27537, + "terrell": 39494, + "terrence": 38746, + "terrestrial": 46299, + "terri": 4504, + "terri": 36722, + "terrible": 9741, + "terribly": 34558, + "terrier": 14455, + "terriers": 47047, + "terrific": 13837, + "terrified": 28204, + "terrifying": 18526, + "territ": 10720, + "territorial": 39163, + "territories": 32846, + "territory": 13936, + "terror": 9596, + "terror": 9327, + "terrori": 6836, + "terrorism": 10583, + "terrorist": 10575, + "terrorists": 12835, + "terry": 19378, + "terry": 8561, + "ters": 24102, + "ters": 1737, + "terti": 48386, + "tery": 4184, + "tes": 8019, + "tes": 3609, + "tesco": 15434, + "tese": 33320, + "tesla": 12254, + "tess": 21807, + "tess": 20840, + "tessa": 32063, + "test": 7738, + "test": 1628, + "testam": 23477, + "testament": 24609, + "tested": 10576, + "tester": 32707, + "testi": 18373, + "testic": 42364, + "testify": 33088, + "testifying": 46347, + "testim": 12553, + "testimonial": 28834, + "testimony": 18672, + "testing": 4967, + "testo": 42428, + "testosterone": 45168, + "tests": 8715, + "tet": 40468, + "tet": 13275, + "tetra": 40902, + "tetris": 45934, + "teu": 47152, + "teuk": 39979, + "teur": 27120, + "tex": 2056, + "tex": 11728, + "texan": 35287, + "texan": 38386, + "texans": 17580, + "texanscheer": 43717, + "texas": 15713, + "texas": 3403, + "texaste": 46469, + "text": 18169, + "text": 4160, + "textbook": 25952, + "textbooks": 44041, + "texted": 29004, + "textile": 19789, + "textiles": 24326, + "texting": 18600, + "texts": 12767, + "texture": 16505, + "textured": 32168, + "textures": 28063, + "tey": 32395, + "tez": 22664, + "tf": 18828, + "tf": 5001, + "tfc": 30186, + "tfl": 29918, + "tford": 22493, + "tful": 17108, + "tfw": 16741, + "tg": 7665, + "tg": 11981, + "tgif": 14483, + "th": 513, + "th": 640, + "tha": 18470, + "tha": 4715, + "thab": 38219, + "thad": 48339, + "thai": 28054, + "thai": 8825, + "thail": 7258, + "thailand": 7469, + "thak": 22801, + "thakur": 38427, + "thal": 7967, + "thal": 12323, + "thala": 17784, + "thalai": 25206, + "thalaivar": 44918, + "thalap": 39789, + "thalapathy": 45405, + "thalapathy": 23324, + "thall": 36007, + "tham": 11761, + "tham": 8896, + "thames": 43472, + "thames": 15321, + "than": 792, + "than": 1126, + "thand": 44465, + "thane": 21463, + "thang": 24870, + "thani": 31322, + "thank": 2790, + "thank": 1144, + "thanked": 32079, + "thankful": 38839, + "thankful": 6217, + "thankfully": 22089, + "thanking": 21989, + "thanks": 5672, + "thanks": 1085, + "thanksgiving": 45732, + "thanksgiving": 6167, + "thanku": 45710, + "thankyou": 18050, + "thankyou": 9911, + "thanniversary": 35564, + "thanos": 36709, + "thanx": 25095, + "thar": 14396, + "thar": 38843, + "thard": 43474, + "that": 6303, + "that": 682, + "thatcher": 32496, + "thats": 44636, + "thats": 9254, + "thaw": 26081, + "thaw": 47229, + "thbewithyou": 41067, + "thc": 20091, + "thcentury": 49111, + "thd": 28219, + "thday": 37801, + "the": 599, + "the": 518, + "thea": 15935, + "thea": 25429, + "thead": 25259, + "theal": 45728, + "thealth": 31398, + "thear": 43283, + "theart": 44678, + "theast": 8378, + "theastern": 17877, + "theat": 2263, + "theater": 39438, + "theater": 6128, + "theaters": 14689, + "theatre": 19857, + "theatre": 3292, + "theatres": 21680, + "theatrical": 26833, + "theband": 27695, + "thebeatles": 35645, + "thebest": 40883, + "thebest": 25856, + "thebig": 24732, + "theblack": 47718, + "thec": 48659, + "thed": 31405, + "thedaily": 33550, + "theday": 4408, + "thedream": 39417, + "thee": 44475, + "thee": 15108, + "theeconomist": 44518, + "theellenshow": 35342, + "thefilm": 31665, + "theflash": 25434, + "theforce": 40002, + "theforceawakens": 48033, + "theft": 13286, + "thefuture": 34287, + "thegame": 24428, + "thegood": 28594, + "thegreat": 28721, + "thei": 44522, + "their": 911, + "theirs": 29297, + "thel": 5403, + "thelast": 23495, + "thelastjedi": 47992, + "theless": 27712, + "theli": 15277, + "thelittle": 46872, + "thelo": 47036, + "thelove": 40668, + "thelove": 43200, + "them": 5435, + "them": 1180, + "themasters": 48378, + "theme": 38524, + "theme": 5849, + "themed": 10126, + "themes": 17849, + "themet": 48183, + "themovie": 27062, + "themselves": 6503, + "then": 5929, + "then": 1594, + "thenburg": 45209, + "thene": 17012, + "thenew": 24212, + "thenext": 47881, + "thenight": 43336, + "theno": 37172, + "thenorth": 34338, + "theo": 17043, + "theo": 18084, + "theod": 26653, + "theodore": 30743, + "theological": 41162, + "theology": 24095, + "theon": 34653, + "theone": 46231, + "theopen": 41438, + "theore": 22690, + "theoretical": 35585, + "theori": 34804, + "theories": 23937, + "theory": 7143, + "thepeople": 33597, + "thepersonal": 29981, + "thepersonalnetwork": 30016, + "thephoto": 18303, + "thephotohour": 18607, + "ther": 1160, + "ther": 743, + "therap": 4499, + "therapeu": 19332, + "therapeutic": 23240, + "therapeutics": 49101, + "therapies": 30179, + "therapist": 20608, + "therapists": 34763, + "therapper": 49340, + "therapy": 5257, + "there": 5283, + "there": 997, + "thereal": 8074, + "thereal": 41140, + "thereby": 43308, + "thered": 10208, + "therefore": 16865, + "theres": 18494, + "theresa": 14126, + "therese": 47996, + "theresistance": 22845, + "theri": 28967, + "theri": 45297, + "therine": 26807, + "therine": 9239, + "thering": 7891, + "therland": 25351, + "thermal": 13689, + "thermo": 22303, + "thermom": 31138, + "thermometer": 38172, + "thermost": 42391, + "thern": 10919, + "thern": 3137, + "thero": 13165, + "theroad": 29807, + "therock": 30036, + "theroy": 38146, + "thers": 1959, + "thes": 40556, + "thes": 6460, + "thescript": 47061, + "these": 40366, + "these": 1071, + "theses": 39388, + "thesimpsons": 45513, + "thesims": 34192, + "thesis": 10673, + "thessal": 41491, + "thessaloni": 41753, + "thest": 35343, + "thesun": 45617, + "theta": 27694, + "thetic": 7954, + "thetimes": 36039, + "thevamp": 33701, + "thevoice": 47206, + "thevoice": 30258, + "thewalkingdead": 18087, + "thewanted": 43008, + "theworld": 44988, + "theworld": 17475, + "thex": 35990, + "they": 15174, + "they": 889, + "theyre": 28266, + "thfc": 17729, + "thi": 2362, + "thi": 9111, + "thia": 17943, + "thiago": 44537, + "thian": 23214, + "thians": 28187, + "thibau": 48351, + "thic": 26107, + "thic": 11794, + "thick": 18417, + "thick": 11006, + "thicker": 43302, + "thickness": 40754, + "thief": 18508, + "thier": 25595, + "thierry": 32929, + "thieves": 17899, + "thigh": 47124, + "thigh": 22877, + "thighs": 30847, + "thik": 20512, + "thika": 44619, + "thill": 31266, + "thim": 42331, + "thin": 2178, + "thin": 7847, + "thine": 47192, + "thing": 7499, + "thing": 946, + "things": 30670, + "things": 1739, + "thingsto": 43924, + "thingy": 36888, + "think": 9820, + "think": 1331, + "thinkbig": 26015, + "thinkbigsundaywithmarsha": 26666, + "thinker": 34577, + "thinkers": 32779, + "thinkin": 34443, + "thinking": 3291, + "thinks": 6109, + "thinner": 47247, + "thir": 6030, + "third": 32102, + "third": 3981, + "thirds": 42582, + "thirst": 23563, + "thirsty": 39731, + "thirsty": 17521, + "thirteen": 34209, + "thirty": 20813, + "thiru": 43292, + "this": 4340, + "this": 589, + "thisday": 6532, + "thisdayin": 33641, + "thisdayinhistory": 46913, + "thisi": 7299, + "thisis": 14887, + "thismorning": 36245, + "thistle": 29039, + "thistory": 28904, + "thium": 21804, + "thletics": 17765, + "thm": 10407, + "thman": 30079, + "thms": 19874, + "thn": 44155, + "thn": 45587, + "thnx": 25480, + "tho": 1325, + "tho": 5025, + "thof": 18943, + "thofjuly": 21613, + "thol": 29319, + "thole": 31029, + "tholes": 42465, + "thology": 9881, + "thom": 2585, + "thom": 24094, + "thomas": 12574, + "thomas": 3888, + "thome": 21289, + "thomp": 37274, + "thompson": 42181, + "thompson": 8535, + "thomson": 24151, + "thon": 38776, + "thon": 8924, + "thong": 37058, + "thood": 15623, + "thor": 4130, + "thor": 13691, + "thora": 46866, + "thorn": 12957, + "thorn": 18466, + "thorne": 18025, + "thorns": 33650, + "thornton": 23592, + "thorough": 15294, + "thorough": 34788, + "thoroughbred": 43248, + "thoroughly": 19750, + "thorpe": 18099, + "thos": 41965, + "those": 1753, + "thot": 33736, + "thou": 1513, + "thou": 17781, + "though": 2846, + "thought": 23948, + "thought": 2449, + "thoughtful": 19592, + "thoughts": 3618, + "thour": 27125, + "thousand": 9344, + "thousands": 7089, + "thouse": 40318, + "thouse": 7819, + "thoven": 23078, + "thr": 1111, + "thr": 19138, + "thra": 17761, + "thra": 32797, + "thrash": 38262, + "thre": 1607, + "thread": 31108, + "thread": 8815, + "threads": 24957, + "threat": 7527, + "threat": 7212, + "threaten": 26097, + "threatened": 16391, + "threatening": 16400, + "threatens": 20555, + "threats": 12766, + "three": 21615, + "three": 2097, + "thren": 41776, + "thresh": 29779, + "threshold": 33791, + "threw": 12746, + "thri": 8713, + "thrift": 27779, + "thrill": 21023, + "thrilled": 7879, + "thriller": 9653, + "thrilling": 20101, + "thrills": 39829, + "thrive": 17669, + "thriving": 22677, + "thro": 2101, + "thro": 28624, + "throat": 16371, + "thrombo": 47585, + "throne": 15999, + "thrones": 8072, + "throp": 34939, + "throttle": 37139, + "through": 6091, + "through": 1417, + "throughout": 6721, + "throughs": 48278, + "throw": 3315, + "throw": 6293, + "throwback": 6001, + "throwback": 5058, + "throwbackthursday": 6326, + "thrower": 40199, + "throwing": 9734, + "thrown": 15079, + "throws": 14723, + "thru": 23856, + "thru": 6162, + "thrush": 46133, + "thrust": 40202, + "ths": 2079, + "tht": 23554, + "thu": 3837, + "thu": 14153, + "thub": 25660, + "thug": 37212, + "thug": 18137, + "thugs": 27686, + "thul": 28368, + "thulhu": 37560, + "thum": 14679, + "thumb": 19514, + "thumb": 18674, + "thumbnail": 32365, + "thumbs": 17599, + "thun": 32267, + "thunder": 6161, + "thunder": 8951, + "thunderbird": 45131, + "thunderbirds": 44286, + "thunderbolt": 43596, + "thunderstorm": 12005, + "thunderstorms": 19525, + "thunt": 46763, + "thur": 1837, + "thur": 21704, + "thurman": 41291, + "thurs": 9908, + "thursday": 11218, + "thursday": 2221, + "thursdaymotivation": 39375, + "thursdays": 21444, + "thursdaythoughts": 14866, + "thurst": 33970, + "thus": 12457, + "thusi": 9488, + "thwaite": 48469, + "thweeksary": 30871, + "thx": 5913, + "thy": 7804, + "thy": 3362, + "thyme": 29805, + "thyro": 25174, + "thyroid": 32558, + "ti": 555, + "ti": 2605, + "tia": 6709, + "tial": 2826, + "tially": 14503, + "tian": 23011, + "tian": 8125, + "tians": 35182, + "tiara": 38322, + "tib": 47868, + "tibet": 19927, + "tibet": 22234, + "tibetan": 24057, + "tible": 11453, + "tic": 890, + "tic": 1550, + "tica": 9669, + "tical": 34191, + "tical": 4342, + "tically": 13375, + "ticals": 30861, + "tice": 3122, + "tich": 48769, + "tician": 43358, + "ticism": 26491, + "tick": 24640, + "tick": 15617, + "ticket": 25740, + "ticket": 4500, + "ticketing": 44432, + "tickets": 2015, + "ticking": 35842, + "tickle": 42999, + "ticks": 40269, + "tico": 17670, + "ticon": 45996, + "tics": 2419, + "ticul": 15538, + "ticus": 44277, + "tid": 26002, + "tid": 23727, + "tidal": 21949, + "tide": 15698, + "tide": 9105, + "tides": 25524, + "tidy": 23858, + "tie": 14072, + "tie": 3422, + "tied": 9889, + "tiem": 34762, + "tien": 47538, + "tiene": 43438, + "tier": 14390, + "tier": 6598, + "tierney": 45693, + "tiers": 24604, + "ties": 25556, + "ties": 2499, + "tiest": 18300, + "tiesto": 46367, + "tif": 23216, + "tiff": 11112, + "tiff": 20699, + "tiffany": 30467, + "tiffany": 14446, + "tification": 43923, + "tified": 40854, + "tiful": 29123, + "tify": 6677, + "tig": 31999, + "tiger": 11954, + "tiger": 6531, + "tigers": 6934, + "tigh": 31365, + "tight": 25763, + "tight": 9123, + "tighten": 46653, + "tighter": 48193, + "tightly": 37568, + "tights": 29581, + "tijuana": 45273, + "tik": 24986, + "tik": 32403, + "tiki": 30107, + "til": 6124, + "til": 1763, + "tile": 26217, + "tile": 8227, + "tiles": 10607, + "tility": 38180, + "till": 17462, + "till": 4267, + "tilla": 26063, + "tillerson": 47738, + "tilly": 41199, + "tilt": 23601, + "tim": 1292, + "tim": 3863, + "timate": 4754, + "timb": 26627, + "timber": 14441, + "timber": 16246, + "timberlake": 28274, + "timbers": 39911, + "timberwolves": 41190, + "time": 3764, + "time": 788, + "timed": 32727, + "timehop": 19944, + "timel": 23549, + "timelapse": 48154, + "timeless": 15558, + "timeline": 11492, + "timely": 19250, + "timeout": 41536, + "timer": 19725, + "timers": 44574, + "times": 26445, + "times": 1661, + "timesnow": 45487, + "timesof": 32522, + "timesofindia": 44182, + "timetable": 31971, + "timeto": 29187, + "timing": 13624, + "timm": 22444, + "timmy": 33252, + "timo": 13390, + "timo": 33777, + "timothy": 42087, + "timothy": 18560, + "timp": 42166, + "tin": 1310, + "tin": 5420, + "tina": 9257, + "tinder": 24287, + "tine": 22341, + "ting": 7451, + "ting": 694, + "tinged": 44829, + "tings": 35332, + "tini": 26839, + "tink": 39278, + "tinker": 45272, + "tinker": 40910, + "tino": 20538, + "tins": 37359, + "tint": 40497, + "tinted": 42618, + "tiny": 21716, + "tiny": 5591, + "tio": 27562, + "tion": 2274, + "tion": 740, + "tional": 22460, + "tional": 2986, + "tionality": 24514, + "tionally": 12409, + "tionary": 8381, + "tione": 44318, + "tioned": 9083, + "tioning": 15528, + "tionist": 25732, + "tions": 1371, + "tious": 14255, + "tip": 15383, + "tip": 4623, + "tipoff": 44521, + "tipp": 32294, + "tipped": 31878, + "tipper": 38095, + "tipperary": 45612, + "tipping": 27827, + "tips": 3173, + "tipton": 48809, + "tiptuesday": 42112, + "tique": 37772, + "tir": 25467, + "tir": 38462, + "tire": 29128, + "tire": 9362, + "tired": 6533, + "tireless": 39835, + "tirelessly": 41548, + "tires": 15533, + "tiring": 42630, + "tiru": 36033, + "tis": 7839, + "tis": 7394, + "tise": 13745, + "tisgarh": 40538, + "tish": 45148, + "tish": 28784, + "tism": 27113, + "tiss": 28155, + "tissue": 15368, + "tissues": 32172, + "tist": 7902, + "tista": 25580, + "tists": 25944, + "tit": 1991, + "tit": 13202, + "tita": 40936, + "titan": 13496, + "titan": 15516, + "titanic": 20729, + "titanium": 24409, + "titans": 13066, + "titi": 17434, + "titi": 48504, + "title": 28033, + "title": 3644, + "titled": 9939, + "titles": 9780, + "tito": 26838, + "titus": 36102, + "tium": 21975, + "tiv": 1835, + "tiva": 41886, + "tive": 14640, + "tive": 1420, + "tively": 9883, + "tiveness": 20955, + "tives": 7570, + "tivity": 9859, + "tivo": 32162, + "tix": 5835, + "tiz": 19376, + "tj": 18890, + "tj": 18988, + "tk": 22344, + "tk": 20676, + "tko": 37347, + "tks": 38739, + "tl": 14325, + "tl": 8190, + "tland": 30697, + "tlap": 41976, + "tlc": 22047, + "tle": 39141, + "tle": 5825, + "tles": 39363, + "tless": 17427, + "tlot": 41080, + "tls": 47367, + "tly": 37483, + "tly": 1646, + "tm": 9430, + "tm": 7789, + "tman": 20796, + "tmc": 35263, + "tment": 26485, + "tml": 39445, + "tmltalk": 42260, + "tmnt": 32444, + "tmobile": 34901, + "tmr": 35906, + "tmrw": 16496, + "tms": 44496, + "tmund": 23801, + "tmw": 45827, + "tmz": 37248, + "tn": 3827, + "tn": 7248, + "tna": 21150, + "tnam": 8079, + "tner": 34922, + "tness": 35212, + "tney": 9523, + "tng": 35898, + "tnt": 20659, + "tnx": 38220, + "to": 580, + "to": 531, + "toa": 17916, + "toad": 26096, + "toast": 24654, + "toast": 10920, + "toasted": 23533, + "toaster": 39061, + "toasty": 44726, + "tob": 24260, + "tobac": 12611, + "tobacco": 13905, + "tobago": 39482, + "tobe": 17534, + "tobe": 28740, + "tober": 18162, + "tober": 2925, + "toberfest": 26249, + "tobi": 40335, + "tobi": 48374, + "tobias": 32464, + "tobin": 42466, + "toby": 29659, + "toby": 18333, + "toc": 41907, + "toc": 30643, + "tock": 25274, + "tod": 38239, + "tod": 33568, + "toda": 47141, + "todas": 36150, + "today": 11800, + "today": 721, + "todayin": 32957, + "todays": 13513, + "todayshow": 29739, + "todd": 10398, + "todd": 9951, + "toddler": 17772, + "toddlers": 36719, + "toddy": 38926, + "todo": 48857, + "todo": 23087, + "todos": 33355, + "toe": 47756, + "toe": 11344, + "toes": 16511, + "tof": 6659, + "toff": 27319, + "toffee": 34880, + "tofficial": 47953, + "tofthe": 23678, + "toftheday": 20566, + "tofu": 24692, + "tog": 45715, + "toge": 1903, + "together": 17858, + "together": 1952, + "togo": 26729, + "tography": 33968, + "toh": 26851, + "toi": 7472, + "toi": 26941, + "toid": 49124, + "toile": 43148, + "toilet": 11071, + "toilets": 24027, + "toire": 39534, + "tok": 16690, + "tok": 27010, + "token": 32634, + "token": 17134, + "tokens": 23562, + "tokyo": 35038, + "tokyo": 6667, + "tol": 4678, + "tol": 32962, + "told": 3527, + "tole": 15677, + "toledo": 19812, + "toler": 12150, + "tolerance": 20377, + "tolerant": 38536, + "tolerate": 35556, + "tolkien": 32989, + "toll": 44090, + "toll": 14155, + "tollywood": 42016, + "tology": 34799, + "tom": 999, + "tom": 2435, + "toma": 42360, + "toma": 44710, + "tomas": 35944, + "tomas": 27178, + "tomat": 12041, + "tomato": 9867, + "tomatoes": 13004, + "tomb": 37187, + "tomb": 15582, + "tombs": 48613, + "tombstone": 45729, + "tome": 24137, + "tome": 24283, + "tomi": 46290, + "tomlin": 46649, + "tomlinson": 17484, + "tommorow": 42871, + "tommy": 16573, + "tommy": 8876, + "tomo": 31223, + "tomo": 34434, + "tomor": 1277, + "tomorrow": 19728, + "tomorrow": 1293, + "tomorrowland": 34951, + "tomorrows": 32258, + "tomorrowspaper": 35005, + "tomorrowspaperstoday": 35190, + "tomp": 43544, + "tompkins": 49068, + "toms": 10545, + "tomy": 18730, + "ton": 838, + "ton": 917, + "tona": 13459, + "tone": 32366, + "tone": 8408, + "toned": 29426, + "toner": 40614, + "tones": 14744, + "tong": 21510, + "tonga": 37882, + "tongue": 44820, + "tongue": 13626, + "tongues": 39837, + "toni": 17766, + "toni": 17171, + "tonic": 17808, + "tonics": 34647, + "tonight": 1009, + "tonights": 23312, + "tonite": 13449, + "tonka": 42781, + "tonline": 45867, + "tonne": 42450, + "tonnes": 24813, + "tons": 7555, + "tony": 9150, + "tony": 4767, + "tonyawards": 46068, + "too": 1843, + "too": 1256, + "took": 2280, + "tool": 13718, + "tool": 5999, + "toolbox": 46599, + "toolkit": 29849, + "tools": 5771, + "toom": 27550, + "toon": 24664, + "toon": 19701, + "toonami": 48336, + "toons": 35345, + "toor": 42590, + "tooth": 15316, + "tooth": 12030, + "toothbrush": 36841, + "toothpaste": 37322, + "tooting": 42969, + "top": 5534, + "top": 1253, + "topaz": 46125, + "tope": 32149, + "tope": 42239, + "topeka": 46884, + "topia": 29618, + "topic": 8720, + "topical": 37464, + "topics": 11916, + "topless": 37415, + "topo": 23008, + "topoli": 30152, + "topp": 19529, + "topped": 12588, + "topper": 31780, + "toppers": 41651, + "topping": 21071, + "toppings": 47554, + "topps": 20201, + "tops": 8154, + "topshop": 40953, + "topus": 21495, + "tor": 937, + "tor": 1208, + "tora": 45147, + "torah": 37945, + "toral": 45282, + "torch": 31921, + "torch": 15820, + "tore": 38066, + "tore": 19385, + "tored": 38046, + "torg": 33214, + "tori": 17689, + "tori": 17539, + "toria": 23732, + "torial": 28029, + "torian": 48399, + "tories": 14193, + "torino": 29178, + "torio": 34235, + "torn": 8572, + "torn": 18023, + "tornad": 24676, + "tornado": 9062, + "tornadoes": 28254, + "toro": 17892, + "toron": 37407, + "toronto": 16866, + "toronto": 4514, + "torpe": 34093, + "torpedo": 46582, + "torquay": 45738, + "torque": 31940, + "torre": 39563, + "torre": 38009, + "torrent": 42317, + "torrential": 41158, + "torres": 16049, + "tors": 2546, + "tortilla": 32683, + "torto": 24170, + "tortoise": 30178, + "torture": 16013, + "tortured": 29900, + "tory": 29390, + "tory": 4214, + "tos": 6094, + "tosc": 37719, + "tose": 38154, + "tosh": 17109, + "toshi": 31744, + "toss": 19656, + "tossed": 31296, + "tot": 4618, + "tot": 23659, + "total": 13507, + "total": 4445, + "totally": 5440, + "totals": 25772, + "tote": 48145, + "tote": 19031, + "totem": 45376, + "totes": 37199, + "tothe": 12222, + "toto": 39823, + "tots": 24978, + "totten": 14360, + "tottenham": 14889, + "tou": 1879, + "tou": 29261, + "touch": 9480, + "touch": 4526, + "touchdown": 18664, + "touchdowns": 37905, + "touched": 13190, + "touches": 14832, + "touching": 14088, + "touchscreen": 39095, + "tough": 12063, + "tough": 5499, + "tougher": 33722, + "toughest": 23773, + "toughness": 45522, + "toulou": 27145, + "toulouse": 30267, + "tour": 2710, + "tour": 1760, + "tourde": 39247, + "toured": 27654, + "touri": 4224, + "touring": 11853, + "tourism": 23661, + "tourism": 6556, + "tourist": 12123, + "tourists": 15546, + "tournament": 4097, + "tournaments": 23058, + "tourney": 12603, + "tours": 8948, + "tous": 37424, + "tout": 22300, + "touts": 41274, + "tov": 28970, + "tow": 11557, + "tow": 18653, + "toward": 8508, + "towards": 4447, + "towed": 45419, + "towel": 15953, + "towels": 26578, + "tower": 26669, + "tower": 4730, + "towering": 39444, + "towers": 12701, + "towie": 44613, + "towin": 45819, + "towing": 36963, + "town": 4068, + "town": 1605, + "townfc": 33981, + "townhall": 33408, + "townhouse": 40178, + "towns": 14173, + "townsend": 26826, + "township": 14622, + "townsville": 47330, + "towork": 48233, + "tox": 7742, + "tox": 16145, + "toxic": 27436, + "toxic": 12348, + "toxicity": 41234, + "toxin": 48899, + "toxins": 36618, + "toy": 14387, + "toy": 5988, + "toya": 37602, + "toyo": 7644, + "toyota": 8908, + "toys": 39508, + "toys": 7162, + "tp": 23760, + "tp": 15188, + "tpp": 29411, + "tps": 35246, + "tq": 43066, + "tr": 635, + "tr": 6337, + "tra": 752, + "tra": 2483, + "trac": 2266, + "trace": 48611, + "trace": 14767, + "traced": 47956, + "traces": 30913, + "tracey": 25558, + "tracing": 27897, + "track": 10887, + "track": 2700, + "tracked": 27049, + "tracker": 18123, + "tracking": 10428, + "tracklist": 39777, + "tracks": 7579, + "tract": 4690, + "traction": 10644, + "tractor": 14607, + "tractors": 37854, + "tracy": 32984, + "tracy": 15508, + "trad": 48716, + "trad": 38037, + "trade": 10457, + "trade": 3629, + "traded": 18860, + "trademark": 25011, + "trader": 17700, + "traders": 19112, + "trades": 18519, + "trading": 40083, + "trading": 6520, + "tradio": 20689, + "tradition": 20838, + "tradition": 8784, + "traditional": 41113, + "traditional": 5604, + "traditionally": 35532, + "traditions": 18016, + "traf": 3227, + "trafal": 32461, + "trafalgar": 36969, + "traff": 31571, + "traffic": 12080, + "traffic": 3399, + "trafficking": 15983, + "trafford": 22912, + "trage": 12430, + "tragedy": 14082, + "tragic": 14828, + "tragically": 39599, + "trail": 11523, + "trail": 4921, + "trailblazer": 41015, + "trailblazers": 35954, + "trailer": 4700, + "trailers": 24862, + "trailing": 37427, + "trails": 10633, + "train": 9122, + "train": 3231, + "trained": 10874, + "trainee": 25795, + "trainees": 30382, + "trainer": 9767, + "trainers": 18871, + "training": 34508, + "training": 2199, + "trains": 9541, + "trait": 35160, + "traitor": 31760, + "traitors": 42633, + "traits": 25748, + "trajec": 42042, + "trak": 24065, + "tral": 14609, + "tram": 9800, + "tram": 17500, + "tramp": 46289, + "trampol": 32905, + "trampoline": 42800, + "tramrahim": 35220, + "tran": 1357, + "tran": 22031, + "trance": 30584, + "trance": 18671, + "trancefamily": 39630, + "trane": 35779, + "tranqu": 18912, + "tranquil": 35764, + "tranquility": 36688, + "trans": 1826, + "trans": 8126, + "transaction": 24881, + "transactions": 21653, + "transat": 37872, + "transatlantic": 40703, + "transc": 21073, + "transcend": 47087, + "transcript": 39008, + "transcription": 48765, + "transfer": 22659, + "transfer": 7134, + "transferred": 29700, + "transferring": 40924, + "transfers": 21621, + "transform": 8142, + "transform": 12288, + "transformation": 34204, + "transformation": 7832, + "transformational": 47135, + "transformationtuesday": 36511, + "transformative": 38106, + "transformed": 17453, + "transformer": 38235, + "transformers": 17843, + "transforming": 44470, + "transforming": 19251, + "transforms": 30312, + "transgender": 17732, + "transi": 32236, + "transit": 10174, + "transiti": 22939, + "transition": 11391, + "transitional": 41519, + "transitioning": 43586, + "transitions": 39374, + "transl": 12243, + "translate": 22655, + "translated": 20752, + "translates": 36334, + "translating": 42156, + "translation": 12153, + "translations": 41367, + "translator": 36230, + "translucent": 49052, + "transm": 18861, + "transmission": 16103, + "transmitted": 48605, + "transmitter": 40457, + "transp": 11726, + "transpa": 18524, + "transparen": 16108, + "transparency": 16828, + "transparent": 19017, + "transpl": 16038, + "transplant": 41871, + "transplant": 18771, + "transplantation": 45207, + "transpor": 19406, + "transport": 10231, + "transport": 7362, + "transportation": 10911, + "transported": 29089, + "transporter": 43568, + "transporting": 42259, + "trap": 36224, + "trap": 9677, + "trape": 42435, + "trapped": 15592, + "traps": 28517, + "tras": 30638, + "trash": 39215, + "trash": 9798, + "traum": 22263, + "trauma": 13846, + "traumati": 46613, + "traumatic": 29958, + "trav": 7586, + "trav": 46955, + "trave": 35357, + "travel": 2824, + "travel": 1949, + "travelblog": 35957, + "travelblogger": 25494, + "travelchat": 46455, + "traveled": 20384, + "traveler": 17794, + "travelers": 20644, + "travelgram": 40069, + "traveling": 9365, + "travelled": 23428, + "traveller": 22546, + "travellers": 29583, + "travelling": 11190, + "travelphotography": 22808, + "travelpics": 32293, + "travels": 11472, + "traveltips": 36260, + "traveltuesday": 16713, + "traverse": 35058, + "travi": 46971, + "travis": 27441, + "travis": 12287, + "traw": 42288, + "trax": 34421, + "tray": 38470, + "tray": 14621, + "trays": 39798, + "trc": 41803, + "tre": 975, + "tre": 6033, + "treach": 46005, + "tread": 26182, + "tread": 35658, + "treadmill": 37780, + "treas": 8591, + "treason": 28103, + "treasure": 9922, + "treasured": 48068, + "treasurer": 26985, + "treasures": 16500, + "treasury": 20956, + "treat": 3968, + "treat": 3901, + "treated": 9772, + "treating": 13842, + "treatment": 4869, + "treatments": 15839, + "treats": 8878, + "treaty": 19967, + "treble": 33194, + "trecht": 33812, + "tree": 13354, + "tree": 2677, + "treehouse": 42387, + "trees": 4682, + "trek": 13236, + "trek": 8136, + "trekking": 25293, + "trell": 35159, + "tremb": 44043, + "tremend": 14659, + "tremendous": 15988, + "tren": 2579, + "trench": 23846, + "trenches": 38723, + "trend": 19986, + "trend": 6643, + "trending": 6087, + "trends": 7015, + "trendsetter": 46666, + "trendy": 23072, + "trent": 45885, + "trent": 15548, + "trenton": 37470, + "tres": 23569, + "tress": 4733, + "tresses": 24273, + "trevor": 23437, + "trevor": 13219, + "trex": 42114, + "trey": 36670, + "trey": 16939, + "tri": 924, + "tri": 9618, + "triad": 45602, + "trial": 5991, + "trials": 10992, + "triangle": 14615, + "triathlon": 18080, + "trib": 45151, + "tribal": 16629, + "tribe": 19943, + "tribe": 11365, + "tribeca": 35184, + "tribes": 26546, + "tribu": 3028, + "tribun": 14311, + "tribunal": 32911, + "tribune": 18556, + "tribute": 5493, + "tributes": 15537, + "tric": 9511, + "tric": 4081, + "trich": 39519, + "trick": 17177, + "trick": 8172, + "tricks": 13177, + "tricky": 22319, + "trics": 31437, + "trident": 35491, + "tridge": 18722, + "tried": 4554, + "tries": 4315, + "trife": 48962, + "trigge": 30509, + "trigger": 16158, + "triggered": 30924, + "triggers": 37319, + "tright": 29915, + "tril": 40626, + "trill": 39297, + "trilli": 39350, + "trillion": 20160, + "trilo": 15183, + "trilogy": 16862, + "trim": 14182, + "trimmed": 40657, + "trin": 6628, + "trinidad": 26244, + "trinity": 30744, + "trinity": 12267, + "trio": 10263, + "trip": 23421, + "trip": 2529, + "tripad": 37189, + "tripadvisor": 38708, + "triple": 16519, + "triple": 7673, + "triplets": 48601, + "tripod": 36141, + "tripoli": 40095, + "trippin": 43073, + "tripping": 35229, + "trippy": 35137, + "trips": 12292, + "tris": 29690, + "trish": 40511, + "trish": 37179, + "trisha": 39152, + "tristan": 25497, + "trit": 37087, + "triton": 45437, + "triu": 14782, + "trium": 21065, + "triumph": 26507, + "triumph": 15307, + "triumphant": 41918, + "trivi": 21228, + "trivia": 10642, + "triviatuesday": 45499, + "trix": 41017, + "tro": 1046, + "tro": 3332, + "trock": 44368, + "trojan": 30653, + "trojans": 25310, + "trol": 10306, + "troll": 39737, + "troll": 17103, + "trolley": 25124, + "trolling": 28552, + "trolls": 20890, + "tromb": 32390, + "trombone": 44423, + "tron": 19057, + "tron": 10684, + "tronic": 34258, + "tronics": 34397, + "troom": 23691, + "troop": 12492, + "troop": 24054, + "trooper": 18327, + "troopers": 23576, + "troops": 10109, + "trop": 31585, + "trope": 41150, + "trophies": 20998, + "trophy": 42676, + "trophy": 6502, + "tropic": 21794, + "tropic": 36736, + "tropical": 41699, + "tropical": 8686, + "tropics": 36940, + "tros": 40456, + "trose": 36022, + "trot": 30453, + "trotter": 38287, + "trou": 5181, + "troubad": 49037, + "trouble": 25669, + "trouble": 7848, + "troubled": 25568, + "troubles": 27254, + "trough": 39761, + "troupe": 34803, + "trous": 19727, + "trousers": 23172, + "trout": 14853, + "trove": 45350, + "trow": 46914, + "troy": 26283, + "troy": 12819, + "trs": 24770, + "tru": 931, + "tru": 25326, + "truck": 14781, + "truck": 4629, + "trucker": 45918, + "truckers": 43404, + "trucking": 26208, + "trucks": 9569, + "trude": 39017, + "trudeau": 15752, + "true": 13096, + "true": 2328, + "truec": 37583, + "truelove": 45711, + "truffle": 23064, + "truffles": 37057, + "truly": 4545, + "trum": 11766, + "trum": 11399, + "truman": 29414, + "trump": 9124, + "trump": 1797, + "trumpet": 23681, + "trumpp": 45550, + "trumprussia": 39135, + "trumps": 29793, + "trumptrain": 43595, + "trun": 16163, + "trun": 46661, + "trunk": 18347, + "trunks": 38531, + "truro": 43507, + "truss": 46080, + "trust": 17691, + "trust": 3876, + "truste": 17356, + "trusted": 16538, + "trustee": 30803, + "trustees": 28853, + "trusting": 33221, + "trusts": 27507, + "trustworthy": 46840, + "trusty": 37955, + "truth": 21335, + "truth": 4319, + "truths": 27179, + "trx": 31620, + "try": 4487, + "try": 1209, + "tryin": 31085, + "trying": 2551, + "tryna": 15702, + "tryout": 43832, + "tryouts": 28053, + "ts": 2290, + "ts": 590, + "tsa": 25977, + "tsal": 20438, + "tsb": 45015, + "tsc": 37437, + "tsch": 38778, + "tsd": 20611, + "tse": 49144, + "tsfor": 42654, + "tsford": 32823, + "tsh": 42872, + "tshirt": 14907, + "tshirts": 29377, + "tsi": 40048, + "tsi": 37867, + "tsk": 43600, + "tsla": 35681, + "tsm": 43452, + "tsman": 20046, + "tsn": 44921, + "tsn": 26896, + "tson": 42353, + "tson": 47140, + "tsp": 34230, + "tsu": 13950, + "tsu": 20175, + "tsun": 19155, + "tsunami": 24286, + "tsville": 29080, + "tt": 971, + "tt": 1402, + "tta": 2646, + "ttc": 27668, + "tte": 23105, + "tte": 3070, + "tted": 15163, + "tten": 11351, + "tten": 17479, + "tter": 18691, + "tter": 5165, + "tters": 6318, + "ttes": 9293, + "tti": 5237, + "ttin": 36589, + "tting": 1188, + "ttino": 47389, + "ttip": 46993, + "ttle": 9253, + "ttm": 46838, + "tto": 8759, + "tto": 8105, + "tton": 10562, + "ttot": 12480, + "ttp": 30828, + "ttr": 47589, + "tts": 11570, + "ttt": 17256, + "tttt": 33119, + "ttu": 44006, + "ttv": 24281, + "tty": 11457, + "tty": 1856, + "tu": 764, + "tu": 5760, + "tua": 41344, + "tual": 4799, + "tuan": 37297, + "tub": 34907, + "tub": 15450, + "tube": 38229, + "tube": 3308, + "tuber": 30371, + "tuberculo": 42606, + "tuberculosis": 43129, + "tubes": 22870, + "tubing": 40794, + "tubs": 41705, + "tubular": 48786, + "tuc": 14456, + "tuc": 43871, + "tuck": 22398, + "tucked": 26923, + "tucker": 39703, + "tucker": 15726, + "tucket": 32677, + "tucson": 17250, + "tudor": 24547, + "tue": 17515, + "tues": 2283, + "tues": 12113, + "tuesday": 10209, + "tuesday": 2519, + "tuesdaymotivation": 25432, + "tuesdays": 23195, + "tuesdaythoughts": 17988, + "tuf": 44510, + "tuff": 38868, + "tug": 47032, + "tug": 27902, + "tuition": 21129, + "tuk": 39271, + "tuk": 14993, + "tul": 9069, + "tul": 40837, + "tula": 36332, + "tulane": 44893, + "tulip": 28389, + "tulips": 30886, + "tulsa": 18850, + "tum": 12932, + "tum": 8843, + "tumb": 8831, + "tumble": 38284, + "tumbler": 48790, + "tumbling": 46226, + "tumblr": 11841, + "tummy": 26053, + "tumor": 22616, + "tumors": 39894, + "tumour": 45129, + "tun": 1415, + "tun": 21349, + "tuna": 15037, + "tundra": 39899, + "tune": 11427, + "tune": 3300, + "tuned": 5898, + "tunein": 16809, + "tuner": 42905, + "tunes": 31688, + "tunes": 10810, + "tunesapp": 32550, + "tung": 47940, + "tung": 31092, + "tuni": 16270, + "tunic": 43495, + "tuning": 19585, + "tunisia": 23346, + "tunnel": 11096, + "tunnels": 29814, + "tuous": 28738, + "tup": 37956, + "tup": 4507, + "tupac": 31506, + "tups": 44855, + "tur": 985, + "tur": 17182, + "tura": 16127, + "tural": 45143, + "tural": 4261, + "turb": 18973, + "turban": 48515, + "turbine": 26880, + "turbines": 38863, + "turbo": 23578, + "turbo": 13668, + "turbul": 31100, + "turbulent": 47871, + "ture": 4321, + "ture": 941, + "tured": 3987, + "turer": 11993, + "turers": 16956, + "tures": 2400, + "turf": 36762, + "turf": 12510, + "turi": 11896, + "turin": 36251, + "turing": 5812, + "turismo": 30202, + "turk": 8254, + "turk": 32507, + "turkey": 35977, + "turkey": 4790, + "turkeys": 37991, + "turkish": 48199, + "turkish": 9278, + "turks": 34344, + "turmeric": 34044, + "turmoil": 37751, + "turn": 5522, + "turn": 2105, + "turnaround": 32719, + "turnbull": 27863, + "turned": 3771, + "turner": 42867, + "turner": 8777, + "turning": 4976, + "turno": 21377, + "turnout": 11654, + "turnover": 30794, + "turnpike": 38301, + "turns": 3185, + "turnt": 28887, + "turntable": 37953, + "turnup": 30591, + "turo": 29224, + "turquo": 19390, + "turquoise": 19899, + "turt": 13716, + "turtle": 35943, + "turtle": 10912, + "turtles": 17862, + "tus": 24828, + "tus": 7079, + "tusc": 17909, + "tuscal": 42638, + "tuscaloosa": 44375, + "tuscan": 42865, + "tuscany": 20885, + "tuss": 31741, + "tut": 35121, + "tutor": 10054, + "tutor": 27858, + "tutorial": 12857, + "tutorials": 30973, + "tutoring": 37532, + "tutti": 46880, + "tutu": 35845, + "tux": 28720, + "tux": 49186, + "tuxedo": 40173, + "tv": 3197, + "tv": 1583, + "tvc": 49190, + "tvd": 25889, + "tvmiaw": 38554, + "tvn": 44232, + "tvs": 27114, + "tvtime": 19947, + "tvxq": 43968, + "tw": 966, + "tw": 12842, + "twa": 46954, + "twain": 30689, + "twal": 48126, + "tware": 5707, + "twc": 41217, + "twd": 29440, + "twd": 19343, + "twdfamily": 38218, + "twe": 18365, + "tweak": 48870, + "tweaks": 42661, + "twee": 1330, + "tweed": 26904, + "tweeps": 14928, + "tweet": 11826, + "tweet": 1842, + "tweeta": 32024, + "tweetapicture": 40596, + "tweeted": 7841, + "tweeter": 32876, + "tweeters": 31713, + "tweeting": 8901, + "tweets": 3560, + "tweetyour": 45033, + "twel": 14476, + "twelf": 39443, + "twelfth": 44072, + "twell": 38722, + "twell": 30162, + "twelve": 19694, + "twent": 27027, + "twenti": 35167, + "twenty": 13016, + "twentyon": 39609, + "twentyonepilots": 40007, + "twer": 13923, + "twerk": 28506, + "twi": 5537, + "twice": 6970, + "twick": 34326, + "twickenham": 39619, + "twil": 12804, + "twili": 35754, + "twilight": 46366, + "twilight": 14512, + "twill": 43703, + "twin": 9342, + "twin": 6769, + "twine": 42775, + "twinkle": 36545, + "twinning": 30156, + "twinpeaks": 32042, + "twins": 8040, + "twist": 10589, + "twisted": 18233, + "twister": 45933, + "twists": 34149, + "twit": 1643, + "twit": 18704, + "twitart": 27709, + "twitch": 13251, + "twitch": 9153, + "twitter": 7546, + "twitter": 1989, + "twitterkurds": 32722, + "twitterstorians": 35389, + "two": 17211, + "two": 1237, + "twol": 31964, + "twood": 40404, + "twood": 13245, + "twp": 33283, + "twright": 46778, + "twt": 6825, + "twx": 26830, + "twy": 45861, + "tx": 6636, + "tx": 5200, + "txhsfb": 34757, + "txlege": 26995, + "txst": 40761, + "txt": 24595, + "txwx": 22995, + "ty": 1260, + "ty": 744, + "tya": 41273, + "tycoon": 36803, + "tye": 43097, + "tyfree": 41215, + "tyga": 41952, + "tying": 22559, + "tyl": 47537, + "tyler": 14787, + "tyler": 7058, + "tym": 45772, + "tyne": 27000, + "tyne": 29729, + "tyour": 16823, + "type": 15673, + "type": 3877, + "typed": 40753, + "typeface": 44969, + "types": 7543, + "typewriter": 42180, + "typho": 17486, + "typhoon": 21110, + "typic": 21648, + "typical": 9854, + "typically": 23175, + "typing": 20102, + "typo": 18831, + "typo": 29076, + "typography": 24332, + "tyr": 15590, + "tyran": 46921, + "tyranny": 35402, + "tyre": 38330, + "tyre": 16864, + "tyres": 21376, + "tyrone": 30226, + "tyson": 16616, + "tz": 7710, + "tz": 4983, + "tzer": 45267, + "tzky": 47127, + "tzman": 46032, + "tzu": 34354, + "té": 27208, + "té": 39694, + "u": 84, + "u": 340, + "ua": 34075, + "ua": 8441, + "uaap": 46753, + "uaap": 43774, + "uab": 35587, + "uae": 9752, + "ual": 1921, + "ually": 10767, + "uan": 33062, + "uas": 38339, + "uav": 30303, + "ub": 18430, + "ub": 13494, + "uba": 29768, + "ubc": 42479, + "ubc": 29455, + "ube": 30892, + "uber": 25896, + "uber": 10668, + "ubi": 26758, + "ubio": 32867, + "ubiquit": 48129, + "ubis": 28248, + "ubisoft": 32051, + "ubs": 43851, + "ubun": 28184, + "ubuntu": 30791, + "uc": 4903, + "uc": 12438, + "uca": 30942, + "ucc": 44844, + "ucc": 29138, + "ucci": 30746, + "uccino": 30409, + "ucd": 44746, + "ucd": 43514, + "ucf": 24414, + "uch": 19465, + "uch": 22394, + "uchi": 37473, + "uci": 46354, + "uci": 28925, + "uck": 34189, + "ucl": 12013, + "ucl": 13647, + "ucla": 37667, + "ucla": 17259, + "ucn": 49036, + "uconn": 30549, + "ud": 6560, + "ud": 5765, + "uda": 22800, + "udaipur": 49385, + "uddin": 43035, + "ude": 37016, + "ude": 35194, + "ue": 16696, + "ue": 1190, + "uefa": 19189, + "uel": 24231, + "uer": 45951, + "ues": 2526, + "uf": 17777, + "uf": 19230, + "ufc": 20396, + "ufc": 6490, + "uff": 45701, + "ufo": 19443, + "ufos": 48234, + "ug": 3754, + "ug": 16061, + "uga": 16056, + "ugand": 25965, + "uganda": 11125, + "ugandan": 44206, + "ugby": 30658, + "ugh": 39736, + "ugh": 12755, + "ugliest": 43543, + "ugly": 36070, + "ugly": 8159, + "ugu": 18144, + "uh": 17661, + "uh": 9219, + "uhc": 44974, + "uhh": 35938, + "uhhh": 45270, + "uhm": 35614, + "uhur": 29434, + "uhuru": 35690, + "ui": 17326, + "ui": 11458, + "uil": 29395, + "uit": 30696, + "uit": 47584, + "uj": 33266, + "uji": 39672, + "uk": 2294, + "uk": 1432, + "uka": 23294, + "uke": 48836, + "uke": 28577, + "uked": 48987, + "uki": 37435, + "uki": 9009, + "ukin": 34996, + "ukip": 20360, + "uklabour": 36902, + "ukmfg": 38764, + "uko": 33562, + "ukone": 24682, + "ukrain": 15468, + "ukraine": 7768, + "ukrainian": 16927, + "ukrunchat": 34481, + "uku": 29541, + "uku": 36082, + "ukulele": 39094, + "ul": 914, + "ul": 6625, + "ula": 34104, + "ula": 9506, + "ular": 4927, + "ulary": 21701, + "ulate": 20467, + "ulation": 32896, + "ule": 35616, + "ules": 26274, + "ulf": 49331, + "uli": 41841, + "uli": 22174, + "ull": 33254, + "ulla": 30577, + "ullah": 45310, + "ullivan": 45252, + "ulls": 37418, + "ulo": 46084, + "ulo": 36738, + "ulous": 42490, + "ulous": 4281, + "ulously": 20167, + "ulster": 29709, + "ulster": 24639, + "ult": 4380, + "ulti": 11925, + "ulties": 21884, + "ultimat": 16522, + "ultimate": 34684, + "ultimate": 5377, + "ultimatefan": 48372, + "ultimatefanlive": 48644, + "ultimately": 23023, + "ultr": 25636, + "ultra": 11398, + "ultra": 8118, + "ultram": 44519, + "ultrasound": 29717, + "ulture": 22272, + "ulty": 8036, + "ulu": 41815, + "ulu": 15659, + "ulum": 17235, + "uly": 33220, + "ulysses": 46114, + "um": 1622, + "um": 1008, + "uma": 29982, + "uma": 9256, + "uman": 27112, + "umar": 25656, + "umass": 39390, + "umatic": 45006, + "umb": 7493, + "umber": 19195, + "umbrel": 34773, + "umbrella": 17143, + "umbrellas": 42782, + "umbria": 39287, + "umc": 39491, + "umd": 42067, + "ume": 38480, + "umen": 42832, + "uments": 25924, + "umer": 23539, + "umes": 21403, + "umi": 48772, + "umi": 15458, + "umich": 41294, + "umin": 31542, + "umm": 26129, + "umm": 21215, + "ummer": 47628, + "ummm": 33665, + "umni": 31739, + "ump": 22224, + "umpire": 36214, + "ums": 8643, + "umu": 39788, + "un": 569, + "un": 2271, + "una": 6385, + "unable": 17793, + "unacceptable": 25234, + "unanim": 20800, + "unanimous": 33520, + "unanimously": 31798, + "unanswered": 43611, + "unarmed": 41541, + "unas": 41366, + "unavailable": 48430, + "unaware": 33347, + "unbeat": 37056, + "unbeatable": 40267, + "unbeaten": 19228, + "unbeliev": 11383, + "unbelievable": 13306, + "unbelievably": 33781, + "unborn": 37257, + "unboxing": 32866, + "unbreakable": 32956, + "unbroken": 49271, + "unc": 24921, + "unc": 15322, + "uncanny": 32556, + "uncertain": 30384, + "uncertainty": 23956, + "unch": 1527, + "unchanged": 34272, + "uncharted": 34560, + "unci": 25521, + "unciation": 34117, + "uncle": 31537, + "uncle": 8002, + "unclear": 32955, + "uncles": 45335, + "uncomfortable": 22470, + "uncommon": 34888, + "uncondition": 46561, + "unconditional": 31112, + "unconscious": 34791, + "unconstitutional": 43585, + "unconventional": 39440, + "uncover": 33031, + "uncovered": 28234, + "uncture": 38736, + "uncut": 41056, + "und": 9762, + "und": 9732, + "unda": 39932, + "undant": 25377, + "unday": 29338, + "unde": 45226, + "undead": 40105, + "undecided": 49368, + "undefeated": 15326, + "undeni": 38424, + "under": 1473, + "under": 1798, + "underage": 45669, + "underattack": 35075, + "undercover": 21595, + "underdog": 44266, + "undere": 21675, + "underestim": 23348, + "underestimate": 31794, + "undergo": 31545, + "undergoing": 26419, + "undergrad": 38331, + "undergraduate": 24320, + "underground": 9396, + "undering": 30826, + "underlying": 31812, + "undermine": 42839, + "underneath": 20857, + "underrated": 19494, + "unders": 20376, + "understand": 47582, + "understand": 4600, + "understanding": 7522, + "understands": 21607, + "understatement": 38296, + "understood": 17303, + "undertaker": 40144, + "undertaking": 49067, + "undertale": 48283, + "underthe": 41161, + "underwater": 14760, + "underway": 6273, + "underwear": 21154, + "underwood": 21474, + "underworld": 34760, + "undi": 23845, + "undisclosed": 39334, + "undo": 35454, + "undocumented": 35414, + "undoub": 38836, + "undoubtedly": 42204, + "undp": 26691, + "une": 4522, + "une": 10966, + "unearth": 32716, + "unearthed": 36632, + "unemp": 15139, + "unemployed": 32721, + "unemployment": 19350, + "unes": 6394, + "unesco": 16216, + "uneven": 43204, + "unex": 9484, + "unexpe": 10802, + "unexpec": 31829, + "unexpected": 12293, + "unexpectedly": 35622, + "unf": 29285, + "unfair": 22193, + "unfinished": 26526, + "unfit": 45367, + "unfold": 38681, + "unfollow": 38797, + "unfor": 14010, + "unforgettable": 16173, + "unfortun": 10194, + "unfortunate": 22361, + "unfortunately": 12863, + "unfpa": 45048, + "ung": 10439, + "ung": 4334, + "unga": 19151, + "ungsoo": 25582, + "unh": 25365, + "unhappy": 26528, + "unhcr": 43451, + "unhealthy": 30994, + "uni": 1107, + "uni": 5926, + "unic": 7648, + "unicef": 38286, + "unicef": 19259, + "unicorn": 15660, + "unicorns": 35183, + "unidenti": 33707, + "unidentified": 35563, + "unification": 45036, + "unified": 20876, + "uniform": 11075, + "uniforms": 17838, + "unil": 32388, + "unilever": 48654, + "uniof": 21218, + "union": 14210, + "union": 3503, + "unions": 18353, + "unis": 30482, + "unis": 39266, + "unisex": 27609, + "unison": 46694, + "unit": 28522, + "unit": 5695, + "unite": 15078, + "unite": 11305, + "uniteblue": 20935, + "united": 10898, + "united": 2690, + "unitedstates": 39636, + "unitedway": 47486, + "unites": 32061, + "uniting": 31318, + "units": 10394, + "unity": 38300, + "unity": 8581, + "univ": 36680, + "univ": 14896, + "univer": 15574, + "univers": 5855, + "universal": 19148, + "universal": 8754, + "universe": 6104, + "universi": 41692, + "universit": 26019, + "universities": 16408, + "university": 40728, + "university": 2182, + "universityof": 46158, + "unk": 5542, + "unknown": 8685, + "unl": 43807, + "unlawful": 42305, + "unle": 19677, + "unlea": 23893, + "unleash": 26706, + "unleashed": 27955, + "unless": 10602, + "unlike": 16694, + "unlikely": 18904, + "unlimited": 11015, + "unlock": 18649, + "unlocked": 16770, + "unlocking": 40810, + "unlucky": 35029, + "unlv": 42283, + "unmanned": 36751, + "unmatched": 46054, + "unn": 38364, + "unnamed": 44985, + "unnecessary": 24100, + "unner": 31481, + "unning": 43282, + "unnoticed": 42807, + "uno": 32446, + "uno": 17078, + "unofficial": 22506, + "unpacking": 43589, + "unpaid": 32811, + "unparalleled": 44396, + "unplugged": 31724, + "unpopular": 40232, + "unprece": 23054, + "unprecedented": 23344, + "unpredictable": 38684, + "unra": 45150, + "unreal": 46980, + "unreal": 15636, + "unrelated": 38644, + "unreleased": 29654, + "unrest": 36452, + "uns": 25908, + "unsafe": 32071, + "unsc": 36395, + "unseen": 19069, + "unsigned": 39346, + "unsolved": 40836, + "unsplash": 46196, + "unstable": 34730, + "unstopp": 22105, + "unstoppable": 23484, + "unsuccessful": 47478, + "unsung": 33015, + "unsure": 26396, + "unt": 19654, + "unt": 6537, + "until": 1942, + "untitled": 21309, + "unto": 19801, + "untold": 32206, + "untouch": 44509, + "untouched": 42764, + "unused": 29636, + "unusual": 12613, + "unusually": 36465, + "unve": 6685, + "unveil": 20483, + "unveiled": 13572, + "unveiling": 20327, + "unveils": 15057, + "unwanted": 25285, + "unwind": 34064, + "unya": 37142, + "uo": 30874, + "uo": 36162, + "uof": 11155, + "uoft": 37329, + "uon": 48144, + "uous": 40185, + "up": 1083, + "up": 705, + "upa": 31727, + "upbeat": 39201, + "upcoming": 4196, + "upcycled": 46552, + "upd": 3226, + "update": 2491, + "updated": 5974, + "updates": 4904, + "updating": 22792, + "uper": 38082, + "uper": 33056, + "upfront": 42064, + "upgrade": 10365, + "upgraded": 18577, + "upgrades": 21253, + "upgrading": 34368, + "uph": 14128, + "uphill": 42767, + "uphol": 26195, + "uphold": 43897, + "upholstery": 44556, + "upl": 41939, + "uplift": 45389, + "uplifting": 29546, + "upload": 13968, + "uploaded": 16793, + "uploading": 30145, + "upon": 23524, + "upon": 5067, + "upp": 19549, + "upp": 45946, + "upper": 22465, + "upper": 7067, + "upri": 15982, + "upright": 29818, + "uprising": 26006, + "upro": 28922, + "ups": 6926, + "upscale": 47501, + "upset": 11214, + "upsets": 42637, + "upside": 15362, + "upstairs": 21387, + "upstate": 33335, + "upstream": 45517, + "upthe": 31510, + "upto": 26575, + "upton": 31910, + "uptown": 23807, + "upward": 32526, + "upwards": 34915, + "uq": 39591, + "ur": 565, + "ur": 1775, + "ura": 29337, + "ura": 3544, + "urable": 40194, + "ural": 23547, + "ural": 33948, + "uran": 16197, + "uranium": 29850, + "urban": 7931, + "urban": 5800, + "urbanart": 40834, + "urd": 47880, + "urday": 19742, + "urdu": 29976, + "ure": 5514, + "ure": 726, + "ured": 4210, + "urer": 20864, + "ures": 2288, + "urg": 35995, + "urge": 14852, + "urged": 23790, + "urgency": 47612, + "urgent": 13693, + "urgently": 34534, + "urges": 16692, + "urging": 27748, + "uri": 11052, + "uri": 8699, + "urie": 46429, + "urin": 45245, + "urine": 28864, + "uring": 1351, + "url": 23464, + "urn": 38075, + "uro": 17343, + "uro": 5925, + "urology": 48585, + "urope": 14918, + "urs": 4794, + "urself": 31942, + "urst": 19181, + "urstruly": 34751, + "urstrulymahesh": 35314, + "ursula": 38390, + "urt": 24309, + "uru": 16322, + "uru": 11768, + "uruguay": 27931, + "urus": 14246, + "urve": 24583, + "ury": 8642, + "ury": 2106, + "us": 904, + "us": 718, + "usa": 9491, + "usa": 2547, + "usability": 46736, + "usable": 22890, + "usaf": 25017, + "usage": 19137, + "usaid": 34507, + "usair": 36742, + "usairforce": 42179, + "usarmy": 19132, + "usatoday": 40263, + "usav": 36056, + "usb": 10281, + "usc": 13346, + "usc": 14995, + "uscg": 43932, + "usd": 7485, + "usda": 25829, + "use": 4419, + "use": 1483, + "used": 32289, + "used": 2026, + "useful": 9784, + "useless": 20154, + "usemb": 39700, + "user": 21248, + "user": 7031, + "username": 28162, + "users": 7433, + "uses": 5282, + "useum": 45189, + "usf": 32385, + "usf": 28942, + "usgs": 35103, + "ush": 12001, + "ush": 18335, + "usher": 27411, + "ushi": 47734, + "usi": 25540, + "usic": 34909, + "usic": 16753, + "using": 1996, + "usky": 45778, + "usl": 42113, + "usm": 40041, + "usmc": 21678, + "usmnt": 30662, + "usn": 40579, + "usnavy": 24500, + "usnews": 43752, + "uso": 21539, + "usopen": 21782, + "usp": 26651, + "usps": 39980, + "usrc": 33274, + "uss": 11545, + "uss": 9260, + "ussia": 29553, + "ussoccer": 42828, + "ussr": 32697, + "ust": 35501, + "ust": 24725, + "usu": 4254, + "usu": 40434, + "usual": 6129, + "usually": 8296, + "usur": 45582, + "uswnt": 35255, + "ut": 1419, + "ut": 3641, + "uta": 42706, + "uta": 25925, + "utah": 27474, + "utah": 9312, + "utc": 18196, + "utd": 10493, + "ute": 16856, + "ute": 3130, + "uten": 32089, + "uter": 39197, + "utes": 2850, + "uth": 48819, + "uth": 44750, + "uti": 24568, + "util": 28824, + "utili": 17015, + "utilities": 27210, + "utility": 14941, + "utilize": 36861, + "utilized": 47604, + "utilizing": 40212, + "utm": 47853, + "utmost": 42352, + "uto": 18866, + "uto": 13683, + "utopia": 34433, + "utpol": 42605, + "utr": 48726, + "utrecht": 37216, + "uts": 11740, + "utsa": 37528, + "utt": 17096, + "uttar": 40168, + "uttarak": 33755, + "uttarakhand": 35655, + "utter": 18769, + "utter": 24558, + "utterly": 21353, + "utto": 42183, + "utv": 36351, + "utz": 45320, + "uu": 5702, + "uu": 14553, + "uuu": 44355, + "uuu": 27656, + "uuuu": 16720, + "uuuu": 40797, + "uv": 23777, + "uv": 15977, + "uva": 23908, + "uw": 13933, + "uw": 19166, + "uwe": 48785, + "uwu": 35544, + "ux": 9251, + "ux": 6213, + "uy": 31929, + "uy": 48113, + "uz": 19398, + "uz": 36991, + "uzbe": 43007, + "uzbekistan": 45024, + "uzzi": 48210, + "v": 85, + "v": 341, + "va": 4648, + "va": 1892, + "vaa": 37488, + "vable": 23088, + "vac": 3125, + "vac": 34085, + "vaca": 48215, + "vacancies": 26333, + "vacancy": 21247, + "vacant": 25262, + "vacation": 28336, + "vacation": 6561, + "vacations": 29002, + "vacay": 44716, + "vacc": 13342, + "vaccin": 19164, + "vaccinated": 48134, + "vaccination": 32518, + "vaccine": 47780, + "vaccine": 17493, + "vaccines": 25860, + "vach": 46211, + "vacu": 16058, + "vacuum": 18420, + "vad": 11880, + "vada": 46759, + "vader": 21908, + "vae": 39384, + "vag": 13015, + "vague": 42154, + "vah": 26921, + "vai": 26893, + "vai": 36802, + "vail": 21189, + "vain": 25538, + "vais": 28719, + "vaj": 34206, + "vak": 16288, + "vak": 41597, + "val": 1214, + "val": 1560, + "vala": 48525, + "valdez": 40617, + "vale": 35554, + "vale": 10820, + "valedic": 43525, + "valen": 12630, + "valence": 30225, + "valenci": 34183, + "valencia": 16559, + "valent": 3655, + "valent": 15300, + "valentin": 48631, + "valentina": 43741, + "valentine": 11208, + "valentine": 5876, + "valentines": 10259, + "valentinesday": 12369, + "valentino": 29624, + "valeri": 31951, + "valerie": 25592, + "valet": 45749, + "vali": 8230, + "valiant": 33804, + "valid": 15126, + "validation": 32536, + "valkyrie": 42326, + "vall": 23523, + "vall": 35295, + "vallarta": 47874, + "valle": 24857, + "valle": 29105, + "valley": 18354, + "valley": 3136, + "valleys": 28649, + "valor": 30930, + "vals": 7431, + "valu": 6291, + "valuable": 10056, + "valuation": 25894, + "value": 41358, + "value": 4602, + "valued": 17801, + "values": 8857, + "valve": 17001, + "valves": 33517, + "vam": 9983, + "vamo": 46718, + "vamos": 30346, + "vamp": 10680, + "vampi": 47017, + "vampire": 47576, + "vampire": 13220, + "vampires": 30868, + "vamps": 44810, + "van": 2446, + "van": 2451, + "vana": 20543, + "vanc": 6320, + "vance": 31447, + "vancou": 6750, + "vancouver": 31904, + "vancouver": 7208, + "vand": 11691, + "vandalism": 45664, + "vander": 16264, + "vanderbilt": 33524, + "vandy": 39268, + "vane": 43828, + "vaness": 13328, + "vanessa": 16836, + "vangogh": 47849, + "vanguard": 27916, + "vani": 15396, + "vani": 26459, + "vania": 10998, + "vanilla": 11974, + "vanished": 43783, + "vanishing": 48296, + "vanity": 48353, + "vanity": 22938, + "vans": 11711, + "vant": 26298, + "vantage": 31749, + "vanu": 42892, + "vanuatu": 48766, + "vap": 10462, + "vape": 25423, + "vape": 20219, + "vaping": 29403, + "vapor": 37167, + "vapor": 30729, + "vapori": 46183, + "var": 3187, + "var": 12998, + "vara": 47492, + "varan": 36585, + "varanasi": 39364, + "vard": 21866, + "vard": 8773, + "vardy": 47371, + "vare": 38159, + "vares": 42895, + "vargas": 32752, + "vari": 3354, + "variable": 26416, + "varian": 34334, + "variant": 20293, + "variants": 38312, + "variation": 26420, + "variations": 29025, + "varied": 32334, + "varies": 32543, + "varieties": 23805, + "variety": 8396, + "various": 7395, + "varsity": 43716, + "varsity": 8574, + "varun": 48120, + "varun": 22069, + "vary": 18855, + "varying": 36456, + "vas": 5669, + "vas": 5995, + "vasc": 40995, + "vascular": 19218, + "vase": 20431, + "vasi": 49092, + "vast": 24413, + "vast": 16414, + "vastly": 48257, + "vat": 11588, + "vat": 18363, + "vatican": 21030, + "vation": 37884, + "vau": 6391, + "vaugh": 25158, + "vaughan": 21392, + "vaughn": 29013, + "vaul": 27469, + "vault": 15240, + "vaus": 40217, + "vaux": 27403, + "vauxhall": 29173, + "vaw": 47952, + "vay": 48000, + "vaz": 38142, + "vb": 29365, + "vb": 8778, + "vball": 38329, + "vc": 28670, + "vc": 7952, + "vcs": 43528, + "vcu": 40102, + "vd": 9515, + "vday": 42055, + "ve": 673, + "ve": 563, + "vea": 43798, + "veal": 36616, + "veau": 24419, + "vec": 19912, + "vector": 40453, + "vector": 21533, + "ved": 19515, + "ved": 1102, + "veda": 44401, + "vedere": 45660, + "vedi": 47971, + "vee": 35708, + "vee": 17073, + "veen": 22432, + "veer": 21243, + "veer": 22058, + "veg": 9048, + "veg": 16460, + "vega": 22930, + "vegan": 15705, + "vegan": 5615, + "vegans": 48514, + "vegas": 20288, + "vegas": 4413, + "vege": 6219, + "vegetable": 15725, + "vegetables": 14119, + "vegetarian": 14600, + "vegetation": 33947, + "veggie": 19401, + "veggies": 16767, + "vehic": 3973, + "vehicle": 5299, + "vehicles": 8361, + "veil": 23516, + "vein": 29169, + "veins": 28867, + "veit": 30620, + "vel": 942, + "vel": 1287, + "vela": 34898, + "veld": 34011, + "veled": 15370, + "veli": 49166, + "veling": 37970, + "vell": 21173, + "vell": 32997, + "velo": 14357, + "velo": 33850, + "velocity": 23811, + "vels": 5109, + "velve": 37849, + "velvet": 11063, + "vely": 1708, + "vember": 3477, + "vement": 3129, + "vements": 11104, + "ven": 1240, + "ven": 1638, + "vena": 47442, + "vend": 10851, + "vending": 29202, + "vendor": 21261, + "vendors": 20353, + "vene": 5365, + "veness": 10516, + "venetian": 34336, + "venezia": 34139, + "venezu": 10939, + "venezuela": 12839, + "venezuelan": 34699, + "veng": 31526, + "venge": 27757, + "vengeance": 32057, + "veni": 31142, + "venice": 11010, + "vening": 47532, + "venison": 40037, + "venom": 42491, + "venom": 21588, + "vens": 20884, + "vent": 4373, + "vent": 5687, + "ventil": 39522, + "ventilation": 35066, + "venting": 15731, + "vention": 4122, + "vents": 12833, + "ventu": 48217, + "ventura": 20921, + "venture": 37046, + "venture": 12543, + "ventures": 20829, + "venue": 5097, + "venues": 18120, + "venus": 14691, + "ver": 624, + "ver": 667, + "vera": 13350, + "verage": 3725, + "verb": 34952, + "verbal": 26522, + "verbally": 39985, + "verbs": 45687, + "verde": 16935, + "verdi": 42306, + "verdict": 18030, + "vere": 11135, + "vere": 34707, + "vered": 2868, + "verge": 23913, + "veri": 11638, + "verification": 33521, + "verified": 22555, + "verify": 34722, + "vering": 4630, + "veriz": 19707, + "verizon": 21532, + "verma": 41261, + "vermont": 19241, + "vern": 2214, + "vern": 12586, + "verne": 45553, + "vernon": 18348, + "vero": 45217, + "vero": 38208, + "verona": 31819, + "veronic": 39551, + "veronica": 24039, + "vers": 1219, + "vers": 2094, + "versa": 35765, + "versace": 25422, + "versail": 29857, + "versailles": 32129, + "versary": 2940, + "versatile": 18110, + "versatility": 41340, + "verse": 39466, + "verse": 3131, + "verses": 30769, + "versi": 8934, + "version": 3273, + "versions": 16190, + "versity": 1906, + "verst": 42484, + "verstappen": 45064, + "versus": 14548, + "versy": 18522, + "vert": 11742, + "verte": 35158, + "verted": 48173, + "verti": 30459, + "vertical": 14293, + "vertigo": 42477, + "verton": 40632, + "verts": 37265, + "very": 11698, + "very": 1070, + "veryday": 37944, + "verything": 45174, + "ves": 9616, + "ves": 1003, + "vesmatter": 47636, + "vespa": 46029, + "vessel": 16387, + "vessels": 22822, + "vest": 31657, + "vest": 12473, + "vesti": 40349, + "vests": 41906, + "vet": 12294, + "vet": 5951, + "veter": 4330, + "veteran": 20797, + "veteran": 8814, + "veterans": 7092, + "veteransday": 26409, + "veterin": 43959, + "veterinary": 25458, + "veto": 36570, + "vets": 13113, + "vette": 17045, + "vettel": 28700, + "vevo": 35141, + "vex": 36187, + "vex": 43978, + "vey": 34792, + "vey": 3884, + "vez": 35987, + "vez": 17226, + "vf": 25966, + "vfl": 33726, + "vfx": 30149, + "vg": 40591, + "vg": 22346, + "vh": 46953, + "vh": 23847, + "vhs": 21932, + "vi": 603, + "vi": 4259, + "via": 1048, + "viable": 25752, + "viadu": 37012, + "viaduct": 39113, + "vial": 39951, + "vian": 40487, + "vian": 16124, + "vibe": 37974, + "vibe": 12813, + "vibes": 7764, + "vibr": 9527, + "vibrant": 14270, + "vibration": 37456, + "vibrations": 43660, + "vic": 1555, + "vic": 4412, + "vica": 46168, + "vicar": 43899, + "vice": 43572, + "vice": 6931, + "vicente": 39411, + "vices": 8332, + "vich": 24143, + "vici": 46670, + "vicious": 25177, + "vick": 15116, + "vick": 29704, + "vickers": 48452, + "vicki": 34927, + "vicky": 37176, + "vicky": 25788, + "victi": 6861, + "victim": 9133, + "victims": 7131, + "victor": 2423, + "victor": 10690, + "victori": 17555, + "victoria": 39286, + "victoria": 6127, + "victorian": 12350, + "victorias": 47791, + "victories": 24577, + "victorious": 24033, + "victory": 36668, + "victory": 4127, + "vid": 17233, + "vid": 9284, + "vida": 19015, + "vidal": 36678, + "vide": 1334, + "vide": 45244, + "video": 9478, + "video": 1455, + "videogame": 35097, + "videogames": 21149, + "videos": 6081, + "vids": 23035, + "vidy": 29639, + "vidya": 45264, + "vie": 922, + "vie": 8538, + "vien": 36493, + "vienna": 12670, + "vier": 15352, + "vier": 11987, + "viera": 21114, + "viernes": 33826, + "vies": 22458, + "viest": 31979, + "viet": 17558, + "viet": 13128, + "vietnam": 19558, + "vietnam": 8623, + "vietnamese": 22382, + "view": 12004, + "view": 1093, + "viewed": 7226, + "viewer": 15061, + "viewers": 14275, + "viewing": 7124, + "viewpoint": 41604, + "views": 2758, + "vig": 8549, + "vig": 45083, + "vigil": 21538, + "vigil": 19896, + "vigilant": 43026, + "vigne": 40447, + "vigne": 34581, + "vigo": 44097, + "vigor": 26781, + "vii": 17759, + "viii": 20414, + "vijay": 12014, + "vijay": 10823, + "vijaysethu": 47966, + "vik": 10764, + "vik": 17181, + "vika": 39562, + "vikas": 37116, + "viking": 26663, + "viking": 15897, + "vikings": 11713, + "vikram": 41136, + "vikram": 24314, + "viktor": 36101, + "vil": 1338, + "vil": 3000, + "vila": 37505, + "vile": 27247, + "vill": 10481, + "vill": 45698, + "villa": 3203, + "villa": 7754, + "village": 34584, + "village": 4331, + "villagers": 34283, + "villages": 17621, + "villain": 15425, + "villains": 25271, + "villanova": 44025, + "villar": 35164, + "villas": 28907, + "ville": 11110, + "ville": 1930, + "villen": 46177, + "villi": 36907, + "vimeo": 48720, + "vin": 1379, + "vin": 2558, + "vina": 35682, + "vinai": 37396, + "vinaigrette": 39876, + "vinay": 43952, + "vince": 32429, + "vince": 6236, + "vincen": 33402, + "vincent": 29069, + "vincent": 10357, + "vinci": 30199, + "vind": 20275, + "vindic": 39582, + "vine": 8471, + "vine": 7721, + "vinegar": 23834, + "vines": 21268, + "vineyard": 16527, + "vineyards": 23082, + "ving": 5375, + "ving": 903, + "vingne": 42579, + "vings": 22510, + "vini": 48119, + "vinnie": 40885, + "vinny": 36794, + "vino": 14509, + "vinod": 43348, + "vins": 34820, + "vinson": 45945, + "vintag": 10936, + "vintage": 13654, + "vintage": 3266, + "viny": 40990, + "vinyl": 22835, + "vinyl": 5754, + "vio": 11913, + "vio": 20324, + "viol": 3164, + "viola": 27438, + "violate": 44875, + "violated": 38192, + "violating": 37554, + "violation": 22919, + "violations": 21969, + "violence": 5450, + "violent": 11565, + "violently": 47758, + "violet": 16118, + "violets": 42861, + "violin": 17058, + "violinist": 36299, + "vion": 35496, + "vious": 6418, + "viously": 7149, + "vip": 45714, + "vip": 7111, + "viper": 27401, + "vips": 41149, + "vir": 1790, + "vir": 25319, + "vira": 35910, + "viral": 11653, + "virat": 32473, + "virgil": 39076, + "virgin": 5651, + "virgin": 12103, + "virgini": 43426, + "virginia": 6728, + "virgo": 39978, + "viro": 32301, + "viron": 38309, + "virtu": 7977, + "virtual": 18059, + "virtual": 7790, + "virtually": 22475, + "virtualreality": 32608, + "virtue": 26860, + "virtues": 42167, + "virtuoso": 47027, + "virus": 11808, + "viruses": 34830, + "vis": 1301, + "vis": 5337, + "visa": 12802, + "visas": 41228, + "vise": 24977, + "vised": 14810, + "vish": 12024, + "vish": 29124, + "vishal": 33648, + "vishnu": 37816, + "visi": 1409, + "visibility": 15921, + "visible": 36658, + "visible": 8626, + "vising": 37439, + "vision": 11147, + "vision": 2515, + "visional": 24627, + "visionary": 22959, + "visions": 13804, + "visit": 3388, + "visit": 1600, + "visitation": 44370, + "visited": 5580, + "visiting": 4680, + "visitor": 13881, + "visitors": 9160, + "visits": 8489, + "visitscotland": 28760, + "visitspain": 48860, + "vism": 15514, + "viso": 46732, + "visor": 24217, + "vist": 21436, + "vista": 13865, + "visu": 7739, + "visual": 17004, + "visual": 7195, + "visualization": 28500, + "visualize": 45057, + "visually": 25743, + "visuals": 21315, + "viswas": 36513, + "viswasam": 47664, + "vit": 4056, + "vit": 35580, + "vita": 15700, + "vital": 32525, + "vital": 10585, + "vitality": 36385, + "vitam": 9856, + "vitamin": 13675, + "vitamins": 22582, + "vito": 36725, + "vity": 4893, + "vitz": 26188, + "vius": 41571, + "viv": 21827, + "viv": 35363, + "viva": 17399, + "vival": 35920, + "vive": 18980, + "vive": 24004, + "vivek": 36243, + "vivi": 11625, + "vivian": 30129, + "vivid": 22984, + "vivo": 28091, + "vivo": 25888, + "vix": 28976, + "vix": 34811, + "vixen": 38757, + "vixx": 32106, + "viz": 28251, + "viz": 31786, + "vj": 45439, + "vj": 30827, + "vk": 41893, + "vl": 37580, + "vl": 36442, + "vla": 23686, + "vlad": 41089, + "vladi": 19320, + "vladimir": 21702, + "vlive": 46797, + "vlog": 18894, + "vm": 16204, + "vm": 20269, + "vma": 35666, + "vmas": 30236, + "vmware": 29615, + "vn": 47098, + "vn": 25076, + "vo": 947, + "vo": 3951, + "voc": 4105, + "voc": 20855, + "vocab": 21346, + "vocabulary": 23804, + "vocal": 34037, + "vocal": 13147, + "vocali": 19134, + "vocalist": 22102, + "vocals": 17666, + "vocation": 20521, + "vocational": 33751, + "vod": 11820, + "vod": 35854, + "vodaf": 28436, + "vodafone": 38695, + "vodka": 13646, + "vogel": 44960, + "vogue": 24418, + "vogue": 13178, + "voic": 29185, + "voice": 13179, + "voice": 3386, + "voiced": 34352, + "voiceof": 44966, + "voiceover": 41979, + "voices": 9144, + "void": 21561, + "voip": 42762, + "voir": 16036, + "vol": 1343, + "vol": 7945, + "volatile": 41022, + "volatility": 32355, + "volcan": 9916, + "volcanic": 24072, + "volcano": 14581, + "volcanoes": 38055, + "voli": 40138, + "volk": 13432, + "volkswag": 14407, + "volkswagen": 15342, + "volley": 7130, + "volley": 34656, + "volleyball": 7458, + "volo": 44791, + "vols": 20404, + "volt": 26430, + "volta": 29879, + "volta": 33480, + "voltage": 23118, + "voltron": 39314, + "volu": 3563, + "volume": 8284, + "volumes": 22651, + "volun": 3356, + "voluntar": 48823, + "voluntary": 23815, + "volunte": 3556, + "volunteer": 32331, + "volunteer": 7114, + "volunteered": 34000, + "volunteering": 14902, + "volunteers": 5939, + "volution": 24043, + "volved": 42888, + "volvo": 39991, + "volvo": 16906, + "vom": 24198, + "vomit": 46485, + "von": 11269, + "von": 8497, + "voo": 19497, + "voodoo": 26869, + "voor": 34291, + "voor": 34464, + "vor": 8338, + "vor": 5308, + "vore": 18215, + "vortex": 30071, + "vos": 16863, + "vot": 48558, + "vote": 6830, + "vote": 2187, + "voted": 6454, + "votel": 41379, + "voter": 44474, + "voter": 14065, + "voters": 8925, + "votes": 6693, + "voting": 5756, + "vou": 11045, + "voucher": 18190, + "vouchers": 23384, + "vous": 10636, + "vow": 34787, + "vows": 21677, + "vox": 29215, + "vox": 22692, + "voy": 10622, + "voy": 15021, + "voyage": 16299, + "voyager": 29669, + "vp": 32758, + "vp": 3896, + "vpn": 38212, + "vr": 16840, + "vr": 5921, + "vre": 44500, + "vre": 17501, + "vs": 11385, + "vs": 1547, + "vsco": 26752, + "vsco": 32822, + "vscocam": 34694, + "vsky": 37791, + "vss": 31919, + "vt": 31732, + "vt": 10291, + "vu": 8664, + "vu": 13230, + "vue": 43915, + "vue": 19313, + "vuel": 31312, + "vuelta": 43856, + "vuitton": 26705, + "vul": 6856, + "vulcan": 34767, + "vulner": 11213, + "vulnerability": 28797, + "vulnerable": 14332, + "vulture": 34593, + "vultures": 47197, + "vv": 19264, + "vv": 35686, + "vw": 28650, + "vw": 13250, + "vx": 47644, + "vy": 11566, + "vy": 5157, + "w": 86, + "w": 342, + "wa": 869, + "wa": 2663, + "waa": 35874, + "wab": 19893, + "wab": 36852, + "wac": 27445, + "wac": 37947, + "wack": 22880, + "wack": 38270, + "wacky": 34318, + "waco": 36035, + "wad": 11133, + "wad": 30451, + "wada": 40006, + "wade": 40237, + "wade": 14180, + "wadi": 37253, + "waf": 17638, + "wafc": 49086, + "waff": 13940, + "waffle": 20375, + "waffles": 24205, + "wag": 5764, + "wag": 19177, + "wage": 10716, + "wager": 43430, + "wages": 19114, + "wagner": 18081, + "wagon": 13260, + "wagons": 47944, + "wags": 48580, + "wah": 24812, + "wah": 18014, + "wahl": 27500, + "wahlberg": 35151, + "wahoo": 47995, + "wai": 11469, + "wai": 21569, + "waifu": 46551, + "waikiki": 44907, + "wain": 28358, + "wain": 20120, + "wainwright": 45878, + "waist": 36946, + "waist": 18459, + "wait": 10021, + "wait": 1885, + "waite": 24272, + "waited": 18492, + "waiter": 32946, + "waitin": 44482, + "waiting": 2680, + "waitress": 39760, + "waitrose": 37164, + "waits": 21361, + "waiver": 42866, + "waj": 49367, + "wak": 11172, + "wak": 36015, + "waka": 42696, + "wake": 10501, + "wake": 5731, + "wakefield": 26358, + "wakes": 29108, + "wakeup": 26328, + "wakeup": 35380, + "wakeupamerica": 37474, + "waking": 13025, + "wal": 1056, + "wal": 6903, + "wala": 16468, + "walang": 49180, + "walcott": 45744, + "wald": 46930, + "wald": 15724, + "walden": 39311, + "waldo": 32440, + "waldorf": 38227, + "wale": 41247, + "wale": 20336, + "wales": 25383, + "wales": 5110, + "walgreens": 38490, + "wali": 37576, + "wali": 14768, + "walia": 44455, + "walk": 8588, + "walk": 2374, + "walkaway": 48255, + "walked": 8667, + "walker": 24735, + "walker": 6150, + "walkers": 23366, + "walkin": 45792, + "walking": 12644, + "walking": 3941, + "walkingdead": 14948, + "walkout": 47470, + "walks": 8192, + "walkway": 36614, + "wall": 4316, + "wall": 2569, + "walla": 26007, + "walla": 39982, + "wallabies": 48926, + "wallace": 12535, + "wallart": 36223, + "walled": 36567, + "waller": 45340, + "wallet": 12154, + "wallets": 38550, + "walleye": 49099, + "wallis": 42206, + "wallpaper": 10560, + "wallpapers": 29841, + "walls": 8258, + "wallstreet": 45341, + "wally": 26024, + "walmart": 11972, + "walnut": 16310, + "walnuts": 38294, + "walsall": 42935, + "walsh": 12856, + "walt": 23535, + "walt": 14312, + "waltdisneyworld": 36505, + "walter": 31156, + "walter": 10645, + "walters": 25532, + "waltham": 42742, + "waltham": 45581, + "walton": 19485, + "waltz": 35982, + "wam": 20503, + "wamy": 46970, + "wan": 2060, + "wan": 4557, + "wana": 30830, + "wand": 14636, + "wand": 28559, + "wanda": 25070, + "wander": 12985, + "wander": 24473, + "wandered": 46593, + "wanderers": 27540, + "wandering": 22597, + "wanderlust": 16129, + "wane": 27459, + "wang": 19731, + "wang": 11900, + "wani": 21674, + "wankers": 42189, + "wann": 23622, + "wanna": 35940, + "wanna": 3836, + "wannabe": 40730, + "wannaone": 44832, + "want": 18356, + "want": 1280, + "wanted": 3146, + "wanting": 12801, + "wants": 3107, + "wap": 27393, + "wap": 30368, + "waq": 47512, + "war": 984, + "war": 2238, + "wara": 21631, + "warbler": 33891, + "warcraft": 13660, + "ward": 7728, + "ward": 1460, + "warden": 27798, + "wardly": 30780, + "wardro": 14247, + "wardrobe": 15020, + "wards": 2593, + "ware": 7416, + "ware": 4476, + "wareagle": 35716, + "warehouse": 13054, + "wareness": 41601, + "wareness": 35870, + "wares": 30692, + "warfare": 15739, + "warhammer": 26832, + "warhol": 27554, + "wari": 20977, + "wark": 46346, + "wark": 15164, + "warlock": 42455, + "warm": 14725, + "warm": 3616, + "warmed": 36695, + "warmer": 14328, + "warmest": 30910, + "warming": 8606, + "warmly": 45322, + "warmongers": 33205, + "warms": 32917, + "warmth": 19636, + "warmup": 29904, + "warmups": 44094, + "warn": 19360, + "warned": 16409, + "warner": 28564, + "warner": 13402, + "warning": 4994, + "warnings": 18098, + "warns": 14086, + "waron": 38947, + "warp": 32411, + "warped": 32125, + "warran": 17392, + "warrant": 22554, + "warrants": 45677, + "warranty": 23999, + "warren": 23143, + "warren": 9234, + "warri": 4109, + "warrington": 31203, + "warrior": 18998, + "warrior": 8148, + "warriors": 6421, + "wars": 3931, + "warsaw": 21072, + "warship": 47846, + "wart": 43535, + "wart": 7346, + "wartime": 42998, + "warts": 21781, + "warwick": 23081, + "warwick": 22215, + "warwickshire": 36766, + "wary": 36213, + "was": 3398, + "was": 739, + "wasabi": 47334, + "wash": 3363, + "wash": 7810, + "washed": 14092, + "washer": 24085, + "washes": 38950, + "washing": 13029, + "washington": 16774, + "washington": 4365, + "washingtondc": 40225, + "washingtonpost": 28426, + "wasn": 5044, + "wasnt": 29607, + "wasp": 24889, + "wasps": 35300, + "wassup": 45708, + "wast": 28886, + "waste": 18157, + "waste": 6065, + "wasted": 18278, + "wasteland": 44035, + "wastewater": 34463, + "wasting": 25577, + "wat": 800, + "wat": 10621, + "wata": 42509, + "watch": 7046, + "watch": 1239, + "watchdog": 35303, + "watched": 5775, + "watcher": 35971, + "watchers": 28443, + "watches": 9521, + "watchin": 32432, + "watching": 2113, + "water": 2505, + "water": 1573, + "watercolor": 14211, + "watercolour": 18377, + "waterfall": 16403, + "waterfalls": 26692, + "waterford": 24448, + "waterfront": 16605, + "waterhouse": 45072, + "watering": 19871, + "waterloo": 17465, + "watermelon": 19889, + "waterproof": 17613, + "waters": 7753, + "watershed": 33204, + "waterstones": 45014, + "waterways": 37395, + "watford": 23162, + "watfordfc": 37328, + "wati": 27966, + "watkins": 22539, + "watson": 35490, + "watson": 9294, + "watt": 22899, + "watt": 15805, + "wattpad": 32351, + "watts": 14750, + "wau": 9479, + "wav": 6054, + "wave": 17530, + "wave": 4535, + "waved": 44657, + "waver": 25997, + "waves": 7882, + "waving": 26545, + "wavy": 31941, + "waw": 22039, + "wawrinka": 48414, + "wawx": 47387, + "wax": 18789, + "wax": 11910, + "waxing": 38781, + "way": 3079, + "way": 923, + "wayback": 47822, + "wayne": 23632, + "wayne": 7003, + "ways": 1248, + "waz": 20889, + "waz": 48835, + "wb": 10726, + "wb": 12377, + "wba": 22675, + "wbb": 14482, + "wbc": 26745, + "wbo": 49053, + "wbz": 35471, + "wc": 4842, + "wc": 5755, + "wcc": 47166, + "wcc": 34926, + "wcpo": 46624, + "wcs": 39916, + "wcvb": 32709, + "wcw": 9041, + "wd": 15998, + "wd": 7494, + "wdw": 40334, + "we": 598, + "we": 649, + "wea": 37146, + "wea": 47301, + "weak": 12128, + "weak": 10128, + "weaker": 39735, + "weakness": 21448, + "weaknesses": 43487, + "weal": 14759, + "wealth": 33150, + "wealth": 7904, + "wealthy": 22617, + "weap": 6156, + "weapon": 42612, + "weapon": 10537, + "weapons": 10007, + "wear": 12206, + "wear": 2839, + "wearab": 22983, + "wearable": 44943, + "wearable": 24973, + "wearables": 30319, + "weare": 4264, + "weare": 27867, + "weareall": 45980, + "wearec": 43620, + "wearen": 45635, + "weareone": 16149, + "weareoneexo": 16448, + "wearethe": 40242, + "wearing": 3309, + "wears": 11869, + "weary": 38766, + "weasel": 44308, + "weather": 8808, + "weather": 2237, + "weathercee": 44980, + "weatherchannel": 42138, + "weav": 22260, + "weave": 22450, + "weaver": 20297, + "weaving": 27131, + "web": 2055, + "web": 4601, + "webb": 15708, + "webber": 34248, + "webcam": 24211, + "webcam": 22589, + "webcamtoy": 27719, + "webcast": 28256, + "webcomic": 34286, + "webcomics": 39811, + "webdesign": 20470, + "webdev": 37000, + "webdevelopment": 47553, + "weber": 20179, + "webin": 8460, + "webinar": 8921, + "webinars": 47755, + "webpage": 46964, + "webs": 32829, + "webseries": 44819, + "website": 3364, + "websites": 19278, + "webster": 19471, + "websummit": 48069, + "wec": 33152, + "wechat": 46124, + "wed": 1687, + "wed": 3478, + "wedd": 7576, + "wedding": 11204, + "wedding": 3101, + "weddings": 15964, + "wedge": 21446, + "wedges": 33179, + "wedne": 2380, + "wednesday": 9311, + "wednesday": 2689, + "wednesdaymotivation": 37860, + "wednesdays": 24943, + "wednesdaywisdom": 11445, + "wedo": 43432, + "weds": 19107, + "wee": 716, + "wee": 8288, + "weed": 36935, + "weed": 8015, + "weeds": 26326, + "week": 1286, + "week": 994, + "weekday": 29244, + "weekdays": 44330, + "weekend": 17205, + "weekend": 1456, + "weekender": 36547, + "weekends": 14564, + "weekly": 34652, + "weekly": 5885, + "weeknd": 29925, + "weeks": 2898, + "weeksary": 24628, + "ween": 17517, + "ween": 1599, + "weep": 39270, + "weeping": 36629, + "weer": 32491, + "weet": 17742, + "weets": 13454, + "wef": 23313, + "weg": 47867, + "weg": 47561, + "wego": 44784, + "wego": 28220, + "weh": 48458, + "weh": 40313, + "weho": 47798, + "wei": 6958, + "wei": 20952, + "weibo": 20613, + "weigh": 10565, + "weigh": 17346, + "weighed": 33210, + "weighing": 24455, + "weighs": 20481, + "weight": 12723, + "weight": 3868, + "weighted": 43179, + "weightlifting": 36164, + "weightloss": 20359, + "weights": 21374, + "weil": 43720, + "weiler": 42203, + "wein": 29134, + "wein": 37684, + "weiner": 38822, + "weinstein": 34367, + "weir": 11299, + "weir": 25517, + "weird": 27981, + "weird": 5613, + "weirdest": 29482, + "weirdo": 32476, + "weis": 26251, + "weiser": 34833, + "weiss": 24794, + "wel": 1267, + "wel": 8042, + "welch": 25820, + "welcom": 11578, + "welcome": 18318, + "welcome": 1881, + "welcomed": 12590, + "welcomes": 9304, + "welcometo": 47511, + "welcoming": 8775, + "weld": 39776, + "welding": 24956, + "welfare": 12129, + "well": 3277, + "well": 1123, + "wellbeing": 14273, + "weller": 40921, + "welling": 49165, + "wellington": 15389, + "wellness": 40574, + "wellness": 9904, + "wells": 42705, + "wells": 9804, + "welove": 13573, + "welp": 28391, + "wels": 20852, + "welsh": 19173, + "welsh": 10977, + "welt": 38595, + "welter": 37115, + "welterweight": 39617, + "wemb": 15213, + "wembley": 16579, + "wen": 6590, + "wen": 11278, + "wend": 15166, + "wendell": 42091, + "wendy": 31616, + "wendy": 14074, + "wenger": 21105, + "went": 18633, + "went": 2437, + "wentworth": 36423, + "wentz": 39179, + "wer": 6316, + "wer": 2980, + "were": 15461, + "were": 1365, + "wered": 6605, + "weren": 13611, + "werewolf": 32001, + "werk": 30176, + "werner": 29917, + "wers": 7110, + "wes": 18620, + "wes": 14738, + "wesle": 29606, + "wesley": 17332, + "wesleyan": 32509, + "wesome": 33292, + "wess": 44431, + "west": 2973, + "west": 1593, + "westbound": 29208, + "westbrook": 26948, + "westchester": 36675, + "westcoast": 44610, + "westend": 44815, + "wester": 9846, + "western": 17079, + "western": 4463, + "westfield": 32309, + "westh": 36798, + "westin": 43232, + "westlake": 41535, + "westminster": 15158, + "weston": 22771, + "westside": 33762, + "westwood": 26371, + "westworld": 42287, + "wet": 12406, + "wet": 6682, + "weta": 40946, + "wethenorth": 45281, + "wethepeople": 48030, + "wether": 33794, + "wether": 48405, + "wetland": 37357, + "wetlands": 26547, + "wett": 41971, + "wetter": 43957, + "wewant": 39280, + "wewill": 37241, + "wex": 17234, + "wexford": 29876, + "wexmondays": 49042, + "wey": 30376, + "wey": 19781, + "weymouth": 41433, + "wf": 14576, + "wf": 22313, + "wfa": 44606, + "wfc": 36431, + "wfp": 35193, + "wftv": 47075, + "wg": 21091, + "wg": 25857, + "wga": 32354, + "wgn": 48828, + "wh": 573, + "wh": 13844, + "wha": 18994, + "wha": 25884, + "whal": 38967, + "whale": 37083, + "whale": 11650, + "whales": 17722, + "wham": 42506, + "whar": 15517, + "wharf": 22452, + "wharton": 43320, + "what": 4268, + "what": 768, + "whatcha": 37160, + "whate": 6695, + "whatever": 6743, + "whati": 23500, + "whats": 9263, + "whats": 13084, + "whatsapp": 10119, + "whatsoever": 39928, + "whatson": 35632, + "whatyou": 30508, + "whe": 2009, + "whead": 34583, + "wheat": 20505, + "wheat": 10303, + "wheaton": 46933, + "wheel": 7360, + "wheel": 6744, + "wheelchair": 17713, + "wheeler": 18405, + "wheeling": 34839, + "wheels": 8025, + "whel": 9792, + "whelan": 40715, + "when": 8753, + "when": 827, + "whenever": 10500, + "where": 7052, + "where": 1234, + "whereabouts": 47808, + "whereas": 42234, + "wheres": 46345, + "wherever": 14103, + "whereyou": 46837, + "whether": 5903, + "whew": 39016, + "whey": 34556, + "whi": 4295, + "whi": 33129, + "which": 1448, + "whiche": 48719, + "whichever": 49138, + "whil": 8499, + "while": 1519, + "whilst": 8596, + "whim": 27766, + "whimsical": 42282, + "whip": 14412, + "whipped": 22323, + "whipping": 41567, + "whir": 20873, + "whirl": 30962, + "whirlwind": 47771, + "whis": 6024, + "whiskey": 41381, + "whiskey": 11610, + "whisky": 37567, + "whisky": 12599, + "whisp": 21986, + "whispe": 30356, + "whisper": 27616, + "whisperer": 41368, + "whispering": 42599, + "whispers": 29133, + "whist": 13640, + "whistle": 23972, + "whistle": 19746, + "whistleblower": 40410, + "whistler": 29633, + "whit": 4398, + "whit": 31498, + "whitaker": 35851, + "whitby": 30858, + "white": 4699, + "white": 1579, + "whiteboard": 40839, + "whitec": 24575, + "whitehall": 42827, + "whitehead": 43560, + "whitehouse": 20776, + "whitening": 35540, + "whitepaper": 42713, + "whites": 35886, + "whites": 18835, + "whitesox": 28816, + "whitewater": 49350, + "whitfield": 48404, + "whitley": 40564, + "whitman": 32394, + "whitney": 43021, + "whitney": 18048, + "whitt": 33784, + "whittaker": 47595, + "whl": 25801, + "who": 2969, + "who": 822, + "whoa": 16943, + "whoever": 11137, + "whois": 41884, + "whole": 10360, + "whole": 2954, + "wholefoods": 42840, + "wholesale": 18306, + "wholesome": 35959, + "whom": 38158, + "whom": 12873, + "whoo": 20003, + "whoo": 49290, + "whoop": 22060, + "whoops": 28433, + "whopping": 34384, + "whore": 31690, + "whos": 41460, + "whos": 27130, + "whose": 6933, + "whouse": 45927, + "whs": 26292, + "wht": 32470, + "whufc": 31695, + "whun": 18272, + "why": 11040, + "why": 1182, + "whyte": 42386, + "wi": 820, + "wi": 5585, + "wib": 45303, + "wic": 7834, + "wich": 9759, + "wich": 5238, + "wichita": 22566, + "wick": 6798, + "wick": 6479, + "wicked": 32579, + "wicked": 12825, + "wicker": 38096, + "wicket": 19180, + "wickets": 22110, + "wicklow": 39039, + "wicz": 30121, + "wid": 11886, + "wid": 20886, + "wide": 19341, + "wide": 3184, + "widely": 16195, + "widening": 46598, + "wider": 21263, + "widesp": 20598, + "widespread": 21258, + "widget": 43906, + "wido": 28068, + "widow": 19949, + "widows": 42129, + "width": 23571, + "wie": 21378, + "wie": 9131, + "wielding": 47272, + "wien": 38131, + "wiener": 40567, + "wies": 42788, + "wif": 37572, + "wife": 3607, + "wifey": 35282, + "wifi": 11026, + "wig": 23690, + "wig": 12216, + "wigan": 23130, + "wiggins": 32329, + "wiggle": 47812, + "wight": 41278, + "wight": 15545, + "wigs": 31207, + "wii": 8005, + "wiiu": 40980, + "wiki": 10373, + "wiki": 24265, + "wikileaks": 28731, + "wikipedia": 15176, + "wil": 1352, + "wil": 20581, + "wilbur": 43069, + "wilcox": 43231, + "wild": 2780, + "wild": 3220, + "wildatlantic": 35500, + "wildatlanticway": 35776, + "wildcard": 37360, + "wildcat": 49077, + "wildcat": 25870, + "wildcats": 15909, + "wilde": 23498, + "wilder": 14343, + "wilder": 23499, + "wilderness": 16506, + "wildest": 43028, + "wildfire": 22788, + "wildfires": 29184, + "wildflower": 27628, + "wildflower": 33181, + "wildflowerhour": 31302, + "wildflowers": 29136, + "wildlife": 13298, + "wildlife": 5250, + "wildlifephotography": 32307, + "wildlifewednesday": 48537, + "wildly": 35981, + "wildoz": 40113, + "wiley": 32747, + "wilhelm": 39696, + "wilkes": 39548, + "wilkins": 36986, + "wilkinson": 26797, + "will": 5062, + "will": 751, + "willam": 43276, + "willard": 44920, + "wille": 48739, + "willem": 38044, + "willi": 2256, + "william": 8420, + "william": 4705, + "williams": 38452, + "williams": 4075, + "williamsburg": 30683, + "williamson": 20793, + "willie": 13907, + "willing": 34160, + "willing": 11718, + "willingness": 40573, + "willis": 18491, + "willow": 33887, + "willow": 15665, + "wills": 26913, + "willy": 34502, + "willy": 19599, + "wilmington": 28052, + "wilms": 47879, + "wilshere": 48359, + "wilson": 23629, + "wilson": 5622, + "wilt": 23394, + "wilt": 47357, + "wilton": 46638, + "wiltshire": 28025, + "wim": 8662, + "wim": 27580, + "wimble": 11752, + "wimbledon": 12229, + "win": 831, + "win": 1225, + "winchester": 20647, + "wind": 6812, + "wind": 3630, + "winder": 44454, + "winder": 46245, + "winding": 22390, + "windmill": 34084, + "windo": 3110, + "window": 26675, + "window": 4879, + "windows": 5437, + "winds": 12668, + "winds": 7012, + "windshield": 33002, + "windsor": 44322, + "windsor": 12884, + "windy": 13446, + "wine": 7375, + "wine": 2604, + "winelover": 26357, + "winemaker": 41588, + "wineoclock": 43846, + "wineries": 49349, + "winery": 15500, + "wines": 8263, + "winetasting": 41288, + "winewednesday": 35447, + "wing": 8141, + "wing": 1340, + "winged": 24993, + "winger": 22727, + "winget": 44578, + "wings": 5178, + "wink": 34455, + "wink": 25859, + "winkle": 36430, + "winn": 38104, + "winne": 46273, + "winner": 32961, + "winner": 2520, + "winners": 4320, + "winni": 13018, + "winnie": 29022, + "winning": 42099, + "winning": 2577, + "winnings": 46490, + "winnipeg": 14369, + "winona": 49202, + "wins": 46839, + "wins": 2718, + "winslow": 39658, + "winston": 14848, + "winter": 7340, + "winter": 2541, + "winters": 21587, + "wintry": 39504, + "wip": 10447, + "wipe": 26761, + "wiped": 31822, + "wipes": 33463, + "wir": 16849, + "wir": 44838, + "wire": 7558, + "wire": 7794, + "wired": 18935, + "wireless": 9103, + "wires": 24311, + "wiring": 36434, + "wirral": 34675, + "wis": 3392, + "wis": 20405, + "wiscon": 9857, + "wisconsin": 10265, + "wisdom": 42474, + "wisdom": 5425, + "wise": 19116, + "wise": 5558, + "wisely": 26173, + "wiser": 44859, + "wish": 11328, + "wish": 2412, + "wished": 25883, + "wishes": 6045, + "wishing": 5307, + "wishlist": 31969, + "wit": 584, + "wit": 8531, + "witch": 20139, + "witch": 10083, + "witchcraft": 35065, + "witcher": 33684, + "witches": 21673, + "with": 1435, + "with": 593, + "withdra": 24696, + "withdraw": 31670, + "withdrawal": 25765, + "withdrawn": 46687, + "withdraws": 48637, + "wither": 39655, + "witherspoon": 45409, + "within": 4154, + "withme": 44670, + "without": 32836, + "without": 2193, + "withstand": 42236, + "withthe": 36872, + "withus": 30572, + "withyou": 30351, + "witne": 12096, + "witness": 8793, + "witnessed": 20187, + "witnesses": 22778, + "witnessing": 33618, + "wits": 30938, + "witt": 38194, + "witt": 17168, + "witter": 31597, + "witty": 29970, + "witz": 44186, + "witz": 13265, + "wiv": 48925, + "wives": 14378, + "wiwx": 44461, + "wiz": 7730, + "wiz": 23178, + "wizar": 49121, + "wizard": 30490, + "wizard": 14295, + "wizards": 19140, + "wizkid": 40146, + "wj": 19739, + "wj": 35453, + "wk": 11512, + "wk": 11528, + "wkend": 42336, + "wknd": 20851, + "wks": 25508, + "wku": 43377, + "wl": 13299, + "wl": 9613, + "wm": 20268, + "wm": 15790, + "wn": 1186, + "wn": 757, + "wnba": 32358, + "wned": 8628, + "wns": 12950, + "wnt": 22484, + "wny": 24833, + "wo": 1613, + "wo": 11132, + "woah": 17751, + "wob": 35984, + "woc": 39011, + "wod": 41522, + "woes": 27860, + "wof": 45671, + "woj": 48931, + "wok": 28912, + "woke": 9331, + "woken": 43697, + "woking": 43931, + "wol": 2798, + "wol": 48622, + "wold": 42399, + "wolf": 9453, + "wolf": 5916, + "wolfe": 24989, + "wolff": 34369, + "wolfgang": 34061, + "wolfpack": 30887, + "wolve": 45101, + "wolver": 14334, + "wolverhampton": 34518, + "wolverine": 23353, + "wolverines": 42003, + "wolves": 9372, + "wom": 1087, + "womack": 48980, + "woman": 15716, + "woman": 2308, + "womanc": 35630, + "womancrush": 37721, + "womancrushwednesday": 39714, + "womanin": 30562, + "womaninbiz": 36482, + "womb": 37023, + "women": 3648, + "women": 1507, + "womenin": 13062, + "womeninscience": 41343, + "womeninstem": 29380, + "womenintech": 31470, + "womenof": 48421, + "womens": 12822, + "womens": 14408, + "womensart": 38548, + "womensday": 13956, + "womenshi": 22887, + "womenshistorymonth": 24982, + "womensmarch": 30102, + "won": 1528, + "won": 1749, + "wonder": 2070, + "wonder": 3936, + "wondercon": 46944, + "wondered": 15550, + "wonderful": 2582, + "wonderfully": 23245, + "wondering": 8360, + "wonderland": 13874, + "wonders": 14048, + "wonderwoman": 31000, + "wondo": 38402, + "wondr": 46771, + "wong": 17876, + "wonka": 43463, + "wont": 43174, + "wont": 15952, + "woo": 1867, + "woo": 9322, + "wood": 3269, + "wood": 1704, + "woodbridge": 49074, + "wooden": 48226, + "wooden": 9057, + "woodland": 44314, + "woodland": 17447, + "woodlands": 32430, + "woodley": 40566, + "woodpecker": 32684, + "woods": 6267, + "woodson": 48967, + "woodstock": 29486, + "woodward": 27419, + "woodwork": 47386, + "woodworking": 29267, + "woody": 38627, + "woody": 17144, + "woof": 34234, + "woof": 24028, + "woohoo": 20172, + "wook": 29192, + "wool": 9967, + "wool": 13283, + "woolf": 43728, + "woolly": 47722, + "woon": 33126, + "wooo": 43217, + "woop": 31884, + "woot": 22466, + "wor": 641, + "worcester": 22172, + "worcester": 19580, + "worcestershire": 38440, + "worcestershirehour": 43644, + "word": 8272, + "word": 2653, + "wordof": 33500, + "wordoftheday": 43594, + "wordpress": 15193, + "words": 31007, + "words": 2709, + "wore": 8953, + "work": 1636, + "work": 951, + "workday": 29735, + "worked": 5410, + "worker": 8098, + "workers": 4795, + "workflow": 28502, + "workforce": 14672, + "workin": 31825, + "workin": 26323, + "working": 20806, + "working": 1699, + "workinprogress": 46086, + "workout": 6773, + "workouts": 22779, + "workplace": 11959, + "workplaces": 47383, + "works": 2322, + "workshop": 3832, + "workshops": 12262, + "workspace": 34470, + "worl": 5221, + "world": 2334, + "world": 1002, + "worlda": 46627, + "worldbank": 36759, + "worldbookday": 31191, + "worldcup": 42525, + "worldcup": 8650, + "worlden": 44668, + "worldenviron": 47115, + "worldenvironmentday": 47522, + "worldly": 36268, + "worldo": 41698, + "worldof": 22636, + "worldre": 33951, + "worlds": 7691, + "worldseries": 26695, + "worldtour": 23202, + "worldwater": 41176, + "worldwaterday": 44520, + "worldwide": 6214, + "worm": 33709, + "worm": 10945, + "worms": 20231, + "worn": 9037, + "worried": 11911, + "worries": 17684, + "worry": 7534, + "worrying": 24058, + "worse": 8236, + "worsen": 46344, + "worshi": 31840, + "worship": 46399, + "worship": 9023, + "worst": 5719, + "wort": 30209, + "worth": 10671, + "worth": 2450, + "worthing": 39929, + "worthit": 40830, + "worthless": 44736, + "worths": 44633, + "worthwhile": 36295, + "worthy": 8881, + "worx": 44973, + "wot": 24863, + "wou": 5279, + "would": 39873, + "would": 1311, + "wouldn": 5878, + "wouldnt": 41595, + "wound": 19231, + "wounded": 14859, + "wounds": 21290, + "woven": 19830, + "wow": 22191, + "wow": 2781, + "woz": 44558, + "wozni": 47782, + "wp": 15378, + "wp": 13302, + "wpg": 35048, + "wps": 33386, + "wq": 45195, + "wr": 1189, + "wr": 8028, + "wra": 3852, + "wra": 46004, + "wral": 49050, + "wrangler": 30923, + "wrap": 7094, + "wrapped": 9875, + "wrapping": 15223, + "wraps": 18236, + "wrath": 29783, + "wray": 48943, + "wrc": 16004, + "wre": 3168, + "wreath": 23091, + "wrec": 20879, + "wreck": 28775, + "wreck": 15017, + "wrecked": 32695, + "wreckem": 45676, + "wrecking": 36956, + "wrecks": 45545, + "wren": 20191, + "wren": 31970, + "wrench": 30980, + "wrest": 4177, + "wrestle": 17097, + "wrestle": 28086, + "wrestlemania": 18849, + "wrestler": 19790, + "wrestlers": 25902, + "wrestling": 31292, + "wrestling": 5904, + "wrexham": 34479, + "wri": 7667, + "wri": 42007, + "wright": 28616, + "wright": 6991, + "wrights": 43711, + "wrigley": 33538, + "wrink": 22201, + "wrinkle": 46642, + "wrinkles": 35525, + "wrist": 19243, + "wrist": 16139, + "wristband": 36890, + "wristbands": 44864, + "writ": 2902, + "write": 28874, + "write": 4946, + "writer": 27886, + "writer": 4422, + "writers": 18742, + "writers": 7307, + "writerslife": 25007, + "writes": 8023, + "writing": 16053, + "writing": 2979, + "writingcommunity": 39178, + "writings": 36259, + "written": 5231, + "wro": 5447, + "wrong": 18381, + "wrong": 3669, + "wrongly": 45642, + "wrote": 5796, + "wrought": 48125, + "wrs": 45280, + "ws": 6300, + "ws": 799, + "wsb": 30681, + "wsbtv": 38394, + "wsj": 19764, + "wski": 12548, + "wsl": 43706, + "wsoc": 40253, + "wson": 33954, + "wsop": 41231, + "wsu": 44674, + "wsu": 32913, + "wsw": 43285, + "wt": 15873, + "wt": 12255, + "wta": 25984, + "wtc": 39718, + "wtf": 6891, + "wth": 23021, + "wthr": 45269, + "wti": 47345, + "wto": 36406, + "wts": 32159, + "wu": 9710, + "wu": 9837, + "wud": 43870, + "wul": 35154, + "wunder": 36661, + "wur": 24040, + "wurst": 44409, + "wusa": 40021, + "wut": 28590, + "wv": 18920, + "wv": 14743, + "wvu": 44878, + "wvu": 25879, + "ww": 3181, + "ww": 4491, + "wwc": 26505, + "wwdc": 47441, + "wwe": 12112, + "wwe": 5290, + "wwen": 23308, + "wwenetwork": 37228, + "wwenxt": 39898, + "wwer": 32038, + "wwf": 23332, + "wwfc": 42681, + "wwg": 35322, + "wwi": 20194, + "wwii": 10261, + "www": 26074, + "www": 9667, + "wwwbigbaldhead": 30761, + "wwww": 34224, + "wwww": 25200, + "wwwww": 48268, + "wwx": 47431, + "wx": 18192, + "wx": 3561, + "wy": 4665, + "wy": 7625, + "wyatt": 21660, + "wyd": 33113, + "wye": 48436, + "wye": 43751, + "wylie": 49330, + "wyn": 11802, + "wyn": 17504, + "wynn": 36117, + "wynne": 35951, + "wynonna": 41456, + "wynonnaearp": 43755, + "wyoming": 18693, + "x": 87, + "x": 343, + "xa": 24831, + "xan": 45530, + "xander": 45601, + "xavi": 36342, + "xavier": 41044, + "xavier": 18567, + "xb": 33678, + "xbox": 18063, + "xbox": 7748, + "xboxone": 27410, + "xc": 12515, + "xchange": 49132, + "xd": 6380, + "xe": 42886, + "xe": 19183, + "xen": 15568, + "xer": 49005, + "xf": 35274, + "xfactor": 25211, + "xfinity": 35107, + "xford": 34732, + "xh": 45771, + "xham": 25284, + "xi": 2467, + "xi": 7376, + "xia": 19854, + "xia": 20724, + "xian": 42570, + "xiao": 49318, + "xiaomi": 27477, + "xico": 38469, + "xide": 17398, + "xie": 40122, + "xie": 15976, + "xii": 36525, + "xiii": 28199, + "xim": 11217, + "xin": 27053, + "xin": 41517, + "xing": 14383, + "xion": 24164, + "xis": 35793, + "xit": 5316, + "xiumin": 36563, + "xiv": 16125, + "xj": 42453, + "xl": 36529, + "xl": 8833, + "xley": 38223, + "xm": 18626, + "xma": 48805, + "xmas": 48848, + "xmas": 6425, + "xmen": 28708, + "xn": 25388, + "xo": 26936, + "xo": 9000, + "xon": 29186, + "xon": 8482, + "xox": 11531, + "xox": 34050, + "xoxo": 13313, + "xp": 15651, + "xper": 32200, + "xperia": 37615, + "xpo": 44377, + "xpress": 31809, + "xq": 40606, + "xr": 26276, + "xrp": 26965, + "xs": 16397, + "xt": 1052, + "xtina": 45520, + "xton": 32666, + "xton": 10597, + "xtra": 26969, + "xtre": 27025, + "xtreme": 33483, + "xu": 42063, + "xu": 37198, + "xv": 17768, + "xvi": 44031, + "xx": 5675, + "xx": 3553, + "xxl": 29777, + "xxx": 33923, + "xxx": 8352, + "xxxx": 32035, + "xxxx": 22819, + "xxxxx": 44195, + "xy": 20023, + "xy": 11443, + "y": 88, + "y": 344, + "ya": 5018, + "ya": 1430, + "yaa": 48847, + "yaa": 34498, + "yaan": 34680, + "yab": 27737, + "yach": 9039, + "yacht": 43806, + "yacht": 12859, + "yachts": 29260, + "yad": 13276, + "yad": 40047, + "yadav": 26650, + "yaf": 38019, + "yag": 35081, + "yah": 16170, + "yah": 12381, + "yaho": 37929, + "yahoo": 38152, + "yahoo": 16846, + "yak": 11014, + "yak": 29074, + "yaki": 44677, + "yaku": 29572, + "yakuza": 42628, + "yal": 16198, + "yal": 13418, + "yale": 39926, + "yale": 17157, + "yall": 9210, + "yam": 6666, + "yam": 19318, + "yama": 23512, + "yamaha": 18854, + "yan": 3949, + "yan": 4788, + "yana": 18698, + "yand": 38609, + "yang": 23818, + "yang": 12605, + "yani": 26439, + "yankee": 21554, + "yankees": 11889, + "yann": 40246, + "yann": 38657, + "yao": 45231, + "yap": 48700, + "yap": 34468, + "yar": 6786, + "yar": 23071, + "yard": 20234, + "yard": 4313, + "yards": 7550, + "yarmouth": 45941, + "yarn": 19702, + "yarra": 46824, + "yas": 8168, + "yas": 20570, + "yash": 30216, + "yash": 37836, + "yasi": 37700, + "yasss": 23873, + "yat": 29443, + "yat": 34965, + "yates": 27677, + "yatra": 38932, + "yav": 41275, + "yaw": 31989, + "yawn": 48643, + "yay": 20614, + "yay": 6712, + "yaya": 37608, + "yaz": 19348, + "yaz": 42252, + "yb": 41785, + "yb": 27615, + "yc": 11931, + "ycle": 38089, + "yd": 29896, + "yd": 9534, + "yday": 15899, + "yds": 24819, + "ye": 693, + "ye": 4582, + "yea": 13687, + "yeah": 29405, + "yeah": 3908, + "year": 5163, + "year": 935, + "yearbook": 21636, + "yearling": 48392, + "yearly": 24541, + "yearof": 31944, + "yearofthe": 47899, + "years": 30864, + "years": 1151, + "yearsof": 14932, + "yearswith": 45249, + "yeast": 25819, + "yeats": 44903, + "yed": 28137, + "yed": 3301, + "yee": 18114, + "yee": 23108, + "yeezy": 24901, + "yeg": 16854, + "yeg": 11976, + "yegfood": 48711, + "yeh": 21331, + "yel": 3323, + "yel": 48164, + "yell": 30824, + "yelled": 39199, + "yelling": 26581, + "yellow": 12059, + "yellow": 4481, + "yellowstone": 29241, + "yelp": 31674, + "yemen": 29276, + "yemen": 12513, + "yemeni": 44656, + "yemi": 42267, + "yen": 29602, + "yen": 17960, + "yeo": 32292, + "yeo": 43830, + "yeol": 15808, + "yeon": 16602, + "yep": 10964, + "yer": 15491, + "yer": 2371, + "yers": 3722, + "yes": 21620, + "yes": 1958, + "yess": 42778, + "yess": 40189, + "yesss": 36210, + "yessss": 45620, + "yester": 1905, + "yesterday": 1926, + "yesterdays": 36238, + "yesung": 38527, + "yet": 2296, + "yeti": 34228, + "yev": 39855, + "yew": 34660, + "yey": 45447, + "yg": 16396, + "ygk": 44758, + "ygo": 46166, + "yh": 41978, + "yi": 5826, + "yi": 14762, + "yield": 16825, + "yields": 24856, + "yikes": 25094, + "yin": 26476, + "yin": 23543, + "ying": 42933, + "ying": 910, + "yixing": 32120, + "yk": 30965, + "yl": 2656, + "yl": 4045, + "ylan": 41875, + "ylde": 42850, + "yle": 32305, + "yle": 10770, + "ylene": 34239, + "yler": 48081, + "yles": 42860, + "ylon": 22375, + "ylor": 48468, + "ym": 1786, + "ym": 19587, + "yman": 29077, + "ymc": 47101, + "ymca": 22369, + "yment": 8199, + "ymes": 39968, + "ymi": 5271, + "ymm": 37133, + "ymoun": 41426, + "ymouth": 36429, + "yn": 2823, + "yn": 4100, + "yne": 18238, + "ynes": 18020, + "ynn": 10499, + "ynna": 48292, + "ynwa": 27372, + "yo": 586, + "yo": 3497, + "yoda": 31922, + "yof": 5966, + "yofficial": 21818, + "yofthe": 43983, + "yog": 34985, + "yog": 36539, + "yoga": 25872, + "yoga": 5523, + "yogh": 32626, + "yoghurt": 33491, + "yogi": 22766, + "yogur": 16137, + "yogurt": 16819, + "yoh": 48880, + "yoke": 41969, + "yoko": 25929, + "yoko": 32256, + "yokohama": 42409, + "yol": 19387, + "yol": 35218, + "yolanda": 43845, + "yolo": 20905, + "yom": 34718, + "yom": 44527, + "yon": 10147, + "yon": 7604, + "yong": 27960, + "yong": 20887, + "yonge": 48592, + "yoo": 25842, + "yoo": 20775, + "yoon": 30863, + "yoon": 22113, + "yoona": 32736, + "yoongi": 24037, + "yor": 2028, + "yor": 21132, + "york": 5318, + "york": 2705, + "yorker": 23865, + "yorkers": 41041, + "yorks": 39093, + "yorkshi": 43367, + "yorkshire": 27007, + "yorkshire": 8633, + "yoruba": 46083, + "yos": 35607, + "yosemite": 25893, + "yoshi": 22920, + "yoshi": 25354, + "yot": 22875, + "yotes": 46157, + "yotpo": 26113, + "you": 1562, + "you": 592, + "youare": 33879, + "youcan": 32498, + "youknow": 47919, + "youknow": 41088, + "youn": 1596, + "young": 6939, + "young": 1888, + "younger": 10414, + "youngest": 12316, + "youngjae": 46426, + "youngster": 35881, + "youngsters": 28098, + "younow": 33831, + "your": 2130, + "your": 695, + "youre": 28344, + "youre": 19695, + "yourown": 28583, + "yours": 3834, + "yourself": 3053, + "yourselves": 19747, + "youth": 10743, + "youth": 3281, + "youthful": 37480, + "youths": 23614, + "youts": 22737, + "youtu": 13868, + "youtube": 31258, + "youtube": 3895, + "youtuber": 24720, + "youtubers": 36822, + "youu": 35055, + "youuu": 35324, + "youuuu": 47123, + "yoy": 41865, + "yp": 38370, + "yp": 34734, + "ypg": 37386, + "yql": 46122, + "yqr": 36881, + "yr": 18395, + "yr": 4333, + "yrs": 4822, + "ys": 1971, + "ys": 961, + "yser": 33121, + "ysis": 4843, + "ysl": 45681, + "ysm": 23842, + "yst": 40528, + "yt": 36777, + "yt": 14779, + "ytd": 47524, + "yte": 48172, + "yu": 3371, + "yu": 8887, + "yuan": 26236, + "yuck": 48282, + "yugo": 48231, + "yuh": 42547, + "yui": 47932, + "yuk": 17037, + "yuk": 24063, + "yuki": 34010, + "yukon": 27094, + "yul": 39832, + "yum": 6869, + "yum": 7259, + "yuma": 47566, + "yummy": 7687, + "yun": 14976, + "yun": 18288, + "yung": 44545, + "yung": 17676, + "yunho": 39748, + "yup": 13231, + "yur": 42533, + "yuri": 23823, + "yusuf": 33222, + "yuv": 36784, + "yves": 33698, + "yvon": 23327, + "yvonne": 32583, + "yvr": 29058, + "yw": 33741, + "yx": 35624, + "yxe": 34240, + "yy": 3433, + "yy": 8321, + "yya": 37444, + "yyc": 27542, + "yyc": 11741, + "yyj": 26203, + "yyy": 11514, + "yyyy": 38749, + "yyyy": 16955, + "yyyyy": 26089, + "yyyyyy": 47055, + "yz": 37579, + "yz": 46451, + "yü": 48232, + "z": 89, + "z": 345, + "za": 3710, + "za": 2186, + "zab": 22982, + "zable": 37002, + "zac": 25501, + "zac": 19159, + "zach": 13401, + "zach": 11815, + "zachary": 32401, + "zack": 30567, + "zack": 19120, + "zad": 47314, + "zad": 27838, + "zada": 34889, + "zaf": 21837, + "zafar": 46668, + "zag": 26091, + "zag": 29346, + "zagre": 34107, + "zagreb": 35355, + "zah": 23258, + "zah": 43297, + "zaha": 44408, + "zai": 44329, + "zai": 27065, + "zain": 34400, + "zain": 45366, + "zak": 13050, + "zak": 20738, + "zaki": 48091, + "zal": 20552, + "zal": 33298, + "zam": 7218, + "zam": 41578, + "zambia": 21671, + "zan": 7284, + "zan": 17835, + "zana": 39643, + "zand": 37712, + "zane": 34786, + "zani": 45373, + "zania": 15059, + "zano": 27637, + "zanzi": 47835, + "zap": 24134, + "zapp": 33504, + "zappa": 46592, + "zar": 5458, + "zar": 16392, + "zara": 24454, + "zardari": 20174, + "zas": 48261, + "zation": 3683, + "zawa": 49281, + "zay": 7102, + "zayed": 36726, + "zayn": 22292, + "zayn": 10308, + "zaynmalik": 25278, + "zazzle": 47857, + "ze": 2254, + "ze": 1298, + "zeal": 44951, + "zealand": 7618, + "zeb": 46518, + "zebra": 47394, + "zebra": 22548, + "zed": 21047, + "zed": 1993, + "zedd": 45608, + "zee": 25468, + "zee": 14080, + "zeiss": 47460, + "zeit": 37898, + "zeit": 37906, + "zek": 40829, + "zeke": 47065, + "zel": 10389, + "zel": 12027, + "zelda": 17138, + "zell": 39526, + "zen": 8518, + "zen": 3928, + "zend": 33478, + "zendaya": 35956, + "zenith": 44740, + "zens": 15298, + "zeph": 40726, + "zepp": 22977, + "zeppelin": 25408, + "zer": 6118, + "zer": 3716, + "zero": 14867, + "zero": 5848, + "zers": 9547, + "zes": 4073, + "zest": 37709, + "zet": 34098, + "zeta": 30954, + "zetta": 45993, + "zeus": 32800, + "zey": 46647, + "zh": 33389, + "zh": 41621, + "zhang": 21127, + "zhen": 37374, + "zhen": 33236, + "zhou": 17384, + "zhu": 42049, + "zi": 2651, + "zi": 5819, + "zia": 13764, + "zid": 30235, + "zidane": 34643, + "zie": 29316, + "zie": 8956, + "zieg": 40157, + "ziegler": 46812, + "ziel": 32151, + "zier": 15399, + "zies": 38001, + "ziest": 28159, + "zig": 15950, + "zig": 21345, + "ziggy": 39274, + "zik": 30125, + "zika": 28783, + "zil": 25039, + "zil": 33190, + "zilla": 17879, + "zim": 8112, + "zim": 22577, + "zimbab": 12373, + "zimbabwe": 45668, + "zimbabwe": 13583, + "zimmer": 27452, + "zimmer": 35211, + "zimmerman": 38231, + "zin": 14085, + "zin": 21278, + "zinc": 27458, + "zind": 26206, + "zindabad": 42208, + "zine": 16100, + "zing": 25062, + "zing": 3152, + "zinger": 42027, + "zio": 13906, + "zion": 31763, + "zion": 20963, + "zione": 36161, + "zionist": 33078, + "zip": 26479, + "zip": 16083, + "zipper": 33670, + "zir": 31892, + "zl": 39168, + "zlat": 32489, + "zlatan": 37877, + "zm": 43691, + "zman": 24248, + "zn": 18004, + "zo": 4397, + "zo": 5056, + "zodi": 22660, + "zodiac": 27753, + "zoe": 43114, + "zoe": 16662, + "zoey": 39871, + "zog": 40680, + "zol": 25939, + "zola": 46105, + "zom": 6623, + "zombi": 29452, + "zombie": 11819, + "zombies": 46702, + "zombies": 16517, + "zon": 15109, + "zon": 14618, + "zona": 42134, + "zone": 37197, + "zone": 4442, + "zones": 17247, + "zoning": 36790, + "zoo": 8182, + "zoo": 7147, + "zoom": 32671, + "zoom": 13909, + "zor": 17605, + "zou": 38072, + "zr": 39275, + "zs": 35248, + "zshq": 41442, + "zt": 42629, + "zu": 4091, + "zu": 14184, + "zucchini": 29873, + "zucker": 26890, + "zuckerberg": 30066, + "zul": 31146, + "zulu": 32821, + "zum": 35094, + "zuma": 23326, + "zumba": 32976, + "zun": 42440, + "zur": 17128, + "zurich": 21288, + "zw": 42188, + "zx": 31604, + "zy": 6615, + "zy": 2303, + "zyk": 39112, + "zyme": 36472, + "zyn": 45287, + "zz": 1544, + "zz": 4943, + "zza": 14642, + "zzi": 13974, + "zzie": 18635, + "zzle": 7873, + "zzled": 39075, + "zzo": 14036, + "zzy": 21275, + "zzy": 8353, + "zzz": 20055, + "zzzz": 35742, + "zzzz": 43103, + "{": 90, + "{": 346, + "{}": 39025, + "|": 91, + "|#": 31183, + "|": 347, + "|@": 41677, + "||": 7566, + "}": 92, + "}": 348, + "~": 93, + "~!": 31181, + "~\"": 48442, + "~": 349, + "~>": 43291, + "~@": 44247, + "~~": 11461, + "~~": 16671, + "~~~": 32472, + "~~~~": 28295, + "¡": 94, + "¡": 350, + "¡ï¸ı": 15113, + "¡ï¸ı": 4174, + "¡ľ": 43991, + "¢": 95, + "¢": 351, + "£": 96, + "£": 352, + "£ï¸ı": 18446, + "¤": 97, + "¤": 353, + "¥": 98, + "¥": 354, + "¦": 99, + "¦": 355, + "¦Ī": 47615, + "§": 100, + "§": 356, + "¨": 101, + "¨": 357, + "©": 102, + "©": 358, + "ª": 103, + "ª": 359, + "«": 104, + "«": 360, + "¬": 105, + "¬": 361, + "¬ë": 31736, + "®": 106, + "®": 362, + "¯": 107, + "¯": 363, + "°": 108, + "°:": 21787, + "°": 364, + "°ï¸ı": 34777, + "±": 109, + "±": 365, + "±ï¸ı": 41020, + "²": 110, + "²": 366, + "³": 111, + "³": 367, + "³ï¸ı": 22195, + "³ï¸ı": 24706, + "´": 112, + "´": 368, + "µ": 113, + "µ": 369, + "µï¸ı": 27605, + "¶": 114, + "¶": 370, + "·": 115, + "·": 371, + "¸": 116, + "¸": 372, + "¸ë": 19693, + "¹": 117, + "¹": 373, + "º": 118, + "º": 374, + "»": 119, + "»": 375, + "¼": 120, + "¼": 376, + "½": 121, + "½": 377, + "½ï¸ı": 31333, + "¾": 122, + "¾": 378, + "¿": 123, + "¿": 379, + "À": 124, + "À": 380, + "Á": 125, + "Á": 381, + "Â": 126, + "Â": 382, + "¡": 26868, + "¡": 10830, + "¡¡": 45505, + "¢": 41359, + "£": 31117, + "£": 1950, + "Â¥": 20199, + "¨": 19957, + "¨¨": 23089, + "¨¨¨¨": 41223, + "©": 31148, + "©": 5811, + "«": 14434, + "®": 30857, + "®": 8436, + "¯": 38682, + "¯": 43593, + "¯\\": 44096, + "¯\\_(": 45115, + "°": 21305, + "°": 6858, + "²": 41175, + "´": 30560, + "´": 12559, + "·": 14844, + "º": 28059, + "»": 31642, + "»": 7599, + "½": 33613, + "¿": 44559, + "¿": 17133, + "ÂŃ": 22618, + "Ã": 127, + "Ã": 383, + "á": 7261, + "á": 22229, + "án": 38340, + "án": 21385, + "â": 26170, + "ã": 19339, + "ão": 21141, + "ä": 10896, + "ä": 47276, + "än": 42787, + "Ã¥": 23176, + "æ": 42495, + "ç": 10067, + "ça": 22711, + "è": 12138, + "è": 37761, + "ère": 30272, + "ès": 41210, + "é": 3459, + "é": 4166, + "éal": 45251, + "ée": 13489, + "és": 20507, + "ê": 27515, + "ë": 29526, + "ë": 40520, + "î": 48704, + "ï": 35689, + "ñ": 6445, + "ña": 17753, + "ño": 16574, + "ños": 40104, + "ó": 8891, + "ó": 27733, + "ón": 13926, + "ô": 26815, + "ö": 7255, + "ö": 37423, + "ör": 31762, + "ø": 17483, + "ø": 45598, + "ú": 17963, + "ú": 36019, + "ü": 6522, + "ü": 47177, + "ür": 26132, + "ÃĹ": 16165, + "Ãł": 36149, + "Ãł": 21259, + "ÃŃ": 8366, + "ÃŃ": 23928, + "ÃŃa": 16609, + "ÃŃn": 33623, + "Ä": 128, + "Ä": 384, + "ı": 18562, + "ı": 41901, + "Äģ": 23134, + "Äĩ": 31719, + "Äį": 45414, + "ÄŁ": 26540, + "Å": 129, + "Å": 385, + "Å¡": 35621, + "ÅĤ": 40419, + "Åį": 41267, + "ÅŁ": 21254, + "ÅŁ": 40706, + "Æ": 130, + "Æ": 386, + "Ç": 131, + "Ç": 387, + "È": 132, + "È": 388, + "É": 133, + "É": 389, + "Ê": 134, + "Ê": 390, + "Ë": 135, + "Ë": 391, + "Ì": 136, + "Ì": 392, + "Ìĩ": 16384, + "Í": 137, + "Í": 393, + "Î": 138, + "Î": 394, + "Ï": 139, + "Ï": 395, + "Ïī": 38065, + "Ð": 140, + "Ð": 396, + "а": 16912, + "а": 27080, + "аÐ": 31090, + "в": 39813, + "е": 22176, + "и": 16701, + "иÐ": 29503, + "к": 27152, + "л": 47611, + "м": 38018, + "н": 22705, + "о": 13506, + "о": 29386, + "оÐ": 20978, + "од": 38416, + "оÑĤ": 28599, + "п": 26302, + "пÑĢи": 46321, + "пÑĢиÑĢода": 48150, + "Ñ": 141, + "Ñ": 397, + "ÑĢ": 16370, + "ÑĢи": 41092, + "ÑĢод": 47039, + "ÑĢода": 47929, + "Ñģ": 23669, + "ÑĤ": 17875, + "Ñĥ": 39729, + "ÑĦ": 27993, + "ÑĦоÑĤ": 35155, + "ÑĦоÑĤо": 38981, + "Ñĭ": 45001, + "Ò": 142, + "Ò": 398, + "Ó": 143, + "Ó": 399, + "Ô": 144, + "Ô": 400, + "Õ": 145, + "Õ": 401, + "Ö": 146, + "Ö": 402, + "×": 147, + "×": 403, + "Ø": 148, + "Ø": 404, + "ا": 6042, + "ا": 22625, + "اØ": 13189, + "ار": 40137, + "اÙ": 8453, + "اÙĦ": 12973, + "اÙħ": 47626, + "اÙĨ": 42773, + "اÙĨ": 33200, + "ب": 16378, + "ب": 35330, + "Ø©": 20915, + "ت": 18197, + "ت": 44333, + "ج": 26375, + "Ø®": 41495, + "د": 19872, + "د": 35566, + "ر": 10948, + "ر": 24933, + "رÙĬ": 43273, + "ز": 36169, + "س": 17856, + "Ø´": 28770, + "ص": 27271, + "Ø·": 32050, + "ع": 18843, + "غ": 48510, + "ØŃ": 25722, + "Ù": 149, + "Ù": 405, + "Ùģ": 24112, + "ÙĤ": 27585, + "Ùĥ": 33499, + "ÙĦ": 14251, + "ÙĦ": 37899, + "Ùħ": 12986, + "Ùħ": 29945, + "ÙĨ": 16655, + "ÙĨ": 25386, + "Ùĩ": 34274, + "Ùĩ": 31343, + "ÙĪ": 12203, + "ÙĪ": 38310, + "ÙĪر": 48242, + "ÙĬ": 12046, + "ÙĬ": 23853, + "Ú": 150, + "Ú": 406, + "Ú©": 26475, + "Û": 151, + "Û": 407, + "Ûģ": 40480, + "ÛĮ": 21452, + "ÛĮ": 32703, + "Ü": 152, + "Ü": 408, + "Ý": 153, + "Ý": 409, + "Þ": 154, + "Þ": 410, + "ß": 155, + "ß": 411, + "à": 156, + "à": 412, + "à¤": 3124, + "त": 27263, + "द": 29552, + "न": 26090, + "प": 44149, + "ब": 43599, + "म": 48254, + "म": 26774, + "य": 37299, + "र": 39136, + "र": 19052, + "ल": 30881, + "व": 39545, + "श": 43181, + "स": 28505, + "ह": 29446, + "ा": 37973, + "ा": 13343, + "ि": 26721, + "à¤Ĥ": 30833, + "à¤ķ": 22067, + "à¤Ĺ": 42598, + "à¤ľ": 39561, + "à¥": 7410, + "à¥Ģ": 45791, + "à¥Ģ": 25751, + "à¥ģ": 39653, + "à¥ĩ": 48612, + "à¥ĩ": 25130, + "à¥ĭ": 34452, + "à¥į": 19389, + "à¦": 11322, + "া": 41532, + "à§": 26339, + "à¨": 15741, + "à©": 32086, + "àª": 22990, + "à«": 48347, + "à¬": 32791, + "à®": 6022, + "த": 34691, + "ன": 43394, + "ப": 47388, + "à®®": 35463, + "à®°": 43270, + "ல": 47705, + "ா": 32831, + "ி": 27126, + "à®ķ": 36168, + "à®Ł": 45263, + "à¯": 11259, + "à¯ģ": 33115, + "à¯į": 16631, + "à°": 12100, + "à±": 23550, + "à±į": 46098, + "à²": 9992, + "ಿ": 47797, + "à³": 20745, + "à³į": 36148, + "à´": 15418, + "àµ": 27392, + "àµį": 45266, + "à¶": 29881, + "à·": 30766, + "à¸": 1777, + "ม": 26137, + "ม": 29570, + "ย": 27241, + "ย": 33091, + "ร": 32225, + "ร": 27331, + "ล": 34696, + "ล": 32746, + "ว": 26990, + "ว": 30245, + "ส": 37883, + "ส": 35737, + "ห": 33064, + "ะ": 43920, + "ะ": 49234, + "ั": 14978, + "า": 11529, + "า": 38476, + "าà¸": 12330, + "ิ": 17092, + "ี": 22421, + "ี": 20278, + "ีà¹Ī": 31511, + "ื": 47991, + "ุ": 30524, + "ู": 35273, + "à¸ģ": 30767, + "à¸ģà¸": 31474, + "à¸Ħ": 31757, + "à¸Ħà¸": 39628, + "à¸ĩ": 24603, + "à¸ĩ": 33382, + "à¸Ī": 47608, + "à¸Ĭ": 46324, + "à¸Ķ": 31107, + "à¸Ķ": 38825, + "à¸ķ": 40273, + "à¸ķ": 41108, + "à¸Ĺ": 36171, + "à¸Ļ": 17474, + "à¸Ļ": 17639, + "à¸Ļà¸": 23121, + "à¸ļ": 33859, + "à¸ļ": 39616, + "à¸ŀ": 48171, + "à¸Ń": 13398, + "à¸Ń": 32818, + "à¸Ńà¸": 14649, + "à¸Ńà¸ĩ": 46622, + "à¹": 4484, + "à¹Ģ": 13729, + "à¹Ģà¸": 14076, + "à¹ģà¸": 23916, + "à¹Ĥ": 33118, + "à¹ĥ": 40962, + "à¹Ħà¸": 31718, + "à¹ĩ": 38699, + "à¹Ī": 11722, + "à¹ī": 13123, + "à¹Į": 28353, + "à¼": 46186, + "à½": 39219, + "á": 157, + "á": 413, + "á´": 19036, + "áµ": 17330, + "áĢ": 45932, + "áĥ": 24829, + "áĥ¦": 32193, + "â": 158, + "â": 414, + "â¤": 25087, + "⤵ï¸ı": 36026, + "â¬": 7930, + "â¬ħï¸ı": 42111, + "â¬Ĩ": 27718, + "â¬Ĩï¸ı": 32798, + "â¬ĩ": 10917, + "â¬ĩ": 39370, + "â¬ĩï¸ı": 25621, + "â¬ĩï¸ı": 13984, + "â¬ĩï¸ıâ¬ĩï¸ı": 40159, + "âĢ": 728, + "âĢ¢": 9485, + "âĢ¢": 2701, + "âĢ¢âĢ¢": 15006, + "âĢ¢âĢ¢": 47575, + "âĢ¢âĢ¢âĢ¢âĢ¢": 27502, + "âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢": 48630, + "âĢ¦": 7095, + "âĢ¦\"": 20215, + "âĢ¦..": 47779, + "âĢ¦.": 18615, + "âĢ¦/": 29842, + "âĢ¦": 959, + "âĢ¦âĢ¦": 40066, + "âĢ²": 32633, + "âĢ³": 25061, + "âĢ¼": 6578, + "âĢ¼ï¸ı": 15622, + "âĢ¼ï¸ı": 8310, + "âĢ¼ï¸ıâĢ¼ï¸ı": 33218, + "âĢĭ": 17086, + "âĢĭ": 9844, + "âĢį": 4244, + "âĢįâĻ": 5177, + "âĢįâĻĢï¸ı": 18897, + "âĢįâĻĢï¸ı": 9605, + "âĢįâĻĤ": 8832, + "âĢįâĻĤï¸ı": 21779, + "âĢįâĻĤï¸ı": 10613, + "âĢİ": 31001, + "âĢIJ": 34512, + "âĢĵ": 21070, + "âĢĵ": 1224, + "âĢĶ": 6718, + "âĢĶ": 2005, + "âĢĶ>": 26341, + "âĢĶ@": 28470, + "âĢĶâĢĶ": 10037, + "âĢĶâĢĶ": 44800, + "âĢĶâĢĶâĢĶâĢĶ": 17797, + "âĢĶâĢĶâĢĶâĢĶâĢĶâĢĶâĢĶâĢĶ": 34432, + "âĢķ": 14236, + "âģ": 1667, + "âģ£": 31089, + "âģ£": 16845, + "âģ¦": 2773, + "âģ¦": 34855, + "âģ¦@": 2859, + "âģ¦âģ¦@": 27783, + "âģ©": 20097, + "âģ©,": 48749, + "âģ©.": 35777, + "âģ©": 2918, + "âģīï¸ı": 46534, + "âģł": 23881, + "âģł": 13503, + "âģłâģł": 33488, + "âĤ": 5227, + "âĤ¬": 34919, + "âĤ¬": 6309, + "âĤ¹": 21777, + "âĥ": 2805, + "âĥ£": 11250, + "âĥ£": 3076, + "âĥ£@": 48291, + "âĦ": 8604, + "âĦ¢": 29438, + "âĦ¢": 11675, + "âĦ¹": 45462, + "âĨ": 6059, + "âĨĴ": 7481, + "âĨĵ": 41603, + "âĩ": 27228, + "âĪ": 17788, + "âī": 22684, + "âīĪ": 45451, + "âĮ": 17848, + "âĮļ": 31301, + "âĮļï¸ı": 35931, + "âı": 7960, + "âı©": 40847, + "âı°": 12714, + "âı±": 33149, + "âı³": 47617, + "âĵ": 27400, + "âĶ": 13389, + "âĶĢ": 45139, + "âĶģ": 42022, + "âķ": 17027, + "âķIJ": 48039, + "âĸ": 4168, + "âĸª": 21203, + "âĸª": 36628, + "âĸªï¸ı": 24974, + "âĸ«": 39478, + "âĸ¬": 33798, + "âĸ¬âĸ¬": 36975, + "âĸ¶": 12509, + "âĸ¶": 21126, + "âĸ¶ï¸ı": 14442, + "âĸº": 46061, + "âĸº": 12086, + "âĸ½": 45634, + "âĸł": 36791, + "âĹ": 9323, + "âĹĨ": 48961, + "âĹı": 26999, + "âĺ": 1741, + "âĺ®": 45851, + "âĺ¹": 28811, + "âĺ¹ï¸ı": 39605, + "âĺº": 5010, + "âĺº": 8703, + "âĺºâĺº": 46051, + "âĺºï¸ı": 11506, + "âĺºï¸ı": 7779, + "âĺºï¸ıâĺºï¸ı": 41315, + "âĺ¼": 38877, + "âĺĢ": 32146, + "âĺĢ": 22242, + "âĺĢï¸ı": 12817, + "âĺĢï¸ı": 8219, + "âĺĢï¸ıâĺĢï¸ı": 44550, + "âĺģ": 25195, + "âĺģï¸ı": 35197, + "âĺĥ": 38972, + "âĺħ": 9339, + "âĺħ": 10643, + "âĺħâĺħ": 12681, + "âĺħâĺħ": 36644, + "âĺħâĺħâĺħâĺħ": 34431, + "âĺħâĺħâĺħâĺħ": 44034, + "âĺħâĺħâĺħâĺħâĺħ": 45984, + "âĺĨ": 23941, + "âĺĨ": 13439, + "âĺİ": 24045, + "âĺİ": 45493, + "âĺİï¸ı": 27219, + "âĺij": 20983, + "âĺij": 42300, + "âĺijï¸ı": 22291, + "âĺĶï¸ı": 31238, + "âĺķ": 11454, + "âĺķ": 26561, + "âĺķï¸ı": 25839, + "âĺķï¸ı": 15499, + "âĺĺ": 23483, + "âĺĺï¸ı": 31454, + "âĺĿ": 21982, + "âĺĿï¸ı": 38891, + "âĺŀ": 31255, + "âĺłï¸ı": 34672, + "âĻ": 1548, + "âĻ¡": 11091, + "âĻ¡": 6251, + "âĻ¡âĻ¡": 22360, + "âĻ¡âĻ¡": 34267, + "âĻ¡âĻ¡âĻ¡": 36611, + "âĻ¤": 47435, + "âĻ¥": 4622, + "âĻ¥": 3405, + "âĻ¥âĻ¥": 12975, + "âĻ¥âĻ¥": 19604, + "âĻ¥âĻ¥âĻ¥": 23255, + "âĻ¥âĻ¥âĻ¥âĻ¥": 49020, + "âĻ¥ï¸ı": 17774, + "âĻ¥ï¸ı": 10561, + "âĻ¥ï¸ıâĻ¥ï¸ı": 40309, + "âĻ¦": 32376, + "âĻ¦": 47547, + "âĻ©": 30339, + "âĻ©âĻ«": 31636, + "âĻª": 27364, + "âĻª": 12382, + "âĻ«": 39217, + "âĻ«": 10814, + "âĻ¬": 24753, + "âĻ»": 39611, + "âĻ»ï¸ı": 46075, + "âļ": 2234, + "âļ¡": 40098, + "âļ¡": 20712, + "âļ¡ï¸ı": 19500, + "âļ¡ï¸ı": 11605, + "âļ¡ï¸ıâļ¡ï¸ı": 45922, + "âļª": 11922, + "âļª": 36373, + "âļªï¸ı": 22251, + "âļªï¸ı": 17885, + "âļ«": 15374, + "âļ«ï¸ı": 26529, + "âļ«ï¸ı": 24649, + "âļ½": 4867, + "âļ½": 13173, + "âļ½âļ½": 43259, + "âļ½ï¸ı": 11342, + "âļ½ï¸ı": 6768, + "âļ½ï¸ıâļ½ï¸ı": 30358, + "âļ½ï¸ıâļ½ï¸ı": 44148, + "âļ¾": 11314, + "âļ¾": 34717, + "âļ¾ï¸ı": 24727, + "âļ¾ï¸ı": 14858, + "âļĵ": 23522, + "âļĵï¸ı": 35299, + "âļĶï¸ı": 29361, + "âļľ": 47491, + "âļł": 39203, + "âļłï¸ı": 40966, + "âļłï¸ı": 15596, + "âĽ": 7956, + "âĽ³ï¸ı": 29204, + "âĽĦ": 30668, + "âĽĦï¸ı": 45465, + "âľ": 1508, + "⾨": 7181, + "⾨": 3531, + "⾨⾨": 35174, + "⾨⾨": 21985, + "⾨⾨⾨": 39424, + "âľĤ": 38602, + "âľħ": 29544, + "âľħ": 5564, + "âľĪ": 10682, + "âľĪ": 30712, + "âľĪï¸ı": 26176, + "âľĪï¸ı": 13413, + "âľĬ": 12392, + "âľĬ": 17819, + "âľĬðŁı½": 48547, + "âľĬðŁı¾": 41185, + "âľĭ": 39383, + "âľĭ": 30239, + "âľĮ": 6419, + "âľĮ": 12656, + "âľĮï¸ı": 21906, + "âľĮï¸ı": 12239, + "âľĮðŁı»": 30538, + "âľĮðŁı¼": 30588, + "âľį": 20872, + "âľįï¸ı": 30888, + "âľı": 32574, + "âľıï¸ı": 40724, + "âľĵ": 36700, + "âľĶ": 47200, + "âľĶ": 13749, + "âľĶï¸ı": 40544, + "âľĶï¸ı": 9191, + "âľĸï¸ı": 44133, + "âľĿ": 42220, + "âĿ": 1045, + "âĿ£": 37007, + "âĿ£": 25623, + "âĿ£ï¸ı": 25240, + "âĿ¤": 1266, + "âĿ¤": 2720, + "âĿ¤âĿ¤": 9033, + "âĿ¤âĿ¤": 14058, + "âĿ¤âĿ¤âĿ¤": 16708, + "âĿ¤âĿ¤âĿ¤âĿ¤": 37918, + "âĿ¤âĿ¤âĿ¤âĿ¤": 43970, + "âĿ¤ï¸ı": 2626, + "âĿ¤ï¸ı#": 30281, + "âĿ¤ï¸ı.": 45326, + "âĿ¤ï¸ı": 1752, + "âĿ¤ï¸ı@": 31187, + "âĿ¤ï¸ıâĿ¤ï¸ı": 6713, + "âĿ¤ï¸ıâĿ¤ï¸ı": 10363, + "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 12282, + "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 39167, + "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 29880, + "âĿ¤ï¸ıðŁĴĻ": 37380, + "âĿ¤ï¸ıðŁĺį": 37272, + "âĿ¤ï¸ıðŁĺĺ": 41800, + "âĿ¤ðŁĺį": 49120, + "âĿ¥": 36914, + "âĿĦ": 8501, + "âĿĦ": 30494, + "âĿĦï¸ı": 16834, + "âĿĦï¸ı": 12402, + "âĿĦï¸ıâĿĦï¸ı": 41626, + "âĿĮ": 44485, + "âĿĮ": 17975, + "âĿĵ": 29791, + "âĿĹ": 12868, + "âĿĹ": 29079, + "âĿĹï¸ı": 28642, + "âĿĹï¸ı": 17391, + "âĿĿ": 46951, + "âŀ": 3257, + "âŀ¡": 12854, + "âŀ¡ï¸ı": 31860, + "âŀ¡ï¸ı": 4956, + "âŀ¤": 18651, + "âŀķ": 46526, + "âŀĸ": 21327, + "âŀĸ": 34902, + "âŀĸâŀĸ": 23316, + "âŀĸâŀĸâŀĸâŀĸ": 40401, + "âŀľ": 23775, + "âł": 5689, + "âłĢ": 9691, + "âłĢ": 8621, + "âłĢâłĢ": 11466, + "âłĢâłĢ": 39092, + "âłĢâłĢâłĢâłĢ": 20976, + "âłĢâłĢâłĢâłĢâłĢâłĢâłĢâłĢ": 46063, + "âŃ": 5527, + "âŃIJ": 6410, + "âŃIJ": 19012, + "âŃIJâŃIJ": 32663, + "âŃIJï¸ı": 12427, + "âŃIJï¸ı": 10251, + "âŃIJï¸ıâŃIJï¸ı": 18640, + "âŃIJï¸ıâŃIJï¸ıâŃIJï¸ı": 40746, + "ã": 159, + "ã": 415, + "ãĢ": 4092, + "ãĢģ": 45262, + "ãĢĤ": 38060, + "ãĢĤ": 38000, + "ãĢĬ": 39920, + "ãĢĭ": 32898, + "ãĢĮ": 18116, + "ãĢį": 19149, + "ãĢİ": 26947, + "ãĢı": 30293, + "ãĢIJ": 12534, + "ãĢij": 12990, + "ãĢľ": 39581, + "ãģ": 4813, + "ãģ¦": 48029, + "ãģ¨": 34671, + "ãģ¨ç¹ĭãģ": 47310, + "ãģ¨ç¹ĭãģĮãĤĬãģŁãģĦ": 48290, + "ãģª": 29104, + "ãģ®": 21575, + "ãģ·": 44130, + "ãģĦ": 33523, + "ãģĦ": 38850, + "ãģĨ": 44235, + "ãģį": 42184, + "ãĤ": 3909, + "ãĤ¢": 26560, + "ãĤ¤": 19319, + "ãĤ¤ãĥ": 36294, + "ãĤ«": 37367, + "ãĤ¯": 31574, + "ãĤ·": 37665, + "ãĤ¸": 32234, + "ãĤ¸ãĥ": 43491, + "ãĤ¹": 22694, + "ãĤ¹": 39220, + "ãĤ¹ãĥ": 32421, + "ãĤ¿": 34941, + "ãĤĬãģ": 40500, + "ãĤĮ": 45211, + "ãĤŃ": 47121, + "ãĥ": 2429, + "ãĥ©": 23007, + "ãĥª": 32115, + "ãĥ«": 33257, + "ãĥ¬": 32965, + "ãĥ³": 17671, + "ãĥ³": 26875, + "ãĥ³ãĤ": 45105, + "ãĥ³ãĥ": 25914, + "ãĥ»": 8415, + "ãĥ»": 11158, + "ãĥ»ãĥ»": 13949, + "ãĥ»ãĥ»ãĥ»": 14234, + "ãĥ¼": 13457, + "ãĥ¼": 30391, + "ãĥ¼ãĥ": 18584, + "ãĥĥ": 28902, + "ãĥĦ": 32173, + "ãĥĪ": 42384, + "ãĥİ": 39967, + "ãĥķãĤ": 33371, + "ãĥŀ": 48924, + "ãĥŃ": 35827, + "ãħ": 5947, + "ãħ¤": 21096, + "ãħ¤ãħ¤": 22583, + "ãħ¤ãħ¤ãħ¤ãħ¤": 39329, + "ãħĭ": 13052, + "ãħĭ": 25108, + "ãħĭãħĭ": 16604, + "ãħĭãħĭ": 42581, + "ãħĭãħĭãħĭ": 46407, + "ãħĭãħĭãħĭãħĭ": 39362, + "ãħł": 16089, + "ãħł": 25781, + "ãħłãħł": 22021, + "ãħłãħł": 34398, + "ãħłãħłãħłãħł": 47028, + "ä": 160, + "ä": 416, + "ä¸": 19759, + "ä¹": 41854, + "äº": 21078, + "人": 36839, + "ä»": 37743, + "ä½": 47466, + "å": 161, + "å": 417, + "å¤": 23170, + "å¥": 29290, + "å®": 27047, + "å°": 34720, + "å±": 46096, + "å¸": 42021, + "å¹": 38780, + "åħ": 34314, + "åĨ": 27972, + "åĨĻ": 44653, + "åĪ": 42748, + "åĭ": 47505, + "åı": 34517, + "åIJ": 41673, + "åĽ": 39027, + "åľ": 37746, + "åŃ": 35751, + "æ": 162, + "æ": 418, + "æĸ": 29032, + "æĹ": 22265, + "æĹ¥": 39121, + "æĹ¥": 37156, + "æĺ": 42891, + "æĻ": 48132, + "æľ": 19277, + "æľ¬": 44353, + "æĿ": 27667, + "æĿ±": 48338, + "ç": 163, + "ç": 419, + "ç¥": 26369, + "ç¥Ń": 42557, + "çµ": 37810, + "ç¹": 43431, + "ç¹ĭãģ": 45930, + "çĶ": 20211, + "çĶŁ": 33375, + "çľ": 33440, + "羣": 41570, + "è": 164, + "è": 420, + "èª": 34002, + "èªķ": 41293, + "é": 165, + "é": 421, + "éģ": 44854, + "éĩ": 38283, + "ê": 166, + "ê": 422, + "ê°": 21122, + "ê°ĵ": 41076, + "ê°ĵìĦ¸ë¸IJ": 41689, + "ê°ķ": 45758, + "ê²": 35555, + "ê³": 36216, + "êµ": 31871, + "ê·": 42680, + "ê¸": 32495, + "ê¹": 24531, + "ê¹Ģ": 25203, + "ë": 167, + "ë": 423, + "ë¦": 24621, + "리": 47649, + "ë§": 28024, + "ë§Ī": 40027, + "ëª": 36311, + "ë¯": 19528, + "민": 34442, + "민": 44632, + "ë°": 15810, + "ë°©": 23273, + "ë°©íĥ": 25081, + "ë°©íĥĦ": 25641, + "ë°©íĥĦìĨĮëħĦëĭ": 26068, + "ë°©íĥĦìĨĮëħĦëĭ¨": 27129, + "ë°ķ": 40988, + "ë²": 48267, + "ë³": 44693, + "ë¹": 24193, + "ëĤ": 27252, + "ëĤĺ": 48484, + "ëĭ": 13094, + "ëĭ¤": 46680, + "ëĭĪ": 33708, + "ëį": 45543, + "ëı": 31972, + "ëĵ": 30850, + "ëĿ": 44317, + "ì": 168, + "ì": 424, + "ì£": 39856, + "주": 45161, + "ì¤": 31153, + "ì§": 16279, + "ì§Ģ": 28836, + "ì§Ħ": 38890, + "ì°": 40742, + "ì¶": 42476, + "ì¶ķ": 46403, + "ì¶ķíķĺ": 47866, + "ì¹": 45088, + "ìĤ": 31061, + "ìĥ": 30587, + "ìĥĿ": 47858, + "ìĦ": 15074, + "ìĦ¸ë": 29254, + "ìĦ¸ë¸": 29658, + "ìĦ¸ë¸IJ": 41415, + "ìĨ": 15115, + "ìĨĮë": 20515, + "ìĨĮëħ": 21391, + "ìĨĮëħĦëĭ": 25887, + "ìĪ": 32757, + "ìĬ": 12125, + "ìĬ¤": 20305, + "ìĬ¤": 23829, + "ìĭ": 23924, + "ìķ": 16071, + "ìķĦ": 23233, + "ìĸ": 31625, + "ìĹ": 13252, + "ìĹIJ": 37622, + "ìĹij": 31036, + "ìĹijìĨ": 42763, + "ìĹijìĨĮ": 45606, + "ìĺ": 21144, + "ìĻ": 39405, + "ìļ": 18541, + "ìļ°": 38415, + "ìļ°": 49344, + "ìĽ": 22543, + "ìĽIJ": 36495, + "ìľ": 20909, + "ìľł": 42890, + "ìĿ": 8276, + "ìĿ´": 12286, + "ìĿ´": 34746, + "ìĿ´ì": 37590, + "ìĿ¼": 43406, + "ìŀ": 20849, + "ìł": 20580, + "ìłķ": 34725, + "í": 169, + "í": 425, + "íģ": 35641, + "íģ¬": 45832, + "íĤ": 43565, + "íĥ": 15012, + "íĥĢ": 41126, + "íĥľ": 37663, + "íĬ": 23215, + "íĬ¸": 48974, + "íĬ¸": 39820, + "íĭ": 34350, + "íĶ": 29450, + "íķ": 15197, + "íķ´": 35286, + "íķĺ": 33992, + "íĺ": 15962, + "íĺ¸": 39657, + "íĺĦ": 34645, + "íĻ": 31882, + "î": 170, + "î": 426, + "îĢ": 36288, + "îĦ": 35368, + "îĮ": 41006, + "îIJ": 16929, + "îIJĴ": 40100, + "ï": 171, + "ï": 427, + "ï¸": 842, + "ï¸İ": 24029, + "ï¸ı": 1392, + "ï¸ı#": 46997, + "ï¸ı:": 32604, + "ï¸ı": 1001, + "ï¸ı@": 34600, + "ï¸ıâĥ£": 17394, + "ï¸ıâĥ£-": 40376, + "ï¸ıâĥ£": 4603, + "ï¿": 27850, + "�": 47356, + "�": 39802, + "ð": 172, + "ð": 428, + "ðĿ": 6874, + "ðĿIJ": 15889, + "ðĿij": 43794, + "ðĿĴ": 43387, + "ðĿĵ": 47110, + "ðĿĹ": 18865, + "ðĿĺ": 26109, + "ðĿĻ": 29415, + "ðŁ": 558, + "ðŁ¤": 1793, + "ðŁ¤£": 9665, + "ðŁ¤£": 9909, + "ðŁ¤£ðŁ¤£": 16430, + "ðŁ¤£ðŁ¤£": 31009, + "ðŁ¤£ðŁ¤£ðŁ¤£": 32262, + "ðŁ¤¤": 39550, + "ðŁ¤¤": 26759, + "ðŁ¤¦": 17186, + "ðŁ¤§": 40983, + "ðŁ¤©": 27351, + "ðŁ¤©": 16074, + "ðŁ¤ª": 44230, + "ðŁ¤ª": 24920, + "ðŁ¤«": 47671, + "ðŁ¤¯": 37595, + "ðŁ¤·": 13185, + "ðŁ¤·ðŁı»âĢįâĻĢï¸ı": 46770, + "ðŁ¤ij": 34801, + "ðŁ¤ĵ": 36580, + "ðŁ¤ĵ": 18928, + "ðŁ¤Ķ": 12706, + "ðŁ¤Ķ": 6497, + "ðŁ¤ĶðŁ¤Ķ": 28490, + "ðŁ¤ĶðŁ¤ĶðŁ¤Ķ": 43361, + "ðŁ¤ĸ": 46146, + "ðŁ¤Ĺ": 16646, + "ðŁ¤Ĺ": 10465, + "ðŁ¤ĹðŁ¤Ĺ": 44321, + "ðŁ¤ĺ": 10623, + "ðŁ¤ĺ": 17288, + "ðŁ¤ĺðŁı»": 46449, + "ðŁ¤ĺðŁı»": 30891, + "ðŁ¤ĺðŁı¼": 31458, + "ðŁ¤ĺðŁı½": 49362, + "ðŁ¤Ļ": 23800, + "ðŁ¤Ļ": 39101, + "ðŁ¤Ŀ": 35242, + "ðŁ¤ŀ": 29463, + "ðŁ¤ŀ": 38597, + "ðŁ¤Ł": 48509, + "ðŁ¤ł": 36737, + "ðŁ¤Ń": 47289, + "ðŁ¥": 4156, + "ðŁ¥°": 29246, + "ðŁ¥°": 17597, + "ðŁ¥³": 45823, + "ðŁ¥³": 28055, + "ðŁ¥º": 43380, + "ðŁ¥º": 36858, + "ðŁ¥Ĥ": 43805, + "ðŁ¥Ĥ": 25212, + "ðŁ¥ĥ": 47790, + "ðŁ¥ĩ": 34372, + "ðŁ¥ĩ": 20069, + "ðŁ¥Ī": 35858, + "ðŁ¥ī": 36782, + "ðŁ¥Ĭ": 29275, + "ðŁ¦": 6040, + "ðŁ¦ģ": 36367, + "ðŁ¦ģ": 26056, + "ðŁ¦ĥ": 40184, + "ðŁ¦Ħ": 37659, + "ðŁ¦ħ": 28800, + "ðŁ¦Ī": 48984, + "ðŁ¦ĭ": 49325, + "ðŁ¦ĭ": 28985, + "ðŁ§": 8792, + "ðŁ§¡": 30996, + "ðŁ§¡": 24578, + "ðŁ§IJ": 33549, + "ðŁħ": 22010, + "ðŁĨ": 9536, + "ðŁĨķ": 34956, + "ðŁĨĺ": 39868, + "ðŁĨļ": 16325, + "ðŁĩ": 1173, + "ðŁĩ¦": 12469, + "ðŁĩ¦": 28565, + "ðŁĩ¦ðŁĩ": 33196, + "ðŁĩ¦ðŁĩ·": 41629, + "ðŁĩ¦ðŁĩº": 25192, + "ðŁĩ§": 14660, + "ðŁĩ§ðŁĩ": 37342, + "ðŁĩ§ðŁĩª": 38794, + "ðŁĩ§ðŁĩ·": 28182, + "ðŁĩ¨": 8889, + "ðŁĩ¨ðŁĩ": 8989, + "ðŁĩ¨ðŁĩ¦": 34324, + "ðŁĩ¨ðŁĩ¦": 16364, + "ðŁĩ¨ðŁĩ³": 36819, + "ðŁĩ¨ðŁĩŃ": 41119, + "ðŁĩ©": 15222, + "ðŁĩ©ðŁĩ": 36350, + "ðŁĩ©ðŁĩª": 21531, + "ðŁĩª": 11428, + "ðŁĩª": 12331, + "ðŁĩªðŁĩ": 13917, + "ðŁĩªðŁĩ¸": 22177, + "ðŁĩªðŁĩº": 34655, + "ðŁĩ«": 12977, + "ðŁĩ«ðŁĩ·": 39109, + "ðŁĩ«ðŁĩ·": 16223, + "ðŁĩ¬": 8129, + "ðŁĩ¬ðŁĩ": 8354, + "ðŁĩ¬ðŁĩ§": 23762, + "ðŁĩ¬ðŁĩ§": 11559, + "ðŁĩ®": 8268, + "ðŁĩ®ðŁĩ": 8347, + "ðŁĩ®ðŁĩª": 34148, + "ðŁĩ®ðŁĩ³": 47299, + "ðŁĩ®ðŁĩ³": 23602, + "ðŁĩ®ðŁĩ¹": 42034, + "ðŁĩ®ðŁĩ¹": 17070, + "ðŁĩ¯": 20090, + "ðŁĩ¯ðŁĩ": 22924, + "ðŁĩ¯ðŁĩµ": 26527, + "ðŁĩ°": 28232, + "ðŁĩ±": 29533, + "ðŁĩ±ðŁĩ": 40941, + "ðŁĩ²": 16411, + "ðŁĩ²ðŁĩ": 17562, + "ðŁĩ²ðŁĩ½": 32073, + "ðŁĩ³": 16645, + "ðŁĩ³ðŁĩ": 17747, + "ðŁĩ³ðŁĩ±": 36747, + "ðŁĩµ": 12127, + "ðŁĩµðŁĩ": 13608, + "ðŁĩµðŁĩ°": 37764, + "ðŁĩµðŁĩ¹": 42621, + "ðŁĩµðŁĩŃ": 42777, + "ðŁĩ·": 16026, + "ðŁĩ·": 9869, + "ðŁĩ·ðŁĩº": 37902, + "ðŁĩ¸": 19447, + "ðŁĩ¸ðŁĩ": 33325, + "ðŁĩ¸ðŁĩª": 39260, + "ðŁĩ¹": 21810, + "ðŁĩ¹ðŁĩ": 36250, + "ðŁĩº": 4054, + "ðŁĩº": 17467, + "ðŁĩºðŁĩ": 4131, + "ðŁĩºðŁĩ¸": 8907, + "ðŁĩºðŁĩ¸": 5688, + "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 18739, + "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 41411, + "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 43357, + "ðŁĩ¿": 25520, + "ðŁĩ¿ðŁĩ¦": 36982, + "ðŁĩŃ": 30370, + "ðŁĮ": 1576, + "ðŁĮ±": 35318, + "ðŁĮ±": 20665, + "ðŁĮ²": 34071, + "ðŁĮ²": 28154, + "ðŁĮ³": 44265, + "ðŁĮ³": 28543, + "ðŁĮ´": 20643, + "ðŁĮ´": 15968, + "ðŁĮµ": 40871, + "ðŁĮ·": 32328, + "ðŁĮ·": 24259, + "ðŁĮ¸": 16314, + "ðŁĮ¸": 10980, + "ðŁĮ¸ðŁĮ¸": 46210, + "ðŁĮ¹": 14990, + "ðŁĮ¹": 10662, + "ðŁĮ¹ðŁĮ¹": 37933, + "ðŁĮº": 27608, + "ðŁĮº": 19829, + "ðŁĮ»": 27196, + "ðŁĮ»": 19772, + "ðŁĮ¼": 36484, + "ðŁĮ¼": 26312, + "ðŁĮ¾": 39796, + "ðŁĮ¿": 27736, + "ðŁĮ¿": 18588, + "ðŁĮĢ": 34348, + "ðŁĮħ": 27547, + "ðŁĮĪ": 23038, + "ðŁĮĪ": 13042, + "ðŁĮĬ": 20465, + "ðŁĮĬ": 14302, + "ðŁĮĮ": 43393, + "ðŁĮį": 34931, + "ðŁĮį": 18641, + "ðŁĮİ": 31125, + "ðŁĮİ": 16969, + "ðŁĮı": 31527, + "ðŁĮIJ": 33071, + "ðŁĮĻ": 42330, + "ðŁĮĻ": 23283, + "ðŁĮļ": 49004, + "ðŁĮļ": 27877, + "ðŁĮŀ": 21152, + "ðŁĮŀ": 12980, + "ðŁĮŁ": 13196, + "ðŁĮŁ": 8542, + "ðŁĮŁðŁĮŁ": 26014, + "ðŁį": 2011, + "ðŁį¦": 47375, + "ðŁį¦": 32032, + "ðŁį©": 38379, + "ðŁįª": 38958, + "ðŁį«": 47994, + "ðŁį«": 33401, + "ðŁį°": 43732, + "ðŁį°": 30051, + "ðŁį³": 37441, + "ðŁį´": 41531, + "ðŁį´": 25338, + "ðŁį·": 24445, + "ðŁį·": 18072, + "ðŁį¸": 43058, + "ðŁį¸": 31217, + "ðŁį¹": 35598, + "ðŁįº": 31081, + "ðŁįº": 21590, + "ðŁį»": 22793, + "ðŁį»": 13167, + "ðŁį¾": 27294, + "ðŁį¾": 21656, + "ðŁįĢ": 22865, + "ðŁįĢ": 15764, + "ðŁįģ": 29837, + "ðŁįģ": 23075, + "ðŁįĤ": 35015, + "ðŁįĤ": 25721, + "ðŁįĥ": 27157, + "ðŁįĥ": 20147, + "ðŁįĩ": 48697, + "ðŁįĬ": 35001, + "ðŁįĬ": 28036, + "ðŁįĭ": 39543, + "ðŁįĮ": 44987, + "ðŁįį": 48946, + "ðŁįİ": 32069, + "ðŁįij": 32889, + "ðŁįĴ": 33160, + "ðŁįĵ": 44739, + "ðŁįĵ": 33456, + "ðŁįĶ": 46415, + "ðŁįĶ": 36031, + "ðŁįķ": 31469, + "ðŁįķ": 23904, + "ðŁįŃ": 42100, + "ðŁİ": 1165, + "ðŁİ£": 43158, + "ðŁİ¤": 23490, + "ðŁİ¤": 15690, + "ðŁİ¥": 22186, + "ðŁİ¥:": 43640, + "ðŁİ¥": 13233, + "ðŁİ§": 31254, + "ðŁİ§": 14266, + "ðŁİ¨": 31953, + "ðŁİ¨": 13461, + "ðŁİ©": 37701, + "ðŁİ«": 30331, + "ðŁİ¬": 36020, + "ðŁİ¬": 18150, + "ðŁİ®": 29312, + "ðŁİ¯": 23114, + "ðŁİµ": 27435, + "ðŁİµ": 14946, + "ðŁİ¶": 11755, + "ðŁİ¶": 6011, + "ðŁİ¶ðŁİ¶": 36283, + "ðŁİ¸": 29135, + "ðŁİ¸": 22122, + "ðŁİ¹": 43493, + "ðŁİ¼": 34949, + "ðŁİ¼": 23757, + "ðŁİ¾": 41982, + "ðŁİ¾": 24222, + "ðŁİĢ": 34347, + "ðŁİĢ": 20151, + "ðŁİģ": 18368, + "ðŁİģ": 13462, + "ðŁİĤ": 13026, + "ðŁİĤ": 10392, + "ðŁİĤðŁİĤ": 39338, + "ðŁİĥ": 22622, + "ðŁİĥ": 16780, + "ðŁİĦ": 12942, + "ðŁİĦ": 11267, + "ðŁİħ": 17685, + "ðŁİħ": 24276, + "ðŁİĨ": 39222, + "ðŁİĪ": 16142, + "ðŁİĪ": 14448, + "ðŁİĪðŁİī": 48049, + "ðŁİī": 4310, + "ðŁİī:": 17310, + "ðŁİī": 3986, + "ðŁİīðŁİ": 11473, + "ðŁİīðŁİĪ": 40499, + "ðŁİīðŁİĪ": 34008, + "ðŁİīðŁİī": 25159, + "ðŁİīðŁİī": 13450, + "ðŁİīðŁİīðŁİī": 20828, + "ðŁİīðŁİĬ": 31662, + "ðŁİīðŁİĬ": 30781, + "ðŁİĬ": 22763, + "ðŁİĬ": 22425, + "ðŁİĬðŁİī": 48801, + "ðŁİĵ": 28916, + "ðŁİĵ": 18744, + "ðŁİĻ": 29001, + "ðŁİĻ": 29753, + "ðŁİĻï¸ı": 44205, + "ðŁİŁ": 19248, + "ðŁİŁ": 21107, + "ðŁİŁï¸ı": 30243, + "ðŁİŃ": 28856, + "ðŁı": 1109, + "ðŁı¡": 27318, + "ðŁı³ï¸ı": 26844, + "ðŁı³ï¸ıâĢį": 27093, + "ðŁı³ï¸ıâĢįðŁĮĪ": 32610, + "ðŁı´": 39690, + "ðŁı´": 19704, + "ðŁı»": 5042, + "ðŁı»": 3702, + "ðŁı»âĢį": 46250, + "ðŁı»âĢįâĻĢï¸ı": 48391, + "ðŁı»âĢįâĻĢï¸ı": 23595, + "ðŁı»âĢįâĻĤï¸ı": 30984, + "ðŁı¼": 6193, + "ðŁı¼": 4027, + "ðŁı¼âĢįâĻĢï¸ı": 28955, + "ðŁı½": 8514, + "ðŁı½": 6114, + "ðŁı½âĢįâĻĢï¸ı": 37036, + "ðŁı½âĢįâĻĤï¸ı": 43157, + "ðŁı¾": 10230, + "ðŁı¾": 7778, + "ðŁı¾âĢįâĻĤï¸ı": 47189, + "ðŁı¿": 29854, + "ðŁı¿": 21094, + "ðŁıĢ": 13708, + "ðŁıĢ": 8813, + "ðŁıĢðŁıĢ": 43169, + "ðŁıģ": 29423, + "ðŁıģ": 17473, + "ðŁıĥ": 16820, + "ðŁıĥ": 32751, + "ðŁıħ": 25500, + "ðŁıĨ": 9585, + "ðŁıĨ": 5596, + "ðŁıĨðŁıĨ": 18946, + "ðŁıĨðŁıĨ": 38269, + "ðŁıĨðŁıĨðŁıĨ": 44484, + "ðŁıĩ": 45789, + "ðŁıĩ": 40288, + "ðŁıĪ": 16144, + "ðŁıĪ": 10477, + "ðŁıī": 26020, + "ðŁıĬ": 33061, + "ðŁıĬ": 47830, + "ðŁıĮ": 41116, + "ðŁıı": 32460, + "ðŁıIJ": 46334, + "ðŁıIJ": 29433, + "ðŁıĴ": 37756, + "ðŁıŁ": 35914, + "ðŁıŁ": 26472, + "ðŁıŁï¸ı": 42627, + "ðŁıł": 33727, + "ðŁIJ": 2074, + "ðŁIJ¢": 37049, + "ðŁIJ£": 39597, + "ðŁIJ¥": 42981, + "ðŁIJ¦": 37260, + "ðŁIJ¬": 44238, + "ðŁIJ¯": 34825, + "ðŁIJ¯": 26111, + "ðŁIJ°": 35378, + "ðŁIJ°": 25050, + "ðŁIJ±": 35710, + "ðŁIJ±": 22979, + "ðŁIJ´": 33509, + "ðŁIJ¶": 14466, + "ðŁIJ¶": 10631, + "ðŁIJ·": 38408, + "ðŁIJ¸": 45597, + "ðŁIJ¸": 40298, + "ðŁIJº": 44281, + "ðŁIJº": 31445, + "ðŁIJ»": 30750, + "ðŁIJ»": 25322, + "ðŁIJ¼": 46234, + "ðŁIJ¾": 16057, + "ðŁIJ¾": 11317, + "ðŁIJ¾ðŁIJ¾": 42202, + "ðŁIJī": 46908, + "ðŁIJĬ": 43974, + "ðŁIJį": 48903, + "ðŁIJį": 30177, + "ðŁIJİ": 48281, + "ðŁIJİ": 32726, + "ðŁIJIJ": 47735, + "ðŁIJIJ": 27954, + "ðŁIJij": 49389, + "ðŁIJķ": 41069, + "ðŁIJĺ": 38733, + "ðŁIJĿ": 30619, + "ðŁIJĿ": 20111, + "ðŁIJŁ": 42084, + "ðŁIJŁ": 29989, + "ðŁIJł": 42725, + "ðŁij": 964, + "ðŁij£": 39755, + "ðŁij§": 48938, + "ðŁij¨": 18966, + "ðŁij¨âĢį": 25023, + "ðŁij©": 18800, + "ðŁij©âĢį": 26304, + "ðŁij«": 47106, + "ðŁij«": 35457, + "ðŁij®": 42686, + "ðŁij¯": 25910, + "ðŁij¯": 20582, + "ðŁij¶": 26187, + "ðŁij¶": 33189, + "ðŁij¸": 26268, + "ðŁij¸": 36645, + "ðŁij¹": 46766, + "ðŁij»": 24625, + "ðŁij»": 16243, + "ðŁij¼": 25270, + "ðŁij¼": 31083, + "ðŁij½": 42677, + "ðŁij½": 26257, + "ðŁijĢ": 11524, + "ðŁijĢ": 5908, + "ðŁijĢðŁijĢ": 31561, + "ðŁijģ": 47796, + "ðŁijģ": 45705, + "ðŁijĦ": 47445, + "ðŁijħ": 31833, + "ðŁijħ": 24672, + "ðŁijĨ": 42975, + "ðŁijĨ": 45194, + "ðŁijĩ": 7662, + "ðŁijĩ": 7475, + "ðŁijĩðŁı»": 45811, + "ðŁijĩðŁı»": 32813, + "ðŁijĩðŁı¼": 37504, + "ðŁijĩðŁijĩ": 17915, + "ðŁijĩðŁijĩ": 31891, + "ðŁijĩðŁijĩðŁijĩ": 35627, + "ðŁijĪ": 32794, + "ðŁijĪ": 20832, + "ðŁijī": 9477, + "ðŁijī": 3988, + "ðŁijīðŁı»": 23481, + "ðŁijīðŁı¼": 27534, + "ðŁijīðŁı½": 38059, + "ðŁijīðŁijī": 41480, + "ðŁijĬ": 8897, + "ðŁijĬ": 9704, + "ðŁijĬðŁı»": 47393, + "ðŁijĬðŁı»": 29152, + "ðŁijĬðŁı¼": 49000, + "ðŁijĬðŁı¼": 30115, + "ðŁijĬðŁijĬ": 46521, + "ðŁijĭ": 19351, + "ðŁijĭ": 17686, + "ðŁijĮ": 4890, + "ðŁijĮ": 4494, + "ðŁijĮðŁı»": 31818, + "ðŁijĮðŁı»": 18606, + "ðŁijĮðŁı¼": 37655, + "ðŁijĮðŁı¼": 20031, + "ðŁijĮðŁı½": 35834, + "ðŁijĮðŁijĮ": 36139, + "ðŁijĮðŁijĮ": 21435, + "ðŁijĮðŁijĮðŁijĮ": 40876, + "ðŁijį": 4686, + "ðŁijį": 4201, + "ðŁijįðŁı»": 25803, + "ðŁijįðŁı»": 15129, + "ðŁijįðŁı¼": 37285, + "ðŁijįðŁı¼": 19689, + "ðŁijįðŁı½": 43722, + "ðŁijįðŁijį": 33012, + "ðŁijįðŁijį": 18997, + "ðŁijįðŁijįðŁijį": 37284, + "ðŁijİ": 39702, + "ðŁijİ": 32568, + "ðŁijı": 3802, + "ðŁijı": 4829, + "ðŁijıðŁı»": 19236, + "ðŁijıðŁı»": 17029, + "ðŁijıðŁı»ðŁijıðŁı»": 35254, + "ðŁijıðŁı¼": 24496, + "ðŁijıðŁı¼": 19979, + "ðŁijıðŁı¼ðŁijıðŁı¼": 46712, + "ðŁijıðŁı½": 40796, + "ðŁijıðŁı½": 33978, + "ðŁijıðŁı¾": 45450, + "ðŁijıðŁijı": 10356, + "ðŁijıðŁijı": 16706, + "ðŁijıðŁijıðŁijı": 17254, + "ðŁijIJ": 40877, + "ðŁijij": 14955, + "ðŁijij": 8717, + "ðŁijijðŁijij": 48532, + "ðŁijķ": 47865, + "ðŁijŁ": 41183, + "ðŁijł": 41264, + "ðŁijŃ": 34175, + "ðŁijŃ": 27943, + "ðŁĴ": 837, + "ðŁĴ¡": 24081, + "ðŁĴ£": 36862, + "ðŁĴ£": 29006, + "ðŁĴ¤": 34706, + "ðŁĴ¤": 25632, + "ðŁĴ¥": 12209, + "ðŁĴ¥": 7347, + "ðŁĴ¥ðŁĴ¥": 27396, + "ðŁĴ¥ðŁĴ¥": 39246, + "ðŁĴ¥ðŁĴ¥ðŁĴ¥": 48890, + "ðŁĴ¦": 21180, + "ðŁĴ¦": 14060, + "ðŁĴ¦ðŁĴ¦": 44469, + "ðŁĴ§": 34095, + "ðŁĴ¨": 27408, + "ðŁĴ¨": 17891, + "ðŁĴ©": 48621, + "ðŁĴ©": 28847, + "ðŁĴª": 5475, + "ðŁĴª": 6440, + "ðŁĴªðŁı»": 31669, + "ðŁĴªðŁı»": 21903, + "ðŁĴªðŁı¼": 32041, + "ðŁĴªðŁı¼": 20759, + "ðŁĴªðŁı½": 46380, + "ðŁĴªðŁı½": 31111, + "ðŁĴªðŁı¾": 39398, + "ðŁĴªðŁĴª": 24747, + "ðŁĴªðŁĴªðŁĴª": 39913, + "ðŁĴ«": 25770, + "ðŁĴ«": 12526, + "ðŁĴ¬": 30947, + "ðŁĴ¯": 10611, + "ðŁĴ¯": 7018, + "ðŁĴ¯ðŁĴ¯": 30234, + "ðŁĴ¯ðŁĴ¯": 44070, + "ðŁĴ°": 20454, + "ðŁĴ°": 14078, + "ðŁĴ°ðŁĴ°": 41747, + "ðŁĴµ": 47412, + "ðŁĴµ": 38041, + "ðŁĴ¸": 37696, + "ðŁĴ¸": 25957, + "ðŁĴ»": 33433, + "ðŁĴ»": 18135, + "ðŁĴ¿": 39541, + "ðŁĴĢ": 14888, + "ðŁĴĢ": 12158, + "ðŁĴĢðŁĴĢ": 30884, + "ðŁĴģ": 13997, + "ðŁĴģ": 14392, + "ðŁĴĥ": 9947, + "ðŁĴĥ": 14333, + "ðŁĴĥðŁı»": 38624, + "ðŁĴĥðŁĴĥ": 28041, + "ðŁĴĦ": 46116, + "ðŁĴĦ": 34571, + "ðŁĴħ": 27457, + "ðŁĴħ": 32414, + "ðŁĴī": 44316, + "ðŁĴī": 30503, + "ðŁĴĭ": 12217, + "ðŁĴĭ": 7417, + "ðŁĴĭðŁĴĭ": 29214, + "ðŁĴĮ": 40817, + "ðŁĴį": 35850, + "ðŁĴį": 24898, + "ðŁĴİ": 25938, + "ðŁĴİ": 15874, + "ðŁĴIJ": 27375, + "ðŁĴIJ": 20554, + "ðŁĴij": 49404, + "ðŁĴĵ": 20628, + "ðŁĴĵ": 12568, + "ðŁĴĵðŁĴĵ": 43505, + "ðŁĴĶ": 18880, + "ðŁĴĶ": 10704, + "ðŁĴĶðŁĴĶ": 44673, + "ðŁĴķ": 5412, + "ðŁĴķ": 3082, + "ðŁĴķðŁĴķ": 23106, + "ðŁĴķðŁĴķ": 14117, + "ðŁĴķðŁĴķðŁĴķ": 26772, + "ðŁĴĸ": 8466, + "ðŁĴĸ": 5582, + "ðŁĴĸðŁĴĸ": 19562, + "ðŁĴĸðŁĴĸ": 30595, + "ðŁĴĸðŁĴĸðŁĴĸ": 33915, + "ðŁĴĹ": 10148, + "ðŁĴĹ": 6690, + "ðŁĴĹðŁĴĹ": 47158, + "ðŁĴĹðŁĴĹ": 24064, + "ðŁĴĹðŁĴĹðŁĴĹ": 36990, + "ðŁĴĺ": 18223, + "ðŁĴĺ": 10816, + "ðŁĴĺðŁĴĺ": 40464, + "ðŁĴĻ": 5305, + "ðŁĴĻ": 4074, + "ðŁĴĻðŁĴĻ": 17833, + "ðŁĴĻðŁĴĻ": 27101, + "ðŁĴĻðŁĴĻðŁĴĻ": 30698, + "ðŁĴĻðŁĴĽ": 46804, + "ðŁĴĻðŁĴĽ": 26230, + "ðŁĴĻðŁĴľ": 47931, + "ðŁĴĻðŁĴľ": 42541, + "ðŁĴļ": 8102, + "ðŁĴļ": 6521, + "ðŁĴļðŁĴļ": 27497, + "ðŁĴļðŁĴļ": 46209, + "ðŁĴļðŁĴļðŁĴļ": 46182, + "ðŁĴļðŁĴĽ": 41232, + "ðŁĴĽ": 8221, + "ðŁĴĽ": 6233, + "ðŁĴĽðŁĴĻ": 36337, + "ðŁĴĽðŁĴļ": 37994, + "ðŁĴĽðŁĴĽ": 32420, + "ðŁĴľ": 6832, + "ðŁĴľ": 4882, + "ðŁĴľðŁĴľ": 17280, + "ðŁĴľðŁĴľ": 28211, + "ðŁĴľðŁĴľðŁĴľ": 31004, + "ðŁĴĿ": 36761, + "ðŁĴĿ": 22002, + "ðŁĴŀ": 14862, + "ðŁĴŀ": 8988, + "ðŁĴŀðŁĴŀ": 36448, + "ðŁĴŁ": 49394, + "ðŁĴŁ": 28828, + "ðŁĴŃ": 33848, + "ðŁĵ": 1497, + "ðŁĵ¢": 46560, + "ðŁĵ¢": 20901, + "ðŁĵ£": 48841, + "ðŁĵ£": 21282, + "ðŁĵ°:": 28952, + "ðŁĵ°": 14985, + "ðŁĵ±": 36104, + "ðŁĵ±": 20824, + "ðŁĵ²": 19363, + "ðŁĵ·": 6966, + "ðŁĵ·:": 8294, + "ðŁĵ·": 5551, + "ðŁĵ·@": 40032, + "ðŁĵ¸": 8401, + "ðŁĵ¸:": 10379, + "ðŁĵ¸": 6074, + "ðŁĵ¸@": 39660, + "ðŁĵ¹": 49251, + "ðŁĵº": 21792, + "ðŁĵº:": 29728, + "ðŁĵº": 10450, + "ðŁĵ»": 32711, + "ðŁĵ»": 15882, + "ðŁĵ½": 45361, + "ðŁĵħ": 21277, + "ðŁĵĨ": 23471, + "ðŁĵĪ": 23359, + "ðŁĵĬ": 22244, + "ðŁĵĭ": 46351, + "ðŁĵĮ": 22289, + "ðŁĵį": 25043, + "ðŁĵį:": 36845, + "ðŁĵį": 8903, + "ðŁĵĸ": 49003, + "ðŁĵĸ": 23043, + "ðŁĵļ": 25433, + "ðŁĵļ": 15566, + "ðŁĵĿ": 31888, + "ðŁĵĿ:": 48398, + "ðŁĵĿ": 15853, + "ðŁĵŀ": 24022, + "ðŁĶ": 1428, + "ðŁĶ¥": 3191, + "ðŁĶ¥#": 44354, + "ðŁĶ¥": 3016, + "ðŁĶ¥ðŁĶ¥": 5692, + "ðŁĶ¥ðŁĶ¥": 11771, + "ðŁĶ¥ðŁĶ¥ðŁĶ¥": 11004, + "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 23408, + "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 30989, + "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 48401, + "ðŁĶ¥ðŁĶĹ": 35130, + "ðŁĶª": 47078, + "ðŁĶª": 34545, + "ðŁĶ«": 38116, + "ðŁĶ«": 20583, + "ðŁĶ¬": 44227, + "ðŁĶ®": 38077, + "ðŁĶ´": 12408, + "ðŁĶ´": 10854, + "ðŁĶ´âļªï¸ı": 46879, + "ðŁĶ´âļªï¸ı": 40055, + "ðŁĶµ": 17531, + "ðŁĶµ": 17193, + "ðŁĶµâļªï¸ı": 42412, + "ðŁĶ¶": 42880, + "ðŁĶ¶": 36222, + "ðŁĶ·": 37740, + "ðŁĶ¸": 24200, + "ðŁĶ¹": 19995, + "ðŁĶº": 45561, + "ðŁĶģ": 41299, + "ðŁĶĬ": 32580, + "ðŁĶĬ": 20502, + "ðŁĶİ": 44935, + "ðŁĶij": 35127, + "ðŁĶĴ": 44972, + "ðŁĶĶ": 45753, + "ðŁĶĹ": 47475, + "ðŁĶĹ": 14561, + "ðŁĶĺ": 38995, + "ðŁĶľ": 36011, + "ðŁĶĿ": 44387, + "ðŁĶĿ": 29506, + "ðŁķ": 7692, + "ðŁķº": 33958, + "ðŁķĬ": 42624, + "ðŁķĬ": 37760, + "ðŁĸ": 6269, + "ðŁĸ¤": 17603, + "ðŁĸ¤": 10860, + "ðŁĸ¥": 47990, + "ðŁĹ": 7045, + "ðŁĹ£": 33232, + "ðŁĹ£": 18583, + "ðŁĹ£ï¸ı": 37476, + "ðŁĹĵ": 34335, + "ðŁĹĵ": 28773, + "ðŁĹĵï¸ı": 39847, + "ðŁĺ": 668, + "ðŁĺ¡": 21968, + "ðŁĺ¡": 17452, + "ðŁĺ¡ðŁĺ¡": 37223, + "ðŁĺ¢": 14308, + "ðŁĺ¢": 9925, + "ðŁĺ¢ðŁĺ¢": 32923, + "ðŁĺ¢ðŁĺ¢": 47921, + "ðŁĺ£": 32718, + "ðŁĺ¤": 26872, + "ðŁĺ¤": 20740, + "ðŁĺ¥": 38383, + "ðŁĺ¥": 23951, + "ðŁĺ¨": 38080, + "ðŁĺ©": 9051, + "ðŁĺ©": 9494, + "ðŁĺ©ðŁĺ©": 22820, + "ðŁĺ©ðŁĺ©": 38031, + "ðŁĺ©ðŁĺ©ðŁĺ©": 49063, + "ðŁĺª": 38181, + "ðŁĺª": 22243, + "ðŁĺ«": 25141, + "ðŁĺ«": 22340, + "ðŁĺ¬": 23704, + "ðŁĺ¬": 14549, + "ðŁĺ®": 40163, + "ðŁĺ®": 21616, + "ðŁĺ¯": 37858, + "ðŁĺ°": 34728, + "ðŁĺ±": 10938, + "ðŁĺ±": 9055, + "ðŁĺ±ðŁĺ±": 22061, + "ðŁĺ±ðŁĺ±": 40767, + "ðŁĺ±ðŁĺ±ðŁĺ±": 40909, + "ðŁĺ²": 40460, + "ðŁĺ²": 24620, + "ðŁĺ³": 12047, + "ðŁĺ³": 8223, + "ðŁĺ³ðŁĺ³": 32592, + "ðŁĺ´": 23527, + "ðŁĺ´": 16415, + "ðŁĺ´ðŁĺ´": 49307, + "ðŁĺµ": 39368, + "ðŁĺ¶": 35207, + "ðŁĺ·": 37943, + "ðŁĺ·": 25759, + "ðŁĺ¸": 36912, + "ðŁĺ¹": 26477, + "ðŁĺ¹": 26573, + "ðŁĺ¹ðŁĺ¹": 46287, + "ðŁĺº": 40613, + "ðŁĺ»": 15453, + "ðŁĺ»": 12911, + "ðŁĺ»ðŁĺ»": 34414, + "ðŁĺ¼": 44245, + "ðŁĺ½": 45156, + "ðŁĺĢ": 12832, + "ðŁĺĢ": 7334, + "ðŁĺĢðŁĺĢ": 34503, + "ðŁĺģ": 6967, + "ðŁĺģ": 4821, + "ðŁĺģðŁĺģ": 37900, + "ðŁĺģðŁĺģ": 19213, + "ðŁĺģðŁĺģðŁĺģ": 29083, + "ðŁĺĤ": 1424, + "ðŁĺĤ)": 42643, + "ðŁĺĤ.": 42550, + "ðŁĺĤ": 1558, + "ðŁĺĤâĿ¤ï¸ı": 36412, + "ðŁĺĤðŁijĮ": 42000, + "ðŁĺĤðŁĺĤ": 2286, + "ðŁĺĤðŁĺĤ": 4112, + "ðŁĺĤðŁĺĤðŁĺĤ": 22233, + "ðŁĺĤðŁĺĤðŁĺĤ": 4887, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 9936, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 11522, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 19295, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 33415, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 48973, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 28504, + "ðŁĺĤðŁĺį": 43128, + "ðŁĺĤðŁĺŃ": 28965, + "ðŁĺĤðŁĺŃ": 25802, + "ðŁĺĥ": 14079, + "ðŁĺĥ": 8520, + "ðŁĺĥðŁĺĥ": 38358, + "ðŁĺĦ": 12141, + "ðŁĺĦ": 7624, + "ðŁĺĦðŁĺĦ": 32312, + "ðŁĺħ": 15245, + "ðŁĺħ": 9188, + "ðŁĺħðŁĺħ": 39078, + "ðŁĺĨ": 16541, + "ðŁĺĨ": 10943, + "ðŁĺĨðŁĺĨ": 39503, + "ðŁĺĩ": 21694, + "ðŁĺĩ": 13091, + "ðŁĺĪ": 14377, + "ðŁĺĪ": 9756, + "ðŁĺĪðŁĺĪ": 44473, + "ðŁĺī": 9740, + "ðŁĺī": 4955, + "ðŁĺīðŁĺī": 40430, + "ðŁĺĬ": 4692, + "ðŁĺĬ": 3020, + "ðŁĺĬâĿ¤ï¸ı": 43606, + "ðŁĺĬðŁĺĬ": 12838, + "ðŁĺĬðŁĺĬ": 20842, + "ðŁĺĬðŁĺĬðŁĺĬ": 28685, + "ðŁĺĬðŁĺĬðŁĺĬðŁĺĬ": 35519, + "ðŁĺĭ": 12391, + "ðŁĺĭ": 7203, + "ðŁĺĭðŁĺĭ": 33304, + "ðŁĺĮ": 19221, + "ðŁĺĮ": 12163, + "ðŁĺį": 1796, + "ðŁĺį#": 42357, + "ðŁĺį.": 48579, + "ðŁĺį": 1754, + "ðŁĺįâĿ¤": 29122, + "ðŁĺįâĿ¤ï¸ı": 21945, + "ðŁĺįðŁijĮ": 41005, + "ðŁĺįðŁĴķ": 35946, + "ðŁĺįðŁĶ¥": 46648, + "ðŁĺįðŁĺĤ": 48715, + "ðŁĺįðŁĺį": 3663, + "ðŁĺįðŁĺį": 6471, + "ðŁĺįðŁĺįðŁĺį": 30614, + "ðŁĺįðŁĺįðŁĺį": 7703, + "ðŁĺįðŁĺįðŁĺįðŁĺį": 16603, + "ðŁĺįðŁĺįðŁĺįðŁĺį": 18925, + "ðŁĺįðŁĺįðŁĺįðŁĺįðŁĺį": 32078, + "ðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺį": 48683, + "ðŁĺįðŁĺĺ": 29646, + "ðŁĺįðŁĺĺ": 19849, + "ðŁĺįðŁĺŃ": 39555, + "ðŁĺİ": 7426, + "ðŁĺİ": 4345, + "ðŁĺİðŁĺİ": 24048, + "ðŁĺİðŁĺİðŁĺİ": 39742, + "ðŁĺı": 11624, + "ðŁĺı": 6909, + "ðŁĺıðŁĺı": 38151, + "ðŁĺIJ": 38586, + "ðŁĺIJ": 19618, + "ðŁĺij": 32469, + "ðŁĺij": 18937, + "ðŁĺĴ": 20792, + "ðŁĺĴ": 11702, + "ðŁĺĵ": 28733, + "ðŁĺĶ": 19532, + "ðŁĺĶ": 11432, + "ðŁĺķ": 45741, + "ðŁĺķ": 20602, + "ðŁĺĸ": 35006, + "ðŁĺĺ": 4240, + "ðŁĺĺ": 3352, + "ðŁĺĺâĿ¤": 48409, + "ðŁĺĺâĿ¤ï¸ı": 39150, + "ðŁĺĺðŁĺį": 38176, + "ðŁĺĺðŁĺĺ": 15663, + "ðŁĺĺðŁĺĺ": 10507, + "ðŁĺĺðŁĺĺðŁĺĺ": 20208, + "ðŁĺĺðŁĺĺðŁĺĺðŁĺĺ": 44892, + "ðŁĺĻ": 36201, + "ðŁĺĻ": 29209, + "ðŁĺļ": 24897, + "ðŁĺļ": 19102, + "ðŁĺĽ": 24550, + "ðŁĺĽ": 15745, + "ðŁĺľ": 13226, + "ðŁĺľ": 7830, + "ðŁĺľðŁĺľ": 43065, + "ðŁĺĿ": 20064, + "ðŁĺĿ": 12970, + "ðŁĺŀ": 40458, + "ðŁĺŀ": 21103, + "ðŁĺŁ": 46947, + "ðŁĺł": 34094, + "ðŁĺŃ": 2962, + "ðŁĺŃ": 3915, + "ðŁĺŃâĿ¤ï¸ı": 29567, + "ðŁĺŃðŁĴķ": 46306, + "ðŁĺŃðŁĺĤ": 38505, + "ðŁĺŃðŁĺį": 36893, + "ðŁĺŃðŁĺŃ": 5300, + "ðŁĺŃðŁĺŃ": 11834, + "ðŁĺŃðŁĺŃðŁĺŃ": 44089, + "ðŁĺŃðŁĺŃðŁĺŃ": 13116, + "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 19793, + "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 27322, + "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 43366, + "ðŁĻ": 1478, + "ðŁĻĢ": 43092, + "ðŁĻĤ": 32006, + "ðŁĻĤ": 14860, + "ðŁĻĥ": 27222, + "ðŁĻĥ": 15652, + "ðŁĻĦ": 20648, + "ðŁĻĦ": 13049, + "ðŁĻħ": 42702, + "ðŁĻĨ": 30050, + "ðŁĻĨ": 35730, + "ðŁĻĪ": 12661, + "ðŁĻĪ": 9516, + "ðŁĻĪðŁĻĪ": 41796, + "ðŁĻĬ": 23684, + "ðŁĻĬ": 16636, + "ðŁĻĭ": 19193, + "ðŁĻĭ": 30274, + "ðŁĻĮ": 4366, + "ðŁĻĮ": 4855, + "ðŁĻĮðŁı»": 26756, + "ðŁĻĮðŁı»": 15799, + "ðŁĻĮðŁı¼": 26584, + "ðŁĻĮðŁı¼": 15364, + "ðŁĻĮðŁı½": 36660, + "ðŁĻĮðŁı½": 22962, + "ðŁĻĮðŁı¾": 38023, + "ðŁĻĮðŁı¾": 26466, + "ðŁĻĮðŁĻĮ": 21202, + "ðŁĻĮðŁĻĮ": 30430, + "ðŁĻĮðŁĻĮðŁĻĮ": 37127, + "ðŁĻı": 4260, + "ðŁĻı": 5503, + "ðŁĻıðŁı»": 25100, + "ðŁĻıðŁı»": 16650, + "ðŁĻıðŁı¼": 31163, + "ðŁĻıðŁı¼": 18952, + "ðŁĻıðŁı½": 34103, + "ðŁĻıðŁı½": 21540, + "ðŁĻıðŁı¾": 34277, + "ðŁĻıðŁı¾": 21979, + "ðŁĻıðŁĻı": 18227, + "ðŁĻıðŁĻı": 26510, + "ðŁĻıðŁĻıðŁĻı": 31702, + "ðŁļ": 2730, + "ðŁļ¨": 12198, + "ðŁļ¨": 6056, + "ðŁļ¨ðŁļ¨": 36487, + "ðŁļ¨ðŁļ¨": 21440, + "ðŁļ¨ðŁļ¨ðŁļ¨": 41515, + "ðŁļ©": 44514, + "ðŁļ«": 35291, + "ðŁļ²": 37085, + "ðŁļ´": 30825, + "ðŁļ¶": 46060, + "ðŁļĢ": 22400, + "ðŁļĢ": 13542, + "ðŁļĢðŁļĢ": 49033, + "ðŁļĤ": 38949, + "ðŁļĮ": 46891, + "ðŁļĹ": 33054, + "ðŁļĹ": 22783, + "ðŁļĺ": 35825, + "ðŁļĻ": 48487, + "ðŁĽ": 11306, + "ñ": 173, + "ñ": 429, + "ò": 174, + "ò": 430, + "ó": 175, + "ó": 431, + "ô": 176, + "ô": 432, + "õ": 177, + "õ": 433, + "ö": 178, + "ö": 434, + "÷": 179, + "÷": 435, + "ø": 180, + "ø": 436, + "ù": 181, + "ù": 437, + "ú": 182, + "ú": 438, + "û": 183, + "û": 439, + "ü": 184, + "ü": 440, + "ý": 185, + "ý": 441, + "þ": 186, + "þ": 442, + "ÿ": 187, + "ÿ": 443, + "Ā": 188, + "Ā": 444, + "ā": 189, + "ā": 445, + "Ă": 190, + "Ă": 446, + "ă": 191, + "ă": 447, + "Ą": 192, + "Ą": 448, + "ą": 193, + "ą": 449, + "Ć": 194, + "Ć": 450, + "ć": 195, + "ć": 451, + "Ĉ": 196, + "Ĉ": 452, + "ĉ": 197, + "ĉ": 453, + "Ċ": 198, + "Ċ": 454, + "ċ": 199, + "ċ": 455, + "Č": 200, + "Č": 456, + "č": 201, + "č": 457, + "Ď": 202, + "Ď": 458, + "ď": 203, + "ď": 459, + "Đ": 204, + "Đ": 460, + "đ": 205, + "đ": 461, + "Ē": 206, + "Ē": 462, + "ē": 207, + "ē": 463, + "Ĕ": 208, + "Ĕ": 464, + "ĕ": 209, + "ĕ": 465, + "Ė": 210, + "Ė": 466, + "ė": 211, + "ė": 467, + "Ę": 212, + "Ę": 468, + "ę": 213, + "ę": 469, + "Ě": 214, + "Ě": 470, + "ě": 215, + "ě": 471, + "Ĝ": 216, + "Ĝ": 472, + "ĝ": 217, + "ĝ": 473, + "Ğ": 218, + "Ğ": 474, + "ğ": 219, + "ğ": 475, + "Ġ": 220, + "Ġ": 476, + "ġ": 221, + "ġ": 477, + "Ģ": 222, + "Ģ": 478, + "Ģï¸ı": 9668, + "Ģï¸ı": 5511, + "ģ": 223, + "ģ": 479, + "ģà¸": 15016, + "Ĥ": 224, + "Ĥ": 480, + "Ĥâĸ": 29036, + "ĤâĸĤâĸ": 30832, + "ĥ": 225, + "ĥ": 481, + "Ħ": 226, + "Ħ": 482, + "Ħà¸": 20537, + "Ħë": 34462, + "Ħëĭ": 25170, + "ħ": 227, + "ħ": 483, + "ħï¸ı": 33950, + "Ĩ": 228, + "Ĩ": 484, + "ĩ": 229, + "ĩ": 485, + "Ī": 230, + "Ī": 486, + "ī": 231, + "ī": 487, + "īï¸ı": 37463, + "Ĭ": 232, + "Ĭ": 488, + "Ĭãģ": 30294, + "ĭ": 233, + "ĭ": 489, + "ĭãģ": 36218, + "ĭãĤ": 45737, + "Į": 234, + "Į": 490, + "ĮãĤĬãģ": 45969, + "ĮãĤĬãģŁãģĦ": 47021, + "Įë": 17003, + "į": 235, + "į": 491, + "İ": 236, + "İ": 492, + "ı": 237, + "ı": 493, + "IJ": 238, + "IJ": 494, + "ij": 239, + "ij": 495, + "Ĵ": 240, + "Ĵ": 496, + "ĵ": 241, + "ĵ": 497, + "Ķ": 242, + "Ķ": 498, + "Ķë": 37978, + "Ķï¸ı": 24395, + "Ķï¸ı": 7443, + "ķ": 243, + "ķ": 499, + "ķãĤ": 26609, + "ķï¸ı": 44853, + "ĸ": 244, + "ĸ": 500, + "ĸï¸ı": 28877, + "Ĺ": 245, + "Ĺ": 501, + "ĺ": 246, + "ĺ": 502, + "Ļ": 247, + "Ļ": 503, + "ļ": 248, + "ļ": 504, + "Ľ": 249, + "Ľ": 505, + "ľ": 250, + "ľ": 506, + "ľë": 39810, + "Ŀ": 251, + "Ŀ": 507, + "ŀ": 252, + "ŀ": 508, + "Ł": 253, + "Ł": 509, + "ŁãģĦ": 46023, + "ł": 254, + "ł": 510, + "łï¸ı": 27899, + "łï¸ı": 12715, + "łĪ": 43364, + "Ń": 255, + "Ń": 511 +} diff --git a/MagicQuill/comfy/sd2_clip.py b/MagicQuill/comfy/sd2_clip.py new file mode 100644 index 0000000000000000000000000000000000000000..d14b445441b393874020df14919a064fad8067b0 --- /dev/null +++ b/MagicQuill/comfy/sd2_clip.py @@ -0,0 +1,23 @@ +from comfy import sd1_clip +import os + +class SD2ClipHModel(sd1_clip.SDClipModel): + def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None): + if layer == "penultimate": + layer="hidden" + layer_idx=-2 + + textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json") + super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0}) + +class SD2ClipHTokenizer(sd1_clip.SDTokenizer): + def __init__(self, tokenizer_path=None, embedding_directory=None): + super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024) + +class SD2Tokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None): + super().__init__(embedding_directory=embedding_directory, clip_name="h", tokenizer=SD2ClipHTokenizer) + +class SD2ClipModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, **kwargs): + super().__init__(device=device, dtype=dtype, clip_name="h", clip_model=SD2ClipHModel, **kwargs) diff --git a/MagicQuill/comfy/sd2_clip_config.json b/MagicQuill/comfy/sd2_clip_config.json new file mode 100644 index 0000000000000000000000000000000000000000..85cec832be9a1d0957245a8d125af398829f247e --- /dev/null +++ b/MagicQuill/comfy/sd2_clip_config.json @@ -0,0 +1,23 @@ +{ + "architectures": [ + "CLIPTextModel" + ], + "attention_dropout": 0.0, + "bos_token_id": 0, + "dropout": 0.0, + "eos_token_id": 2, + "hidden_act": "gelu", + "hidden_size": 1024, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 4096, + "layer_norm_eps": 1e-05, + "max_position_embeddings": 77, + "model_type": "clip_text_model", + "num_attention_heads": 16, + "num_hidden_layers": 24, + "pad_token_id": 1, + "projection_dim": 1024, + "torch_dtype": "float32", + "vocab_size": 49408 +} diff --git a/MagicQuill/comfy/sd3_clip.py b/MagicQuill/comfy/sd3_clip.py new file mode 100644 index 0000000000000000000000000000000000000000..0713eb28529469b28ae57445b740e13b5bf8eafa --- /dev/null +++ b/MagicQuill/comfy/sd3_clip.py @@ -0,0 +1,150 @@ +from comfy import sd1_clip +from comfy import sdxl_clip +from transformers import T5TokenizerFast +import comfy.t5 +import torch +import os +import comfy.model_management +import logging + +class T5XXLModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None): + textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json") + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.t5.T5) + +class T5XXLTokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None): + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") + super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77) + +class SDT5XXLTokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None): + super().__init__(embedding_directory=embedding_directory, clip_name="t5xxl", tokenizer=T5XXLTokenizer) + +class SDT5XXLModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, **kwargs): + super().__init__(device=device, dtype=dtype, clip_name="t5xxl", clip_model=T5XXLModel, **kwargs) + + + +class SD3Tokenizer: + def __init__(self, embedding_directory=None): + self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory) + self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory) + self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory) + + def tokenize_with_weights(self, text:str, return_word_ids=False): + out = {} + out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) + out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids) + return out + + def untokenize(self, token_weight_pair): + return self.clip_g.untokenize(token_weight_pair) + +class SD3ClipModel(torch.nn.Module): + def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, device="cpu", dtype=None): + super().__init__() + self.dtypes = set() + if clip_l: + self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False) + self.dtypes.add(dtype) + else: + self.clip_l = None + + if clip_g: + self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype) + self.dtypes.add(dtype) + else: + self.clip_g = None + + if t5: + if dtype_t5 is None: + dtype_t5 = dtype + elif comfy.model_management.dtype_size(dtype_t5) > comfy.model_management.dtype_size(dtype): + dtype_t5 = dtype + + if not comfy.model_management.supports_cast(device, dtype_t5): + dtype_t5 = dtype + + self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5) + self.dtypes.add(dtype_t5) + else: + self.t5xxl = None + + logging.debug("Created SD3 text encoder with: clip_l {}, clip_g {}, t5xxl {}:{}".format(clip_l, clip_g, t5, dtype_t5)) + + def set_clip_options(self, options): + if self.clip_l is not None: + self.clip_l.set_clip_options(options) + if self.clip_g is not None: + self.clip_g.set_clip_options(options) + if self.t5xxl is not None: + self.t5xxl.set_clip_options(options) + + def reset_clip_options(self): + if self.clip_l is not None: + self.clip_l.reset_clip_options() + if self.clip_g is not None: + self.clip_g.reset_clip_options() + if self.t5xxl is not None: + self.t5xxl.reset_clip_options() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs_l = token_weight_pairs["l"] + token_weight_pairs_g = token_weight_pairs["g"] + token_weight_pars_t5 = token_weight_pairs["t5xxl"] + lg_out = None + pooled = None + out = None + + if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0: + if self.clip_l is not None: + lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) + else: + l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device()) + + if self.clip_g is not None: + g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) + if lg_out is not None: + lg_out = torch.cat([lg_out, g_out], dim=-1) + else: + lg_out = torch.nn.functional.pad(g_out, (768, 0)) + else: + g_out = None + g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device()) + + if lg_out is not None: + lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1])) + out = lg_out + pooled = torch.cat((l_pooled, g_pooled), dim=-1) + + if self.t5xxl is not None: + t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pars_t5) + if lg_out is not None: + out = torch.cat([lg_out, t5_out], dim=-2) + else: + out = t5_out + + if out is None: + out = torch.zeros((1, 77, 4096), device=comfy.model_management.intermediate_device()) + + if pooled is None: + pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device()) + + return out, pooled + + def load_sd(self, sd): + if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: + return self.clip_g.load_sd(sd) + elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd: + return self.clip_l.load_sd(sd) + else: + return self.t5xxl.load_sd(sd) + +def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None): + class SD3ClipModel_(SD3ClipModel): + def __init__(self, device="cpu", dtype=None): + super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, device=device, dtype=dtype) + return SD3ClipModel_ diff --git a/MagicQuill/comfy/sdxl_clip.py b/MagicQuill/comfy/sdxl_clip.py new file mode 100644 index 0000000000000000000000000000000000000000..1257cba1e4296280db50c04e556ad23f02264267 --- /dev/null +++ b/MagicQuill/comfy/sdxl_clip.py @@ -0,0 +1,89 @@ +from comfy import sd1_clip +import torch +import os + +class SDXLClipG(sd1_clip.SDClipModel): + def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None): + if layer == "penultimate": + layer="hidden" + layer_idx=-2 + + textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") + super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, + special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False) + + def load_sd(self, sd): + return super().load_sd(sd) + +class SDXLClipGTokenizer(sd1_clip.SDTokenizer): + def __init__(self, tokenizer_path=None, embedding_directory=None): + super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g') + + +class SDXLTokenizer: + def __init__(self, embedding_directory=None): + self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory) + self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory) + + def tokenize_with_weights(self, text:str, return_word_ids=False): + out = {} + out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) + return out + + def untokenize(self, token_weight_pair): + return self.clip_g.untokenize(token_weight_pair) + +class SDXLClipModel(torch.nn.Module): + def __init__(self, device="cpu", dtype=None): + super().__init__() + self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False) + self.clip_g = SDXLClipG(device=device, dtype=dtype) + self.dtypes = set([dtype]) + + def set_clip_options(self, options): + self.clip_l.set_clip_options(options) + self.clip_g.set_clip_options(options) + + def reset_clip_options(self): + self.clip_g.reset_clip_options() + self.clip_l.reset_clip_options() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs_g = token_weight_pairs["g"] + token_weight_pairs_l = token_weight_pairs["l"] + g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) + l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) + return torch.cat([l_out, g_out], dim=-1), g_pooled + + def load_sd(self, sd): + if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: + return self.clip_g.load_sd(sd) + else: + return self.clip_l.load_sd(sd) + +class SDXLRefinerClipModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None): + super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG) + + +class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer): + def __init__(self, tokenizer_path=None, embedding_directory=None): + super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g') + +class StableCascadeTokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None): + super().__init__(embedding_directory=embedding_directory, clip_name="g", tokenizer=StableCascadeClipGTokenizer) + +class StableCascadeClipG(sd1_clip.SDClipModel): + def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None): + textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") + super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, + special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True) + + def load_sd(self, sd): + return super().load_sd(sd) + +class StableCascadeClipModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None): + super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=StableCascadeClipG) diff --git a/MagicQuill/comfy/supported_models.py b/MagicQuill/comfy/supported_models.py new file mode 100644 index 0000000000000000000000000000000000000000..761498dbc9e54a2365dbef910363eb2ce3c7756e --- /dev/null +++ b/MagicQuill/comfy/supported_models.py @@ -0,0 +1,559 @@ +import torch +from . import model_base +from . import utils + +from . import sd1_clip +from . import sd2_clip +from . import sdxl_clip +from . import sd3_clip +from . import sa_t5 + +from . import supported_models_base +from . import latent_formats + +from . import diffusers_convert + +class SD15(supported_models_base.BASE): + unet_config = { + "context_dim": 768, + "model_channels": 320, + "use_linear_in_transformer": False, + "adm_in_channels": None, + "use_temporal_attention": False, + } + + unet_extra_config = { + "num_heads": 8, + "num_head_channels": -1, + } + + latent_format = latent_formats.SD15 + + def process_clip_state_dict(self, state_dict): + k = list(state_dict.keys()) + for x in k: + if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): + y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") + state_dict[y] = state_dict.pop(x) + + if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict: + ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] + if ids.dtype == torch.float32: + state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() + + replace_prefix = {} + replace_prefix["cond_stage_model."] = "clip_l." + state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) + return state_dict + + def process_clip_state_dict_for_saving(self, state_dict): + pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"] + for p in pop_keys: + if p in state_dict: + state_dict.pop(p) + + replace_prefix = {"clip_l.": "cond_stage_model."} + return utils.state_dict_prefix_replace(state_dict, replace_prefix) + + def clip_target(self, state_dict={}): + return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel) + +class SD20(supported_models_base.BASE): + unet_config = { + "context_dim": 1024, + "model_channels": 320, + "use_linear_in_transformer": True, + "adm_in_channels": None, + "use_temporal_attention": False, + } + + unet_extra_config = { + "num_heads": -1, + "num_head_channels": 64, + "attn_precision": torch.float32, + } + + latent_format = latent_formats.SD15 + + def model_type(self, state_dict, prefix=""): + if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction + k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix) + out = state_dict.get(k, None) + if out is not None and torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. + return model_base.ModelType.V_PREDICTION + return model_base.ModelType.EPS + + def process_clip_state_dict(self, state_dict): + replace_prefix = {} + replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format + replace_prefix["cond_stage_model.model."] = "clip_h." + state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) + state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.") + return state_dict + + def process_clip_state_dict_for_saving(self, state_dict): + replace_prefix = {} + replace_prefix["clip_h"] = "cond_stage_model.model" + state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) + state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict) + return state_dict + + def clip_target(self, state_dict={}): + return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel) + +class SD21UnclipL(SD20): + unet_config = { + "context_dim": 1024, + "model_channels": 320, + "use_linear_in_transformer": True, + "adm_in_channels": 1536, + "use_temporal_attention": False, + } + + clip_vision_prefix = "embedder.model.visual." + noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768} + + +class SD21UnclipH(SD20): + unet_config = { + "context_dim": 1024, + "model_channels": 320, + "use_linear_in_transformer": True, + "adm_in_channels": 2048, + "use_temporal_attention": False, + } + + clip_vision_prefix = "embedder.model.visual." + noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024} + +class SDXLRefiner(supported_models_base.BASE): + unet_config = { + "model_channels": 384, + "use_linear_in_transformer": True, + "context_dim": 1280, + "adm_in_channels": 2560, + "transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0], + "use_temporal_attention": False, + } + + latent_format = latent_formats.SDXL + + def get_model(self, state_dict, prefix="", device=None): + return model_base.SDXLRefiner(self, device=device) + + def process_clip_state_dict(self, state_dict): + keys_to_replace = {} + replace_prefix = {} + replace_prefix["conditioner.embedders.0.model."] = "clip_g." + state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) + + state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.") + state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace) + return state_dict + + def process_clip_state_dict_for_saving(self, state_dict): + replace_prefix = {} + state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") + if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g: + state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids") + replace_prefix["clip_g"] = "conditioner.embedders.0.model" + state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix) + return state_dict_g + + def clip_target(self, state_dict={}): + return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel) + +class SDXL(supported_models_base.BASE): + unet_config = { + "model_channels": 320, + "use_linear_in_transformer": True, + "transformer_depth": [0, 0, 2, 2, 10, 10], + "context_dim": 2048, + "adm_in_channels": 2816, + "use_temporal_attention": False, + } + + latent_format = latent_formats.SDXL + + def model_type(self, state_dict, prefix=""): + if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5 + self.latent_format = latent_formats.SDXL_Playground_2_5() + self.sampling_settings["sigma_data"] = 0.5 + self.sampling_settings["sigma_max"] = 80.0 + self.sampling_settings["sigma_min"] = 0.002 + return model_base.ModelType.EDM + elif "edm_vpred.sigma_max" in state_dict: + self.sampling_settings["sigma_max"] = float(state_dict["edm_vpred.sigma_max"].item()) + if "edm_vpred.sigma_min" in state_dict: + self.sampling_settings["sigma_min"] = float(state_dict["edm_vpred.sigma_min"].item()) + return model_base.ModelType.V_PREDICTION_EDM + elif "v_pred" in state_dict: + return model_base.ModelType.V_PREDICTION + else: + return model_base.ModelType.EPS + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device) + if self.inpaint_model(): + out.set_inpaint() + return out + + def process_clip_state_dict(self, state_dict): + keys_to_replace = {} + replace_prefix = {} + + replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model" + replace_prefix["conditioner.embedders.1.model."] = "clip_g." + state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True) + + state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace) + state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.") + return state_dict + + def process_clip_state_dict_for_saving(self, state_dict): + replace_prefix = {} + keys_to_replace = {} + state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") + for k in state_dict: + if k.startswith("clip_l"): + state_dict_g[k] = state_dict[k] + + state_dict_g["clip_l.transformer.text_model.embeddings.position_ids"] = torch.arange(77).expand((1, -1)) + pop_keys = ["clip_l.transformer.text_projection.weight", "clip_l.logit_scale"] + for p in pop_keys: + if p in state_dict_g: + state_dict_g.pop(p) + + replace_prefix["clip_g"] = "conditioner.embedders.1.model" + replace_prefix["clip_l"] = "conditioner.embedders.0" + state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix) + return state_dict_g + + def clip_target(self, state_dict={}): + return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel) + +class SSD1B(SDXL): + unet_config = { + "model_channels": 320, + "use_linear_in_transformer": True, + "transformer_depth": [0, 0, 2, 2, 4, 4], + "context_dim": 2048, + "adm_in_channels": 2816, + "use_temporal_attention": False, + } + +class Segmind_Vega(SDXL): + unet_config = { + "model_channels": 320, + "use_linear_in_transformer": True, + "transformer_depth": [0, 0, 1, 1, 2, 2], + "context_dim": 2048, + "adm_in_channels": 2816, + "use_temporal_attention": False, + } + +class KOALA_700M(SDXL): + unet_config = { + "model_channels": 320, + "use_linear_in_transformer": True, + "transformer_depth": [0, 2, 5], + "context_dim": 2048, + "adm_in_channels": 2816, + "use_temporal_attention": False, + } + +class KOALA_1B(SDXL): + unet_config = { + "model_channels": 320, + "use_linear_in_transformer": True, + "transformer_depth": [0, 2, 6], + "context_dim": 2048, + "adm_in_channels": 2816, + "use_temporal_attention": False, + } + +class SVD_img2vid(supported_models_base.BASE): + unet_config = { + "model_channels": 320, + "in_channels": 8, + "use_linear_in_transformer": True, + "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], + "context_dim": 1024, + "adm_in_channels": 768, + "use_temporal_attention": True, + "use_temporal_resblock": True + } + + unet_extra_config = { + "num_heads": -1, + "num_head_channels": 64, + "attn_precision": torch.float32, + } + + clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual." + + latent_format = latent_formats.SD15 + + sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002} + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.SVD_img2vid(self, device=device) + return out + + def clip_target(self, state_dict={}): + return None + +class SV3D_u(SVD_img2vid): + unet_config = { + "model_channels": 320, + "in_channels": 8, + "use_linear_in_transformer": True, + "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], + "context_dim": 1024, + "adm_in_channels": 256, + "use_temporal_attention": True, + "use_temporal_resblock": True + } + + vae_key_prefix = ["conditioner.embedders.1.encoder."] + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.SV3D_u(self, device=device) + return out + +class SV3D_p(SV3D_u): + unet_config = { + "model_channels": 320, + "in_channels": 8, + "use_linear_in_transformer": True, + "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], + "context_dim": 1024, + "adm_in_channels": 1280, + "use_temporal_attention": True, + "use_temporal_resblock": True + } + + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.SV3D_p(self, device=device) + return out + +class Stable_Zero123(supported_models_base.BASE): + unet_config = { + "context_dim": 768, + "model_channels": 320, + "use_linear_in_transformer": False, + "adm_in_channels": None, + "use_temporal_attention": False, + "in_channels": 8, + } + + unet_extra_config = { + "num_heads": 8, + "num_head_channels": -1, + } + + required_keys = { + "cc_projection.weight": None, + "cc_projection.bias": None, + } + + clip_vision_prefix = "cond_stage_model.model.visual." + + latent_format = latent_formats.SD15 + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"]) + return out + + def clip_target(self, state_dict={}): + return None + +class SD_X4Upscaler(SD20): + unet_config = { + "context_dim": 1024, + "model_channels": 256, + 'in_channels': 7, + "use_linear_in_transformer": True, + "adm_in_channels": None, + "use_temporal_attention": False, + } + + unet_extra_config = { + "disable_self_attentions": [True, True, True, False], + "num_classes": 1000, + "num_heads": 8, + "num_head_channels": -1, + } + + latent_format = latent_formats.SD_X4 + + sampling_settings = { + "linear_start": 0.0001, + "linear_end": 0.02, + } + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.SD_X4Upscaler(self, device=device) + return out + +class Stable_Cascade_C(supported_models_base.BASE): + unet_config = { + "stable_cascade_stage": 'c', + } + + unet_extra_config = {} + + latent_format = latent_formats.SC_Prior + supported_inference_dtypes = [torch.bfloat16, torch.float32] + + sampling_settings = { + "shift": 2.0, + } + + vae_key_prefix = ["vae."] + text_encoder_key_prefix = ["text_encoder."] + clip_vision_prefix = "clip_l_vision." + + def process_unet_state_dict(self, state_dict): + key_list = list(state_dict.keys()) + for y in ["weight", "bias"]: + suffix = "in_proj_{}".format(y) + keys = filter(lambda a: a.endswith(suffix), key_list) + for k_from in keys: + weights = state_dict.pop(k_from) + prefix = k_from[:-(len(suffix) + 1)] + shape_from = weights.shape[0] // 3 + for x in range(3): + p = ["to_q", "to_k", "to_v"] + k_to = "{}.{}.{}".format(prefix, p[x], y) + state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)] + return state_dict + + def process_clip_state_dict(self, state_dict): + state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True) + if "clip_g.text_projection" in state_dict: + state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1) + return state_dict + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.StableCascade_C(self, device=device) + return out + + def clip_target(self, state_dict={}): + return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel) + +class Stable_Cascade_B(Stable_Cascade_C): + unet_config = { + "stable_cascade_stage": 'b', + } + + unet_extra_config = {} + + latent_format = latent_formats.SC_B + supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] + + sampling_settings = { + "shift": 1.0, + } + + clip_vision_prefix = None + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.StableCascade_B(self, device=device) + return out + +class SD15_instructpix2pix(SD15): + unet_config = { + "context_dim": 768, + "model_channels": 320, + "use_linear_in_transformer": False, + "adm_in_channels": None, + "use_temporal_attention": False, + "in_channels": 8, + } + + def get_model(self, state_dict, prefix="", device=None): + return model_base.SD15_instructpix2pix(self, device=device) + +class SDXL_instructpix2pix(SDXL): + unet_config = { + "model_channels": 320, + "use_linear_in_transformer": True, + "transformer_depth": [0, 0, 2, 2, 10, 10], + "context_dim": 2048, + "adm_in_channels": 2816, + "use_temporal_attention": False, + "in_channels": 8, + } + + def get_model(self, state_dict, prefix="", device=None): + return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device) + +class SD3(supported_models_base.BASE): + unet_config = { + "in_channels": 16, + "pos_embed_scaling_factor": None, + } + + sampling_settings = { + "shift": 3.0, + } + + unet_extra_config = {} + latent_format = latent_formats.SD3 + text_encoder_key_prefix = ["text_encoders."] + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.SD3(self, device=device) + return out + + def clip_target(self, state_dict={}): + clip_l = False + clip_g = False + t5 = False + dtype_t5 = None + pref = self.text_encoder_key_prefix[0] + if "{}clip_l.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict: + clip_l = True + if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict: + clip_g = True + t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref) + if t5_key in state_dict: + t5 = True + dtype_t5 = state_dict[t5_key].dtype + + return supported_models_base.ClipTarget(sd3_clip.SD3Tokenizer, sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5)) + +class StableAudio(supported_models_base.BASE): + unet_config = { + "audio_model": "dit1.0", + } + + sampling_settings = {"sigma_max": 500.0, "sigma_min": 0.03} + + unet_extra_config = {} + latent_format = latent_formats.StableAudio1 + + text_encoder_key_prefix = ["text_encoders."] + vae_key_prefix = ["pretransform.model."] + + def get_model(self, state_dict, prefix="", device=None): + seconds_start_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_start.": ""}, filter_keys=True) + seconds_total_sd = utils.state_dict_prefix_replace(state_dict, {"conditioner.conditioners.seconds_total.": ""}, filter_keys=True) + return model_base.StableAudio1(self, seconds_start_embedder_weights=seconds_start_sd, seconds_total_embedder_weights=seconds_total_sd, device=device) + + + def process_unet_state_dict(self, state_dict): + for k in list(state_dict.keys()): + if k.endswith(".cross_attend_norm.beta") or k.endswith(".ff_norm.beta") or k.endswith(".pre_norm.beta"): #These weights are all zero + state_dict.pop(k) + return state_dict + + def clip_target(self, state_dict={}): + return supported_models_base.ClipTarget(sa_t5.SAT5Tokenizer, sa_t5.SAT5Model) + + +models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio] + +models += [SVD_img2vid] diff --git a/MagicQuill/comfy/supported_models_base.py b/MagicQuill/comfy/supported_models_base.py new file mode 100644 index 0000000000000000000000000000000000000000..cf7cdff34bff803e6dfa750e84f03d66e06634af --- /dev/null +++ b/MagicQuill/comfy/supported_models_base.py @@ -0,0 +1,95 @@ +import torch +from . import model_base +from . import utils +from . import latent_formats + +class ClipTarget: + def __init__(self, tokenizer, clip): + self.clip = clip + self.tokenizer = tokenizer + self.params = {} + +class BASE: + unet_config = {} + unet_extra_config = { + "num_heads": -1, + "num_head_channels": 64, + } + + required_keys = {} + + clip_prefix = [] + clip_vision_prefix = None + noise_aug_config = None + sampling_settings = {} + latent_format = latent_formats.LatentFormat + vae_key_prefix = ["first_stage_model."] + text_encoder_key_prefix = ["cond_stage_model."] + supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] + + manual_cast_dtype = None + + @classmethod + def matches(s, unet_config, state_dict=None): + for k in s.unet_config: + if k not in unet_config or s.unet_config[k] != unet_config[k]: + return False + if state_dict is not None: + for k in s.required_keys: + if k not in state_dict: + return False + return True + + def model_type(self, state_dict, prefix=""): + return model_base.ModelType.EPS + + def inpaint_model(self): + return self.unet_config["in_channels"] > 4 + + def __init__(self, unet_config): + self.unet_config = unet_config.copy() + self.sampling_settings = self.sampling_settings.copy() + self.latent_format = self.latent_format() + for x in self.unet_extra_config: + self.unet_config[x] = self.unet_extra_config[x] + + def get_model(self, state_dict, prefix="", device=None): + if self.noise_aug_config is not None: + out = model_base.SD21UNCLIP(self, self.noise_aug_config, model_type=self.model_type(state_dict, prefix), device=device) + else: + out = model_base.BaseModel(self, model_type=self.model_type(state_dict, prefix), device=device) + if self.inpaint_model(): + out.set_inpaint() + return out + + def process_clip_state_dict(self, state_dict): + state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True) + return state_dict + + def process_unet_state_dict(self, state_dict): + return state_dict + + def process_vae_state_dict(self, state_dict): + return state_dict + + def process_clip_state_dict_for_saving(self, state_dict): + replace_prefix = {"": self.text_encoder_key_prefix[0]} + return utils.state_dict_prefix_replace(state_dict, replace_prefix) + + def process_clip_vision_state_dict_for_saving(self, state_dict): + replace_prefix = {} + if self.clip_vision_prefix is not None: + replace_prefix[""] = self.clip_vision_prefix + return utils.state_dict_prefix_replace(state_dict, replace_prefix) + + def process_unet_state_dict_for_saving(self, state_dict): + replace_prefix = {"": "model.diffusion_model."} + return utils.state_dict_prefix_replace(state_dict, replace_prefix) + + def process_vae_state_dict_for_saving(self, state_dict): + replace_prefix = {"": self.vae_key_prefix[0]} + return utils.state_dict_prefix_replace(state_dict, replace_prefix) + + def set_inference_dtype(self, dtype, manual_cast_dtype): + self.unet_config['dtype'] = dtype + self.manual_cast_dtype = manual_cast_dtype diff --git a/MagicQuill/comfy/t2i_adapter/__pycache__/adapter.cpython-310.pyc b/MagicQuill/comfy/t2i_adapter/__pycache__/adapter.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e15c40eb9fceafadcaa877447c5b4a8a9580533c Binary files /dev/null and b/MagicQuill/comfy/t2i_adapter/__pycache__/adapter.cpython-310.pyc differ diff --git a/MagicQuill/comfy/t2i_adapter/adapter.py b/MagicQuill/comfy/t2i_adapter/adapter.py new file mode 100644 index 0000000000000000000000000000000000000000..e9a606b1cd67fd9a955a0ea0a86d1bd5498d85e5 --- /dev/null +++ b/MagicQuill/comfy/t2i_adapter/adapter.py @@ -0,0 +1,293 @@ +#taken from https://github.com/TencentARC/T2I-Adapter +import torch +import torch.nn as nn +from collections import OrderedDict + + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = conv_nd( + dims, self.channels, self.out_channels, 3, stride=stride, padding=padding + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + if not self.use_conv: + padding = [x.shape[2] % 2, x.shape[3] % 2] + self.op.padding = padding + + x = self.op(x) + return x + + +class ResnetBlock(nn.Module): + def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): + super().__init__() + ps = ksize // 2 + if in_c != out_c or sk == False: + self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) + else: + # print('n_in') + self.in_conv = None + self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) + self.act = nn.ReLU() + self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) + if sk == False: + self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) + else: + self.skep = None + + self.down = down + if self.down == True: + self.down_opt = Downsample(in_c, use_conv=use_conv) + + def forward(self, x): + if self.down == True: + x = self.down_opt(x) + if self.in_conv is not None: # edit + x = self.in_conv(x) + + h = self.block1(x) + h = self.act(h) + h = self.block2(h) + if self.skep is not None: + return h + self.skep(x) + else: + return h + x + + +class Adapter(nn.Module): + def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True, xl=True): + super(Adapter, self).__init__() + self.unshuffle_amount = 8 + resblock_no_downsample = [] + resblock_downsample = [3, 2, 1] + self.xl = xl + if self.xl: + self.unshuffle_amount = 16 + resblock_no_downsample = [1] + resblock_downsample = [2] + + self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount) + self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount) + self.channels = channels + self.nums_rb = nums_rb + self.body = [] + for i in range(len(channels)): + for j in range(nums_rb): + if (i in resblock_downsample) and (j == 0): + self.body.append( + ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv)) + elif (i in resblock_no_downsample) and (j == 0): + self.body.append( + ResnetBlock(channels[i - 1], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv)) + else: + self.body.append( + ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv)) + self.body = nn.ModuleList(self.body) + self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1) + + def forward(self, x): + # unshuffle + x = self.unshuffle(x) + # extract features + features = [] + x = self.conv_in(x) + for i in range(len(self.channels)): + for j in range(self.nums_rb): + idx = i * self.nums_rb + j + x = self.body[idx](x) + if self.xl: + features.append(None) + if i == 0: + features.append(None) + features.append(None) + if i == 2: + features.append(None) + else: + features.append(None) + features.append(None) + features.append(x) + + return features + + +class LayerNorm(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16.""" + + def forward(self, x: torch.Tensor): + orig_type = x.dtype + ret = super().forward(x.type(torch.float32)) + return ret.type(orig_type) + + +class QuickGELU(nn.Module): + + def forward(self, x: torch.Tensor): + return x * torch.sigmoid(1.702 * x) + + +class ResidualAttentionBlock(nn.Module): + + def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): + super().__init__() + + self.attn = nn.MultiheadAttention(d_model, n_head) + self.ln_1 = LayerNorm(d_model) + self.mlp = nn.Sequential( + OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), + ("c_proj", nn.Linear(d_model * 4, d_model))])) + self.ln_2 = LayerNorm(d_model) + self.attn_mask = attn_mask + + def attention(self, x: torch.Tensor): + self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None + return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] + + def forward(self, x: torch.Tensor): + x = x + self.attention(self.ln_1(x)) + x = x + self.mlp(self.ln_2(x)) + return x + + +class StyleAdapter(nn.Module): + + def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4): + super().__init__() + + scale = width ** -0.5 + self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)]) + self.num_token = num_token + self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale) + self.ln_post = LayerNorm(width) + self.ln_pre = LayerNorm(width) + self.proj = nn.Parameter(scale * torch.randn(width, context_dim)) + + def forward(self, x): + # x shape [N, HW+1, C] + style_embedding = self.style_embedding + torch.zeros( + (x.shape[0], self.num_token, self.style_embedding.shape[-1]), device=x.device) + x = torch.cat([x, style_embedding], dim=1) + x = self.ln_pre(x) + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer_layes(x) + x = x.permute(1, 0, 2) # LND -> NLD + + x = self.ln_post(x[:, -self.num_token:, :]) + x = x @ self.proj + + return x + + +class ResnetBlock_light(nn.Module): + def __init__(self, in_c): + super().__init__() + self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1) + self.act = nn.ReLU() + self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1) + + def forward(self, x): + h = self.block1(x) + h = self.act(h) + h = self.block2(h) + + return h + x + + +class extractor(nn.Module): + def __init__(self, in_c, inter_c, out_c, nums_rb, down=False): + super().__init__() + self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0) + self.body = [] + for _ in range(nums_rb): + self.body.append(ResnetBlock_light(inter_c)) + self.body = nn.Sequential(*self.body) + self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0) + self.down = down + if self.down == True: + self.down_opt = Downsample(in_c, use_conv=False) + + def forward(self, x): + if self.down == True: + x = self.down_opt(x) + x = self.in_conv(x) + x = self.body(x) + x = self.out_conv(x) + + return x + + +class Adapter_light(nn.Module): + def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64): + super(Adapter_light, self).__init__() + self.unshuffle_amount = 8 + self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount) + self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount) + self.channels = channels + self.nums_rb = nums_rb + self.body = [] + self.xl = False + + for i in range(len(channels)): + if i == 0: + self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False)) + else: + self.body.append(extractor(in_c=channels[i-1], inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=True)) + self.body = nn.ModuleList(self.body) + + def forward(self, x): + # unshuffle + x = self.unshuffle(x) + # extract features + features = [] + for i in range(len(self.channels)): + x = self.body[i](x) + features.append(None) + features.append(None) + features.append(x) + + return features diff --git a/MagicQuill/comfy/t5.py b/MagicQuill/comfy/t5.py new file mode 100644 index 0000000000000000000000000000000000000000..06dfe47668e6326dfbc761bbc4600fd2db0a66de --- /dev/null +++ b/MagicQuill/comfy/t5.py @@ -0,0 +1,231 @@ +import torch +import math +from comfy.ldm.modules.attention import optimized_attention_for_device + +class T5LayerNorm(torch.nn.Module): + def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None): + super().__init__() + self.weight = torch.nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device)) + self.variance_epsilon = eps + + def forward(self, x): + variance = x.pow(2).mean(-1, keepdim=True) + x = x * torch.rsqrt(variance + self.variance_epsilon) + return self.weight.to(device=x.device, dtype=x.dtype) * x + +class T5DenseActDense(torch.nn.Module): + def __init__(self, model_dim, ff_dim, dtype, device, operations): + super().__init__() + self.wi = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) + self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device) + # self.dropout = nn.Dropout(config.dropout_rate) + + def forward(self, x): + x = torch.nn.functional.relu(self.wi(x)) + # x = self.dropout(x) + x = self.wo(x) + return x + +class T5DenseGatedActDense(torch.nn.Module): + def __init__(self, model_dim, ff_dim, dtype, device, operations): + super().__init__() + self.wi_0 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) + self.wi_1 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) + self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device) + # self.dropout = nn.Dropout(config.dropout_rate) + + def forward(self, x): + hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh") + hidden_linear = self.wi_1(x) + x = hidden_gelu * hidden_linear + # x = self.dropout(x) + x = self.wo(x) + return x + +class T5LayerFF(torch.nn.Module): + def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations): + super().__init__() + if ff_activation == "gelu_pytorch_tanh": + self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device, operations) + elif ff_activation == "relu": + self.DenseReluDense = T5DenseActDense(model_dim, ff_dim, dtype, device, operations) + + self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations) + # self.dropout = nn.Dropout(config.dropout_rate) + + def forward(self, x): + forwarded_states = self.layer_norm(x) + forwarded_states = self.DenseReluDense(forwarded_states) + # x = x + self.dropout(forwarded_states) + x += forwarded_states + return x + +class T5Attention(torch.nn.Module): + def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations): + super().__init__() + + # Mesh TensorFlow initialization to avoid scaling before softmax + self.q = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) + self.k = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) + self.v = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) + self.o = operations.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device) + self.num_heads = num_heads + + self.relative_attention_bias = None + if relative_attention_bias: + self.relative_attention_num_buckets = 32 + self.relative_attention_max_distance = 128 + self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device) + + @staticmethod + def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): + """ + Adapted from Mesh Tensorflow: + https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 + + Translate relative position to a bucket number for relative attention. The relative position is defined as + memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for + small absolute relative_position and larger buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. + This should allow for more graceful generalization to longer sequences than the model has been trained on + + Args: + relative_position: an int32 Tensor + bidirectional: a boolean - whether the attention is bidirectional + num_buckets: an integer + max_distance: an integer + + Returns: + a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) + """ + relative_buckets = 0 + if bidirectional: + num_buckets //= 2 + relative_buckets += (relative_position > 0).to(torch.long) * num_buckets + relative_position = torch.abs(relative_position) + else: + relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) + # now relative_position is in the range [0, inf) + + # half of the buckets are for exact increments in positions + max_exact = num_buckets // 2 + is_small = relative_position < max_exact + + # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance + relative_position_if_large = max_exact + ( + torch.log(relative_position.float() / max_exact) + / math.log(max_distance / max_exact) + * (num_buckets - max_exact) + ).to(torch.long) + relative_position_if_large = torch.min( + relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) + ) + + relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) + return relative_buckets + + def compute_bias(self, query_length, key_length, device): + """Compute binned relative position bias""" + context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] + memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] + relative_position = memory_position - context_position # shape (query_length, key_length) + relative_position_bucket = self._relative_position_bucket( + relative_position, # shape (query_length, key_length) + bidirectional=True, + num_buckets=self.relative_attention_num_buckets, + max_distance=self.relative_attention_max_distance, + ) + values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) + values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) + return values + + def forward(self, x, mask=None, past_bias=None, optimized_attention=None): + q = self.q(x) + k = self.k(x) + v = self.v(x) + if self.relative_attention_bias is not None: + past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device) + + if past_bias is not None: + if mask is not None: + mask = mask + past_bias + else: + mask = past_bias + + out = optimized_attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask) + return self.o(out), past_bias + +class T5LayerSelfAttention(torch.nn.Module): + def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations): + super().__init__() + self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations) + self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations) + # self.dropout = nn.Dropout(config.dropout_rate) + + def forward(self, x, mask=None, past_bias=None, optimized_attention=None): + normed_hidden_states = self.layer_norm(x) + output, past_bias = self.SelfAttention(self.layer_norm(x), mask=mask, past_bias=past_bias, optimized_attention=optimized_attention) + # x = x + self.dropout(attention_output) + x += output + return x, past_bias + +class T5Block(torch.nn.Module): + def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, num_heads, relative_attention_bias, dtype, device, operations): + super().__init__() + self.layer = torch.nn.ModuleList() + self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations)) + self.layer.append(T5LayerFF(model_dim, ff_dim, ff_activation, dtype, device, operations)) + + def forward(self, x, mask=None, past_bias=None, optimized_attention=None): + x, past_bias = self.layer[0](x, mask, past_bias, optimized_attention) + x = self.layer[-1](x) + return x, past_bias + +class T5Stack(torch.nn.Module): + def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, num_heads, dtype, device, operations): + super().__init__() + + self.block = torch.nn.ModuleList( + [T5Block(model_dim, inner_dim, ff_dim, ff_activation, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device, operations=operations) for i in range(num_layers)] + ) + self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations) + # self.dropout = nn.Dropout(config.dropout_rate) + + def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): + mask = None + if attention_mask is not None: + mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) + mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) + + intermediate = None + optimized_attention = optimized_attention_for_device(x.device, mask=attention_mask is not None, small_input=True) + past_bias = None + for i, l in enumerate(self.block): + x, past_bias = l(x, mask, past_bias, optimized_attention) + if i == intermediate_output: + intermediate = x.clone() + x = self.final_layer_norm(x) + if intermediate is not None and final_layer_norm_intermediate: + intermediate = self.final_layer_norm(intermediate) + return x, intermediate + +class T5(torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + self.num_layers = config_dict["num_layers"] + model_dim = config_dict["d_model"] + + self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["num_heads"], dtype, device, operations) + self.dtype = dtype + self.shared = torch.nn.Embedding(config_dict["vocab_size"], model_dim, device=device) + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, embeddings): + self.shared = embeddings + + def forward(self, input_ids, *args, **kwargs): + x = self.shared(input_ids) + return self.encoder(x, *args, **kwargs) diff --git a/MagicQuill/comfy/t5_config_base.json b/MagicQuill/comfy/t5_config_base.json new file mode 100644 index 0000000000000000000000000000000000000000..facd85ef3a9c695d564e40b8c1a7db994e392cd3 --- /dev/null +++ b/MagicQuill/comfy/t5_config_base.json @@ -0,0 +1,21 @@ +{ + "d_ff": 3072, + "d_kv": 64, + "d_model": 768, + "decoder_start_token_id": 0, + "dropout_rate": 0.1, + "eos_token_id": 1, + "dense_act_fn": "relu", + "initializer_factor": 1.0, + "is_encoder_decoder": true, + "layer_norm_epsilon": 1e-06, + "model_type": "t5", + "num_decoder_layers": 12, + "num_heads": 12, + "num_layers": 12, + "output_past": true, + "pad_token_id": 0, + "relative_attention_num_buckets": 32, + "tie_word_embeddings": false, + "vocab_size": 32128 +} diff --git a/MagicQuill/comfy/t5_config_xxl.json b/MagicQuill/comfy/t5_config_xxl.json new file mode 100644 index 0000000000000000000000000000000000000000..bf4feadcf501776e65deeda04789738f08e450f9 --- /dev/null +++ b/MagicQuill/comfy/t5_config_xxl.json @@ -0,0 +1,21 @@ +{ + "d_ff": 10240, + "d_kv": 64, + "d_model": 4096, + "decoder_start_token_id": 0, + "dropout_rate": 0.1, + "eos_token_id": 1, + "dense_act_fn": "gelu_pytorch_tanh", + "initializer_factor": 1.0, + "is_encoder_decoder": true, + "layer_norm_epsilon": 1e-06, + "model_type": "t5", + "num_decoder_layers": 24, + "num_heads": 64, + "num_layers": 24, + "output_past": true, + "pad_token_id": 0, + "relative_attention_num_buckets": 32, + "tie_word_embeddings": false, + "vocab_size": 32128 +} diff --git a/MagicQuill/comfy/t5_tokenizer/special_tokens_map.json b/MagicQuill/comfy/t5_tokenizer/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..17ade346a1042cbe0c1436f5bedcbd85c099d582 --- /dev/null +++ b/MagicQuill/comfy/t5_tokenizer/special_tokens_map.json @@ -0,0 +1,125 @@ +{ + "additional_special_tokens": [ + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "" + ], + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/MagicQuill/comfy/t5_tokenizer/tokenizer.json b/MagicQuill/comfy/t5_tokenizer/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..b11c92d7184d265f0dc857ec5d676aa81aa16262 --- /dev/null +++ b/MagicQuill/comfy/t5_tokenizer/tokenizer.json @@ -0,0 +1,129428 @@ +{ + "version": "1.0", + "truncation": null, + "padding": null, + "added_tokens": [ + { + "id": 0, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 1, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 2, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32000, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32001, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32002, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32003, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32004, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32005, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32006, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32007, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32008, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32009, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32010, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32011, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32012, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32013, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32014, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32015, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32016, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32017, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32018, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32019, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32020, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32021, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32022, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32023, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32024, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32025, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32026, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32027, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32028, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32029, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32030, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32031, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32032, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32033, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32034, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32035, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32036, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32037, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32038, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32039, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32040, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32041, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32042, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32043, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32044, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32045, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32046, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32047, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32048, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32049, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32050, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32051, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32052, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32053, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32054, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32055, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32056, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32057, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32058, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32059, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32060, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32061, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32062, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32063, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32064, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32065, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32066, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32067, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32068, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32069, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32070, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32071, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32072, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32073, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32074, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32075, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32076, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32077, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32078, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32079, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32080, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32081, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32082, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32083, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32084, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32085, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32086, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32087, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32088, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32089, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32090, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32091, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32092, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32093, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32094, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32095, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32096, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32097, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32098, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 32099, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + } + ], + "normalizer": { + "type": "Sequence", + "normalizers": [ + { + "type": "Precompiled", + "precompiled_charsmap": "ALQCAACEAAAAAACAAQAAgMz8AgC4BQAAhyIAgMzkAgC4PQAAeyIAgMzsAgC4BQAAiyIAgMw8AADNvAAAmwkAgJ4JAIChCQCAgx0AAIAZAACBGQAAPR0AgDUdAIBNHQCARR0AgIAxAACBMQAApAkAgIkxAAA9WAMAPEgDAEAKAIA+aAMAAYUAAIQBAQADjQAAAokAAAWVAAAEkQAAB50AAAaZAAAJqQAACKEAAAutAAAKpQAADbkAAAy9AAAPvQAADrkAABHFAAAQwQAAE80AABLJAAAV1QAAFNEAABfdAAAW2QAAGeUAABjhAAAb7QAAGukAAB31AAAc8QAAH/0AAB75AABhOAkAZR0AgGNADgBi8AgAZSgPAGSADgBn2A8AZvAPAGlwDABoMAwAa/AMAGrYDABtSA0AbBwNAG8QEgBubA0ARgoAgHAMEwBzqBMAcuwTAHUoEAB0TBAAd9ARAHYUEAB50BYAePQQAF0dAIB69BYAdR0AgG0dAIB/fQEAhgwAgEGAAgDeCwCAQxgAAELAAABFSAAARGAAAEeQBgBGhAEASSgGAEhsAQBLOAcASvAHAE1wBwBMRAcAT/AEAE7MBACnCQCAUCwFAFOgCgBSEAUAVQAKAFRQCgBX0AgAVhALAFlICABYuAgAhBEAAFo8CACA9QAAgZ0AANgLAIAtHQCAg2kCAIJFAgCBNQIAgDUCAIdtAwCGVQMAgTkAAIRlAgAXDACAigEEAInVAwCI7QMAjwkAAKgLAIApDACAjAkAAC8MAICJMQMAkQkAAMzYAABVHQCAfR0AgL0aAIBMCgCAgGUDAIENAwCGPQAAgx0DAMwQAgDNhAEAgikAAMx0AwCjgQYAxRoAgICxAgCBsQIAzRoAgIEpAAClwQAA1RoAgMzoAwDNYAIAUgoAgKjxAABYCgCAXgoAgGQKAIDdGgCAgWkAAMzcBACCEQEA5RoAgGoKAIDtGgCA/RoAgAUbAID1GgCAswkAgMygBADN3AQAzAgBALYJAIClHQCAhhEBAOEAKwDgfCcA44hIAuIMOAKdHQCAh5EBALUdAICtHQCAgNkBAIE1AADMxAIA6kRkApUdAIANGwCA72hkAoERBwCC8QEA8NCLAolVAACB5QEAFRsAgIfhAQCAbQAAgQ0AAIN5AAB2CgCAgXkAAICVAQDMOAEAzRQBAIzBAQB8CgCAvAkAgKMVAQDDlBcAwpwUAMWEFwDEUBcAx+wXAMaAEgCNHQCAiAoAgMvQFgDK4BYAzRQWADUMAIDPvCAAzpwZANHMJADQ2CUA0+gkALFRAQA7DACAp90HAL0dAIDWvCQA2cgnANjUIgDb+CcALRsAgIftBwCCCgCAzPgEAB0bAIAlHQCAh8kGALAJAICR3QcAuQkAgCUbAIBwCgCANRsAgIUdAICMDACAjPkGAAsMAICA1QYAgcEGAMzEAgDNBAUAglEAAIN1BwCArQYAgbkGAIY1BwCHKQcAhEEAAI4KAICn7QAAPRsAgIjpBwCJzQcAlAoAgI/BBwCM3QcAmgoAgOoLAICnXQYAsJ0AAKAKAICmCgCAo0EGAEUbAIBVGwCAfQwAgE0bAIBdGwCArXEGAGUbAIC/CQCAzPgDAM0sAwDCCQCAo+UAAMUJAICMTQAAsgoAgKfxAAC4CgCAsT0GAIedAACGlQAAqB0HAISJAAC+CgCAgqkAAIHVAACtAQcAygoAgJE9AACCmQEAyAkAgM0MBQDMCAUAgT0AAIeFAQCIvQEAdRsAgMUdAICuCwCAjJEBAEEMAIBHDACAzR0AgID1AQCBhQEAgoEBAIOdAQCEiQEAxAoAgIapAQCHXQAAiG0AAIlNAABtGwCAzBACAIxdAACCDQAA0AoAgI9JAACw6QAAfRsAgPALAICjKQEAgCUBAIFVAQCFGwCApzUBAMykAQDNEAIA1goAgI0bAICBNQAA3AoAgK4JAQDoCgCAzOgBAM0oAgCVGwCAo/EAAIQFAACdGwCA4goAgK0bAICotQAApRsAgIFdAAC1GwCAzPwBAM3AAQC9GwCAxRsAgIGFAwARDACAgeUDAO4KAICH6QMAywkAgIylAwDNGwCA+goAgKoJAIDVGwCAgZkDAIHdAwCMvQMAzSQBAMwgAQDMEAIAzTACAIH5AACHUQAAgFUAAIFZAAD0CgCAg0kAAIxBAADlGwCA3RsAgM4JAICBfQAAgHEAAMwgAwDNsAMAo30DANEJAICjEQMA7R0AgIEtAQCx/QAApzEDAK1BAwDlHQCAo20DAP0dAID1HQCA7RsAgKdtAwCANQAAgR0AALFtAwCILQAAmAwAgKeVAACBcQAAgFkAAINxAACj9QAAgVEAAK2BAAD1GwCAsQkDAIldAACEPQAAzDgBAISdAQCBGQAAgAkAAIRlAAD9GwCAzNAHAMzwBwAFHACAkYkAAMxMBgDNBAYAzHAGAM10BgDMQAcAmy0PAMyoBwDNrAcAhg0AAIdVDwCEQQ8ACQsAgIIBDACDVQ8AgDUBAIHZAQCkDACAj+kAAIztAACSDACA3R0AgIv1AACIbQ8AiQ0AAA8LAIC0CwCAgiUAAE0MAICBQQAAUwwAgBUeAIANHgCAJR4AgB0eAIAtHgCABR4AgIApAACBKQAA/AsAgA0cAICEeQAAFRwAgIFNAQCAoQEAGAsAgKP9DwDMOAIAzUgDAB0cAICBWQAAzXwCAMykDQAkCwCAWQwAgKjJDwCHOQAA1wkAgImhDwADCwCAkREAAJ4MAIDaCQCAmQsAgF8MAICAuQ8AgbkPANUdAICDjQ8A9gsAgCUcAICEBQAALRwAgB4LAIA1HACAKgsAgIGdDwCHIQAAh7UPAMyoAgDN6AIAzLQMAM3cDACmzQAAp8UAAE0cAICPgQ8AjIkPAKPlAAAwCwCAPRwAgDwLAICxyQAAhwUAAFUcAIBFHACAhz0AAF0cAIBxDACANgsAgKMFDwCB+QAAzKgDAGUcAIBICwCAjEkAAKPxAABtHACAdwwAgEILAICnlQAAfRwAgHUcAIDMrAMAzcgAAN0JAICHaQAA4AkAgIG9AACCeQAA4wkAgIe5AQBOCwCAkaUAAIEdAACdHACAVAsAgIgFAAClHACAm5EAAFoLAIDmCQCAjJEBANILAIDGCwCAwAsAgMwLAICDRQAAgrkBAIG5AQCApQEAPR4AgIZxAABgCwCAhEkAAIsVAACKPQAAiTkAAIhFAACP+QAAZgsAgLoLAICMBQAAp1EBAKZJAQBlDACAsHkAAKNZAQCMqQAAgKkAAIGpAACBlQAAgJUAAK1xAQBrDACAogsAgISNAABNHgCARR4AgKMhAABdHgCAVR4AgGUeAICBbQAAgG0AALEFAQCkOQAANR4AgIUcAIBsCwCAqAUAAJUcAICNHACArQkAAMywAQCBvQMAgL0DAIPNAwCtHACAtRwAgL0cAIDMvAEAzYQBAInpAwDMHAEAgdkCAIDFAgDNOAEAzDwBAMxoAgDNRAIAg00AAMUcAICH2QAAhy0AAIBFAACBEQAAggUAAHILAIDVHACAzRwAgN0cAIDMOAIAiBUAAIjhAACAbQAAgTkAAMyEAgDNUAEAo0UDAIQ5AQDlHACA7RwAgMzcAwDNSAIAbR4AgOkJAIB4CwCAhR4AgKoMAICBbQAA9RwAgH4LAICj0QAAfR4AgHUeAIDMiAQAgXUAAIB1AACBCwCAo7UAAMwABADNVAIA/RwAgIcLAICETQEAjQsAgAUdAIANHQCAzNAOAMwsAQDMAAUAzVwFAOwJAIDvCQCAzJgOAIHBAADMzA8AzDwOAMwIAQDNnA4AzNQPAM14DwDMPA4AzTgOAIHlAQCA5QEAg+UBAILlAQDUCQCAhOUBAIfhAQBBHQCAiaUBAIjZAQCByQcAOR0AgFEdAIBJHQCAzDQBAPUJAICA3QAAgekAAEMKAICD/QAAgM0AAIH5AACBEQcAaR0AgGEdAICJ0QAAzCgBAHkdAIBxHQCA4QsAgMw0AQDbCwCAgF0AAIFlAACjAQEAg2EAAIFxAACASQAAMR0AgBoMAICrCwCAiVUAACwMAIAyDACAWR0AgIEdAIDBGgCATwoAgIIdAACDeQcAgBkHAIEZBwCGIQAAhykAAISRBwDyCQCAimkAALHZBgCIaQAAifUHAEkKAICP3QcAjNkHAIkMAID4CQCAKR0AgPsJAICRoQcAgEEHAIFBBwCHBQAAyRoAgIKRBwDRGgCA2RoAgKOVBgCGhQcAp+0AAMyQAgDN4AUAsekAAKPBAABVCgCAWwoAgGEKAIBnCgCA/gkAgKVlBwDhGgCAzLgDAKhVBwDpGgCAbQoAgPEaAIABGwCACRsAgPkaAIABCgCAo60AAAQKAICMJQYABwoAgIxNAACpHQCAgm0AAIE9BgCCAQYAgWUAAKEdAICHZQAAuR0AgIcRBgCHrQEAsR0AgMxQAgDNxAIAgeEBAIDJAQCD4QEAkYkAAID9AQCB1QEAmR0AgIydAQCJNQAAcwoAgIB1AACBXQAAhi0AAIc1AACEfQAAERsAgIKFAQCDfQAAgJ0BAIGRAQAZGwCAj+kAAIzhAAB5CgCAfwoAgAoKAICIDQAAifkAAKc5AQCRHQCAiwoAgDgMAICjJQEAPgwAgLBZAACJHQCAggUAAMEdAICtFQEAjwwAgDEbAICGBQAAhQoAgCEbAIApGwCAp2kAAIANAQCBAQEAhzEAAKNJAACxGQEAzBACADkbAIAODACAkQoAgK1RAADM1AEAzfgBAKhBAABBGwCAzTgBAMw8AQCB7QMAlwoAgJ0KAICMDQAA7QsAgKMKAICBxQMAzGgCAKkKAICCxQMASRsAgITJAwCHKQAAhjEAAFkbAICCbQAAgAwAgFEbAICHYQAAYRsAgGkbAIAVHQCAzKgDAM2sAgCB+QAAiC0AAA0KAIAQCgCAEwoAgIw1AAC1CgCAuwoAgLHVAADBCgCAeRsAgMkdAICxCwCAzDABAEQMAIBKDACA0R0AgMwEAQDHCgCAcRsAgKelAADTCgCAo40AAMwUAgCAuQAAgbkAAKeFAAAIDACAgmUAAIEbAICMNQAA8wsAgMzsHADN/AMAiRsAgK6tAADZCgCAkRsAgMzABgDN0AYAsL0BAMyQBwDfCgCAgckBAMwYHQDNIAIAhBEAAOsKAIDNuAYAzKwGAKEbAIDlCgCAgSkAALEbAICpGwCAo+0BAMxAHQDNEAIAuRsAgMEbAICBCQAAyRsAgMxAHQDN0AIAqNkBABQMAIDMkAcAzBwBAMxgBgDNZAYA8QoAgBwKAIDRGwCAkSkBAP0KAICBzR8A2RsAgPcKAIDpGwCA4RsAgMzEBgDNwAYAgTEAAIDZAAAfCgCAIgoAgIK5AQCDRQEAgLkBAIG5AQCGXQEA8R0AgIRdAQDpHQCAzcAAAMzwAACIARwAiXkBAAEeAICPVQEAjGEBAPkdAICB3R4AgRUfAJkbAICBXR8AjIEfAIdBHwDMGAMAzWgDAIBNHwCBpR8AJQoAgIOpHwCMFR8AjNEeACgKAICHtR8AgJUfAIGZHwCBEQAAg70fAICFHwCBiR8A8RsAgIQ9AACbDACAiZkfAPkbAICIBQAABgsAgAEcAICADQAAgf0AAAkcAICj2R8Ao3keAKOFAAAMCwCArTUfAKdhHgCnqR8AoQwAgIQNAACnDACAozUfACsKAICtiR8AhHEAAKchHwCxPR4AsYUfAJUMAIDhHQCAEgsAgLcLAIDMtBwAzbAcAFAMAICxQR8AVgwAgJwLAIAZHgCAER4AgCkeAIAhHgCAgLkeAIG5HgCCIQEAgzUBAIRhAQAxHgCAhokBAIe9AQCIkQEAiekBANkdAICL/QEAjOUBAIINAAAJHgCAj90BAIO5AQCRrQEAgb0BAIC9AQCAoQEAgaEBAPkLAID/CwCAhD0AABEcAICJlQEAm4EBAIHNHgCAzR4AzPwCAM3wAgCB5QAAGRwAgIHtAACjpQAAzJABAM1cAgCHHQAAGwsAgKj5AAAhHACAJwsAgFwMAIBiDACAKRwAgIQFAAAxHACAo9UAACELAIA5HACAgVEAAMz0AQDN0AEALQsAgIc9AABRHACAMwsAgEEcAIA/CwCAhwUAAFkcAIBJHACAh/EDAIHZAwCBmQMAgZEAAGEcAIB0DACAjPkDAMwkAQCHuQMAgfkDADkLAIDMZAIAgskDAIyZAwBpHACAh9EDAI+RAwCB3QYAkfUDAMwABADN7AMAh2UAABkdAIBLCwCAcRwAgHoMAIBFCwCAzBgBAIg5AACBHACAeRwAgMxcAwCMJQAALgoAgMwsAQCx/QAAozkDADEKAIA0CgCAoRwAgKdZAwDMdAMAiAkAAKNRAwCpHACAXQsAgINtDQCnnQAApq0AAKOdAACxDQMAzCgBANULAICntQAAprUAAMkLAIDMMAEAgdUHAMMLAIDMKAEAzwsAgEEeAIBjCwCArYkAAGkLAICAzQEAgd0BAMxEAQDNnB4AhPUBAL0LAIDMWAEAzUwBAIDtAQCB/QEAg7UAAGgMAICM3QEAbgwAgMwIHgCM8QYAzDgBAM08AQBRHgCAiREAAIEFBgBJHgCAYR4AgFkeAIBpHgCAgz0AAIAhAACBOQAAgDkAAIEhAAA5HgCAiRwAgMwoAQCB2QYAbwsAgIH9BgDMJAEAmRwAgJEcAICxHACAgCEBAIE1AQCjBQAAuRwAgMEcAIDJHACAzIwFAM1AAgC3HAMAdQsAgIfNBwDZHACA0RwAgB0dAIDNiAAAzJAAAIzdBQCjhQAAFgoAgMzgAgDhHACAiNUHAIFNAACATQAAUQsAgOkcAIBXCwCAkTkHADcKAICIxQcApQsAgIrJBwDxHACAmz0AAIflBwBxHgCAgYUHAICFBwA6CgCAgvkHAILVBgCDRQAAgMkGAIHdBgCG4QYAewsAgIRRAACJHgCAipUGAIuZBgCIeQAAiZ0GAK0MAICPWQcAjG0HAPkcAIDMgAMAzSQCALARBwA9CgCAgR4AgCEdAIB5HgCAhAsAgICNAACBnQAAzOwDAM3oBAABHQCAigsAgKNJBwCQCwCACR0AgKO9BwARHQCAGwAAgOcHAIALAACApKUHAOsEAICKBQCAAwAAgKhhBwDZDQCAZQAAgMgDAIAbCQCArWkHAIAtAQCBPQEAgl0BAINRAQCEYQEAuAQAgKwEAICHYQEAiK0BAIm1AQCKvQEAjykVALwFAIAdDACAzHgCAM3YBQCB3QEAgXEAAOQLAICC/QEAhBkAACMMAICH7QEAIAwAgMw0BADNMAQA5wsAgJ9pFQAmDACAjMkBAM34BADM8AIAsUkBACEHAICB1QAAoxUBAKCZFQBzCACARgcAgIT1AADMKAQAzSwEAMMIAICveQEAqH0BADENAICqaQEAUgkAgLQlAQC1KQEAowkBAAIMAIDqBgCA7gYAgLIFAQCzPQEAvPUAAL39AAC+2QAAOAgAgLgBAQC5AQEAugEBADwHAIBDBwCAhgwAALOdAwCyiQMAswgAgIC9AwBpBwCAbAcAgBIJAIDkBgCA5wYAgDUIAICJhQMAzOQHAL+hAwAFDACA1wwAgIxlAADN5AwAzCQMAIlBAACIVQAAi0UAAIpFAACFtQMAhLUDAIeVAwCGgQMAAQ0AgAQNAIAHDQCAmCwAABMAAICmyAAAzYwGAMyoBgCFaQAAFwAAgDEAAIBpAACAzPADAAcAAIA1AACA0QwAgLGVAAAlDQCAs5UAALKVAAA1DQCAOA0AgEANAIA7DQCALg0AgHUAAICmBgCAJQAAgJgJAIAdIQCAv1UDAEMNAIAZIQCAFSEAgGEgAIC4bAAAlGUNAJIAAgCcrQEAnaUBAJqJAQCbiQEAmJkBAJmJAQDMIAYAzQQGAMxABgDNXAYAzDwHAM04BwDMvAcAhXUAAIABDwCBDQ8AaSAAgLqZAQCFBQAAcSAAgFkgAIC+hQEAgSkPAIAlDwBlIACAgiEPAIUpAAC0pQEAhREAAG0gAICziQ8AsoUPALHJAQCwAQwAt4EPALbtAQC17QEAtO0BAIFlAQCAZQEAg2EBALi1DwDMPAsAhHkBAIDhDwCB3Q8AdSAAgF0gAIDMyAQAzbgEAIWtAACFFQAAISEAgDkhAIDM6BkAzbQZAKRdAQBGDQCAok0CAKPxDwCgVQEAod0PAH8IAIBuCQCAOwkAgO0eAIBsCQCA9R4AgHcJAIDxHgCAsQgAgJMNAACtHgCA+R4AgITVDACF6Q4AlGkAAIfdDgC1HgCAmbQCAL0eAIDFHgCAsR4AgD0hAIC5HgCAn3QBAMEeAICRGA0AgI0OAIGBDgCGhQ4AlYwDAISJDgCXRAIAghEAAKm4AACA0QAAge0AAMkeAIBJDQCA5R4AgIVZDwCDiQAAoTQNAIFFDgCASQ4A6R4AgKU0AQCFYQ8AzPAUAB0fAIC5xAUAzMgDAM3cAwCA3QAAgcEAACUfAIC/kAUAhREAALHsBwCA9QAAgcEAAKEgAIC1jAYALR8AgLdABgCA3Q4AgekOAMwoAgDNtAIAgM0OAIH5DgCFKQAAg4UBAIB1AQCBsQEAgPEBAIHVAQCpIACANR8AgIUFAACxIACAgJkBAIG9AQCCfQAAk9UBAJThAQCFDQAAmSAAgCEfAICACQAAgRkAACkfAICTrQEAlC0AAKUgAICFDQAAMR8AgIUFAACtIACAOR8AgIUpAACCGQAAhTUAAIDxAACB4QAAtSAAgJ0gAIBBIQCAhQUAAGEhAICDdQEAgO0BAIEpAQDM8AEAzbABAEwNAIBdIQCAWSEAgKMNAIBdHwCAZR8AgIA9AACBDQAAbR8AgHUfAICALQAAgR0AAIIVAABhHwCAzSwBAGkfAIBxHwCAeR8AgIjFAwClIQCAzJACAM28AgCE7QMATw0AgIb5AwCdHwCAgIEDAIH9AwCAPQAAgTUAAIFJAACAQQAAzdwBAIJBAAClHwCAoR8AgKkfAIDNMAEAlJ0DAI0hAIDN8AEAzAwBAIG5AwCAxQMAg6EDAJOlAwCArQAAgdUAAICdAACBqQAAiSEAgFINAICBwQAAgMkAAIC1AACBgQAAhSEAgINpBADMcAMAzbQDAIEhAIDNPAEApg0AgJMBBADNjAIAzPQCAIANAACBNQAAlNkGANEfAIDVHwCA2R8AgMwIAQDNHAEAgREAAIApAACpIQCAghkAAICRAQCBkQEAzWgFAMyUAgDMEAkAzSgWAMxYDgDNeA4AzBQNAM3YCgDMKAwAzYwNAMzgFwDM4AoAzDgLAM30CACFEQAAVQ0AgIBRBwCBUQcA4SAAgM2QDgCFBQAA6SAAgMzYDgDN7AEA8SAAgM0ADgCFGQAAzfAPAM08DgDNVA4AzGgBAM1sAQDZIACAYQgAgJSZBwDMwDsAgGEBAIHZAACFKQAAzWQOAMx4AQDNfAEAga0HAICtBwCFZQAAgp0HAIBRAQCBUQEAlOEHAM3AAACEeQEAk8UHAIZhAQDlIACAiCEBAIUNAADtIACAzRgBAMzYAADNtAAAgN0HAIHNBwCZHwCAhQkAAM0fAID1IACA/R8AgN0gAIAFIACADSAAgBUgAIAJIACAASAAgK0hAIARIACAGSAAgMy4AgDNHAMAgGUAAIF1AACCfQAAHSAAgIUJAACFQQAAASEAgKkNAICAmQYAgSEHAIUZAACDfQAACSEAgIVZAAD9IACA+SAAgIDNAACB2QAAjR4AgIURAACE6QAAlR4AgIblAABBIACAgDUAAIENAACdHgCAhR0AAEkgAIClHgCAhQUAAFEgAICAVQAAgW0AAIJ9AACTRQAAlA0AAIUNAAA5IACAkR4AgIAJAACBEQAAmR4AgIUdAABFIACAoR4AgIUFAABNIACAgOkBAIHxAQCCBQAAqR4AgIUJAACFCQAAVSAAgD0gAICAbQEAgXkBAIIZAACDpQEADSEAgIV1AACFBQAAESEAgAUhAIAhIACAzMgCAM3cAgCsDQCAzR4AgIA5AACBOQAA1R4AgN0eAIDRHgCA2R4AgIAdAACBDQAA4R4AgCUgAICAxQAAgdUAAM3AAADMJAIAgNUAAIHFAACFOQAAg8kAACUhAICvDQCAgNUAAIEJAACFBQAALSEAgP0eAICBIACAgAkAAIERAAAFHwCAk5kAAJS5AAANHwCAhWUAAIU9AACJIACAk10AABUfAICFEQAAzXAFAMx0BQCUATwAkSAAgHkgAIDNKAEAhSAAgI0gAICFGQAAlSAAgH0gAIA1IQCAKSEAgCkgAICFJQAAhTkAAMz4AgDNxAMAzTwBALINAICBlQMAgI0DAM3EAQCCpQMAhVEAAIVJAADMKAEAzSwBAM04AQDMPAEAgGk+AIFpPgBJIQCARSEAgM04PADMVDwAgdE8AJOdPgDMSAEAzcgCAM00AQBNIQCAlLk+AFgNAICAoT4AgaE+AIKhPgCIjTwAVSEAgIWtAACALQAAgSEAAIXVPwCVHwCAgO0AAIHxAACGpQAARR8AgISpAADNJAEAzSgBAE0fAICI+T4AhfE/AFUfAIBJHwCAhcU/AM0wAQDNEAEAzfQGAIDdAQCB6QEAzbwGAM1wBgDM4AYAzVwBAMxoBgDNkAYAzWQGAM14BgDMrAcAzagHAMzoBwDNyAcAgk0/AIP9AgCANQIAgekCAFEfAIBZHwCAgAU9AIV9AQBRIQCALSAAgM0UAQApDgCAge0BAIDhAQDNPAEAgs0BAM0sAQCCdQEAgW0BAIBZAQCAZQEAgcUAAIUfAIDNJAEAzTgBAILxAACB+QAAgFkBAIApAACBcQAAzBgBAM18AQDNLAEAjR8AgIEdAACAHQAAiR8AgJEfAIBxIQCAzSQBAMzkPQDNXA8AzegAAMwMAQCA1QEAgckBAIKZAACD5T8ACR8AgBEfAIAZHwCAMSEAgCMOAIB1IQCAPR8AgDEgAIBBHwCALA4AgIBNPwCBQT8AfR8AgGkhAICBHwCAZSEAgIAlPwCBKT8Ak5E/AIN9AAAmDgCAlEEAAMzYAgDNrAIAbSEAgJNVAACACQAAgR0AALUNAIB9IQCAlEEAAK0fAICAnQAAgaEAAIAdAACBEQAAhKUAALUfAICGpQAAvR8AgIjxAACC0QAAgdkAAIDNAACAJQAAgSkAAIIFAADFHwCAsR8AgLkfAIDBHwCAk7EAAJQRAADJHwCAgB0AAIEVAACAJQAAgS0AAII9AAB5IQCAgO0AAIHRAACCFQAAg4EAAIHQPQA1IACAzCACAM3cAQCFeAIAkSEAgC8OAICZIQCAiRgDAN0fAICALQAAgTUAAIAJAACBbQAA5R8AgMEgAICRsQAAkKkAAJPdOwCSAQQAlaUAAJSVOwDtHwCAlqEAAIUJAACTQQAAySAAgPUfAICFBQAA0SAAgJT1AAC5IACAgLkAAIHdAACC5QAA4R8AgOkfAICF6QAAgAkAAIE1AACFBQAAxSAAgPEfAICFHQAAzSAAgPkfAICFBQAA1SAAgLHBBQCwxQMAvSAAgLLFAwC12QUAtM0DAJ0hAICFOQAAuf0DAKEhAICVIQCAuw0AgM0NAIAXDgCAAR8AgAUOAIDTDQCAzIgCAAsOAIDN4D4AzZABAMwkAQBwDQCAjg0AgEEOAIB9DgCAgLEAAM3UPgDN5D4Agw4AgMy8PgDNuD4AgNEDAIHtAwCC/QMAhmkAAD4OAICFnQMAzTwBADgOAIDM6AIAzTw/AIjlAADNGAEAiQ4AgIhBAAA7DgCAdw4AgM0sAQCVDgCAgNUAAJsOAICG4QAAhukAAEcOAIDNJAEAoQ4AgM0QAQCI0QAAiCkAAMz4AgBNDgCAzfgCAMwkAQCnDgCAhS0DAMygPgDNbD4AgNUDAIHNAwCCAQMAg/kDAMxkAwDNzAIARA4AgM0kAQDMDAIAzQgCAIERAADMnAMAzLA+AM20PgDMxD4AzcA+AMyAPgDNuD4ArQ4AgMyEAgDMmD8AzVA+AMwgPgDNoD4AzQw/AM0wPwDNeD8AzQQ/AIhZAAC/DgCAzfgBAMzEAQBKDgCAxQ4AgMsOAIDMFAIAzAgBAM3IAQCIBQAA0Q4AgNcOAIDMKAIAuQ4AgIgNAACG0QAAgB0BAITNAACI9QAAzDwCAIQ1AQDMRAIAhikBAIAOAICIZQEAhg4AgKdEBQBiDgCAi+0AAIjtAACBDQAAiCUAAIZlAADMcAIAzXQCAMwwAgDN2AUAXA4AgIwOAICAOQAAXw4AgMzgBQB6DgCAzCgBAM0UAQCGJQAAiFUAAAgOAICGhDAAxA0AgIDVBwCG/QcAmA4AgMwkAgCIPQAAng4AgGsOAICIPQAApA4AgMxIAgDNeAIAUA4AgKoOAICXwAUAlnAFAJUYBQCAaQAAk1gFAIE5AACIZQAAkPg8AIZZAACeqAUAhEUAAGgOAIDM1AIAmrQFAIBdAACYrAUAp+wEAIgRAADM2AIAzdwCAKO8BACwDgCAzGACAMIOAIBuDgCAyA4AgK0IBADODgCAq/QEAMwsAgCIBQAA1A4AgLfoAwC2HAQAtSgEAMwAAgCzKAQAi3kAAIh9AACwdAQAhkEAAL6kAwCEdQAAiB0AANoOAIC6TAMAzNwDALj8AwCDqAIAiA0AALwOAICIFQAAh5QCAMw4AgBlDgCAzAQCAIvcAgCPDQAAcQ4AgI8ZAADMIAIAdA4AgI3wAgCIdQAAmCADAJksAwCPDgCAlA0AgMxMAgCWcAMAzCQCAIg9AACSDgCAzCwCAIgFAACzDgCAzCQCAIgNAAC2DgCAh/UAAKjUAwCpxAMA3Q4AgNlgAgDSDwCA1Q8AgNsPAICUNQAAkzEAANloAgDYDwCA2UwCAJQFAADeDwCAlSEAAJQpAABQEACAdBYAgEMXAIDSFgCA2WACADcXAIC12AMAtPADAJQ1AADZWAIAWhcAgJQFAADZVAIAlA0AADEXAIDgdAEAisgAALwVAACIyAAA4IACAIcXAICBoAAApOwCAKTIAgCoXAAAvA0AAJkXAIDghAIAvAUAAJ0XAICk+AIA4PQCALDMAwCV0AAAXRcAgLPgAwCmyAIAp2ACAJLYAABkFwCAvsEAAGsXAICXwQAAchcAgHkXAICAFwCAzXg/AMy8PwC+gA0AixcAgLx4DAC9gA0AuvQMALtUDAC49AwAkhcAgLYXAIC3uAwAuhcAgLWMDACyoAMAs6AMAKEXAICxQAMArnACAK9kAwC4BQMArUgDAKgXAICvFwCAqEQDAKnYAwDaFwCAp9gDAKRoAgCliAMAtjUDALc9AwCSyAIAtT0DAJldAQCYTQEAm2UBAJppAQCdZQEAnGUBAJ+FAQCemQEAh5wCAL6tAACWpQAAl70AAMw0BQDNjDcAzLg4AM2sOACflQEAth0AAJ2ZAQCc9QEAs7EBAK54AgDhFwCAvhcAgJk9AADFFwCAmxkAAJoJAADMFwCA0xcAgOBIAgCeCQAArFwCAK30AgD6FwCA9hcAgP4XAIDoFwCAh2ADAO8XAICvVAIAvhEAAJcFAAACGACA4KwCAAYYAICG+AMAh+wDAOC0AgAOGACAr0gCAK6QAgDgPAIAvg0AAAoYAICXGQAA4NgCAIaEAwCWEQAAvwAMAJ1tAACcYQAAEhgAgLFMAgCzUAIAlQ0AABYYAICGnAMA4MgCALMEAgCCBQAAIhgAgLNQAgCVDQAAJhgAgBoYAIAeGACA4LQCAIaMAwCH3AMAvg0AAJVpAACWeQAAKhgAgLToAgC1UAIAlwUAADIYAIDg1AIAtPQCAL4ZAADgoAIALhgAgODUAgCZjAMAt9QCAIoFAAA2GACAOhgAgIoVAAC3NAIAjx0AAD4YAIBCGACAswUAAEYYAICzBQAAWxgAgJwJAACdCQAATRgAgFQYAICMBQAAYhgAgG0YAIB0GACAexgAgJ9JAACCGACAiRgAgGYYAICQGACAlxgAgNkYAIDPGACA6hgAgOAYAICeGACAg8kBAIH5AQCsGACAsxgAgLoYAIDBGACAyBgAgKUYAICAtAIApYgDAOEIAgCuHQAA8RgAgLwJAACN9QEA9RgAgOEAAgCSlQEA45QQAJNFAACXiQEAhRQAAId4AQCGAAQARjoAgEo6AIBOOgCAUjoAgFY6AICdeQAA74xoAJyhAQBaOgCAXjoAgKKZAABiOgCAZjoAgGo6AIBuOgCAp4kAAHI6AIB2OgCAqUkBAHo6AICsqQAAfjoAgII6AICGOgCAsyUBAIo6AICOOgCAkjoAgLchAQC2OQEAtTEBAJY6AICaOgCAufkAALkRAQC4GQEAnjoAgKI6AICmOgCAqjoAgICwAQCEiAIArjoAgIPIAQCEVAMAhFwEALI6AICEXAUAgN0DAIEtAACCMQAAvjwCALo6AIC+OgCAh4gDAIacBACzLQMAwjoAgMY6AIC+AAQAvhwFALbRAwC12QMAyjoAgLv5AwC68QMAmljTAYTgBwC/xQMAvtkDAL3dAwC83QMAvgAYAKUFAwCmDQMAzjoAgIQcGADSOgCA1joAgKPxAwCsAQMArQEDAK4FAwCvGQMArKQbAq3cGgKqLQMAqyUDAL5MGQC+SBoA2joAgL6AGwC04BoCtdQdArYwHgLvCAIA3joAgOGgAQC6OBoC4/gCALoAAAC9ZBwCvvQcAr8AEAKRBNMBkOT2AeBEAQCSCD4C4joAgOY6AIDqOgCA7joAgL6sHADyOgCA9joAgPo6AID+OgCAAjsAgAY7AIAKOwCAgbBtAICAAQCDHFIAgth3AIUgmgCEkL4AhwjPAIaM5gCJbDcBiOAsAYsYfgGK2BMBjeClAYzwWgGP/OsBjliPAbDVFwCxAWgAso1rALOdawC0SWsAtZVvAA47AIDgcAEAEjsAgBY7AIAaOwCAHjsAgIAZAACBGQAAggUAACI7AIAqOwCAoaUCAKJJBwCjQQcApEEGAKXVGwCm3RsAp8EaAKgBHACp4R8AqkkfAKsBEACs9RMAra0TAK4BFACv+RcAqDEGAKkxBgCqTQYAq0UGAKxNBgCtmQYAro0GAK+FBgCGgAMAhxgDAC47AIAyOwCANjsAgDo7AIA+OwCAQjsAgLhtBwC5dQcAun0HALt1BwC8bQcAvc0HAL75BwC/+QcAsKkGALGFBgCyeQcAs3kHALRpBwC1aQcAtl0HALdVBwC2OgCAs8EGAEY7AIAmOwCAth0GAEo7AIBOOwCAtcEGALppBgC7RQYAUjsAgFY7AIC+qQcAv6kHALypBwC9qQcAo4UGAFo7AIBeOwCAYjsAgGY7AICmWQYApYUGAGo7AICrAQYAqi0GAG47AIByOwCAr+0HAK7tBwCt7QcArO0HAKjBBgCpLQEAqiUBAKs9AQCsJQEArS0BAK4lAQCvlQEAdjsAgHo7AIB+OwCAgjsAgIY7AICCvQAAgb0AAIC9AAC4nQEAua0BALqlAQC7bQAAvHUAAL19AAC+dQAAv20AALD1AQCx/QEAssEBALPBAQC0tQEAtb0BALa1AQC3rQEAijsAgI47AICSOwCAs6EBAJY7AIC1oQEAtqEBAJo7AICGgAEAh8QBALo9AQC7NQEAvBkBAL0ZAQC+fQEAv3UBAKPtAQCeOwCAojsAgKY7AICqOwCApu0BAKXtAQCuOwCAq3kBAKpxAQCyOwCAtjsAgK85AQCuMQEArVUBAKxVAQC6OwCAvjsAgMI7AIDGOwCAyjsAgOGsAQDOOwCA42AGANI7AIDWOwCA2jsAgO9UBgDeOwCA4jsAgL60GgDmOwCA6jsAgO47AICGaBwAh4wDAPI7AID2OwCA+jsAgP47AICAOQAAgTkAAIIFAAACPACACjwAgA48AIASPACAFjwAgKgdAwCpQQMAqkEDAKtBAwCsQQMArUkDAK5xAwCvcQMAhCAdABo8AIAePACAIjwAgCY8AIAqPACALjwAgDI8AIC46QAAufUAALr9AAC78QAAvJEAAL2RAAC+iQAAv4kAALDhAACx4QAAsuEAALPhAAC04QAAte0AALbZAAC32QAA4wwHAOEgBwDhMAEA4wgHADY8AIA6PACAPjwAgEI8AIBGPACASjwAgE48AIBSPACA75gHAFY8AIBaPACA74gHALOJAgBePACAYjwAgL6AGgBmPACAtokCALWJAgBqPACAu2UBALplAQBuPACAcjwAgL9pAQC+ZQEAvXUBALx1AQC3PQYAtj0GALU9BgC0IQYAszUGALI1BgCxAQYAsAkGAL9ZBgC+UQYAvVkGALxNBgC7bQYAunkGALlxBgC4eQYAgJ0AAIGtAACCpQAAejwAgH48AICCPACAhjwAgIo8AICvcQYArmkGAK1tBgCsbQYAq4EGAKqZBgCpkQYAqJkGAAY8AIB2PACAjjwAgKPFHQCSPACApcUdAKbFHQCWPACAhgADAIdkAwCqKR4AqykeAKw5HgCtOR4ArikeAK8lHgCzOR4AmjwAgJ48AICiPACApjwAgLb9HgC1/R4AqjwAgLvZHgC60R4ArjwAgLI8AIC/aR8AvmEfAL1pHwC8wR4AqPEeAKnxHgCq8R4Aq/EeAKw1HgCtPR4ArjUeAK8tHgC2PACAujwAgL48AIDCPACAxjwAgMo8AIDOPACA0jwAgLjlHwC57R8AuuUfALv5HwC86R8AvZEfAL6RHwC/jR8AsFUeALFdHgCyVR4As/0fALTlHwC17R8AtuUfALfdHwCjeR8A1jwAgNo8AIDePACA4jwAgKa9HwClvR8A5jwAgKuZHwCqkR8AhogAAIdMAQCvKR4AriEeAK0pHgCsgR8AgEkAAIFJAACCWQAAs5keAOo8AIC1iR4AtlEBAO48AIDyPACA9jwAgLotAQC7JQEAvD0BAL0lAQC+JQEAvxUBAKhNHgCpVR4Aql0eAKtVHgCsTR4ArZ0BAK6JAQCvgQEAhKwBAPo8AID+PACAAj0AgAY9AIAKPQCADj0AgBI9AIC4ZQEAuW0BALplAQC7fQEAvGUBAL1tAQC+ZQEAv9kAALClAQCxrQEAsqUBALO9AQC0rQEAtZ0BALaVAQC3XQEAo9UdABY9AIAaPQCAHj0AgCI9AICmHQIApcUdACY9AICraQIAqmECACo9AIAuPQCAr1kCAK5pAgCtaQIArHECADI9AIA2PQCAOj0AgD49AIBCPQCARj0AgEo9AIBOPQCAgDkAAIE5AACCBQAAUj0AgFo9AIBePQCAh0ADAIZcBACETAQAYj0AgGY9AICEBAUA4yABAGo9AIDhqAEAbj0AgO+UGgByPQCAdj0AgHo9AIB+PQCAgj0AgIY9AICKPQCAs6EDAI49AICSPQCAlj0AgJo9AIC2fQMAtX0DAJ49AIC7WQMAulEDAKI9AICmPQCAv/0AAL79AAC9/QAAvEEDAKhRAgCpWQIAqmkCAKtpAgCstQIArb0CAK61AgCvrQIAhKgHAKo9AICuPQCAsj0AgIKpAAC2PQCAgKkAAIGpAAC4aQEAuWkBALoJAQC7CQEAvBkBAL0ZAQC+CQEAvwkBALDVAgCx3QIAstUCALNpAQC0eQEAtXkBALZpAQC3YQEA4bgBAOHUHwDjOB8A4wwbALo9AIC+PQCAwj0AgMo9AIDOPQCA0j0AgNY9AIDaPQCAvjwJAN49AIDvhBsA74QbAKOhAgDiPQCAhugEAIe8BQDmPQCApn0CAKV9AgDqPQCAq1kCAKpRAgDuPQCA8j0AgK/9AQCu/QEArf0BAKxBAgCzhQYAxj0AgPY9AID6PQCA/j0AgLaJBgC1jQYAAj4AgLuRBgC6iQYABj4AgAo+AIC/9QYAvokGAL2BBgC8iQYADj4AgBI+AIAWPgCAGj4AgB4+AIAiPgCAJj4AgO+EHQAqPgCA4QAEAC4+AIDj/AQAgBEAAIEdAACCBQAAMj4AgKjxBgCp8QYAqg0GAKsFBgCsBQYArQkGAK49BgCvNQYANj4AgDo+AICGiAAAhxADAD4+AIBCPgCARj4AgEo+AIC4EQYAuRkGALohBgC7IQYAvPUHAL39BwC+9QcAv+kHALBNBgCxVQYAsl0GALNVBgC0TQYAtTEGALYxBgC3MQYAo4UHAE4+AIBSPgCAVj4AgFo+AICmiQcApY0HAF4+AICrkQcAqokHAGI+AIBmPgCAr/UHAK6JBwCtgQcArIkHAGo+AICz4QYAbj4AgHI+AIC25QYAdj4AgHo+AIC18QYAur0GALuNBgB+PgCAgj4AgL59AQC/ZQEAvJUGAL11AQCoHQYAqSUGAKotBgCrJQYArD0GAK0hBgCuXQYAr00GAIY+AICKPgCAjj4AgJI+AICWPgCAgrkDAIGxAwCAuQMAuO0BALmFAQC6jQEAu4UBALydAQC9hQEAvo0BAL+FAQCwPQYAsQ0GALIFBgCz5QEAtP0BALXlAQC25QEAt9UBAKOlBQCaPgCAnj4AgKI+AICqPgCApqEFAKW1BQCuPgCAq8kFAKr5BQCGCAwAhxwDAK8hAgCuOQIArTECAKzRBQCyPgCAs/ECALY+AIC6PgCAtlUDAL4+AIDCPgCAteECALpxAwC7eQMAxj4AgMo+AIC+MQMAvz0DALxRAwC9UQMAqCUCAKk1AgCqPQIAqzUCAKwtAgCtkQMArpEDAK+RAwDOPgCA0j4AgNY+AIDaPgCArAAAAN4+AIDiPgCA5j4AgLiZAwC5rQMAuqUDALttAwC8dQMAvX0DAL51AwC/bQMAsPEDALH5AwCywQMAs8EDALSxAwC1vQMAtrUDALepAwDqPgCA7j4AgPI+AID2PgCA+j4AgP4+AIACPwCA76gaAL5oDADhlAEABj8AgOMcBgCADQAAgXEAAIJxAAAKPwCAo/UDAA4/AIASPwCAhEwCABo/AICmUQIApeUDAB4/AICrfQIAqnUCAIbIDACHLA0ArzkCAK41AgCtVQIArFUCAOFQBgAiPwCA4xQHAITADAAmPwCAKj8AgC4/AIAyPwCANj8AgDo/AIA+PwCAQj8AgEY/AIBKPwCA73gbAL74DwBOPwCAUj8AgFY/AICzjQEAWj8AgLWZAQC2jQEAXj8AgFY9AIBiPwCAuoUBALtNAQC8VQEAvV0BAL5VAQC/SQEAo0EOABY/AIBmPwCAaj8AgG4/AICmQQ4ApVUOAHI/AICrgQ4AqkkOAHY/AIB6PwCAr4UOAK6ZDgCtkQ4ArJkOAIBtAACBCQAAgh0AAH4/AIDvGAkAgj8AgIY/AICKPwCA4zwNAI4/AIDhWAwAkj8AgIbQAACHvAMAlj8AgJo/AICokQ4AqZkOAKrJDgCrxQ4ArN0OAK3BDgCuwQ4Ar/UOAIToAACePwCAoj8AgKY/AICqPwCArj8AgLI/AIC2PwCAuMEPALnBDwC6wQ8Au8EPALzBDwC9wQ8AvsEPAL/1DwCwjQ4AsUUOALJNDgCzRQ4AtF0OALVBDgC2QQ4At0EOAKhRDgCpWQ4Aqo0OAKudDgCshQ4ArY0OAK6FDgCvvQ4Auj8AgL4/AIDCPwCAxj8AgMo/AIDOPwCA0j8AgNY/AIC4kQ4AuZkOALqtDgC7RQEAvF0BAL1FAQC+RQEAv3UBALDFDgCxzQ4AssUOALPdDgC0xQ4AtbUOALa9DgC3tQ4AswUOANo/AIDePwCA4j8AgOY/AIC2DQ4AtQ0OAOo/AIC7CQ4AugEOAO4/AIDyPwCAv3EOAL4BDgC9CQ4AvBEOAIJtAACjQQ4AgFUAAIFlAACmSQ4A+j8AgP4/AIClSQ4AqkUOAKtNDgCGSAAAh3gAAK5FDgCvNQ4ArFUOAK1NDgCoXQIAqWECAKplAgCrdQIArG0CAK2xAgCusQIAr7ECAITsBAACQACABkAAgApAAIAOQACAEkAAgBZAAIAaQACAuHEDALlxAwC6cQMAu3EDALzVAwC93QMAvtUDAL/NAwCw0QIAsdECALLRAgCz0QIAtFEDALVRAwC2UQMAt1EDAB5AAICz6QIAIkAAgL6ABAC2NQIAJkAAgCpAAIC14QIAuhECALsRAgAuQACAMkAAgL6RAwC/kQMAvAECAL0BAgA2QACAOkAAgKOlAgA+QACApa0CAEJAAIBGQACApnkCAEpAAIBOQACAq10CAKpdAgCtTQIArE0CAK/dAwCu3QMAqNUCAKndAgCqLQEAqyUBAKw9AQCtJQEAri0BAK8lAQBSQACAVkAAgFpAAIBeQACAYkAAgGpAAIBuQACAckAAgLiFAQC5iQEAup0BALuVAQC8sQEAvbEBAL55AAC/eQAAsF0BALHlAQCy4QEAs/kBALTpAQC13QEAttUBALe9AQDh8A4AdkAAgOMUDgB6QACAgb0AAIC9AAB+QACAgq0AAIYABACH7AUAgkAAgIZAAICKQACAjkAAgO9gDgCSQACAlkAAgJpAAICFXH0AnkAAgKJAAIDjZAEApkAAgOG0AQCqQACA76AOAK5AAICmPgCAhPgFALJAAIC2QACAukAAgLMlBgBmQACAvkAAgMJAAIDGQACAtiUGALU1BgDKQACAu6EGALoZBgDOQACA0kAAgL+ZBgC+rQYAva0GALy1BgCCbQAA7zAEAIBVAACBZQAAvlwDANZAAICG+AAAh2wDANpAAIDeQACA4kAAgOZAAIDqQACA40QEAO5AAIDhjAcAo6UGAPJAAID2QACA+kAAgP5AAICmpQYApbUGAAJBAICrIQYAqpkGAAZBAIAKQQCArxkGAK4tBgCtLQYArDUGAA5BAICz+QcAEkEAgBZBAIC2SQcAGkEAgB5BAIC1UQcAulEHALtRBwAiQQCAJkEAgL41BwC/OQcAvEUHAL09BwCoNQYAqT0GAKo1BgCriQYArJ0GAK2NBgCusQYAr7EGACpBAIAuQQCAMkEAgDZBAICADQAAgbEAAIKxAAA6QQCAuKEGALmtBgC6vQYAu7UGALytBgC9XQEAvlUBAL9NAQCw0QYAsdEGALLVBgCzrQYAtLUGALW5BgC2qQYAt6UGAKO9BgA+QQCAQkEAgISEAgC+kAEApg0GAKUVBgBKQQCAqxUGAKoVBgCGCAAAh3wBAK99BgCucQYArXkGAKwBBgBOQQCAs60BAFJBAIBWQQCAtqkBAFpBAIBeQQCAta0BALptAQC7dQEAYkEAgGZBAIC+XQEAvzUBALxlAQC9VQEAqGECAKlhAgCqYQIAq2ECAKxhAgCtbQIArp0CAK+VAgBqQQCAbkEAgHJBAIB2QQCAekEAgH5BAICCQQCAhkEAgLiVAgC5nQIAuqECALuhAgC8cQMAvXEDAL5xAwC/cQMAsO0CALH1AgCy9QIAs8UCALTdAgC1tQIAtrECALexAgCKQQCAjkEAgJJBAICj5QIAlkEAgKXlAgCm4QIAmkEAgJ5BAICiQQCAqiUCAKs9AgCsLQIArR0CAK4VAgCvfQIApkEAgKpBAICuQQCAhEB8AIAVAACBHQAAggUAALJBAIC+7HwAukEAgIZIfQCHCAMAvkEAgMJBAIDGQQCAykEAgKidAgCpxQIAqsECAKvBAgCsxQIArc0CAK7xAgCv8QIAzkEAgNJBAIDWQQCA2kEAgMkAAADeQQCA4kEAgOZBAIC4wQEAucEBALrBAQC73QEAvM0BAL31AQC+/QEAv50BALBBAQCxQQEAskEBALNBAQC0QQEAtUEBALZBAQC3QQEA4TgGAOpBAIDjaAYA7kEAgPJBAID2QQCA+kEAgISUfQC+rHwA/kEAgAJCAIAGQgCAvrh/AApCAIDvEAEADkIAgBJCAIAWQgCAGkIAgB5CAIDhkAEAIkIAgONEAAAqQgCAgS0AAIAtAADvgAAAgjkAAC5CAIAyQgCA9j8AgDZCAIDhsH8AtkEAgOPUfAA6QgCAJkIAgD5CAICGuAAAh9QCAEJCAIBGQgCASkIAgE5CAIBSQgCAVkIAgO8gfABaQgCAs4l9AF5CAIBiQgCAZkIAgGpCAIC2jX0AtY19AG5CAIC7RX4AukV+AHJCAIB2QgCAv0V+AL5FfgC9VX4AvFV+AKNJfQB6QgCAfkIAgIJCAICGQgCApk19AKVNfQCKQgCAq4V+AKqFfgCOQgCAkkIAgK+FfgCuhX4ArZV+AKyVfgCCbQAAszF+AIBVAACBZQAAtvF/AITcAwCWQgCAtSF+ALrNfwC70X8AhgAEAIfUAAC+dX8Av3l/ALzBfwC9wX8AqOV/AKn1fwCq/X8Aq/V/AKztfwCtNX4Arj1+AK81fgCaQgCAnkIAgKJCAICmQgCAqkIAgK5CAICyQgCAtkIAgLjZfgC54X4AuuF+ALvhfgC85X4Avel+AL6ZfgC/mX4AsE1+ALFRfgCyUX4As1F+ALT1fgC1+X4Atul+ALfpfgCjdX8AukIAgL5CAIDCQgCAxkIAgKa1fgClZX8AykIAgKuVfgCqiX4AzkIAgNJCAICvPX4ArjF+AK2FfgCshX4A1kIAgLMxfgDaQgCA3kIAgLbFAQDiQgCA5kIAgLXRAQC6yQEAu8kBAOpCAIDuQgCAvs0BAL+xAQC8yQEAvckBAKjdfQCp9X0Aqv19AKvxfQCsHQIArQECAK45AgCvOQIA8kIAgPZCAID6QgCA/kIAgIIFAAACQwCAgBEAAIERAAC4EQIAuRkCALohAgC7IQIAvNUCAL3dAgC+1QIAv80CALBJAgCxSQIAslkCALNZAgC0TQIAtTECALYxAgC3MQIAvgADAKNxfQCEiAIAvoAEAKaFAgAKQwCADkMAgKWRAgCqiQIAq4kCAIYoBACHDAMAro0CAK/xAgCsiQIArYkCABJDAICEyAMAhcwFALPlAwAWQwCAteUDALbtAwAaQwCAHkMAgCJDAIC6bQMAu2UDALx9AwC9ZQMAvmUDAL9VAwAmQwCAKkMAgL8ABACjJQIALkMAgKUlAgCmLQIAMkMAgDZDAIA6QwCAqq0CAKulAgCsvQIAraUCAK6lAgCvlQIAPkMAgEJDAIBGQwCASkMAgE5DAIDjzAMAUkMAgOGsAQBWQwCA7xwDAFpDAIBeQwCAYkMAgGZDAIBqQwCAbkMAgOFwfwBGQQCA4wR+AHJDAIB6QwCA4ZQBAH5DAIDjWAEAgNkAAIHZAACCJQAA7+R+AIJDAICGQwCA7+B+AIpDAICzAQEAjkMAgIboBwCHLAQAkkMAgLY1AQC1BQEAlkMAgLvxAAC64QAAmkMAgJ5DAIC/sQAAvtEAAL3ZAAC84QAABkMAgHZDAICiQwCApkMAgKEBBACgEQQAoxkAAKLFBACotQYAqb0GAKrpBgCr/QYArO0GAK3VBgCu3QYArz0HALBFBwCxVQcAslUHALNtBwC0dQcAtRUHALYdBwC3FQcAuC0HALk1BwC6MQcAuw0HALwZBwC9GQcAvgkHAL8JBwCjQQYAqkMAgK5DAICyQwCAtkMAgKZ1BgClRQYAukMAgKuxBwCqoQcAj8ltAL5DAICv8QcArpEHAK2ZBwCsoQcAld11AJTBdACXzXAAli1zAJFdaACQVWgAk9l0AJJNaQCd5XgAnB17AJ9tBwCeuXgAmR1/AJhVcACboXwAmvl8AIJhbACDhWkAwkMAgMZDAICGEXUAhxF1AISVaQCFjWgAij10AIvFcgDKQwCAzkMAgI7dfgCPMX0AjD1xAI2dcQCSGX0Ak716ANJDAIDvkAkAltUGAJdRBQCUXXkAlQl5AJpxBQCbvQUA1kMAgNpDAIDeQwCA4agFAJx5AQDjuAgAoYUBAOJDAICjqQ0AogEMAKUBCACkOQ0Ap6kJAKa9CQCppRUAqAEUAKsBFACq/RUArbkRAKyxEQCvARwArqEQALH9HACw5R0As+kZALIBGAC1ASQAtH0ZAIQUAAC+FAAAgI0AAIGVAACCbQAA6kMAgIZQDwCHZAAA7kMAgPJDAIC61QcAu90HALjBBwC5wQcAvjEEAL8xBAC88QcAvfEHALKtBwCztQcAsK0HALGlBwC2nQcAt/UHALSlBwC1lQcAqmkHAKtpBwCoaQcAqWkHAK5pBwCvaQcArGkHAK1pBwD2QwCA+kMAgP5DAIACRACABkQAgApEAIAORACAEkQAgKgRBQCpHQUAqjkFAKs5BQCsLQUArVEFAK5JBQCvQQUAFkQAgBpEAIAeRACAIkQAgCZEAIAqRACALkQAgDJEAIC4XQIAuWkCALrBAwC7wQMAvPkDAL35AwC+kQMAv7UDALAJBQCxCQUAsuECALPhAgC0dQIAtX0CALZ1AgC3bQIAs7EEAIQAAgC+BA0ANkQAgDpEAIC20QQAtaUEAD5EAIC7zQQAus0EAEJEAIBGRACAv7kDAL6xAwC9NQMAvDUDAEpEAICj9QQATkQAgFJEAICmlQQAWkQAgF5EAICl4QQAqokEAKuJBACHqA0AhswMAK71AwCv/QMArHEDAK1xAwDhUAYA4TQHAONAAADjWAcAgNEAAIHdAACC1QAAYkQAgGZEAIBqRACAbkQAgHJEAIB2RACAekQAgO+cAADvyAcAfkQAgIJEAICzNQIAhkQAgLW1AQCKRACAjkQAgLa1AQC+7AwAkkQAgLuRAQC6mQEAvVEBALyJAQC/UQEAvlkBAKjtDQCp/Q0AqvUNAKttDgCsdQ4ArX0OAK51DgCvbQ4AVkQAgJZEAICaRACAnkQAgKJEAICmRACAqkQAgK5EAIC49Q4Auf0OALr1DgC7QQ8AvEEPAL1JDwC+cQ8Av3EPALAVDgCxHQ4AshUOALPNDgC01Q4Atd0OALbVDgC3zQ4Ao30NALJEAIC2RACAukQAgL5EAICm/Q4Apf0OAMJEAICr2Q4AqtEOAISoAgDGRACArxkOAK4RDgCtGQ4ArMEOAIBNAACBVQAAglUAALNRDwDKRACAtXEPALZxDwDORACAhuAAAIcEAwC6XQ8Auy0PALw1DwC9OQ8Avi0PAL8lDwCoVQ4AqV0OAKqVDgCrrQ4ArLUOAK29DgCutQ4Ar60OANJEAIDWRACA2kQAgN5EAIDiRACA5kQAgOpEAIDuRACAuGkBALlpAQC6eQEAu3kBALxpAQC9aQEAvt0BAL/VAQCw1Q4AsaUOALKtDgCzoQ4AtKUOALWtDgC2nQ4At1kBAKMdDgDyRACA9kQAgOZDAID6RACApj0OAKU9DgD+RACAq2EOAKoRDgACRQCABkUAgK9pDgCuYQ4ArXUOAKx5DgAKRQCADkUAgBJFAIAWRQCAGkUAgB5FAIAiRQCAJkUAgIANAACBFQAAgh0AACpFAIAuRQCAMkUAgIR4AQC+FAAA4xQPADpFAIDh4A0AhAADAIawBACHFAMAPkUAgEJFAIBGRQCASkUAgE5FAIBSRQCA78APAFZFAIBaRQCAXkUAgGJFAIBmRQCAakUAgLNtAwBuRQCAtX0DALZ1AwByRQCAdkUAgHpFAIC6UQMAu1EDALz1AwC9/QMAvukDAL/hAwB+RQCAgkUAgIZFAICKRQCAjkUAgJJFAICWRQCAmkUAgKhxAgCpeQIAqokDAKuJAwCsmQMArZkDAK6JAwCviQMAsPkDALH5AwCyTQMAs0UDALRBAwC1SQMAtnEDALdxAwC4IQMAuSEDALohAwC7IQMAvCEDAL0hAwC+IQMAvyEDAICdAQCBEQAAghEAAIQEBQDvFAAAnkUAgKJFAIC+EAUA48gAAKpFAIDh0AEArkUAgLJFAIC2RQCAukUAgL5FAICqeQIAq3kCAIboBACHYAUArsECAK/JAgCs3QIArdUCAMJFAICjRQIAxkUAgMpFAICmXQIAzkUAgNJFAIClVQIA1kUAgNpFAIDeRQCA4kUAgOZFAIDqRQCA7kUAgO+EDgC+rAQA4dAOAPJFAIDjFAEA9kUAgPpFAID+RQCAAkYAgLPdAQAGRgCACkYAgA5GAIASRgCAtv0BALX9AQAaRgCAu90BALrdAQCE4AQAHkYAgL+hAQC+vQEAvb0BALy9AQCoBQYAqR0GAKoVBgCrLQYArDUGAK09BgCuNQYArykGAKZFAICC9QcAgeUHAIDlBwAWRgCAIkYAgIYcAACHsAMAuCUGALnFBgC6zQYAu8UGALzdBgC9xQYAvs0GAL/FBgCwWQYAsVkGALIpBgCzKQYAtDkGALUlBgC2JQYAtx0GAKOdBgAmRgCAKkYAgC5GAIAyRgCApr0GAKW9BgA2RgCAq50GAKqdBgA6RgCAPkYAgK/hBgCu/QYArf0GAKz9BgBCRgCAs/UHAEZGAIBKRgCAtu0HAE5GAIBSRgCAteUHALqNBwC7kQcAVkYAgFpGAIC+dQcAv30HALyBBwC9fQcAqCUGAKkpBgCqOQYAqzkGAKwpBgCtKQYArnkGAK91BgBeRgCAYkYAgGZGAIBqRgCAbkYAgHJGAIB2RgCAekYAgLjVBgC53QYAuuEGALv9BgC85QYAve0GAL7lBgC/mQYAsA0GALERBgCyEQYAs+0GALT1BgC1/QYAtvUGALftBgCjsQYAgi0AAIEVAACAsQAANkUAgKapBgCloQYAfkYAgKvVBgCqyQYAgkYAgL5oAQCvOQYArjEGAK05BgCsxQYAikYAgLPxAQCGaAAAh3wBALZdAQCORgCAkkYAgLVVAQC6SQEAu0kBAJZGAICaRgCAvj0BAL8hAQC8OQEAvTUBAJ5GAICiRgCAhAQDAL6AHACmRgCA4RwGAKpGAIDjAAYAvwguAK5GAICyRgCA78gHALZGAIC6RgCAvkYAgMJGAIDGRgCAykYAgKN9AgDORgCApdkCANJGAIDWRgCAptECANpGAIDeRgCAq8UCAKrFAgCtuQIArLUCAK+tAgCusQIAqW0FAKhZBQCrDQIAqrkCAK0dAgCsHQIArwUCAK4NAgC+aB0A4kYAgOZGAIDqRgCAgB0AAIEJAACCmQEA7kYAgLnhAwC4KQIAu+EDALrpAwC94QMAvPkDAL/hAwC+6QMAsU0CALBNAgCzIQIAsi0CALUlAgC0OQIAtxECALYlAgCowQIAqdECAKrRAgCr5QIArP0CAK0VAQCuHQEArw0BAPJGAID6RgCA/kYAgAJHAIAGRwCACkcAgA5HAIASRwCAuAUBALkJAQC6HQEAuxUBALwxAQC9MQEAvv0BAL/1AQCweQEAsUEBALJBAQCzXQEAtEUBALVNAQC2RQEAtz0BAIagHQCHxB0AFkcAgO/YAAAaRwCAHkcAgCJHAIDvxAYAhGwcAOH0BgAmRwCA47AGACpHAIDhlAEALkcAgONEBgCzGQIAMkcAgDZHAIA6RwCAhewsALbVAQC1NQIAPkcAgLvFAQC6/QEAQkcAgEZHAIC/yQEAvsEBAL3JAQC81QEAo9kdAPZGAIBKRwCATkcAgFJHAICmFR4ApfUdAFZHAICrBR4Aqj0eAFpHAIBeRwCArwkeAK4BHgCtCR4ArBUeAIBpAACBaQAAggUAAGJHAIBmRwCAakcAgIcQAwCGfAMAbkcAgHJHAIB2RwCAekcAgH5HAICCRwCAhkcAgIpHAICopR8Aqa0fAKqlHwCrvR8ArKUfAK2tHwCupR8ArxUfAI5HAICSRwCAlkcAgJpHAICeRwCAokcAgKZHAICqRwCAuA0fALkZHwC6IR8AuyEfALzZAAC92QAAvskAAL/BAACwcR8AsXEfALJxHwCzRR8AtEEfALVNHwC2PR8AtzUfALMtHgCuRwCAskcAgLZHAIC6RwCAti0eALUtHgC+RwCAu7UeALq1HgDCRwCAxkcAgL+JHgC+hR4AvZEeALylHgCCKQAAo2keAIAdAACBFQAApmkeAMpHAIDORwCApWkeAKrxHgCr8R4A0kcAgITgAQCuwR4Ar80eAKzhHgCt1R4AqNUBAKnlAQCq7QEAq+UBAKz9AQCt5QEAru0BAK/lAQC+oAEAhkYAgNZHAIDaRwCAhhAAAId0AQDeRwCA4kcAgLh9AQC5wQAAusEAALvBAAC8wQAAvckAAL7xAAC/8QAAsJ0BALFFAQCyTQEAs0UBALRdAQC1RQEAtk0BALdFAQDmRwCA6kcAgO5HAIDyRwCA9kcAgO80AgDv7B4A+kcAgOHwHQDj4AIA4zAeAOGEAQD+RwCAAkgAgAZIAIAKSACAsyUCAJQAAAAOSACAEkgAgBZIAIC2JQIAtTUCABpIAIC7wQIAuhkCAB5IAIAiSACAv8ECAL7ZAgC90QIAvNkCACZIAIAqSACALkgAgKPpAgAySACApfkCAKbpAgA2SACAOkgAgD5IAICq1QIAqw0CAKwVAgCtHQIArhUCAK8NAgCAYQAAgWEAAIIFAABCSACASkgAgIQABAC+FAQATkgAgIbABACHUAMAUkgAgFZIAIBaSACAXkgAgGJIAIBmSACAqK0CAKm9AgCqtQIAqw0BAKwVAQCtHQEArhUBAK8NAQCE7AQAakgAgG5IAIBySACAdkgAgHpIAIB+SACAgkgAgLgdAQC5LQEAuiUBALvNAQC81QEAvd0BAL7JAQC/wQEAsH0BALFVAQCyXQEAs1UBALRNAQC1PQEAtjUBALctAQDhGB4AhkgAgOM4HgCKSACAjkgAgJJIAICWSACAmkgAgJ5IAICiSACAvmAEAKZIAICBdQAAgHUAAO/gHwCCbQAAqkgAgK5IAICG6AQAh3wFALJIAIDhkAEAukgAgOOgAAC+SACAwkgAgMZIAIDvtAAAykgAgM5IAIDSSACA1kgAgLUFBgBGSACAtkgAgLYFBgDaSACA3kgAgLOlBQDiSACAvRkGALwRBgC/YQYAvhEGAOZIAIDqSACAuwkGALohBgCj/QUA7kgAgPJIAID2SACA+kgAgKZdBgClXQYA/kgAgKtRBgCqeQYAAkkAgAZJAICvOQYArkkGAK1BBgCsSQYAqFEGAKlZBgCqYQYAq2EGAKxhBgCtYQYArmEGAK9hBgAKSQCADkkAgBJJAIAWSQCAgA0AAIGxAQCCsQEAGkkAgLhNBwC5VQcAul0HALtVBwC8TQcAvXUHAL59BwC/cQcAsMUHALHNBwCyxQcAs90HALTFBwC1zQcAtsUHALd5BwCz6QcAHkkAgCJJAICEwAEAvtgBALbhBwC16QcAJkkAgLsJBgC6AQYAhogAAIesAQC/CQYAvgEGAL0JBgC8EQYAKkkAgKOtBwAuSQCAMkkAgKalBwA2SQCAOkkAgKWtBwCqRQYAq00GAD5JAIBCSQCArkUGAK9NBgCsVQYArU0GAKhZBgCpZQYAqm0GAKtlBgCsYQYArWEGAK5hBgCvYQYAhKwBAEZJAIBKSQCATkkAgFJJAIBWSQCAWkkAgF5JAIC4kQEAuZkBALqhAQC7oQEAvHEBAL1xAQC+cQEAv3EBALDxAQCx8QEAsvUBALPdAQC0xQEAtbEBALaxAQC3sQEAs+UFAGJJAIBmSQCAakkAgG5JAIC24QUAtekFAHJJAIC7NQIAujUCAHZJAIB6SQCAv3UCAL4BAgC9CQIAvCECAH5JAICjoQUAgkkAgIZJAICmpQUAikkAgI5JAIClrQUAqnECAKtxAgCSSQCAvigDAK5FAgCvMQIArGUCAK1NAgCA1QAAgd0AAILhAACaSQCA4yABAJ5JAIDhqAEAokkAgO80AgCmSQCAhggMAIdoAwCsAAAAqkkAgK5JAICySQCAs40DALZJAIC6SQCAhIAMAL5JAIC2vQMAtYEDAMJJAIC7TQMAuk0DAMZJAIDKSQCAv00DAL5NAwC9TQMAvE0DAKhBAgCpTQIAqkUCAKtZAgCsSQIArX0CAK51AgCvuQIAvmgNAM5JAIDSSQCA1kkAgIRsDADaSQCA3kkAgOJJAIC4TQEAuVUBALpVAQC7ZQEAvH0BAL0VAQC+EQEAvxEBALDJAgCxyQIAstkCALPZAgC0yQIAtckCALZ9AQC3dQEA4XgHAOOYAADjuAYA4VwGAOZJAIDqSQCA7kkAgPJJAID2SQCA+kkAgP5JAIACSgCA7AAAAO9cAADv6AYACkoAgIFpAACAYQAAo4UCAIJhAACliQIADkoAgBJKAICmtQIAhkAMAIfEDACrRQIAqkUCAK1FAgCsRQIAr0UCAK5FAgCojQ4AqZEOAKqVDgCrqQ4ArKUOAK2tDgCupQ4Ar9kOAAZKAIAWSgCAGkoAgB5KAIAiSgCAJkoAgCpKAIAuSgCAuHUPALl9DwC6dQ8Au90PALzFDwC9zQ8AvsUPAL/9DwCwqQ4AsbUOALK1DgCzhQ4AtJ0OALVRDwC2UQ8At1EPALMdDgAySgCANkoAgDpKAIA+SgCAti0OALUtDgBCSgCAu3EOALptDgBGSgCASkoAgL+VDwC+WQ4AvVEOALxhDgBOSgCAo1kOAFJKAIBWSgCApmkOAFpKAIBeSgCApWkOAKopDgCrNQ4AYkoAgGZKAICuHQ4Ar9EPAKwlDgCtFQ4AqL0OAKnRDgCq0Q4AqykBAKw5AQCtOQEArikBAK8pAQCADQAAgRUAAIIdAABqSgCAbkoAgHJKAIC+dAIAdkoAgLjtAQC5hQEAuoEBALuBAQC8hQEAvY0BAL6xAQC/sQEAsFkBALFZAQCy7QEAs+UBALT9AQC15QEAtuUBALfVAQB6SgCAtqkBALWhAQB+SgCAs0kOAIJKAICGOAAAh9wBAL8xAQC+KQEAvSEBALwpAQC7jQEAuo0BAJZJAICGSgCAoxkOAIpKAICOSgCAkkoAgJZKAICm+QEApfEBAJpKAICr3QEAqt0BAJ5KAICiSgCAr2EBAK55AQCtcQEArHkBAKZKAIDv3A8AqkoAgK5KAICySgCAtkoAgLpKAIC+SgCAwkoAgMZKAIDKSgCAzkoAgNJKAIDj6A4A1koAgOGMDgCAEQAAgREAAIIRAACEQAIA2koAgN5KAIDiSgCAvhADAIbABACHRAMA6koAgO5KAIDySgCA9koAgPpKAID+SgCA7yQCAAJLAIAGSwCACksAgA5LAIASSwCAFksAgBpLAICE7AQAHksAgCJLAIAmSwCA4+wCACpLAIDhOAEALksAgLNVAwAySwCANksAgDpLAIA+SwCAth0DALUdAwBCSwCAuwkDALo5AwBGSwCASksAgL/9AAC+/QAAvfkAALwRAwCogQIAqYkCAKqdAgCrsQIArNUCAK3dAgCu1QIAr80CAIDNAQCBCQAAghkAAE5LAIBSSwCAWksAgL5wBQBeSwCAuFkBALlZAQC6aQEAu2kBALx5AQC9eQEAvmkBAL9lAQCwvQIAsY0CALKFAgCzbQEAtHkBALV5AQC2aQEAt2kBAIYgBACHCAUAYksAgGZLAIBqSwCAbksAgHJLAIDvXAAAhOwEAOFcDgB2SwCA44wOAHpLAIB+SwCAgksAgIZLAICjVQIAiksAgI5LAICSSwCAlksAgKYdAgClHQIAmksAgKsJAgCqOQIAnksAgKJLAICv/QEArv0BAK35AQCsEQIAqGkGAKlpBgCqeQYAq3kGAKxpBgCtaQYArp0GAK+VBgBWSwCApksAgKpLAICuSwCAsksAgLZLAIC6SwCAvksAgLj1BgC5+QYAuo0GALuFBgC8nQYAvYUGAL6FBgC/tQYAsO0GALH1BgCy/QYAs/UGALTtBgC10QYAttEGALfRBgCz8QYAghUAAIG1AACAtQAAwksAgLbpBgC14QYAvtQDALsxBgC6KQYAxksAgMpLAIC/FQYAvikGAL0hBgC8KQYAzksAgKO1BgCGyAAAh8gAAKatBgDSSwCA1ksAgKWlBgCqbQYAq3UGANpLAIDeSwCArm0GAK9RBgCsbQYArWUGAKg1BgCpOQYAqoEGAKuBBgCsgQYArYEGAK6BBgCvtQYA4ksAgOZLAIDqSwCA7ksAgPJLAID2SwCA+ksAgP5LAIC4nQYAua0GALqlBgC7aQEAvHkBAL15AQC+aQEAv2kBALDRBgCx0QYAstEGALPRBgC0tQYAtb0GALa1BgC3rQYAswkGAAJMAIAGTACACkwAgA5MAIC2AQYAtQkGABJMAIC7FQYAuhUGABZMAIAaTACAv3kGAL5xBgC9BQYAvAUGAB5MAICjTQYAIkwAgOZKAICmRQYAJkwAgCpMAIClTQYAqlEGAKtRBgAuTACAMkwAgK41BgCvPQYArEEGAK1BBgCB6QMAgN0DAISIAwCC4QMAhrA8AIeIAgC+VAMAOkwAgD5MAIBCTACARkwAgEpMAIBOTACAUkwAgFZMAIBaTACA4/AGAF5MAIDhMAYAhAA8AGJMAIBmTACAakwAgG5MAIByTACAhTQ9AHZMAIB6TACA77AHAH5MAICCTACAhkwAgIpMAICOTACAkkwAgL7EPACWTACAgp0BAIGdAQCAnQEAqA0CAKllAgCqfQIAq3UCAKxZAgCtWQIArpkDAK+ZAwCw6QMAsekDALL5AwCz+QMAtOkDALXpAwC2XQMAt1UDALhtAwC5dQMAunUDALtFAwC8XQMAvTUDAL4xAwC/KQMAmkwAgJ5MAICiTACAqkwAgOFgAwDv9AMA40QCAK5MAICyTACA4zwDAO/0NwDh/AEAtkwAgLpMAIC+TACAwkwAgIZkPwCHaD0AhTQhALOZAwDGTACAtb0DALa1AwDKTACAzkwAgNJMAIC6QQIAu0ECALxBAgC9QQIAvkECAL9BAgDWTACA2kwAgN5MAIDiTACA5kwAgOpMAIDuTACA7/gBAIRoPADhPAYA8kwAgOMcBgD2TACA+kwAgP5MAIACTQCAoxUDAAZNAIAKTQCADk0AgBJNAICmOQMApTEDABpNAICrzQIAqs0CAL5kPgAeTQCAr80CAK7NAgCtzQIArM0CAKgdPgCpJT4Aqi0+AKslPgCsPT4ArSU+AK4tPgCvJT4ApkwAgIL1PwCB5T8AgOU/ABZNAIAiTQCAhgAEAIecAwC4LT4AuTE+ALoxPgC7MT4AvNE+AL3RPgC+0T4Av80+ALBdPgCxIT4Asjk+ALM5PgC0KT4AtSk+ALYZPgC3FT4As6U+ACZNAIAqTQCALk0AgDJNAIC2pT4AtbU+ADZNAIC75T4Aupk+ADpNAIA+TQCAv+0+AL7tPgC97T4AvO0+AEJNAICj4T4ARk0AgEpNAICm4T4ATk0AgFJNAICl8T4Aqt0+AKuhPgBWTQCAWk0AgK6pPgCvqT4ArKk+AK2pPgCPBSUAsyU+AF5NAIBiTQCAtik+AGZNAIBqTQCAtSk+ALp9PgC7RT4Abk0AgHJNAIC+tT4Av70+ALxdPgC9vT4An304AJ5lOQCd8TgAnFE0AJtZNQCaUTUAmfEwAJgNMQCXZTEAlsEwAJVZLQCUTS0Ak+EsAJLZKQCRWSkAkPEoALSlGQC13RgAdk0AgIQIAACwkRUAsQEVALIBGACzvRkAgA0AAIGtAwCCpQMAek0AgKNhAACiHT0AoZk9AKBxPACkxQUApUEEAKYBCACn4QkANkwAgKH1AQCi6QEAo90FAKwBEACtxREArtkRAK85EACoZQgAqQEMAKrZDQCrCQ0AijEuAIuhMwB+TQCAgk0AgI65MwCPETYAjB0yAI1NMgCCJSYAg6krAL5kAwCEYAQAhqEvAIcVLgCEGSoAhZEqAJphPgCb7T4AhsgEAIfcAwCKTQCA4Vw+AJyJAwDjAD4Akmk2AJN5NwCOTQCA7xg+AJZNOwCXuT8AlME7AJVdOgCpnT0AqIk9AKu5PQCqrT0Arak9AKyhPQCvyT0ArqE9AL7oBACSTQCAlk0AgJpNAICeTQCAok0AgKZNAICqTQCAuVk9ALhRPQC7eT0AumU9AL1pPQC8YT0Avx09AL5hPQCxgT0AsLk9ALNpPQCyiT0AtXk9ALRxPQC3aT0AtnE9AKMhPACuTQCAsk0AgLZNAIC6TQCApi08AKUtPAC+TQCAq0E8AKp5PADCTQCAxk0AgK+5PACusTwArbk8AKxZPADKTQCAzk0AgLN9AwDSTQCAtdkDANZNAIDaTQCAttEDAN5NAIDiTQCAu8UDALrFAwC9uQMAvLUDAL+tAwC+sQMA5k0AgOpNAIDuTQCA71wDAIAVAACBHQAAgjEAAO+MPgCE7AQA4fw+APJNAIDjHD4A+k0AgOGUAQD+TQCA4yAAAKP1AwACTgCAh+gEAIZsBAAGTgCAplkDAKVRAwAKTgCAq00DAKpNAwAOTgCAEk4AgK8lAwCuOQMArTEDAKw9AwCGTQCA9k0AgBZOAIAaTgCAHk4AgCJOAIAmTgCAKk4AgKhxBgCpTQYAqo0GAKuFBgCsnQYArYUGAK6NBgCvhQYAsP0GALFBBwCyQQcAs0EHALRBBwC1SQcAtnEHALdxBwC4IQcAuSEHALolBwC7OQcAvCkHAL0VBwC+HQcAv/0HALMlBgAuTgCAMk4AgDZOAIA6TgCAtiUGALU1BgA+TgCAu6UHALoZBgBCTgCARk4AgL+tBwC+pQcAvbUHALy1BwBKTgCAo2EGAE5OAIBSTgCApmEGAFZOAIBaTgCApXEGAKpdBgCr4QcAXk4AgGJOAICu4QcAr+kHAKzxBwCt8QcAqLEGAKm9BgCqzQYAq90GAKzNBgCt/QYArvUGAK8VAQCA+QEAgc0BAILFAQC+ZAIAhpAAAIcAAQBqTgCAbk4AgLjRAQC52QEAuuEBALvhAQC8kQEAvZ0BAL6VAQC/iQEAsG0BALF1AQCyfQEAs3UBALRtAQC18QEAtvEBALfxAQCzRQYAZk4AgHJOAIB2TgCAek4AgLZ9BgC1RQYAfk4AgLuxAQC6qQEAgk4AgIZOAIC/NQEAvqkBAL2hAQC8qQEAik4AgKMBBgCOTgCAkk4AgKY5BgCWTgCAmk4AgKUBBgCq7QEAq/UBAJ5OAICiTgCAru0BAK9xAQCs7QEAreUBAOEoAQCmTgCA41ACAKpOAICuTgCAsk4AgLZOAIC6TgCAvk4AgMJOAIDGTgCAyk4AgIFxAACAGQAA75wCAIJ5AADOTgCA0k4AgITIAgCzxQMA2k4AgLXFAwC2xQMAvhADAIbADACHRAwAuqkDALulAwC8vQMAvaEDAL6hAwC/lQMArhEGAK8ZBgCsAQYArQEGAKqlBgCrEQYAqEU5AKlxOQDeTgCA4k4AgOZOAIDqTgCA7k4AgPJOAID2TgCA+k4AgL7tBwC/TQcAvNEHAL3lBwC63QcAu8EHALg1BgC51QcAtjkGALcNBgC0JQYAtTkGALIxBgCzPQYAsFEGALFRBgCoOQIAqTkCAKqBAgCrgQIArIECAK2JAgCusQIAr7ECAIRsDQD+TgCAvmANAAJPAIAGTwCACk8AgA5PAIASTwCAuE0BALlVAQC6XQEAu1UBALxNAQC9dQEAvn0BAL91AQCwoQIAsa0CALKlAgCzuQIAtKkCALWdAgC2lQIAt3kBAOFUBgDh1AcA4zgGAOOwBwAWTwCAGk8AgB5PAIAiTwCAhOQMACZPAIAqTwCALk8AgDJPAIA2TwCA72wAAO/kBwCjSQIAOk8AgD5PAIBCTwCASk8AgKZJAgClSQIATk8AgKspAgCqJQIAhkgMAIfcDACvGQIAri0CAK0tAgCsMQIAqFEOAKmlDgCqrQ4Aq6UOAKy9DgCtpQ4Arq0OAK+lDgCA5Q8Age0PAILlDwBGTwCAUk8AgFZPAIBaTwCAXk8AgLjVDwC53Q8AutUPALvpDwC8+Q8AvfkPAL7pDwC/6Q8AsN0OALFBDwCyRQ8As10PALRFDwC1TQ8AtkUPALftDwCzJQ4AYk8AgGZPAIBqTwCAbk8AgLYlDgC1NQ4Ack8AgLuFDwC6GQ4Adk8AgHpPAIC/iQ8AvoEPAL2JDwC8kQ8Afk8AgKNhDgCCTwCAhk8AgKZhDgCKTwCAjk8AgKVxDgCqXQ4Aq8EPAJJPAICWTwCArsUPAK/NDwCs1Q8Arc0PAKjRDgCp2Q4AqjkBAKs5AQCsKQEArSkBAK6dAQCvlQEAmk8AgJ5PAICiTwCApk8AgIANAACBtQAAgr0AAKpPAIC4lQEAuZ0BALqhAQC7oQEAvHEAAL1xAAC+cQAAv3EAALDtAQCx9QEAsvUBALPFAQC03QEAtbUBALaxAQC3sQEArk8AgLJPAICzuQEAvsACALWpAQC2TwCAuk8AgLahAQCGgAEAh8QBALs5AQC6IQEAvRkBALwpAQC/eQEAvhEBAKPxAQC+TwCA1k4AgMJPAIDGTwCApukBAKXhAQDKTwCAq3EBAKppAQDOTwCA0k8AgK8xAQCuWQEArVEBAKxhAQDWTwCA2k8AgN5PAIDiTwCA4agBAOZPAIDjQAIA6k8AgL8oFQDuTwCA73QCAPJPAID2TwCA+k8AgP5PAIACUACABlAAgON0DwCEiAMA4TQOAApQAIAOUACAElAAgBZQAICADQAAgRUAAIIRAAAaUACAHlAAgO+kDwAiUACAKlAAgKgZAwCpQQMAqkUDAKtdAwCsTQMArX0DAK51AwCvnQAAhaQVAL58AwCGCAQAhxwDAC5QAIAyUACANlAAgDpQAIC49QAAuf0AALr1AAC7jQAAvIEAAL2BAAC+gQAAv4EAALDlAACx7QAAsuUAALP5AAC07QAAtdEAALbVAAC3zQAAPlAAgEJQAIBGUACAs8ECAEpQAIC1yQIAtvECAE5QAIBSUACAVlAAgLotAQC7JQEAvD0BAL0hAQC+JQEAvxkBAKapAgCESAIAWlAAgKWRAgBeUACAo5kCAGJQAIBmUACArn0BAK9BAQCsZQEArXkBAKp1AQCrfQEAalAAgG5QAIByUACAdlAAgHpQAIB+UACA7+QAAIJQAICGUACAilAAgOMQDgCOUACA4VgOAJJQAICALQAAgREAAIIVAAC+sAUAs3UBAJpQAICHFAUAhmwEAJ5QAIC21QAAtWUBAKJQAIC7/QAAuvUAAKZQAICqUACAv6EAAL69AAC93QAAvN0AAKh9BgCptQYAqr0GAKu1BgCsrQYArRUHAK4dBwCvFQcAllAAgK5QAICyUACAtlAAgLpQAIC+UACAwlAAgMZQAIC4OQcAuTkHALrJBwC7yQcAvNkHAL3ZBwC+zQcAv8UHALBxBwCxeQcAskkHALNJBwC0OQcAtSUHALYhBwC3IQcAozUGAMpQAIDOUACA0lAAgNZQAICmlQcApSUGANpQAICrvQcAqrUHAN5QAIDiUACAr+EHAK79BwCtnQcArJ0HAOZQAIDqUACA7lAAgPJQAID2UACAgj0AAIE9AACAPQAA+lAAgP5QAIACUQCAhKADAL6kAwAGUQCAhvgAAIfgAACoxQYAqdUGAKrVBgCr5QYArP0GAK0xAQCuMQEArzEBAApRAIAOUQCAElEAgBZRAIAaUQCAHlEAgCJRAIAmUQCAuN0BALntAQC65QEAu40BALyVAQC9nQEAvpUBAL+NAQCwUQEAsVEBALJRAQCzUQEAtPUBALX9AQC29QEAt+0BALNdBgAqUQCALlEAgDJRAIA2UQCAtrEBALV1BgA6UQCAu5UBALqVAQA+UQCAQlEAgL85AQC+MQEAvYUBALyFAQClLQYARlEAgEpRAICm6QEATlEAgFJRAICjBQYAVlEAgK3dAQCs3QEAr2EBAK5pAQBaUQCAJlAAgKvNAQCqzQEAXlEAgGJRAICExAMAvwD0AGZRAICCPQAAgT0AAIA9AABqUQCAblEAgHJRAIC+YAMAelEAgH5RAICCUQCAhlEAgIbgHACHAAMA7wwHAIpRAICOUQCAklEAgJZRAICaUQCAnlEAgKJRAICmUQCAqlEAgOHABgCuUQCA4ywHALJRAIC2UQCAulEAgL5RAIDCUQCAxlEAgMpRAIDOUQCA0lEAgKiBAwCpgQMAqoEDAKuBAwCsgQMArYEDAK6BAwCvgQMAsEUDALFNAwCyRQMAs10DALRNAwC1fQMAtnUDALcZAwC4KQMAuTUDALo9AwC7MQMAvAEDAL31AAC+/QAAv+0AALMpAgDWUQCA2lEAgN5RAIDiUQCAtiECALUpAgCEUB0Au6kCALqhAgDqUQCA7lEAgL+ZAgC+qQIAvakCALyxAgCBTQAAgE0AAO+cAwCCXQAAhvAcAId4HQC+EB0A8lEAgPZRAID6UQCA/lEAgAJSAIDhkAEABlIAgONgAwAKUgCADlIAgBJSAIAWUgCAGlIAgB5SAIAiUgCAJlIAgO+UAQCE7BwA4XAGACpSAIDjUAEALlIAgDJSAIA2UgCAOlIAgKPpAgA+UgCAQlIAgEZSAIBKUgCApuECAKXpAgBOUgCAq2kCAKphAgBSUgCAvqgcAK9ZAgCuaQIArWkCAKxxAgCoMR4AqTEeAKoxHgCrMR4ArF0eAK1FHgCuTR4Ar0UeAOZRAICCzR8AgfUfAID9HwBWUgCAWlIAgIYcAACH+AMAuMUeALnNHgC6xR4Au90eALzFHgC9zR4AvsUeAL9ZHwCwPR4AsQUeALINHgCzBR4AtB0eALUBHgC2BR4At/0eALO5HgBeUgCAYlIAgGZSAIBqUgCAtsUeALXVHgBuUgCAu8EeALr5HgByUgCAdlIAgL/FHgC+2R4AvdEeALzZHgB6UgCAo/0eAH5SAICCUgCApoEeAIZSAICKUgCApZEeAKq9HgCrhR4AjlIAgJJSAICunR4Ar4EeAKydHgCtlR4AqCkeAKkpHgCqVR4Aq20eAKx1HgCtfR4ArnUeAK9pHgCWUgCAmlIAgJ5SAICiUgCAplIAgKpSAICuUgCAslIAgLjpHgC59R4Auv0eALv1HgC87R4AvZEeAL6RHgC/kR4AsB0eALHlHgCy7R4As+UeALT9HgC15R4Atu0eALflHgCz3R4AtlIAgLpSAIC+UgCAwlIAgLb9HgC1/R4AhFgBALshHgC62R4AvigAAMpSAIC/IR4AvjkeAL0xHgC8OR4AgU0AAIBNAACjlR4Agl0AAKW1HgDGUgCAzlIAgKa1HgB2UQCA0lIAgKtpHgCqkR4ArXkeAKxxHgCvaR4ArnEeAIYABACHRAMAs4ECANZSAIC1gQIA2lIAgN5SAIC2gQIAiAAAAOJSAIC74QIAuu0CAL3lAgC8+QIAv9ECAL7lAgDmUgCA6lIAgIREAwC+jAMA4UgCAO5SAIDjAAIA7/wfAPJSAIDhPB4A79wCAONgHwD2UgCA+lIAgP5SAIACUwCAqQUCAKixAgCrBQIAqgUCAK0NAgCsBQIArzUCAK41AgCEbAUABlMAgApTAIAOUwCAElMAgBZTAIAaUwCAHlMAgLnpAwC44QMAu/kDALrhAwC96QMAvOEDAL9dAwC+4QMAsSkCALAlAgCzPQIAsiECALUZAgC0LQIAt9kDALYRAgAiUwCAJlMAgCpTAICjhQMALlMAgKWFAwCmhQMAMlMAgDpTAIA+UwCAqukDAKvlAwCs/QMAreEDAK7hAwCv1QMAgEkAAIFVAACCVQAAo6kCAL6YBAClQQEApkEBAEJTAICG4AUAh+AFAKotAQCrOQEArBEBAK0FAQCuDQEArwUBAEZTAIBKUwCATlMAgO/cAABSUwCAVlMAgFpTAIDviB4AhCwHAOHsHgBeUwCA4xweAGJTAIDhlAEAZlMAgOMwAACzJQIAhWDmAGpTAIBuUwCAclMAgLbNAQC1zQEAdlMAgLu1AQC6oQEAelMAgH5TAIC/iQEAvoEBAL2JAQC8nQEANlMAgIJTAICGUwCAilMAgI5TAICSUwCAllMAgJpTAICoAQcAqQEHAKp1BwCrrQcArLUHAK29BwCuqQcAr6kHALDZBwCx7QcAsvkHALP1BwC0mQcAtZkHALaJBwC3gQcAuIkHALmJBwC6bQAAu2UAALx9AAC9ZQAAvm0AAL9lAACBCQAAgJkAAJ5TAICCHQAAolMAgKZTAICqUwCArlMAgKgNBQCpfQUAqk0FAKuhBgCspQYAra0GAK6dBgCv/QYAsIUGALGRBgCyqQYAs70GALSlBgC1rQYAtqUGALd5BgC4SQYAuUkGALpZBgC7WQYAvEkGAL1JBgC++QcAv/kHALNdBgCyUwCAhigCAIcsAQC2UwCAtp0GALWdBgC6UwCAu4kGALq9BgC+UwCAwlMAgL/9BgC+/QYAvYEGALyNBgDGUwCAoxkGAMpTAIDOUwCAptkGANJTAIDWUwCApdkGAKr5BgCrzQYA2lMAgN5TAICuuQYAr7kGAKzJBgCtxQYAqBkBAKkZAQCqjQAAq50AAKyNAACtvQAArrUAAK/dAADiUwCA5lMAgOpTAIDuUwCA8lMAgPZTAID6UwCA/lMAgLhpAAC5aQAAunkAALt5AAC8aQAAvWkAAL7dAwC/1QMAsKkAALGpAACyvQAAs7UAALSZAAC1mQAAtlkAALdZAAC+LAIAAlQAgAZUAIAKVACADlQAgBJUAIAaVACAHlQAgIAtAACBNQAAgj0AACJUAICGkAwAh+gCACZUAIAqVACAs0UDAC5UAIAyVACANlQAgDpUAIC2fQMAtUUDAD5UAIC7LQMAui0DAEJUAIBGVACAvx0DAL4dAwC9IQMAvCkDAKvNAwCqzQMASlQAgE5UAICv/QMArv0DAK3BAwCsyQMAo6UDAFJUAIBWVACAWlQAgF5UAICmnQMApaUDAGJUAIBmVACAalQAgG5UAIByVACAdlQAgII9AACBPQAAgD0AAHpUAIB+VACAglQAgIRgAwCG0AwAhzADAIpUAICOVACAvkQCAJJUAICWVACAmlQAgOEAAACeVACA46gGAKJUAICE7AwAplQAgO/QAwCqVACArlQAgLJUAIC2VACAulQAgLNtAQC+VACAwlQAgMZUAIDKVACAthEBALVlAQDOVACAuz0BALo1AQDSVACA1lQAgL/9AQC+/QEAvRUBALwVAQDaVACA4fwGAN5UAIDjPAcA4lQAgOZUAIDqVACA7lQAgPJUAIC+bAwA+lQAgP5UAIACVQCABlUAgApVAIDvFAYAgV0AAIBdAACj5QEAgm0AAKXtAQAOVQCAElUAgKaZAQCHqAwAhuQMAKu1AQCqvQEArZ0BAKydAQCvdQEArnUBAKgZDgCpGQ4AqiUOAKs1DgCsLQ4ArVEOAK5RDgCvUQ4AhlQAgPZUAIAWVQCAGlUAgB5VAIAiVQCAJlUAgCpVAIC47Q4AufUOALr1DgC7jQ4AvJUOAL2dDgC+lQ4Av40OALAxDgCxOQ4AsgEOALMBDgC0+Q4AtfkOALbdDgC31Q4AqHkOAKl5DgCqjQ8Aq4UPAKydDwCtgQ8AroUPAK+5DwAuVQCAMlUAgDZVAIA6VQCAPlUAgEJVAIBGVQCASlUAgLiRDwC5mQ8AuqEPALuhDwC8UQ8AvV0PAL5JDwC/SQ8AsM0PALHVDwCy3Q8As9UPALTNDwC1sQ8AtrEPALexDwCzBQ4ATlUAgFJVAIBWVQCAWlUAgLYBDgC1FQ4AXlUAgLsRDgC6CQ4AYlUAgISgAQC/dQ4AvgkOAL0BDgC8CQ4AgmkAAKNBDgCAWQAAgVEAAKZFDgC+WAEAZlUAgKVRDgCqTQ4Aq1UOAIbIAACHrAEArk0OAK8xDgCsTQ4ArUUOAGpVAIBuVQCAclUAgHZVAIB6VQCAflUAgBZUAICCVQCAqAkOAKkJDgCqGQ4AqxkOAKwJDgCtYQ4ArmEOAK+VAQCw7QEAsfUBALL9AQCz9QEAtO0BALV1AQC2fQEAt3UBALhNAQC5VQEAul0BALtVAQC8TQEAvfEAAL7xAAC/8QAAhlUAgIpVAICOVQCAklUAgJZVAIDj6A4AmlUAgOE0DgC+AAQA79wPAJ5VAICiVQCAplUAgKpVAICuVQCAslUAgLPxDQC2VQCAulUAgL5VAIDCVQCAtoENALXhDQDGVQCAu1ECALpJAgDKVQCAzlUAgL/RAgC+SQIAvUECALxJAgCjMQ0A0lUAgISIAwDaVQCA3lUAgKZBDQClIQ0A4lUAgKuRAgCqiQIA5lUAgOpVAICvEQIArokCAK2BAgCsiQIAgKkAAIGpAACCTQAA7lUAgOFkEgDjTAIA4wgLAOGsAQDyVQCA7zwCAO8YFgD2VQCAhlAGAIdIAwD6VQCA/lUAgKiBAgCpgQIAqoECAKuBAgCsgQIArYECAK6FAgCvHQEAAlYAgAZWAIAKVgCADlYAgBJWAIAWVgCAGlYAgIS4BQC4dQEAuX0BALp1AQC7CQEAvBkBAL0ZAQC+CQEAvwEBALBlAQCxbQEAsmUBALN9AQC0aQEAtV0BALZVAQC3TQEAHlYAgCJWAIAmVgCAKlYAgC5WAIAyVgCA7zQAAO/ADgDhXA4A4UwPAOOUAADjnA4ANlYAgIJlAACBfQAAgH0AADpWAIA+VgCAvsQHALNFAgBCVgCAtUUCALZNAgBKVgCAhkAGAIeQBAC67QEAu+UBALz9AQC95QEAvuEBAL/VAQCflQgAngUIAJ3dDQCcPQwAmzEMAJr1DQCZ7RAAmD0QAJfVEQCWsRUAlQUUAJTlFQCTtRkAkjEYAJE5GACQDRwAj2EcANZVAICz1QYATlYAgLX9BgBGVgCAUlYAgLaRBgBWVgCAWlYAgLuVBgC6lQYAvVUHALxVBwC/VQcAvlUHAF5WAIBiVgCAqo0GAKuFBgCsnQYArYUGAK6BBgCvtQYAhKgAAGZWAIBqVgCAoyUFAG5WAIClJQUApi0FAHJWAIB2VgCAelYAgH5WAICCVgCAhlYAgIpWAICOVgCAklYAgJZWAICaVgCAnlYAgKJWAICjqQUAotEEAKHZBACgZQUAgiEdAIM1HQCmVgCAqlYAgIaVGACH3RQAhBkZAIUZGQCKDRUAi7EUAK5WAICyVgCAjsURAI/VDACMzRAAjR0RAJJhDQCTdQ0AvkwAALpWAICWxQkAl80EAJSNDACVXQkAmkEFAJtBBQCGyP8Ah0wAAIFZAACAeQAAnCEEAIJRAAChxQEAvlYAgKMB/ACi2QEApRX9AKS1/QCnufkApgH4AKkJ+AColfkAqwX1AKqt9QCtsfEArAHwAK8d8ACurfEAseHtALAB7ACzAegAsv3sALVd6QC09ekAwlYAgMZWAIDKVgCAzlYAgNJWAIDWVgCA2lYAgN5WAIDiVgCA5lYAgKiNBACplQQAqpUEAKulBACsvQQArdkEAK75BACv8QQAhGz8AOpWAIDuVgCA8lYAgPZWAID6VgCA/lYAgAJXAIC4eQUAucUFALrNBQC7xQUAvN0FAL3FBQC+zQUAv+0FALCZBACxmQQAskkFALNJBQC0WQUAtVkFALZJBQC3SQUAox0EAL7M/AAGVwCAClcAgA5XAICmWQQApTUEABJXAICrXQQAql0EABZXAIAaVwCAr50FAK6dBQCtnQUArJ0FAB5XAICznQIAIlcAgCpXAIC2UQIALlcAgDJXAIC1uQIAukkCALtVAgCGSP0Ah8D8AL41AgC/PQIAvEUCAL09AgCo3QQAqUkDAKpRAwCrbQMArHUDAK2VAwCunQMAr7kDAICNAQCB5QEAguEBADZXAIA6VwCAPlcAgEJXAIBGVwCAuJUDALmdAwC6lQMAu60DALy1AwC9vQMAvrUDAL9VAgCwyQMAsdUDALLVAwCzrQMAtLUDALW9AwC2tQMAt60DAEpXAIBOVwCAo9EDAFJXAICl9QMAVlcAgFpXAICmHQMAXlcAgGJXAICrGQMAqgUDAK1xAwCsCQMAr3EDAK55AwDhKAcAZlcAgOPkBgBqVwCA4SgGAG5XAIDjaAEAclcAgHZXAIB6VwCA71gAAH5XAICCVwCAhlcAgO/IBgCKVwCAqE39AKmB/QCq0f0Aq9H9AKzx/QCt8f0ArvH9AK/x/QAmVwCAghEAAIEZAACA0f8AjlcAgJJXAICEdAMAvnQDALh1/gC5ff4AunX+ALvF/gC83f4AvcX+AL7F/gC/9f4AsJH9ALGR/QCykf0As5H9ALRV/gC1Xf4AtlX+ALdN/gCzWf0AllcAgIasAACHRAMAmlcAgLZx/QC1ef0AnlcAgLtV/QC6Vf0AolcAgKZXAIC/mf4AvpH+AL1F/QC8Rf0AqlcAgKMd/QCuVwCAslcAgKY1/QC2VwCAulcAgKU9/QCqEf0AqxH9AL5XAIDCVwCArtX+AK/d/gCsAf0ArQH9AKjN/wCp0f8AqtH/AKsh/gCsIf4ArSH+AK4h/gCvIf4AxlcAgMpXAIDOVwCA0lcAgNZXAIDaVwCA3lcAgOJXAIC4jf4AuZH+ALqV/gC7rf4AvLX+AL25/gC+qf4Av6n+ALDh/gCx4f4AsuX+ALP5/gC06f4AtdX+ALbd/gC3uf4As1n/AOZXAIC2VgCA6lcAgO5XAIC2of4Atan+APJXAIC7Jf4AuiX+APZXAID6VwCAvxH+AL4t/gC9Lf4AvDH+AIIZAACjHf8AgGUAAIEZAACm5f4A/lcAgAJYAICl7f4AqmH+AKth/gCEZAEAviAAAK5p/gCvVf4ArHX+AK1p/gAKWACA4zT+AA5YAIDhfP0AhrAEAIcIAwASWACAFlgAgBpYAIAeWACAhCQDAIQkBAAiWACA70j+ACZYAIAqWACAs+kCAC5YAIC+RAQAvkAFADJYAIC2nQIAtZkCADZYAIC7iQIAur0CADpYAIA+WACAv1kDAL5RAwC9WQMAvJECAKkdAgCoFQIAqyUCAKolAgCtWQIArFUCAK9NAgCuUQIAvmQGAEJYAIBGWACASlgAgE5YAIBSWACAVlgAgFpYAIC5+QMAuPEDALtNAwC68QMAvUEDALxZAwC/cQMAvkEDALEJAgCwPQIAs8kDALIBAgC12QMAtNEDALfJAwC20QMA4ZABAF5YAIDj8AAAYlgAgGZYAICCPQAAgT0AAIA9AABqWACAblgAgHJYAIB6WACAflgAgIJYAIDvLAAAhlgAgKPpAwCKWACAhugEAIdgBQCOWACApp0DAKWZAwCSWACAq4kDAKq9AwCWWACAmlgAgK9ZAgCuUQIArVkCAKyRAwCeWACAolgAgKZYAICqWACArlgAgLJYAIC2WACA71gBAISgBADhVP8AulgAgOOEAQC+WACAwlgAgMZYAIDKWACAs9kBAM5YAICFzBkA0lgAgNZYAIC28QEAtfkBANpYAIC7pQEAutkBAN5YAIDiWACAv50BAL6dAQC9pQEAvK0BAKgBBgCpDQYAqhEGAKsRBgCsMQYArTEGAK4pBgCvJQYAdlgAgILJBwCBwQcAgPEHAOZYAIDqWACAhhwAAIf8AwC47QYAufUGALr9BgC79QYAvO0GAL1RBwC+VQcAv00HALBdBgCxIQYAsjkGALMxBgC0GQYAtRkGALbdBgC31QYAo5kGAO5YAIDyWACA9lgAgPpYAICmsQYApbkGAP5YAICr5QYAqpkGAAJZAIAGWQCAr90GAK7dBgCt5QYArO0GAApZAICz8QcADlkAgBJZAIC2gQcAFlkAgBpZAIC1mQcAuo0HALtlBwAeWQCAIlkAgL59BwC/ZQcAvH0HAL11BwCoLQYAqTUGAKo9BgCrMQYArFUGAK1FBgCuRQYAr3UGACZZAIAqWQCALlkAgDJZAIA2WQCAOlkAgD5ZAIBCWQCAuOkGALn1BgC6/QYAu/UGALztBgC9kQYAvpUGAL+NBgCwDQYAseUGALLtBgCz5QYAtP0GALXlBgC27QYAt+UGAKO1BgBGWQCASlkAgE5ZAIBSWQCApsUGAKXdBgAGWACAqyEGAKrJBgBWWQCAWlkAgK8hBgCuOQYArTEGAKw5BgCASQAAgUkAAIJZAACzRQEAXlkAgLVFAQC2RQEAYlkAgIZAAACHZAAAuikBALslAQC8PQEAvSEBAL4hAQC/FQEAZlkAgGpZAICEBAMAvgAMAOMoBgDv4AIA4RAGAG5ZAIDvkAYA4zwCAHJZAIDh1AEAdlkAgHpZAIB+WQCAglkAgIZZAICKWQCAo8ECAI5ZAIClwQIAklkAgJZZAICmwQIAmlkAgJ5ZAICroQIAqq0CAK2lAgCsuQIAr5ECAK6lAgCpBQIAqLECAKsFAgCqBQIArQ0CAKwFAgCvNQIArjUCAISoDACiWQCAplkAgKpZAICuWQCAslkAgLZZAIC6WQCAuekDALjhAwC7+QMAuuEDAL3pAwC84QMAv10DAL7hAwCxKQIAsCUCALM9AgCyIQIAtRkCALQtAgC32QMAthECAKitAgCp1QIAqtUCAKsNAQCsFQEArQkBAK4xAQCvLQEAvlkAgMJZAIDKWQCAzlkAgNJZAIDWWQCA2lkAgN5ZAIC4IQEAuSEBALrtAQC75QEAvP0BAL3lAQC+7QEAv+UBALBVAQCxXQEAslUBALMtAQC0NQEAtTkBALYtAQC3JQEAgD0BAIGlAACCrQAA79QHAOJZAIDmWQCA6lkAgO8oBwC+LAwA4fQGAO5ZAIDjkAcA8lkAgOGUAQD2WQCA4wwGALMdAgD6WQCAh0QNAIZMDQD+WQCAtskBALXdAQACWgCAu9kBALrRAQAGWgCACloAgL+9AQC+sQEAvbkBALzBAQDGWQCADloAgBJaAIAWWgCAGloAgB5aAIAiWgCAJloAgKgJDwCpCQ8AqhkPAKsZDwCsCQ8ArQkPAK6pDwCvqQ8AsNkPALHtDwCy+Q8As/UPALSVDwC1hQ8AtoUPALe1DwC4jQ8AuWEAALphAAC7YQAAvGEAAL1hAAC+YQAAv2EAAKNdDQCCLQAAgRUAAIAdAAAqWgCApokOAKWdDgAuWgCAq5kOAKqRDgAyWgCANloAgK/9DgCu8Q4ArfkOAKyBDgA6WgCAs/UPAIboAwCHvAMAtu0PAD5aAIBCWgCAteUPALp5DwC7TQ8ARloAgEpaAIC+NQ8AvyUPALxJDwC9RQ8AozEOAE5aAIBSWgCAVloAgFpaAICmKQ4ApSEOAF5aAICriQ4Aqr0OAGJaAIBmWgCAr+EOAK7xDgCtgQ4ArI0OAGpaAIBuWgCAcloAgHZaAIB6WgCAfloAgIJaAICGWgCAiloAgI5aAICSWgCAlloAgIANAACB1QAAgt0AAJpaAICoQQEAqVEBAKpRAQCrZQEArH0BAK2RAACukQAAr5EAAJ5aAICiWgCAhGQBAL5kAQCGkAEAh4QAAKpaAICuWgCAuJEAALmRAAC6kQAAu5EAALyxAAC9sQAAvrEAAL+xAACw8QAAsfkAALLBAACzwQAAtLEAALWxAAC2sQAAt7EAALPZAgCyWgCAvnADAL5EBAC2WgCAthEDALX1AgC6WgCAuz0DALo1AwC+WgCAwloAgL91AwC+dQMAvRUDALwVAwDGWgCAo50CAMpaAIDOWgCAplUDANJaAIDWWgCApbECAKpxAwCreQMA2loAgN5aAICuMQMArzEDAKxRAwCtUQMAqDkDAKk5AwCqjQAAq50AAKyNAACtvQAArrUAAK/dAADiWgCA5loAgOpaAIDuWgCA8loAgPZaAID6WgCA/loAgLhpAAC5aQAAunkAALt5AAC8aQAAvWkAAL7ZAQC/2QEAsKkAALGpAACyvQAAs7UAALSZAAC1mQAAtlkAALdZAAACWwCABlsAgApbAIAOWwCA70QAABJbAICGmAUAh+QCAOOYAACEqAIA4fgBABpbAICAOQAAgTkAAIItAAAeWwCAs0UBACJbAIAmWwCAKlsAgC5bAIC2fQEAtUUBADJbAIC7LQEAui0BADZbAIA6WwCAvx0BAL4dAQC9IQEAvCkBAD5bAIDhUA4AQlsAgOM8DwBGWwCASlsAgE5bAIBSWwCAVlsAgFpbAIDjAAAAXlsAgGJbAIBmWwCAhPQFAO/kDgCuqQEAr6kBAKydAQCtlQEAqpkBAKuZAQBqWwCAblsAgKbJAQByWwCAdlsAgKXxAQCC/QcAo/EBAID9BwCB9QcAFlsAgHpbAIB+WwCAglsAgIZbAICKWwCAhrgDAIeQAwCoDQcAqRkHAKptBwCrZQcArH0HAK1lBwCuZQcAr1UHALAtBwCxxQcAssEHALPdBwC0xQcAtc0HALbFBwC3/QcAuMUHALnJBwC62QcAu9kHALypBwC9qQcAvp0HAL+VBwCzxQcAjlsAgJJbAICWWwCAmlsAgLbFBwC11QcAnlsAgLshBwC6yQcAolsAgKZbAIC/KQcAviEHAL0pBwC8NQcAqlsAgKOBBwCuWwCAslsAgKaBBwC2WwCAulsAgKWRBwCqjQcAq2UHAL5bAIDCWwCArmUHAK9tBwCscQcArW0HAKgVAQCpgQEAqoEBAKuBAQCsgQEArYkBAK6xAQCvsQEAxlsAgMpbAIDOWwCA0lsAgNZbAIDaWwCA3lsAgOJbAIC4ZQAAuW0AALplAAC7fQAAvGUAAL1tAAC+ZQAAv90AALChAQCxrQEAsqUBALO5AQC0qQEAtZ0BALaVAQC3XQAA5lsAgIIdAACBHQAAgB0AAOpbAIDuWwCA8lsAgL5YAQCErAIA9lsAgIcIAQCGjAEA+lsAgKZaAID+WwCAAlwAgLNJAQAGXACAClwAgA5cAIASXACAtkkBALVJAQAWXACAuykBALolAQAaXACAHlwAgL8ZAQC+LQEAvS0BALwxAQC+2AMAIlwAgO/4BgAmXACAKlwAgC5cAIDv4AIAMlwAgOGUAQA2XACA43QCADpcAIDhmAUAPlwAgOMMBwBCXACARlwAgEpcAICjwQIAhIwDAKXBAgBOXACAUlwAgKbBAgBWXACAWlwAgKuhAgCqrQIAraUCAKy5AgCvkQIArqUCAKgxAwCpPQMAqjUDAKtJAwCsWQMArVkDAK5JAwCvQQMAgMUAAIEJAACCGQAAXlwAgGJcAIBqXACAh2wDAIYcHAC47QAAufEAALr1AAC7jQAAvJUAAL2BAAC+gQAAv70AALAJAwCxCQMAsu0AALPhAAC04QAAteEAALblAAC32QAAblwAgHJcAIB2XACAs7ECAHpcAIC13QIAttUCAH5cAICCXACAhlwAgLrBAgC7wQIAvDUBAL05AQC+KQEAvykBAKaNAgCKXACAjlwAgKWFAgCSXACAo+kCAJZcAICaXACArnEBAK9xAQCsbQEArWEBAKqZAgCrmQIAnlwAgKJcAICmXACA4YQGAKpcAIDjJAYArlwAgOGUAQCyXACA4ywAAL7oHQC2XACAulwAgO/IAACE/B0AvvAcAL5cAIDvSAcAwlwAgMZcAIDKXACAzlwAgIEdAACAHQAA0lwAgIIFAACGQBwAh8QcANpcAIDeXACA4lwAgOZcAIDqXACA7lwAgKi1HgCpBR8Aqg0fAKsFHwCsAR8ArQkfAK45HwCvOR8A1lwAgPJcAID2XACA+lwAgP5cAIACXQCABl0AgApdAIC4yR8AudUfALrRHwC76R8AvPkfAL3tHwC+mR8Av5kfALAlHwCxLR8AsjkfALM1HwC0LR8AtQ0fALYFHwC3/R8As4UfAA5dAIASXQCAFl0AgBpdAIC2iR8AtYkfAB5dAIC76R8AuuEfACJdAIAmXQCAv8kfAL7pHwC94R8AvO0fACpdAICjwR8ALl0AgDJdAICmzR8ANl0AgDpdAIClzR8AqqUfAKutHwA+XQCAQl0AgK6tHwCvjR8ArKkfAK2lHwCo6R4AqekeAKr5HgCr+R4ArOkeAK3pHgCuPQEArzUBAID5AQCBzQEAgsUBAIRgAgBGXQCASl0AgIdoAQCGnAAAuNEBALnZAQC64QEAu+EBALyRAQC9nQEAvpUBAL+JAQCwTQEAsVUBALJdAQCzVQEAtE0BALXxAQC28QEAt/EBALNxHgBOXQCAUl0AgFZdAIBaXQCAtmkeALVhHgBeXQCAu5EBALqJAQBiXQCAZl0AgL81AQC+iQEAvYEBALyJAQBqXQCAZlwAgKM5HgBuXQCApSkeAHJdAIB2XQCApiEeAHpdAIB+XQCAq9kBAKrBAQCtyQEArMEBAK99AQCuwQEAgl0AgIZdAICKXQCAjl0AgJJdAICWXQCAml0AgJ5dAICiXQCApl0AgKpdAICuXQCAsl0AgLpdAIC+XQCAvnADAOHkHgCESAIA4+gfAIQABACAeQAAgXkAAIJpAADCXQCAhsAEAIdEAwDGXQCAyl0AgM5dAIDSXQCA7yAfANZdAIDaXQCA3l0AgOJdAIDvSAIA5l0AgOpdAIDuXQCA8l0AgL7oBAD2XQCA+l0AgP5dAIACXgCA4ZABAAZeAIDj6AIAs0kDAApeAIAOXgCAEl4AgBZeAIC2SQMAtUkDABpeAIC7LQMAuiUDAB5eAIAiXgCAvxUDAL4VAwC9IQMAvCkDAKg1AgCpgQIAqoECAKuBAgCsgQIArYkCAK6xAgCvsQIAgP0BAIHNAQCCxQEAKl4AgIaQBACHBAUALl4AgIRwBAC4SQEAuUkBALpZAQC7WQEAvEkBAL1JAQC+eQEAv3kBALChAgCxqQIAsr0CALO1AgC0kQIAtZECALZ5AQC3eQEAMl4AgDZeAIA6XgCAPl4AgEJeAIBGXgCASl4AgO/QHgC+6AQA4VweAE5eAIDjkAAAUl4AgFZeAIBaXgCAXl4AgKNJAgBiXgCAZl4AgGpeAIBuXgCApkkCAKVJAgByXgCAqy0CAKolAgB2XgCAel4AgK8VAgCuFQIArSECAKwpAgCoNQYAqT0GAKpVBgCrZQYArH0GAK1lBgCubQYAr2EGACZeAIB+XgCAgl4AgIZeAICADQAAgbEAAIKxAACKXgCAuOkGALnpBgC6+QYAu/UGALyVBgC9nQYAvpUGAL+NBgCw4QYAseEGALLhBgCz/QYAtOUGALXtBgC25QYAt9kGALPdBgCOXgCAkl4AgJZeAICaXgCAtuUGALX1BgCeXgCAuyUGALolBgCGmAAAh6wAAL8pBgC+IQYAvSkGALw1BgCiXgCAo5kGAKZeAICqXgCApqEGAK5eAICyXgCApbEGAKphBgCrYQYAtl4AgLpeAICuZQYAr20GAKxxBgCtbQYAqC0GAKk9BgCqiQYAq4kGAKyZBgCtmQYArokGAK+JBgC+XgCAwl4AgMZeAIDKXgCAzl4AgNJeAIDWXgCA2l4AgLiNBgC5lQYAupUGALulBgC8vQYAvXEBAL5xAQC/cQEAsPkGALHNBgCy2QYAs9kGALTJBgC1yQYAtr0GALe1BgCzAQYA3l4AgOJeAIDmXgCA6l4AgLYZBgC1EQYA7l4AgLsJBgC6PQYA8l4AgPZeAIC/DQYAvg0GAL0NBgC8DQYA+l4AgKNFBgC2XQCA/l4AgKZdBgACXwCAhFgAAKVVBgCqeQYAq00GAL5oAQAGXwCArkkGAK9JBgCsSQYArUkGAIDBAwCByQMAgt0DAKPNAgAKXwCApdkCAKbNAgAOXwCAhoANAIeUAwCqxQIAqw0DAKwVAwCtHQMArhUDAK8NAwDhnBcA4xgGAOMUAwDhNAYA7xgCABJfAIAWXwCAGl8AgOPQAgAeXwCA4VACACJfAIAmXwCA7ywGAO/kJQAqXwCArE0CAK1RAgCuUQIAr2UCAKgBAgCpCQIAqlkCAKtVAgCE7A0ALl8AgDJfAIA2XwCAvvgNADpfAIA+XwCAQl8AgLxRAwC9WQMAvmEDAL9hAwC47QMAuVEDALpRAwC7UQMAtM0DALXVAwC23QMAt9UDALAdAgCx1QMAst0DALPVAwDjyAAARl8AgOG4AQBKXwCAhFQPAE5fAIBSXwCAVl8AgKHpAgCgFQYAo6UDAKINAwDvIAAAWl8AgF5fAIBiXwCAZl8AgGpfAICFNCYAs40DAG5fAIC1mQMAto0DAHJfAICGwA8Ah5QNALqFAwC7TQIAvFUCAL1dAgC+VQIAv00CAHpfAIB+XwCAgl8AgIZfAICKXwCAjl8AgI/d6wDvxAYAvuAPAOGMBgCSXwCA44AGAID1AACB5QAAguUAAJZfAICZbR8AmMUfAJvJGwCaeRoAnXUaAJzFGwCf+QcAnhkGAJFpFgCQsesAk20XAJLNFwCV0RMAlGkSAJdREgCWzRMAg1XkAIJB5AB2XwCAml8AgIeNHQCGkRgAhTkYAISVGQCLERwAigUcAJ5fAICiXwCAj4UVAI6ZEACNORAAjJUdAJNRFACSRRQApl8AgKpfAICXYQkAlnUIAJWdCQCU+RUAm0EMAJqtDQCuXwCAsl8AgLZfAIC6XwCAvl8AgJzxDAChbQ0Awl8AgKMBBACihQAApZkEAKSRBACnGTgApsUFAKkJOACoKTgAq4k8AKoBPACtATAArB08AK8pMACunTAAseE0ALABNACzASgAsv00ALXZKAC00SgAxl8AgMpfAIDOXwCA0l8AgNZfAIDaXwCAgB0AAIEJAACC2QEA3l8AgKgRDwCpGQ8Aql0PAKtVDwCsTQ8ArXEPAK51DwCvbQ8A4l8AgOpfAICGiAAAhxABAO5fAIDyXwCA9l8AgPpfAIC4TQ4AuVEOALpRDgC7UQ4AvGUOAL1tDgC+ZQ4Avx0OALAdDwCxwQ8AssEPALPBDwC0xQ8Atc0PALbFDwC3eQ4As9UPAP5fAIACYACABmAAgApgAIC28Q8AtcUPAA5gAIC7BQ8AutkPABJgAIAWYACAvwkPAL4BDwC9FQ8AvBUPABpgAICjkQ8AHmAAgCJgAICmtQ8AJmAAgCpgAIClgQ8Aqp0PAKtBDwAuYACAMmAAgK5FDwCvTQ8ArFEPAK1RDwCogQ0AqYENAKqBDQCrgQ0ArIENAK2BDQCusQ0Ar6ENADZgAIA6YACAPmAAgEJgAIBGYACAgrkAAIG9AACAvQAAuDUCALk9AgC6zQIAu5UCALyNAgC9tQIAvr0CAL+1AgCwbQIAsU0CALJFAgCzJQIAtD0CALUdAgC2FQIAtw0CAEpgAIBOYACAswENAFJgAIC1AQ0AWmAAgISUAwC2CQ0AviwEAF5gAIC7gQIAuqECAL35AgC8mQIAv9ECAL7xAgBiYACAZmAAgGpgAICjRQ0AbmAAgKVFDQCmTQ0AcmAAgIbgBACHpAQAquUCAKvFAgCs3QIArb0CAK61AgCvlQIAqCUCAKk1AgCqPQIAqzUCAKwtAgCtkQIArpECAK+RAgB2YACAemAAgH5gAICCYACAzAAAAIZgAICKYACAjmAAgLiZAgC5rQIAuqUCALttAQC8dQEAvX0BAL51AQC/bQEAsPECALH5AgCywQIAs8ECALSxAgC1vQIAtrUCALepAgCSYACA44QOAJZgAIDh9A4AmmAAgJ5gAICiYACApmAAgIQgBQCqYACArmAAgLJgAIC2YACA7+wOALpgAIC+YACAs/UCAMJgAICG6AQAh4wEAL5cBAC2UQIAteUCAMpgAIC7fQIAunUCAM5gAIDSYACAvzkCAL41AgC9VQIAvFUCAKM1BQBWYACAxmAAgNZgAIDaYACAppEFAKUlBQDeYACAq70FAKq1BQDiYACA5mAAgK/5BQCu9QUArZUFAKyVBQCA+QcAgfkHAIKNBwCzjQYA6mAAgLWdBgC2iQYA7mAAgPJgAID2YACAuk0HALtFBwC8XQcAvUEHAL5BBwC/QQcA+mAAgP5gAIDmXwCAAmEAgAZhAIAKYQCADmEAgBJhAICoNQYAqQEGAKppBgCraQYArHkGAK1lBgCuZQYAr50HALDlBwCx7QcAsuUHALP5BwC06QcAtekHALZZBwC3VQcAuHEHALlxBwC6cQcAu3EHALxVBwC9XQcAvlUHAL9NBwCjwQcAFmEAgBphAIAeYQCAImEAgKbFBwCl0QcAJmEAgKsJBgCqAQYAKmEAgC5hAICvDQYArg0GAK0NBgCsEQYAgGkAAIFpAACCBQAAMmEAgL6YAQCEmAEANmEAgDphAICGADwAh8QBAD5hAIBCYQCARmEAgEphAIBOYQCAUmEAgKhdBgCpbQYAqmUGAKuBAQCsgQEArYkBAK6xAQCvsQEAVmEAgFphAIBeYQCAYmEAgGZhAIBqYQCAbmEAgHJhAIC4VQEAuV0BALpVAQC7yQAAvNkAAL3ZAAC+yQAAv8EAALCxAQCxuQEAsokBALOJAQC0cQEAtXEBALZ1AQC3bQEAs+0FAHZhAIB6YQCAfmEAgIJhAIC2CQIAtQkCAIZhAIC7fQIAunUCAIphAICOYQCAv7UCAL61AgC9XQIAvF0CAL5gAgCjqQUAkmEAgJZhAICmTQIAmmEAgJ5hAIClTQIAqjECAKs5AgCiYQCAhOADAK7xAgCv8QIArBkCAK0ZAgC+iDwAqmEAgKotAwCrJQMArD0DAK0lAwCuLQMAryUDAID1AACB/QAAgsEAAKPBAwCuYQCApcEDAKbBAwCyYQCAhmA8AIdUAwC2YQCAumEAgL5hAIDjqAIAwmEAgOGkAQDGYQCA71wCAMphAIDOYQCA0mEAgNZhAIDaYQCA3mEAgOJhAIDjjAcA5mEAgOE8BADqYQCA7mEAgPJhAID2YQCAhCACAPphAID+YQCAAmIAgAZiAIDvbAcACmIAgA5iAICzLQIAhEQ9ABJiAIAaYgCAHmIAgLYtAgC1LQIAImIAgLvJAgC6wQIAJmIAgCpiAIC/yQIAvsECAL3JAgC80QIA4XgHAOPAAADjOAYA4VwGAICpAACBqQAAgtEAAC5iAIAyYgCANmIAgL6kPAA6YgCAPmIAgO8cAADvkAYAQmIAgIZgPACHBD0ARmIAgLNxAQBKYgCAtRkBALYJAQBOYgCAUmIAgFZiAIC6AQEAuwEBALwBAQC9AQEAvgEBAL8BAQCohT4AqbU+AKq1PgCrxT4ArN0+AK3FPgCuwT4Ar/0+AFpiAIBeYgCAYmIAgGZiAIBqYgCAbmIAgHJiAIB2YgCAuFE/ALlRPwC6UT8Au1E/ALx1PwC9fT8AvnU/AL9tPwCwiT4AsYk+ALKZPgCzmT4AtIk+ALWJPgC2eT8At3U/AKZhAICjOT4AemIAgBZiAICmQT4AfmIAgIJiAIClUT4Aqkk+AKtJPgCGYgCAimIAgK5JPgCvST4ArEk+AK1JPgCASQAAgVEAAIJRAACzkT8AjmIAgLW5PwC2RT8AkmIAgIZAAACHBAMAukU/ALtdPwC8TT8AvT0/AL4pPwC/IT8AqE0+AKlVPgCqVT4Aq2U+AKx9PgCtiT4Arrk+AK+5PgCWYgCAmmIAgJ5iAICiYgCApmIAgKpiAICuYgCAsmIAgLhhAQC5YQEAumEBALthAQC8YQEAvWEBAL5hAQC/YQEAsM0+ALHVPgCy1T4As6U+ALShPgC1qT4Atpk+ALeZPgCj3T4AtmIAgLpiAIC+YgCAwmIAgKYJPgCl9T4AxmIAgKsRPgCqCT4AymIAgM5iAICvbT4ArmU+AK1xPgCsAT4A0mIAgNZiAIDaYgCA3mIAgOJiAIDmYgCA6mIAgO5iAICAOQAAgTkAAIIFAADyYgCAvrgBAIS4AQD6YgCA/mIAgKitAgCp1QIAqtUCAKstAwCsNQMArT0DAK41AwCvLQMAAmMAgAZjAIAKYwCADmMAgBJjAIAWYwCAGmMAgB5jAIC46QMAuekDALqJAwC7iQMAvJkDAL2ZAwC+iQMAv4kDALBVAwCxXQMAslUDALPpAwC0+QMAtfkDALbpAwC34QMAs10CACJjAICGKAQAh8wDACZjAIC2vQMAtb0DACpjAIC7mQMAupEDAC5jAIAyYwCAvz0DAL49AwC9PQMAvIEDAIUAFACjGQIANmMAgDpjAICm+QMAPmMAgEJjAICl+QMAqtUDAKvdAwBGYwCASmMAgK55AwCveQMArMUDAK15AwDjVD4A4dw/AOHQPgDjPD4ATmMAgO8cAABSYwCAVmMAgFpjAIDjwAAAXmMAgOHUAQDvYD4AYmMAgGpjAIDvRD8AgGEAAIFtAACCfQAAhAAFAIbwBACHnAUAvhAFAG5jAIByYwCAdmMAgHpjAIB+YwCAgmMAgIZjAICKYwCAjmMAgLiJPQC5iT0Aupk9ALuRPQC8uT0Avbk9AL7RPQC/0T0AsAU+ALENPgCyBT4Asx0+ALQFPgC1DT4AtgU+ALe5PQConT4Aqa0+AKqlPgCrvT4ArKU+AK2tPgCupT4Ar30+AISsBAC+rAQAkmMAgJZjAICaYwCAnmMAgKJjAICmYwCAqPkFAKn5BQCqKQYAqykGAKw5BgCtOQYArikGAK8pBgBmYwCAqmMAgK5jAICyYwCAtmMAgLpjAIC+YwCAwmMAgLiNBgC5kQYAupEGALulBgC8vQYAvUUHAL5BBwC/QQcAsFkGALFZBgCy7QYAs/0GALTtBgC13QYAttUGALe1BgCzoQYAxmMAgMpjAIDOYwCA0mMAgLa5BgC1sQYA2mMAgLudBgC6nQYA1mMAgPZiAIC/GQYAvikGAL0pBgC8OQYAglEAAKPlBgCAQQAAgUEAAKb9BgDeYwCA4mMAgKX1BgCq2QYAq9kGAIZIAACHbAAArm0GAK9dBgCsfQYArW0GAKg5BgCpWQYAqmkGAKtpBgCseQYArXkGAK5pBgCvaQYA5mMAgOpjAIDuYwCA8mMAgPZjAID6YwCA/mMAgAJkAIC4ZQEAuW0BALplAQC7fQEAvGUBAL1tAQC+ZQEAv9kBALAZBgCxGQYAsoEGALOBBgC0gQYAtYEGALaBBgC3gQYAs+EGAAZkAIAKZACADmQAgBJkAIC2+QYAtfEGABZkAIC73QYAut0GABpkAIAeZACAv0UGAL5FBgC9VQYAvFUGACJkAICjpQYAJmQAgCpkAICmvQYALmQAgDJkAICltQYAqpkGAKuZBgA2ZACAOmQAgK4BBgCvAQYArBEGAK0RBgConQIAqdECAKrRAgCrLQMArDUDAK09AwCuNQMAry0DAD5kAIBCZACAvmQCAEpkAIBOZACAUmQAgFZkAIBaZACAuOkDALnpAwC6iQMAu4UDALydAwC9gQMAvoEDAL+1AwCwVQMAsV0DALJVAwCz6QMAtPkDALX5AwC26QMAt+EDAIBtAwCBpQAAgq0AALNVAgBeZACAtbEDALaxAwBiZACAhOACAGZkAIC6nQMAu5UDALyNAwC9MQMAvjEDAL8xAwCjGQIAamQAgIVwaQBuZACAcmQAgKb9AwCl/QMAdmQAgKvZAwCq0QMAhkgMAIe8AwCvfQMArn0DAK19AwCswQMAemQAgH5kAICCZACAhmQAgO+wBgDvxAMAimQAgI5kAIDjfAYA45QDAOG4BwDh3AEAkmQAgJZkAICaZACAnmQAgKJkAICmZACAhEQCAL5YDQCADQAAgTUAAII9AACqZACArmQAgLJkAICGyAwAh1wNALpkAIC+ZACAwmQAgMZkAIDKZACAzmQAgNJkAIDWZACA2mQAgN5kAIDiZACA74AGAISsDQDh7AYA5mQAgONcBgDqZACA7mQAgPJkAID2ZACAs/UBAPpkAID+ZACAAmUAgAZlAIC2RQEAteUBAAplAIC7LQEAuiEBAA5lAIASZQCAv/UAAL71AAC9JQEAvC0BAKgtDgCpNQ4Aqj0OAKs1DgCsLQ4ArYUOAK6FDgCvuQ4AtmQAgBZlAIAaZQCAHmUAgIAZAACBGQAAggUAACJlAIC4WQ8AuVkPALp5DwC7eQ8AvGkPAL1pDwC+GQ8AvxkPALClDgCxqQ4AsrkOALOxDgC0cQ8AtXEPALZxDwC3cQ8Apb0OAL6IAwAqZQCAph0OACZlAIAuZQCAo60OADJlAICtfQ4ArHUOAK+tDwCurQ8ARmQAgDZlAICrdQ4AqnkOALO5DwA6ZQCAhmgAAIcMAwA+ZQCAtlEPALVZDwBCZQCAu3UPALp1DwBGZQCASmUAgL9FDwC+RQ8AvVEPALxlDwCocQ4AqXEOAKpxDgCrcQ4ArJEOAK2RDgCukQ4Ar5EOAE5lAIBSZQCAVmUAgFplAIBeZQCAYmUAgGZlAIBqZQCAuIUOALmNDgC6hQ4Au50OALyNDgC9vQ4AvrUOAL95AQCw8Q4AsfEOALLxDgCzxQ4AtMEOALXBDgC2wQ4At8EOAKP5DgBuZQCAcmUAgHZlAIB6ZQCAphEOAKUZDgB+ZQCAqzUOAKo1DgCCZQCAhmUAgK8FDgCuBQ4ArREOAKwlDgCADQAAgRUAAIIdAACKZQCAjmUAgJJlAICElAEAvpQBAIZABwCH5AAAmmUAgJ5lAICiZQCApmUAgKplAICuZQCAqIkCAKmRAgCqlQIAq7kCAKzVAgCtxQIArsUCAK/1AgCyZQCAtmUAgLplAIC+ZQCAvnwDAMJlAIDGZQCAymUAgLh9AwC5wQMAusEDALvBAwC8wQMAvckDAL7xAwC/8QMAsI0CALFFAwCyTQMAs0UDALRdAwC1RQMAtk0DALdFAwCzHQIAzmUAgNJlAIDWZQCA2mUAgLZFAgC1XQIA3mUAgLuBAwC6SQIA4mUAgOZlAIC/gQMAvpkDAL2RAwC8mQMA6mUAgKNZAgDuZQCA8mUAgKYBAgD2ZQCA+mUAgKUZAgCqDQIAq8UDAP5lAIACZgCArt0DAK/FAwCs3QMArdUDAIDZAQCB7QEAguUBAO+4DgAKZgCA4cQBAISYAgDj1AAADmYAgL7sBAASZgCA7wgAABZmAIDhxA8AGmYAgONkDgCGAAUAh2gFAB5mAICzvQIAImYAgLWtAgC2pQIAJmYAgCpmAIAuZgCAukEBALtBAQC8RQEAvU0BAL5FAQC/+QEAMmYAgDZmAIA6ZgCAPmYAgEJmAIBGZgCASmYAgO/gAQCEbAQA4dQOAE5mAIDjHA4AUmYAgFZmAIBaZgCAXmYAgKMxAgBiZgCAhCQHAGZmAIBqZgCApikCAKUhAgBuZgCAq80BAKrNAQByZgCAemYAgK91AQCuyQEArcEBAKzJAQCo6QUAqekFAKr5BQCr+QUArOkFAK3pBQCuOQYArzkGAAZmAICCzQcAgfUHAID9BwB2ZgCAfmYAgIYYAwCHkAMAuNEGALnZBgC64QYAu+EGALyRBgC9nQYAvpUGAL+JBgCwSQYAsUkGALJdBgCzVQYAtE0GALXxBgC28QYAt/EGALDhBwCx4QcAsgkHALMJBwC0GQcAtRkHALYJBwC3CQcAuDkHALkNBwC6GQcAuxkHALwJBwC9CQcAvn0HAL9xBwCCZgCAlmUAgIZmAICKZgCAjmYAgJJmAICWZgCAmmYAgKjxBwCpxQcAqsEHAKvdBwCsyQcArb0HAK6pBwCvoQcAsykGAJ5mAICiZgCApmYAgKpmAIC2XQYAtSEGAK5mAIC7RQYAukUGALJmAIC2ZgCAv70GAL69BgC9vQYAvL0GALpmAICjbQYAvmYAgMJmAICmGQYAxmYAgMpmAIClZQYAqgEGAKsBBgDOZgCA0mYAgK75BgCv+QYArPkGAK35BgCobQYAqbEBAKpJAQCrRQEArF0BAK1FAQCuTQEAr0UBANZmAICCHQAAgR0AAIAdAADaZgCA3mYAgOJmAIC+VAEAuIEAALmNAAC6hQAAu5kAALyJAAC9vQAAvrUAAL99AACwPQEAseEAALLhAACz4QAAtOEAALXpAAC20QAAt9EAALsFAwC62QIAhiwCAIcsAwC/DQMAvgUDAL0VAwC8FQMAs+ECAOpmAIDuZgCAhCwDAPJmAIC25QIAtfUCAPZmAICqnQIAq0EDAPpmAID+ZgCArkEDAK9JAwCsUQMArVEDAAJnAICjpQIABmcAgApnAICmoQIADmcAgBJnAIClsQIAqakAAKihAACrtQAAqr0AAK3dAACs3QAAr/EAAK79AAC+LBwAFmcAgBpnAIAeZwCAImcAgCZnAIAqZwCALmcAgLl9AAC4fQAAu80BALrNAQC93QEAvN0BAL/NAQC+zQEAsZUAALCJAACzTQAAspUAALVdAAC0XQAAt00AALZNAAAyZwCANmcAgDpnAIA+ZwCAQmcAgEZnAIBKZwCATmcAgIA5AACBOQAAggUAAFJnAIBaZwCAXmcAgIf4AgCGfB0A4bgEAL7IHADjQAYAYmcAgGZnAIBqZwCAbmcAgHJnAIB2ZwCAemcAgH5nAICCZwCAhmcAgIpnAIDvsAcAjmcAgJJnAICWZwCAmmcAgO/IAACeZwCAomcAgKZnAIDvQAYAqmcAgOH8BgCuZwCA4xwGALJnAIDhlAEAtmcAgONkBgCAEQAAgRkAAIIpAACz/QEAumcAgLWdAQC2lQEAvmcAgMJnAICEbB0AuoUBALuZAQC8iQEAvVEBAL5RAQC/UQEAozEeAFZnAIDGZwCAymcAgM5nAICmWR4ApVEeANJnAICrVR4AqkkeAIYIAwCHbAMAr50eAK6dHgCtnR4ArEUeANZnAICzCR8A2mcAgN5nAIC2CR8A4mcAgOZnAIC1CR8AugUfALsNHwDqZwCA7mcAgL4FHwC/CR8AvBUfAL0NHwCw5R8Ase0fALLlHwCz/R8AtOUfALXpHwC2GR8AtxkfALgpHwC5NR8Auj0fALs1HwC8ER8AvR0fAL4JHwC/BR8A8mcAgPZnAIDmZgCA+mcAgP5nAIACaACABmgAgApoAICo0R8AqdEfAKqlHwCrvR8ArKUfAK2tHwCupR8Ar50fAKNNHgAOaACAEmgAgBZoAIAaaACApk0eAKVNHgAeaACAq0keAKpBHgAiaACAJmgAgK9NHgCuQR4ArUkeAKxRHgCADQAAgRUAAIIdAAAqaACALmgAgDJoAICEtAEAvrQBAL/oAQA6aACAhkgHAIc0AACEvAYAPmgAgEJoAIC+tAYAqI0BAKmVAQCqlQEAq80BAKzZAQCt2QEArs0BAK/FAQBGaACASmgAgE5oAIBSaACAVmgAgFpoAIBeaACAYmgAgLgdAQC5wQAAusEAALvBAAC8wQAAvckAAL7xAAC/8QAAsIkBALGJAQCyKQEAsykBALQ9AQC1JQEAti0BALclAQC7bQIAum0CAGZoAIBqaACAv8ECAL7ZAgC93QIAvN0CALM9AgBuaACAcmgAgHZoAICE/AYAtnkCALVxAgB6aACAqikCAKspAgB+aACAgmgAgK6dAgCvhQIArJkCAK2ZAgCGaACAo3kCAIpoAICOaACApj0CAJJoAICWaACApTUCAIJtJwCDjSoAhqgFAIdsAwCGmS4Ah80vAIQRLgCFmS4AiiESAIspEgCaaACAnmgAgI6RFgCPHRYAjBESAI0RFgCScRoAk+UaAKJoAIDvlHYAlvEeAJflHgCUSRoAlRkeAJopAgCb4QIAqmgAgK5oAICyaACA4SASAJzxAgDjIBYAnyEfAJ7BHwCdmRsAnC0bAJuhGwCavRcAmTkXAJixFwCXiRMAlqkTAJWpEwCUdS4AkzkvAJIxLwCRsS8AkDUrAI+tJgDjeB8A0gAAAOFcHwCCmQEAtmgAgIDxAQCB8QEAvqgHALpoAIC+aACAwmgAgIS8BgDvLB8AxmgAgMpoAIDhpB4A48wAAON8HgDhvAEAzmgAgNJoAIDWaACAhJwGANpoAIC+bAYA3mgAgOJoAIDmaACA7xAAAO8EHgDqaACA7mgAgPJoAID2aACA+mgAgP5oAIACaQCABmkAgAppAICAPQAAgQkAAILJBwAOaQCAo/kDAKLxAwChMQMAoM0fALBJcQCxAXwAsgl8ALMhfQC0AXgAtRV4ADZoAICmaACAEmkAgL4oDgCGDAAAh4wDABZpAIAaaQCAHmkAgCJpAIAmaQCAoV0AAKJVAACjfQAApAEMAKUVDACm9QwApwEIAKghCACpxQgAqgF0AKsJdACsAXQArR11AK55cACveXAAqOUFAKnxBQCq8QUAqy0FAKw1BQCtPQUArjUFAK8tBQAqaQCALmkAgDJpAIA2aQCAOmkAgD5pAIBCaQCARmkAgLj9BgC5jQYAuoUGALutBgC8uQYAvbkGAL6tBgC/pQYAsFUFALFdBQCyVQUAs+UGALT9BgC10QYAttEGALfRBgCzeQQASmkAgE5pAIBSaQCAVmkAgLa9BAC1vQQAWmkAgLuZBAC6kQQAXmkAgGJpAIC/FQcAvjkHAL0xBwC8gQQAZmkAgKM9BABqaQCAbmkAgKb5BAByaQCAdmkAgKX5BACq1QQAq90EAHppAIB+aQCArn0HAK9RBwCsxQQArXUHAKhpBwCpaQcAqnkHAKvZBgCs9QYArf0GAK71BgCv5QYAgMkAAIHJAACCBQAAgmkAgIZwDwCHNAAAimkAgI5pAIC4fQYAuQUGALoNBgC7BQYAvB0GAL0FBgC+DQYAvwUGALCdBgCxdQYAsn0GALN1BgC0UQYAtV0GALZVBgC3TQYAs/EEAJJpAICWaQCAmmkAgJ5pAIC2fQUAtX0FAKJpAIC7sQUAulkFAKZpAICqaQCAv5kFAL6VBQC9oQUAvKkFAK5pAICjtQQAsmkAgLZpAICmOQUAumkAgL5pAIClOQUAqh0FAKv1BQDCaQCAxmkAgK7RBQCv3QUArO0FAK3lBQCpuQIAqLECAKvJAgCqsQIArTUCAKw1AgCvNQIArjUCAMppAIDOaQCA0mkAgNZpAIDaaQCA3mkAgOJpAIDmaQCAuekDALjZAwC7iQMAuuEDAL2dAwC8nQMAv4EDAL6JAwCxVQIAsFUCALNVAgCyVQIAtfkDALTxAwC36QMAtvEDALM9AwDqaQCA7mkAgPJpAID6aQCAtrEDALW5AwD+aQCAu5UDALqVAwCGiAwAh6ANAL85AgC+MQIAvYUDALyFAwACagCAo3kDAAZqAIAKagCApvUDAA5qAIASagCApf0DAKrRAwCr0QMAFmoAgBpqAICudQIAr30CAKzBAwCtwQMAgIUAAIGNAACChQAA79AGAOOwBwDj9AQA4QgHAOHsBADvOAYA7yAEAL6kDAAeagCAImoAgOGEAQAmagCA49wGACpqAIAuagCAhMANALPJAQAyagCAtdkBALbJAQA2agCAOmoAgD5qAIC6xQEAu60BALy5AQC9uQEAvq0BAL+lAQCwLQ4AsUUOALJBDgCzQQ4AtEUOALVNDgC2cQ4At3EOALiBDgC5gQ4AuoEOALuBDgC8gQ4AvYEOAL6BDgC/gQ4A9mkAgEJqAIBGagCASmoAgIZpAIBOagCAUmoAgFZqAICo2Q0AqdkNAKptDgCrZQ4ArH0OAK1lDgCuZQ4Ar1UOAKOFDgCCLQAAgRUAAIAdAABaagCApoUOAKWVDgBeagCAq+EOAKqJDgBiagCAZmoAgK/pDgCu4Q4ArfUOAKz1DgBqagCAs4UPAIZoAACHHAMAtoUPAG5qAIByagCAtZEPALqNDwC7SQ8AdmoAgHpqAIC+MQ8AvzEPALxJDwC9RQ8AqBEOAKkZDgCqSQ4Aq0UOAKxdDgCtQQ4ArkEOAK91DgB+agCAgmoAgIZqAICKagCAjmoAgJJqAICWagCAmmoAgLihDgC5oQ4Aug0BALsFAQC8HQEAvQEBAL4BAQC/AQEAsA0OALHJDgCy2Q4As9UOALSxDgC1sQ4AtqkOALehDgCjwQ4AnmoAgKJqAICmagCAqmoAgKbBDgCl1Q4ArmoAgKsNDgCqyQ4AsmoAgLZqAICvdQ4ArnUOAK0BDgCsDQ4AumoAgL5qAIDCagCAxmoAgIANAACBNQAAgj0AAMpqAIDOagCA0moAgISEAQC+hAEAhjAHAIf4AADaagCA3moAgKjBAgCp0QIAqtECAKvlAgCs/QIArTUDAK49AwCvNQMA4moAgOZqAIDqagCA7moAgPJqAID2agCA+moAgP5qAIC40QMAudkDALrhAwC74QMAvJEDAL2RAwC+kQMAv5EDALBNAwCxVQMAsl0DALNVAwC0TQMAtfEDALbxAwC38QMAu7EDALqpAwACawCAvoQDAL8VAwC+qQMAvaEDALypAwCzeQIABmsAgAprAIAOawCAEmsAgLaVAwC1VQIAFmsAgKrtAwCr9QMAGmsAgB5rAICu7QMAr1EDAKztAwCt5QMAImsAgKM9AgAmawCAKmsAgKbRAwAuawCAMmsAgKURAgA2awCAgiEAAIEVAACAFQAA7wQAAISUAgA6awCAPmsAgOPYAABCawCA4fgBAEprAIBOawCAUmsAgFZrAIBaawCAhmAFAIcIBQBeawCAs20BAGJrAIC1fQEAtnUBAGZrAIBqawCAbmsAgLpRAQC7UQEAvPkBAL3RAQC+0QEAv9EBAHJrAICjpQEAdmsAgHprAICmvQEAfmsAgIJrAICltQEAqpkBAKuZAQCGawCAimsAgK4ZAQCvGQEArDEBAK0ZAQCOawCA4fQOAJJrAIDjFA4A9AAAAOF8DACWawCA41AKAJprAICeawCAviAEAO8wDQCiawCApmsAgIQ0BADvrA4AsDkGALE5BgCygQYAs6kGALS5BgC1uQYAtqkGALehBgC46QYAuekGALrJBgC7xQYAvN0GAL3BBgC+wQYAvz0HAEZrAICCHQAAgR0AAIAdAACqawCArmsAgLJrAIDWagCAqJkFAKmZBQCqSQYAq0kGAKxZBgCtWQYArkkGAK9JBgCorQcAqbUHAKq9BwCrtQcArK0HAK3dBwCuyQcAr8EHALZrAIC6awCAhogDAIcQAwC+awCAwmsAgMZrAIDKawCAuG0HALkFBwC6AQcAuxUHALwxBwC9MQcAvikHAL8pBwCwgQcAsYEHALJpBwCzZQcAtH0HALVhBwC2YQcAt1UHALM1BgDOawCA0msAgNZrAIDaawCAtl0GALUlBgDeawCAu0UGALpFBgDiawCA5msAgL+lBgC+uQYAvbEGALy9BgDqawCAo3EGAO5rAIDyawCAphkGAPZrAID6awCApWEGAKoBBgCrAQYA/msAgAJsAICu/QYAr+EGAKz5BgCt9QYAqCUBAKk1AQCqPQEAqzUBAKwtAQCtkQAArpEAAK+RAAAGbACACmwAgA5sAIASbACAFmwAgIK9AwCBvQMAgL0DALiZAAC5rQAAuqUAALttAAC8dQAAvX0AAL51AAC/bQAAsPEAALH5AACywQAAs8EAALSxAAC1vQAAtrUAALepAAAabACAHmwAgCJsAICEgAIAvhwCACpsAICG+HwAh8wCAISsAwAubACAMmwAgDZsAIA6bACAPmwAgEJsAIBGbACAs/UCAEpsAIBObACAkgAAAFJsAIC2UQMAteUCAFZsAIC7fQMAunUDAFpsAIBebACAvzkDAL41AwC9VQMAvFUDAKM1AgBibACAZmwAgGpsAIBubACAppEDAKUlAgBybACAq70DAKq1AwB2bACAemwAgK/5AwCu9QMArZUDAKyVAwC+wAMAfmwAgIJsAICGbACAgA0AAIE1AACCPQAAimwAgI5sAICSbACAhsh8AIcAAwCabACAnmwAgKJsAICmbACAqmwAgK5sAICybACAtmwAgLpsAIC+bACAwmwAgO/0AwCE7HwA4ZQBAMZsAIDjMAMAymwAgM5sAIDSbACA1mwAgLNpAQDabACA3mwAgOJsAIDmbACAtmEBALVpAQDqbACAuykBALohAQDubACA8mwAgL8dAQC+HQEAvSUBALwtAQD2bACA+mwAgP5sAICjpQEAAm0AgKWlAQCmrQEAvlR8AIaAfACH7HwAqu0BAKvlAQCs4QEArekBAK7RAQCv0QEACm0AgOGcBgCEBH8A4yQGAOPUBgAObQCA4TAEABJtAIDvlAcAgnUAAIFhAACAaQAAFm0AgBptAIAebQCA7+wGALiNfgC5lX4AupV+ALulfgC8vX4AvdF+AL7RfgC/0X4AsGV+ALFtfgCyeX4As3F+ALRZfgC1WX4Atr1+ALe1fgCoVX4AqWF+AKphfgCrYX4ArGF+AK1hfgCuYX4Ar2F+ACJtAICWbACAJmwAgCZtAIAGbQCAKm0AgC5tAIAybQCAqHF+AKlxfgCqcX4Aq3F+AKyRfwCtkX8ArpF/AK+RfwA2bQCAOm0AgD5tAIBCbQCARm0AgEptAIBObQCAUm0AgLiFfwC5jX8AuoV/ALudfwC8jX8Avb1/AL61fwC/XX8AsPF/ALHxfwCy8X8As8V/ALTBfwC1wX8AtsF/ALfBfwCz+X8AVm0AgFptAIBebQCAYm0AgLYRfgC1GX4AZm0AgLs1fgC6NX4Aam0AgG5tAIC/BX4AvgV+AL0RfgC8JX4AghUAAKO9fwCAYQAAgWEAAKZVfgBybQCAvpABAKVdfgCqcX4Aq3F+AHZtAIB6bQCArkF+AK9BfgCsYX4ArVV+AKhBfgCpUX4AqlV+AKt9fgCsZX4ArW1+AK75AQCv8QEAhgAAAIc0AQB+bQCAgm0AgIZtAICKbQCAjm0AgJJtAIC4dQEAuX0BALp1AQC7yQAAvNkAAL3ZAAC+yQAAv8EAALCVAQCxnQEAspUBALNNAQC0VQEAtV0BALZVAQC3TQEAs919AJZtAICabQCAnm0AgKJtAIC27X0Ate19AKZtAIC7WQIAulECAKptAICubQCAv5kCAL6RAgC9mQIAvEECALJtAICjmX0Atm0AgLptAICmqX0Avm0AgMJtAIClqX0AqhUCAKsdAgDGbQCAym0AgK7VAgCv3QIArAUCAK3dAgDObQCA0m0AgNZtAIDabQCAgB0AAIEJAACCOQAA3m0AgOJtAIC+AAQA6m0AgO5tAIDybQCA9m0AgPptAID+bQCAhIwDAAJuAICHCAMAhuwEAAZuAIDviAIACm4AgA5uAICEbAQA4zQCABJuAIDhVAEAFm4AgBpuAIAebgCAIm4AgKhtAgCprQIAqqUCAKu9AgCspQIAra0CAK6lAgCvGQEAvqwEACZuAIAqbgCALm4AgDJuAIA2bgCAOm4AgD5uAIC4DQEAuREBALoRAQC7JQEAvD0BAL3VAQC+3QEAv9UBALBpAQCxaQEAsnkBALNxAQC0WQEAtVkBALY5AQC3NQEAsy0CAEJuAIBGbgCASm4AgE5uAIC2LQIAtS0CAFJuAIC7rQEAuq0BAFpuAIBebgCAv50BAL6dAQC9pQEAvK0BAIBNAACBVQAAglUAAO9sAABibgCA7+x/AO+8fgBmbgCA4RB/AOPUfwDj2H4A4ex/AGpuAIDhTH4Abm4AgOMkfgDmbQCAVm4AgKsFBgCqBQYArQ0GAKwFBgCvNQYArjUGAIYAAwCHKAMAo4UFAHJuAIClhQUAdm4AgHpuAICmhQUAs/EGAH5uAICCbgCAhm4AgIpuAIC26QYAteEGAI5uAIC7vQYAur0GAJJuAICWbgCAv4kGAL6BBgC9iQYAvJUGAKgpBgCpKQYAqjkGAKs5BgCsKQYArSkGAK5dBgCvTQYAmm4AgJ5uAICibgCApm4AgKpuAICubgCAsm4AgLZuAIC46QcAuekHALr5BwC7+QcAvOkHAL3pBwC+XQcAv1UHALA5BgCxOQYAsgEGALMdBgC0BQYAtQ0GALYFBgC32QcAo7EHAIItAACBFQAAgB0AALpuAICmqQcApaEHAL5uAICr/QcAqv0HAMJuAICEpAIAr8kHAK7BBwCtyQcArNUHAL7MAQCzlQYAxm4AgMpuAIC2qQYAzm4AgNJuAIC1rQYAulkBALshAQCGyAAAhwwBAL4hAQC/KQEAvDEBAL0xAQCoKQYAqSkGAKpZBgCrUQYArGEGAK1tBgCutQEAr6kBAITgAQDWbgCA2m4AgN5uAIDibgCA5m4AgOpuAIDubgCAuGEBALlhAQC6YQEAu2EBALxhAQC9YQEAvmEBAL9hAQCw2QEAsaEBALKhAQCzoQEAtKEBALWpAQC2kQEAt5EBAKPRBQDybgCA9m4AgPpuAID+bgCApu0FAKXpBQACbwCAq2UCAKodAgAGbwCACm8AgK9tAgCuZQIArXUCAKx1AgAObwCAEm8AgBZvAIAabwCAHm8AgCJvAIAmbwCAKm8AgIA9AACBCQAAghkAAC5vAIAybwCAOm8AgL48AwA+bwCAhgAMAIcUAwBCbwCAs9UDAEZvAIC1PQMAtjUDAEpvAIBObwCAv4wKALoRAwC7EQMAvLUAAL29AAC+tQAAv60AAFJvAIDjdAEAVm8AgOG8AQBabwCAXm8AgGJvAIBmbwCAam8AgG5vAIBybwCAdm8AgHpvAIDvdAIAfm8AgIJvAICoTQIAqVECAKpRAgCrqQIArLkCAK25AgCuqQIAr6kCAIRsDQCGbwCAim8AgI5vAICSbwCAlm8AgJpvAIC+dA0AuG0BALkFAQC6DQEAuwUBALwdAQC9BQEAvg0BAL8FAQCw2QIAsdkCALJtAQCzZQEAtH0BALVlAQC2ZQEAt1UBAOG4AQDhUAcA47QAAON8BwCAqQAAgQkAAII5AACebwCAom8AgKpvAICubwCAsm8AgO4AAAC2bwCA7wAAAO9kBgCGYAwAh+QMAKORAgC6bwCApXkCAL5vAIDCbwCApnECAMZvAIDKbwCAq1UCAKpVAgCt+QEArPEBAK/pAQCu8QEApm8AgDZvAIDObwCA0m8AgNZvAIDabwCA3m8AgOJvAICoVQ4AqVkOAKqhDgCrvQ4ArK0OAK2VDgCu+Q4Ar/UOALCRDgCxkQ4AspEOALORDgC0sQ4AtbEOALaxDgC3sQ4AuJEOALmdDgC6lQ4Au0kPALxZDwC9WQ8AvkkPAL9JDwCzCQ4A5m8AgOpvAIDubwCA8m8AgLY1DgC1BQ4A9m8AgLt1DgC6dQ4A+m8AgP5vAIC/VQ4AvlUOAL1lDgC8ZQ4AAnAAgKNNDgAGcACACnAAgKZxDgAOcACAEnAAgKVBDgCqMQ4AqzEOAISkAwC+pAMArhEOAK8RDgCsIQ4ArSEOAKilDgCprQ4AqqUOAKu5DgCs3Q4ArcEOAK7BDgCv/Q4AgO0BAIHxAQCC8QEAFnAAgIaQAQCHtAEAGnAAgB5wAIC4yQEAuckBALrZAQC70QEAvPkBAL35AQC+mQEAv5UBALCFDgCxbQEAsmUBALN9AQC0ZQEAtW0BALZlAQC3+QEAsy0OACJwAIAmcACAKnAAgC5wAIC2QQ4AtVUOADJwAIC7qQEAukEOADZwAIA6cACAv6kBAL6hAQC9qQEAvLEBAD5wAICjaQ4AQnAAgEZwAICmBQ4ASnAAgE5wAIClEQ4AqgUOAKvtAQBScACAVnAAgK7lAQCv7QEArPUBAK3tAQCoOQMAqTkDAKqNAwCrhQMArJ0DAK2FAwCuhQMAr7UDAFpwAIBecACAYnAAgGZwAIBqcACAbnAAgHJwAIB2cACAuGEAALlhAAC6YQAAu2EAALxhAAC9YQAAvmEAAL9hAACwzQMAsaUDALKhAwCzoQMAtKUDALWtAwC2kQMAt5EDAIANAACBEQAAghEAAHpwAIDv9AIAfnAAgIJwAIC+HAMA4xQCAISIAgDhgAEAinAAgI5wAICScACAh8gDAIY8BAC7AQMAumkDAJZwAICacACAvwkDAL4BAwC9FQMAvBUDALNlAwCecACAonAAgKZwAICqcACAtmUDALV1AwCucACAsnAAgLZwAIC6cACAo4kCAL5wAIClmQIApokCAMJwAICELAIAxnAAgKqFAgCr7QIArPkCAK35AgCu7QIAr+UCAMpwAIDOcACAvkQFAIRMBQDScACA1nAAgNpwAIDecACA4nAAgOZwAIDqcACA7nAAgIAZAACBGQAAggUAAPJwAIDhGA8A4VwOAOO4DgDjdAEA+nAAgP5wAIACcQCABnEAgIYABACHZAUACnEAgA5xAIAScQCAFnEAgO98DgDvqAEAs3UBABpxAIAecQCAInEAgCZxAIC2MQEAtRUBACpxAIC7HQEAuhUBAC5xAIAycQCAv+EAAL79AAC9/QAAvP0AAPZwAIA2cQCAOnEAgD5xAICGcACAQnEAgEZxAIBKcQCAqI0GAKmVBgCqnQYAq+UGAKz9BgCt0QYArtEGAK/RBgCwsQYAsbkGALJJBwCzSQcAtFkHALVFBwC2RQcAt3kHALghBwC5IQcAujkHALs5BwC8KQcAvSkHAL4ZBwC/GQcAozUGAE5xAIBScQCAVnEAgFpxAICmcQYApVUGAF5xAICrXQYAqlUGAGJxAIC+oAMAr6EHAK69BwCtvQcArL0HAIBRAACBWQAAgmEAALNVBwCF9AAAtX0HALZ1BwBmcQCAhgAcAIfkAQC6LQcAuyUHALw9BwC9JQcAviUHAL8VBwCokQYAqZEGAKqRBgCrkQYArLkGAK25BgCuqQYAr6kGAGpxAIBucQCAcnEAgHZxAICiIQEAozUBAKA5BQChEQQAuEkBALlJAQC6XQEAu1UBALxNAQC90QEAvtEBAL/RAQCwpQYAsa0GALKlBgCzvQYAtK0GALWdBgC2lQYAt3kBAKMZBgCPnXkAenEAgH5xAICCcQCApjkGAKUxBgCGcQCAq2kGAKphBgCKcQCAjnEAgK9ZBgCuaQYArWkGAKxxBgCeiQgAn8EFAJzJCQCdyQkAmqENAJu9DACYsQ0AmbkNAJahcQCXRXEAlEV1AJWxcQCSoXUAk7V1AJDleQCRzXkAil1yAItFcgCScQCAvoAcAI51DgCPZQ4AjLlyAI11DgCCOXoAgzl6AJZxAICacQCAhnF2AIeZdgCECXoAhW12AJptBwCbVQIAnnEAgKJxAICmcQCA4ZAAAJxZAgDjCBoAkgkPAJNlCgCqcQCA7zgWAJZ1BgCXdQYAlH0KAJU1CwCpjRYAqIUWAKsBEACqMRYArXESAKy1EgCvuS4ArgEsAKF9AgCucQCAo6EeAKKpHgClsRoApPUfAKflGwCmsRoAhMwDAIRMHACycQCAtnEAgLpxAIC+cQCAwnEAgMZxAICxASgAsNkuALONKgCy6SoAtfUmALQBJACEcB0AynEAgID9AQCBFQAAgh0AAL6AHADOcQCA0nEAgIe4AgCGPB0A2nEAgN5xAIDicQCA5nEAgOpxAIDucQCA8nEAgPZxAID6cQCA/nEAgAJyAIAGcgCA44ADAApyAIDhoAEADnIAgO+UAwAScgCAFnIAgBpyAIAecgCAInIAgCZyAIAqcgCALnIAgOE8BgAycgCA49AGADZyAIDhMAcAOnIAgOOsBgCAOQAAgRUAAIIdAADvHAYAPnIAgEJyAIC+uB8A7+gBALPpAgBKcgCAh8QcAIbsHABOcgCAtlkCALVRAgBScgCAu00CALpNAgBWcgCAWnIAgL+5AQC+2QEAvdEBALz1AQCjKR0A1nEAgEZyAIBecgCAYnIAgKaZHQClkR0AZnIAgKuNHQCqjR0AanIAgG5yAICveR4ArhkeAK0RHgCsNR4AcnIAgLNtHwB2cgCAenIAgLZlHwB+cgCAgnIAgLVtHwC6IR8AuyEfAIZyAICKcgCAviUfAL8pHwC8MR8AvTEfAKihHwCpoR8AqqEfAKuhHwCsoR8AraEfAK6hHwCvoR8AjnIAgJJyAICWcgCAmnIAgJ5yAICicgCApnIAgKpyAIC4rR8AubUfALq9HwC7tR8AvK0fAL1VHwC+UR8Av00fALChHwCxoR8AsqEfALOhHwC0pR8AtakfALadHwC3lR8AoykeAIIZAACBGQAAgLEBAK5yAICmIR4ApSkeALJyAICrZR4AqmUeAIaIAACH/AEAr20eAK5hHgCtdR4ArHUeALZyAICzmR4AunIAgL5yAIC2XQEAwnIAgMZyAIC1sR4AukkBALtJAQDKcgCAznIAgL49AQC/IQEAvDkBAL01AQCoRR4AqVUeAKpVHgCrZR4ArH0eAK2ZAQCuiQEAr4EBAISsAADScgCA1nIAgNpyAIDecgCA4nIAgOZyAIDqcgCAuK0BALllAQC6bQEAu2UBALx9AQC9ZQEAvm0BAL9lAQCwyQEAsckBALKpAQCzpQEAtL0BALWhAQC2oQEAt5UBALhpHAC5oRwAusEcALvBHAC8wRwAvcEcAL7BHAC/wRwAsIkfALGJHwCyIRwAswUcALQdHAC1fRwAtnUcALdtHACoYR8AqWEfAKphHwCrYR8ArNkfAK3ZHwCuyR8Ar8EfAO5yAIDycgCA9nIAgPpyAID+cgCAAnMAgAZzAIAKcwCADnMAgBJzAIC+AAQAo1EdABZzAICleR0AppUCABpzAIAecwCAInMAgKqBAgCrgQIArPECAK39AgCu9QIAr+kCACpzAIDh9AEALnMAgON8AQCATQAAgXUAAIJ9AAAycwCAhsAEAIekBAA2cwCAOnMAgD5zAIBCcwCARnMAgO+MAgCoSQIAqUkCAKpdAgCrVQIArHkCAK15AgCuvQIAr7UCAISgBQBKcwCATnMAgFJzAIC+vAQAVnMAgFpzAIBecwCAuC0BALk1AQC6PQEAuzUBALwtAQC91QEAvt0BAL/NAQCwzQIAsdUCALLdAgCz1QIAtM0CALUVAQC2HQEAtxUBAOGEHgDjbB8A41wfAOFYHgBicwCAZnMAgGpzAIBucwCAcnMAgHZzAIB6cwCAfnMAgOkAAADv9B4A70weAIJzAICzlQIAhnMAgIpzAICOcwCAknMAgLa5AgC1sQIAmnMAgLtRAgC6SQIAhsgEAIesBAC/kQEAvkkCAL1BAgC8SQIAJnMAgKNRBQCecwCAlnMAgKZ9BQCicwCApnMAgKV1BQCqjQUAq5UFAKpzAICucwCAro0FAK9VBgCsjQUArYUFAICJBwCBiQcAgpkHALORBgCycwCAtbkGALapBgC2cwCAunMAgL5zAIC6TQcAu0UHALxdBwC9QQcAvkEHAL9BBwCoQQYAqU0GAKpVBgCrZQYArH0GAK1lBgCubQYAr2UGAMJzAIDGcwCAynMAgM5zAIDScwCA1nMAgNpzAIDecwCAuFkHALlZBwC6aQcAu2kHALx5BwC9eQcAvmUHAL8ZBwCwxQcAsc0HALLFBwCz2QcAtMkHALXJBwC2aQcAt2kHAKPdBwDicwCA5nMAgOpzAIDucwCApuUHAKX1BwDycwCAqwkGAKoBBgD2cwCA+nMAgK8NBgCuDQYArQ0GAKwRBgCAbQAAgQkAAIIZAAD+cwCAAnQAgISYAQC+kAEABnQAgIbAAACH5AEACnQAgA50AIASdACAFnQAgBp0AIAedACAqF0GAKmNAQCqnQEAq5UBAKy5AQCtuQEArskBAK/BAQCEoAAAInQAgCZ0AIAqdACALnQAgDJ0AIA2dACAOnQAgLh5AQC5eQEAus0AALvFAAC83QAAvcUAAL7FAAC/9QAAsIEBALGBAQCySQEAs0kBALRZAQC1WQEAtkkBALdJAQCzFQIAPnQAgEJ0AIBGdACASnQAgLY5AgC1MQIATnQAgLtFAgC6RQIAUnQAgFZ0AIC/nQIAvp0CAL2dAgC8nQIAhXw+AKNRAgBadACAXnQAgKZ9AgBidACAZnQAgKV1AgCqAQIAqwECAGp0AIBudACArtkCAK/ZAgCs2QIArdkCAIDpAACB6QAAggUAAHJ0AIC+AAwAenQAgIeoAwCGvAwAfnQAgIJ0AICGdACAinQAgI50AICSdACAlnQAgJp0AICedACAonQAgKZ0AICqdACA42ABAK50AIDhoAEAsnQAgO+IAgC2dACAunQAgL50AIDCdACAxnQAgMp0AIDOdACAqGkCAKlpAgCqeQIAq3kCAKxpAgCtaQIArr0CAK+1AgC+rAwA0nQAgNZ0AIDadACAgB0AAIEJAACCqQAA3nQAgLhRAQC5WQEAumEBALthAQC8GQEAvRkBAL4NAQC/BQEAsM0CALHVAgCy3QIAs9UCALTNAgC1cQEAtnEBALdxAQDjxAAA4XwHAOF4BgDjvAYA4nQAgIQYDQCGuAwAhzwNAL4sDwDqdACA7nQAgPJ0AIDvEAAA9nQAgPp0AIDvdAYA/nQAgAJ1AIAGdQCAs70CAAp1AIC1rQIAtqUCAA51AIASdQCAFnUAgLpFAgC7XQIAvEUCAL1NAgC+RQIAv/kBAHZ0AIClfQ0ApnUNAOZ0AIAadQCAHnUAgCJ1AICjbQ0ArJUNAK2dDQCulQ0ArykOACZ1AIAqdQCAqpUNAKuNDQCz5Q4ALnUAgDJ1AIA2dQCAOnUAgLblDgC19Q4APnUAgLuhDgC62Q4AQnUAgEZ1AIC/pQ4AvrkOAL2xDgC8uQ4AqBUOAKklDgCqLQ4AqyUOAKw9DgCtJQ4Ari0OAK8lDgCADQAAgRUAAIIdAABKdQCATnUAgFJ1AICEMAMAVnUAgLgpDgC5KQ4AujkOALs5DgC8KQ4AvSkOAL79DwC/9Q8AsF0OALElDgCyLQ4AsyUOALQ9DgC1IQ4AtiUOALcZDgCjpQ8AWnUAgIYoAQCHTAEAXnUAgKalDwCltQ8AYnUAgKvhDwCqmQ8AZnUAgGp1AICv5Q8ArvkPAK3xDwCs+Q8AbnUAgLPpDgBydQCAdnUAgLaRDgB6dQCAfnUAgLXlDgC6sQ4Au7kOAIJ1AICGdQCAvmEBAL9hAQC8mQ4AvZkOAKglDgCpLQ4AqiUOAKs5DgCsKQ4ArVUOAK5dDgCvVQ4AinUAgI51AICSdQCAlnUAgJp1AICedQCAonUAgKZ1AIC49QEAuYEBALqBAQC7gQEAvIEBAL2JAQC+sQEAv7EBALAxDgCxOQ4AsgkOALMJDgC04QEAteEBALbhAQC3zQEAo60NAKp1AICudQCAsnUAgLZ1AICm1Q0ApaENALp1AICr/Q0AqvUNAL51AIDCdQCAryUCAK4lAgCt3Q0ArN0NAIBdAACBbQAAgmUAALNRAwC+nAMAtXkDALYZAwDKdQCAhOACAM51AIC6PQMAuzUDALwZAwC9GQMAvtkDAL/ZAwCohQMAqZUDAKqVAwCrpQMArL0DAK3VAwCu0QMAr9EDAIYABACHNAMAv6AzANJ1AIDWdQCA2nUAgN51AIDidQCAuHEDALlxAwC6cQMAu3EDALzVAAC93QAAvtUAAL/NAACwtQMAsb0DALKBAwCzgQMAtFEDALVRAwC2UQMAt1EDAO+oAwDmdQCA6nUAgO51AICEHAIA8nUAgPZ1AID6dQCAviwFAP51AIACdgCABnYAgONAAwAKdgCA4SgAAA52AICjXQIAEnYAgBZ2AIAadgCAHnYAgKYVAgCldQIAInYAgKs5AgCqMQIAJnYAgCp2AICv1QIArtUCAK0VAgCsFQIA4ygBAOEADwDhCA4A4wgOAID9AACBCQAAgjkAAC52AIAydgCAOnYAgD52AIBCdgCA7+gOAEZ2AIBKdgCA72QOALNtAQBOdgCAhugEAIcMBQBSdgCAtm0BALVtAQBWdgCAu+0AALrtAABadgCAXnYAgL/VAAC+6QAAveEAALzpAACoXQYAqWEGAKqlBgCrvQYArKUGAK2tBgCupQYArxkHADZ2AIBidgCAZnYAgGp2AIBudgCAcnYAgHZ2AIB6dgCAuHUHALl5BwC6DQcAuwUHALwdBwC9BQcAvgUHAL81BwCwaQcAsWkHALJ9BwCzdQcAtG0HALVRBwC2UQcAt1EHAKMtBgB+dgCAgnYAgIZ2AICKdgCApi0GAKUtBgCOdgCAq60HAKqtBwCSdgCAlnYAgK+VBwCuqQcAraEHAKypBwCADQAAgRUAAIIdAACadgCAnnYAgKJ2AICEVAMAvlwAAKZ2AICqdgCAhugAAIdMAwCudgCAsnYAgLZ2AIC6dgCAvnYAgOMEBADCdgCA4bQFAMZ2AIDKdgCAznYAgNJ2AIDWdgCA2nYAgN52AIDidgCA5nYAgO/sBADqdgCA7nYAgLPtBgDydgCA9nYAgPp2AID+dgCAtpEGALXhBgACdwCAu40GALqNBgAGdwCACncAgL9BAQC+WQEAvVEBALxZAQCoJQYAqS0GAKolBgCrOQYArCkGAK1RBgCuSQYAr0EGAIDNAACBCQAAghkAAA53AIASdwCAhCwBAL40AAAadwCAuP0BALlBAQC6QQEAu0EBALxBAQC9SQEAvnEBAL9xAQCwCQYAsQkGALLNAQCzxQEAtN0BALXFAQC2zQEAt8UBAIagPACHRAMAHncAgKOhBQAidwCApa0FAKbdBQAmdwCAKncAgL4oPACqwQUAq8EFAKwVAgCtHQIArhUCAK8NAgC2QQMALncAgDJ3AIC1sQIANncAgLOhAgA6dwCAPncAgL5FAwC/TQMAvHUDAL1NAwC6ZQMAu20DAEJ3AIBGdwCASncAgE53AIDGdQCAUncAgFZ3AIBadwCAXncAgGJ3AICoRQIAqVUCAKpdAgCrVQIArE0CAK21AwCusQMAr60DALDVAwCx3QMAstUDALPtAwC09QMAtf0DALb1AwC37QMAuNkDALnZAwC6rQMAu6UDALy9AwC9pQMAvqUDAL+VAwCj9QMAZncAgGp3AIBudwCAcncAgKYVAgCl5QMAdncAgKs5AgCqMQIAencAgH53AICvGQIArhECAK0ZAgCsIQIAgGkAAIFpAACCBQAAgncAgIp3AICOdwCAkncAgO8cAACEbAIA4ZQBAJZ3AIDjyAAAmncAgJ53AICGWDwAh1A9AKJ3AICmdwCAqncAgISEPQCudwCAsncAgLZ3AIDvuAEAvmw8AOF0BgC6dwCA42QBAL53AIDCdwCAxncAgMp3AICz0QEAzncAgNJ3AIDWdwCA2ncAgLaRAQC1+QEA3ncAgLu9AQC6vQEA4ncAgOZ3AIC/dQEAvnUBAL2FAQC8hQEAqL09AKkNPgCqGT4AqxE+AKwxPgCtUT4ArlE+AK9NPgCGdwCAgh0AAIEdAACAHQAA6ncAgO53AIDydwCA9ncAgLjVPgC53T4AutU+ALtJPwC8WT8AvVk/AL5JPwC/QT8AsDk+ALE5PgCyET4AsxE+ALTxPgC18T4AtvU+ALftPgCjkT4A+ncAgIYoAACHwAMA/ncAgKbRPgCluT4AAngAgKv9PgCq/T4ABngAgAp4AICvNT4ArjU+AK3FPgCsxT4ADngAgLOdPwASeACAFngAgLalPwAaeACAHngAgLWtPwC6aT8Au3U/ACJ4AIAmeACAvlk/AL9FPwC8bT8AvWU/ACp4AIAueACAMngAgDZ4AIDjYDwAOngAgOEAPQA+eACA7/w9AEJ4AIBGeACASngAgE54AIBSeACAVngAgFp4AICjGT4AghkAAIEZAACAcQAAXngAgKYhPgClKT4AYngAgKvxPgCq7T4AhCQBAL4kAQCvwT4Art0+AK3hPgCs6T4AqNE+AKnRPgCq0T4Aq+U+AKzhPgCt4T4Arhk+AK8ZPgCGAAAAh4QAAGp4AIBueACAcngAgHZ4AIB6eACAfngAgLh9PgC5AT4AugE+ALsBPgC8AT4AvQk+AL4xPgC/MT4AsGk+ALF1PgCyfT4As3U+ALRZPgC1RT4Atk0+ALdFPgCohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAIJ4AICGeACAingAgL8k5gGOeACAkngAgJZ4AICaeACAuFUDALlZAwC6bQMAu2UDALx9AwC9ZQMAvm0DAL9lAwCwtQIAsb0CALKBAgCzgQIAtHEDALVxAwC2cQMAt3EDALMdAgCeeACAongAgKZ4AICEiAMAtlUCALU1AgAWdwCAu3kCALpxAgCqeACArngAgL+1AwC+tQMAvVUCALxVAgCyeACAo1kCALZ4AIC6eACAphECAL54AIDCeACApXECAKo1AgCrPQIAxngAgMp4AICu8QMAr/EDAKwRAgCtEQIAqKkCAKmpAgCquQIAq7kCAKypAgCtqQIArjkBAK85AQCAzQEAgQkAAIIZAADOeACA0ngAgL64BQDaeACA3ngAgLjpAQC56QEAuokBALuFAQC8nQEAvYEBAL6BAQC/tQEAsEkBALFVAQCyXQEAs1UBALRNAQC18QEAtvEBALfxAQDvFAAA4ngAgIaoBQCH3AUA5ngAgIRYBADqeACA78Q+AO54AIDhxD4A8ngAgOMwPgDjyAAA9ngAgOEoAQD6eACAtn0CAP54AIACeQCAtXUCAAZ5AICzZQIACnkAgA55AIC+3QEAv2EBALzdAQC91QEAutkBALvFAQASeQCAFnkAgKOxBQDWeACAGnkAgB55AIAieQCApqkFAKWhBQAmeQCAqxEGAKoNBgAqeQCALnkAgK+1BgCuCQYArQEGAKwJBgAyeQCANnkAgDp5AIA+eQCAgBkAAIEZAACCBQAAQnkAgL5sAwBGeQCAhsgAAIccAwBKeQCATnkAgFJ5AIBWeQCAqLkHAKm5BwCqDQcAqx0HAKwJBwCtNQcArjEHAK8pBwCEqAMAWnkAgF55AIBieQCAZnkAgGp5AIBueQCAcnkAgLjJAAC5yQAAutkAALvRAAC8+QAAvfkAAL6ZAAC/mQAAsF0HALEhBwCyIQcAsz0HALQpBwC1KQcAtgEHALcBBwCzhQYAdnkAgHp5AIB+eQCAgnkAgLa1BgC1gQYAhnkAgLvlBgC6mQYAinkAgI55AIC/7QYAvu0GAL3pBgC89QYAknkAgJZ5AICaeQCAnnkAgKJ5AICmeQCAqnkAgO+QBACueQCA4dwGALJ5AIDj7AUAgCkAAIEVAACCEQAAvnwBAKMFBgC6eQCAhigAAIdMAQC+eQCApjUGAKUBBgDCeQCAq2UGAKoZBgDGeQCAynkAgK9tBgCubQYArWkGAKx1BgDOeQCAs70BANJ5AIDWeQCAtnkBANp5AIDeeQCAtXkBALpVAQC7XQEA4nkAgOZ5AIC++QAAv/kAALxFAQC9+QAAqHECAKlxAgCqcQIAq3ECAKy1AgCtvQIArrUCAK+tAgCE7AwA6nkAgO55AIDyeQCA9nkAgPp5AID+eQCAAnoAgLhpAwC5aQMAugkDALsJAwC8GQMAvRkDAL4JAwC/CQMAsNUCALHdAgCy1QIAs2kDALR5AwC1eQMAtmkDALdhAwAGegCACnoAgA56AICj9QIAEnoAgKUxAgCmMQIAFnoAgBp6AIAeegCAqh0CAKsVAgCsDQIArbEDAK6xAwCvsQMAgGEAAIFhAACCBQAAInoAgIbwDACHYAMAvhAMACp6AIBmeACALnoAgDJ6AIA2egCAOnoAgD56AIBCegCARnoAgKiFAgCplQIAqpUCAKulAgCsvQIArdUCAK7RAgCv0QIASnoAgE56AIBSegCAVnoAgFp6AIBeegCAYnoAgGZ6AIC4dQEAuX0BALp1AQC7zQEAvNUBAL3dAQC+yQEAv8EBALC1AgCxvQIAsoECALOBAgC0VQEAtV0BALZVAQC3TQEA4RAGAIRIDADjDAYAanoAgISYDABuegCAcnoAgHZ6AIB6egCAfnoAgIJ6AICGegCAgXUAAIB1AADvIAEAgnUAAIp6AICOegCAknoAgL7ADACFtA4A4RACAO9cAADjABYA4ZABAJp6AIDjWAEA7zwHAJ56AICiegCAhgAIAIe4DACznQ0AJnoAgKZ6AICqegCArnoAgLbVDQC1tQ0AsnoAgLv5DQC68Q0AtnoAgLp6AIC/GQ4AvhEOAL3VDQC81Q0AvnoAgKPZDQDCegCAxnoAgKaRDQDKegCAznoAgKXxDQCqtQ0Aq70NANJ6AIDWegCArlUOAK9dDgCskQ0ArZENAKhdDgCpYQ4AqmEOAKthDgCsYQ4ArWEOAK5hDgCvYQ4A2noAgN56AIDiegCA5noAgOp6AIDuegCA8noAgPZ6AIC4TQ8AuVEPALpRDwC7UQ8AvHEPAL1xDwC+cQ8Av3EPALDBDwCxwQ8AssEPALPBDwC0wQ8AtcEPALbBDwC3wQ8As+kPAPp6AIC+gAEA/noAgJZ6AIC24Q8AtekPAAJ7AIC7BQ4AugUOAAp7AIAGewCAvwUOAL4FDgC9FQ4AvBUOAIFNAACAQQAA72gNAIJRAACG8AcAh9QBAA57AIASewCAFnsAgIRwAQAaewCAHnsAgOHgDgAiewCA40gNACZ7AICjaQ8AKnsAgC57AIAyewCANnsAgKZhDwClaQ8AOnsAgKuFDgCqhQ4APnsAgEJ7AICvhQ4AroUOAK2VDgCslQ4ARnsAgLMxDgBKewCATnsAgLbBAQBSewCAVnsAgLXRAQC6zQEAu6UBAFp7AIBeewCAvqUBAL+tAQC8sQEAvbEBAI/dJgCj8Q0AYnsAgGZ7AICmAQIAansAgG57AIClEQIAqg0CAKtlAgByewCAviAEAK5lAgCvbQIArHECAK1xAgCfoQwAnnkKAJ1pCgCc0QgAm7E2AJp1NgCZ0TQAmOEyAJdtMgCWZTIAlTU/AJRhPgCTcT4AkjU7AJFxOgCQeToAgJUAAIGdAACCoQAAensAgO9EAgDhdA8AfnsAgOMcDwDj1AEAgnsAgOHgAQDvXAEAo7UCAKJBAACh3Q4AoLkOALWpAwCGewCAhMAEALahAwCG8AUAh+QEALOFAwCKewCAvXEDALxpAwC/QQMAvnEDAI57AIC2eQCAu3EDALp5AwCC3ScAgwE7AL6EBwC+wAYAhhE/AIcZPwCEETsAhV06AIp9PgCLJTMAknsAgJZ7AICOuTUAjxU3AIw1MwCNgTMAkqE3AJPZCQC+xBkAmnsAgJaxDQCXUQ8AlHkLAJVhCwCaBQ8Am5EBAJ57AICiewCApnsAgN0AAACcfQMAqnsAgOFIDwCuewCA4xwOALJ7AIC2ewCAunsAgL57AIDCewCAsUEXALChFwCzqesBsgHoAbUB7AG0EesB74wOAMZ7AICpxR8AqAEcAKsBEACqkR8ArdkTAKzREwCv2RcArgUTAKHxAgDKewCAo8kHAKLBAgClARgApGUHAKehGwCm+RsAqCkFAKldBQCqVQUAq20FAKx5BQCteQUArm0FAK9hBQB2ewCAznsAgNJ7AIDWewCAgA0AAIGxAACCsQAA2nsAgLiJBQC5iQUAup0FALuVBQC8uQUAvbkFAL5RBgC/UQYAsOUFALHtBQCy5QUAs/0FALTtBQC13QUAttUFALe9BQCj3QUA3nsAgOJ7AICEDAAA5nsAgKb5BQCl8QUA6nsAgKspBQCqIQUAhpgAAIegAACvGQUArikFAK0pBQCsMQUA7nsAgLNhBgDyewCA9nsAgLYhBgD6ewCA/nsAgLUBBgC6rQcAu40HAAJ8AIAGfACAvo0HAL9xBwC8lQcAvY0HAL65BQC/uQUAvLkFAL25BQC6uQUAu7kFALi5BQC5uQUAtkkFALdJBQC0fQUAtXUFALJ5BQCzeQUAsBUFALF9BQCuXQUAr20FAKxFBQCtXQUAqqUKAKtdBQCovQoAqa0KAAp8AIAOfACAEnwAgBZ8AIAafACAHnwAgCJ8AIAmfACAqA0HAKkdBwCqLQcAq0kHAKxNBwCtZQcArrEGAK+xBgAqfACALnwAgDJ8AIA2fACAOnwAgD58AIBCfACARnwAgLhVBgC5XQYAulUGALtxBgC8NQYAvfEBAL7xAQC/8QEAsK0GALGNBgCyhQYAs50GALSNBgC1cQYAtnUGALdtBgCjpQQAgi0AAIEVAACAHQAASnwAgKblBAClxQQATnwAgKtJBQCqaQUAUnwAgFp8AICvtQUArkkFAK1JBQCsUQUAhmAcAIcIAwBefACAs4UCAGJ8AIC1gQIAtoECAGZ8AIBqfACAbnwAgLoJAwC7CQMAvBkDAL0ZAwC+CQMAvwkDAKxVAgCtXQIArmECAK9hAgCoDQIAqVUCAKpRAgCrUQIAhKwDAHJ8AIB2fACAenwAgIT8HQB+fACAgnwAgIZ8AIC8cQMAvXEDAL5xAwC/cQMAuHEDALlxAwC6cQMAu3EDALSRAwC1kQMAtpEDALeRAwCwkQMAsZEDALKRAwCzkQMAinwAgI58AICSfACAlnwAgJp8AIDhpAEAnnwAgOOAAQC+aBwAonwAgKZ8AIDv2AYAqnwAgK58AICyfACAtnwAgKOJAwCCLQAAgRUAAIAdAAC6fACApo0DAKWNAwC+fACAqwUCAKoFAgDCfACAynwAgK8FAgCuBQIArRUCAKwVAgCGIBwAh8QdAM58AIDSfACA1nwAgNp8AIDefACA72wGAOJ8AIDhbAcA5nwAgON0BwDqfACA7nwAgPJ8AID2fACAs5EBAPp8AID+fACAAn0AgAZ9AIC2sQEAtbkBAAp9AIC7VQEAukkBAA59AIASfQCAv/UAAL71AAC9RQEAvEUBAKNRHgDGfACAFn0AgBp9AIAefQCApnEeAKV5HgAifQCAq5UeAKqJHgAmfQCAKn0AgK81HwCuNR8ArYUeAKyFHgCAbQAAgRUAAIIdAADv/BkALn0AgDJ9AIA2fQCAOn0AgIbAAACHrAMAPn0AgEJ9AIBGfQCA4SwcAEp9AIDjzBwAqK0eAKnNHgCq2R4Aq9EeAKzxHgCt8R4Arj0eAK81HgCE7AAATn0AgFJ9AIBWfQCAWn0AgF59AIBifQCAZn0AgLjRHwC53R8Auu0fALvlHwC84R8AveEfAL7hHwC/4R8AsE0eALFRHgCyUR4As1EeALTxHwC18R8AtvEfALfxHwCobR4AqY0eAKqFHgCrnR4ArIUeAK2NHgCuuR4Ar7UeAGp9AIBufQCAcn0AgHZ9AIB6fQCAfn0AgIJ9AICGfQCAuJ0eALmtHgC6pR4Au0UBALxdAQC9RQEAvkUBAL91AQCw0R4AsdEeALLRHgCz0R4AtLUeALW9HgC2tR4At60eALMNHgCKfQCAjn0AgJJ9AICWfQCAtg0eALUNHgCafQCAuxUeALoVHgCefQCAon0AgL95HgC+cR4AvQUeALwFHgCCbQAAo0keAIBVAACBZQAApkkeAL6cAQCqfQCApUkeAKpRHgCrUR4Ah3wAAIZMAACuNR4Arz0eAKxBHgCtQR4AqF0CAKltAgCqZQIAq30CAKxpAgCtsQIArrECAK+xAgCE7AQArn0AgLJ9AIC2fQCAun0AgL59AIDCfQCAxn0AgLhxAwC5cQMAunEDALtxAwC81QMAvd0DAL7VAwC/zQMAsNECALHRAgCy0QIAs9ECALRRAwC1UQMAtlEDALdRAwCz7QIAyn0AgM59AIC+gAQA0n0AgLYxAgC14QIA1n0AgLsVAgC6FQIA2n0AgN59AIC/lQMAvpUDAL0FAgC8BQIA4n0AgKOpAgDmfQCA6n0AgKZ1AgDufQCA8n0AgKWlAgCqUQIAq1ECAPZ9AID6fQCArtEDAK/RAwCsQQIArUECAKjZAgCpIQEAqiEBAKshAQCsIQEArSEBAK4hAQCvIQEA/n0AgAJ+AIAGfgCAviAEAAp+AIAOfgCAEn4AgBp+AIC4jQEAuZEBALqRAQC7pQEAvL0BAL11AAC+fQAAv3UAALDlAQCx7QEAsvkBALPxAQC02QEAtdkBALa5AQC3tQEA4RgeAB5+AIDjKB8AIn4AgIGlAACApQAAJn4AgIKlAACGAAQAh/QFACp+AIAufgCAMn4AgDZ+AIDvYB4AOn4AgD5+AIBCfgCAhfD0AUZ+AIBKfgCA42QBAE5+AIDhpAEAUn4AgO/IAABWfgCAWn4AgFZ8AICE/AUAXn4AgGJ+AICzKQYAFn4AgGZ+AIBqfgCAbn4AgLYhBgC1KQYAcn4AgLupBgC6oQYAdn4AgHp+AIC/nQYAvp0GAL2lBgC8rQYA4bQHAH5+AIDjeAQAgn4AgIB9AACBEQAAghUAAIZ+AICGwAAAh1gDAIp+AICOfgCAkn4AgJZ+AIDvDAQAmn4AgKOpBgCefgCAon4AgKZ+AICqfgCApqEGAKWpBgCufgCAqykGAKohBgCyfgCAtn4AgK8dBgCuHQYArSUGAKwtBgC6fgCAs0kHAL5+AIDCfgCAtn0HAMZ+AIDKfgCAtXUHALpdBwC7JQcAzn4AgNJ+AIC+IQcAvy0HALw9BwC9MQcAqD0GAKmBBgCqhQYAq5UGAKy5BgCtuQYArqkGAK+pBgDWfgCA2n4AgN5+AIDifgCA5n4AgIK5AACBsQAAgLkAALitBgC5vQYAurUGALtFAQC8XQEAvUUBAL5FAQC/dQEAsN0GALGlBgCyrQYAs6EGALShBgC1rQYAtpkGALeVBgCjDQYA6n4AgO5+AIDyfgCAhJgCAKY5BgClMQYAvpwBAKthBgCqGQYAhggAAId8AQCvaQYArmUGAK11BgCseQYA+n4AgLO1AQD+fgCAAn8AgLZVAQAGfwCACn8AgLWhAQC6cQEAu3kBAA5/AIASfwCAvjEBAL89AQC8UQEAvVEBAKhpAgCpaQIAqnkCAKt5AgCsbQIArZECAK6RAgCvkQIAFn8AgBp/AIAefwCAIn8AgCZ/AIAqfwCALn8AgDJ/AIC4mQIAua0CALqlAgC7bQMAvHUDAL19AwC+dQMAv20DALDxAgCx+QIAssECALPBAgC0sQIAtb0CALa1AgC3qQIANn8AgDp/AIA+fwCAo/0CAEJ/AICl6QIAph0CAEZ/AIBKfwCATn8AgKo5AgCrMQIArBkCAK0ZAgCueQIAr3UCAFJ/AIBWfwCAWn8AgIQADACAGQAAgQkAAII5AABefwCAYn8AgGp/AIBufwCAvuAMAHJ/AIB2fwCAhlgNAIcMAwCowQIAqc0CAKrFAgCr2QIArMkCAK39AgCu9QIArz0BAHp/AIB+fwCAgn8AgIZ/AICKfwCAjn8AgJJ/AIC+MAwAuMUBALnNAQC62QEAu9EBALzxAQC98QEAvpkBAL+ZAQCwRQEAsU0BALJFAQCzXQEAtEUBALVNAQC2RQEAt/0BAOE4BgCWfwCA42wGAJp/AICefwCAon8AgKZ/AICqfwCAhKgNAK5/AICyfwCAtn8AgL6wDwC6fwCA72wGAL5/AIDCfwCApn0AgMZ/AIDKfwCA41AAAM5/AIDhoAEA0n8AgO+EAADafwCAhyANAIZMDwCAPQAAgSEAAIIlAADefwCAs80NAGZ/AIDWfwCA4n8AgOZ/AIC2/Q0AtcENAOp/AIC7CQ4AugEOAO5/AIDyfwCAvwkOAL4BDgC9CQ4AvBEOAPZ/AIDjmAwA+n8AgOH8DwD+fwCAAoAAgAaAAIAKgACADoAAgBKAAIAWgACAGoAAgB6AAIDvYAwAIoAAgCaAAICjTQ0AKoAAgC6AAIAygACANoAAgKZ9DQClQQ0AOoAAgKuJDgCqgQ4APoAAgEKAAICviQ4AroEOAK2JDgCskQ4Agm0AALM1DgCAVQAAgWUAALb1DwCE3AMARoAAgLX9DwC60Q8Au9EPAIYABACH3AAAvn0PAL9lDwC8wQ8AvXkPAKjlDwCp7Q8AqvkPAKv5DwCsMQ4ArTEOAK4xDgCvMQ4ASoAAgE6AAIBSgACAVoAAgFqAAIBegACAYoAAgGaAAIC43Q4AueEOALrhDgC74Q4AvOUOAL3pDgC+mQ4Av5UOALBRDgCxUQ4AslEOALPpDgC0/Q4AteUOALbtDgC35Q4Ao3EPAGqAAIBugACAcoAAgHaAAICmsQ4ApbkOAHqAAICrlQ4AqpUOAH6AAICCgACAryEOAK45DgCtPQ4ArIUOAIaAAICzyQEAioAAgI6AAIC2+QEAkoAAgJaAAIC1wQEAuqkBALu1AQCagACAnoAAgL6tAQC/lQEAvK0BAL2lAQCo5Q0AqfkNAKoFAgCrHQIArA0CAK09AgCuNQIAr10CAKKAAICmgACAqoAAgK6AAICAGQAAgRkAAIIFAACygACAuC0CALk1AgC6MQIAuzECALzVAgC93QIAvtUCAL/NAgCwKQIAsTUCALI9AgCzNQIAtC0CALUVAgC2HQIAtxUCALqAAICEnAIAvoAAgKOBAgDCgACApYkCAKaxAgDGgACAhiAEAIfUAwCq4QIAq/0CAKzlAgCt7QIAruUCAK/dAgC29QMAvkQDAIWM/QG1/QMAyoAAgLP9AwDOgACA0oAAgL59AwC/TQMAvGUDAL19AwC6dQMAu30DANaAAIDagACA3oAAgOKAAICEBAIAoyUCAOaAAIClJQIApi0CAOqAAIDugACA8oAAgKqtAgCrpQIArL0CAK2lAgCupQIAr5UCAPaAAID6gACA/oAAgAKBAIAGgQCA48ADAAqBAIDhrAEADoEAgO9YAwASgQCAFoEAgIANAACB5QAAgu0AABqBAIDhYA8A40ABAOM4DgDheA4AHoEAgCKBAIC+lAUAKoEAgIYABACHZAUALoEAgDKBAIA2gQCA7/wOAO98DgA6gQCAs1EBAD6BAID2fgCAQoEAgEaBAIC2DQEAtQkBAEqBAIC74QAAuhkBAE6BAIBSgQCAv9EAAL7pAAC96QAAvPkAALaAAIAmgQCAVoEAgFqBAIBegQCAYoEAgGaBAIBqgQCAqKEGAKmtBgCquQYAq7EGAKzhBgCt7QYAruUGAK/FBgCwvQYAsUUHALJNBwCzXQcAtE0HALV1BwC2fQcAtx0HALglBwC5LQcAuiUHALs9BwC8KQcAvRUHAL4RBwC/EQcAoxEGAG6BAIBygQCAdoEAgHqBAICmTQYApUkGAH6BAICroQcAqlkGAIKBAICGgQCAr5EHAK6pBwCtqQcArLkHAIANAACBFQAAgh0AAIqBAICOgQCAkoEAgISUAwC+lAMAloEAgJqBAICGyAAAh4wAAJ6BAICigQCApoEAgKqBAIConQYAqa0GAKqlBgCrvQYArK0GAK3RBgCu1QYAr80GAK6BAICygQCAtoEAgLqBAIC+gQCAwoEAgMaBAIDKgQCAuF0BALnBAQC6wQEAu8EBALzBAQC9yQEAvvEBAL/xAQCwvQYAsY0GALKFBgCzZQEAtH0BALVlAQC2bQEAt2UBALMtBgDOgQCA0oEAgNaBAIDagQCAtlEGALUlBgDegQCAu0kGALp5BgDigQCA5oEAgL+hAQC+uQEAvbEBALxRBgDqgQCAo2kGAO6BAIDygQCAphUGAPaBAID6gQCApWEGAKo9BgCrDQYA/oEAgAKCAICu/QEAr+UBAKwVBgCt9QEAutUHALvdBwC4wQcAucEHAL4xBAC/MQQAvPEHAL3xBwCyrQcAs7UHALCtBwCxpQcAtp0HALf1BwC0pQcAtZUHAKppBwCraQcAqGkHAKlpBwCuaQcAr2kHAKxpBwCtaQcAgLkDAIGNAwCChQMAhKgDAIZQ/AGHCAMAvjQDAAqCAICoZQIAqXUCAKp9AgCrdQIArG0CAK21AwCuvQMAr7UDAA6CAIASggCAFoIAgBqCAIAeggCAIoIAgCaCAIAqggCAuFEDALlZAwC6YQMAu2EDALwRAwC9HQMAvhUDAL8JAwCwzQMAsdUDALLdAwCz1QMAtM0DALVxAwC2cQMAt3EDAC6CAIAyggCAs/0DADaCAIC17QMAOoIAgD6CAIC2PQIAQoIAgEaCAIC7GQIAugECAL0JAgC8AQIAv70CAL4BAgBKggCAToIAgITE/QG+wPwBUoIAgFaCAIBaggCA79wDAF6CAIDhlAEAYoIAgOMQAwBmggCAgu0AAIHtAACA7QAA4TgGAOE8BwDjQAEA45QGAGqCAIBuggCAcoIAgHqCAICGgPwBh+j9AX6CAICCggCAhoIAgIqCAIDvnAEA79wGAKM1AwCOggCAkoIAgJaCAICaggCApvUCAKUlAwCeggCAq9ECAKrJAgCiggCApoIAgK91AgCuyQIArcECAKzJAgB2ggCAqoIAgK6CAICyggCA76T9AbaCAIC6ggCAvoIAgON4/QHCggCA4UD8AcaCAIDKggCAzoIAgNKCAIDWggCAs+X+AYItAACBFQAAgB0AANqCAIC25f4BtfX+Ad6CAIC7Yf8Butn+AeKCAICE5AMAv2n/Ab5h/wG9df8BvHn/Aaj9/gGpJf4Bqi3+Aasl/gGsPf4BrSX+Aa4t/gGvJf4BviwAAOaCAICGiAAAh+wAAOqCAIDuggCA8oIAgPaCAIC4gf8BuYH/AbqZ/wG7mf8BvIn/Ab21/wG+sf8Bv63/AbBd/gGx5f8Bsu3/AbPh/wG05f8Bte3/AbbZ/wG32f8Bo6X/AfqCAID+ggCAAoMAgAaDAICmpf8BpbX/AQqDAICrIf4Bqpn/AQ6DAIASgwCAryn+Aa4h/gGtNf4BrDn+ARaDAICz6f4BGoMAgB6DAIC2lf4BIoMAgCaDAIC16f4BurH+Abu5/gEqgwCALoMAgL51AQC/fQEAvJH+Ab2R/gGoHf4BqS3+Aaol/gGrPf4BrCX+Aa1R/gGuUf4Br1H+ATKDAIA2gwCAOoMAgD6DAIBCgwCARoMAgEqDAIBOgwCAuNkBALnZAQC67QEAu+EBALzhAQC94QEAvuEBAL/hAQCwMf4BsTn+AbIB/gGzAf4BtPUBALX9AQC29QEAt+kBAKOt/QFSgwCAvkwDAFqDAIBegwCAptH9AaWt/QFigwCAq/39Aar1/QFmgwCAaoMAgK85AgCuMQIArdX9AazV/QGA+QMAgfkDAIJNAACFdCAAboMAgITYAwCE1AQAcoMAgIZABACHVAMAdoMAgHqDAIB+gwCAgoMAgIaDAIC+8AUAqDECAKkxAgCqMQIAqzECAKyVAwCtnQMArpUDAK+NAwCKgwCAjoMAgJKDAICWgwCAhHwHAJqDAICegwCAooMAgLipAwC5qQMAumkDALtpAwC8eQMAvXkDAL5pAwC/aQMAsP0DALHNAwCyxQMAs60DALS5AwC1uQMAtq0DALelAwCmgwCAqoMAgK6DAICygwCAtoMAgLqDAIDv6AMAvoMAgOGQAQDCgwCA42wDAMqDAICAJQAAgSkAAIIdAADOgwCAs/kDANKDAICGaAcAh1wFANaDAIC2XQIAtV0CANqDAIC7SQIAunkCAN6DAIDigwCAvz0CAL49AgC9OQIAvFECAOaDAIDhPP4BvkAGAOPwAQDqgwCA7oMAgPKDAID2gwCA+oMAgP6DAIAChACABoIAgAaEAIAKhACADoQAgO/kAQAShACAFoQAgKNxAwAahACApdUCAB6EAIAihACAptUCACaEAIAqhACAq8ECAKrxAgCtsQIArNkCAK+1AgCutQIA4dz8AcaDAIDjUAQA74gEAID1BwCBCQAAgj0AAC6EAICEJAEAMoQAgDaEAIA6hACAPoQAgOFMBADv5BwA43QEALNdBgBChACAhgAMAIfgAwBGhACAtgUGALV1BgBKhACAuxEGALoJBgBOhACAUoQAgL/VBgC+1QYAvQEGALwJBgCojQYAqZUGAKqVBgCrpQYArL0GAK3FBgCuxQYAr/UGAFaEAIBahACAXoQAgGKEAIBmhACAaoQAgG6EAIByhACAuHUGALl9BgC6dQYAu80HALzVBwC93QcAvtUHAL/NBwCwjQYAsZUGALKdBgCzlQYAtFEGALVRBgC2UQYAt1EGAKMdBwCPFewBdoQAgHqEAIB+hACApkUHAKU1BwCChACAq1EHAKpJBwCGhACAioQAgK+VBwCulQcArUEHAKxJBwCeRfkBn6X5AZyR/QGdTfkBmlX9AZtd/QGYBfEBmZX+AZal8gGXYfEBlG31AZU19QGS4ekBk4X2AZBV7AGRXekBsbEdALClHQCziRkAskEcALUBJAC09RkAjoQAgJKEAICWhACAgqkDAIGhAwCAaQAAohUFAKMFAgCgFQYAob0FAKHFAQCahACAo80NAKLlAQClAQgApN0NAKfRCQCm2QkAqQEUAKilCACrxRQAqs0VAK3REQCsARAArwEcAK51EQCCEe8BgynvAZ6EAICihACAhuH1AYcR9gGEOeoBhY3qAYp59gGL4fEBvqQMAKqEAICO+f0BjzH+AYw98gGNYfIBkkn+AZOd/gGHCAwAhmwMAJax+gGX+QUAlFn6AZVZ+gGaYQYAm8EGAK6EAICyhACAtoQAgLqEAICcyQEAvoQAgKitBQCpuQUAqs0FAKvdBQCszQUArf0FAK71BQCvHQUAwoQAgMaEAIDKhACAzoQAgNKEAIDWhACA2oQAgN6EAIC4dQUAuX0FALoJBQC7CQUAvB0FAL0BBQC+AQUAvz0FALBxBQCxcQUAsnEFALNxBQC0UQUAtVEFALZRBQC3TQUAs0UEAOKEAIDmhACA6oQAgO6EAIC2fQQAtUUEAPKEAIC7tQQAurUEAPaEAID6hACAv5UEAL6VBAC9pQQAvKUEAP6EAICjAQQAAoUAgAaFAICmOQQACoUAgA6FAIClAQQAqvEEAKvxBAAShQCAhOwNAK7RBACv0QQArOEEAK3hBADh0AYAhAwMAOMoBwC+AAwAGoUAgO9EAwCGuAwAhywNAB6FAIDjlAEAIoUAgOH8AQBWgwCAJoUAgO/IBgAqhQCALoUAgDKFAICzjQMANoUAgLWNAwA6hQCAPoUAgLa1AwBChQCARoUAgLtBAwC6SQMAvUEDALxZAwC/QQMAvkkDAKNFDACmhACAFoUAgEqFAIBOhQCApn0MAKVFDABShQCAq4kMAKqBDABWhQCAWoUAgK+JDACugQwArYkMAKyRDACAFQ8AgR0PAIIhDwCzIQ4AXoUAgLUhDgC2JQ4AYoUAgGaFAIBqhQCAusEOALvBDgC8wQ4AvcEOAL7BDgC/wQ4AqK0OAKntDgCq5Q4Aq/0OAKzlDgCt6Q4ArjkOAK85DgBuhQCAcoUAgHaFAIB6hQCAgB0AAIEJAACCvQEAfoUAgLjNDwC51Q8AutUPALvlDwC8/Q8AvZUPAL6RDwC/kQ8AsEkOALFJDgCyWQ4As1kOALRJDgC1SQ4Atv0PALf1DwCjbQ8AgoUAgL6EAQCKhQCAjoUAgKZpDwClbQ8AkoUAgKuNDwCqjQ8AhogAAIdsAQCvjQ8Aro0PAK2NDwCsjQ8AloUAgLPtDgCahQCAnoUAgLaRDgCihQCApoUAgLXhDgC6tQ4Au70OAKqFAICuhQCAvn0BAL9lAQC8mQ4AvZkOAKgRDgCpJQ4AqiEOAKs5DgCsLQ4ArVUOAK5dDgCvUQ4AhKgAALKFAIC2hQCAuoUAgL6FAIDChQCAxoUAgMqFAIC47QEAuZUBALqVAQC7rQEAvLUBAL11AQC+fQEAv3UBALA1DgCxPQ4AsgkOALMJDgC0/QEAteUBALblAQC31QEAo6kNAM6FAIDShQCA1oUAgNqFAICm1Q0ApaUNAN6FAICr+Q0AqvENAOKFAIDmhQCAryECAK45AgCt3Q0ArN0NAIANAACBFQAAgh0AAOqFAIDuhQCA8oUAgIeQAwCGfAQAvuwEAPqFAID+hQCAAoYAgAaGAIAKhgCADoYAgBKGAICyLQ4AszUOALAtDgCxJQ4Ati0OALedDwC0LQ4AtSUOALq9DwC7jQ8AuKUPALm9DwC+LQ8AvxUPALyVDwC9JQ8AFoYAgBqGAIAehgCAIoYAgCaGAIAqhgCALoYAgDKGAICqpQ4Aq7UOAKjFDgCp3Q4Arp0OAK9VDgCspQ4ArZUOAKgNAgCpFQIAqhUCAKtNAgCsWQIArVkCAK5NAgCvRQIAhKgFADaGAIA6hgCAPoYAgIS4BABChgCARoYAgEqGAIC4/QIAuUEBALpBAQC7QQEAvEEBAL1JAQC+cQEAv3EBALAJAgCxCQIAss0CALPFAgC03QIAtcUCALbNAgC3xQIA4dQPAOMQDgDj9A4A4QwOAE6GAIBShgCAVoYAgFqGAIBehgCAYoYAgL4kBABqhgCA7AAAAO9EAADvzA4AboYAgIJlAACz2QIAgFUAAIFtAAC2nQIAcoYAgHaGAIC1lQIAuokCALuJAgCGqAQAh+AEAL5dAgC/RQIAvF0CAL1VAgCjHQUA9oUAgGaGAIB6hgCAfoYAgKZZBQClUQUAgoYAgKtNBQCqTQUAhoYAgIqGAICvgQUArpkFAK2RBQCsmQUAjoYAgLMpBgCShgCAloYAgLYpBgCahgCAnoYAgLUpBgC6pQYAu60GAKKGAICmhgCAvqUGAL+tBgC8tQYAva0GAKjlBgCp7QYAquUGAKv9BgCs5QYAre0GAK7lBgCvXQYAqoYAgK6GAICyhgCAtoYAgLqGAIC+hgCAwoYAgMaGAIC46QcAuekHALr9BwC79QcAvO0HAL1FBwC+TQcAv0UHALAlBgCxLQYAsiUGALM9BgC0JQYAtS0GALYlBgC32QcAo20HAIItAACBFQAAgB0AAMqGAICmbQcApW0HAM6GAICr6QcAquEHANKGAIC+oAEAr+kHAK7hBwCt6QcArPEHANaGAICzkQYAhugAAIcsAQC2QQEA2oYAgN6GAIC1UQEAuk0BALslAQDihgCA5oYAgL4lAQC/LQEAvDEBAL0xAQCwrQEAscUBALLBAQCzwQEAtMUBALXNAQC28QEAt/EBALgBAQC5AQEAugEBALsBAQC8AQEAvQEBAL4BAQC/AQEA6oYAgO6GAIDyhgCA9oYAgIaFAID6hgCA/oYAgAKHAICoTQYAqVkGAKo9BgCrNQYArP0BAK3lAQCu5QEAr9UBAKPVBQAGhwCACocAgA6HAIAShwCApgUCAKUVAgAWhwCAq2ECAKoJAgAahwCAHocAgK9pAgCuYQIArXUCAKx1AgAihwCAJocAgCqHAIAuhwCAMocAgOFkBQA2hwCA4+wFAIARAACBEQAAghEAAO/0BgA6hwCAPocAgEKHAIC+MAMAhMQCAEqHAICz4QMAhMAcALVRAwBOhwCAUocAgLZZAwBWhwCAWocAgLtxAwC6eQMAvbUAALxpAwC/tQAAvrUAAF6HAIDhlAEAYocAgONcAgCGcBwAh0QDAGaHAIBqhwCAbocAgHKHAIB2hwCAeocAgH6HAICChwCAhocAgO94AgCoVQIAqV0CAKphAgCrYQIArNECAK3RAgCu0QIAr9ECAIqHAICOhwCAkocAgJaHAICahwCAnocAgKKHAICmhwCAuGkBALlpAQC6CQEAuwkBALwZAQC9GQEAvgkBAL8FAQCwtQIAsb0CALK1AgCzaQEAtHkBALV5AQC2aQEAt2EBAOHEBwDjpAYA47gGAOF8BgCADQAAgTUAAII9AACqhwCArocAgLKHAIC+4B0AuocAgL6HAIDvYAAA7+gGAMKHAICjqQIAxocAgMqHAIDOhwCA0ocAgKYRAgClGQIA1ocAgKs5AgCqMQIAhkgcAIfMHACv/QEArv0BAK39AQCsIQIAqIUeAKmRHgCqkR4Aq60eAKy1HgCt1R4ArtEeAK/FHgC2hwCA2ocAgN6HAIDihwCA5ocAgOqHAIDuhwCA8ocAgLhhHwC5YR8AumEfALthHwC8YR8AvWEfAL5hHwC/YR8AsL0eALGFHgCyjR4As4UeALSdHgC1hR4Ato0eALeFHgCzGR4A9ocAgPqHAID+hwCAAogAgLZVHgC1PR4ABogAgLtBHgC6eR4ACogAgA6IAIC/QR4AvlkeAL1RHgC8WR4AEogAgKNdHgAWiACAGogAgKYRHgAeiACAIogAgKV5HgCqPR4AqwUeAISkAwC+qAMArh0eAK8FHgCsHR4ArRUeAKitHgCptR4AqrUeAKvJHgCs2R4ArdkeAK7JHgCvwR4AgO0BAIHxAQCC8QEAJogAgIaQAACHdAEAKogAgC6IAIC4yQEAuckBALrZAQC70QEAvPkBAL35AQC+mQEAv5UBALBFAQCxTQEAskUBALNdAQC0RQEAtU0BALZFAQC3+QEAsz0eADKIAIA2iACAOogAgD6IAIC2WR4AtVEeAEKIAIC7iQEAuoEBAEaIAIBKiACAv4kBAL6BAQC9iQEAvJEBAE6IAIBSiACAo3UeAFaIAIClGR4AWogAgF6IAICmER4ARocAgGKIAICrwQEAqskBAK3BAQCs2QEAr8EBAK7JAQBmiACAaogAgG6IAIByiACAdogAgIQYAgB6iACAfogAgIKIAICGiACAiogAgI6IAICSiACAmogAgJ6IAIC+cAMAgGkAAIFpAACCeQAAhAAEAIbwBACHdAMAoogAgO8MHwCmiACA4aweAKqIAIDj8B4ArogAgLKIAIC2iACAuogAgL6IAIDCiACAxogAgMqIAIDvVAIAzogAgNKIAIDWiACA46QCANqIAIDhgAEA3ogAgOKIAIDmiACA6ogAgO6IAICzRQMA8ogAgPaIAID6iACA/ogAgLZFAwC1VQMAAokAgLshAwC6SQMAvqAEAAqJAIC/KQMAviEDAL01AwC8OQMAqDkCAKk5AgCqjQIAq4UCAKydAgCthQIAroUCAK+1AgCA7QEAgfUBAIL1AQAOiQCAhpAEAIcEBQASiQCAFokAgLhFAQC5TQEAukUBALtdAQC8SQEAvUkBAL55AQC/eQEAsM0CALGlAgCyrQIAs6ECALSlAgC1rQIAtp0CALd9AQAaiQCAHokAgCKJAIAmiQCAKokAgC6JAIAyiQCA74gBAITsBADhVB4ANokAgONUAQA6iQCAPokAgEKJAIBGiQCAo0UCAEqJAIBOiQCAUokAgFaJAICmRQIApVUCAFqJAICrIQIAqkkCAF6JAIBiiQCArykCAK4hAgCtNQIArDkCAKg1BgCpPQYAqlEGAKttBgCseQYArWUGAK5tBgCvZQYABokAgGaJAIBqiQCAbokAgIAZAACBGQAAggUAAHKJAIC45QYAuekGALr5BgC7+QYAvOkGAL3pBgC+nQYAv5UGALAdBgCx5QYAsu0GALPlBgC0/QYAteEGALbhBgC34QYAs9kGAL7QAwB2iQCAeokAgH6JAIC25QYAtfEGAIKJAIC7IQYAutkGAIaYAACHeAMAvyUGAL45BgC9MQYAvDkGAIaJAICjnQYAiokAgI6JAICmoQYAkokAgJaJAICltQYAqp0GAKtlBgCaiQCAnokAgK59BgCvYQYArH0GAK11BgCo7QcAqSkGAKoxBgCrMQYArJEGAK2RBgCukQYAr5EGAKKJAICmiQCAqokAgK6JAICyiQCAtokAgLqJAIC+iQCAuIUGALmNBgC6hQYAu50GALyNBgC9vQYAvrUGAL95AQCw8QYAsfEGALLxBgCzxQYAtMEGALXBBgC2wQYAt8EGALO5BgDCiQCAxokAgMqJAIDOiQCAthEGALUZBgDSiQCAuzUGALo1BgDWiQCA2okAgL8FBgC+BQYAvREGALwlBgClQQYA3okAgOKJAICmSQYAgRUAAIB5AACj4QYAghUAAK1JBgCsfQYAr10GAK5dBgCENAEAlogAgKttBgCqbQYAvswDAOqJAICzlQIA7okAgLXZAgDyiQCA9okAgLbRAgCGgAwAhzgDALvFAgC6xQIAvRUDALwVAwC/FQMAvhUDAPqJAID+iQCA71gGAIRAAwACigCABooAgAqKAIAOigCAEooAgBaKAIAaigCAHooAgOE4BgAiigCA4yQGAL5wDACsSQIArUkCAK5dAgCvVQIAqB0CAKkFAgCqBQIAq10CAISoDAAmigCAKooAgC6KAIC+vA0AMooAgDaKAIA6igCAvE0DAL1VAwC+VQMAv2UDALjpAwC56QMAul0DALtVAwC0yQMAtckDALbZAwC32QMAsBkCALEZAgCy2QMAs9kDAD6KAIDj5AAAQooAgOG8AQBGigCAgj0AAIE9AACAPQAASooAgE6KAIBSigCAWooAgF6KAIDvzAMAYooAgGaKAICj3QMAaooAgIboDACHYA0AbooAgKaZAwClkQMAcooAgKuNAwCqjQMAdooAgHqKAICvXQIArl0CAK1dAgCsXQIAfooAgIKKAICGigCAiooAgI6KAICSigCAlooAgO/gAQCEvAwA4YwGAJqKAIDjHAYAnooAgKKKAICmigCAqooAgLPVAQCuigCAsooAgLaKAIC6igCAtpEBALWZAQC+igCAu70BALq9AQDCigCAyooAgL+dAQC+nQEAvZ0BALydAQCoBQ4AqQkOAKodDgCrFQ4ArFEOAK1RDgCuSQ4Ar0kOAFaKAICCzQ8AgfUPAID9DwDGigCAzooAgIYcAACHsAMAuOkOALnpDgC6/Q4Au/UOALztDgC9VQ8AvlEPAL9NDwCwOQ4AsTkOALIJDgCzCQ4AtBkOALUZDgC2DQ4At9kOAKOVDgDSigCA1ooAgNqKAIDeigCAptEOAKXZDgDiigCAq/0OAKr9DgDmigCA6ooAgK/dDgCu3Q4Ard0OAKzdDgDuigCAs/0PAPKKAID2igCAtoEPAPqKAID+igCAtZkPALqNDwC7ZQ8AAosAgAaLAIC+fQ8Av2UPALx9DwC9dQ8AqC0OAKk1DgCqMQ4AqzEOAKxVDgCtRQ4ArkUOAK91DgAKiwCADosAgBKLAIAWiwCAGosAgB6LAIAiiwCAJosAgLjpDgC59Q4Auv0OALv1DgC87Q4AvZEOAL6RDgC/kQ4AsA0OALHlDgCy7Q4As+UOALT9DgC15Q4Atu0OALflDgCjuQ4Agi0AAIEVAACAHQAAKosAgKbFDgCl3Q4ALosAgKshDgCqyQ4AMosAgL4sAQCvIQ4ArjkOAK0xDgCsOQ4AOosAgLZVAQC1RQEANosAgLNVAQA+iwCAhngAAIdcAAC/OQEAvjEBAL0lAQC8JQEAuzEBALpZAQDmiQCAQosAgEaLAIBKiwCAhAQDAKOJAgBOiwCApZkCAKaJAgBSiwCAvyg5AFaLAICqhQIAq+0CAKz5AgCt+QIAru0CAK/lAgDjWAIA78AOAOGIAQBaiwCAXosAgGKLAIBmiwCAaosAgG6LAIByiwCAdosAgHqLAIDvKAIA4ygOAH6LAIDhRA4AqbUCAKhpDQCrAQIAqgkCAK0BAgCsGQIArzECAK4BAgC+AAQAgosAgIaLAICKiwCAjosAgJKLAICWiwCAmosAgLnlAwC45QMAu+UDALrlAwC95QMAvOUDAL/lAwC+5QMAsSECALBJAgCzJQIAsiUCALUpAgC0IQIAtxUCALYVAgCowQIAqdECAKr1AgCrDQEArBUBAK0FAQCuBQEArzkBAJ6LAICiiwCAqosAgK6LAICyiwCAtosAgLqLAIC+iwCAuC0BALk9AQC67QEAu+UBALz9AQC95QEAvu0BAL/lAQCwLQEAsTUBALI9AQCzNQEAtC0BALUVAQC2HQEAtxUBAIA9AQCBpQAAgq0AAO/YAACGsAUAh9gFAMKLAIDv1A8AhGwEAOH0DgDGiwCA4xwPAMqLAIDhlAEAzosAgOMMDgCzPQIA0osAgNaLAIDaiwCA3osAgLbFAQC13QEA4osAgLuxAQC6qQEA5osAgOqLAIC/kQEAvqkBAL2hAQC8qQEAposAgO6LAICqRQYAq10GAKxFBgCtTQYArkUGAK99BgDyiwCA9osAgPqLAICj0QUA/osAgKUxBgCmKQYAAowAgAaMAICCHQAAgR0AAIAdAAAKjACADowAgBKMAIC+lAMAFowAgBqMAICGSAMAh8wDAB6MAIAijACAJowAgCqMAICoqQcAqakHAKq5BwCruQcArKkHAK2pBwCuAQcArzUHAC6MAIAyjACANowAgDqMAIA+jACAQowAgEaMAIBKjACAuC0HALnBAAC66QAAu+kAALz5AAC95QAAvuUAAL+dAACwUQcAsV0HALItBwCzJQcAtD0HALUlBwC2JQcAtxUHALMxBgBOjACAUowAgFaMAIBajACAtikGALUhBgBejACAu5kGALqVBgBijACAZowAgL/hBgC++QYAvfEGALz5BgBqjACAo3UGAG6MAIByjACApm0GAHaMAIB6jACApWUGAKrRBgCr3QYAfowAgIKMAICuvQYAr6UGAKy9BgCttQYAqOUBAKn1AQCq/QEAq/UBAKztAQCtNQEArj0BAK81AQCA+QAAgc0AAILFAACEYAEAvngBAIqMAICHrAAAhpABALjRAAC52QAAuuEAALvhAAC8kQAAvZ0AAL6VAAC/iQAAsE0BALFVAQCyXQEAs1UBALRNAQC18QAAtvEAALfxAACzdQIAjowAgJKMAICWjACAmowAgLa1AgC1ZQIAnowAgLuRAgC6iQIAoowAgKaMAIC/NQMAvokCAL2BAgC8iQIAqowAgKMxAgCujACAhMADAKbxAgCyjACAtowAgKUhAgCqzQIAq9UCALqMAIC+jACArs0CAK9xAwCszQIArcUCAKuNAACqjQAAqY0AAKg5AwCvvQAArr0AAK2FAACsjQAAqgAAAKsAAADCjACAxowAgMqMAIDOjACA0owAgNaMAIC7fQAAun0AALl9AAC4fQAAv90BAL7dAQC93QEAvN0BALO5AACysQAAsaEAALCtAAC3XQAAtl0AALWVAAC0lQAA2owAgN6MAIDijACA5owAgIE1AACADQAA6owAgII1AAC+rD0A7owAgPKMAICFaD0A+owAgP6MAICGODwAh8ACALNJAQACjQCA0AAAAAaNAIAKjQCAtkkBALVJAQAOjQCAuykBALolAQASjQCAFo0AgL8dAQC+HQEAvSEBALwpAQDjNDYA4QwGAOGwAgDjPAYAGo0AgB6NAIAijQCAJo0AgIQsPwC+oD8AKo0AgC6NAIDvfDcAMo0AgDaNAIDvGAEAOo0AgD6NAICGaD4Ah8w/AEKNAIBGjQCASo0AgO+UAABOjQCA4ZQBAFKNAIDjUAAAVo0AgILpPwCB6T8AgPE/AKMJPgCPASQA9owAgFqNAIBejQCApgk+AKUJPgBijQCAq2k+AKplPgBmjQCAao0AgK9dPgCuXT4ArWE+AKxpPgCeYTgAn3U4AJzBNACdtTkAmqU1AJt1NACYeTAAmXExAJYhLQCXhTEAlG0sAJVlLACSeSgAk6UtAJBRJACReSgAsQ0UALAFFACzARgAslUUALV5GAC0tRgAbo0AgHKNAIB2jQCAeo0AgH6NAICCjQCAotE8AKMlAQCgdTkAob08AKHJAACGjQCAowEEAKLlAAClHQQApPUEAKf5CACmAQgAqQEMAKhtCACrzQwAqs0MAK3REACsARAAr9URAK7ZEACCBSUAgy0lAIqNAICOjQCAhsEsAIcRLQCEHSkAhRUpAIopLQCLZSwAko0AgJaNAICOHTAAj8E0AIzZMACNHTEAkmE1AJPNNQCajQCAno0AgJZhOQCXmTgAlKE4AJV9OQCaYT0AmwU9AKKNAICmjQCAqo0AgK6NAICc6QAAso0AgLaNAIC6jQCAvo0AgMKNAICGjACAxo0AgMqNAIDOjQCAqJE+AKmRPgCq7T4Aq+E+AKzhPgCt6T4ArtE+AK/RPgCwUT4AsVE+ALJRPgCzUT4AtHk+ALV5PgC2bT4At2U+ALghPgC5IT4Aujk+ALs5PgC8KT4AvRU+AL4RPgC/DT4AgJkDAIGZAwCCBQAA0o0AgL5UAwDhsD0A2o0AgONAPgCEOAIA3o0AgOKNAIDv9D8A5o0AgOqNAICGmAQAhxwDALMFPQCECAQA7o0AgPKNAID2jQCAtgk9ALUJPQD6jQCAu/U9ALr1PQD+jQCAAo4AgL/dPQC+3T0AveU9ALzlPQAGjgCACo4AgKPNPQC+xAQApcE9AA6OAIASjgCApsE9ABaOAIAajgCAqz09AKo9PQCtLT0ArC09AK8VPQCuFT0AtmkCAB6OAIAijgCAtWkCACaOAICzSQIAKo4AgC6OAIC+qQMAv6kDALzBAwC9wQMAuvkDALv5AwAyjgCANo4AgKgtAwCpnQMAqpUDAKutAwCstQMArb0DAK61AwCv2QMAgA0AAIEVAACCHQAAOo4AgD6OAIBCjgCAh7QFAIacBAC4MQIAuTECALo1AgC7zQIAvNUCAL3dAgC+1QIAv8kCALBpAgCxaQIAskECALNBAgC0OQIAtTkCALYRAgC3EQIASo4AgOM0PgBOjgCA4aw+AFKOAIDvfAMAVo4AgFqOAIBejgCA45QDAGKOAIDhfD4AZo4AgO/oPgBqjgCAbo4AgHKOAIB2jgCAo1UDAHqOAICldQMAfo4AgIKOAICmdQMAho4AgIqOAICr5QIAquUCAK3dAgCs3QIAr7UCAK61AgCoGQYAqSEGAKohBgCrPQYArCUGAK1dBgCuVQYAr00GAEaOAICOjgCAko4AgJaOAICajgCAno4AgKKOAICmjgCAuOUGALmBBgC6gQYAu50GALyJBgC9iQYAvqEGAL+hBgCwPQYAsQ0GALIFBgCz7QYAtPUGALXhBgC24QYAt90GALOpBgCCLQAAgRUAAIAdAACqjgCAtt0GALWtBgCujgCAu8kGALr5BgCyjgCAhOADAL8lBgC+MQYAvTkGALzRBgC+iAMAo+0GANaNAIC2jgCAppkGALqOAIC+jgCApekGAKq9BgCrjQYAhkgAAIdsAACudQYAr2EGAKyVBgCtfQYAqIEGAKmNBgCqmQYAq5UGAKyNBgCttQYArrEGAK+tBgDCjgCAxo4AgMqOAIDOjgCA0o4AgNaOAIDajgCA3o4AgLilBgC5YQEAumEBALthAQC8YQEAvWEBAL5hAQC/YQEAsNkGALHZBgCyqQYAs6kGALS9BgC1oQYAtqEGALedBgCzEQYA4o4AgOaOAIDqjgCA7o4AgLY1BgC1BQYA8o4AgLsdBgC6HQYA9o4AgPqOAIC/ZQYAvnkGAL19BgC8fQYA/o4AgKNVBgACjwCABo8AgKZxBgAKjwCADo8AgKVBBgCqWQYAq1kGABKPAIAWjwCArj0GAK8hBgCsOQYArTkGAKjVAgCp3QIAqikDAKspAwCsOQMArTkDAK4pAwCvKQMAGo8AgB6PAIAijwCAKo8AgC6PAIAyjwCAvrgDADaPAIC47QMAuYUDALqBAwC7gQMAvIUDAL2NAwC+sQMAv7EDALBZAwCxWQMAsu0DALPlAwC0/QMAteUDALblAwC31QMAgKEAAIGhAACCoQAAvoAMADqPAICEmAIAPo8AgEKPAICGAAwAh/QDAEaPAIBKjwCATo8AgFKPAIBWjwCAhLADALPhAwBajwCAXo8AgGKPAIBmjwCAtvkDALXxAwBqjwCAu90DALrdAwBujwCAco8AgL9hAwC+eQMAvXEDALx5AwB2jwCAeo8AgH6PAICjLQIAgo8AgKU9AgCmNQIAho8AgIqPAICOjwCAqhECAKsRAgCstQIArb0CAK61AgCvrQIA48QDAOMQBwDhuAEA4WwHAIBxAACBcQAAggUAAJKPAICGwAwAh1QNAJqPAICejwCA77ADAO8ABwCijwCApo8AgKqPAICujwCAso8AgLaPAIC6jwCAvo8AgMKPAIDvpAEAhKANAOGABgDGjwCA4xABAMqPAIDOjwCA0o8AgNaPAICz9QEA2o8AgN6PAIDijwCA5o8AgLZNAQC1SQEA6o8AgLtRAQC6SQEA7o8AgPKPAIC/OQEAvjEBAL1BAQC8SQEAqC0OAKk1DgCqPQ4AqzEOAKyBDgCtjQ4AroUOAK+1DgCWjwCA9o8AgPqPAID+jwCAgBkAAIEZAACCBQAAApAAgLidDgC5rQ4AuqUOALtNDwC8VQ8AvV0PAL5JDwC/QQ8AsM0OALHVDgCy3Q4As9UOALS1DgC1vQ4AtrUOALetDgCjtQ4AvogDAAaQAIAKkACADpAAgKYNDgClCQ4AEpAAgKsRDgCqCQ4AhggAAIdsAwCveQ4ArnEOAK0BDgCsCQ4AFpAAgBqQAIAekACAs7UPACKQAIC1VQ8Atl0PACaPAIAmkACAKpAAgLp5DwC7eQ8AvGkPAL1dDwC+SQ8Av0kPAKhpDgCpaQ4AqnEOAKtxDgCskQ4ArZEOAK6RDgCvkQ4ALpAAgDKQAIA2kACAOpAAgD6QAIBCkACARpAAgEqQAIC4hQ4AuY0OALqFDgC7nQ4AvI0OAL29DgC+tQ4Av3kBALDxDgCx8Q4AsvEOALPFDgC0wQ4AtcEOALbBDgC3wQ4Ao/kOAE6QAIBSkACAVpAAgFqQAICmEQ4ApRkOAF6QAICrNQ4AqjUOAGKQAIBmkACArwUOAK4FDgCtEQ4ArCUOAIANAACBFQAAgh0AAGqQAIBukACAcpAAgISUAQC+lAEAhkAHAIf0AAB6kACAfpAAgIKQAICGkACAipAAgI6QAICojQIAqZUCAKqVAgCrzQIArNUCAK3dAgCuyQIAr/0CAJKQAICWkACAmpAAgJ6QAIC/ABQAopAAgKaQAICqkACAuH0DALnBAwC6wQMAu8EDALzBAwC9yQMAvvEDAL/xAwCwhQIAsUUDALJNAwCzRQMAtF0DALVFAwC2TQMAt0UDALMdAgCukACAspAAgLaQAIC6kACAtl0CALVdAgC+kACAu4EDALpBAgDCkACAxpAAgL+BAwC+mQMAvZEDALyZAwDKkACAo1kCAM6QAIDSkACAphkCANaQAIDakACApRkCAKoFAgCrxQMA3pAAgOKQAICu3QMAr8UDAKzdAwCt1QMA6pAAgOPMAACEBAIA4bwBAIDJAQCB/QEAgvUBAL4QBQDukACAvigEAPKQAID2kACA+pAAgO8QAAD+kACAApEAgIbgBACH9AIABpEAgAqRAIDj/A8ADpEAgOHgDwASkQCA7xQPABaRAIAakQCAHpEAgCKRAIAmkQCAKpEAgC6RAIAykQCANpEAgDqRAIA+kQCAQpEAgEaRAIBKkQCA7+ABAIUEEgDh3A4ATpEAgOMcDgCAKQAAgR0AAIIFAABSkQCAszECAFqRAICEzAUAXpEAgGKRAIC2KQIAtSECAGaRAIC7zQEAus0BAGqRAIBukQCAv3UBAL7JAQC9wQEAvMkBAKjpBQCp6QUAqvkFAKv5BQCs6QUArekFAK45BgCvOQYA5pAAgFaRAICGiAAAhwADAHKRAIB2kQCAepEAgH6RAIC40QYAudkGALrhBgC74QYAvJEGAL2dBgC+lQYAv4kGALBJBgCxSQYAsl0GALNVBgC0TQYAtfEGALbxBgC38QYAo3EFAIKRAICGkQCAipEAgI6RAICmaQUApWEFAJKRAICrjQYAqo0GAJaRAICakQCArzUGAK6JBgCtgQYArIkGAJ6RAICikQCAs+EHAKaRAIC14QcAqpEAgK6RAIC25QcAdpAAgLKRAIC7vQcAuqEHAL2VBwC8qQcAv5UHAL6VBwCoAQYAqSUGAKohBgCrIQYArCEGAK0tBgCuJQYAr1UGALaRAICCHQAAgR0AAIAdAAC6kQCAvpEAgMKRAIC+MAEAuDkGALk5BgC6yQYAu8kGALzZBgC92QYAvskGAL/JBgCwLQYAsTEGALI1BgCzCQYAtBkGALUZBgC2CQYAtwkGAKOpBgCEjAIAhigfAIdEAQDKkQCApq0GAKWpBgDOkQCAq/UGAKrpBgDSkQCA1pEAgK/dBgCu3QYArd0GAKzhBgDakQCAsxUGAN6RAIDikQCAtj0GAOaRAIDqkQCAtTUGALrZAQC72QEA7pEAgPKRAIC+fQEAv2UBALx9AQC9dQEAqMUFAKnJBQCq2QUAq9EFAKz5BQCt+QUArikCAK8pAgD2kQCA+pEAgP6RAIACkgCAjAAAAAaSAIAKkgCADpIAgLjtAgC5hQIAuo0CALuBAgC8hQIAvY0CAL69AgC/fQMAsFkCALFZAgCy7QIAs+UCALT9AgC15QIAtuUCALfVAgCjUQUAEpIAgBaSAIAakgCAHpIAgKZ5BQClcQUAIpIAgKudAgCqnQIAJpIAgCqSAICvIQIArjkCAK0xAgCsOQIAghEAAC6SAICAZQAAgQkAADKSAIC+mAMAOpIAgD6SAICEJAMAQpIAgIdoAwCGjBwARpIAgEqSAIBOkgCAUpIAgFaSAIBakgCAs6ECAITAHAC10QIAXpIAgGKSAIC21QIAZpIAgGqSAIC7wQIAuvUCAL0RAQC82QIAvxEBAL4ZAQBukgCAcpIAgHaSAIB6kgCAfpIAgIKSAICGkgCA77gGAIqSAIDhnAQAjpIAgON0BgCSkgCAlpIAgJqSAICekgCAgPkAAIH5AACCBQAAopIAgL5YHACEWB8A71wAAO9ABgDhkAEA4fwGAOM8AADjdAYAqpIAgK6SAICGmBwAh/QcAKNpAgC+DB8AspIAgLaSAIC6kgCAph0CAKUZAgC+kgCAqwkCAKo9AgDCkgCAxpIAgK/ZAQCu0QEArdkBAKwRAgCokR0AqZkdAKqhHQCroR0ArNEdAK3dHQCu1R0Ar8kdADaSAICmkgCAypIAgM6SAIDSkgCA1pIAgNqSAIDekgCAuHkeALl5HgC6zR4Au8UeALzdHgC9xR4AvsUeAL/1HgCwuR0AsY0dALKFHQCzTR4AtFUeALVdHgC2VR4At0keALjNHwC51R8Aut0fALvVHwC88R8Avf0fAL7pHwC/6R8AsKUfALGxHwCysR8As40fALSVHwC19R8Atv0fALf1HwCoGR4AqRkeAKotHgCrPR4ArCUeAK0tHgCuJR4Ar90fAOKSAIDmkgCA6pIAgO6SAIDykgCAxpEAgPaSAID6kgCAs+UfAP6SAIACkwCABpMAgAqTAIC27R8Ate0fAA6TAIC7NR4AuiEeABKTAIAWkwCAv3EeAL4RHgC9GR4AvCUeAIJpAACjoR8AgFkAAIFRAACmqR8AGpMAgB6TAIClqR8AqmUeAKtxHgCGAAQAh+wBAK5VHgCvNR4ArGEeAK1dHgCoMR4AqTEeAKpBHgCrQR4ArEEeAK1JHgCucR4Ar3EeACKTAIAmkwCAKpMAgC6TAIAykwCANpMAgDqTAIA+kwCAuCkBALkpAQC6OQEAuzUBALwtAQC90QAAvtEAAL/RAACwyQEAsckBALLZAQCz2QEAtMkBALXJAQC2GQEAtxkBALPJHQBCkwCARpMAgEqTAIBOkwCAtskdALXJHQBSkwCAuw0CALoNAgBWkwCAWpMAgL8NAgC+DQIAvQ0CALwNAgBekwCAo40dAGKTAIBmkwCApo0dAGqTAIBukwCApY0dAKpJAgCrSQIAcpMAgHaTAICuSQIAr0kCAKxJAgCtSQIAgA0AAIERAACCEQAAepMAgO/MAgB+kwCAgpMAgISQAgDjLAIAvigDAOHYAQCKkwCAhhAEAIfUAwCOkwCAkpMAgLNhAwCWkwCAmpMAgJ6TAICikwCAtnkDALVxAwCmkwCAu10DALpdAwCqkwCArpMAgL/hAAC++QAAvfEAALz5AACjoQIAspMAgLaTAIC6kwCAvpMAgKa5AgClsQIAwpMAgKudAgCqnQIAxpMAgMqTAICvIQEArjkBAK0xAQCsOQEAzpMAgNKTAIDvZB8A1pMAgNqTAIDekwCA4pMAgOaTAICADQAAgREAAIIVAADqkwCA4eAcAO6TAIDjiB8A8pMAgISAAgC+jAUAh0gFAIYsBAD6kwCA/pMAgO+kHgDv9B4A4QAeAOFQHwDjLB4A47AeAAKUAIAGlACACpQAgA6UAIASlACAFpQAgISEBACzcQEAGpQAgLUdAQC2FQEAHpQAgCKUAIAmlACAugEBALsBAQC89QAAvf0AAL71AAC/7QAAqK0GAKm9BgCqtQYAq8kGAKzZBgCt2QYArskGAK/BBgAqlACALpQAgDKUAIA2lACAOpQAgD6UAIBClACARpQAgLhtBwC5BQcAug0HALsBBwC8AQcAvQEHAL4BBwC/AQcAsIkGALGJBgCybQcAs2UHALR9BwC1ZQcAtmUHALdVBwCGkwCAozkGAEqUAID2kwCApl0GAE6UAIBSlACApVUGAKpJBgCrSQYAVpQAgFqUAICuvQcAr6UHAKy9BwCttQcAgG0AAIEJAACCGQAAXpQAgGKUAIC+nAMAZpQAgGqUAICGQAAAh2AAAG6UAIBylACAdpQAgHqUAIB+lACAgpQAgKiRBgCpkQYAqrkGAKu5BgCsqQYArakGAK7ZBgCv2QYAhpQAgIqUAICOlACAkpQAgJaUAICalACAnpQAgKKUAIC4cQEAuXEBALpxAQC7cQEAvNkBAL3BAQC+wQEAv/UBALCxBgCxuQYAsokGALOJBgC0UQEAtVEBALZRAQC3UQEAszEGAKaUAICqlACArpQAgLKUAIC2KQYAtSEGALaUAIC7fQYAunUGALqUAIC+lACAv5UBAL6VAQC9XQYAvF0GAMKUAICjdQYAxpQAgMqUAICmbQYAzpQAgNKUAIClZQYAqjEGAKs5BgCErAEAvqABAK7RAQCv0QEArBkGAK0ZBgCo3QIAqe0CAKrlAgCr/QIArOUCAK3tAgCu5QIArz0DANqUAIDelACA4pQAgL5kDADmlACA6pQAgO6UAIDylACAuMkDALnJAwC62QMAu9EDALz5AwC9+QMAvpkDAL+VAwCwRQMAsU0DALJFAwCzXQMAtEUDALVNAwC2RQMAt/kDAIFVAwCASQMAs2UCAIJVAwC1ZQIA9pQAgPqUAIC2ZQIAhgAMAIfkAwC7gQMAuokDAL2BAwC8mQMAv4EDAL6JAwCjLQIA/pQAgAKVAIAGlQCACpUAgKYtAgClLQIADpUAgKvJAwCqwQMAEpUAgBaVAICvyQMArsEDAK3JAwCs0QMA49gGAOGsBwDhnAYA45wGABqVAICEWA0AHpUAgCKVAIAmlQCAKpUAgC6VAIAylQCA7xwBADaVAIA6lQCA70AGAIB5AACBFQAAghEAAIQADAA+lQCA46wAAEKVAIDhpAEASpUAgO9wAACGyAwAh6QNAE6VAIBSlQCAVpUAgFqVAIC6yQUAu8kFALilBQC5zQUAvvkFAL/5BQC8zQUAvcUFALKlBQCzrQUAsBEGALERBgC2rQUAt50FALS1BQC1rQUAqmEGAKthBgConQYAqZUGAK5hBgCvYQYArHEGAK1xBgBelQCAYpUAgGaVAIBqlQCAbpUAgHKVAIC+sAwAdpUAgKghDgCpIQ4AqiEOAKs9DgCsJQ4ArS0OAK4lDgCviQ4ARpUAgHqVAIB+lQCAgpUAgIaVAICKlQCAjpUAgJKVAIC4UQ8AuV0PALpVDwC7bQ8AvHUPAL19DwC+dQ8Av2kPALD5DgCxoQ4AsqEOALOhDgC0oQ4AtakOALaRDgC3kQ4As6kOAJaVAIDWlACAmpUAgJ6VAIC2rQ4Ata0OAKKVAIC7ZQ4Auj0OAKaVAICqlQCAv20OAL5lDgC9dQ4AvHUOAIIZAACj7Q4AgGUAAIEZAACm6Q4ArpUAgLKVAICl6Q4AqnkOAKshDgC2lQCAupUAgK4hDgCvKQ4ArDEOAK0xDgCoYQ4AqXUOAKp9DgCrdQ4ArG0OAK31DgCu/Q4Ar/UOAIaAAQCHpAEAvpUAgMKVAIDGlQCAypUAgM6VAIDSlQCAuHUBALl9AQC6dQEAu8kBALzdAQC9xQEAvsUBAL/1AQCwjQ4AsZUOALKdDgCzkQ4AtFUBALVdAQC2VQEAt00BALP1DgDWlQCA2pUAgN6VAIDilQCAtnUOALXlDgDmlQCAu1EOALpJDgDqlQCA7pUAgL+ZAQC+kQEAvUUOALxJDgDylQCAo7EOAPaVAID6lQCApjEOAP6VAIAClgCApaEOAKoNDgCrFQ4ABpYAgAqWAICu1QEAr90BAKwNDgCtAQ4AqO0CAKktAwCqJQMAqz0DAKwlAwCtLQMAriUDAK+ZAwAOlgCAEpYAgBaWAIAalgCAHpYAgCKWAIC+dAIAKpYAgLiNAwC5kQMAupEDALulAwC8vQMAvXUAAL59AAC/dQAAsOkDALHpAwCy+QMAs/EDALTZAwC12QMAtrkDALe1AwCArQAAgbUAAIK9AACzoQMALpYAgLWhAwC2oQMAMpYAgITgAgA2lgCAuiEDALshAwC8IQMAvSkDAL4RAwC/EQMAo+0DAIXABACFtG8AOpYAgD6WAICm7QMApe0DAEKWAICrbQMAqm0DAIZIBQCHbAMAr10DAK5dAwCtZQMArG0DAEaWAIDjAA4A71hsAOG0DwBKlgCATpYAgFKWAIBWlgCAoakDAKD9DwCjwQMAog0DAOHgAwDv4A8A4+QDAFqWAIBelgCAYpYAgIQEBAC+BAQAZpYAgO+UAwBqlgCAbpYAgHKWAIDj1AMAdpYAgOFUAAB6lgCAfpYAgIKWAICGlgCAgA0AAIEVAACCHQAAipYAgI6WAICSlgCAj5EbAO+cDgCE4AcA4dQOAJqWAIDj8A4AnpYAgKKWAICGGAcAh5AEAJnlFwCY5RcAm+kLAJo5CwCd/QoAnPELAJ9VDwCeXQ8AkSkfAJDNGwCTJR8Aks0fAJXREwCUKRMAlxkXAJZ1EwCM4RAAjSUQAI4tEACP+QwAJpYAgJaWAICKORQAi5UUAITpGACFBRgAhuUYAIfxFACmlgCAqpYAgIIxHACDFRwAnKkEAK6WAICylgCAtpYAgLqWAIC+lgCAmtEEAJt9BACUTQ0AleUIAJblCACXtQgAwpYAgMaWAICSWQwAk1kMAKGRAADKlgCAowF8AKKZAACluXwApJF8AKeZeACm4X0AqYF5AKiheACriXQAqgF0AK0BcACsWXQAr4VwAK6dcACx4WwAsAFsALMBaACyHWwAtfVoALT1aADOlgCA0pYAgNaWAIDalgCA3pYAgOKWAIDmlgCA6pYAgO6WAIDylgCAqD0HAKmVBwCqlQcAq6kHAKzdBwCtxQcArsUHAK8dBgD2lgCAgh0AAIEdAACAHQAA+pYAgP6WAIAClwCAvmABALgZBgC5GQYAuikGALslBgC8IQYAvSEGAL4hBgC/IQYAsHEGALFxBgCycQYAs3EGALRNBgC1NQYAtj0GALctBgCzHQcACpcAgIYoAACHqAAADpcAgLZFBwC1VQcAEpcAgLu1BgC6tQYAFpcAgBqXAIC/8QYAvokGAL2lBgC8pQYAHpcAgKNZBwAilwCAJpcAgKYBBwAqlwCALpcAgKURBwCq8QYAq/EGADKXAIA2lwCArs0GAK+1BgCs4QYAreEGAKipBQCptQUAqr0FAKs9AgCsJQIArVECAK5RAgCvUQIAOpcAgD6XAIBClwCARpcAgIQ8AwBKlwCATpcAgFKXAIC4pQIAua0CALqlAgC7vQIAvKUCAL2tAgC+pQIAv30DALAxAgCxMQIAshkCALMZAgC09QIAta0CALalAgC3nQIAVpcAgFqXAIBelwCAszkFAGKXAIC1oQIAtt0CAGaXAIBqlwCAbpcAgLr5AgC7+QIAvMECAL3BAgC+PQIAv2UCAHKXAICmgQIApf0CAHqXAICjZQUAvlh8AIbYfACHnHwArzkCAK5hAgCtnQIArJ0CAKulAgCqpQIAfpcAgIKXAICohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAIGFAQCAhQEAhpcAgILtAQCKlwCAjpcAgJKXAICWlwCAuHUBALl9AQC6dQEAu80BALzVAQC93QEAvskBAL/BAQCwtQIAsb0CALKBAgCzgQIAtFEBALVRAQC2UQEAt1EBAJqXAICelwCAopcAgKaXAIDhMAYA4WQHAOMoBgDjxAYAhCB9AKqXAIDvbAAA7xgGAK6XAICylwCAtpcAgLqXAICzXQIAvkh8AL6XAIDClwCAxpcAgLYVAgC1dQIAypcAgLs5AgC6MQIAzpcAgNKXAIC/1QEAvtUBAL0VAgC8FQIAo519AHaXAIDWlwCA2pcAgN6XAICm1X0ApbV9AOKXAICr+X0AqvF9AOaXAIDqlwCArxV+AK4VfgCt1X0ArNV9AIBNAACBVQAAglUAALOxfgDulwCAtWV/ALZtfwDylwCAhkADAIcEAwC66X8Au+l/ALz5fwC9+X8Avt1/AL/NfwD2lwCA+pcAgAaXAID+lwCAApgAgAaYAIAKmACADpgAgKhtfgCpXX4AqlV+AKuFfwCsgX8ArYF/AK6BfwCvgX8AsEF/ALFBfwCyQX8As0F/ALR1fwC1ZX8Atm1/ALdlfwC4XX8AuS1/ALolfwC7PX8AvC1/AL0dfwC+FX8Av/UAAKP9fwASmACAFpgAgBqYAIAemACApiF+AKUpfgAimACAq6V+AKqlfgAmmACAKpgAgK+BfgCukX4ArbV+AKy1fgAumACAMpgAgDaYAIA6mACAPpgAgEKYAIBGmACASpgAgIA9AACBCQAAghkAAE6YAIBSmACAhLgBAL6wAQBWmACAqK0BAKnVAQCq1QEAqw0BAKwVAQCtGQEArgkBAK8JAQCGAAQAhwQBAFqYAIBemACAYpgAgGaYAIBqmACAbpgAgLjtAAC5hQAAuo0AALuFAAC8nQAAvYUAAL6NAAC/hQAAsHkBALF5AQCy7QAAs+UAALT9AAC15QAAtuUAALfVAACzXQIAcpgAgHaYAIB6mACAfpgAgLaZAgC1nQIAgpgAgLu9AgC6vQIAhpgAgIqYAIC/IQMAvjkDAL0xAwC8OQMAvigDAKMZAgCOmACAkpgAgKbdAgCWmACAmpgAgKXZAgCq+QIAq/kCAJ6YAICimACArn0DAK9lAwCsfQMArXUDAL7IBACmmACAqpgAgL7EBQCumACAspgAgLaYAIC6mACAgD0AAIEJAACCGQAAvpgAgMKYAICEOAMAypgAgM6YAIDveAIA0pgAgIZIBACHVAMA1pgAgNqYAIDemACA4pgAgOaYAIDqmACA7pgAgPKYAIDjVAIA9pgAgOFAAQD6mACA/pgAgOMkfwACmQCA4Zx8AAaZAIAKmQCADpkAgBKZAICEbAUAFpkAgBqZAIAemQCAIpkAgO8YfwAmmQCAKpkAgLPxAgAumQCAMpkAgDqZAIA+mQCAtukCALXhAgBCmQCAu3EBALppAQCHoAUAhswEAL85AQC+WQEAvVEBALxhAQDhQH8ARpkAgOM4fgCEwAQAgtkAAO8UAACApQAAgdkAAEqZAIDjwAAATpkAgOHUAQBSmQCAVpkAgO+EfgBamQCAqs0BAKvVAQBemQCAYpkAgK79AQCvnQEArMUBAK31AQBmmQCAo1UCAGqZAIBumQCApk0CAHKZAIB2mQCApUUCAMaYAIA2mQCAepkAgH6ZAICCmQCAhpkAgIqZAICOmQCAqJkGAKmZBgCq7QYAq/0GAKzlBgCt7QYAruUGAK/dBgCwpQYAsa0GALKlBgCzuQYAtK0GALVVBwC2UQcAt00HALh1BwC5fQcAunUHALtJBwC8WQcAvVkHAL5JBwC/RQcAs0UGAJKZAICWmQCAmpkAgJ6ZAIC2TQYAtU0GAKKZAIC7SQYAukEGAIYIAACHjAAAv7EHAL5JBgC9TQYAvFEGAIJdAACjAQYAgEUAAIFdAACmCQYAqpkAgK6ZAIClCQYAqgUGAKsNBgCymQCAtpkAgK4NBgCv9QcArBUGAK0JBgCoTQYAqVUGAKpVBgCriQYArLEGAK29BgCuqQYAr6kGAKaZAIC6mQCAvpkAgMKZAIDGmQCAypkAgM6ZAIDSmQCAuEkBALlJAQC6WQEAu1kBALxJAQC9SQEAvt0BAL/VAQCw3QYAsa0GALKlBgCzjQYAtJkGALWZBgC2jQYAt4UGALPdBgDWmQCA2pkAgN6ZAIDimQCAtj0GALU5BgDmmQCAu2kGALoZBgDqmQCA7pkAgL9dBgC+XQYAvVkGALxxBgDymQCAo5kGAPaZAID6mQCApnkGAP6ZAIACmgCApX0GAKpdBgCrLQYABpoAgAqaAICuGQYArxkGAKw1BgCtHQYAqNUCAKndAgCq4QIAq+ECAKw1AwCtPQMArjUDAK8tAwCAzQMAgQkAAIIZAAAOmgCAEpoAgIQYAgC+dAMAGpoAgLjpAwC56QMAuokDALuFAwC8nQMAvYEDAL6BAwC/tQMAsFUDALFdAwCyVQMAs+kDALT5AwC1+QMAtukDALfhAwCGIAwAhxADAB6aAIAimgCAJpoAgCqaAIAumgCA71wCADKaAIDhFAAANpoAgOOIAgC++AwAOpoAgD6aAIBCmgCAu/kDALrxAwC+gA0ARpoAgL9dAwC+XQMAvV0DALzhAwCzCQIASpoAgE6aAIBSmgCAVpoAgLbdAwC13QMAWpoAgKipBgCpqQYAqrkGAKu5BgCsqQYArakGAK4dBQCvFQUAXpoAgGKaAIBmmgCAapoAgG6aAIBymgCAdpoAgHqaAIC4GQUAuS0FALolBQC7yQUAvNkFAL3FBQC+zQUAv8UFALBtBQCxdQUAsnUFALNFBQC0XQUAtT0FALY1BQC3KQUA4fQGAOFUBwDjFAYA47wGAIEJAACAqQAAfpoAgII5AACE7A0AgpoAgIeIDACGDAwAipoAgI6aAIDvzAcA78QHAKMpAwCSmgCAlpoAgJqaAICemgCApv0CAKX9AgCimgCAq9kCAKrRAgCmmgCAqpoAgK99AgCufQIArX0CAKzBAgCoPQ4AqY0OAKqFDgCrnQ4ArIUOAK2NDgCuuQ4Ar7UOAIaaAICumgCAspoAgLaaAIC6mgCAvpoAgMKaAIDGmgCAuL0OALllDwC6bQ8Au2UPALx9DwC9ZQ8Avm0PAL9lDwCw1Q4Asd0OALLVDgCzoQ4AtJUOALWdDgC2lQ4At40OALMNDgDKmgCAzpoAgNKaAIDWmgCAtg0OALUNDgDamgCAuxkOALoRDgDemgCAFpoAgL9ZDgC+UQ4AvXUOALwBDgDimgCAo0kOAOaaAIDqmgCApkkOAO6aAIDymgCApUkOAKpVDgCrXQ4AhKQDAPaaAICuFQ4Arx0OAKxFDgCtMQ4AqLEOAKmxDgCqzQ4Aq8UOAKzdDgCtxQ4ArsUOAK/1DgCA7QEAgfEBAILxAQD6mgCAhpABAIe0AQD+mgCAApsAgLjFAQC5zQEAusUBALvdAQC8zQEAvf0BAL6ZAQC/lQEAsI0OALFBAQCyQQEAs0EBALRBAQC1QQEAtkEBALdBAQCzRQ4ABpsAgAqbAIAOmwCAEpsAgLZFDgC1VQ4AFpsAgLuFAQC6SQ4AGpsAgB6bAIC/hQEAvoUBAL2VAQC8lQEAIpsAgKMBDgAmmwCAKpsAgKYBDgAumwCAMpsAgKURDgCqDQ4Aq8EBADabAIA6mwCArsEBAK/BAQCs0QEArdEBAKgtAwCpPQMAqjUDAKuJAwCsmQMArZkDAK6JAwCvgQMAPpsAgEKbAIBGmwCASpsAgE6bAIBSmwCAVpsAgFqbAIC4rQMAuWUAALptAAC7ZQAAvH0AAL1lAAC+bQAAv2UAALDJAwCxyQMAsqkDALOlAwC0vQMAtaEDALahAwC3lQMAgL0AAIEJAACCGQAAXpsAgGKbAIC+2AMAapsAgG6bAICErAIAcpsAgIfoAwCGDAQAdpsAgHqbAIB+mwCAgpsAgLP9AwCGmwCAipsAgI6bAICSmwCAtlkDALVRAwCWmwCAu00DALpNAwCamwCAnpsAgL8lAwC+OQMAvTEDALw9AwCimwCAppsAgKqbAICumwCA71gPALKbAIC2mwCAupsAgOOQDgC+mwCA4bAPAMKbAIDGmwCAypsAgM6bAIDSmwCAgHUAAIF9AACCdQAAhBgFAO88AwDamwCAvhQFAN6bAIDj0AMA4psAgOFAAADmmwCAhtAEAIdYBQDqmwCA7psAgPKbAID2mwCA+psAgP6bAIACnACABpwAgAqcAIDvrA8AhOwEAOEQDgAOnACA41QBABKcAIAWnACAGpwAgB6cAICj/QIAIpwAgCacAIAqnACALpwAgKZZAgClUQIAMpwAgKtNAgCqTQIANpwAgDqcAICvJQIArjkCAK0xAgCsPQIAqJkGAKmZBgCqrQYAq70GAKylBgCtrQYArqUGAK/ZBgDWmwCAghEAAIEZAACAwQcAPpwAgEKcAIC+cAMARpwAgLhJBwC5SQcAul0HALtVBwC8TQcAvXEHAL51BwC/bQcAsKkGALGpBgCyuQYAs7EGALSZBgC1mQYAtnkHALd5BwC1NQYASpwAgE6cAIC2NQYAhjAAAIdcAwCzPQYAUpwAgL19BgC8dQYAv0UGAL5FBgBmmwCAVpwAgLt1BgC6dQYAo2UGAFqcAIBenACAYpwAgGacAICmbQYApW0GAGqcAICrLQYAqi0GAG6cAIBynACArx0GAK4dBgCtJQYArC0GAKhVBgCpWQYAqm0GAKthBgCsaQYArWkGAK6ZBgCvmQYAdpwAgHqcAIB+nACAgpwAgIacAICKnACAjpwAgJKcAIC4+QYAufkGALqNBgC7hQYAvJ0GAL2FBgC+hQYAv7UGALDpBgCx6QYAsvkGALP5BgC06QYAtd0GALbJBgC3yQYAs+UGAJacAICanACAnpwAgKKcAIC26QYAteEGAKacAIC7LQYAui0GAKqcAICunACAvxkGAL4tBgC9LQYAvC0GAIIVAACjoQYAgGEAAIFhAACmrQYAspwAgL6QAQClpQYAqmkGAKtpBgCEpAEAupwAgK5pBgCvXQYArGkGAK1pBgCohQIAqY0CAKqVAgCruQIArNUCAK3dAgCu1QIAr80CAIaAHACHZAMAvpwAgL5gAwDCnACAxpwAgMqcAIDOnACAuHUDALl9AwC6dQMAu8kDALzZAwC92QMAvskDAL/BAwCwvQIAsY0CALKFAgCzTQMAtFUDALVdAwC2VQMAt00DALMdAgDSnACAhAgDANacAIDanACAtl0CALVdAgDenACAu0kCALp5AgDinACA5pwAgL+ZAwC+kQMAvZkDALxRAgCwAAAAo1kCAOqcAIDunACAphkCAPKcAID2nACApRkCAKo9AgCrDQIA+pwAgP6cAICu1QMAr90DAKwVAgCt3QMAAp0AgAadAIAKnQCA76wGAA6dAIASnQCAFp0AgBqdAIC+6BwAHp0AgCKdAIAqnQCALp0AgOGABwAynQCA42AGAIBdAACBYQAAgmEAALN9AQA2nQCAtW0BALZlAQA6nQCAhiAdAIdYHQC6+QEAu/EBALzZAQC92QEAvrEBAL+xAQDvoAAAPp0AgEKdAIBGnQCASp0AgE6dAIBSnQCA71wBAIRsHADhzAYAVp0AgOMcBgDjSAAAWp0AgOEwAQBenQCAo/EBAGKdAICFABQAZp0AgGqdAICm6QEApeEBAG6dAICrfQEAqnUBAHKdAIB2nQCArz0BAK49AQCtVQEArFUBAKjtHQCpLR4AqjkeAKs5HgCsKR4ArSkeAK6dHgCvkR4AJp0AgHqdAIB+nQCAgp0AgIadAICC+QAAgfEAAID9AAC4qR4AuakeALpJHwC7SR8AvFkfAL1FHwC+TR8Av0UfALDxHgCx+R4AssEeALPBHgC0uR4AtbkeALatHgC3pR4AsBEfALERHwCyER8AsyUfALQlHwC1KR8Atl0fALdRHwC4cR8AuXkfALpBHwC7QR8AvJUAAL2dAAC+lQAAv40AAIqdAIC2nACAjp0AgJKdAICWnQCAmp0AgIb4AwCH0AAAqM0fAKnVHwCq0R8Aq70fAKytHwCtcR8ArnEfAK9xHwCzOR4Anp0AgKKdAICmnQCAqp0AgLaRHgC1RR4Arp0AgLu1HgC6tR4Asp0AgLadAIC/jR4AvoEeAL2RHgC8pR4Aup0AgKN9HgC+nQCAwp0AgKbVHgDGnQCAyp0AgKUBHgCq8R4Aq/EeAM6dAIDSnQCArsUeAK/JHgCs4R4ArdUeAKhVAQCpgQAAqoEAAKuBAACsgQAArYkAAK6xAACvsQAA1p0AgNqdAIDenQCA4p0AgOadAIDqnQCA7p0AgPKdAIC4ZQAAuW0AALplAAC7fQAAvGUAAL1tAAC+ZQAAv90DALChAACxrQAAsqUAALO5AAC0qQAAtZ0AALaVAAC3XQAA9p0AgIIdAACBHQAAgB0AAPqdAID+nQCAAp4AgL4UAgAKngCAhKgCAA6eAIASngCAFp4AgBqeAIAengCAjwAAALNJAwAingCAhugEAIesAgAmngCAtkkDALVJAwAqngCAuykDALolAwAungCAMp4AgL8ZAwC+LQMAvS0DALwxAwA2ngCAo40DADqeAIA+ngCApo0DAEKeAIBGngCApY0DAKrhAwCr7QMASp4AgE6eAICu6QMAr90DAKz1AwCt6QMAvoQDAFKeAIBWngCAWp4AgF6eAIBingCAZp4AgGqeAICAPQAAgQkAAIIZAABungCAcp4AgHqeAICENAMAfp4AgLMtAQCCngCAh8wCAIZMBQCGngCAti0BALUtAQCKngCAu0kBALp5AQCOngCAkp4AgL+9AQC+vQEAvbkBALxRAQDheB8Alp4AgOPQHwCangCAnp4AgOGUAQCingCA42gDAKaeAICqngCArp4AgO+IAwCyngCAtp4AgO+sHwC6ngCAvp4AgMKeAIDGngCAyp4AgM6eAIDSngCA1p4AgO9EHgDangCA4dweAN6eAIDjHB4A4p4AgOqeAIDungCA8p4AgIFpAACAZQAAo+UBAIJ9AACl5QEA9p4AgIQUBACm5QEAvigEAPqeAICrgQEAqrEBAK1xAQCsmQEAr3UBAK51AQCoIQYAqS0GAKolBgCrPQYArCUGAK0tBgCuXQYAr00GAHaeAIDmngCAhggDAIeMAwD+ngCAAp8AgAafAIAKnwCAuOkGALnpBgC6jQYAu4UGALydBgC9hQYAvo0GAL+FBgCwPQYAsQ0GALIFBgCz7QYAtPkGALX5BgC27QYAt+UGALDNBwCx1QcAstEHALPtBwC09QcAtf0HALbpBwC36QcAuN0HALklBwC6LQcAuyUHALw9BwC9JQcAvi0HAL8lBwAOnwCAEp8AgAaeAIAWnwCAGp8AgB6fAIAinwCAJp8AgKgVBgCpGQYAqu0HAKv9BwCs7QcArd0HAK7VBwCvuQcAswUGACqfAIAunwCAMp8AgDafAIC2PQYAtQUGADqfAIC7cQYAumkGAD6fAIBCnwCAv1kGAL5RBgC9WQYAvGUGAEafAICjQQYASp8AgE6fAICmeQYAUp8AgIS0AQClQQYAqi0GAKs1BgC+gAEAWp8AgK4VBgCvHQYArCEGAK0dBgCoNQYAqT0GAKo1BgCrWQYArHUGAK2lAQCurQEAr6UBAIDpAACB6QAAgv0AAL8kAQCGMA8Ah+QAAF6fAIBinwCAuMUAALnNAAC6xQAAu90AALzNAAC9/QAAvvUAAL+dAACw3QEAsSUBALItAQCzIQEAtCEBALUhAQC2IQEAtyEBALvBAgC6OQIAZp8AgGqfAIC/xQIAvsUCAL3VAgC82QIAs50FAG6fAIBynwCAdp8AgIwAAAC2BQIAtd0FAHqfAICqfQIAq4UCAH6fAICCnwCAroECAK+BAgCsnQIArZECAIafAICj2QUAip8AgI6fAICmQQIAkp8AgJafAIClmQUAgpFqAIORagCanwCAnp8AgIa5FgCH6RcAhBEWAIWZFgCKoRIAi6ESAKKfAICmnwCAjpEeAI9ZHgCMmRMAjREeAJJxGgCT5RoAqp8AgO/oJACW8QYAlwUGAJTlGgCVGQYAmikCAJvFAgCunwCAsp8AgLafAIDhKBsAnN0CAOMgDwCfIQcAnsEHAJ01GwCcLRsAm6EbAJr5HwCZOR8AmLEfAJcBEgCWIRMAlSkTAJRRFgCTGRcAkjEXAJGxFwCQKWsAj1FrAOOsBwCEBA0A4RwHAIANAACBNQAAgj0AALqfAIC+nwCAwp8AgL4gDQDKnwCAzp8AgO9MBwCGWAwAh2ANANKfAIDWnwCA2p8AgN6fAICEXA8A4p8AgO8IAADvhAYA4ZABAOGwBgDj4AAA42QGAOafAIDqnwCA7p8AgPKfAID2nwCA+p8AgL4ADwCEQA4A/p8AgAKgAIAGoACACqAAgA6gAIASoACAFqAAgBqgAICj1QMAotUDAKExAwCgLQcAVp8AgMafAIAeoACAIqAAgCagAICCmQAAgZEAAICZAACoTQ0AqZ0NAKqVDQCrJQ4ArD0OAK0RDgCuEQ4ArxEOALB9DgCxDQ4AsgUOALMtDgC0OQ4AtTkOALYtDgC3JQ4AuOkOALnpDgC6wQ4Au8EOALy5DgC9nQ4AvpUOAL+NDgCzPQ0AKqAAgC6gAIAyoACANqAAgLaxDgC1lQ4AOqAAgLvpDgC6mQ4AhogAAIfkAAC/3Q4Avt0OAL3ZDgC88Q4APqAAgKN5DQC+hAEAhIAGAKb1DgBCoACARqAAgKXRDgCq3Q4Aq60OAEqgAIBOoACArpkOAK+ZDgCstQ4ArZ0OALIFNQCzGTQAsG0wALENNQBSoACAVqAAgLQBKAC1PSkAWqAAgF6gAIBioACAZqAAgGqgAIBuoACAcqAAgHagAICiRQEAo9UBAHqgAIChTQEAps0FAKcBOACkAQQApX0FAKoBPACrRT0AqEk5AKnlOQCudTEAr30xAKxdPQCtATAAqO0OAKn1DgCqCQ4AqwkOAKwZDgCtGQ4Arg0OAK8tDgB+oACAgqAAgIagAICKoACAjqAAgJKgAICWoACAmqAAgLgdDgC5JQ4Aui0OALslDgC8PQ4Avd0BAL7VAQC/zQEAsFUOALFdDgCyVQ4Asy0OALQ1DgC1JQ4Ati0OALclDgCzgQ0AnqAAgKKgAICqoACArqAAgLaZDQC1kQ0AvlQEALuZDQC6kQ0AhogEAIe8AwC/4Q0AvvENAL35DQC8gQ0AgkkAAKPFDQCA9QMAgUkAAKbdDQCyoACAtqAAgKXVDQCq1Q0Aq90NALqgAIC+oACArrUNAK+lDQCsxQ0Arb0NAKgdAgCpRQIAql0CAKtVAgCseQIArXkCAK6JAwCviQMAwqAAgMagAIDKoACAzqAAgIT8BQDSoACA1qAAgNqgAIC4iQMAuWUDALptAwC7ZQMAvH0DAL1lAwC+bQMAv2UDALDBAwCxwQMAssEDALPBAwC0wQMAtcEDALbBAwC3wQMA3qAAgOKgAIDmoACA6qAAgO6gAIDhpAEA8qAAgOPADgC+aAQA9qAAgPqgAIDvHAEA/qAAgAKhAIAGoQCACqEAgLOVAwAOoQCAEqEAgBqhAIAeoQCAtrkDALWxAwAioQCAu0UCALpFAgCGqAQAh6QFAL9FAgC+RQIAvVUCALxVAgDh4A4A4SwMAOMIDgDj1A4AgK0AAIHRAACC0QAAJqEAgCqhAIAuoQCAMqEAgDahAIA6oQCAPqEAgO+IDgDvLA4AoxUDAEKhAICFxCsARqEAgEqhAICmOQMApTEDAE6hAICrxQIAqsUCAFKhAIBWoQCAr8UCAK7FAgCt1QIArNUCAKgNBgCpFQYAql0GAKtVBgCseQYArXkGAK65BgCvuQYAFqEAgFqhAIBeoQCAYqEAgGahAIBqoQCAbqEAgHKhAIC4TQcAuVUHALpRBwC7aQcAvHkHAL1lBwC+bQcAv2UHALDJBgCxyQYAst0GALPVBgC0zQYAtXUHALZ9BwC3dQcAs9UGAHahAIB6oQCAfqEAgIKhAIC2+QYAtfEGAIahAIC7DQYAug0GAIYIAACHLAAAv7EHAL4JBgC9AQYAvAkGAIJRAACjkQYAgEEAAIFBAACmvQYAiqEAgI6hAICltQYAqkkGAKtJBgCSoQCAlqEAgK5NBgCv9QcArE0GAK1FBgCwsQYAsbEGALLNBgCzwQYAtMEGALXJBgC28QYAt/EGALgFAQC5DQEAugUBALsdAQC8BQEAvQ0BAL4FAQC/uQEAmqEAgJ6hAICioQCApqEAgKqhAICuoQCApqAAgLKhAICoLQYAqTUGAKo1BgCr8QYArNEGAK3RBgCu0QYAr9EGALPdBgC2oQCAuqEAgL6hAIDCoQCAtjEGALU5BgDGoQCAuxUGALoVBgDKoQCAzqEAgL9tBgC+ZQYAvXUGALx5BgDSoQCAo5kGANahAIDaoQCApnUGAN6hAIDioQCApX0GAKpRBgCrUQYA5qEAgOqhAICuIQYArykGAKw9BgCtMQYAqNUCAKndAgCq4QIAq+ECAKxRAwCtUQMArlEDAK9RAwDuoQCA8qEAgL7sAwD6oQCA/qEAgAKiAIAGogCACqIAgLjpAwC56QMAuokDALuFAwC8nQMAvYEDAL6BAwC/tQMAsDEDALExAwCyNQMAs+kDALT5AwC1+QMAtukDALfhAwCAbQMAgaUAAIKtAACzZQIADqIAgLXVAwC23QMAEqIAgITgAgAWogCAuvkDALv5AwC87QMAvTEDAL4xAwC/MQMAh+wDAIZkPACyAAAAGqIAgB6iAIDjCAQAIqIAgOHsBgAmogCA7wAGACqiAIAuogCAMqIAgDaiAIA6ogCAPqIAgEKiAIBGogCASqIAgE6iAIDjoAMAUqIAgOGoAQBWogCA7/ADAIIdAACBHQAAgB0AAFqiAIBeogCAYqIAgGqiAIC+TD0AbqIAgKOhAwC+QDwApRECAHKiAIB2ogCAphkCAIRsAgB6ogCAqz0CAKo9AgCt9QIArCkCAK/1AgCu9QIAhkA8AIe0PQB+ogCAgqIAgIaiAICKogCAjqIAgO9EBgCSogCA4dQGAJaiAIDjDAcAmqIAgJ6iAICiogCApqIAgLP1AQCqogCArqIAgLKiAIC2ogCAtkUBALXlAQC6ogCAuzEBALopAQC+ogCAwqIAgL8dAQC+HQEAvRkBALwlAQCoLT4AqTU+AKo9PgCrNT4ArC0+AK2FPgCuhT4Ar7k+AGaiAIDGogCAyqIAgM6iAICAGQAAgRkAAIIFAADSogCAuLk+ALm5PgC6ST8Au0k/ALxZPwC9WT8Avk0/AL9BPwCwrT4AsbU+ALKxPgCzjT4AtJk+ALWZPgC2iT4At4k+AKO1PgCEjAIA1qIAgNqiAIDeogCApgU+AKWlPgDiogCAq3E+AKppPgCGCAAAh2gDAK9dPgCuXT4ArVk+AKxlPgDmogCAs5E/AOqiAIDuogCAtlk/APKiAID2ogCAtbk/ALp1PwC7fT8A+qIAgP6iAIC+QT8Av0E/ALxZPwC9VT8AsJU+ALGdPgCyqT4As6U+ALShPgC1oT4AtqE+ALehPgC45T4Aue0+ALrlPgC7/T4AvO0+AL3dPgC+1T4AvxkBAAKjAIAGowCACqMAgA6jAIASowCA9qEAgBajAIAaowCAqF0+AKkhPgCqPT4AqzU+AKwVPgCt/T4ArvU+AK/tPgCj1T4AHqMAgCKjAIAmowCAKqMAgKYdPgCl/T4ALqMAgKs5PgCqMT4AMqMAgDajAICvBT4ArgU+AK0RPgCsHT4AgREAAIANAAA6owCAghkAAD6jAIBCowCAhJQBAL4QAACGQAcAhwABAEqjAIBOowCAUqMAgFajAIBaowCAXqMAgKiNAgCplQIAqpUCAKvNAgCs2QIArdkCAK7NAgCvxQIAYqMAgGajAIBqowCAbqMAgIwAAAByowCAdqMAgHqjAIC4HQMAucEDALrBAwC7wQMAvMEDAL3JAwC+8QMAv/EDALCJAgCxiQIAsikDALMpAwC0OQMAtTkDALYpAwC3JQMAsx0CAH6jAICCowCAhqMAgIqjAIC2WQIAtVECAI6jAIC7TQIAuk0CAJKjAICWowCAv/0DAL79AwC9/QMAvP0DAJqjAICeowCAoqMAgKajAIDhDD4AqqMAgOOoPwCuowCAgT0AAIAxAADvUD8Agh0AALKjAIC++AQAhhgFAIdMAwCEDAIA48wAALqjAIDhvAEAvqMAgMKjAIDGowCAyqMAgM6jAICELAUA0qMAgNajAIDaowCA7xAAAN6jAIDiowCAo90DAOajAIDqowCA7qMAgPKjAICmmQMApZEDAPajAICrjQMAqo0DAPqjAID+owCArz0CAK49AgCtPQIArD0CAAKkAIAGpACACqQAgA6kAIASpACAFqQAgBqkAIDvKD4AHqQAgOE8PgAipACA4zgBAIApAACBFQAAghEAACqkAICzMQIAvsgEAITABAAupACAMqQAgLYpAgC1IQIANqQAgLvNAQC6zQEAOqQAgD6kAIC/dQEAvskBAL3BAQC8yQEAqOkFAKnpBQCq+QUAq/kFAKzpBQCt6QUArjkGAK85BgC2owCAJqQAgIaIAACHQAMAQqQAgEakAIBKpACATqQAgLjRBgC52QYAuuEGALvhBgC8kQYAvZEGAL6RBgC/kQYAsEkGALFJBgCyXQYAs1UGALRNBgC18QYAtvEGALfxBgCjcQUAUqQAgFakAIBapACAXqQAgKZpBQClYQUAYqQAgKuNBgCqjQYAZqQAgGqkAICvNQYArokGAK2BBgCsiQYAbqQAgLPRBwBypACAdqQAgLbxBwB6pACAfqQAgLXBBwC60QcAu90HAIKkAICGpACAvrkHAL+5BwC8xQcAvbkHALhpBgC5aQYAuokGALuJBgC8mQYAvZkGAL6JBgC/iQYAsBEGALEdBgCyFQYAs2kGALR5BgC1eQYAtmkGALdhBgCoSQYAqVUGAKpdBgCrVQYArE0GAK11BgCucQYAr3EGAEajAICCHQAAgR0AAIAdAACKpACAjqQAgJKkAIC+cAEAo5UGAJqkAICGKAAAh0gBAJ6kAICmtQYApYUGAKKkAICrmQYAqpUGAKakAICqpACAr/0GAK79BgCt/QYArIEGAK6kAICzFQYAsqQAgLakAIC2PQYAuqQAgL6kAIC1NQYAutkBALvZAQDCpACAxqQAgL59AQC/ZQEAvH0BAL11AQCovQUAqckFAKrZBQCr0QUArPkFAK35BQCuKQIArykCAMqkAIDOpACA0qQAgNakAICMAAAA2qQAgN6kAIDipACAuO0CALmFAgC6gQIAu4ECALyFAgC9jQIAvrECAL+xAgCwWQIAsVkCALLtAgCz5QIAtP0CALXlAgC25QIAt9UCAKNRBQDmpACA6qQAgO6kAIDypACApnkFAKVxBQD2pACAq50CAKqdAgD6pACA/qQAgK8hAgCuOQIArTECAKw5AgCBbQAAgG0AAAKlAICCBQAAvlwMAAqlAIAOpQCA79AGAITsAwDhHAUAEqUAgOP8BwAWpQCAGqUAgIbYDACHvAwAqIUCAKmVAgCqlQIAq6UCAKy9AgCt1QIArtECAK/RAgAepQCAIqUAgCalAIAqpQCALqUAgDKlAIA2pQCAOqUAgLh1AQC5fQEAunUBALvJAQC82QEAvdkBAL7JAQC/wQEAsLUCALG9AgCygQIAs4ECALRRAQC1UQEAtlEBALdRAQA+pQCAhAQNAEKlAIBGpQCAvhwMAEqlAIDvHAAA76AGAOGQAQDhRAcA43AGAOOYBgBOpQCAUqUAgFalAIBapQCAs10CAF6lAIBipQCAZqUAgGqlAIC2FQIAtXUCAG6lAIC7OQIAujECAHKlAIB6pQCAv9UBAL7VAQC9FQIAvBUCAKOdDQAGpQCAdqUAgH6lAICCpQCAptUNAKW1DQCGpQCAq/kNAKrxDQCGCAMAh2ADAK8VDgCuFQ4ArdUNAKzVDQCAkQ8AgZkPAIKhDwCzpQ4AiqUAgLWhDgC2eQ8AjqUAgJKlAICWpQCAukUPALtdDwC8RQ8AvU0PAL5FDwC//Q8AqFUOAKldDgCqYQ4Aq30OAKxlDgCttQ8Arr0PAK+1DwCapQCAnqUAgKKlAICmpQCAqqUAgK6lAICypQCAtqUAgLhVDwC5dQ8Aun0PALt1DwC8bQ8AvREPAL4RDwC/EQ8AsM0PALHVDwCy3Q8As9UPALTNDwC1dQ8AtnEPALdxDwCj6Q8AuqUAgL6lAIDCpQCAxqUAgKY1DgCl7Q8AyqUAgKsRDgCqCQ4AzqUAgNKlAICvsQ4ArgkOAK0BDgCsCQ4A1qUAgIIdAACBHQAAgB0AANqlAIDepQCA4qUAgL6UAQCErAEA5qUAgIfgAQCGzAAA6qUAgO6lAIDypQCAlqQAgKhtDgCpiQEAqpkBAKuRAQCswQEArckBAK75AQCv+QEAhKAAAPalAID6pQCA/qUAgAKmAIAGpgCACqYAgA6mAIC4xQAAuc0AALrFAAC73QAAvM0AAL39AAC+9QAAv50AALBBAQCxQQEAskEBALNBAQC0QQEAtUEBALZBAQC3QQEAsxECABKmAIAWpgCAGqYAgB6mAIC2SQIAtUkCACKmAIC7hQIAuoUCACamAIAqpgCAv4UCAL6FAgC9lQIAvJUCAIU8GgCjVQIALqYAgDKmAICmDQIANqYAgDqmAIClDQIAqsECAKvBAgA+pgCAQqYAgK7BAgCvwQIArNECAK3RAgCCGQAARqYAgIAZAACBGQAASqYAgE6mAIBSpgCAWqYAgL4ABABepgCAYqYAgGamAIBqpgCAbqYAgHKmAIB2pgCA7+gOAHqmAICG6AQAh1ADAH6mAICCpgCA74ACAIamAIDhlAEAiqYAgONYAQCOpgCA4wAOAJKmAIDhaA0AlqYAgKhxAgCpcQIAqnECAKupAgCsuQIArbkCAK6pAgCvqQIAhKwFAJqmAICepgCAoqYAgKamAICqpgCArqYAgLKmAIC4bQEAuQ0BALoFAQC7GQEAvAkBAL09AQC+NQEAv9kBALDZAgCx2QIAsm0BALNlAQC0fQEAtWUBALZlAQC3VQEA4WAPAOP0AADjHA4A4bwBALamAICCOQAAgTEAAIA9AAC6pgCAvigEAL6mAIDCpgCAvjwHAO8QAADv0A4AyqYAgIbgBACHyAQAzqYAgLO1AgDSpgCAtX0CALZ1AgDWpgCA2qYAgN6mAIC6UQIAu1ECALz1AQC9/QEAvvUBAL/tAQBWpgCAxqYAgKqxBQCrsQUArBUGAK0dBgCuFQYArw0GAOKmAIDmpgCA6qYAgKNVBQDupgCApZ0FAKaVBQDypgCAs+kGAPamAID6pgCA/qYAgAKnAIC24QYAtekGAAanAIC7sQYAuqEGAAqnAIAOpwCAv50GAL6RBgC9pQYAvKkGAKgdBgCpIQYAqiEGAKshBgCsIQYArSEGAK4hBgCvIQYAEqcAgBanAIAapwCAHqcAgCKnAIAmpwCAKqcAgC6nAIC45QcAue0HALrlBwC7/QcAvOUHAL3tBwC+5QcAv00HALAlBgCxNQYAsj0GALMxBgC0FQYAtRkGALYNBgC3AQYAo6kHAIIVAACBtQEAgLUBADKnAICmoQcApakHADanAICr8QcAquEHAISgAgA6pwCAr90HAK7RBwCt5QcArOkHAD6nAICzlQYAhugAAIcYAQC2tQYAQqcAgEanAIC1vQYAukkBALtVAQBKpwCATqcAgL45AQC/OQEAvEUBAL05AQCoPQYAqU0GAKpZBgCrUQYArHEGAK1xBgCuuQEAr7kBAISsAQBSpwCAVqcAgFqnAIBepwCAYqcAgGanAIBqpwCAuKkBALmpAQC6aQEAu2kBALx5AQC9eQEAvmkBAL9pAQCwyQEAsdUBALLVAQCzqQEAtLkBALW5AQC2qQEAt6EBAKPRBQBupwCAcqcAgHanAIB6pwCApvEFAKX5BQB+pwCAqxECAKoNAgCCpwCAhqcAgK99AgCufQIArX0CAKwBAgCKpwCAjqcAgJKnAICWpwCAgTEAAIANAACapwCAgjkAAJ6nAICipwCAviQDAKqnAICupwCAsqcAgIbYHACHTAMAtqcAgLqnAIC+pwCAhMAcAOMgAQDCpwCA4cgBAManAIDvMAIAyqcAgM6nAIDSpwCA1qcAgNqnAIDepwCA4qcAgLOVAwDmpwCA6qcAgO6nAIDypwCAtrkDALWxAwD2pwCAu1EDALpJAwD6pwCA/qcAgL/1AAC+SQMAvUEDALxJAwCoLQIAqUUCAKpdAgCrVQIArHkCAK15AgCuvQIAr7UCAL5oHQACqACABqgAgAqoAICAHQAAgQkAAIKpAAAOqACAuFEBALlZAQC6YQEAu2EBALwRAQC9EQEAvhEBAL8RAQCwzQIAsdUCALLdAgCz1QIAtM0CALVxAQC2cQEAt3EBAOFYBgDhVAcA47AAAOO8BgASqACAGqgAgIYYHACHVB0AHqgAgCKoAIAmqACAKqgAgL74HAAuqACA7/AGAO/gBgCjlQIAMqgAgDaoAIA6qACAPqgAgKa5AgClsQIAQqgAgKtRAgCqSQIARqgAgEqoAICv9QEArkkCAK1BAgCsSQIAqG0eAKl1HgCqfR4Aq40eAKyVHgCtnR4Aro0eAK+BHgAWqACATqgAgFKoAIBWqACAWqgAgF6oAIBiqACAZqgAgLiJHgC5iR4AupkeALuRHgC8uR4AvbkeAL59HwC/dR8AsMUeALHNHgCyxR4As90eALTFHgC1zR4AtsUeALe5HgCz9R4AaqgAgG6oAIByqACAdqgAgLYdHgC1HR4AeqgAgLsJHgC6AR4AfqgAgIKoAIC/CR4AvgEeAL0JHgC8ER4Agm0AAKOxHgCAVQAAgWUAAKZZHgCEmAMAv9ABAKVZHgCqRR4Aq00eAIYABACHmAEArkUeAK9NHgCsVR4ArU0eAIqoAICOqACAhCQAAJKoAICWqACAmqgAgKanAICGqACAqLUeAKmFHgCqjR4Aq4UeAKydHgCtgR4Arv0eAK/1HgCwjR4AsZUeALKVHgCzpR4AtL0eALVxAQC2cQEAt3EBALhRAQC5UQEAulEBALtRAQC89QEAvf0BAL71AQC/7QEAsyUeAL4IBwCeqACAoqgAgKaoAIC2IR4AtTUeAKqoAIC7cR4AumkeAK6oAICyqACAv5UBAL5ZHgC9UR4AvGEeALaoAICjYR4AuqgAgL6oAICmZR4AwqgAgMaoAIClcR4Aqi0eAKs1HgDKqACAzqgAgK4dHgCv0QEArCUeAK0VHgDhVBoA0qgAgONcCgDWqACA2qgAgN6oAIDiqACA5qgAgOqoAIC+qAUA7qgAgPKoAICPMSoA+qgAgO/E+wD+qACAk2EuAJIdLwCR2SoAkEkqAJfZEgCWdRIAlQ0TAJTBLgCbHRsAmkEWAJlJFgCYDRcAn3EeAJ4RGwCdcRoAnHkaAKOhAgCinQMAoZUfAKCJHgDjiAEA4wgeAOFoAADh/B4A79wBAO98HwC1if4AtAH8ALMB+gCylfoAsQH4ALAR9gCv4fYArgH0AK0l8gCs7fIAqwHwAKrpDwCp1Q4AqN0OAKcBDACmyQoApe0KAKQBCACj4QYAovEGAKHlAwACqQCAggErAIMBKwAGqQCACqkAgIYxLwCHiS8AhIkrAIVFLgCKdRIAiwUTAIYIBQCHbAUAjhEXAI8RFwCMsRMAjV0WAJI9GgCTQRsAhMgFAIQABwCWUR8Al1EfAJRRGwCVORoAmn0eAJt9AgAOqQCAEqkAgIFZAQCAVQEAnFkDAIJRAQC+yAcAFqkAgBqpAIAeqQCAIqkAgCapAIAqqQCA79QeAC6pAIDhJB4AMqkAgONoAQA2qQCAOqkAgD6pAIBCqQCAu2kCALpZAgBGqQCASqkAgL8dAgC+HQIAvRkCALxxAgCz7QIATqkAgFKpAIBWqQCAWqkAgLZ9AgC17QIAXqkAgKMNBQD2qACAYqkAgGqpAIBmqQCApp0FAKUNBQBuqQCAq4kFAKq5BQCGCAMAh3wDAK/9BQCu/QUArfkFAKyRBQCAsQcAgbkHAIJBAACzsQYAcqkAgLVZBwC2MQcAdqkAgHqpAIB+qQCAuuEHALvhBwC84QcAveEHAL7hBwC/3QcAqLUGAKm5BgCqdQYAq4UHAKydBwCt/QcArvUHAK8ZBwCCqQCAhqkAgIqpAICOqQCAkqkAgJapAICaqQCAnqkAgLh1BwC5fQcAunUHALsFBwC8HQcAvTEHAL4xBwC/MQcAsGkHALFpBwCyeQcAs3kHALRpBwC1VQcAtlEHALdNBwCj/QcAoqkAgKapAICqqQCArqkAgKZ9BgClFQYAsqkAgKutBgCqrQYAtqkAgLqpAICvkQYArq0GAK2tBgCsrQYAvqkAgMKpAIDGqQCAyqkAgIAdAACBCQAAgjkAAM6pAIDSqQCA2qkAgIbIAACHpAEA3qkAgOKpAIDmqQCA6qkAgKiNAQCpmQEAqtkBAKvRAQCs8QEArfEBAK45AQCvOQEAhKAAAO6pAIDyqQCA9qkAgPqpAID+qQCAAqoAgAaqAIC4zQAAudUAALrVAAC75QAAvP0AAL2VAAC+nQAAv5UAALBJAQCxSQEAslkBALNZAQC0SQEAtUkBALb9AAC39QAAugUEALsJBAC44QcAueEHAL4JBAC/CQQAvAkEAL0JBACyjQcAs+UHALC1BwCxhQcAtuUHALftBwC08QcAtfEHAKpNBwCrVQcAqEkHAKlJBwCu3QcAr8UHAKxNBwCt1QcACqoAgA6qAIASqgCAFqoAgBqqAIAeqgCAIqoAgCaqAICz0QIAKqoAgC6qAIC+AAwAMqoAgLbxAgC1+QIANqoAgLsNAgC6DQIAOqoAgD6qAIC/DQIAvg0CAL0NAgC8DQIAghUAAKOVAgCAYQAAgWEAAKa1AgBCqgCASqoAgKW9AgCqSQIAq0kCAIbIDACHrAwArkkCAK9JAgCsSQIArUkCAKhlAgCpdQIAqn0CAKt1AgCsbQIArbECAK6xAgCvsQIAhKANAE6qAIBSqgCAVqoAgFqqAIBeqgCAYqoAgGaqAIC4MQEAuTEBALoxAQC7MQEAvNUBAL3dAQC+yQEAv8EBALDRAgCx0QIAstECALPRAgC0EQEAtREBALYRAQC3EQEA4bAGAGqqAIDj0AYAhEAPAG6qAIDhpAEAcqoAgOPABgB2qgCAeqoAgH6qAIDv1AYA7AAAAIKqAIDvZAcAhqoAgIqqAICOqgCAkqoAgLO5AgCWqgCAtakCALZ9AgCaqgCAnqoAgKKqAIC6WQIAu1kCALxJAgC9SQIAvpkBAL+ZAQCjdQ0ARqoAgKaqAICqqgCArqoAgKaxDQClZQ0AsqoAgKuVDQCqlQ0AvqQDALaqAICvVQ4ArlUOAK2FDQCshQ0AgE0AAIFVAACCVQAAs2UPALqqAIC1ZQ8Atm0PAL6qAICGQAMAhxQDALrtDwC7/Q8AvOkPAL3VDwC+3Q8Av9UPAKhZDgCpoQ8AqqEPAKuhDwCsoQ8AraEPAK6hDwCvoQ8AwqoAgMaqAIDKqgCAzqoAgNKqAIDWqgCA2qoAgN6qAIC4AQ8AuQEPALoBDwC7HQ8AvA0PAL01DwC+PQ8Av9UAALBlDwCxdQ8AsnEPALNNDwC0VQ8AtV0PALZNDwC3QQ8AoykOAOKqAIDmqgCA6qoAgO6qAICmIQ4ApSkOAPKqAICrsQ4AqqEOAPaqAID6qgCAr5kOAK6RDgCtmQ4ArKUOAP6qAIACqwCABqsAgAqrAIDvJA0ADqsAgBKrAIAWqwCA49AOABqrAIDhGA4AHqsAgIAVAACBGQAAggUAACKrAICo0QEAqdkBAKopAQCrKQEArDkBAK05AQCuKQEArykBAL5oAQAqqwCAhsgBAIesAAAuqwCAMqsAgDarAIA6qwCAuO0AALmFAAC6jQAAu4UAALydAAC9gQAAvoEAAL+BAACwWQEAsVkBALLtAACz5QAAtP0AALXlAAC25QAAt9UAALOhAgA+qwCAQqsAgEarAIBKqwCAtrkCALWxAgBOqwCAu50CALqdAgBSqwCAVqsAgL8hAwC+OQMAvTEDALw5AwCF+PUAo+UCAFqrAIBeqwCApv0CAGKrAIBmqwCApfUCAKrZAgCr2QIAaqsAgG6rAICufQMAr2UDAKx9AwCtdQMAuOkAALnpAAC6aQAAu2kAALx5AAC9ZQAAvm0AAL9lAACwsQAAsbkAALKBAACzgQAAtPkAALX5AAC27QAAt+UAAKhlAwCpdQMAqn0DAKt1AwCsbQMArdEAAK7RAACv0QAAcqsAgHarAIB6qwCA1qkAgH6rAICCqwCAhqsAgIqrAICA/QEAgQkAAIIZAACOqwCAkqsAgL5EAgCaqwCAnqsAgISsAgCiqwCAh/gCAIasBQCmqwCAqqsAgK6rAICyqwCAs/UCALarAIC6qwCAvqsAgMKrAIC2UQEAteUCAMarAIC7fQEAunUBAMqrAIDOqwCAvz0BAL49AQC9VQEAvFUBAOFwDwDSqwCA47gOAITABQDvyAAA1qsAgNqrAIDeqwCA4zwOAOKrAIDh0AEA5qsAgIR0BwDqqwCA72gBAO6rAIDyqwCApXkCAKbNAQD2qwCAgCEAAIEhAACC3QcAo2kCAKzJAQCtyQEArqEBAK+hAQD6qwCA/qsAgKrpAQCr4QEAlqsAgAKsAIC+QAIABqwAgIYwAwCHMAMACqwAgA6sAICoOQcAqTkHAKoNBwCrHQcArAUHAK0NBwCuBQcAr3kHALAJBwCxCQcAshkHALMRBwC0OQcAtTkHALbdBwC3yQcAuPkHALn5BwC6zQcAu8EHALzFBwC9yQcAvrkHAL+xBwCzpQcAEqwAgBasAIAarACAHqwAgLatBwC1rQcAIqwAgLvtBwC67QcAJqwAgCqsAIC/3QcAvt0HAL3lBwC87QcALqwAgKPhBwAyrACANqwAgKbpBwA6rACAPqwAgKXpBwCqqQcAq6kHAEKsAIBGrACArpkHAK+ZBwCsqQcAraEHAEqsAIBOrACAUqwAgFasAIBarACAXqwAgGKsAIBmrACAgREAAIANAABqrACAghkAAG6sAIByrACAvuQBAHasAICG4AAAhxgBAHqsAIB+rACAgqwAgIasAICKrACA77AEAI6sAIDh1AYAkqwAgONcBACWrACAmqwAgJ6sAICirACAqJkBAKmZAQCqDQEAqwUBAKwdAQCtBQEArgUBAK81AQCEiAEApqwAgKqsAICurACAsqwAgLasAIC6rACAvqwAgLjBAAC5wQAAusEAALvBAAC8wQAAvcEAAL7BAAC/wQAAsE0BALElAQCyIQEAsyEBALQlAQC1LQEAthEBALcRAQDCrACAxqwAgLONAgDKrACAtZ0CAM6sAIDSrACAto0CANasAIDarACAu+kCALqBAgC9/QIAvP0CAL/hAgC+6QIA3qwAgKbVAgClxQIAvggDAKPVAgCCLQAAgRkAAIB5AACvuQIArrECAK2lAgCspQIAq7ECAKrZAgDirACA6qwAgO80AgDurACAhxgDAIYs/ADyrACA9qwAgPqsAID+rACAAq0AgAatAIAKrQCADq0AgOMAAQASrQCA4eABABatAIC6tQMAu70DABqtAIAerQCAvnkDAL95AwC8pQMAvXkDACarAICztQMAIq0AgCatAIC2kQMAKq0AgC6tAIC1pQMAqEkCAKlJAgCqWQIAq1kCAKxJAgCtdQIArnECAK9tAgC+aP0AvqT/ADKtAIA2rQCAOq0AgD6tAIBCrQCARq0AgLj5AgC5+QIAukkBALtJAQC8XQEAvUEBAL5BAQC/fQEAsBUCALEdAgCyFQIAs8kCALTZAgC12QIAtskCALfJAgDjIAYA4bAGAOGAAQDjEAYAgA0AAIE1AACCPQAASq0AgE6tAIBSrQCAWq0AgF6tAIDvcAAAYq0AgGatAIDvTAEAhIz9AGqtAICjmQIAbq0AgKWJAgByrQCAdq0AgKa9AgCGwPwAh+T8AKuRAgCqmQIArVUCAKyJAgCvVQIArlUCAKh9/gCpgf4Aqpn+AKuZ/gCsif4ArYn+AK65/gCvuf4AVq0AgHqtAIB+rQCAgq0AgIatAICKrQCAjq0AgJKtAIC4tf4Aub3+ALph/wC7Yf8AvGH/AL1h/wC+Yf8Av2H/ALDJ/gCxyf4Ast3+ALPR/gC0uf4Atbn+ALaR/gC3kf4AsxH+AJatAICarQCAnq0AgKKtAIC2Cf4AtQH+AKatAIC7Df4Aug3+AKqtAICurQCAv33+AL59/gC9Bf4AvAn+ALKtAICjVf4Atq0AgLqtAICmTf4Avq0AgMKtAIClRf4Aqkn+AKtJ/gCEKAMAxq0AgK45/gCvOf4ArE3+AK1B/gCAzQEAgdEBAILRAQCzuf4Ayq0AgLXR/gC21f4Azq0AgIZgAQCHYAEAug0BALsFAQC8HQEAvQUBAL4NAQC/BQEA0q0AgNatAIDarQCA3q0AgOKtAIDhwP0A5q0AgOOM/ADqrQCA7q0AgPKtAIDvtPwA9q0AgPqtAID+rQCAAq4AgKgp/gCpKf4Aqj3+AKs1/gCsVf4ArVn+AK5N/gCvRf4ABq4AgAquAIAOrgCAEq4AgBauAIAargCAHq4AgCKuAIC4SQEAuUkBALpZAQC7UQEAvHkBAL15AQC+GQEAvxUBALDFAQCxzQEAssUBALPdAQC0xQEAtc0BALbFAQC3eQEAJq4AgCquAIAurgCAo7n9ADKuAICl0f0AptX9AITQAwBBrgCAvuACAKoNAgCrBQIArB0CAK0FAgCuDQIArwUCAIFJAACAQQAAowkDAIJdAAClGQMARa4AgEmuAICmEQMAhsAEAIfkAwCrDQMAqg0DAK0BAwCsHQMArwEDAK4JAwCw4QMAseEDALLhAwCz/QMAtOUDALXtAwC25QMAtz0DALgFAwC5DQMAugUDALsdAwC8BQMAvQ0DAL4FAwC/vQAATa4AgFGuAIBVrgCAWa4AgOasAIBdrgCAYa4AgGWuAICo8QMAqfkDAKqpAwCrqQMArLkDAK25AwCuqQMAr6UDALNBAgBprgCAba4AgHGuAIB1rgCAtlkCALVRAgB5rgCAu0UCALpFAgB9rgCAga4AgL9JAgC+QQIAvUkCALxVAgCFrgCAia4AgI2uAICRrgCA74wDAJWuAICZrgCAna4AgONsAwChrgCA4VAAAKWuAICprgCAvngFALGuAICEcAIAgOUAAIHpAACC+QAAta4AgIawBACHVAUAua4AgO9A/gC9rgCA4Vz+AMGuAIDjVAEAxa4AgMmuAIDNrgCA0a4AgLOZAQDVrgCA2a4AgN2uAIDhrgCAth0BALUdAQDlrgCAuz0BALo9AQDprgCA7a4AgL/hAAC++QAAvfEAALz5AACoIQYAqVEGAKpRBgCrzQYArNUGAK3dBgCu1QYAr8kGAK2uAIDxrgCA9a4AgPmuAID9rgCAAa8AgAWvAIAJrwCAuG0HALkFBwC6DQcAuwUHALwdBwC9AQcAvgEHAL8BBwCwuQYAsbkGALJtBwCzZQcAtH0HALVlBwC2ZQcAt1UHAKPZBgANrwCAEa8AgBWvAIAZrwCApl0GAKVdBgCEnAIAq30GAKp9BgC+JAMAHa8AgK+hBwCuuQcArbEHAKy5BwCASQAAgUkAAIJZAACzVQcAIa8AgLV9BwC2aQcAJa8AgIZAAACHVAMAulUHALspBwC8OQcAvTkHAL4pBwC/IQcAo5kGACmvAIAtrwCAMa8AgDWvAICmpQYApbEGADmvAICr5QYAqpkGAD2vAIBBrwCAr+0GAK7lBgCt9QYArPUGAOE4BQBFrwCA4yQEAEmvAIBNrwCAUa8AgFWvAIBZrwCAXa8AgGGvAIBlrwCAaa8AgG2vAIBxrwCA7/QEAHWvAICo+QYAqQkGAKoRBgCrLQYArDkGAK0lBgCuLQYAryUGAHmvAIB9rwCAga8AgIWvAICAGQAAgRkAAIIFAACJrwCAuOUBALntAQC65QEAu/0BALzlAQC97QEAvuUBAL9ZAQCwXQYAsSEGALIhBgCzIQYAtCEGALUpBgC2EQYAtxEGAKjRAgCp2QIAqg0DAKsFAwCsHQMArQUDAK4FAwCvNQMAvmQCAJGvAICVrwCAma8AgJ2vAIChrwCApa8AgKmvAIC4JQMAuS0DALolAwC7PQMAvCUDAL0pAwC++QMAv/kDALBNAwCxIQMAsiUDALM9AwC0JQMAtS0DALYlAwC3HQMAs4UDAITIAgCtrwCAhAgDALGvAIC2hQMAtZUDALWvAIC75QMAuokDAIYIDACHnAMAv+kDAL7hAwC96QMAvPEDAIXsCgA2rgCAo80DALmvAICl3QMAva8AgMGvAICmzQMAxa8AgMmvAICrrQMAqsEDAK2hAwCsuQMAr6EDAK6pAwDNrwCA0a8AgNWvAIDZrwCA78gDAN2vAIDhrwCA5a8AgOO0AwDprwCA4dABAO2vAICADQAAgXUAAIJ9AADxrwCA9a8AgPmvAICzZQEAvgQCALVlAQABsACABbAAgLZlAQCGQA0Ah1gNALv1AQC6/QEAvaUBALy5AQC/mQEAvqUBAAmwAIANsACAEbAAgIQADAAVsACAGbAAgB2wAIDvzAEAIbAAgOEsBgAlsACA4yABAOwAAAApsACALbAAgDGwAIA1sACAo+kBADmwAIA9sACApukBAEGwAIBFsACApekBAKpxAQCreQEASbAAgE2wAICuKQEArxUBAKw1AQCtKQEAqCUOAKktDgCqJQ4Aqz0OAKwlDgCtLQ4AriUOAK+VDgD9rwCAUbAAgFWwAIBZsACAXbAAgIKdAACBnQAAgJ0AALhFDwC5TQ8AukUPALtZDwC8SQ8AvUkPAL59DwC/cQ8AsPEOALH5DgCypQ4As7kOALSpDgC1lQ4Atp0OALd9DwCo1Q8Aqd0PAKoJDwCrCQ8ArBkPAK0FDwCuDQ8ArwUPAGGwAIBlsACAabAAgL6gAwBtsACAcbAAgId4AwCGEAAAuBUPALkdDwC6IQ8AuyEPALz1AAC9/QAAvvUAAL/tAACwQQ8AsU0PALJdDwCzVQ8AtE0PALU1DwC2MQ8AtzEPAHWwAIDvsAwAebAAgH2wAICBsACAhbAAgImwAICNsACAkbAAgJWwAICZsACAnbAAgKGwAIDjqA0ApbAAgOGMDQCzwQ4AqbAAgK2wAICxsACAtbAAgLbFDgC10Q4AubAAgLvJDgC6xQ4AvbAAgMGwAIC/sQ4AvskOAL3BDgC8yQ4AowEOAMWwAIDJsACAzbAAgNGwAICmBQ4ApREOANWwAICrCQ4AqgUOANmwAICErAIAr3EOAK4JDgCtAQ4ArAkOAIBRAACBWQAAgmEAALPFAAC+zAEAtcUAALbNAADhsACAhkAHAIcUAQC6yQAAu8kAALzZAAC92QAAvskAAL/FAACrDQMAqg0DAKkJAwCouQIArw0DAK4NAwCtDQMArA0DAL5gAwDlsACA6bAAgO2wAIDxsACA9bAAgPmwAIC+MAUAuykDALoZAwC5GQMAuAEDAL/dAwC+3QMAvd0DALwxAwCzTQMAsk0DALFNAwCwTQMAtzkDALYxAwC1QQMAtE0DAP2wAICmkQMApZkDAAGxAICjmQMABbEAgAmxAIANsQCAr5kDAK6VAwCthQMArIUDAKuVAwCqlQMAja8AgBGxAIAVsQCAGbEAgB2xAIAhsQCAJbEAgCmxAIAtsQCAMbEAgDWxAIA5sQCAPbEAgEGxAICAHQAAgQkAAIL9AQBFsQCAvwgHAEmxAIBRsQCA7yQAAFWxAICElAIAWbEAgF2xAICH4AIAhgQFAL4AGABhsQCAZbEAgOGQAQBpsQCA44AAAG2xAIBxsQCAdbEAgLNlAQB5sQCAtWUBALZtAQB9sQCAgbEAgIWxAIC65QEAu/kBALzpAQC96QEAvsUBAL+9AQCJsQCAjbEAgJGxAIC+xBkAlbEAgJmxAICdsQCA78gBAKGxAIDh3A4ApbEAgOMwDgCpsQCArbEAgLGxAICEMAQAgHkAAIEVAACCFQAAo+UBALWxAICl5QEApu0BALmxAICGQAYAh5AHAKplAQCreQEArGkBAK1pAQCuRQEArz0BAKjdBQCpIQYAqiEGAKshBgCsIQYArSEGAK4hBgCvnQYATbEAgL2xAIDBsQCAhDABAMWxAIDJsQCAzbEAgNGxAIC4jQYAuZUGALqdBgC7lQYAvI0GAL21BgC+vQYAv7UGALDtBgCx8QYAsvEGALPxBgC0zQYAtbUGALa9BgC3tQYAqIkHAKmVBwCqkQcAq5EHAKy9BwCtpQcArqEHAK/dBwDVsQCA2bEAgN2xAIDhsQCA5bEAgOmxAIDtsQCA8bEAgLhJBwC5VQcAul0HALtVBwC8cQcAvX0HAL5pBwC/aQcAsKUHALGtBwCyuQcAs7EHALSRBwC1kQcAtnkHALd5BwD1sQCA+bEAgP2xAIABsgCA78gFAOHACQAFsgCA48AZAOMkBAAJsgCA4dAGAO/cKACinQMAoxUBAKAZBQChjQUAs1kGAA2yAIARsgCAFbIAgBmyAIC2ZQYAtXUGAB2yAIC7KQYAuiEGACGyAIAlsgCAvxUGAL4VBgC9JQYAvC0GAKOZBgCPmfwAKbIAgDGyAIA1sgCApqUGAKW1BgA5sgCAq+kGAKrhBgCGKB8Ah5wAAK/VBgCu1QYAreUGAKztBgCebQkAn30HAJwNCwCd7QkAmvENAJs5DQCY5fAAmQ0PAJbh8QCX6fEAlMX1AJUN8wCSHfcAk/H1AJD9+QCR7fkAgh3/AIMB+gA9sgCAQbIAgIYV9gCHOfYAhAn6AIXx9ACKwfAAiyXyAEWyAIBJsgCAjuEMAI8VDgCMNfIAjQHzAJKtDgCTgQgATbIAgFGyAICW6QQAl3UGAJR5CgCV8QoAmtEGAJvJAABVsgCAWbIAgIEdAwCAHQMAnFkCAIL1AwCrARAAqpUWAKmNFgCojRYAr5UuAK4BLACt/RIArJkSAKOlHgCipR4AoY0CAN2wAICnGRoAppUaAKUBGACknR8AXbIAgGGyAIBlsgCAabIAgG2yAIBxsgCAdbIAgHmyAICz5SoAsuUqALGtLwCw5S4AfbIAgIGyAIC1ASQAtBEqAKgpAwCpNQMAqj0DAKs1AwCsLQMArbUDAK69AwCvtQMAhbIAgImyAICNsgCAkbIAgIAdAACBCQAAgrkAAJWyAIC4TQIAuV0CALptAgC7CQIAvBkCAL0ZAgC+CQIAvwECALDNAwCx1QMAst0DALPVAwC0zQMAtXUCALZ9AgC3dQIAmbIAgITIHQChsgCAvgwfAKWyAICpsgCA70gGAO9YBwDhWAYA4ZgGAOOUAQDjAAYAhhAcAId8HQC+9B4ArbIAgLGyAIC2ZQMAtfUDALWyAICz5QMAubIAgL2yAIDBsgCAv+ECAL5ZAwC9UQMAvFkDALtBAwC6WQMAxbIAgMmyAIAtsgCAnbIAgM2yAIDRsgCA1bIAgNmyAIDdsgCA4bIAgKitHQCptR0AqrUdAKslHgCsPR4ArR0eAK4VHgCvdR4AsA0eALEtHgCyJR4As40eALSVHgC1nR4AtpUeALeNHgC4tR4Aub0eALq1HgC7nR4AvIUeAL1VHwC+XR8Av1UfALMdHQDlsgCA6bIAgO2yAIDxsgCAtr0eALWVHgD1sgCAu8keALrpHgD5sgCA/bIAgL95HgC+cR4AvXkeALzRHgCCKQAAo1kdAIAdAACBFQAApvkeAAGzAIAFswCApdEeAKqtHgCrjR4ACbMAgITgAwCuNR4Arz0eAKyVHgCtPR4AqIkeAKmVHgCqnR4Aq7EeAKzRHgCt2R4Ars0eAK/FHgANswCAEbMAgIaIAACHbAEAFbMAgBmzAIAdswCAIbMAgLhdAQC5wQEAusEBALvBAQC8wQEAvckBAL7xAQC/8QEAsL0eALGdHgCylR4As2UBALR9AQC1ZQEAtm0BALdlAQCqLR0AqzUdACWzAIApswCAri0dAK+VHACsLR0ArSUdAISMAQCjkR0ALbMAgDGzAICmER0ANbMAgDmzAIClgR0As1UeAD2zAIBBswCARbMAgEmzAIC2GR4AtRkeAE2zAIC7GR4AujkeAFGzAIBVswCAv+EBAL75AQC98QEAvAEeAFmzAIBdswCAYbMAgKOZHQBlswCApdUdAKbVHQBpswCAbbMAgHGzAICq9R0Aq9UdAKzNHQCtPQIArjUCAK8tAgCAZQAAgRUAAIIdAACEAAQAdbMAgHmzAICHcAMAhvwEAIGzAICFswCAibMAgI2zAICRswCAlbMAgJmzAICdswCAvsgEAKGzAIClswCAqbMAgK2zAICxswCAtbMAgO/cHwC5swCA4ZQBAL2zAIDjHAEAwbMAgMWzAIDJswCAzbMAgLt1AwC6aQMAvkgGANGzAIC/HQMAvh0DAL0dAwC8ZQMAs9UDANWzAIDZswCA3bMAgOGzAIC2fQMAtcUDAIRwBQCoJQIAqTUCAKo9AgCrNQIArC0CAK2dAgCulQIAr7UCAIIVAADlswCAgNkBAIEJAADEAAAA6bMAgPGzAID1swCAuKkCALmpAgC6SQEAu0kBALxZAQC9RQEAvkUBAL99AQCwzQIAsdECALLRAgCzqQIAtLkCALW5AgC2qQIAt6ECAOEoHgDhNBwA43QBAOMYHgD5swCA/bMAgIa4BACHVAUAhDgHAAG0AIAFtACACbQAgL6sBwANtACA78weAO/IGgCj9QIAEbQAgBW0AIAZtACAHbQAgKZdAgCl5QIAIbQAgKtVAgCqSQIAJbQAgCm0AICvPQIArj0CAK09AgCsRQIAqGEGAKlhBgCqYQYAq2EGAKxhBgCtYQYArmEGAK9hBgDtswCALbQAgDG0AIA1tACAObQAgD20AIBBtACARbQAgLjxBgC58QYAuvEGALvxBgC8nQYAvbEGAL6xBgC/sQYAsOUGALHtBgCy5QYAs/0GALTlBgC17QYAttkGALfVBgCz6QYASbQAgE20AIBRtACAVbQAgLbhBgC16QYAWbQAgLspBgC6IQYAXbQAgGG0AIC/KQYAviEGAL0pBgC8MQYAgl0AAKOtBgCARQAAgV0AAKalBgBltACAabQAgKWtBgCqZQYAq20GAIYADACHQAMArmUGAK9tBgCsdQYArW0GAG20AIDvfAUAcbQAgHW0AIB5tACAfbQAgIG0AICFtACAibQAgI20AICRtACAlbQAgJm0AIDjaAUAnbQAgOF4BQCz0QYAobQAgKW0AICptACArbQAgLb9BgC1/QYAsbQAgLupBgC6oQYAtbQAgLm0AIC/mQYAvqkGAL2pBgC8sQYAqLkGAKm5BgCqGQYAqxkGAKw1BgCtPQYArjUGAK8pBgC9tACAgh0AAIEdAACAHQAAwbQAgMW0AIDJtACA0bQAgLjpAQC56QEAuvkBALv5AQC86QEAvekBAL5dAQC/VQEAsCUGALEtBgCyJQYAsz0GALQtBgC1HQYAthUGALfZAQCGgAwAh+QCANW0AICjnQUA2bQAgKWxBQCmsQUA3bQAgOG0AIDltACAqu0FAKvlBQCs/QUAreUFAK7lBQCv1QUAtk0DAOm0AICExAMAtUUDAO20AICzjQIA8bQAgPW0AIC+SQMAv0kDALxJAwC9SQMAumkDALtpAwD5tACA/bQAgAG1AICmiQMApYEDAAW1AICjSQIACbUAgA21AIARtQCAr40DAK6NAwCtjQMArI0DAKutAwCqrQMAfbMAgBW1AIAZtQCAHbUAgIW0PQAhtQCAJbUAgCm1AIAttQCAMbUAgIA9AACBCQAAgh0AADW1AIC+sAMAObUAgIc4AwCG3AwAQbUAgEW1AIBJtQCATbUAgFG1AIDvXAYAVbUAgFm1AIC+6AwA45QGAF21AIDh3AEAYbUAgGW1AIBptQCAbbUAgLNRAQBxtQCAdbUAgHm1AIB9tQCAtnEBALV5AQCBtQCAuz0BALo9AQCFtQCAibUAgL/9AQC+9QEAvQUBALwFAQCNtQCAkbUAgJW1AICEQAwAmbUAgJ21AIChtQCA76wHAKW1AIDhJAYAqbUAgONABwCGkAwAh/wMALG1AIC1tQCAgFkAAIFlAACCYQAAo90BALm1AICl9QEApv0BAL21AIDBtQCAxbUAgKqxAQCrsQEArIkBAK2JAQCueQEAr3EBAM20AIA9tQCAybUAgM21AICttQCA0bUAgNW1AIDZtQCAqJ0NAKktDgCqOQ4AqzEOAKwRDgCtEQ4Arn0OAK9tDgCwGQ4AsRkOALIxDgCzMQ4AtNEOALXZDgC2zQ4At8UOALj9DgC52Q4AuqkOALupDgC8vQ4AvaUOAL6tDgC/pQ4AqIEPAKmBDwCqgQ8Aq4EPAKyBDwCtjQ8AroUPAK+1DwDdtQCA4bUAgOW1AIDptQCA7bUAgPG1AID1tQCA+bUAgLidDwC5rQ8AuqUPALtNDwC8VQ8AvV0PAL5JDwC/SQ8AsNEPALHRDwCy0Q8As9EPALS1DwC1vQ8AtrUPALetDwCzCQ4A/bUAgAG2AIAFtgCACbYAgLYNDgC1CQ4ADbYAgLsVDgC6FQ4AEbYAgBW2AIC/eQ4AvnEOAL0FDgC8BQ4AghUAAKNNDgCAYQAAgWEAAKZJDgAZtgCAvhABAKVNDgCqUQ4Aq1EOAIQkAQAhtgCArjUOAK89DgCsQQ4ArUEOAKg5DgCpOQ4AqlkOAKtRDgCscQ4ArXEOAK6RAQCvkQEAhgAAAIeEAAAltgCAKbYAgC22AIAxtgCANbYAgDm2AIC4dQEAuX0BALp1AQC7yQAAvNkAAL3ZAAC+yQAAv8EAALD1AQCx/QEAsvUBALNNAQC0VQEAtV0BALZVAQC3TQEAuk0PALtVDwC4TQ8AuUUPAL59DwC/tQ8AvEUPAL11DwCyAQ8AswEPALAxDwCxMQ8AtgEPALcNDwC0EQ8AtREPAKqZDgCrRQ8AqOUOAKmZDgCuQQ8Ar0EPAKxRDwCtUQ8APbYAgEG2AIBFtgCASbYAgE22AIBRtgCAVbYAgFm2AICzUQ0AXbYAgGG2AIBltgCAabYAgLZxDQC1eQ0AbbYAgLu5AgC6sQIAcbYAgHW2AIC/GQIAvhECAL0ZAgC8oQIAebYAgKMVDQB9tgCAgbYAgKY1DQCFtgCAibYAgKU9DQCq9QIAq/0CAIToAwCRtgCArlUCAK9dAgCs5QIArV0CAKhtAgCprQIAqqUCAKu9AgCspQIAra0CAK6lAgCvfQEAgO0BAIHxAQCC8QEAvqAFAJW2AICZtgCAh2gFAIYcBQC4yQEAuckBALrZAQC70QEAvPkBAL35AQC+mQEAv5UBALAFAQCxDQEAsgUBALMdAQC0BQEAtQ0BALYFAQC3+QEA4WQPAOGcDwDjFA4A49QPAJ22AIDhPA4AobYAgOPkAAC+rAQApbYAgKm2AIDvDAAArbYAgLG2AIDvYA4A77QPALW2AIC5tgCAhEQEALNhAgC9tgCAtWECALZhAgDBtgCAxbYAgMm2AIC6jQEAu4UBALydAQC9hQEAvo0BAL+FAQCjrQUAjbYAgM22AIDRtgCA1bYAgKatBQClrQUA2bYAgKtJBgCqQQYA3bYAgOG2AICvSQYArkEGAK1JBgCsUQYA5bYAgOm2AIDttgCA8bYAgIAdAACBCQAAgjkAAPW2AID5tgCA/bYAgIbIAACHIAMAAbcAgAW3AIAJtwCADbcAgKhtBgCptQcAqr0HAKsdBwCsCQcArTEHAK4xBwCvLQcAhKgDABG3AIAVtwCAGbcAgB23AIAhtwCAJbcAgCm3AIC4zQAAudUAALrVAAC75QAAvP0AAL2VAAC+nQAAv5UAALBVBwCxJQcAsi0HALM9BwC0LQcAtRUHALYdBwC39QAALbcAgOG8BgAxtwCA4/QFADW3AIA5twCAPbcAgEG3AIBFtwCASbcAgE23AIBRtwCAVbcAgFm3AIBdtwCA7+gEALN1BgCCLQAAgRUAAIAdAABhtwCAtvEGALXBBgBltwCAu6EGALrRBgBptwCAvmwBAL+RBgC+qQYAvakGALy5BgCjtQYAcbcAgIYoAACHTAEAdbcAgKYxBgClAQYAebcAgKthBgCqEQYAfbcAgIG3AICvUQYArmkGAK1pBgCseQYAhbcAgLO9AQCJtwCAjbcAgLZ5AQCRtwCAlbcAgLV5AQC6VQEAu10BAJm3AICdtwCAvvkAAL/lAAC8RQEAvf0AAKhxAgCpcQIAqnECAKtxAgCstQIArb0CAK61AgCvrQIAhOw8AKG3AICltwCAqbcAgK23AICxtwCAtbcAgLm3AIC4XQMAuWUDALptAwC7ZQMAvH0DAL1lAwC+bQMAv2UDALDVAgCx3QIAstUCALNtAwC0eQMAtWUDALZtAwC3ZQMAHbYAgL23AIDBtwCAo/UCAMW3AIClMQIApjECAMm3AIDNtwCA0bcAgKodAgCrFQIArA0CAK21AwCusQMAr60DAIBlAACBCQAAghkAANW3AIDZtwCA4bcAgL4QPADltwCAhsA8AIcgAwDptwCA7bcAgPG3AID1twCA+bcAgP23AICohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAAG4AIAFuACACbgAgA24AIARuACAFbgAgBm4AIAduACAuHUBALl9AQC6dQEAu8kBALzZAQC9xQEAvsUBAL/9AQCwtQIAsb0CALKBAgCzgQIAtFUBALVdAQC2VQEAt00BAOGkBgAhuACA41AGAL6APACEHDwAvoA/ACW4AIApuACALbgAgDG4AIA1uACAObgAgD24AIBBuACA7+AGAEW4AICBfQAAgHEAAEm4AICCBQAAUbgAgFW4AIDvTAAAWbgAgOGQAQBduACA41gBAGG4AIBluACAabgAgIZYPwCH/DwAs509AN23AIBNuACAbbgAgHG4AIC21T0AtbU9AHW4AIC7+T0AuvE9AHm4AIB9uACAvxk+AL4RPgC91T0AvNU9AIG4AICj2T0AhbgAgIm4AICmkT0AjbgAgJG4AICl8T0AqrU9AKu9PQCVuACAmbgAgK5VPgCvXT4ArJE9AK2RPQCoVT4AqVk+AKphPgCrYT4ArGE+AK1hPgCuYT4Ar2E+AISoAwCduACAobgAgKW4AICpuACArbgAgLG4AIC1uACAuEU/ALldPwC6VT8Au20/ALx1PwC9fT8AvnU/AL9tPwCwwT8AscE/ALLBPwCzwT8AtME/ALXBPwC2wT8At8E/AIC5AQCBuQEAggUAALm4AIDhgD4AwbgAgOMoPQDFuACAhoAAAIcEAQDvCD0AybgAgM24AIDRuACA1bgAgNm4AICzqT8AvbgAgN24AIDhuACA5bgAgLahPwC1qT8A6bgAgLtFPgC6RT4A7bgAgPG4AIC/RT4AvkU+AL1VPgC8VT4Ao2k/APW4AID5uACA/bgAgAG5AICmYT8ApWk/AAW5AICrhT4AqoU+AAm5AIANuQCAr4U+AK6FPgCtlT4ArJU+ABG5AICzGT4AFbkAgBm5AIC2IT4AHbkAgCG5AIC1MT4AuvEBALv5AQAluQCAKbkAgL6xAQC/vQEAvNEBAL3RAQCo0T0AqdE9AKrVPQCr6T0ArP09AK3lPQCu7T0ArxECAID5AwCBzQMAgsUDAIQkAwC+AAQAMbkAgIesAwCGvAQAuBkCALktAgC6JQIAu+kCALz5AgC9+QIAvukCAL/pAgCwcQIAsXkCALJBAgCzQQIAtDECALU9AgC2NQIAtykCAKVtPQA1uQCAObkAgKZ9PQA9uQCAbbcAgKNFPQBBuQCArY0CAKyNAgCv4QIAru0CAKwAAABFuQCAq6UCAKqtAgDh+AEASbkAgOP0AgCEwAQATbkAgFG5AIBVuQCAWbkAgF25AIBhuQCAZbkAgGm5AIBtuQCAcbkAgO8wAgB1uQCAqBUCAKkZAgCqJQIAqz0CAKwlAgCtLQIAriUCAK9VAgB5uQCAfbkAgIG5AICFuQCAibkAgI25AICEsAQAkbkAgLjRAgC52QIAuuECALvhAgC8kQIAvZ0CAL6VAgC/iQIAsC0CALE1AgCyNQIAswUCALQdAgC18QIAtvECALfxAgDheD8A4zQBAOMIPgDhbD4AgQkAAICpAACVuQCAgj0AAJm5AIChuQCApbkAgL4gBACpuQCA79g+AO/MPgCtuQCAsbkAgLPpAgCG6AQAh8AEALbpAgC1uQCAubkAgLXpAgC6rQIAu7UCAL25AIDBuQCAvp0CAL9xAgC8pQIAvZUCAC25AICduQCAxbkAgMm5AIDNuQCA0bkAgNW5AIDZuQCAqBUGAKmhBgCqoQYAq70GAKytBgCtgQYArv0GAK/tBgCwlQYAsZ0GALKVBgCzrQYAtLUGALW9BgC2tQYAt60GALiVBgC5mQYAukkHALtJBwC8WQcAvVkHAL5JBwC/SQcArN0FAK3tBQCu5QUArwkFAN25AIDhuQCAqtUFAKvNBQDluQCApZEFAKaRBQDpuQCA7bkAgPG5AID1uQCAo5EFALNJBgD5uQCA/bkAgAG6AIAFugCAtmEGALVFBgAJugCAuzkGALoxBgC+ZAAADboAgL8ZBgC+EQYAvRkGALwhBgCjiQcAgtkBAIHZAQCAwQEAEboAgKahBwClhQcAFboAgKv5BwCq8QcAhggBAId8AQCv2QcArtEHAK3ZBwCs4QcAGboAgLP1BgAdugCAIboAgLaFBgAlugCAKboAgLWdBgC6jQYAu20BAC26AIAxugCAvmUBAL9tAQC8dQEAvW0BAKglBgCpLQYAqjkGAKsxBgCsUQYArUEGAK5BBgCvdQYANboAgDm6AIA9ugCAQboAgEW6AIBJugCATboAgFG6AIC4VQEAuWUBALplAQC7fQEAvGUBAL1tAQC+HQEAvxUBALANBgCx7QEAsuUBALP9AQC05QEAte0BALblAQC3bQEAo7EFAFW6AIBZugCAvkgDAL5YDACmwQUApdkFAF26AICrKQIAqskFAGG6AIBlugCArykCAK4hAgCtKQIArDECAGm6AIBtugCAcboAgHW6AICAGQAAgRkAAIIFAAB5ugCAhKwDAIG6AICHGAMAhswMAIW6AICJugCAjboAgJG6AICokQMAqZkDAKrJAwCrxQMArN0DAK3BAwCuwQMAr/UDAJW6AICZugCAnboAgKG6AIClugCAqboAgK26AICxugCAuH0DALnBAAC6wQAAu9EAALz5AAC9+QAAvpkAAL+ZAACwjQMAsUUDALJNAwCzRQMAtF0DALVFAwC2TQMAt0UDALNBAgC1ugCAuboAgL8EDwC9ugCAtkECALVVAgDBugCAu4ECALpJAgDFugCAyboAgL+BAgC+mQIAvZECALyZAgDNugCA0boAgNW6AIDZugCA76QDAN26AIDhugCA5boAgOMQAwDpugCA4VgAAIQgDQCAKQAAgSkAAIIdAADxugCA4VAGAOGgBwDjoAYA41AHAIWUDAD1ugCA70gbAPm6AIDhJAIA/boAgONwGgABuwCABbsAgAm7AIDvqAEA7+gGAIagDwCHDA0Ao4kCAA27AIClnQIAEbsAgBW7AICmiQIAGbsAgB27AICrSQIAqoECAK1ZAgCsUQIAr0kCAK5RAgCoZQ4AqXUOAKp9DgCrdQ4ArG0OAK21DgCuvQ4Ar7UOAO26AIAhuwCAJbsAgCm7AIAtuwCAOLsAgDy7AIBAuwCAuF0PALltDwC6ZQ8Auw0PALwVDwC9HQ8AvhUPAL8JDwCwzQ4AsdUOALLdDgCz1Q4AtM0OALVxDwC2cQ8At20PALP1DgBEuwCASLsAgEy7AIBQuwCAtjUOALXlDgBUuwCAuxEOALoJDgBYuwCAXLsAgL+1DwC+CQ4AvQEOALwJDgCCFQAAo7EOAIBhAACBYQAApnEOAGC7AIC+EAEApaEOAKpNDgCrVQ4AaLsAgIQgAQCuTQ4Ar/EPAKxNDgCtRQ4An0UIAJ4NCQCdDQkAnJkLAJt1NQCaETUAmZk3AJgNMQCXJTEAliUxAJWBPQCUDT0Ak4k/AJIVOACRPTkAkD05AI9lJQDvrA0AhgAEAIegAQBsuwCAcLsAgHS7AIDv6AEAeLsAgOE0AgB8uwCA4zQBAIC7AIDjCAwAhLsAgOEIDQChoQEAiLsAgKMJBQCibQMApc0EAKQRBQCnHRkAph0ZAKmhHQCoORkAq+kcAKqpHQCtkREArAEQAK8BFACuUREAsfkVALDlFQCz6WkAsgFoALUBbAC0eWkAjLsAgJC7AICUuwCAmLsAgJy7AICguwCAowkDAKIZDQCh/Q0AoP0NAIIlJgCDBToApLsAgKi7AICGqTwAhzU+AIQdOgCFPTsAiok+AIslMgCsuwCAsLsAgI6xNACPMTYAjD0yAI0tMgCSJTYAk9EIAIREAwC+wAQAlhULAJdVDgCUXQoAlVUKAJplDgCbiQ4AtLsAgLi7AIC8uwCAwLsAgJyBAADEuwCAuLUCALm9AgC6tQIAuwkCALwZAgC9GQIAvgkCAL8BAgCwdQ0AsX0NALJJDQCzSQ0AtJUCALWdAgC2lQIAt40CAKi9DQCpUQ0AqlUNAKtpDQCsfQ0ArWUNAK5tDQCvEQ0AZLsAgILtAQCBHQAAgB0AAMi7AIDMuwCAfboAgL5wBQCznQwAhIwFANC7AIDYuwCA3LsAgLalDAC1tQwA4LsAgLv5DAC68QwAhigFAIcgBQC/GQMAvhEDAL3dDAC83QwA5LsAgKPZDADouwCA7LsAgKbhDADwuwCA9LsAgKXxDACqtQwAq70MAPi7AID8uwCArlUDAK9dAwCsmQwArZkMAAC8AIAEvACACLwAgAy8AIAQvACAFLwAgBi8AIDvvAEAHLwAgOF8DgAgvACA41ABACS8AIAovACALLwAgDC8AICzlQIANLwAgDi8AIA8vACAQLwAgLa9AgC1uQIASLwAgLs5AgC6YQIAhsgEAIesBAC/GQIAvhECAL0ZAgC8IQIAo1UFAILVBwCBxQcAgMUHAEy8AICmfQUApXkFAFC8AICr+QUAqqEFAFS8AIBYvACAr9kFAK7RBQCt2QUArOEFAFy8AICzWQcAYLwAgGS8AIC2HQcAaLwAgGy8AIC1FQcAugkHALsJBwBwvACAdLwAgL75BwC/+QcAvPkHAL35BwDUuwCARLwAgHi8AIB8vACAgLwAgIS8AICIvACAjLwAgKitBwCptQcAqrUHAKvtBwCs+QcArfkHAK7tBwCv5QcAsKkHALGpBwCySQcAs0kHALRZBwC1WQcAtkkHALdJBwC4eQcAuUUHALpBBwC7XQcAvEUHAL1NBwC+RQcAvzkHAKMdBgCQvACAlLwAgJi8AICcvACAplkGAKVRBgCgvACAq00GAKpNBgCkvACAqLwAgK+9BgCuvQYArb0GAKy9BgCAbQAAgQkAAIIZAACsvACAsLwAgISYAQC+kAEAtLwAgIYAHACHxAEAuLwAgLy8AIDAvACAxLwAgMi8AIDMvACAqF0GAKmVAQCqlQEAq6UBAKy9AQCt1QEArtEBAK/RAQDQvACA1LwAgNi8AIDcvACA4LwAgOS8AIDovACA7LwAgLhZAQC5WQEAus0AALvFAAC83QAAvcUAAL7FAAC/9QAAsLUBALG9AQCygQEAs4EBALR5AQC1eQEAtmkBALdpAQCzHQIA8LwAgPS8AIC+gBwA+LwAgLZVAgC1NQIA/LwAgLt5AgC6cQIAAL0AgAS9AIC/vQIAvr0CAL1VAgC8VQIACL0AgKNZAgAMvQCAEL0AgKYRAgAUvQCAGL0AgKVxAgCqNQIAqz0CABy9AIAgvQCArvkCAK/5AgCsEQIArRECACi9AIAsvQCAvgQdAL4AHgAwvQCANL0AgDi9AIA8vQCAgPkAAIHNAACCxQAAhCADAIawHACHlAMAQL0AgES9AIBIvQCATL0AgFC9AIBUvQCA42wCAFi9AIDhoAEAXL0AgO8UAgBgvQCAZL0AgGi9AIBsvQCAcL0AgHS9AIB4vQCA4fAGAOE0BgDjTAAA4xgGAHy9AICAvQCAhL0AgIi9AICAPQAAgQkAAIIZAACMvQCAkL0AgIS8HQDvmAAA7zgHALMxAgDRAAAAh9gdAIZsHACYvQCAtikCALUhAgCcvQCAu80CALrNAgCgvQCApL0AgL/NAgC+zQIAvc0CALzNAgCyXQYAs2UGALANBgCxVQYAtn0GALedBQC0fQYAtXUGALqNBQC7zQUAuKUFALmFBQC+xQUAv8kFALzVBQC9zQUAqL0AgKy9AICwvQCAtL0AgLi9AIC8vQCAwL0AgMS9AICqtQYAq70GAKgBBwCpvQYAroEGAK+NBgCsmQYArZUGAKNxHQDIvQCAzL0AgNC9AIDUvQCApmkdAKVhHQDYvQCAq40dAKqNHQDcvQCA4L0AgK+NHQCujR0ArY0dAKyNHQDkvQCAs9UeAOi9AIDsvQCAts0eAPC9AID0vQCAtcUeALqhHgC7oR4A+L0AgPy9AIC+pR4Av6keALyxHgC9sR4AJL0AgJS9AIAAvgCAhAQDAID5AACB+QAAghEAAAS+AICoIR4AqSEeAKo5HgCrOR4ArCkeAK0pHgCuAR4ArwEeALABHgCxAR4AsgEeALMBHgC0BR4AtQkeALY9HgC3NR4AuA0eALkVHgC6HR4AuxUeALwNHgC95R8Avu0fAL/lHwCjkR8ACL4AgIYoAQCHSAEADL4AgKaJHwClgR8AEL4AgKvlHwCq5R8AFL4AgBi+AICv7R8AruEfAK31HwCs9R8AHL4AgLMtHgAgvgCAJL4AgLaVHgAovgCALL4AgLWdHgC6sR4Au7EeADC+AIA0vgCAvnUBAL99AQC8oR4AvaEeAKjRHgCp2R4AquEeAKvhHgCsUR4ArVEeAK5RHgCvUR4AOL4AgDy+AIBAvgCARL4AgEi+AIBMvgCAUL4AgFS+AIC43QEAue0BALrlAQC7jQEAvJkBAL2ZAQC+jQEAv4UBALAxHgCxMR4AsjEeALMxHgC09QEAtf0BALb1AQC37QEAo2kdAFi+AIBcvgCAYL4AgGS+AICm0R0ApdkdAGi+AICr9R0AqvUdAGy+AIBwvgCArzkCAK4xAgCt5R0ArOUdAIFpAACAWQAAvgAEAIJhAAB4vgCAfL4AgIC+AICEvgCAhOwDAIi+AICHiAMAhuwEAIy+AICQvgCAlL4AgJi+AICohQMAqZUDAKqVAwCrpQMArL0DAK3VAwCu0QMAr9EDAJy+AICgvgCApL4AgKi+AICsvgCAsL4AgLS+AIC4vgCAuHEDALlxAwC6cQMAu3EDALzVAAC93QAAvtUAAL/NAACwtQMAsb0DALKBAwCzgQMAtFEDALVRAwC2UQMAt1EDAOFUHgDhrB8A45QBAOMoHgDjYAMAvL4AgOEIAADAvgCA75ADAMS+AIDIvgCAzL4AgNC+AIDUvgCA70wfAO9MHwCzXQIA2L4AgNy+AIDgvgCA6L4AgLYVAgC1dQIA7L4AgLs5AgC6MQIAhCQFAL7gBAC/1QIAvtUCAL0VAgC8FQIAuJEdALmZHQC6oR0Au6EdALzRHQC93R0AvtUdAL/JHQCwCR4AsQkeALIZHgCzGR4AtAkeALUJHgC2vR0At7UdAKipHgCpqR4AqrkeAKu5HgCsqR4ArakeAK55HgCveR4AgKUAAIGtAACCpQAA8L4AgIbQBACH+AQA9L4AgPi+AIB0vgCA5L4AgPy+AIAAvwCABL8AgAi/AIAMvwCAEL8AgKhxBgCpcQYAqnEGAKtxBgCsVQYArUUGAK5NBgCvRQYAsD0GALHlBgCy7QYAs+UGALT9BgC15QYAtu0GALflBgC43QYAuXEHALp1BwC7SQcAvFkHAL1ZBwC+SQcAv0kHALPZBgAUvwCAGL8AgBy/AIAgvwCAtuUGALX9BgAkvwCAuwEGALrZBgAovwCALL8AgL8BBgC+GQYAvREGALwZBgAwvwCAo9kFADS/AIA4vwCAppEFADy/AIBAvwCApfEFAKq1BQCrvQUARL8AgEi/AICuUQUAr1EFAKyRBQCtkQUAo1kHAIIZAACBGQAAgOEBAEy/AICmZQcApX0HAFC/AICrgQcAqlkHAISgAgC+rAEAr4EHAK6ZBwCtkQcArJkHAFS/AICzqQYAhugAAIcsAQC2WQEAWL8AgFy/AIC1oQYAunUBALt9AQBgvwCAZL8AgL75AQC/+QEAvGUBAL35AQCo0QYAqdkGAKplBgCrdQYArG0GAK2dAQCulQEAr40BAITsAQBovwCAbL8AgHC/AIB0vwCAeL8AgHy/AICAvwCAuGkBALlpAQC6CQEAuwUBALwdAQC9AQEAvgEBAL81AQCw9QEAsf0BALL1AQCzaQEAtHkBALV5AQC2aQEAt2EBAIS/AICIvwCAjL8AgKPhBQCQvwCApekFAKYRAgCUvwCAmL8AgJy/AICqPQIAqzUCAKwtAgCtsQIArrECAK+xAgCgvwCApL8AgL4EAwCEAAwAqL8AgKy/AICwvwCAtL8AgIANAACBFQAAgh0AALi/AIC8vwCAwL8AgIdEAwCG3AwAs+kDAMi/AIDMvwCA0L8AgNS/AIC2PQMAtT0DANi/AIC7GQMAuhEDANy/AIDgvwCAv7kAAL6xAAC9uQAAvAEDAOS/AIDhlAEA6L8AgON8AQDsvwCA8L8AgPS/AID4vwCA/L8AgADAAIAEwACACMAAgAzAAIAQwACAFMAAgO9MAgCoVQIAqV0CAKphAgCrYQIArLUCAK29AgCutQIAr60CAL5oDQAYwACAHMAAgCDAAIAkwACAgq0AAIGtAACArQAAuGEBALlhAQC6CQEAuwkBALwBAQC9AQEAvgEBAL8BAQCw1QIAsd0CALLVAgCzbQEAtHUBALV9AQC2aQEAt2EBAOFoBgDh8AcA47AAAOP0BgAowACALMAAgDDAAIA4wACAPMAAgEDAAIBEwACASMAAgL78DABMwACA72wAAO8oBgCjqQIAUMAAgIZoDACHBA0AVMAAgKZ9AgClfQIAWMAAgKtZAgCqUQIAXMAAgGDAAICv+QEArvEBAK35AQCsQQIAqIUOAKmNDgCqhQ4Aq50OAKyNDgCtvQ4ArrUOAK/dDgA0wACAZMAAgGjAAIBswACAcMAAgHTAAIB4wACAfMAAgLitDgC5tQ4Aur0OALu1DgC8dQ8AvX0PAL51DwC/bQ8AsKkOALG1DgCyvQ4As7UOALStDgC1lQ4Atp0OALeVDgCzDQ4AgMAAgITAAICIwACAjMAAgLY9DgC1BQ4AkMAAgLtxDgC6bQ4AlMAAgJjAAIC/UQ4AvmkOAL1hDgC8aQ4AghkAAKNJDgCAZQAAgRkAAKZ5DgCcwACAoMAAgKVBDgCqKQ4AqzUOAIS8AwCkwACAri0OAK8VDgCsLQ4ArSUOAKidDgCppQ4Aqq0OAKulDgCsvQ4AraEOAK7dDgCvzQ4AhiABAIdkAQCowACArMAAgLDAAIC0wACAuMAAgLzAAIC4eQEAuXkBALrNAQC7xQEAvN0BAL3FAQC+xQEAv/UBALC9DgCxjQ4AsoUOALNJAQC0WQEAtVkBALZJAQC3SQEAtS0OAMDAAIDEwACAtjkOAMjAAIDMwACAsz0OANDAAIC9hQEAvEkOAL+FAQC+hQEA1MAAgMS/AIC7UQ4AumEOAKNlDgDYwACA3MAAgODAAIDkwACApmEOAKV1DgDowACAqwkOAKo5DgDswACA8MAAgK/dAQCu3QEArd0BAKwRDgD0wACA+MAAgO/QDwD8wACAAMEAgATBAIAIwQCADMEAgBDBAIC+aAMAGMEAgBzBAIDhVA4AIMEAgONkDgAkwQCAgFkAAIFZAACCaQAAhIwDAIbwBACHFAMAKMEAgCzBAIAwwQCANMEAgDjBAIA8wQCAQMEAgETBAIBIwQCATMEAgFDBAIBUwQCAWMEAgFzBAIBgwQCAZMEAgGjBAIBswQCAqIkDAKmJAwCqmQMAq5kDAKyJAwCtiQMArj0DAK81AwCwUQMAsVEDALJVAwCzfQMAtBUDALUdAwC2FQMAtw0DALg9AwC5DQMAugUDALvtAAC89QAAvfkAAL7pAAC/6QAAcMEAgHTBAIB4wQCAsz0CAHzBAIC1LQIAtiUCAIDBAIC+aAUAiMEAgLq5AgC7uQIAvK0CAL2FAgC+/QIAv/UCAIBJAACBVQAAglUAAIQABQDvjAMAvhgEAId0BQCG/AQA4zwDAIzBAIDhUAAAkMEAgJTBAICYwQCAnMEAgKDBAICkwQCAqMEAgKzBAICwwQCAtMEAgLjBAIC8wQCA79QOAL4oBgDhdA4AwMEAgONUAQDEwQCAyMEAgMzBAIDQwQCAo/ECANTBAIDYwQCA3MEAgODBAICm6QIApeECAOTBAICrdQIAqnUCAOjBAIDswQCArzkCAK4xAgCtSQIArGECAKgpBgCpKQYAqj0GAKsxBgCsSQYArUkGAK55BgCveQYAhMEAgIIVAACBxQcAgMUHAPDBAICEaAMA9MEAgPjBAIC4yQYAuckGALrZBgC72QYAvMkGAL3JBgC+WQcAv1kHALAJBgCxCQYAshkGALMZBgC0CQYAtQkGALb5BgC3+QYAs7UGAPzBAICGrAAAh0ADAADCAIC2yQYAtcEGAATCAIC7zQYAus0GAAjCAIAMwgCAv80GAL7NBgC9zQYAvM0GABDCAICj8QYAFMIAgBjCAICmjQYAHMIAgCDCAIClhQYAqokGAKuJBgAkwgCAKMIAgK6JBgCviQYArIkGAK2JBgCoJQYAqWEGAKplBgCrfQYArGUGAK1tBgCuZQYAr50GACzCAIAwwgCANMIAgDjCAIA8wgCAQMIAgETCAIBIwgCAuPUGALn9BgC69QYAu4kGALyZBgC9mQYAvokGAL+BBgCw5QYAse0GALLlBgCz/QYAtOUGALXtBgC20QYAt80GAEzCAIC2/QYAtf0GAFDCAICz/QYAVMIAgFjCAIBcwgCAvzkGAL4xBgC9OQYAvCEGALs5BgC6MQYAFMEAgGDCAICjrQYAgnkAAIFVAACAVQAAhFwBAKatBgClrQYAaMIAgKtpBgCqYQYAhkh/AIfkAACvaQYArmEGAK1pBgCscQYAbMIAgO/cBwBwwgCAdMIAgHjCAIB8wgCAgMIAgITCAICIwgCAhKADAIzCAIC/JHkAkMIAgONoBwCUwgCA4XQGALPRAgCYwgCAvgQDAISAfQCcwgCAtvkCALXxAgCgwgCAu7UCALqpAgCkwgCAqMIAgL9RAwC+mQIAvZECALylAgCpBQIAqLkCAKsVAgCqHQIArT0CAKw9AgCvUQIArl0CAL5ofQCswgCAsMIAgLTCAIC4wgCAvMIAgMDCAIDEwgCAufEDALjpAwC78QMAuvkDAL1RAwC86QMAv00DAL5RAwCxNQIAsCkCALMBAgCyNQIAtdEDALQZAgC30QMAttkDAIIpAACjlQMAgB0AAIEVAACmvQMAyMIAgMzCAICltQMAqu0DAKvxAwDQwgCA2MIAgK7dAwCvFQIArOEDAK3VAwCGYH0Ah3h9ALNBAQCEAH8AtUEBANzCAIDgwgCAtkkBAOTCAIDowgCAu0EBALpNAQC9SQEAvEUBAL8pAQC+OQEA7MIAgO/cBgDwwgCA9MIAgPjCAID8wgCAAMMAgO8wBgCELH4A4eAGAATDAIDjiAEACMMAgON0AAAMwwCA4SwBAKPJAQAQwwCAFMMAgIVweQAYwwCApsEBAKXJAQAcwwCAq8kBAKrFAQAgwwCAJMMAgK+hAQCusQEArcEBAKzNAQCo3X0AqQV+AKoBfgCrAX4ArAF+AK0BfgCuAX4ArwF+ANTCAIAowwCALMMAgDDDAIA0wwCAgp0AAIGdAACAnQAAuC1+ALnhfgC64X4Au+F+ALzhfgC94X4AvuF+AL/hfgCwQX4AsU1+ALJZfgCzVX4AtDV+ALUlfgC2JX4AtxV+AKitfwCp0X8AqtF/AKvtfwCs9X8ArRV/AK4RfwCvEX8AOMMAgDzDAIBAwwCARMMAgIbwAwCHuAAASMMAgEzDAIC4EX8AuRl/ALohfwC7IX8AvPUAAL39AAC+9QAAv+0AALBxfwCxcX8AsnF/ALNFfwC0QX8AtU1/ALY9fwC3NX8As1l+AFDDAIBUwwCAWMMAgFzDAIC2lX4AtX1+AGDDAIC7tX4AurV+AGTDAIBowwCAv4l+AL6FfgC9kX4AvKV+AGzDAICjHX4AcMMAgHTDAICm0X4AeMMAgHzDAIClOX4AqvF+AKvxfgCAwwCAhMMAgK7BfgCvzX4ArOF+AK3VfgCwrQAAscUAALLBAACzwQAAtMUAALXNAAC28QAAt/EAALhhAAC5YQAAumEAALt9AAC8ZQAAvW0AAL5lAAC/vQMAiMMAgIzDAICQwwCAZMIAgJTDAICYwwCAnMMAgKDDAICoWQEAqVkBAKrtAACr5QAArP0AAK3lAACu5QAAr9UAAKTDAICCHQAAgR0AAIAdAACowwCArMMAgLDDAIC+VAIAhoAEAIfsAgC4wwCAvMMAgMDDAIDEwwCAyMMAgL54AwDjdH4AzMMAgOG4fQDQwwCA1MMAgNjDAIDcwwCA4MMAgOTDAIDowwCA7MMAgPDDAIDvwH4A9MMAgPjDAID8wwCAs4UDAADEAIAExACACMQAgAzEAIC2hQMAtZUDABDEAIC74QMAuokDAL4kBgAUxACAv+kDAL7hAwC99QMAvPUDAIIpAACjwQMAgB0AAIEVAACmwQMAGMQAgBzEAICl0QMAqs0DAKulAwAgxACAheAFAK6lAwCvrQMArLEDAK2xAwDh+AMAKMQAgONcHwAsxACA7/QDADDEAICGPAcAh6wCAON8fgA0xACA4YABADjEAIA8xACAQMQAgO/kEwBExACAs3EBAEjEAIBMxACAUMQAgFTEAIC2EQEAtWEBAFjEAIC7OQEAujEBAFzEAIBgxACAvxkBAL4RAQC9GQEAvCEBAGTEAIBoxACAbMQAgHDEAIB0xACAeMQAgHzEAIDvxH8AgMQAgOH8fgCExACA4/B/AIANAACBdQAAgn0AAIjEAICMxACAkMQAgKP5AQC+AAgApekBAJjEAICcxACAppkBAISoBQCgxACAq7EBAKq5AQCtkQEArKkBAK+RAQCumQEAqCkGAKkpBgCqOQYAqzkGAKwpBgCtUQYArlUGAK9NBgAkxACAhCABAKTEAICUxACAo+EBAKKZBAChGQQAoPEFALg5BgC5OQYAus0GALvFBgC83QYAvcUGAL7FBgC/8QYAsDUGALE9BgCyNQYAsw0GALQVBgC1HQYAthUGALcJBgCPoWwAs5EHAIYoAQCHfAMAtqEHAKjEAICsxACAtbEHALrlBwC77QcAsMQAgLTEAIC+7QcAv90HALz1BwC97QcAn/l4AJ7leACdcXkAnCF8AJvxfACaYX0AmZlxAJjZcACX4XAAlnl0AJVtdACUbXQAk61pAJJxaACReWgAkB1uAIIhbQCD5W8AuMQAgLzEAICGTWgAh5V1AISZaQCFmWkAiqV1AIu5dQDAxACAxMQAgI5xcACPgXwAjDlxAI05cQCSYX0Ak6l9AMjEAIDMxACAlml5AJeZBACU4XgAlX15AJpBBQCbyQUA0MQAgNTEAIDYxACA3MQAgJypAADgxACAo4ENAKKpAQChqQEA5MQAgKexCQCmAQgApU0NAKSZDQCrkRUAqoUVAKkBFACocQkArx0QAK7pEQCtvREArAEQALMBGACy8RwAscEdALDJHQC0wwCA6MQAgLXhGAC0/RkA7MQAgPDEAID0xACA+MQAgIAdAACBCQAAgv0DAPzEAICjFQUAAMUAgIaIDACHPAMACMUAgKYlBQClNQUADMUAgKtpBQCqYQUAEMUAgBTFAICvWQUArmkFAK1pBQCscQUAGMUAgBzFAICEBAwAIMUAgCTFAIDhbAYAKMUAgOPsewAsxQCAMMUAgDTFAIDvqAYAOMUAgDzFAIBAxQCARMUAgKmNBQCogQUAq60FAKqZBQCtoQUArLkFAK+lBQCuqQUAhGgNAEjFAIBMxQCAUMUAgFTFAIBYxQCAXMUAgL70DAC5SQUAuEEFALtZBQC6QQUAvUkFALxBBQC/cQUAvn0FALGpBQCwoQUAs7kFALKhBQC1mQUAtKkFALd5BQC2kQUAqNUEAKndBACq7QQAqyUDAKyFAwCtjQMArrEDAK+xAwBgxQCAZMUAgGjFAIBsxQCAgBkAAIEZAACCBQAAcMUAgLgxAgC5MQIAujUCALvBAgC8hQIAvbUCAL69AgC/tQIAsGkCALFpAgCyQQIAs0ECALQ5AgC1OQIAthECALcRAgCGoAwAh0wNAHjFAIB8xQCA76QGAIDFAICExQCA78wHAOOUAQDhpAYA4TgBAONcBgCIxQCAjMUAgJDFAICUxQCAmMUAgJzFAICzLQQAoMUAgLVFAwCkxQCAqMUAgLZFAwCsxQCAsMUAgLvlAgC65QIAvd0CALzdAgC/tQIAvrUCAATFAIB0xQCAtMUAgLjFAIC8xQCAwMUAgMTFAIDIxQCAqDEOAKk5DgCqAQ4AqwEOAKxxDgCtcQ4ArnUOAK9tDgCwGQ4AsSUOALItDgCzJQ4AtCEOALUhDgC2IQ4AtyEOALjFDgC5zQ4AusUOALvdDgC8xQ4Avc0OAL5ZDwC/WQ8As6kOAMzFAIDQxQCA1MUAgNjFAIC20Q4AtdkOANzFAIC7wQ4Auv0OAODFAIC+LAAAv8UOAL7FDgC90Q4AvNkOAIJpAACj7Q4AgFkAAIFRAACmlQ4A5MUAgOjFAIClnQ4AqrkOAKuFDgCGyAAAh6wAAK6BDgCvgQ4ArJ0OAK2VDgDsxQCAs5EOAPDFAID0xQCAtqUOAPjFAID8xQCAta0OALrhDgC74Q4AAMYAgATGAIC+6Q4Av9UOALz1DgC96Q4Ao6UKAAjGAIAMxgCAEMYAgBTGAICmzQ0Apc0NABjGAICrbQwAqm0MABzGAIAgxgCArz0MAK49DACtVQwArFUMAKgJDgCpCQ4Aqh0OAKsVDgCsIQ4ArSEOAK4hDgCvIQ4AJMYAgCjGAIAsxgCAMMYAgDTGAIA4xgCAPMYAgEDGAIC4zQEAudUBALrdAQC71QEAvM0BAL1RAQC+UQEAv1EBALAhDgCxIQ4AsiUOALM5DgC0KQ4AtRUOALYdDgC39QEARMYAgEjGAIBMxgCAo5kNAFDGAIClpQ0Apq0NAL7cAgCE7AMAWMYAgKrpDQCr6Q0ArP0NAK3hDQCu4Q0Ar90NAIBFAACBTQAAglkAAKNFAwBcxgCApUEDAKZBAwBgxgCAhsAEAIcAAwCqLQMAqyUDAKw9AwCtJQMAriUDAK8VAwCoWQIAqYUDAKqBAwCrgQMArIUDAK2NAwCusQMAr7EDAGTGAIBoxgCAbMYAgHDGAIB0xgCAeMYAgHzGAICAxgCAuGUDALltAwC6ZQMAu30DALxlAwC9bQMAvmUDAL/dAACwpQMAsa0DALKlAwCzvQMAtK0DALWdAwC2lQMAt10DALMJAgCExgCAiMYAgIzGAICQxgCAtg0CALUNAgCUxgCAu2kCALphAgCYxgCAnMYAgL9ZAgC+aQIAvWkCALxxAgCgxgCApMYAgKjGAICsxgCA4aABALDGAIDjaAMAtMYAgIEVAACAFQAA74wDAIIVAAC4xgCAvMYAgMDGAIC+cAUA4RgOAOGUDwDjOA8A49QPAISUAgDIxgCAzMYAgNDGAIDUxgCA2MYAgNzGAIDgxgCA5MYAgOjGAIDv7AEA7/gPAIZgBACHBAUAs5UBAITMBQC1dQEA7MYAgPDGAIC2dQEA9MYAgPjGAIC7UQEAulkBAL31AAC8SQEAv/UAAL71AACoJQYAqVUGAKpVBgCrrQYArLUGAK29BgCutQYAr60GAMTGAID8xgCAAMcAgATHAIAIxwCADMcAgBDHAIAUxwCAuGkHALlpBwC6CQcAuwkHALwZBwC9GQcAvg0HAL8BBwCw1QYAsd0GALLVBgCzaQcAtHkHALV5BwC2aQcAt2EHAKPdBgAYxwCAHMcAgCDHAIAkxwCApj0GAKU9BgAoxwCAqxkGAKoRBgAsxwCAMMcAgK+9BwCuvQcArb0HAKwBBgCAXQAAgW0AAIJlAACzUQcAvtgDALVxBwC2cQcANMcAgIbgAACHFAMAul0HALs5BwC8KQcAvRUHAL4dBwC/2QAAqJUGAKmdBgCqlQYAq60GAKy1BgCtvQYArrUGAK+tBgA4xwCAPMcAgEDHAIBExwCASMcAgEzHAIBQxwCAVMcAgLhxAQC5cQEAunEBALtxAQC81QEAvd0BAL7VAQC/zQEAsNUGALGxBgCysQYAs40GALSVBgC1UQEAtlEBALdRAQBYxwCAoxkGAFzHAIBgxwCApjkGAFTGAIBkxwCApTkGAKoVBgCrcQYAaMcAgGzHAICuVQYAr5EBAKxhBgCtXQYAcMcAgHTHAIB4xwCAfMcAgIDHAICExwCAiMcAgIzHAICQxwCAlMcAgJjHAICcxwCAgBkAAIEZAACCBQAAoMcAgISAAgC+gAMAhwwDAIasHADhaAYAqMcAgOOYBwCsxwCAsMcAgLTHAIDvrAcAuMcAgLzHAIDAxwCAxMcAgMjHAIDMxwCA0McAgNTHAICzZQMA2McAgLVlAwC2bQMA3McAgODHAIDkxwCAuukDALvlAwC8/QMAve0DAL7RAwC/0QMA6McAgOzHAIDwxwCA9McAgPjHAID8xwCAAMgAgATIAICogQMAqYEDAKqBAwCrgQMArIEDAK2BAwCugQMAr4EDALBBAwCxTQMAskUDALNVAwC0eQMAtXkDALYZAwC3GQMAuCkDALkpAwC6OQMAuzkDALwpAwC9KQMAvhkDAL8ZAwCBGQAAgBEAAKMhAgCCLQAApSECAAjIAIAMyACApikCABDIAIAYyACAq6ECAKqtAgCtqQIArLkCAK+VAgCulQIAhEwCAL5IHQCHZB0AhuwcAONAAwAcyACA4aABACDIAIDvnAMAJMgAgCjIAIAsyACAMMgAgDTIAIA4yACAPMgAgEDIAIBEyACASMgAgEzIAIBQyACAVMgAgFjIAIDvtAEAhKgdAOF8BgBcyACA43AGAGDIAIBkyACAaMgAgGzIAICz4QEAcMgAgHTIAIB4yACAfMgAgLblAQC19QEAgMgAgLuhAQC62QEAvuQcAIjIAIC/rQEAvqUBAL2xAQC8uQEAqBUeAKkZHgCqKR4AqykeAKw9HgCtJR4Ari0eAK8lHgAUyACAgvkfAIH5HwCA4R8AhMgAgIzIAICGHAAAh7ADALjBHgC5wR4AusEeALvBHgC8wR4AvcEeAL7BHgC/wR4AsF0eALElHgCyLR4AsyUeALQhHgC1KR4AthkeALcZHgCjoR4AkMgAgJTIAICYyACAnMgAgKalHgCltR4AoMgAgKvhHgCqmR4ApMgAgKjIAICv7R4AruUeAK3xHgCs+R4ArMgAgLOZHwCwyACAtMgAgLa9HwC4yACAvMgAgLW1HwC6mR8Au5kfAMDIAIDEyACAvnkfAL95HwC8eR8AvXkfAKglHgCpUR4AqlUeAKtpHgCseR4ArXkeAK5pHgCvaR4AyMgAgMzIAIDQyACA1MgAgNjIAIDcyACA4MgAgOTIAIC42R4Aue0eALr5HgC7+R4AvOkeAL3pHgC+nR4Av5UeALAZHgCxGR4AsukeALPpHgC0+R4AtfkeALbpHgC36R4Ao90eAIIpAACBFQAAgB0AAOjIAICm+R4ApfEeAOzIAICr3R4Aqt0eAKTHAIDwyACArz0eAK49HgCtPR4ArD0eAITIAgCzQQEAvgwBAPjIAIC2QQEA/MgAgADJAIC1UQEAuk0BALslAQCGSAAAh1ABAL4lAQC/LQEAvDEBAL0xAQAEyQCACMkAgIQEAwC+gAQADMkAgO+oHwAQyQCAFMkAgL8oMQDjdB8AGMkAgOE4HgAcyQCAIMkAgCTJAIAoyQCALMkAgDDJAICjzQIANMkAgKXdAgA4yQCAPMkAgKbNAgBAyQCARMkAgKupAgCqwQIArb0CAKy9AgCvoQIArqkCAKm1AgCoaR0AqwECAKoJAgCtAQIArBkCAK8xAgCuAQIAhGwFAEjJAIBMyQCAUMkAgFTJAICCnQEAgZ0BAICdAQC55QMAuOUDALvlAwC65QMAveUDALzlAwC/5QMAvuUDALEhAgCwSQIAsyUCALIlAgC1KQIAtCECALcVAgC2FQIAqM0CAKnRAgCq0QIAqw0BAKwVAQCtBQEArgEBAK8BAQBYyQCAXMkAgGDJAIBoyQCAvvgEAGzJAIBwyQCAdMkAgLgVAQC5HQEAuikBALspAQC89QEAvf0BAL71AQC/7QEAsEkBALFVAQCyXQEAs1UBALRNAQC1NQEAtj0BALcxAQCGoAUAh8gFAHjJAIDvvAAAfMkAgIDJAICEyQCA74weAIQsBwDh8B4AiMkAgOMcHgCMyQCA4ZQBAJDJAIDjbAAAsxkCAJTJAICYyQCAnMkAgIQACAC2xQEAtd0BAKDJAIC70QEAus0BAKTJAICoyQCAv7EBAL7JAQC9wQEAvMkBAKPZBQBkyQCArMkAgLDJAIC0yQCApgUGAKUdBgC4yQCAqxEGAKoNBgC8yQCAwMkAgK9xBgCuCQYArQEGAKwJBgDEyQCAgh0AAIEdAACAHQAAyMkAgMzJAIDQyQCA1MkAgIZAAwCHxAMA2MkAgNzJAIDgyQCA5MkAgOjJAIDsyQCAqK0HAKmxBwCqsQcAq7EHAKwZBwCtBQcArg0HAK8FBwDwyQCA9MkAgPjJAID8yQCAAMoAgATKAIAIygCADMoAgLgtBwC5zQAAusUAALvdAAC8zQAAvf0AAL71AAC/nQAAsEkHALFVBwCyUQcAsykHALQ5BwC1OQcAtiUHALcVBwCzOQYAEMoAgBTKAIAYygCAHMoAgLaFBgC1kQYAIMoAgLuRBgC6jQYAJMoAgCjKAIC//QYAvv0GAL39BgC8hQYALMoAgKN9BgAwygCANMoAgKbBBgA4ygCAPMoAgKXVBgCqyQYAq9UGAEDKAIC+bAEArrkGAK+5BgCswQYArbkGAKjpAQCp6QEAqvkBAKv5AQCs6QEArekBAK45AQCvOQEAgPUAAIH9AACCwQAARMoAgIYQAACHdAEASMoAgPTIAIC4zQAAudUAALrVAAC75QAAvP0AAL2VAAC+kQAAv5EAALBJAQCxSQEAslkBALNZAQC0SQEAtUkBALb9AAC39QAA7/QGAEzKAIBQygCAVMoAgO8wAgBYygCAXMoAgGDKAIDj4AcAZMoAgOGAAQBoygCA4ygGAGzKAIDhyAUAcMoAgLMxAgB0ygCAeMoAgJYAAAB8ygCAtikCALUhAgCAygCAu80CALrNAgCEygCAiMoAgL/NAgC+zQIAvc0CALzNAgCMygCAkMoAgJTKAICj/QIAmMoAgKXtAgCm5QIAnMoAgKDKAICkygCAqgECAKsBAgCsAQIArQECAK4BAgCvAQIAgA0AAIEVAACCHQAAqMoAgKzKAICwygCAvlQMALjKAICGwAwAhyQDALzKAIDAygCAxMoAgMjKAIDMygCA0MoAgKi5AgCpAQEAqgEBAKsBAQCsBQEArQ0BAK4FAQCvOQEAhKgNANTKAIDYygCA3MoAgODKAIDkygCA6MoAgOzKAIC4LQEAucUBALrNAQC7xQEAvMEBAL3JAQC++QEAv/kBALBNAQCxUQEAslUBALMpAQC0OQEAtSUBALYlAQC3FQEA4RgGAPDKAIDjOAcA9MoAgPjKAIC+WAwA/MoAgADLAICEbA8ABMsAgL5gDwAIywCADMsAgBDLAIDvcAYAFMsAgIAVAACBGQAAgi0AAITMDwDjYAYAGMsAgOGgAQAcywCA73QAACDLAICGyAwAh/wMACjLAIAsywCAMMsAgDTLAICjCQ4AtMoAgCTLAIA4ywCAPMsAgKYNDgClDQ4AQMsAgKsVDgCqCQ4ARMsAgEjLAICvYQ4Arn0OAK19DgCsAQ4ATMsAgLOpDgBQywCAVMsAgLapDgBYywCAXMsAgLWpDgC6SQ8Au0kPAGDLAIBkywCAvkkPAL9JDwC8SQ8AvUkPAKhdDgCpbQ4AqmUOAKt9DgCsZQ4ArW0OAK5lDgCvuQ8AaMsAgGzLAIBwywCAdMsAgHjLAIB8ywCAgMsAgITLAIC4UQ8AuV0PALpVDwC7aQ8AvH0PAL1lDwC+bQ8Av2EPALDJDwCxyQ8AstkPALPZDwC0yQ8AtckPALZ9DwC3cQ8AiMsAgLURDwC2EQ8AjMsAgIARAACBGQAAgikAALMVDwC8HQ8AvWEPAL5hDwC/fQ8AkMsAgJTLAIC6FQ8AuwkPAKOtDwCYywCAhugAAIfIAQCcywCApq0PAKWtDwCgywCAq00OAKpNDgCkywCAqMsAgK9NDgCuTQ4ArU0OAKxNDgCocQ4AqXEOAKpxDgCrcQ4ArJ0BAK2FAQCuhQEAr7UBAL7sAACsywCAsMsAgLTLAIC4ywCAvMsAgMDLAIDEywCAuGEBALlhAQC6YQEAu2EBALxhAQC9YQEAvmEBAL9hAQCwzQEAsaUBALKhAQCzoQEAtKUBALWtAQC2kQEAt5EBALP5DQDIywCAzMsAgNDLAIDUywCAtgUCALUVAgDYywCAu2ECALoJAgDcywCA4MsAgL9pAgC+YQIAvXUCALx1AgDkywCAo70NAOjLAIDsywCApkECAPDLAID0ywCApVECAKpNAgCrJQIA+MsAgPzLAICuJQIAry0CAKwxAgCtMQIAge0AAIDtAADv0AEAgh0AAADMAIAIzACAhjgEAIdQAwAMzACAEMwAgBTMAIAYzACA4eABABzMAIDjZA8AIMwAgCTMAIAozACALMwAgLORAwAwzACAtbkDALZ9AwA0zACAOMwAgDzMAIC6WQMAu1kDALxJAwC9SQMAvv0AAL/1AACoRQIAqVUCAKpVAgCrZQIArH0CAK2xAgCusQIAr7ECAL5oBQBAzACARMwAgEjMAIBMzACAUMwAgFTMAIBYzACAuF0BALltAQC6ZQEAuw0BALwZAQC9GQEAvg0BAL8FAQCw0QIAsdECALLRAgCz0QIAtHUBALV9AQC2dQEAt20BAOF4DwDjNA4A47gOAOF8DgBczACAYMwAgGTMAIBozACAbMwAgHDMAIB4zACAfMwAgIDMAIDv5A4A79QOAITMAICjnQIAgmEAAIFpAACAUQAAhJwFAKZxAgCltQIAiMwAgKtVAgCqVQIAhkgEAIfMBACv+QEArvEBAK1FAgCsRQIAqJUGAKmlBgCqrQYAq6UGAKy9BgCtoQYArqUGAK/dBgB0zACAjMwAgJDMAICUzACAmMwAgJzMAICgzACApMwAgLhtBwC5dQcAun0HALt1BwC8bQcAvcUHAL7NBwC/xQcAsKUGALGtBgCyuQYAs7EGALSRBgC1kQYAtl0HALdVBwCzJQYAqMwAgKzMAICwzACAtMwAgLYhBgC1NQYAuMwAgLtpBgC6YQYAvMwAgMDMAIC/VQYAvlUGAL1lBgC8bQYAxMwAgKNhBgDIzACAzMwAgKZlBgDQzACA1MwAgKVxBgCqJQYAqy0GANjMAIDczACArhEGAK8RBgCsKQYArSEGAKipBgCpqQYAqrkGAKuxBgCszQYArTEBAK4xAQCvMQEAgMkBAIHJAQCCBQAA4MwAgL54AgCEeAIA5MwAgOjMAIC43QEAue0BALrlAQC7jQEAvJkBAL2ZAQC+jQEAv4UBALBRAQCxUQEAslEBALNRAQC09QEAtf0BALb1AQC37QEAszEGAOzMAICGKAAAh9wBAPDMAIC2sQEAtUUGAPTMAIC7lQEAupUBAPjMAID8zACAvzkBAL4xAQC9hQEAvIUBAATMAICjdQYAAM0AgATNAICm9QEACM0AgAzNAIClAQYAqtEBAKvRAQAQzQCAFM0AgK51AQCvfQEArMEBAK3BAQAYzQCAHM0AgCDNAIAkzQCAKM0AgCzNAIAwzQCANM0AgDjNAIA8zQCAQM0AgETNAIBIzQCATM0AgFDNAIC+cAMAhQA8AOHEBgCERAIA44wHAIBhAACBYQAAgmEAAO9oAwCFRDwA4RACAFjNAIDj2CsAhlA9AIf0AwBczQCA76QHAGDNAIDvQAIAZM0AgGjNAIBszQCAcM0AgHTNAIB4zQCAhDw8AHzNAICAzQCAhM0AgIjNAIDj7AIAjM0AgOEsAQCzUQMAkM0AgJTNAICYzQCAnM0AgLZ5AwC1cQMAoM0AgLs5AwC6MQMApM0AgKjNAIC/9QAAvvUAAL0VAwC8FQMAqD0CAKmBAgCqmQIAq5ECAKy5AgCtuQIArtECAK/RAgCEqD8Avqg/AKzNAICwzQCAtM0AgLjNAIC8zQCAwM0AgLhRAQC5UQEAulEBALtRAQC8cQEAvXEBAL5xAQC/cQEAsLUCALG9AgCygQIAs4ECALRxAQC1cQEAtnEBALdxAQCAtQAAgb0AAIK1AADIzQCAhrA/AIfgPADMzQCA71QAAL4sPgDhVAYA0M0AgOOIAADUzQCA2M0AgNzNAIDgzQCAo1ECAOTNAIC/2CYA6M0AgOzNAICmeQIApXECAPDNAICrOQIAqjECAPTNAID4zQCAr/UBAK71AQCtFQIArBUCAJAtJACRBSgAkg0oAJPZKACUhS0AlTUsAJbFLACXtTEAmAEwAJkVMACalTUAmyk0AJxtNACdmTUAnj04AJ81OABUzQCAttU+ALXFPgDEzQCAs9E+APzNAIAAzgCABM4AgL/ZPgC+1T4AvcU+ALzFPgC71T4Auuk+AAjOAICPXSQAqeUJAKgVCACrBQwAqg0MAK0BEACsAQwAr0EQAK69EACh4QAADM4AgKMBBACi4QAApZ0EAKSVBACnuQgApgEIAKD1OQChBT0Aouk8AKP1PQAQzgCAFM4AgBjOAIAczgCAscEUALABFACzARgAsn0UALXVGAC01RgAIM4AgCTOAICCISUAgyklACjOAIAszgCAhsUpAIeBLACEGSkAhRkpAIoBLQCL+S0AMM4AgDjOAICOATEAj4k0AIyRMACNHTEAkkU1AJMZNQCG6AcAh+wBAJZZOQCXYTgAlPU0AJVZOQCaoTwAm0U9ADzOAIBAzgCAgX0AAIB9AACcQTwAglUAAKjpPwCp/T8Aqgk/AKsFPwCsHT8ArQU/AK4NPwCvBT8ARM4AgEjOAIBMzgCAUM4AgFTOAIBYzgCAXM4AgGDOAIC4DT8AuRU/ALoVPwC7JT8AvD0/AL39PgC+9T4Av+0+ALB9PwCxQT8AskE/ALNBPwC0QT8AtU0/ALY9PwC3NT8Ao4E8AGTOAIBozgCAbM4AgHDOAICmhTwApZU8AHTOAICrhTwAqrk8AHjOAIB8zgCAr4k8AK6FPACtlTwArJU8AITIAwCz7T0AgM4AgITOAIC26T0AiM4AgIzOAIC16T0Auq09ALu1PQCQzgCAlM4AgL6dPQC/IQIAvKU9AL2VPQCoDT0AqR09AKohPQCrPT0ArCU9AK0tPQCuJT0Ar1k9AIANAACBFQAAgh0AAJjOAICczgCAoM4AgKjOAIC+uAMAuLkCALlhAgC6GQIAuxkCALwJAgC9CQIAviECAL8hAgCwLT0AsTU9ALI1PQCzBT0AtB09ALWhAgC2oQIAt6ECAKOpPACszgCAhigFAIfsAgCwzgCApq08AKWtPAC0zgCAq/E8AKrpPAC4zgCAvM4AgK9lAwCu2TwArdE8AKzhPADAzgCAsykCAMTOAIDIzgCAtvkCAMzOAIDQzgCAtfkCALrVAgC73QIA1M4AgNjOAIC+eQEAv3kBALzFAgC9eQEA3M4AgODOAICj5QIA5M4AgKU1AgDozgCA7M4AgKY1AgDwzgCA9M4AgKsRAgCqGQIArbUBAKwJAgCvtQEArrUBAOPwPgDhrD8A4UA+AON8PwD4zgCA/M4AgADPAIAEzwCAgA0AAIERAACCEQAACM8AgO+oPgAMzwCAEM8AgO8gPgCoLQUAqW0FAKplBQCrrQUArLUFAK29BQCutQUAr60FAKTOAICE6AMAvuADABTPAICGEAMAh5gDABjPAIAczwCAuGkGALlpBgC6AQYAuwEGALwFBgC9DQYAvjEGAL8xBgCw1QUAsd0FALLVBQCzaQYAtHkGALV5BgC2aQYAt2EGAKg5BgCpgQcAqpkHAKuRBwCsuQcArbkHAK7ZBwCv1QcAIM8AgCTPAIA0zgCAKM8AgCzPAIAwzwCANM8AgDjPAIC4VQcAuV0HALppBwC7aQcAvAEHAL0BBwC+AQcAvwEHALCtBwCxsQcAsrEHALOFBwC0nQcAtXUHALZ9BwC3cQcAsxEGADzPAIBAzwCARM8AgEjPAIC2OQYAtTEGAEzPAIC7dQYAumkGAFDPAIBUzwCAv7EGAL5ZBgC9UQYAvGUGAFjPAICjVQYAXM8AgGDPAICmfQYAZM8AgGjPAICldQYAqi0GAKsxBgBszwCAcM8AgK4dBgCv9QYArCEGAK0VBgCouQEAqbkBAKopAQCrKQEArD0BAK0lAQCuLQEAryUBAHTPAICCHQAAgR0AAIAdAAB4zwCAfM8AgIDPAIC+cAEAuIEAALmNAAC6hQAAu5kAALyJAAC9vQAAvrUAAL99AACwXQEAseEAALLhAACz4QAAtOEAALXpAAC20QAAt9EAAITIAgCzpQIAhzgDAIYoAgC2oQIAiM8AgIzPAIC1sQIAup0CALshAwC+bAMAkM8AgL4hAwC/KQMAvDEDAL0xAwCj4QIAlM8AgJjPAICczwCAoM8AgKblAgCl9QIApM8AgKtlAwCq2QIAqM8AgKzPAICvbQMArmUDAK11AwCsdQMAqZkAAKiRAACrzQAAqqEAAK3dAACs3QAAr8UAAK7NAAC+LA0AsM8AgLTPAIC4zwCAvM8AgMDPAIDEzwCAyM8AgLnBAQC4eQAAu8EBALrJAQC9wQEAvNkBAL/FAQC+xQEAsY0AALCNAACzQQAAskkAALVBAAC0WQAAt0EAALZJAADMzwCA0M8AgNTPAIDYzwCA3M8AgO9QBwDgzwCA5M8AgL74DwDjdAcA6M8AgOF8BACAGQAAgQkAAIJ5AADszwCA8M8AgLNpAQD4zwCAhMQCALYdAQD8zwCAANAAgLUVAQC6CQEAuwkBAIboDQCH6A0Avt0BAL/FAQC83QEAvdUBAATQAIAI0ACADNAAgBDQAIDv1AAAFNAAgBjQAIDvTAEA47ADAOG0BgDhgAEA45gBABzQAIAg0ACAJNAAgCjQAIAs0ACAMNAAgKPlAQCEwA0ApZkBADTQAIA40ACAppEBADzQAIBA0ACAq4UBAKqFAQCtWQEArFEBAK9JAQCuUQEA9M8AgETQAIBI0ACATNAAgFDQAIBU0ACAWNAAgFzQAICoaQ8AqXEPAKpxDwCrrQ8ArLUPAK29DwCutQ8Ar6kPALDZDwCx9Q8Asv0PALP1DwC07Q8AtZUPALadDwC3iQ8AuLkPALmFDwC6jQ8Au2kAALx5AAC9eQAAvmkAAL9pAACBnQAAgJ0AAGDQAICCBQAAZNAAgGjQAIBs0ACAcNAAgIaAAwCH9AMAdNAAgHjQAIB80ACAgNAAgITQAICEzwCAs5kPAIjQAICM0ACAkNAAgJTQAIC2XQ8AtV0PAJjQAIC7UQ8Aun0PAJzQAICg0ACAvzEPAL5JDwC9QQ8AvEkPAKNZDgCk0ACAqNAAgKzQAICw0ACApp0OAKWdDgC00ACAq5EOAKq9DgC40ACAvNAAgK/xDgCuiQ4ArYEOAKyJDgDA0ACAxNAAgMjQAIDM0ACAgBkAAIEZAACCBQAA0NAAgISgAQDU0ACAh+gBAIYABADY0ACA3NAAgODQAIDk0ACAqBUBAKkdAQCqFQEAqyUBAKw9AQCtJQEAri0BAK8lAQDo0ACA7NAAgPDQAID00ACA+NAAgPzQAIAA0QCABNEAgLjJAAC5yQAAutkAALvRAAC8+QAAvfkAAL6ZAAC/mQAAsCUBALEtAQCyJQEAsz0BALQtAQC1HQEAthUBALf5AAAI0QCADNEAgBDRAICzkQIAFNEAgLW5AgC2qQIAGNEAgBzRAIAg0QCAuu0CALvlAgC8/QIAveUCAL7lAgC/1QIApvECACTRAIAo0QCApeECACzRAICjyQIAMNEAgDTRAICuvQIAr40CAKylAgCtvQIAqrUCAKu9AgA40QCAPNEAgID5AACB+QAAggUAAEDRAIC+yAMAhBgDAEjRAIBM0QCAUNEAgFTRAIBY0QCAXNEAgGDRAIBk0QCAhhgEAIecAwBo0QCAbNEAgHDRAIB00QCAeNEAgHzRAIDvsAIAgNEAgOGUAQCE0QCA42wCAIjRAICM0QCAkNEAgJTRAICY0QCA79APAJzRAICg0QCApNEAgKjRAIDhrAEArNEAgONsAACAMQAAgT0AAIIdAADv9A4A42wOALDRAIDhLA8AvnAFALM5AgCEDAUAhugEAIdgBQDcAAAAtvECALX5AgC40QCAu9UCALrVAgC80QCAwNEAgL91AQC+dQEAvcUCALzFAgDE0QCA4fQOAMjRAIDjUA4AzNEAgNDRAIDU0QCA2NEAgNzRAIDg0QCA5NEAgOjRAIDs0QCA8NEAgPTRAIDv5A8ApmUCAPjRAID80QCApW0CAADSAICjrQIABNIAgAjSAICu4QEAr+EBAKxRAgCtUQIAqkECAKtBAgAM0gCAENIAgKiZBgCpmQYAqqkGAKupBgCsuQYArbkGAK6pBgCvqQYAFNIAgIIdAACBHQAAgB0AABjSAIAc0gCAINIAgL50AwC4rQYAubUGALq9BgC7tQYAvK0GAL1RBwC+UQcAv1EHALChBgCxoQYAsqEGALOhBgC0oQYAtaEGALalBgC3mQYARNEAgLMlBgCExAMAtNEAgLY9BgAk0gCAKNIAgLU1BgC6YQYAu2EGAIYIAACHiAAAvmEGAL9hBgC8cQYAvXEGAKNhBgAs0gCAMNIAgDTSAIA40gCApnkGAKVxBgA80gCAqyUGAKolBgBA0gCARNIAgK8lBgCuJQYArTUGAKw1BgCoXQYAqW0GAKplBgCrjQYArJkGAK2FBgCujQYAr4UGAEjSAIBM0gCAUNIAgFTSAIBY0gCAXNIAgGDSAIBk0gCAuIUGALmNBgC6mQYAu5UGALyNBgC9rQYAvqUGAL99AQCw/QYAscUGALLNBgCzxQYAtN0GALXFBgC2zQYAt8UGALPtBgBo0gCAbNIAgHDSAIB00gCAtgUGALURBgB40gCAuwEGALo5BgB80gCAgNIAgL8BBgC+GQYAvREGALwZBgCE0gCAo6kGAIjSAICM0gCApkEGAJDSAICElAEApVUGAKp9BgCrRQYAvqABAJjSAICuXQYAr0UGAKxdBgCtVQYAqJkCAKnBAgCqwQIAq8ECAKzBAgCtyQIArvECAK/xAgCB7QMAgO0DAJzSAICC+QMAhpAcAId0AwCg0gCApNIAgLjFAwC5zQMAusUDALvdAwC8zQMAvf0DAL71AwC/nQMAsEEDALFBAwCyQQMAs0EDALRBAwC1QQMAtkEDALdBAwCzSQIAqNIAgKzSAICw0gCAtNIAgLZJAgC1SQIAuNIAgLuFAwC6hQMAvNIAgMDSAIC/hQMAvoUDAL2VAwC8lQMAxNIAgKMNAgDI0gCAzNIAgKYNAgDQ0gCA1NIAgKUNAgCqwQMAq8EDANjSAIDc0gCArsEDAK/BAwCs0QMArdEDAOOYAQDhpAcA4VgGAONYBgDhoAEA4NIAgOPQAADk0gCA6NIAgOzSAIDvOAAA8NIAgO/0AQD00gCA+NIAgO/4BgCAeQAAgRUAAIIdAACEAB0A/NIAgADTAIC+EB0ACNMAgIbAHACHrB0ADNMAgBDTAIAU0wCAGNMAgBzTAIAg0wCAu8UFALqhBQC5qQUAuJEFAL/NBQC+zQUAvckFALzVBQCzHQYAsh0GALEdBgCwHQYAt6EFALa9BQC1vQUAtL0FAKu9BgCqvQYAqb0GAKi9BgCvfQYArn0GAK19BgCsfQYAJNMAgCjTAIAs0wCAMNMAgDTTAIA40wCAPNMAgEDTAICo7R0AqS0eAKoxHgCrMR4ArJUeAK2dHgCulR4Ar40eAATTAIBE0wCASNMAgEzTAIBQ0wCAVNMAgFjTAIBc0wCAuKkeALmpHgC6XR8Au1EfALxxHwC9cR8AvnUfAL9pHwCw/R4Asc0eALLFHgCzrR4AtLkeALW5HgC2rR4At6UeALO5HgBg0wCAZNMAgGjTAICU0gCAth0eALUdHgBs0wCAuwkeALo5HgBw0wCAhOADAL99HgC+fR4AvXkeALwRHgCCaQAAo/0eAIBFAACBUQAAplkeAL6cAwB00wCApVkeAKp9HgCrTR4AhkgAAIdsAACuOR4ArzkeAKxVHgCtPR4AqF0eAKltHgCqZR4Aq30eAKxlHgCtbR4ArmUeAK/9HgB40wCAfNMAgIDTAICE0wCAiNMAgIzTAICQ0wCAlNMAgLhpAQC5aQEAunkBALt5AQC8aQEAvWkBAL7dAQC/1QEAsIUeALGNHgCyhR4As50eALSFHgC1jR4AtoUeALdZAQCz7R4AmNMAgJzTAICg0wCApNMAgLbtHgC17R4AqNMAgLtJHgC6QR4ArNMAgLDTAIC/SR4AvkEeAL1JHgC8UR4AtNMAgKOpHgC40wCAvNMAgKapHgDA0wCAxNMAgKWpHgCqBR4Aqw0eAMjTAIDM0wCArgUeAK8NHgCsFR4ArQ0eAKghAwCpIQMAqiEDAKshAwCsIQMArSEDAK4hAwCvIQMA0NMAgNTTAIDY0wCAvmACANzTAIDg0wCA6NMAgOzTAIC4iQMAuYkDALqdAwC7lQMAvLkDAL25AwC+eQAAv3kAALDlAwCx7QMAsuUDALP9AwC07QMAtd0DALbVAwC3vQMAgKkAAIG1AACCvQAAs6UDAPDTAIC1pQMAtq0DAPTTAICE4AIA+NMAgLotAwC7JQMAvD0DAL0lAwC+JQMAvxUDAKPpAwD80wCAhmgEAIeAAwAA1ACApuEDAKXpAwAE1ACAq2kDAKphAwAI1ACADNQAgK9ZAwCuaQMArWkDAKxxAwAQ1ACAFNQAgBjUAIAc1ACAINQAgOE8HwAk1ACA40AeACjUAIAs1ACAMNQAgO+MHgA01ACAONQAgDzUAIBA1ACARNQAgIIlAACBEQAAgB0AAEjUAIDj5AMATNQAgOGsAQBQ1ACA77ADAIRkAgC+YAUAhtAEAIdEBQBY1ACAXNQAgGDUAIBk1ACAaNQAgGzUAIBw1ACAdNQAgHjUAIDvsAEAhKQFAOHcHgB81ACA4xABAIDUAICE1ACAiNQAgIzUAICzUQEAkNQAgJTUAICY1ACAnNQAgLYRAQC1fQEAoNQAgLsNAQC6DQEApNQAgKjUAIC//QAAvv0AAL39AAC8/QAAqDkGAKk5BgCqmQYAq5EGAKy1BgCt0QYArskGAK/BBgBU1ACArNQAgLDUAIC01ACAgA0AAIGxAACCsQAAuNQAgLhhBwC5YQcAumEHALt9BwC8ZQcAvW0HAL5lBwC/HQcAsIkGALGJBgCyaQcAs2kHALR5BwC1eQcAtmkHALdlBwCjEQYAvNQAgMDUAIC+gAMAxNQAgKZRBgClPQYAyNQAgKtNBgCqTQYAhggAAId8AwCvvQcArr0HAK29BwCsvQcAzNQAgNDUAICzSQcA1NQAgLVZBwDY1ACA3NQAgLZRBwDg1ACA5NMAgLtBBwC6dQcAvUUHALxFBwC/RQcAvkUHAKh5BgCpeQYAqokGAKuJBgCsmQYArZkGAK6JBgCviQYA5NQAgOjUAIDs1ACA8NQAgPTUAID41ACA/NQAgADVAIC4jQYAuZUGALqVBgC7pQYAvL0GAL1xAQC+cQEAv3EBALD5BgCxzQYAstkGALPZBgC0yQYAtckGALa9BgC3tQYAowEGAATVAIAI1QCADNUAgBDVAICmGQYApREGABTVAICrCQYAqj0GABjVAIAc1QCArw0GAK4NBgCtDQYArA0GACDVAIAk1QCAKNUAgCzVAICAGQAAgRkAAIIFAAAw1QCAhKwBAL6sAQCH6AAAhkwPADjVAIA81QCAQNUAgETVAIConQIAqcUCAKrNAgCrwQIArMUCAK3NAgCu+QIArz0DAEjVAIBM1QCAUNUAgFTVAIC+PAwAWNUAgFzVAIBg1QCAuMkDALnJAwC62QMAu9EDALz5AwC9+QMAvpkDAL+ZAwCwRQMAsU0DALJFAwCzXQMAtEUDALVNAwC2RQMAt/kDALNFAgBk1QCAaNUAgGzVAIBw1QCAtk0CALVNAgB01QCAu4kDALqBAwB41QCAfNUAgL+JAwC+gQMAvYkDALyRAwCA1QCAowECAITVAICI1QCApgkCAIzVAICQ1QCApQkCAKrFAwCrzQMAlNUAgJjVAICuxQMAr80DAKzVAwCtzQMAgO0BAIEVAACCEQAAhAACAJzVAIDhpAEAoNUAgOPsAACo1QCArNUAgLDVAIDvMAAAtNUAgLjVAIC81QCAwNUAgIbgDACH9AIAxNUAgMjVAIDM1QCA0NUAgO/MBgDU1QCA4bAHANjVAIDjEAYA3NUAgODVAIDk1QCA6NUAgOzVAIDw1QCA9NUAgPjVAID81QCAANYAgATWAIAI1gCA7+gBAIUYDwDhzAYADNYAgOMcBgCAKQAAgR0AAIIFAAAQ1gCAszkCAITMDQCGaA8Ah/wMAOHQ0gO28QEAtfkBABjWAIC72QEAutEBAL7kDAAc1gCAv30BAL59AQC9fQEAvMEBAKjxDQCp8Q0AqvENAKvxDQCsMQ4ArTEOAK4xDgCvMQ4ApNUAgBTWAIAg1gCAJNYAgCjWAIAs1gCAMNYAgDTWAIC46Q4AuekOALqJDgC7hQ4AvJ0OAL2BDgC+gQ4Av7UOALBVDgCxXQ4AslUOALPpDgC0+Q4AtfkOALbpDgC34Q4Ao3kNADjWAIA81gCAQNYAgETWAICmsQ4ApbkOAEjWAICrmQ4AqpEOAEzWAIBQ1gCArz0OAK49DgCtPQ4ArIEOAFTWAICz7Q8AWNYAgFzWAIC26Q8AYNYAgGTWAIC16Q8Auq0PALu1DwA01QCAaNYAgL6VDwC/mQ8AvK0PAL2hDwCoIQ4AqSEOAKohDgCrPQ4ArCUOAK0tDgCuJQ4Ar1UOAGzWAIBw1gCAdNYAgHjWAICAHQAAgQkAAIK9AAB81gCAuDkOALk5DgC6yQ4Au8kOALzZDgC92Q4AvskOAL/JDgCwLQ4AsTUOALI9DgCzMQ4AtBUOALUZDgC2CQ4AtwkOAKOpDgCA1gCAhIACAL6AAQCFAAQApq0OAKWtDgCI1gCAq/EOAKrpDgCGKAcAhxgAAK/dDgCu0Q4AreUOAKzpDgCM1gCAs+0BAJDWAICU1gCAtuUBAJjWAICc1gCAte0BALplAQC7bQEAoNYAgKTWAIC+bQEAv10BALx1AQC9bQEAqN0NAKnpDQCqIQIAqyECAKwhAgCtIQIAriECAK8hAgCo1gCArNYAgLDWAIC01gCAohECAKMRAgCgqQ4AodUCALiJAgC5iQIAup0CALuVAgC8vQIAvXUDAL59AwC/dQMAsOUCALHtAgCy5QIAs/0CALTtAgC13QIAttUCALe9AgCjqQIAj8UaALjWAIC81gCAwNYAgKahAgClqQIAxNYAgKspAgCqIQIAyNYAgMzWAICvGQIArikCAK0pAgCsMQIAniUOAJ/lDgCc6QoAnRUKAJpFFgCbRQoAmFkWAJlRFgCWcRIAl4ETAJRVEgCV7RIAktEeAJPZHgCQtRoAkVUeAISpHwCFJR8AhiUfAIexEwDQ1gCA1NYAgIJZGwCDURsAjEUSAI2lFwCOpRcAj7kXAIA5+wHY1gCAijkTAIutEwCUmQsAlaEPAJZpDwCX3Q8A3NYAgO+cDwCSyQsAk30LAJxFAwDjeA4A4NYAgOGYDADk1gCAhHgCAJqRAwCbXQMA4QQAAL6IBQDj3OoD6NYAgOzWAIDw1gCA7+wAAO+MDgDhcA4A4fwOAOMwAADjeA4AgSEAAIA5AADvtO0DgikAALMJAgD41gCAhmgEAIcsBQD81gCAtg0CALUNAgAA1wCAu8UBALrFAQAE1wCACNcAgL99AQC+fQEAvdUBALzVAQCE1gCA9NYAgAzXAIAQ1wCAFNcAgBjXAIAc1wCAINcAgKi9BQCp5QUAquEFAKvhBQCs5QUAre0FAK7RBQCv0QUAsGEGALFhBgCyYQYAs2EGALTZBgC12QYAtskGALfBBgC4yQYAuckGALp5BwC7eQcAvEUHAL0lBwC+EQcAvw0HAKNJBQAk1wCAKNcAgCzXAIAw1wCApk0FAKVNBQA01wCAq4UGAKqFBgA41wCAPNcAgK89BgCuPQYArZUGAKyVBgBA1wCARNcAgEjXAIBM1wCAUNcAgFTXAIBY1wCAXNcAgIA5AACBOQAAggUAAGDXAIC+uAMAhLgDAGjXAIBs1wCAqMUGAKnVBgCq1QYAq+UGAKz9BgCtHQEArhUBAK8NAQBk1wCAcNcAgIaIAQCHHAEAdNcAgHjXAIB81wCAgNcAgLjpAQC56QEAuokBALuJAQC8mQEAvZkBAL6JAQC/iQEAsHUBALF9AQCydQEAs+kBALT5AQC1+QEAtukBALfhAQCzXQYAhNcAgIjXAICM1wCAhLwBALadAQC1dQYAkNcAgLu5AQC6sQEAlNcAgJjXAIC/PQEAvj0BAL09AQC8oQEAnNcAgKMZBgCg1wCApNcAgKbZAQCo1wCArNcAgKUxBgCq9QEAq/0BALDXAIC01wCArnkBAK95AQCs5QEArXkBAKj5AgCp+QIAqi0DAKs9AwCsJQMArS0DAK4lAwCvmQMAuNcAgLzXAIDA1wCAxNcAgIANAACBsQAAgrEAAMjXAIC4lQMAuZ0DALqhAwC7oQMAvHEAAL1xAAC+cQAAv3EAALDpAwCx6QMAsvUDALPFAwC03QMAtbUDALaxAwC3sQMAvswDAMzXAIDQ1wCA2NcAgNzXAIDg1wCA5NcAgO/kAgDo1wCA4ZQBAOzXAIDjLAEA8NcAgPTXAICHGAMAhhz8A7tNAwC6TQMA+NcAgPzXAIC/EQMAvnkDAL1xAwC8QQMAs8UDAITo/AMA2ACABNgAgAjYAIC2zQMAtc0DAAzYAICkAfwDpSX/A6bZ/wOnAfgDENgAgKEVAwCiHQMAoz0CAKwR9wOtAfADri3zA68B8wOoEfsDqZn7A6oB9AOrHfcDtAHoA7Vl6wO+xPwDhMT8A7AB7AOxVe8Dsk3vA7Nx7gMU2ACAGNgAgBzYAIAg2ACAJNgAgCjYAIAs2ACAMNgAgOFQBgDhNAQA42wBAOPoBgA02ACAONgAgDzYAIBA2ACAgDUAAIE9AACCNQAASNgAgEzYAIBQ2ACA77ABAO/ABgCj5QIAVNgAgIbo/AOHfP0DWNgAgKbtAgCl7QIAXNgAgKttAgCqbQIAYNgAgGTYAICvMQIArlkCAK1RAgCsYQIAqI3+A6mV/gOqnf4Dq5X+A6yx/gOtvf4Drqn+A6+p/gNE2ACAaNgAgGzYAIBw2ACAdNgAgHjYAIB82ACAgNgAgLgl/wO5Lf8DuiX/A7s9/wO8Jf8DvS3/A74l/wO/zf8DsKn+A7Gp/gOygf4Ds4H+A7SB/gO1if4Dtmn/A7cd/wOE2ACA4SD8A4jYAIDjePwDjNgAgJDYAICU2ACAmNgAgJzYAICg2ACApNgAgKjYAICAHQAAgXEAAIJxAADvDP0Ds1X+A6zYAICw2ACAvkAAALTYAIC2ff4DtXn+A7jYAIC7Lf4Dui3+A4boAACHrAAAvw3+A74F/gO9Ff4DvBX+A6OV/wO82ACAwNgAgMTYAIDI2ACApr3/A6W5/wPM2ACAq+3/A6rt/wPQ2ACA1NgAgK/N/wOuxf8DrdX/A6zV/wPY2ACAs/H+A9zYAIDg2ACAto3+A+TYAIDo2ACAtY3+A7pFAQC7TQEA7NgAgPDYAIC+RQEAv00BALxVAQC9TQEAqC3+A6k1/gOqPf4Dq0n+A6xB/gOtSf4DrnH+A69x/gP02ACA+NgAgPzYAIAA2QCABNkAgAjZAIAM2QCAENkAgLhJAQC5VQEAul0BALtVAQC8TQEAvXUBAL59AQC/dQEAsMUBALHNAQCyxQEAs90BALTFAQC1zQEAtsUBALd9AQCjtf0DFNkAgBjZAICExAMAHNkAgKbJ/QOlyf0DINkAgKsJAgCqAQIAKNkAgL7sAgCvCQIArgECAK0JAgCsEQIAgEkAAIFVAACCVQAAo0UDACzZAIClRQMApkUDADDZAICGwAQAhxQDAKopAwCrJQMArD0DAK0hAwCuIQMArxUDADTZAIA42QCAPNkAgEDZAIBE2QCASNkAgEzZAIBQ2QCAqH0CAKmhAwCqoQMAq6EDAKyhAwCtqQMArpEDAK+RAwCwgQMAsY0DALKFAwCzmQMAtIkDALW9AwC2tQMAt30DALhFAwC5TQMAukUDALtdAwC8RQMAvU0DAL5FAwC/+QAA1NcAgLMNAgBU2QCAWNkAgLYNAgBc2QCAYNkAgLUNAgC6YQIAu20CAGTZAIBo2QCAvmkCAL9dAgC8dQIAvWkCAGzZAIBw2QCAdNkAgHjZAIB82QCA4aQBAIDZAIDjQAMAhNkAgIjZAICM2QCA77gDAIAVAACBHQAAggUAAJDZAICEgAIAvsgFAIcYBQCGLAQAmNkAgJzZAICg2QCA76gBAKTZAIDhdP4DqNkAgOPw/gOs2QCAsNkAgLTZAIC42QCAvNkAgMDZAIDE2QCAs5EBAMjZAIC1UQEAtlEBAMzZAIDQ2QCA1NkAgLp9AQC7dQEAvG0BAL39AAC+9QAAv+kAAKgpBgCpVQYAqlUGAKuNBgCslQYArZ0GAK6VBgCvjQYAlNkAgNjZAIDc2QCA4NkAgOTZAIDo2QCA7NkAgPDZAIC4bQcAuQUHALoNBwC7BQcAvB0HAL0FBwC+AQcAvz0HALD1BgCx/QYAsvUGALNlBwC0fQcAtWEHALZhBwC3VQcA4xAFAPTZAIDh8AQA+NkAgIAdAACBCQAAgjkAAPzZAIAA2gCAhOgDAL7gAwAE2gCA78wFAAjaAICHOAAAhhgAAKOdBgAM2gCAENoAgBTaAIAY2gCApl0GAKVdBgAc2gCAq3kGAKpxBgAg2gCAJNoAgK/lBwCu+QcArfEHAKxhBgCokQYAqZEGAKqRBgCrrQYArLkGAK2lBgCurQYAr6UGACjaAIAs2gCAMNoAgDTaAIA42gCAPNoAgEDaAIBE2gCAuGUBALltAQC6ZQEAu30BALxlAQC9bQEAvmUBAL/ZAQCw3QYAsaUGALKtBgCzpQYAtKEGALWpBgC2mQYAt5kGALMZBgBI2gCATNoAgFDaAIBU2gCAtiUGALUxBgBY2gCAu2EGALoZBgBc2gCAYNoAgL9tBgC+ZQYAvXEGALx5BgBk2gCAo10GAGjaAIBs2gCApmEGAHDaAICEmAEApXUGAKpdBgCrJQYAvqQBAHjaAICuIQYArykGAKw9BgCtNQYAqcUCAKixAgCrxQIAqsUCAK3NAgCsxQIAr/UCAK71AgB82gCAgNoAgITaAICI2gCAjNoAgJDaAICU2gCAmNoAgLnJAwC4wQMAu9kDALrBAwC9+QMAvMkDAL+ZAwC+8QMAsUUDALBFAwCzRQMAskUDALVFAwC0RQMAt0UDALZFAwCASQMAgUkDAIJdAwCzRQIAvtwMALVFAgC2RQIAnNoAgIYADACH5AMAuokDALuJAwC8mQMAvZkDAL6JAwC/iQMAowkCAKDaAICk2gCAqNoAgKzaAICmCQIApQkCALDaAICrxQMAqsUDALTaAIC42gCAr8UDAK7FAwCt1QMArNUDALzaAIDA2gCAxNoAgCTZAIDvAAAAyNoAgMzaAIDQ2gCA4+gAANTaAIDhjAEA2NoAgNzaAIDg2gCA6NoAgOzaAICAbQAAgXUAAIJ9AACEQAIAhvAMAId4DQDw2gCA9NoAgPjaAID82gCAANsAgATbAIAI2wCADNsAgBDbAIAU2wCAGNsAgBzbAIAg2wCAJNsAgCjbAIAs2wCAMNsAgO/MAQCE7AwA4TAGADTbAIDjGAEAONsAgDzbAIBA2wCARNsAgLPlAQBI2wCAhIQPAEzbAIBQ2wCAtuUBALX1AQBY2wCAu30BALrZAQC+oAwAXNsAgL8hAQC+OQEAvTEBALw5AQCo7Q0AqSUOAKotDgCrJQ4ArD0OAK0lDgCuLQ4AryUOAOTaAICC9Q8AgeUPAIDpDwBU2wCAYNsAgIaYAACHDAMAuK0OALlFDwC6TQ8Au0UPALxFDwC9TQ8AvkUPAL95DwCwXQ4AsfkOALKtDgCzpQ4AtL0OALWlDgC2pQ4At5UOAGTbAIDv7AwAaNsAgGzbAIBw2wCAdNsAgHjbAIB82wCAvugAAIDbAICE2wCAiNsAgIzbAIDj6A0AkNsAgOEEDACj5Q4AlNsAgJjbAICc2wCAoNsAgKblDgCl9Q4ApNsAgKt9DgCq2Q4AqNsAgKzbAICvIQ4ArjkOAK0xDgCsOQ4AqDkOAKk5DgCqUQ4Aq1EOAKxxDgCtcQ4ArnEOAK9xDgCw2wCAtNsAgLjbAIC82wCAgBkAAIEZAACCBQAAwNsAgLjRDgC50Q4AutEOALvlDgC84Q4AveEOAL7hDgC/4Q4AsBEOALERDgCyEQ4AsxEOALTxDgC18Q4AtvEOALfxDgCz2Q4AyNsAgIYoAACHuAAAzNsAgLbxDgC1+Q4A0NsAgLvVDgC61Q4A1NsAgNjbAIC/NQ4AvjUOAL3FDgC8xQ4A3NsAgKOdDgDg2wCA5NsAgKa1DgDo2wCA7NsAgKW9DgCqkQ4Aq5EOAPDbAID02wCArnEOAK9xDgCsgQ4ArYEOAKjdDQCp6Q0Aqj0CAKuNAgCsmQIArZkCAK6JAgCviQIAvqwEAPjbAID82wCAhCADAADcAIAE3ACACNwAgAzcAIC4iQIAuYkCALqZAgC7kQIAvLkCAL25AgC+eQMAv3kDALD5AgCx+QIAss0CALPFAgC03QIAtcUCALbBAgC3uQIAs7UCABDcAIAU3ACAGNwAgBzcAIC2GQIAtRECACDcAIC7PQIAuj0CACTcAIAo3ACAvwECAL4ZAgC9EQIAvBkCACzcAICj8QIAMNwAgDjcAICmXQIAPNwAgEDcAIClVQIAqnkCAKt5AgCGSAUAh6wEAK5dAgCvRQIArF0CAK1VAgCohQIAqZUCAKqVAgCrpQIArL0CAK3VAgCu0QIAr9ECAETcAIBI3ACATNwAgFDcAICB8QEAgJkBAHTaAICC9QEAuHkBALl5AQC6zQEAu8UBALzdAQC9xQEAvsUBAL/1AQCwtQIAsb0CALKBAgCzgQIAtFUBALVdAQC2SQEAt0kBAFTcAIBY3ACAXNwAgO/UAQCEEAUAYNwAgGTcAIDvjA4AvuwFAOHsDgBo3ACA4xwOAGzcAIDhlAEAcNwAgONkDgCzXQIAdNwAgHjcAIB83ACAgNwAgLYVAgC1dQIAhNwAgLs5AgC6MQIAiNwAgIzcAIC/2QEAvtEBAL0VAgC8FQIAo50FADTcAICQ3ACAlNwAgJjcAICm1QUApbUFAJzcAICr+QUAqvEFAKDcAICk3ACArxkGAK4RBgCt1QUArNUFAIBRAACBWQAAgmEAALOVBgCo3ACAtXEHALZxBwCs3ACAhkADAIdUAwC67QcAu+UHALzlBwC97QcAvtEHAL/NBwCw3ACAtNwAgLjcAIC83ACAwNwAgMTcAIDvQAQAyNwAgOEwBwDM3ACA45QEANDcAIDU3ACA2NwAgNzcAIDg3ACAoxkGAOTcAIDo3ACA7NwAgPDcAICm/QcApf0HAPTcAICraQcAqmEHAPjcAID83ACAr0EHAK5dBwCtYQcArGkHAKjNBwCp0QcAqtEHAKstBgCsNQYArT0GAK41BgCvnQYAAN0AgATdAIAI3QCADN0AgIAZAACBGQAAggUAABDdAIC4iQYAuYkGALqZBgC7kQYAvLkGAL25BgC+UQEAv1EBALDlBgCx7QYAsv0GALP1BgC02QYAtcUGALbBBgC3uQYAqNEBAKnZAQCqCQEAqwkBAKwZAQCtGQEArgkBAK8JAQCEYAEAvnwBAIeoAACGjAEAGN0AgBzdAIAg3QCAJN0AgLgJAQC5CQEAuhkBALsRAQC8OQEAvTkBAL75AAC/+QAAsH0BALFBAQCyRQEAs10BALRFAQC1TQEAtkUBALc5AQAo3QCALN0AgDDdAICzjQIANN0AgLWdAgC2lQIAON0AgDzdAIBA3QCAurUCALuJAgC8nQIAvYUCAL6NAgC/hQIAps0CAETdAIBI3QCApcUCAEzdAICj1QIAUN0AgFTdAICu1QIAr90CAKzFAgCt3QIAqu0CAKvRAgCE9AMAWN0AgKgxAwCpMQMAqjEDAKsxAwCskQAArZEAAK6RAACvjQAAXN0AgGDdAIBk3QCAaN0AgGzdAIBw3QCAdN0AgHjdAIC4vQAAuWUAALptAAC7ZQAAvH0AAL1lAAC+bQAAv2UAALD9AACxxQAAss0AALOpAAC0uQAAtaUAALahAAC3oQAAgL0BAIEJAACCGQAAfN0AgIDdAIC+WAIAhxQdAIacHQCEbB0AxNsAgIjdAICM3QCAvrwcAJDdAICU3QCAmN0AgLP5AgCc3QCAoN0AgKTdAICo3QCAtlEBALVZAQC+3B8Au0EBALp5AQCs3QCAsN0AgL8hAQC+PQEAvT0BALxZAQDhcAcAtN0AgOMIBgC43QCA78wAALzdAIDA3QCAxN0AgOMQAADI3QCA4dABAMzdAICGkBwAh/QcAO/gBgDQ3QCAo3kCANTdAIDY3QCA3N0AgODdAICm0QEApdkBAOTdAICrwQEAqvkBAOjdAIDs3QCAr6EBAK69AQCtvQEArNkBAITdAICCFQAAgeUfAIDlHwDw3QCA9N0AgPjdAID83QCAqAkfAKkJHwCqHR8AqxUfAKwNHwCtcR8ArnEfAK9xHwCwER8AsS0fALIlHwCzyR8AtN0fALXBHwC2wR8At8EfALjFHwC5yR8AutUfALupHwC8uR8AvbkfAL6pHwC/oR8As7UfAADeAIAE3gCACN4AgAzeAIC20R8AtaUfABDeAIC7yR8AuvUfABTeAIAY3gCAvyUfAL45HwC9PR8AvNEfABzeAIAg3gCAJN4AgCjeAIAs3gCA4WAfADDeAIDjtBwANN4AgDjeAIA83gCA7wAdAEDeAIBE3gCASN4AgEzeAICjNR4AUN4AgFTeAIBY3gCAXN4AgKZRHgClJR4AYN4AgKtJHgCqdR4AhKgCAGTeAICvpR4ArrkeAK29HgCsUR4AgE0AAIFVAACCVQAAs8kBAGjeAIC12QEAtskBAGzeAICGoAAAhwQBALrFAQC7rQEAvLUBAL29AQC+tQEAv60BAKiZAQCpmQEAqg0BAKsFAQCsHQEArQUBAK4FAQCvNQEAcN4AgHTeAIB43gCAfN4AgIDeAICE3gCAiN4AgIzeAIC4JQEAuS0BALo5AQC7OQEAvCkBAL0pAQC+3QAAv9UAALBNAQCxJQEAsi0BALMlAQC0PQEAtSUBALYhAQC3HQEAkN4AgJTeAICY3gCAo4kCAJzeAIClmQIApokCAKDeAICk3gCAqN4AgKqFAgCr7QIArPUCAK39AgCu9QIAr+0CAKzeAICw3gCAtN4AgIRAAgC43gCAvN4AgMDeAIDE3gCAgA0AAIEVAACCHQAAyN4AgMzeAIDQ3gCAh7QDAIbcBAC+zAMA2N4AgNzeAIDg3gCA7+gCAOTeAIDo3gCA7N4AgOP8AgDw3gCA4dABAPTeAID43gCA/N4AgADfAIAE3wCAs2EDAAjfAIAM3wCAEN8AgBTfAIC2eQMAtXEDABjfAIC7XQMAul0DABzfAIAg3wCAv+EAAL79AAC9/QAAvP0AALC5AgCxuQIAsgkBALMJAQC0GQEAtQUBALYFAQC3PQEAuAUBALllAQC6bQEAu2UBALxhAQC9YQEAvmEBAL9hAQCFXAcAJN8AgCjfAIAs3wCAFN0AgDDfAIA03wCAON8AgKgxAgCpOQIAqskCAKvJAgCs2QIArdkCAK7JAgCvyQIAhMwFAOGAHgA83wCA47weAOE4HgBA3wCA46AAAL4QBABI3wCATN8AgO8MHgBQ3wCAVN8AgFjfAIBc3wCA73QeAKNhAgCCUQAAgUEAAICRAABg3wCApnkCAKVxAgBk3wCAq10CAKpdAgCGyAQAhzwFAK/hAQCu/QEArf0BAKz9AQCohQYAqY0GAKqFBgCrmQYArIkGAK2JBgCuvQYAr7EGAETfAIBo3wCAbN8AgHDfAIB03wCAeN8AgHzfAICA3wCAuJ0GALmtBgC6pQYAuwkHALwZBwC9GQcAvg0HAL8FBwCw0QYAsdEGALLRBgCz0QYAtLUGALW9BgC2tQYAt60GALMNBgCE3wCAiN8AgIzfAICQ3wCAtgkGALUBBgCU3wCAuxUGALoVBgCY3wCAnN8AgL95BgC+cQYAvQUGALwFBgCg3wCA4aAEAKTfAIDjXAUAgA0AAIE1AACCPQAAqN8AgKzfAICw3wCAhGADAL5sAAC/8AEAhZAAALTfAIDvmAUAo40HAIQIAACGAAwAh4wAALjfAICmiQcApYEHALzfAICrlQcAqpUHAMDfAIDE3wCAr/kHAK7xBwCthQcArIUHAMjfAICz6QYAzN8AgNDfAIC26QYA1N8AgNjfAIC16QYAukUBALtNAQDc3wCA4N8AgL5FAQC/TQEAvFUBAL1NAQCoIQYAqSEGAKolBgCrPQYArCUGAK0tBgCuSQYAr0EGAOTfAIDo3wCA7N8AgPDfAID03wCA+N8AgPzfAIAA4ACAuEkBALlJAQC6WQEAu1EBALx5AQC9eQEAvhkBAL8VAQCwxQEAsc0BALLFAQCz3QEAtMUBALXNAQC2xQEAt3kBAATgAIAI4ACADOAAgKOhBQAQ4ACApaEFAKahBQAU4ACAjyHqAxjgAICqDQIAqwUCAKwdAgCtBQIArg0CAK8FAgCX7RIAlmUSAJVFEQCUnRYAk3EWAJJVFQCReesDkFnqA59hBgCeNQUAnUUaAJxpGgCbVRkAmkUeAJlZHgCYRR0A4WAAABzgAIDjTD4AIOAAgKOxAgCi1QEAobUHAKCJBgCxATgAsAk+ALOVOgCyjToAtbUmALQBJADvaDoAvjAMAKnJNgCowTYAqwEwAKrhNwCtzTMArPUyAK/5PgCuATwAoRkCACjgAICjbQ4Aom0OAKX1CgCkAQgAp4ULAKaZCgCGAA0Ah0QNAIIJ6wODCesDhDHqA4UVFACGORcAh80XAISgDQAs4ACAiiUQAIsNEwCMnRMAjQ0cAI4ZHwCPDR8A1N4AgO8AAwCSbRgAk0kbAJR9GwCVBQQAllkHAJdJBwAw4ACANOAAgJpFBgCbLQAAnFEDAONgAAA44ACA4WwAAIClAQCBAQEAggUBAL4ADAA84ACAQOAAgETgAIDviAEASOAAgOFUBgBM4ACA41QBAFDgAIBU4ACAWOAAgFzgAICz6QIAYOAAgGTgAIBo4ACAbOAAgLadAgC1mQIAcOAAgLuJAgC6vQIAdOAAgHjgAIC/WQIAvlECAL1ZAgC8kQIAoykNAHzgAICA4ACAhOAAgIjgAICmXQ0ApVkNAIzgAICrSQ0Aqn0NAJDgAICY4ACAr5kNAK6RDQCtmQ0ArFENAIBRAACBWQAAgmEAALMtDwCc4ACAtS0PALbJDwCg4ACAhkADAIcIAwC6yQ8Au8UPALzBDwC9wQ8AvsEPAL/BDwAk4ACAlOAAgKTgAICo4ACArOAAgLDgAIC04ACAuOAAgKhFDgCpgQ8AqskPAKvJDwCsyQ8ArSUPAK4tDwCvJQ8AsGEPALFtDwCyeQ8As3kPALRpDwC1aQ8Ath0PALcVDwC4LQ8AuTUPALo1DwC7BQ8AvB0PAL3xAAC+8QAAv/EAAKNhDgC84ACAhMQBAMDgAIDE4ACApoUOAKVhDgDI4ACAq4kOAKqFDgDM4ACA0OAAgK+NDgCujQ4ArY0OAKyNDgDU4ACA2OAAgNzgAIDg4ACA5OAAgOjgAIDs4ACA8OAAgPTgAICCHQAAgR0AAIAdAAD44ACA/OAAgADhAIC+tAEAqK0BAKnVAQCq1QEAqwUBAKwdAQCtBQEArg0BAK8FAQCGgAEAhxgBAAjhAIAM4QCAEOEAgBThAIAY4QCAHOEAgLiFAAC5jQAAuoUAALudAAC8hQAAvY0AAL6FAAC/vQAAsH0BALHhAACy5QAAs/0AALTtAAC13QAAttUAALe9AACzXQIAIOEAgCThAIAo4QCALOEAgLaFAgC1lQIAMOEAgLslAwC6uQIANOEAgDjhAIC/GQMAvikDAL0pAwC8MQMAvswEAKMZAgA84QCAQOEAgKbBAgBE4QCASOEAgKXRAgCq/QIAq2EDAEzhAIBQ4QCArm0DAK9dAwCsdQMArW0DAKgpAwCpKQMAqjkDAKs5AwCsKQMArSkDAK6dAACvlQAAVOEAgFjhAIBc4QCAYOEAgGThAICCqQEAga0BAICtAQC4mQAAua0AALqlAAC7bQAAvHUAAL19AAC+dQAAv20AALDtAACx9QAAsvUAALPFAAC03QAAtb0AALa1AAC3qQAA4XgBAOEcDgDjEAAA4zwOAGjhAIBs4QCAvhQEAHDhAICErAIAeOEAgId4BQCGDAUAfOEAgIDhAIDvvAAA70gOALPxAgCE4QCAiOEAgIzhAICQ4QCAtukCALXhAgCU4QCAu3EBALppAQCY4QCAhKAEAL85AQC+WQEAvVEBALxhAQCc4QCAhIwEAKDhAICEADgApOEAgKjhAICs4QCAsOEAgKqJDgCriQ4AqLkOAKmxDgCu/Q4Ar+EOAKz5DgCt9Q4Asq0OALNlDgCwkQ4AsaUOALZ9DgC3ZQ4AtH0OALV1DgC6XQ4Au+UNALhdDgC5VQ4AvuENAL/pDQC8/Q0AvfUNAKOxBQB04QCAtOEAgLjhAIC84QCApqkFAKWhBQDA4QCAqzEGAKopBgDE4QCAyOEAgK95BgCuGQYArREGAKwhBgDM4QCA0OEAgNThAIDY4QCAgB0AAIEJAACCOQAA3OEAgODhAIDk4QCAhsgAAIcMAwDo4QCA7OEAgPDhAID04QCAqKUHAKm1BwCqvQcAq8kHAKzZBwCt2QcArskHAK/BBwC+oAAA+OEAgPzhAIAA4gCABOIAgAjiAIAM4gCAEOIAgLjNAAC51QAAutUAALvlAAC8/QAAvZUAAL6dAAC/lQAAsIkHALFlBwCyYQcAs30HALRlBwC1bQcAtmUHALf1AACzNQYAFOIAgBjiAIAc4gCAIOIAgLZZBgC1UQYAJOIAgLuhBgC6TQYAKOIAgCziAIC/qQYAvqEGAL2pBgC8tQYAMOIAgDTiAIDv8AUAOOIAgDziAIBA4gCAROIAgEjiAICAPQAAgQkAAIIdAABM4gCA4cgGAFDiAIDjSAQAVOIAgKO1BgBY4gCAhigAAIdAAQBc4gCAptkGAKXRBgBg4gCAqyEGAKrNBgBk4gCAaOIAgK8pBgCuIQYArSkGAKw1BgBs4gCAs70BAHDiAIB04gCAtnkBAHjiAIB84gCAtXkBALpVAQC7XQEAgOIAgITiAIC++QAAv/kAALxFAQC9+QAAqHECAKlxAgCqcQIAq3ECAKy1AgCtvQIArrUCAK+tAgC+rDwAiOIAgIziAICQ4gCAlOIAgJjiAICc4gCAoOIAgLhpAwC5aQMAugkDALsJAwC8HQMAvQUDAL4NAwC/BQMAsNUCALHdAgCy1QIAs2kDALR5AwC1eQMAtmkDALdhAwCk4gCAqOIAgKziAICj9QIAsOIAgKUxAgCmMQIAtOIAgLjiAIC84gCAqh0CAKsVAgCsDQIArbEDAK6xAwCvsQMA7xgCAIIVAACBbQAAgG0AAMDiAIDI4gCAhvg8AIcYAwDM4gCA0OIAgNTiAIDY4gCA42wHAAThAIDhaAEA3OIAgKiFAgCplQIAqpUCAKulAgCsvQIArdUCAK7RAgCv0QIA4OIAgOTiAIDo4gCA7OIAgPDiAID04gCA+OIAgPziAIC4dQEAuX0BALp1AQC7zQEAvNUBAL3dAQC+yQEAv8EBALC1AgCxvQIAsoECALOBAgC0VQEAtV0BALZVAQC3TQEA4bQGAADjAIDj9AYABOMAgIQYPQAI4wCADOMAgBDjAIAU4wCAGOMAgBzjAIAg4wCAJOMAgCjjAIDvWAYALOMAgIF9AACAcQAAMOMAgIIFAAA44wCAPOMAgO+AAQC+VDwA4ZABAEDjAIDjfAYAROMAgEjjAIBM4wCAhtg8AIf0PACjnT0AxOIAgDTjAIBQ4wCAVOMAgKbVPQCltT0AWOMAgKv5PQCq8T0AXOMAgGDjAICvGT4ArhE+AK3VPQCs1T0AZOMAgLOhPgBo4wCAbOMAgLatPgBw4wCAdOMAgLWxPgC6ST8Au0k/AHjjAIB84wCAvkk/AL9JPwC8ST8AvUk/AKhVPgCpZT4Aqm0+AKtlPgCsfT4ArWk+AK65PwCvuT8AgOMAgITjAICI4wCAjOMAgJDjAICU4wCAmOMAgJzjAIC4VT8AuV0/ALpVPwC7bT8AvHU/AL19PwC+dT8Av20/ALDJPwCxyT8Astk/ALPZPwC0yT8Atck/ALZ9PwC3cT8AghUAAKPhPwCAsQEAgbEBAKbtPwCg4wCAvtABAKXxPwCqCT4Aqwk+AITkAQCk4wCArgk+AK8JPgCsCT4ArQk+ALPdPACo4wCAhugAAIfMAQCs4wCAtpU8ALX1PACw4wCAu7k8ALqxPAC04wCAuOMAgL9ZPwC+UT8AvZU8ALyVPACoUT4AqVE+AKptPgCrYT4ArGE+AK1hPgCulQEAr40BAISgAQC84wCAwOMAgMTjAIDI4wCAzOMAgNDjAIDU4wCAuKkBALmpAQC6aQEAu2kBALx5AQC9eQEAvmkBAL9pAQCw/QEAsc0BALLFAQCzrQEAtLkBALW5AQC2rQEAt6UBALPlPQDY4wCA3OMAgODjAIDk4wCAtuE9ALXpPQDo4wCAuwkCALo5AgDs4wCA8OMAgL99AgC+fQIAvXkCALwRAgD04wCAo6E9APjjAID84wCApqU9AADkAIAE5ACApa09AKp9AgCrTQIACOQAgAzkAICuOQIArzkCAKxVAgCtPQIAgOkAAIHpAACCHQAAvsADAO/kAgAQ5ACAh1QDAIY8BADjEAEAGOQAgOH4AQAc5ACAIOQAgCTkAIAo5ACALOQAgDDkAIA05ACAOOQAgLORAwA85ACAtbkDALZ9AwBA5ACAROQAgEjkAIC6WQMAu1kDALxJAwC9SQMAvv0AAL/1AACoRQIAqVUCAKpVAgCrZQIArH0CAK2xAgCusQIAr7ECAIRsBQBM5ACAUOQAgFTkAIBY5ACAXOQAgL5wBQBg5ACAuF0BALltAQC6ZQEAuw0BALwZAQC9GQEAvg0BAL8FAQCw0QIAsdECALLRAgCz0QIAtHUBALV9AQC2dQEAt20BAOFAPwDjvAAA4wg+AOFsPgBk5ACAaOQAgGzkAIBw5ACAdOQAgHjkAIB85ACAgOQAgL5sBwDvVAAA75w+AIjkAICjnQIAgmkAAIFhAACAaQAAjOQAgKZxAgCltQIAkOQAgKtVAgCqVQIAhsgEAIfsBACv+QEArvEBAK1FAgCsRQIAqKUGAKmpBgCquQYAq7kGAKypBgCtqQYArtkGAK/ZBgCE5ACAlOQAgJjkAICc5ACAoOQAgKTkAICo5ACArOQAgLhxBwC5cQcAunUHALvdBwC8xQcAvc0HAL7FBwC//QcAsKkGALG1BgCytQYAs40GALSVBgC1UQcAtlEHALdRBwCzMQYAsOQAgLTkAIC45ACAvOQAgLYpBgC1IQYAwOQAgLtxBgC6bQYAxOQAgMjkAIC/lQcAvlEGAL1ZBgC8YQYAzOQAgKN1BgDQ5ACA1OQAgKZtBgDY5ACA3OQAgKVlBgCqKQYAqzUGAODkAIDk5ACArhUGAK/RBwCsJQYArR0GAIANAACBFQAAgh0AAOjkAIDs5ACA8OQAgITcAQD05ACAhoAAAIcgAQD45ACA/OQAgADlAIAE5QCACOUAgAzlAIAQ5QCA43QEABTlAIDhyAUAGOUAgBzlAIAg5QCAJOUAgCjlAIAs5QCAMOUAgDTlAIA45QCA77QEADzlAIBA5QCAqD0GAKlVBgCqVQYAq6kBAKy5AQCtuQEArqkBAK+pAQCErAEAROUAgEjlAIBM5QCAUOUAgFTlAIBY5QCAXOUAgLhtAQC5BQEAugEBALsBAQC8BQEAvQ0BAL4xAQC/MQEAsNkBALHZAQCybQEAs2UBALR9AQC1ZQEAtmUBALdVAQCBvQMAgL0DALPVBQCCGQAAtTkCAGDlAIC+VAMAtjECAGjlAIBs5QCAuxUCALoVAgC9uQIAvLECAL+pAgC+sQIAcOUAgKZpAgClYQIAhAAMAKONBQB05QCAhvgMAId8AwCv8QIArukCAK3hAgCs6QIAq00CAKpNAgB45QCAfOUAgIDlAICE5QCAiOUAgIzlAIDjIAEAkOUAgOGgAQCU5QCA70ACAJjlAICc5QCAoOUAgKTlAICo5QCArOUAgLDlAICz8QMAtOUAgBTkAIC45QCAvOUAgLbpAwC14QMAwOUAgLu1AwC6tQMAxOUAgMjlAIC/lQMAvpUDAL2lAwC8pQMAqCkCAKkpAgCqOQIAqzkCAKwpAgCtKQIArlkCAK9VAgCAzQEAgQkAAIIZAADM5QCA0OUAgL58DQCHtA0AhhwMALgxAgC5PQIAujUCALvpAgC8+QIAvfkCAL7pAgC/6QIAsDECALExAgCyMQIAszECALQRAgC1EQIAthECALcRAgDY5QCA3OUAgODlAIDk5QCA6OUAgOzlAIDw5QCA79QGAPTlAIDhVAYA+OUAgOOkAACsDBUA/OUAgADmAIAE5gCAo/ECAAjmAIAM5gCAEOYAgBTmAICm6QIApeECABjmAICrtQIAqrUCABzmAIAg5gCAr5UCAK6VAgCtpQIArKUCAKghDgCpIQ4AqkkOAKtZDgCsaQ4ArWkOAK6ZDgCvmQ4A1OUAgCTmAIAo5gCALOYAgDDmAIA05gCAOOYAgDzmAIC49Q4Auf0OALr1DgC7iQ4AvJ0OAL2FDgC+hQ4Av7UOALDpDgCx6Q4Asv0OALPxDgC01Q4Atd0OALbVDgC3zQ4As8EOAIIVAACBtQAAgLUAAEDmAIC26Q4AteEOAL4QAAC7LQ4Aui0OAIRkAwBE5gCAvxkOAL4RDgC9JQ4AvCkOAEjmAICjhQ4AhogAAIdsAwCmrQ4ATOYAgFDmAIClpQ4AqmkOAKtpDgBU5gCAWOYAgK5VDgCvXQ4ArG0OAK1hDgCziQ4AXOYAgGDmAIBk5gCAaOYAgLaBDgC1iQ4AbOYAgLuVDgC6jQ4AcOYAgHTmAIC/+Q4AvvEOAL2FDgC8hQ4AeOYAgHzmAICA5gCAhOYAgOMMDQCI5gCA4RgNAIzmAIDvrAwAkOYAgJTmAICY5gCAnOYAgKDmAICk5gCAqOYAgKgBDgCpAQ4AqgEOAKsBDgCsAQ4ArQEOAK4BDgCvPQ4AgN0AAIEJAACCGQAArOYAgLDmAICEPAEAvnQAALjmAIC4HQ4AuS0OALolDgC76QEAvPkBAL35AQC+6QEAv+kBALBJDgCxUQ4AslEOALNRDgC0NQ4AtT0OALY1DgC3LQ4Ao4kNALzmAICGrAQAhzwDAMDmAICmgQ0ApYkNAMTmAICrlQ0Aqo0NAMjmAIDM5gCAr/kNAK7xDQCthQ0ArIUNANDmAICznQIAhEgDAL5ABAC2VQMA1OYAgNjmAIC1sQIAunEDALt5AwDc5gCA4OYAgL4xAwC/MQMAvFEDAL1RAwCwkQMAsZkDALKhAwCzoQMAtNEDALXRAwC20QMAt9EDALj1AwC5+QMAus0DALvFAwC83QMAvcUDAL7NAwC/xQMA5OYAgOjmAIDs5gCA8OYAgIV8GQD05gCA+OYAgGTlAICoIQIAqTECAKoxAgCrBQIArB0CAK3xAwCu8QMAr/EDAPzmAIAA5wCABOcAgAjnAIDvUAAADOcAgBDnAIAU5wCA44QAABjnAIDh+AEAHOcAgIAVAACBGQAAggUAACDnAICjmQMAKOcAgIZoBACHYAUALOcAgKZRAgCltQMAMOcAgKt9AgCqdQIANOcAgDjnAICvNQIArjUCAK1VAgCsVQIAPOcAgEDnAIBE5wCASOcAgEznAIBQ5wCAVOcAgO/4AQC+bAQA4YAOAFjnAIDjFAEAXOcAgGDnAIBk5wCAaOcAgGznAIBw5wCAdOcAgLPdAQB45wCAtf0BALb1AQB85wCAgOcAgITnAIC6sQEAu4UBALydAQC9NQEAvj0BAL81AQCpBQYAqLkFAKsVBgCqHQYArT0GAKw9BgCvTQYArl0GACTnAICCHQAAgR0AAIAdAACI5wCAjOcAgJDnAICU5wCAuUEHALidBgC7QQcAukkHAL1FBwC8WQcAv0UHAL5FBwCxCQYAsD0GALOpBgCyAQYAtbkGALSxBgC3rQYAtrEGAKORBgCEjAIAhigAAIfAAwCY5wCAprkGAKWxBgCc5wCAq8kGAKr9BgCg5wCApOcAgK95BgCucQYArXkGAKzRBgCo5wCAs5kHAKznAICw5wCAtlEHALTnAIC45wCAtbEHALptBwC7dQcAvOcAgMDnAIC+WQcAv0UHALxtBwC9ZQcAxOcAgMjnAIDM5wCA0OcAgNTnAIDY5wCA3OcAgO+oBQDg5wCA4TQFAOTnAIDjdAUA6OcAgOznAIDw5wCA9OcAgKMdBgCCLQAAgRUAAIAdAAD45wCAptUGAKU1BgD85wCAq/EGAKrpBgAA6ACAhCgBAK/BBgCu3QYAreEGAKzpBgCoxQYAqdUGAKrVBgCr5QYArP0GAK0VBgCuHQYArxUGAL7sAQAI6ACAhggAAIcgAAAM6ACAEOgAgBToAIAY6ACAuH0GALkFBgC6DQYAuwUGALwBBgC9CQYAvjkGAL85BgCwbQYAsXUGALJ9BgCzdQYAtFkGALVFBgC2TQYAt0UGAKiRAgCpmQIAqqECAKuhAgCs0QIArd0CAK7VAgCvyQIAHOgAgCDoAIAk6ACAvyweACjoAIAs6ACAMOgAgDToAIC4VQMAuV0DALppAwC7ZQMAvGEDAL1hAwC+YQMAv2EDALC5AgCxjQIAsoUCALNtAwC0dQMAtX0DALZ1AwC3bQMAOOgAgDzoAICzIQIAQOgAgLVRAgCEiAMAROgAgLZVAgC05gCAvigcALtBAgC6dQIAvbEDALxZAgC/sQMAvrkDAKNpAgBI6ACATOgAgFDoAIBU6ACAph0CAKUZAgBY6ACAqwkCAKo9AgBc6ACAYOgAgK/5AwCu8QMArfkDAKwRAgCopQIAqbUCAKq9AgCrtQIArK0CAK01AQCuPQEArzUBAL4sHABk6ACAaOgAgGzoAIBw6ACAeOgAgIdoHQCGHB0AuIUBALmNAQC6hQEAu50BALyNAQC9vQEAvrUBAL95AACwUQEAsVEBALJRAQCzUQEAtPEBALXxAQC29QEAt+UBAO/YAACCtQAAgaUAAIClAAB86ACAgOgAgIToAIDvxAYAiOgAgOH0BgCM6ACA4zgBAOPMAACQ6ACA4SgBAJToAICY6ACAtuUBALV1AgCEQBwAs2UCAJzoAICg6ACApOgAgL9lAQC+ZQEAvdUBALzVAQC7xQEAusUBAKjoAICs6ACAo7UdAHToAICw6ACAtOgAgLjoAICmNR4ApaUdALzoAICrFR4AqhUeAMDoAIDE6ACAr7UeAK61HgCtBR4ArAUeAMjoAIDM6ACA0OgAgNToAICADQAAgTUAAII9AADY6ACA3OgAgODoAIC1BQAAcRoAgOG0AgCs2AIAtQUAAHUaAICotR8AqRUfAKodHwCrFR8ArDEfAK09HwCuLR8AryEfAOG0AgCs2AIAtQUAAHkaAIDhtAIArNgCALUFAAB9GgCAuNEAALnZAAC64QAAu+EAALyRAAC9kQAAvpEAAL+RAACwIR8AsTEfALIxHwCzMR8AtAkfALUJHwC28QAAt/EAAOG0AgCs3AIA71QdALUdAACBGgCA4bwCAKzQAgC1KQAAoyUBAKKRAwChFR0AoA0dAOGAHgCFGgCA47wdAOHEAgCz1R4AtQkAAKzYAgCJGgCA4bwCALb9HgC1+R4ArOACALu1HgC6pR4AtQUAAI0aAIC/jR4Avo0eAL2lHgC8pR4AoxUeAOG8AgCs0AIAtREAAI9pJQCmPR4ApTkeAJEaAICrdR4AqmUeAOG0AgCseAEAr00eAK5NHgCtZR4ArGUeAJvdFACa5RUAmQEXAJjhEACfcR8AnnkZAJ35GQCcARsAk+UtAJIRLwCRbSkAkG0pAJf5EQCW8REAlYUsAJSZLQC1JQAA4ZQCAILxJgCDjSoAhJUqAIXhLACGHS4Ah3kuAKy0AgCVGgCAilUvAIspEgCMORIAjRkTAI7xFACPHRYAtQUAAJkaAICSVRcAk5EYAJRxGgCV+RoAlvkcAJd9HgCC4AMAkwsAgJpVHgCb2QAAnHUCAIMMAICzDACAuIkKAKwBBACthQYAroEGAMwQAgDMfAMAtgwAgJ0aAIDCDACAxQwAgMgMAIAACwCAgaUyArwMAIAE6ACAmpUGAJtVIwK8kQYAvbEAAL6RBgC/rQYAuOkGALmVBgC6kQYAoRoAgLTBBgC1zQYAts0GALfdBgCw/QYAseUGALKdAACz5QYAhVTHA6UaAICH/AAAuAEKAK0aAIDpDACAsRoAgIyRcwCNpAEAzPACAL4NAIDBDQCAiRQAALgZCgCLDAAAGg4AgFMOAIC5DACAvwwAgBkKAICRwAEAywwAgLhtCgDODACA1AwAgNoMAIDdDACA4AwAgLUaAIAoDQCA5gwAgLkaAIDhpB4AKw0AgONUHgCvIXMAzCgCAO8MAIDsDACA8gwAgPUMAID4DACAzIACAJS4AwD7DACAkhQCAO9gHgCQAAIA/gwAgAoNAIC48QoADQ0AgJ8LAIAQDQCAiSkLABMNAICpGgCAvDABAL/EAQC+7AEAFg0AgMzsAgC4xQoAukQBAK0JAIAZDQCAygYAgN8GAIDyBgCAHA0AgPoGAIAfDQCACgcAgC0HAIAYBwCA9gcAgC8HAICpDQCAOgcAgK8NAIBKBwCAtXkAAGcHAIC3cSoCcgcAgLFhAAB0BwCAsw0pAo0HAIC96QAAoAcAgPoHAICtBwCAuRkrAsMHAIC7WRQCHwgAgFoJAIA8CACALw4AgFsIAIA5AACAgQgAgHEAAIDHCACAKwAAgCAJAIA9AACAXAkAgEMAAIBeCQCARQgAgGoIAIBJAACAAAgAgFMAAIB5CQCAWQAAgCINAIBfAACAuw0iAtANAIDMFDYCHwAAgL9lAAC+EQAAvW0AAOUHAICAaQEAgXUBAIJxAQCD3SEChGkHAIWBBwCGgQcAh3EBAIihAQCJrQEAirUHAIuNBwCMlQcAjaUBAE8AAICPpQEAkOEBAJHtBwCSsSECk/0HAJSNBwCVUQYAlvEBAJfZAQCY0QEAmXUGAJp9BgCb1QEAnGkGAJ2ZFAKeUQYAn1EGAKB1FAKhuQYAokkBAKOFLQKkIQEApS0BAKZ1FAKntQYAqKERAqlRFAKqlQYAsSEAgMy8NQLNPDUCbQAAgKoDAICsAwCArwMAgL0hAIDEIQCA2yEAgOIhAIDJAACADwAAgLihBgC6BgCAtwYAgMwAAIDOIQCAtQMAgN0FAIAYBgCAugUCALvVAgC46QUAuf0FAL7JAgC/5RcCvA0CAL0BAgCy4QUAs+EFALCNBQCxnQUAtuUFALfpBQC09QUAte0FAKo9BQCrwQUAqD0FAKk1BQCuzQUAr/UFAKzNBQCtxQUAoj0FAKMFBQCg1QIAoTkFAKYdBQCnBQUApB0FAKUVBQC/BgCAm8EFAD4GAIBVBgCAnt0FAJ8xBACcUQIAndUFAHIGAICJBgCApAMAgDAiAIDbAACAoAMAgI8HAIDuBwCA8gcAgJAJAIACCACABggAgJYLAICUCQCArwoAgG8HAICLBwCAlwcAgKIHAICqBwCAqgkAgPsOAIASDwCAHw8AgMwEMwLNsDACzCAzAs3gMALMEDACzGgwAsxYMALNjDACzGgxAs0UMQLM1DECzRQ2AsxwIALN0CcCzDA2AswkMQLMDDwCzWg/AswYPwLNND8CzBg9As3AMgLMRDwCzBg5Asw4MgLNqDICzIgyAs34MwLMfDMCzUAzAswoMwLNCDMCzMghAs0kJgLMrCYCzEA4AsyYJQLNyDoCzBwkAs0QJALMhDsCzag7AsysJQLNvDoCzKw4Asz4JwLM4DgCzXQ4AicPAID2BgCAYQ0AgIgNAIDNICoCzBwrAqoGAIAsIgCAzKQgAs2gJwLMOCYCygQAgMw4OgLNPDsCzBA5As1gPgLMoAMAvj0NAL3tLALWBACAu1UjAgQJAIC5PSICzwYAgNkHAIClBACAoA0AgLIEAIBvBQCA9AYAgL4EAIB1BQCAr70MAK6ZLgKtpQwAwgUAgKvFIgIDBgCAxAQAgCMGAIDQBACAyAUAgCkGAIBdBgCAowEYAqAEAIAaBwCAHQcAgJ9dDACeUQwAnUUMACcHAICbWSECrwcAgLEHAIC0BwCAuAcAgCoHAIDOBwCA0AcAgJMtJgLTBwCAbAgAgG8IAICPBQwAjnEMAI1lDAB5CACAi0UgAmAJAICJNS8CYwkAgGcJAIB8CACAcAkAgHMJAIC9AwCAACIAgIFdDACAYQwAgAABAIEYAACCAAQABCIAgIQQBwCFFAYAhuQIAIc8AgCILAUAiaQFAIoAeAAIIgCAjCQAAAwiAIAUIgCAECIAgLgRAACRxHsAkkh6AJNMeQAcIgCAzOgCAJbwCQC4OQAAkMAJACQiAICS8AkAzPgCAJS0CQC4DQAAKCIAgMwcAgC4BQAANCIAgMzkAgC4HQAAOCIAgDwiAIBDIgCAWiIAgKiMCACp5HsAYSIAgKvUBgDM5AIAuA0AAGsiAIDMlAIAbyIAgLGAewC4CQAAuBUAAMz8AgC15AgAcyIAgMzYAgB3IgCAuAUAALqcBQC7XAUAvAB8AL30fwC++H0Av/xyAIAJOgKBDToCggE6AoMFOgKEGToChR06AoYROgKHFToCiCk6AoktOgKKIToCiyU6Aow5OgKNPToCjjE6Ao81OgLM8AIAkekPAIMiAIDMzAIAuBkAAH8iAIDM3AIAl+UPALg1AAC4DQAAjyIAgMz8AgC4BQAAkyIAgMwwAgCXIgCAzNACAJsiAICfIgCAzIgCAKQtDwClVQ8Apl0PAMyUAgCoqToCqa06ArjVAACjIgCAuDUAAKciAIDMUAMAr7U6AswsAwCrIgCAzBgDALMFDwC0HQ8AzyIAgLYJDwC3CQ8Avmh9ALhtAAC4RQAAzDgDALwpDwDTIgCAviUPAMxYAwCH5Q4AzOg6Ari9AQC4yQEAzPA1As2kMwLMgCICzXwlAs2UNgLMBCkCzew7AsxkOgK45QEAuMEBAInVDgCI1Q4Al7EOALgNAACvIgCAsyIAgLciAIC4GQAAuyIAgNciAICfaTsC2yIAgL8iAIC4PQAAzMQCAMz4AgDDIgCAxyIAgLjZAADLIgCA3yIAgLjRAADjIgCAuPEAAMzMMwLnIgCAuMkAAMzoMwLrIgCAuNUAAKllAAC4yQAAzNgCAKq5BgC3TQ0Atk0NALU1DgC0NQ4AuFUAABUjAICxGQ8AsCkOAL/1AwC+UQ0AvVkNALw1DAC7XQ0Aul0NALldDQC4XQ0AgL0KAIHFCgCCFQQAg8kKAMx8BQCF3QoAhtUKAIfNCgDMVAUAifEKAIq5CACLDQgAjBEIAI0VCACOtScCj+UKAJBpCACRbQgAknEIAJNtJALMEAUAlR0IAJaFCgDMEAUAzDQFAJk9CACaiQoAmw0IAJwRCACdFQgAzEgFAMwQAgCgZQoAoW0KAKJlCgC4BQcApLEEAMzoAgCmsQQAuA0HAKiBBADM/AIAqpkIAKtdCgCsuQgArakEALglBwCvNQgAsNEIALHxBADMwAIAs40IALQpKAK1IQoAtiEKALchCgC4IQsAuSUIALhBBwC7KQsAvA0dAr3dDwC+MQsAvzELAIDdCgAZIwCAnKF9ANADAIDpAwCAhRkJAIaZCQCHlQkAiOEJAIklJQICBACAGwQAgC4EAIBBBACAVAQAgGcEAICQrQoAkUkFAJJtBQCTYQUAlGEFAJVtBQCWZQUAlxEFAJg1BQCZPQUAmjUFAJsNBQCcFQUAnR0FAJ4VBQCfCQUAoKkJAKH9BQCi9QUAowEFAKQFBQClDQUApgUFAKc9BQCoBQUAqQ0FAKoFBQCrGQUArIkJAK2pBQCutQkAr/0JALABCQCxfQUAsnUFALMBBQC0aQkAtQEFALYFBQC3PQUAuAUFALnhJQK6AQUAuwEFALzRJQK9PQkAvnkJAL9dCQCDMAUAoXgHAJ+xfgB6BACApHgHAKVIBwCNBACA8wQAgIt8BADdAACAEwEAgIhIBAAcAQCAIAEAgCQBAIAoAQCALAEAgDABAICyAAcAs/wHADQBAIDhAACAtuQHALfwBwDmAACA6wAAgLrgBwC7nAcAvIgHAL2oBwDwAACAs8F+AKPMBAD1AACA+gAAgIMABAD/AACAhXQEAKUgBAAEAQCAiEwEAAkBAIAOAQCAFwEAgK8tBwCNxAcArSEHAKwpBwDNAwCA8AQAgI8FAICwZQcA4gUAgB0GAIBDBgCAWgYAgHcGAICOBgCA0wMAgOwDAIAFBACAHgQAgDEEAIC8fAQAgt0rAoPlKwKA/QoAgfkrAoaZCQCHmQkAhOEKAIXhCgCKiQkAi4kJAIiJCQCJiQkAjoUJAEQEAICM4QgAjY0JAJK5KwKTQScCkJkrApHFCwCWyQsAl3UnApTFDQCV0SQCmskLAJvZKgKYyQsAmXkHAFcEAIBqBACAnP0LAH0EAICQBACA9gQAgKABAICkAQCAqAEAgONkAgCsAQCAsAEAgLQBAIDvvAcAqBEJALgBAIC8AQCAwAEAgMQBAIDIAQCAzAEAgNABAIDUAQCA2AEAgNwBAIDgAQCA5AEAgOgBAIDsAQCA8AEAgPQBAID4AQCA/AEAgAACAICCnH4ABAIAgKD1VAKh2VQCoulUAqP1dQCk7XUApZ12AKaVdgCnvXYAqIV2AKkpfQCqOX0AqwV9AKwdfQCtBX0Arg19AK8FfQCwfX0AsUl+ALJRfgCzUX4AtHV+ALV9fgC2aX4At2l+ALhZfgC5WX4Auil+ALspfgC8IX4AvSF+AL4ZfgC/GX4AkgcAgDkJAIDXBwCATSIAgLQNAAC1NQAAtj0AAKIGAICsBgCArwYAgAMjAIAJIwCAvSV4ALy1WALGMQCALjoAgJkqAIC9KgCAySoAgNkqAIDhKgCA7SoAgPUqAID9KgCACSsAgF0rAIB1KwCAhSsAgJUrAIClKwCAtSsAgNUrAICAeX8AgYF/AIKBfwCDnX8AhI1/AIWxfwCGsX8Ah7F/AIjhfwCJ4X8AiuF/AIv9fwCM5X8Aje1/AI7lfwCP3X8AkKV/AJGtfwCSpX8Ak71/AJSlfwCVrX8Alm1+AJctfgCYFX4AmRl+AJrpfgCb6X4AnPl+AJ35fgCe6X4An+V+AKAdfgChJX4AoiV+AKM9fgCkJX4ApS1+AKYlfgCnXX4AqGV+AKltfgCqZX4Aq31+AKxlfgCtbX4ArmV+AK9dfgCwJX4AsS1+ALIlfgCzPX4AtCV+ALUpfgC2WXcAt9V1ALj9eQC56XUAuvl1ALvZeQC86XUAvdV1AL7RdQC/2XUAgDF2AIE9dgCCSXYAg0V2AIRBdgCFTXYAhvl0AId9dgCIoQIAiU12AIpZdgCLuXoAjEl2AI2degCOsQIAjx16AJCRVgKRKXYAkoF2AJPNdgCU2XYAlel2AJbJdgCX0VkCmKF2AJllWgKa8XYAm01aApzRdgCdYXoAnoFWAp/VdgCgBQIAoY1aAqI1VwKjCXYApCF2AKUtdgCmiVoCp5laAqi5WgKpdXYAql13ANkrAIDdKwCAESwAgDksAIBJLACAUSwAgFUsAIBhLACAfSwAgIEsAICZLACAnSwAgKUsAIC1LACAUS0AgGUtAIClLQCAuS0AgMEtAIDFLQCA1S0AgJl1CgD4LQCAJC4AgDAuAIBQLgCAXC4AgGAuAIBkLgCAgux6AINkewB8LgCAgC4AgIZ0ewCHvHsArC4AgLguAIDALgCAyC4AgNguAIDnLgCA7y4AgBsvAIAfLwCAJy8AgJJwfAArLwCAMy8AgJFMfAA7LwCASy8AgGcvAIDfLwCA8y8AgKvMfACo5HwAqdx8APcvAIB3MACAezAAgI8wAICiwHwAkzAAgJswAICjMACAzEBJAs0ASQLM/EoCzWhLAqswAIC3MACA7TAAgP0wAIARMQCAjjEAgJoxAICqMQCAsqx8ALNAfAC2MQCAwjEAgMoxAIDOMQCAtGx8ALUEfACAlQcAgZ0HAIKVBwCDqQcAhLkHAIW5BwCG2QcAh9kHAIjpBwCJ6QcAivkHAIv5BwCM6QcAjekHAI7RBwCP0QcAkLEHAJGxBwCSSQEAk0kBAJRZAQCVWQEAlkkBAJdJAQCYeQEAmXkBAJpJAQCbSQEAnFkBAJ1ZAQCeSQEAn0kBAKC5AQChuQEAoskBAKPJAQCk2QEApdkBAKbJAQCnyQEAqPkBAKn5AQCqyQEAq8kBAKzZAQCt2QEArskBAK/JAQCwuQEAsbkBALJJAQCzSQEAtFkBALVZAQC2SQEAt0kBALh5AQC5eQEAukkBALtJAQC8WQEAvVkBAL5JAQC/SQEA0jEAgNYxAIDaMQCAkjIAgNoyAIDmMgCA6jIAgO4yAIDyMgCA+jIAgP4yAIASMwCALjMAgDYzAIB2MwCAejMAgIIzAICGMwCAjjMAgJIzAIC2MwCAujMAgNYzAIDaMwCA3jMAgOIzAID2MwCAGjQAgB40AIAiNACARjQAgIY0AICKNACAqjQAgLo0AIDCNACA4jQAgAY1AIBKNQCAUjUAgGY1AIByNQCAejUAgII1AICGNQCAijUAgKI1AICmNQCAwjUAgMo1AIDSNQCA1jUAgOI1AIDqNQCA7jUAgPI1AID6NQCA/jUAgJ42AICyNgCAnoUMAOY2AIDqNgCA8jYAgIC5AwCBuQMAgskDAIPJAwCE2QMAhdkDAIbJAwCHyQMAiPkDAIn5AwCKyQMAi8kDAIzZAwCN2QMAjs0DAI/FAwCQvQMAkQEMAJJJDgCTSQ4AlFkOAJVZDgCWSQ4Al0kOAJh5DgCZeQ4AmkkOAJtJDgCcWQ4AnVkOAJ5JDgCfSQ4AoLkOAKG5DgCiyQ4Ao8kOAKTZDgCl2Q4ApskOAKfJDgCo+Q4AqfkOAKrJDgCryQ4ArNkOAK3ZDgCuyQ4Ar8kOALC5DgCxuQ4AskkOALNJDgC0WQ4AtVkOALZJDgC3SQ4AuHkOALl5DgC6SQ4Au0kOALxZDgC9WQ4AvkkOAL9JDgC8eQQAvXkEAL6JBAC/nQQAuHUEALl9BAC6aQQAu2kEALRxBAC1cQQAtnEEALdxBACwcQQAsXEEALJxBACzcQQArGkEAK1pBACucQQAr3EEAKhBBACpQQQAqkEEAKtBBACknQUApWEEAKZhBACnYQQAoJ0FAKGFBQCijQUAo4UFAJxdBQCdZQUAnm0FAJ9lBQCYXQUAmUUFAJpNBQCbRQUAlB0FAJVlBQCWbQUAl2UFAJAdBQCRBQUAkg0FAJMFBQCMMQcAjTEHAI4xBwCPMQcAiDEHAIkxBwCKMQcAizEHAIQxBwCFMQcAhjEHAIcxBwCAMQcAgTEHAIIxBwCDMQcAJjcAgC43AIA2NwCAcjcAgHY3AIB+NwCAgjcAgIY3AICyNwCAtjcAgL43AIDSNwCA1jcAgPI3AID6NwCA/jcAgCI4AIBCOACAUjgAgFY4AIBeOACAijgAgI44AICeOACAwjgAgM44AIDeOACA9jgAgP44AIACOQCABjkAgAo5AIAWOQCAGjkAgCI5AIA+OQCAQjkAgEY5AIBeOQCAYjkAgGo5AIB+OQCAgjkAgIY5AICOOQCAkjkAgJY5AICaOQCAnjkAgK45AIDGOQCAyjkAgNY5AIDaOQCA3jkAgOI5AIDqOQCA7jkAgPI5AID+OQCABjoAgA46AIASOgCAGjoAgIC5AQCBuQEAgskBAIPJAQCE2QEAhdkBAIbJAQCHyQEAiPkBAIn5AQCKyQEAi8kBAIzZAQCN2QEAjskBAI/JAQCQuQEAkbkBAJIRAACTEQAAlDEAAJUxAAAeOgCAIjoAgCo6AIAyOgCAPSMAgGUsAIBpLACAJSQAgIJgAgCZ4QAAgIAAAIGYAACC5AYAg4gEAITUGwCFlBoAhhgfALMjAICIxB4AiQAQAIqoEwCLrBEAjAAoAI20KwCOuCoAj7wpAOOwAgC+dAIAnlUAAOMUAgCCbAIAtyMAgJkNAAC+RAIAnjUAAIJoAgCZBQAAuyMAgO/MAgC+oAAAgoQAAO/YAgDj7AEA4/QBAL8jAIDjCAMAwyMAgOM4AwDHIwCA44gDAMsjAIDv4AMAzyMAgO+IAwDvPAEA78QDANMjAIDv1AMA4+wDAB43AIDXIwCA4+wDAOPsAwDj5AMA2yMAgOO4AwDvXAMA70wDAN8jAIDvSAMA7/QDAOMjAIDnIwCA7zQDAON8AwDjlAQA6yMAgO8jAIDzIwCA47QEAPcjAID7IwCA/yMAgO9sBAADJACAByQAgO9YBADvUAQACyQAgBYkAIAaJACAvQAAgOP4BADCAACAMSQAgB4kAIBtKQCA45wEAAglAIBrJQCAriUAgO9QBADaJQCABCYAgO88BAApJgCAgAlLAoYcdwC+RAIAgnQCAL5QAgA+JgCAmREBAJkNAQCPrAIAggQCAI1oAQCewQIAi3wBAJ49AQCeKQEAvggCAJfQAgCZXQEAldACAJ5VAQCT0AIAmXUBAJHQAgC+SAIAn7gCAEYmAICdtAIAnk0BAJuwAgCZXQEAmbQCAL6EAgCeqQEApowCAGImAICkgAIAmakBAGomAIChSAIAgqwCAK/kAgCCtAIAglwCAJnlAQC+CAIAgnwCAIIABACopAIAnvkBAL5wAgC1HAQAnoUBAL6oBQCyhAIAtrECAL6sBQC4KQkAuYkCALqZAgCCjAUAu+gEAIKcBQByJgCAuPAEAJ5ZBgCZbQYAnmEGAJl5BgC+fAIAnmEGAIJcAgC+QAIAmVkGAJ5dBgCCYAIAmaUGAL58AgCevQYAghwCAL4UAgCZzQYAvkwCAIJMAgCa3QYAnt0GAJ/FBgDjDAIAgrwCAJn5BgC+ZAIA7/QCAJrxBgCe6QYAn+kGAJ7ZBgCf1QYA4wQCAJklBgCaIQYAgngCAJk9BgDjBAIAgkQCAJolBgC+cAIA75wCAJ4FBgCfFQYA7+gCAJp1BgCZBQYAggQCAL5wAgDjcAIAnnUGAJ8NBgCeAQYAvnwCAOM0AgCZDQYAvmACAIJsAgDv8AIAmTUGAIKQAwDv2AIAniEGAIQmAICbxQcAmeUHAL58AgCe7QcAn8UHAOPsAwCdUAIAnNEHAIJsAgDv1AIAmc0HAIJ8AgC+cAIAmd0HAJ7dBwC+AAIA42gCAJ6tBwCZuQcA42gCAIJ8AgDjDAIAvkgCAJmpBwCCWAIA78QCAJ6ZBwC+bAIA77gCAIKUAgCejQcA77gCALsAAACZeQcAuQwAAJ5xBwC/AAAAglQCAL0EAAC+aAIAs9QDAJmxBgCxcAMAggQCALc4AACeoQYAtTQAAL5wAgCrWAMAnqEGAO9cAgCZqQYArxADAIJQAgCtFAMAmYUHAJlpBgC+WAIAnmEGAL58AgCCaAIApqACAOOQAgCZaQYA43wBAOOYAQDjrAEA49ABAOPoAQC+dAIAno0FAOMwAgDvzAIAgmgCAJnRBQDvlAIA71QBAO9wAQDvJAEA7ygBAL58AgCevQUA4wwCAIJ4AgCZrQIAvnQCAJ6lAgDjNAIAgmACAJkZAAC+YAIA7/wCAJ4NAACClAIA79QCAJAmAIDj/AIAmQkAAL5gAgCYJgCAnh0AAOMAAgCwJSoAglgCAJkNAADv9AIAvmQCAK4mAIDvwAIAnhkAAIIYAgCCOAIA43ACAJkRAACaNQAAmSkBAL50AgDsJgCAnyUAAJ4JAACZ6QEAvrQDAL7gAwCazQEA79gCAJ4RAQCC2AMA/SYAgIHEAgDjsAMAHycAgOP8AwC+/AIAhMQCAIIoAgCGEAIAKicAgIg8AgCeIQAAnw0AAHonAIDvKAMAj3QCAO8sAwCCiAIAmXUAAJoVAACSxAMAldADAJktAACa0QAAjicAgL7IAgCYaAMAm3wDAILEAwCeQQAAnykAALAnAICChAIA45ACAL4IAwC+JwCABigAgJ8ZAACe7QAA49ACAJlxAACaFQAAvhQCAO8wAgCZIQAA71gCABQoAICv7AMAggQCALFMHACwABwAniUAALJMHACeXQAAn2EAAOO8AgCZIQAA+QAAAHEpAIDvlAIAdSkAgL08HACCgB0Av8EfAHkpAIDjtB0AvnQCAJ71HwDj8B0AmQUAAH0pAIC+fAIAngkAAIJgAgCZDQAAiSkAgL5gAgDvzAIAnh0AAOklAIDv3AIA42gCAPkYAIDjPB0AIRoAgP0YAIABGQCAJRoAgCkaAIAtGgCAMRoAgDUaAIA5GgCA76QCAD0aAIDvJB0AQRoAgLHFAAAFGQCAs8UAALLdAAC1yQAAtMEAALcdAAC2wQAAuWUAALhlAAC7zQAAus0AAL3dAAC83QAAv8UAAL7JAAAJGQCADRkAgE0ZAIBhGQCAERkAgBUZAIDvFHgD7wBIA+HYTQPhOKgC41x5A+O0UAOtGQCAsRkAgLUZAIC5GQCAgMkBAIHVAQCC3QEAg20CAITdAQCFcQIAhgEEAIcdBQCIJQUAiTUFAIo9BQCLbQUAjHUFAI1lBQCObQUAj80BAJC1AQCRvQEAkrUBAJNNAwCUVQMAlV0DAJZVAwCXTQMAmHUDAJl9AwCadQMAm00DAJxVAwCdWQMAnkkDAJ9JAwCguQMAobkDAKLBAwCj3QMApMUDAKXNAwCmxQMAp/0DAKjJAwCpyQMAqtEDAKvRAwCsMQMArTEDAK4xAwCvMQMAsFEDALFRAwCyUQMAs1EDALRxAwC1cQMAtnEDALdxAwC4UQMAuVEDALpRAwC7UQMAvDEDAL0xAwC+MQMAvzEDAL0ZAIDBGQCAxRkAgMkZAIDNGQCA0RkAgNUZAIDZGQCA3RkAgOEZAIDwIAIA5RkAgOkZAIDtGQCA8RkAgPUZAICc9TYAnf02APkZAICRkAIA/RkAgKkZAIBFGQCASRkAgEUaAIC6adgASRoAgE0aAIC4sTYAubE2AFEaAIBVGgCAWRoAgF0aAIBRGQCAYRoAgGUaAIBVGQCAWRkAgF0ZAIBlGQCAaRkAgG0ZAIBxGQCAdRkAgHkZAIB9GQCAgRkAgIUZAICJGQCAjRkAgJEZAICVGQCAglgCAJkZAIBpGgCA8FgCAG0aAICdGQCAoRkAgKUZAIABGgCABRoAgJF0AwDhtDsCCRoAgOPYIgINGgCAERoAgBUaAIAZGgCAHRoAgKUqAIBVLQCAqSoAgMEqAICtKgCAljMAgO/IPwK1KgCA4ZTzAuGY0gLjlPcC4xDGAuGUtgLhkJ0C44SiAuMIhwIZGQCAHRkAgO+4swLvOIsCnSoAgOAtAIDvIJcC7+DgAoLkAgBpLQCACAIAgLrF2QAOAgCAFAIAgBoCAIAgAgCAJgIAgCwCAIAyAgCAOAIAgD4CAIBEAgCASgIAgFACAIDhgHgC8OQGAOMUagKCgAgA4aAPAuEIEwLjhA4C4xgeAlYCAIA0AwCA7zQ7Au8wHwI6AwCAQAMAgO8MEgJGAwCAJRkAgCkZAIBMAwCAUgMAgC0ZAIAxGQCAWAMAgF4DAIB2AwCAggMAgIgDAICOAwCAlAMAgJoDAIB8AwCAZAMAgDUZAIA5GQCAbQMAgFwCAIA9GQCAQRkAgHQCAIBoAgCAvAIAgHoCAICYAgCAYgIAgJICAIBuAgCApAIAgNQCAICAUQYAgV0GAIJVBgCDaQYAhHkGAIV5BgCGaQYAh2kGAIhZBgCJoQcAiqUHAIu9BwCMpQcAja0HAI6lBwDyAgCA7AIAgOACAICSCRQAkxUUAJTxBwCV8QcAlvEHAJfxBwCY0QcAmdEHAJo5FACb0QcAnIEHAJ2BBwCefQcAnx0UAJktAQCYLQEAmz0BAJo9AQCdLQEAnC0BACEZAICeVQEAkd0GAJDRBgCTJQEAkiUBAJUtAQCULQEAlx0BAJYdAQCJ8QYAiOkGAIvxBgCK+QYAjbEGAIzpBgCPqQYAjrkGAIHxBgCA7QYAg/EGAIL5BgCF0QYAhOkGAIfRBgCG2QYAua0DALitAwC7vQMAur0DAL2tAwC8rQMAv90DAL7dAwCxrQMAsK0DALO9AwCyvQMAta0DALStAwC3nQMAtp0DAKm5AQCosQEAq3UBAKqxAQCtFQEArBUBAK/dAwCu3QMAobkBAKCpAQCjiQEAorEBAKWZAQCkkQEAp4kBAKaRAQAuAwCAwgIAgM4CAIDmAgCA2gIAgAQDAICwAgCA+AIAgCIDAIAKAwCAngIAgIACAIC2AgCAyAIAgP4CAICGAgCAKAMAgKoCAIAQAwCAjAIAgBYDAIAcAwCACS0AgOsuAIDKNACAhAcAgAYFAIAVBQCAJAUAgDMFAIBCBQCASwUAgPAsOABUBQCAXQUAgGYFAICSBQCA40huA5sFAIDhTG4DpAUAgO/0AQOnBQCAqgUAgK0FAIBGOgCApkwAgNZVAIA2aACAZnEAgJZ6AID2jACAVp8AgIaoAIDtugCAJMQAgFTNAICE1gCAtN8AgDG7AIA6rgCABqUAgPkqAICJKwCAoSoAgOUqAIBBMQCAATEAgE40AIDVLACABjMAgIo3AIBiNACAHSwAgJI0AICeMwCAEjgAgFkrAICFLACA+jEAgCY5AIAdKwCArSsAgJ4xAIC8LgCAySwAgFksAIA4LgCALC4AgJGgBgDuMwCAGSsAgJ43AIB1LACAzS0AgLAFAIDh1D8D4VgaA+PcLwPjUA4D4RTyA+FA0wPjQOoD40DDA7MFAIC2BQCA73jrA+9c8gO5BQCA5QUAgO9E3gPvmCUD4bSLA+E8lwPjfKID45iLA+EwQQDhUKwD4xx/AOOIRgDoBQCA6wUAgO84ewDv4EEA7gUAgPEFAIDvzIoD7yCHA4DBGACB3RgAgikLAIMpCwCE6Q4AhekOAIYZDwCH8RgAiCUPAIntGgCK5RsAiyEdAIw5HQCN5RsAjmkQAI/VGgCQhRsAkU0PAJJFDwCTXQ8AlEUPAJVNDwCWRQ8Al30PAJhFDwCZTQ8AmkUPAJtpGwCcQQ8AnUEPAJ5BDwCfQQ8AoMEPAKHBDwCiwQ8Ao8EPAKS5CwCluQsApqkLAKfNDwCo9Q8Aqf0PAKr1DwCrzQ8ArNkPAK3ZDwCuyQ8Ar8kPALC5DwCxuQ8AsmkPALNpDwC0YQ8AtWEPALY5DwC3OQ8AuBEPALkRDwC66QEAu+kBALz5AQC9+QEAvukBAL/pAQD0BQCA9wUAgPoFAID9BQCAAAYAgCAGAIDhBACAgAUAgNMFAIAOBgCANAYAgEsGAIBoBgCAfwYAgJYGAIDdAwCA9gMAgA8EAIASBwCAQQgAgD4IAIA/BwCAOSQAgHIkAICjJACAyCQAgLkmAIDEJgCAyCYAgMwmAIDQJgCALygAgG4oAICWKACAmigAgL8oAIDHKACA4ygAgPUoAID5KACA/SgAgLrp0wAVKQCAMCkAgEspAIA9JACASiQAgFckAIBkJACAdiQAgIMkAICVJACApyQAgLckAIDMJACA1iQAgOQkAIDuJACA+yQAgAwlAIAWJQCAbyUAgHYlAIAkJQCAgBkDAIEZAwCCKQMAgykDAIQ5AwCFOQMAhikDAIcpAwCIGQMAiRkDAIppAwCLaQMAjHkDAI15AwCOaQMAj2kDAJAZAwCRGQMAkgEEAJMtAwCUNQMAlVUGAJZdBgCXVQYAmG0GAJl1BgCafQYAm3UGAJxtBgCdNQYAnj0GAJ81BgCgzQYAodUGAKLdBgCj1QYApPkDAKX5AwCm6QMAp+kDAKjZAwCp+QYAqikGAKspBgCsOQYArTkGAK7FAwCvPQMAsEUDALFNAwCyRQMAs10DALRFAwC1TQMAtkUDALd9AwC4SQMAuUkDALpZAwC7fQYAvGUGAL1tBgC+ZQYAgCUAgKkVDwCoAQ8Aq00PAKpNDwCtRQ8ArEUPAK+hDQCuqQ0AoXULAKBhCwCj7QsAoqkLAKXlCwCk5QsApzkPAKZZCAC5oQ0AuJkNALuhDQC6qQ0AvaENALy5DQAxJQCAvqkNALGhDQCw2Q0As6ENALKpDQC1oQ0AtLkNALehDQC2qQ0AOCUAgEglAIBbJQCAsiUAgLwlAICRJQCAoSUAgNAlAICB7Q0AgO0NAIP9DQCC/Q0Ahe0NAITtDQCH2Q0AhiEYAJlNDQCYTQ0Am1ENAJpdDQCdeQ0AnHUNAJ9pDQCecQ0AkYkNAJCBDQCTmQ0AkoENAJWJDQCUgQ0Al30NAJaBDQDgJACAICUAgI0lAIDMJQCA3iUAgAgmAIAtJgCAQiYAgPAlAID6JQCADCYAgBkmAIAxJgCATiYAgFgmAIB2JgCASiYAgGYmAIBuJgCAgCYAgIwmAICUJgCAoyYAgN4mAICcJgCAsiYAgKcmAIC9JgCA1CYAgOImAIABJwCAEScAgBsnAIBPJwCAkicAgOcnAIBPKQCAXSkAgGEpAIBlKQCA8CYAgC4nAIA+JwCASCcAgCMnAIBTJwCAYycAgH4nAIBwJwCAlicAgMInAIDJJwCApicAgNMnAIDdJwCAtCcAgBgoAIAKKACA6ycAgCUoAIDyJwCA/CcAgDMoAIBAKACASigAgFQoAIBeKACAcigAgH8oAICGKACAnigAgKUoAICyKACAyygAgNUoAIDnKACAASkAgA4pAIAZKQCAIykAgDQpAIA7KQCAUykAgMMDAIDmBACAhQUAgNgFAIATBgCAOQYAgFAGAIBtBgCAhAYAgJsGAIDjAwCA/AMAgBUEAIAoBACAOwQAgE4EAIBhBACAdAQAgIcEAICaBACAAAUAgA8FAIAeBQCALQUAgDwFAIBjCACAJAgAgMEGAID8BwCAHQkAgOMoEwAzCQCAKggAgC0IAIAxCACAJAcAgNwuAIDKMACA2S0AgLswAIBFMQCAJwkAgO/sEwAGCQCA3A0AgM8IAICDCACAMQcAgEwHAID8BgCACggAgJQIAIAqCQCACQkAgOANAIDsDQCA2wgAgJkIAIAVBwCAhggAgFUHAID/BgCApgcAgJEkAIDwDQCA4ggAgCcIAICcCACAWAgAgBUJAID0DQCA5QgAgBQIAICfCACA6AgAgBcIAIDJCACAoggAgOwIAIAbCACAzAgAgKYIAID3CACA/QgAgIgHAICKCACAWQcAgAMHAIA9CQCAQQkAgEkJAIA2CQCAGAkAgPgNAID0CACALQkAgAwJAIDkDQCA0ggAgI4IAIBdBwCAMAkAgA8JAIDoDQCA1QgAgJEIAIBgBwCArQgAgGMHAIDjSBIA4xQSAOP4EwDjuBMA4+wSAOOgEgDjbBIA43gSAO/ADQDv2A0A73QSAO9QEgDvqBIA79wSAO8oEwDvIBMA6QcAgMwGAIAOCACAEQgAgNgGAIDUBgCAIQgAgAcHAIBnCACADAcAgHYIAIA0BwCANwcAgKoIAIC2CACAuQgAgOPYEADjoBAA46AQAON0EQDjNBAA4wgQAOPkEADj9BAA77wQAO/gEADvzBAA7zgQAO8QEADvcBAA73AQAO9MEADjhBMA4+gTAOMwEADjEBAA42ATAONAEwDjpBMA47QTAO/IEwDvtBMA75gTAO98EwDvXBMA70wTAO8UEwDv6BAAgO08AIH1PACC/TwAg/U8AITtPACFFT0Ahh09AIcVPQCILT0AiTU9AIo9PQCLNT0AjC09AI0VPQCOHT0AjxU9AJBtPQCRdT0Akn09AJN1PQCUbT0AlRU9AJYdPQCXFT0AmC09AJk1PQCaPT0AmzU9AJwtPQCdFT0Anh09AJ8VPQCg7T0AofU9AKL9PQCj9T0ApO09AKUVPQCmHT0ApxU9AKgtPQCpNT0Aqj09AKs1PQCsLT0ArRU9AK4dPQCvFT0AsG09ALF1PQCyfT0As3U9ALRtPQC1FT0AthE9ALcRPQC4MT0AuTE9ALoxPQC7MT0AvBE9AL0RPQC+ET0AvxE9AIDxPACB/TwAgvU8AIMNPwCEFT8AhR0/AIYVPwCHDT8AiDU/AIk9PwCKNT8Aiw0/AIwVPwCNHT8AjhU/AI8NPwCQdT8AkX0/AJJ1PwCTDT8AlBU/AJUZPwCWCT8Alwk/AJg5PwCZOT8Amgk/AJsJPwCcGT8AnRk/AJ4JPwCfCT8AoPk/AKH5PwCiCT8Aowk/AKQZPwClGT8Apgk/AKcJPwCoOT8AqTk/AKoJPwCrCT8ArBk/AK0ZPwCuCT8Arwk/ALB5PwCxeT8Asgk/ALMJPwC0GT8AtRk/ALYJPwC3CT8AuDk/ALk5PwC6CT8Auwk/ALwZPwC9GT8Avgk/AL8JPwCA+TwAgfk8AIJJPQCDST0AhFk9AIVZPQCGST0Ah0k9AIh5PQCJeT0Aikk9AItJPQCMWT0AjVk9AI5JPQCPST0AkDk9AJE5PQCSAQQAk00GAJRVBgCVXQYAllUGAJdNBgCYdQYAmX0GAJp1BgCbTQYAnFUGAJ1dBgCeVQYAn00GAKC1BgChvQYAorUGAKPNBgCk1QYApd0GAKbVBgCnzQYAqPUGAKn9BgCq9QYAq80GAKzVBgCt3QYArtUGAK/NBgCwtQYAsb0GALK1BgCzTQYAtFUGALVdBgC2VQYAt00GALh1BgC5fQYAunUGALtNBgC8VQYAvV0GAL5VBgC/TQYArH0/AK2lPwCurT8Ar6U/AKh9PwCpZT8Aqm0/AKtlPwCkHT8ApUU/AKZNPwCnRT8AoB0/AKEFPwCiDT8AowU/ALydPwC9pT8Avq0/AL+lPwC4nT8AuYU/ALqNPwC7hT8AtN0/ALWlPwC2rT8At6U/ALDdPwCxxT8Ass0/ALPFPwCMZToAjW06AI5lOgCPfToAiEU6AIlNOgCKRToAi306AIRlOgCFbToAhmU6AId9OgCABToAgQ06AIIFOgCDfToAnF04AJ3lPwCe7T8An+U/AJhdOACZRTgAmk04AJtFOACUuTgAlWU4AJZtOACXZTgAkAU6AJENOgCSBToAkwE5AMAIAIDYCACA3ggAgPAIAIB2BwCAIgkAgHkHAICBBwCAVAkAgJ0HAIDLBwCAvQcAgMQGAIDcBACAewUAgM4FAIAJBgCALwYAgEYGAIBjBgCAegYAgJEGAIDXAwCA8AMAgAkEAIAiBACANQQAgEgEAIBbBACAbgQAgIEEAICUBACA+gQAgAkFAIAYBQCAJwUAgDYFAIBFBQCATgUAgFcFAIBgBQCAaQUAgJUFAICeBQCAXQgAgFYOAIBZDgCAOjoAgKwKAIAVCwCANjoAgD46AICcGQAAnRkAAJ45AACfOQAA4wwAgEI6AIB6NwCA8TAAgKI3AIBaMgCAxSoAgLksAICaMDUA7C0AgB0tAIDoLQCA1y8AgJ+ENQDSMwCAnUQpAGI1AICaNgCA1jYAgAo3AIAeOACAdjEAgAIyAICuMgCARjMAgGI2AIBGOACAcjkAgOkqAICNLACAijEAgNIyAICWNgCAwjkAgJQuAIB6MgCAhjYAgBo3AIALMACAvjUAgLSAGgC1hBkAtojmALeM5ACwABwAsZQeALIAGACznBsAvADsAL2k7wC+qO4Av6TtALgA4AC5tOMAurjiALu84QCkwAAApQAMAKbIDgCnAAgA4jYAgAcvAIAFMQCArXwDAKwAEACt5BMArugSAK9gEQCo8AoAqRwJAKr4FgCr/BQAGjIAgB4zAIAqOACAKSsAgMErAIAtLACAczAAgIIxAIDOMgCA8jMAgI42AICmNgCAyjcAgO44AICiOQCAvjkAgC40AIBuNACAvAgAgCY1AIBGNgCAejgAgE43AIChLQCAIy8AgN40AICeNQCAAjMAgDY0AICaNwCA5jgAgJ0tAIBwLgCAejEAgC4yAIBiMgCAFjUAgD41AICmOACAKSwAgJwAAACqNQCAzSsAgMkrAICaNACAKjUAgF42AICuOACAajcAgA8wAIBaNwCA0SoAgEQuAIB7LwCAMjMAgLIzAIBNLACAPjQAgDkrAIBfLwCAsSoAgO4xAICLMACAEjUAgIDpAwCB6QMAgjkvAIP9AwCE5QMAhe0DAIblAwCHfS4AiEEuAIkhAgCKeS8AiyUCAIw9AgCNJQIAjiECAI8dAgCQZQIAkW0CAJJlAgCTfQIAlGUCAJVtAgCWZQIAlx0CAJglAgCZLQIAmiUCAJs9AgCcJQIAnS0CAJ4lAgCfHQIAoOUCAKHtAgCi5QIAo/0CAKTlAgCl7QIApuUCAKdNAgCodQIAqX0CAKqpAQCrqQEArLkBAK25AQCuqQEAr6kBALDZAQCx2QEAsukBALPpAQC0eSIAtf0BALb1AQC37QEAuNUBALndAQC61QEAu60BALy1AQC9uQEAvqkBAL+pAQChLACAjS0AgP4zAIBmNgCAPjcAgLoxAIDmMQCAHzAAgB42AIA/MACArjMAgAUrAICBKwCAxSsAgFYxAID+NACA9jUAgEo3AIBaOACANSwAgOksAIAXLwCApzAAgH4yAIBCNACAljgAgHo5AIDOOQCA5jkAgOkwAICmMQCA7jcAgOMuAIC/LwCA2y8AgGswAIBuMgCAujIAgGozAICONACAMjUAgJY1AIDeNwCAbjYAgAY4AIB+OACA6SsAgBUsAID9LACAqjIAgPY2AIADLwCAcy8AgDcwAICyMQCA2jQAgCYzAIAVKwCAWS0AgKguAIB/LwCAQjMAgF4zAIBuNQCAgFEBAIEBKgCCXQEAg1UBAIRNAQCFdQEAhn0BAId1AQCITQEAiVUBAIqdKwCLWQEAjEkBAI1JAQCOuQEAj7kBAJDJAQCRyQEAktkBAJPZAQCUyQEAlckBAJb5AQCX+QEAmMkBAJnJAQCa2QEAm9kBAJzJAQCdyQEAnrkBAJ+5AQCgSQEAoZUBAKJFAQCjXQEApEUBAKVNAQCmRQEAp30BAKhFAQCpTQEAqnkPAKtBAQCsQQEArUEBAK5BAQCvQQEAsMEDALHBAwCywQMAs8EDALTBAwC1wQMAtsEDALfBAwC4wQMAucEDALrBAwC7wQMAvMEDAL3BAwC+wQMAv8kMAI41AIBiOACA4jgAgPI4AIAuOQCALSsAgII0AIBOOACAyjgAgJcvAIDxKgCAUSsAgEguAIBoLgCAlzAAgMYyAIDOMwCAejYAgBo4AIDZMACAojgAgA0sAIAlMQCAMTEAgBIyAIBKMgCATjMAgKozAIAqNACADjUAgDo5AIDrLwCAsjgAgEErAICMLgCAMjIAgOI3AIBPLwCAny8AgDkxAIC6OACA8SsAgNksAIB4LgCAwjAAgBUxAIBiMQCA9jEAgEozAIC+MwCAWjUAgPo2AIAGNwCA1jgAgF0sAIBOMgCA3SwAgMoyAIBuMwCAijYAgL44AICqOQCA0jkAgC0xAICxOSMAsBEDALMVAwCyFQMAtTUDALQ1AwC3NQMAtjUDALkVAwC4FQMAuxUDALoVAwC9dQMAvHUDAL91AwC+dQMAoZkNAKCRDQCjqQ0AopENAKW5DQCksQ0Ap6kNAKaxDQCpmQ0AqJENAKtpAwCqkQ0ArXkDAKxxAwCvaQMArnEDAJEZDQCQEQ0Aky0NAJIRDQCVPQ0AlD0NAJctDQCWLQ0AmR0NAJgdDQCbbQ0Amm0NAJ15DQCcgQ4An2kNAJ5xDQCBmQ0AgAkjAIOpDQCCkQ0AhbkNAISxDQCHqQ0AhrENAImZDQCIkQ0Ai2kNAIqRDQCNeQ0AjHENAI9pDQCOcQ0AKjIAgMY1AIDGNACA6jQAgBozAICiMgCAZjcAgA0rAIAuNgCA9SsAgOUrAIDzLgCAEzAAgPY0AIA0LgCABjIAgOUwAIDqNwCAqjgAgA8vAIBhKwCANS0AgIktAIDVMACA0SsAgCIzAIDmMwCASjQAgGY0AIBqNACAfjQAgPo4AIDuNACAkjYAgFY3AIAKOACANjgAgE45AIBSOQCAVjkAgLo5AIAuOACAxjgAgDErAIBVKwCAaSsAgCUsAIAxLACAcSwAgCUtAIBBLQCASS0AgIUtAICRLQCAdC4AgIsvAICzLwCAuy8AgJH4EADTLwCAfzAAgK8wAIDdMACAWjEAgIApAQCBKQEAgjkBAIM5AQCEKQEAhSkBAIZZAQCHWQEAiNkoAIltAQCKKSUAi2EBAIxhAQCNYQEAHjIAgDoyAICQGQEAajIAgJIVAQC+MgCA3jIAgJU1AQCWPQEAlzUBAJgNAQCZFQEAmh0BAJsVAQCcDQEAnfUBAJ7dKABSMwCAoAUBADI0AICiAQEAVjQAgFI0AIClGQEApgkBAFo0AIBeNACAdjQAgKo9AQCrNQEArC0BAK0VAQCuHQEArxUBALBtAQCxdQEAsn0BALN1AQC0bQEAtRUBALYdAQC3FQEAuC0BALk1AQC6PQEAuzUBALzZLgC9KQEAvhkBAL8ZAQC6eR4Au3keALjNAgC5eR4AvpUeAL+dHgC8QQIAvZ0eALJ9HgCzRR4AsH0eALF1HgC2XR4At0UeALRdHgC1VR4AqgUeAKsNHgCodR4AqQ0eAHo0AICeNACArBUeAK0NHgCiSR4Ao0keAKBJHgChSR4ApkkeAKf5AgCkSR4ApUkeAJqNHgCblR4AmI0eAJmFHgCeiR4An4keAJyNHgCdhR4AkgUDAJP1AACQCQMAkY05AJaxHgCXFQYAlO0AAJUBHACKvQMAi0EDAIiFAwCJnQMAjkEDAI9JAwCMyTkAjVEDAIIVAgCDHQIAgAUCAIEdAgCGzQMAh7EDAIQFAgCFxQMAs/kFALLxBQCx+QUAsOEFALeZKgC2EQMAtRkDALThBQC7NQMAujUDALklAwC4JQMAvxUDAL4VAwC9JQMAvCUDAKP9BQCi/QUAof0FAKD9BQCnnQUApp0FAKWdBQCknQUAq7kFAKqxBQCpJScAqL0FAK+ZBQCukQUArZkFAKyhBQCTAQUAkvkFAJF1OQCQ9QUAlwEFAJYZBQCVEQUAlBkFAJt5CQCaOQUAmTEFAJg5BQCfHQUAnh0FAJ0dBQCcHQUAg4kFAIKBBQCBiQUAgPEFAIeFBQCGhQUAhZUFAISBJgCLhQUAioUFAIm1BQCItQUAj4UFAI6FBQCNlQUAjJUFAM40AIA6NQCAQjUAgFY1AIB+NQCAzjUAgAI2AIBqNgCAEjcAgCo3AIBeNwCAYjcAgKY3AICqNwCAAjgAgNo4AIAeOQCANjkAgIMvAICQ6gCA5jUAgLkqAIC9KwCAfSsAgCUrAIBlKwCAkSsAgCEsAIA9LACAES0AgCEtAIA9LQCAmS0AgOQtAIDwLQCADC4AgBwuAIALLwCAEy8AgEMvAIBjLwCAky8AgKsvAICbLwCAry8AgO8vAIBHMACAUzAAgFswAICDMACACTEAgB0xAIBeMgCAVjIAgIYyAIAWNACA4jIAgBYzAIBiMwCAfjMAgKIzAIDGMwCAyjMAgOozAICAjQEAgZUBAIKdAQCDlQEAhI0BAIW1AQCGvQEAh7UBAIiNAQCJwR0AipkBAIvBHQCMhQEAjY0BAI6FAQCP/QEAkIUBAJEZHQCSkRQAk4UBAJSdAQCViTIAlk0ZAJc9GwCYsQEAmbEBAJotHACbtQEAnD0cAJ2pAQCemQEAn5kBAKDlHQChbQEAomUBAKN9AQCkZQEApW0BAKbxHQCnYQEAqKEDAKmhAwCqoQMAq6EDAKyhAwCttQEArq0DAK+lAwCwYRkAsdkDALLZAQCz7QMAtPUDALX9AwC29QMAt+0DALjFAQC50QMAumEdALvVAwC82QEAvT0XAL7FAwC/0QEA+jMAgA40AIAKNACAOjQAgLY0AIDmNACAHjUAgE41AIAyNgCAWjYAgM42AIAWNwCAIjcAgEI3AIBGNwCAUjcAgG43AIDmNwCAFjgAgEo4AIBqOACAtjgAgA45AIAqOQCAijkAgCfqAIAi6gCAVOoAgOEpAIAJKgCADSoAgNbqAIAD6wCAe+sAgBY6AIAmOgCARwgAgFIIAIBVCACASggAgE4IAIBXCQCA8Q4AgOIOAIDnDgCA9g4AgOwOAICyNACASw8AgMoPAICBDwCALw8AgFoPAIBnDwCAbw8AgJ0PAIDCDwCAuA8AgL0PAICqDwCAsQ8AgP4OAIADDwCACA8AgIBBAQCBMQMAgk0BAINFAQCEXQEAhUUBAIZNAQCHIQMAiF0fAIl9AQCKaQMAi3EBAIx1AwCNVQEAjlk6AI9ZAQCQKQEAkSkBAJI5AQCTOQEAlCkBAJUpAQCW2QEAl9kBAJjpAQCZ6QEAFQ8AgCIPAIAqDwCAMg8AgDwPAIBBDwCARg8AgFAPAIBVDwCAXQ8AgGoPAIByDwCAdw8AgHwPAICEDwCAiQ8AgJMPAICYDwCAoA8AgKUPAIDFDwCANw8AgBoPAIBiDwCAjg8AgA0PAIDdFgCA5hYAgOkWAIDvFgCA4xYAgOwWAIDgFgCAExcAgBYXAID1FgCA8hYAgPgWAICAmQcAgZkHAPsWAICDrQcAhLUHAAQXAICGsQcAh7EHAIiRBwCJkQcAipEHAIuRBwCM8QcAjfEHAI7xBwCP8QcAkJEHAJGVBwCSnQcAk5kHAJSFBwCVgQcAloEHAJeFBwCYuQcAmb0HAJq1BwCbsQcAnK0HAJ2pBwCemQcAn50HAKBhBwChZQcAom0HAKNpBwCkdQcApXEHAKZxBwCndQcAqEkHAKlNBwCqRQcAq0EHAKxdBwCtWQcArkkHAK9NBwCwMQcAsTUHALI9BwCzOQcAtCUHALUhBwC2IQcAtyUHALgZBwC5HQcAuhUHALsRBwC8DQcAvQkHAL7xAAC/9QAAgAkBAIENAQCCHQEAgxkBAITZAACF3QAAhtUAAIfRAACI8QAAifUAAIr9AACL+QAAjOkAAI3tAACO5QAAj+EAAJCdAACRmQAAkq0AAJOpAACUtQAAlbEAAJaxAACXtQAAmIkAAJmNAACahQAAm4EAAJydAACdmQAAnokAAJ+NAACgdQAAoXEAAKJ9AACjeQAApGlQAqVtUAKmYQAAp2UAAKhZAACpXQAAqlUAAKtRAACsTQAArUkAAK49AwCvOQMAsClQArEtUAIBFwCABxcAgP4WAIANFwCAChcAgBkXAIDZXFICHxcAgCUXAIAiFwCAKBcAgCsXAIA0FwCALhcAgKOhAACipQAAoZEAAKCVAACntQAAprEAAKW9AACkuQAAq40AAKqJAACpgQAAqIUAAK+FAACugQAArYkAAKyNAACz/QAAsvkAALHxAACw9QAAt5kAALadAAC1nQAAtJkAALutAAC6qQAAuaUAALilAAC/ZQEAvmEBAL1tAQC8aQEAHBcAgFcXAIBAFwCAPRcAgEgXAIBOFwCAOhcAgNksUQJLFwCAVBcAgHkWAIDhDwCAMRAAgA4QAIAiEACAHRAAgJNBAAAnEACALBAAgBMQAICXWQAAllUAAJVZAACUXQAAm3EAAJppAACZZQAAmGUAAJ9lAACeYQAAnTFTApxtAAC4gQQAuYEEALqBBAC7gQQAvIEEAFEXAIC+jQQA5g8AgLDdBQCxTQQAskUEALNdBAC0RQQAtU0EALZFBADrDwCAqKEFAKntQQCqrQUAq6UFAKy9BQCtpQUArq0FAK+lBQCgqQUAoZFBAKKpQACjoQUApKEFAKWhBQCmoQUAp6EFAP8PAIAYEACAWBAAgF0QAIBpEACAnVUFAH8QAICfWQUAjhAAgJMQAICeEACAkwUFAJQdBQCVBQUAlg0FAJcFBQC4EACAyxAAgO8QAIAhEQCAJhEAgC4RAIA9EQCATBEAgIBxBQCBcQUAgnEFAINxBQCEUQUAhVEFAIZdBQBREQCAWREAgHwRAICjEQCArxEAgM8RAIDUEQCA2REAgBMSAIAmEgCAMhIAgEoSAIDEEgCAGhMAgDMTAIA4EwCASxMAgFwTAIBuEwCAcxMAgJoTAICiEwCAtxMAgN4TAIDjEwCAPRQAgEIUAIBHFACAUxQAgF8UAIBkFACAbBQAgHgUAICSFACAlxQAgJ8UAICkFACAqRQAgK4UAICzFACAuBQAgMsUAIDQFACA7BQAgAYVAIAgFQCALBUAgEQVAIBJFQCAVhUAgHcVAICaFQCAtBUAgMAVAIDFFQCAzRUAgO4VAIAIFgCAFxYAgDQWAIA5FgCAQRYAgEYWAIBZFgCAXhYAgICtAQCBtQEAgr0BAIO1AQCErQEAhdUBAIbdAQCH1QEAiO0BAIn1AQCK/QEAi/UBAIztAQCN1QEAjt0BAI/VAQCQrQEAkbUBAJK9AQCTtQEAlK0BAJVVAwCWXQMAl1UDAJhtAwCZdQMAmn0DAJt1AwCcbQMAnVUDAJ5dAwCfVQMAoK0DAKG1AwCivQMAo7UDAKStAwCl1QMAphkOAKfZAwCobQ8AqSEOAKrhAwCr4QMArCkOAK3lAwCuGQ4ArxkOALCVAwCxnQMAsgEOALORAwC0HQ4AtQUOALa5AwC3uQMAuDkOALmNAwC6NQ4AuxEOALyBAQC9gQEAvnkBAL95AQCEFgCAkBYAgJwWAICrFgCAyBYAgM0WAIDuEQCA/xEAgHwWAICBAACAiwAAgJUAAICfAACAqQAAgLMAAID1DwCA+g8AgAQQAIB1EACAehAAgIQQAIDlEACA6hAAgBcRAIAzEQCAOBEAgEIRAIBRFQCADRYAgBIWAIAqFgCAoRYAgKYWAIC+FgCA8A8AgAkQAICJEACAHBEAgNcSAIA/FQCALxYAgGMWAIDDFgCARxEAgGQSAICfEgCAshIAgBEUAIAdFACAKRQAgI0TAICSEwCA0RMAgNYTAID9EwCAAhQAgGkSAIBuEgCAtxIAgLwSAIDCEQCAxxEAgJYRAICbEQCApD0DAKVFAwCmTQMAp0UDAKA9AwChJQMAoi0DAKMlAwCsfQMArUUDAK5NAwCvRQMAqH0DAKllAwCqbQMAq2UDALQ9AwC1xQMAts0DALfFAwCwPQMAsSUDALItAwCzJQMAvP0DAL3FAwC+zQMAv8UDALj9AwC55QMAuu0DALvlAwCEBQwAhQ0MAIYFDACHHQwAgI0MAIGpDACCGQwAg1ENAIxhDACNYQwAjmEMAI9hDACIKQwAiRUMAIodDACLFQwAlD0MAJXFAwCWzQMAl8UDAJABDACRAQwAkgEMAJMBDACc/QMAncUDAJ7NAwCfxQMAmP0DAJnlAwCa7QMAm+UDAIBpBACBaQQAgnEEAINxBACEnQQAhYUEAIaNBACHhQQAiL0EAImNBACKhQQAi50EAIyFBACNqQYAjvkEAI/5BACQiQQAkYkEAJKRBACTkQQAlLEEAJWxBACW+QYAl60EAJiVBACZwQYAmmkGAJtpBgCceQYAnXkGAJ7RBgCf/QsAoA0GAKEdCwCiGQYAo0ULAKQFBgClTQsApjUGAKe1BACoEQYAqREGAKoRBgCrNQQArC0EAK0BBACuXQQArx0GALDNBgCxbQYAsnUGALMNBgC0FQYAtR0GALYVBgC3DQYAuDUGALk9BgC6NQYAuw0GALwVBgC9HQYAvhUGAL8NBgCA9QcAgf0HAIL1BwCD9QAAhO0AAIURAwCGEQMAhxEDAIgxAwCJMQMAijEDAIsxAwCMhQcAjRUDAI4dAwCPFQMAkG0DAJGNBwCShQcAk50HAJSFBwCVjQcAloUHAJe9BwCYhQcAmY0HAJqFBwCbnQcAnIUHAJ2NBwCehQcAn4UAAKB9AAChgQMAooEDAKOBAwCkgQMApYEDAKaBAwCngQMAqBUHAKmFAwCqjQMAq4UDAKydAwCtoQMArqEDAK+hAwCwdQcAsXUHALJxBwCzhQUAtM0FALX1BQC2/QUAt8kDALj5AwC5+QMAuqEFALuhBQC8wQMAvcUDAN4RAIDjEQCAhJz7ACYTAIArEwCAYRMAgGYTAIB2EgCAghIAgJUSAICaEgCARRIAgNwSAIBXEwCASxAAgKMQAIC9EACAxBAAgJB1AACRfQAAknEAAJNxAACUAfwAlVX+AJZd/gCXVf4AmG3+AJlp/gCaef4Am3n+AJxp/gCdaf4Anln+AJ9Z/gCgpf4Aoa3+AKKl/gCjof4ApKH+AKWl/gCmrf4Ap6X+AKiZ/gCpmf4Aqun+AKvt/gCs9f4ArfH+AK7x/gCv8f4AsI3+ALGV/gCymf4As5n+ALSJ/gC1if4Atrn+ALe9/gC4hf4AuY3+ALqF/gC7nf4AvIX+AL2B/gC+gf4Av4H+AKbZCACnBQcApMEIAKWZBQCi0QgAo9EIAKCJBQChtQgArgEHAK8BBwCsMQcArTEHAKo9BwCrJQcAqD0HAKk1BwC2fQcAtwUHALR9BwC1dQcAsskFALNlBwCwcQcAsXEHAL4BBwC/AQcAvDEHAL0xBwC6IQcAuyEHALg9BwC5MQcAhjkHAIc5BwCELQcAhTkHAIINBwCDNQcAgBEHAIEFBwCOSQcAj0kHAIxNBwCN1QUAisEFAIvBBQCI1QUAiXEHAJbVBQCX2QgAlE0FAJXdBQCSUQUAk9kFAJD5BQCRoQUAnnEIAJ99CACcYQgAnWEIAJpxCACbeQUAmMUIAJl1BQD0EACA+xAAgAIRAICBEQCAuxEAgLQRAIArEgCAGBIAgB8SAIBWEgCATxIAgF0SAIDJEgCAHxMAgIcSAIB7EgCApBIAgKsSAIA9EwCAUBMAgHgTAIB/EwCAhhMAgKcTAIC8EwCAwxMAgOgTAID2EwCA7xMAgEwUAIB9FACAhBQAgAsVAIAZFQCAEhUAgPEUAIAlFQCAMRUAgHwVAICDFQCAkxUAgFsVAIBpFQCAnxUAgKYVAIBiFQCASxYAgFIWAIDzFQCA+hUAgNkVAIDgFQCAIxYAgBwWAICwFgCAbhAAgLEQAICqEACA3hAAgNcQAIAQEQCACREAgI8RAIBeEQCAgIEBAIGBAQCCgQEAg4EBAISdAQCFhQEAhokBAIeJAQCItQEAib0BAIq1AQCLjQEAjJUBAI2dAQCOlQEAj40BAIgRAIA3EgCAkv0BAJP1AQCU7QEAlZUBAJadAQCXlQEAmKkBAJmpAQCauQEAm7kBAJypAQCdrQEAnqUBAJ+dAQCgZQEAoW0BAKJlAQCjfQEApGUBAKVtAQCmZQEAp90AAKjlAACppQMAqq0DAKulAwCsvQMAraUDAK6tAwCvpQMAsN0DALHlAwCy7QMAs+UDALSpAQC1VQEAtvUDALftAwC41QMAud0DALrVAwC7rQMAvM0DAL3BAwC+vQMAv7UDANASAICOEgCARBMAgP8UAIA4FQCAlRYAgIkWAIC3FgCAuRUAgIsUAIABFgCAyhMAgMQUAIDSFQCArRUAgPgUAIC9FACAZREAgKgRAIBwFQCA0BAAgFgUAIBiEACAPhIAgOcVAIATEwCAcRQAgEIQAIA5EACAihUAgOESAID2EQCArhMAgGsWAIDqEgCA8RIAgGwRAIAEEgCApgMAgA0jAIARIwCAoAYAgMcAAIC1BgCAqyMAgK8jAIC5IQCAtSEAgOMHAIB7CQCAfwkAgEEjAICnIwCANSMAgDkjAIAdIwCAISMAgCUjAIApIwCALSMAgDEjAIDbBwCA3wcAgNEAAICATQEAgVEBAIJRAQCDTQEAhE0DAIUhAwCGRQEAh30BANcAAICiAwCAqAMAgN0HAIDTAACA1QAAgL0GAIB5AACABxQAgH0AAICHAACAkQAAgAwUAICbAACAGBQAgKUAAIAkFACArwAAgDAUAIC5AACANRQAgM8PAIBVEACAmBAAgJsQAIArEQCAVhEAgKARAIDMEQCA6BEAgOsRAIDzEQCADRIAgBASAIBzEgCAwRIAgDATAIBrEwCAlxMAgJ8TAICwpQEAsa0BALKlAQCzvQEAtKUBALWtAQC2pQEAt10BALhlAQC5bQEAumUBALt9AQC8ZQEA2xMAgDoUAIBpFACAgAW5AIHhBgCC4QYAg+EGAIThBgCoBgCAswYAgIfpBgCI2QYAifmxAIr1sQCL8bEAjO2xAI31BgCO+QYAj/0GAJDZBgCR2QYAkvWxAJwUAICUiZIClfEGAJb1BgCX9QYAmNkGAJnVsgCa3bIAm6kGAJy5BgCduQYAnqkGAJ+BBgCgoQcAoaEHAKIhsgCjpQcApIUAAKWNAACmQbMA1RQAgKiNBwCplQcAqp0HAKuVBwBOFQCAyhUAgDYQAIA+FgCAsP0HALGFBwCyjQcAaBYAgLSZBwCBFgCAtpUHALeNBwC4tQcAub0HALq1BwC7jQcAvJUHAL2dBwC+lQcAv40HAIB1BgCBlaACgpmgAoOZoAKEhaAChb2gAoaxoAKHhaACiLmgAomRoAKKnaACi5mgAoyFoAKNjQEAjoEBAI9FBgCQOQYAkT0GAJIxBgCTMQYAlC0GAJXVBgCW2QYAl90GAJjhBgCZ4QYAmu0GAJvpBgCc9QYAnf0GAJ7xBgCf9QYAoAkGAKEJBgCiBQYAowEGAKQdBgClBQYApgkGAKcNBgCoMQYAqTEGAKo9BgCrNQYArCkGAK0pBgCuJQYArx0GALBhBgCxYQYAsm0GALNpBgC0dQYAtX0GALZxBgC3dQYAuEkGALlJBgC6RQYAu0EGALxdBgC9RQYAvkkGAL9NBgCAsQUAgbEFAIK9BQCDuQUAhKUFAIWtBQCGoQUAh6UFAIiZBQCJmQUAipUFAIuRBQCMjQUAjcEFAI7NBQCPyQUAkLUFAJG9BQCSsQUAk7UFAJSpBQCVqQUAlqUFAJehBQCYnQUAmSkCAJolAgCbIQIAnD0CAJ3pAgCe5QIAn+ECAKAdAgChNQIAojkCAKM9AgCkIQIApSECAKYtAgCnKQIAqBUCAKkZAgCqFQIAqxECAKwNAgCteQIArnUCAK8V8ACwafAAsRECALIdAgCzGQIAtAUCALUhAAC2LQAAtyUAALgZAAC54QEAuu0BALvlAQC8+QEA2BQAgN0UAIC/9YYCp2kNAOIUAIDnFACAzwAAgNkAAICzAwCA4QcAgH0JAID7IgCAzNSFAszghQL/IgCAgSkAgDUkAIBuJACAjSQAgLyZBQC9mQUAvqkFAL+ZvAC4mQUAuZkFALqJBQC7iQUAtKEFALXVsQC23bEAt6kFALCxsgCxzQUAssUFALO9BQCfJACAxCQAgMMoAIDfKACA8SgAgIgmAICFKQCAaSkAgCkkAIAtJACA2WSgAoEJAIDZUKAChAkAgI0JAICKCQCAhwkAgOwhAIDvIgCA9CEAgJhlBQCZEbIA/CEAgNkwoAKUOZEClU0FAJZFBQCXXQUAkGkFAJFpBQCSWQUAk1kFAID9vACB1ZwCgmW8AIPFvACEkbwAhZ28AIalvACHjbwAiK2TAonlvACKKZACi7W8AIwRkAKNlbwAji2wAI/FnAKQ6bwAkcHIAJJBkAKT8Z0ClNW8AJXlvACW4bwAl02QAphlkAKZfZACmrm8AJupCgCcbQ8Anb0KAPMiAICfXQ8AoK0PAKElCgCibQoAo2UKAKQNCgClpQ8ApgXUAKepDwComQ8AqZkPAKopDwCrKQ8ArDkPAK05DwCuKQ8ArykPALBZDwCxndEAspXRALOF1gC0sdEAtbHRALbZ1AC32dQAuOnUALnp1AC6+dQAu/nUALzp1AC96dQAvrnUAL+51ACASdUAgUnVAIJZ1QCDWdUAhEnVAIV90ACGddAAh23QAIhV0ACJXdAAinXVAIut1QCMtdUAjb3VAI611QCPQdAAkMHQAJHB0ACSwdAAk8HQAJTB0ACVwdAAlsHQAJfB0ACYwdAAmc3QAJrF0ACb3dAAnOHVAJ3pDgCe2Q4An9kOAKDV2wChwdkAotnZAKPB2QCkxdkApc3ZAKbF2QCnGdkAqGHZAKlh2QCqydkAq8nZAKzZ2QCt2dkArs3ZAK/B2QCwCdkAsRXZALId2QCzrdoAtB3ZALWx2gC2wdwAt93dALjl3QC59d0Auv3dALut3QC8td0AvaXdAL6t3QDwIQCAgvHaAIPx2gD3IgCA5OgAgIYR2ACHEdgAhOHaAIXh2gCKKdgAiynYAK9AEwClKNoAjinYAI8p2ACMKdgAjSnYAJJh2ACTYdgA6egAgO7oAICWZdgAl23YAJR12ACVbdgAml3YAJst2ADz6ACA8FwCALEw3wCR8AIAnCnYALLQAwCiOQ0Ao1GeAqAlDQChOQ0AplUNAIS8AgCkJQ0ApV0NAKptDQCrAQQAqGENAKlRAwCuuQAAp3UAAKxhDQCtxQIA+OgAgIfMAwDwVAIAzFC6AJHYBACb9NsAkRgCAJk02wCddAQAvh0AAJ9gBQCejAUAjOwCAI2sBAD96ACAvfWKAqghvwCpLb8Aqi2/AKs9vwCsKb8ArVW/AK5RvwCvTb8AoBkIAKGlvQCiIb8AozGzAKQ9vwClJb8Apg2zAKclvwC46bMAuc3LALppswC7uQkAvH0IAL2tCQC+QQwAv50JALA5vwCxhb0Asgm/ALPtywC0Gb8AtQW/ALbtswC3Bb8AiDG9AIkxvQCKrQgAiyW9AIwJCQCNvQgAjiW+AI+JDAAC6QCAgQ0JAIKlDACDUQkAhIEIAIWBCACGmQgAh60MAJhhvQCZYb0Amm0JAJsVnQKcxQ8AnQ28AJ7BDwCfcQkAkBW+AJERnwKSNZ8Ckw2fApQJvgCVCb4AlnG9AJdxvQCCuAQAl6UHALnEAwDwWAIAkUwCAJLIAgCErAQAsD0AAAzpAIAH6QCAvQUAABHpAIDwTAIAuhEAAJEkAgCN5AQAkqwCAJasAgC4uAMAudADAJb4AgCvDQAAFukAgPB4AgCRXAIAlrACAK8FAAAb6QCAIOkAgCnpAIAy6QCAP+kAgIX4AwBM6QCAh4ADAIbAAgBZ6QCAZukAgHPpAICW6QCAuzkAAHzpAICf6QCAiekAgL8dAAC+HQAAvR0AALwhAACVwB0AlMQfAJfIGgCWABgAkSAAAJDUAQCT2B4AkgAcAJ3gEgCcABAAn+gRAJ7sEwCZ8BkAmPQbAJv4FwCaABQAnnEBAJ9xAQCABQAArOkAgM0KAICwDACAXg0AgGQNAIBqDQCAdg0AgHkNAIB8DQCAfw0AgIINAICRDQCAlw0AgJoNAICdDQCAICIAgMcNAIDWDQCA/A0AgP8NAIAODgCAEQ4AgB0OAIAYIgCAMg4AgDUOAIDXFgCAEBcAgNoWAIC4ACwAuYwvALqILgC6AwCAhpwXAMx4vACEmC0AhVwXALcDAIDKAwCAiAAoAIksFADtBACAjAUAgN8FAIAaBgCAQAYAgFcGAIB0BgCAiwYAgDgBAIA8AQCAQAEAgEQBAIBIAQCATAEAgKR9AQBQAQCAonUBAKNlAQCggQEAoYEBALxxugC9kbYAvnG6AL+ltgC48bgAuXW6ALqZzgC7dboAtGG6ALVtugC2eboAt3W6ALAZugCxEboAsgm6ALMFugCsUboArXG2AK5RugCvbboAqNG4AKldugCqRbYAq1G6AKRxlgKlYZYCpnGWAqe9ugCgzZsCofG6AKLJugCjxboAnHmaAp0tugCeDc4An4WWApgJugCZtZYCmjm6AJuJtgCUMboA+CEAgJZpugCXrZYCkHm6AJE1ugCSMboAkwG6AIxJzgCN5bYAjhmaAo+hugCIoboAiUG2AIqhugCLdbYAhAG4AIWFugCGac4Ah4W6AICxugCBvboAgqm6AIOlugCAgbkAgQ27AIIVtwCDAbsAhAG7AIUhtwCGAbsAhz27AIgJuwCJAbsAihm7AIsVuwCMcbsAjX27AI5puwCPZbsAkKG5AJEluwCSyc8AkyW7AJQhuwCVwbcAliG7AJf1twCY6c8AmUW3AJq5mwKbAbsAnLm7AJ31uwCe8bsAn8G7AKARuwChCZQCokm7AKONlwKkCbsApbWXAqY5uwCnibcAqFmbAqkNuwCqLc8Aq6WXAqwNmgKtMbsArgm7AK8FuwCw0ZcCscGXArLRlwKzHbsAtFG5ALXduwC2xbcAt9G7ALjxuwC50bcAuvG7ALvNuwC82bsAvdG7AL7JuwC/xbsAgJmkAIEliAKCqaQAgxmoAFsNAICFvaQAhp3QAIcViAKInYUCiaGkAIqZpACLlaQAjCGIAo0xiAKOIYgCj+2kAJDBpgCRTaQAklWoAJNBpACUQaQAlWGoAJZBpACXfaQAmEmkAJlBpACaWaQAm1WkAJwxpACdPaQAnimkAJ8lpACgYaYAoeWkAKIJ0ACj5aQApOGkAKUBqACm4aQApzWoAKgp0ACphagAqnmEAqvBpACseaQArTWkAK4xpACvAaQAsFGkALFJiwKyCaQAs82IArRJpAC19YgCtnmkALfJqAC4GYQCuU2kALpt0AC75YgCvE2FAr1xpAC+SaQAv0WkAIARiQKBAYkCghGJAoPdpQCEkacAhR2lAFQBAICHEaUAiDGlAIkRqQCKMaUAWAEAgFwBAICNEaUAjgmlAI8FpQCQAaUAkQ2lAJIZpQCTFaUAlLGnAGABAICW2dEAlzWlAJgRpQCZ8akAmhGlAJvFqQCc+dEAZAEAgJ6phQKfEaUAoEmlAKEFpQCiAaUAozGlAKQBpQClGYoCplmlAKediQKoOaUAqYWJAqoJpQCruakArEmFAq0dpQCuPdEAr7WJArB9hAKxQaUAsnmlALN1pQC0wYkCtdGJArbBiQK3DaUAuGGnALntpQBoAQCAu+GlALzhpQC9wakAvuGlAGwBAIC3baYAttWGArUpqgC0hdIAs7mqALJtpgCxjaoAsG2mAL8higK+5aYAvaWJAnABAIC7jaYAdAEAgLm5pgC49aYAeAEAgKZ1pgClbaYAfAEAgIABAICiTaYAhAEAgIgBAICvCaYAruXSAIwBAICsjaQAqymmAKolpgCpMaYAkAEAgJc5pgCWNaYAlQ2mAJQxhwKTmYoCkhHSAJExpgCQZYYCn62mAJ65qgCUAQCAnC2kAJthpgCarYoCmb2KApitigKHfaYAhk2mAIVJpgCEBaYAg72mAIIFhgKB+aoAgFXSAI/1qgCORaYAjcmKAox1pgCL8YoCijWmAIl1iQKIbaYAgCmnAIEhpwCCOacAgzWnAIRRpwCYAQCAhkmnAJwBAIDMSIkCzYiJAoqp0wCLRacAjEGnAI2hqwCOQacAj5WrAJDJ0wBFIwCAkpmHApMhpwCUmacAldWnAJbRpwCX4acAmPGnAJnpiAKaqacAm22LApzppwCdVYsCntmnAJ9pqwCgeYcCoS2nAKIN0wCjhYsCpC2GAqURpwCmKacApyWnAKixiwKpoYsCqrGLAqt9pwCsMaUArb2nAK6lqwCvsacAsNGnALHxqwCy0acAs+2nALT5pwC18acAtumnALflpwC4oacAua2nALq5pwC7tacAvBGlAL2VpwC+edMAv5WnAICRoACBiY8CgsmgAIMNjAKEiaAAhTWMAoa5oACHCawAiNmAAomNoACKrdQAiyWMAoyNgQKNsaAAjomgAI+FoACQUYwCkUGMApJRjAKTnaAAlNGiAJVdoACWRawAl1GgAJhxoACZUawAmnGgAJtNoACcWaAAnVGgAJ5JoACfRaAAoMGgAKHNoACi2aAAo9WgAKRxogCl9aAAphnUAKf1oACo0aAAqTGsAKrRoACrBawArDnUAK2VrACuaYACr9GgALAJoACxRaAAskGgALNxoAC0QaAAtVmPArYZoAC33YwCuHmgALnFjAK6SaAAu/msALwJgAK9XaAAvn3UAL/1jAKAvYACgYGhAIK5oQCDtaEAhAGNAoURjQKGAY0Ch82hAIihowCJLaEAijWtAIshoQCMIaEAjQGtAI4hoQCPHaEAkGmhAJFhoQCSeaEAk3WhAJQRoQCVHaEAlgmhAJcFoQCYgaMAmQWhAJrp1QCbBaEAnAGhAJ3hrQCeAaEAn9WtAKAJ1QChpa0AolmBAqPhoQCkWaEApRWhAKYRoQCnIaEAqDGhAKkpjgKqaaEAq62NAqwpoQCtlY0CrhmhAK+prQCwOYECsW2hALJN1QCzxY0CtG2AArVRoQC2aaEAt2WhALjxjQK54Y0CuvGNArs9oQC8caMAvf2hAL7lrQC/8aEAs2miALKF1gCxaaIAsO2gALe5rgC2baIAtY2uALRtogC7TaIAuvWCArkJrgC4pdYAv42iAL69ogC9uaIAvPWiAKNNogCiWa4AoUGiAKDNoACncaIApk2iAKVtrgCkTaIAq1miAKpVogCpTaIAqEWiAK8pogCuJaIArTGiAKw9ogCTla4AkiWiAJGpjgKQFaIAl5mOApYR1gCVMaIAlGWCApsZogCaFaIAmS2iAJgRgwKfYaIAnq2OAp29jgKcrY4Cg2muAIK9ogCBXa4AgL2iAIe9ogCGBYIChfmuAIRV1gCLXaIAim2iAIlpogCIJaIAj/GOAo41ogCNdY0CjG2iAIARowCBMa8AghGjAIMtowCEOaMAhTGjAIYpowCHJaMAiGGjAIltowCKeaMAi3WjAIzRoQCNVaMAjrnXAI9VowCQMaMAkdGvAJIxowCT5a8AlNnXAJV1rwCWiYMClzGjAJipowCZ5aMAmuGjAJvRowCc4aMAnfmMAp65owCffY8CoBmjAKGljwKiKaMAo5mvAKRpgwKlPaMAph3XAKeVjwKoHYICqSGjAKoZowCrFaMArKGPAq2xjwKuoY8Cr22jALBBoQCxzaMAstWvALPBowC0waMAteGvALbBowC3/aMAuMmjALnBowC62aMAu9WjALyxowC9vaMAvqmjAL+lowBnDQCA0QYAgG0NAIDIBwCAcw0AgA8HAICFDQCAlAcAgIsNAICaBwCAuA0AgH0HAIDKDQCAxQcAgAIOAIBPBwCAFA4AgFIHAIAgDgCAkB0AAOEGAIAPJACA4iUAgCguAICtLACAyS0AgKpVAACrKQAAMjcAgAErAIDGMACAsjIAgAEsAIBTLwCAmSsAgJ8wAIDtKwCAGjUAgI43AICtLQCA5SwAgGYyAIADMACALzAAgA44AIAjMACA+y8AgHI0AICAIa4AgaWsAIJJ2ACDpawAhKGsAIVBoACGoawAh3WgAIhp2ACJxaAAiv0AAIsxxgCM7QAAjdEAAI7VAACPyQAAgCmhAIFNFACCIQEAg+G4AoQ5qgCFOaoAhhG9AodRFACIEQEAidW4AorNrQCLLbsCjGEUAI3ZjQKObRQAj2UUAJB5AQCRubgCkkm9ApNFuwKUDRQAlTUUAJYZAQCXqbgCmF2qAJkBFACaIQEAmwUUAJx5vQKdhbgCnnm7Ap+JuAKggb0CoXm4AqKZCQCjlRQApFmuAKWJFACmmQEAp70UAKipAQCpvbsCqrkBAKuJFACsmRQArZkUAK6JFACviRQAsNkBALEJrgCy6QEAs9W7ArTNuwK17RQAtpW8ArfhFAC4oRQAuaEUALrBoQC7pRQAvNkBAL0ZuAK+0aoAv9GqAL9FFwC+RRcAvTUXALxBvwK7KRcAugm4ArkBuAK4PQIAt+2tALY9AgC1HRcAtB0XALMdFwCyHRcAsR0XALAtAgCvWbgCrk0CAK1pFwCsTQIAq00XAKqdrQCpQRcAqE0KAK40AIDRLACApX0XAKR9FwCjoa4Aom2CAqF9ggKgbYICnzmuAJ41rgCdDa4AnDGPApuZggKaEdoAmTGuAJhljgKXtaIAlgWuAJWJggKUNa4Ak7GCApJ1rgCRNYECkC2uAI99rgCOTa4AjUmuAIwFrgCLva4AigWOAon5ogCIVdoAh0miAIadrgCFfaIAhJ2uAIOZrgCCddoAgZmuAIAdrADMqIQCzUyGAswguQLNTLkCzECOAkYyAIDMmIUCzTyEAswQgwLNUIMCzKCDAs2MgwLMMIACzSSAAswYgALNhIACmjMAgAUsAIAxLQCAiSMAgE0jAIBXIwCAayMAgJMjAIB1IwCAnSMAgGEjAIB/IwCAzPC5As2EuQLMULgCzay7AoDNAACB1QAAgt0AAIPVAACEzQAAhfUAAIb9AACH9QAAiM0AAFcvAIDBLACA1SoAgM0qAIDdKgCAuekAgCErAICQZQAAkW0AAKiIKgA1KwCAPSsAgEUrAIBJKwCATSsAgKIAMACjzDMAoOg9AKHsPACm8DYAp/QoAKQANACl/DUAgFERAIHpiAKCXREAg1URAIQpBACF6b0Chhm4AocVvgKIfREAiUURAIppBACL2b0CjA2vAI1REQCOcQQAj1URAJBJuAKRtb0Ckkm+ApO5vQKUUbgClam9ApZJDACXRREAmKmrAJl5EQCaaQQAm00RAJx5BACdbb4CnmkEAJ9ZEQCgqREAoakRAKK5EQCjuREApIkEAKVZqwCmuQQAp4W+Aqi9vgKpnREAquW5AquREQCs8REArfERAK6RpACv9REAsOkEALEpvQKy4a8As+GvALTZuAK1mREAtukEALctvQK4BagAueW+Arq5EQC7AYgCvKURAL2tEQC+wQQAvwG9AoABuQKBDb8CglUQAINtEACEUQUAheG8AoYlrgCHeRAAiGkFAIlNEACKIbkCi928AowxvwKNwbwCjjm5Ao/BvAKQUQ0AkV0QAJKBqgCTURAAlFEFAJV1EACWUQUAl0W/AphxBQCZQRAAmkEQAJtBEACcQRAAnUEQAJ5hBQCfsaoAoKEFAKGdvwKilb8Co7UQAKTduAKlqRAAptkQAKfZEACoiaUAqe0QAKqBBQCrQbwCrJmuAK2ZrgCusbkCr/EQALDxBQCxNbwCsi2pALPNvwK0gRAAtTmJAraNEAC3hRAAuNkFALkZvAK66bkCu+W/ArytEAC9lRAAvrkFAL8JvAK5La0AuC2tALtFEwC6BboCveG/ArwlBgC/GbwCvvmqALEdEwCwabsCs20TALJtEwC1eRMAtB2mALfVvwK2FQYAqXUTAKh1EwCrhakAqlUGAK1JvAKsdQYAr2ETAK5BvAKhQRMAoGUGAKNxvAKiZQYApVUTAKRlBgCnVRMAplUTAJl1vwKYhbwCm3W/ApqNugKdiRMAnIUOAJ+FEwCeVakAkVW/ApDlBgCTzRMAkpGtAJXZEwCU/QYAl0m/Apa1ugKJmRMAiJETAIs1vwKK9QYAjdm8AozVugKPuRMAjoETAIGtEwCA7boCgxm/AoLdBgCF8bwChBGqAIcVigKGrRMAgD2sAIFhEgCCQQcAg2USAIQZuwKF5b4Chhm9AofpvgKIIbsCidm+AopFEgCLXRIAjSkAgM3pAICOzaoAj8mLApCdiwKRpYsCkrGqAJOxqgCU2akAldmpAJb5qQCX+akAmJWqAJmRiwKatYsCm42LApyJqgCdiaoAnvGpAJ/xqQCgIakAoSGpAKJ9qgCjeYsCpE2LAqV1iwKmYaoAp2GqAKgpqQCpKakAqgmpAKsJqQCsRaoArUGLAq5liwKvXYsCsDmqALE5qgCyQakAs0GpALRxqQC1cakAti2qALcpiwK4PYsCuQWLAroRqgC7EaoAvHmpAL15qQC+WakAv1mpAIKJIwBtKwCAcSsAgI0rAIC+6QCAh5kjAJEpAIB5KwCAyOkAgIu5JACpKwCAifkkAI6VIwCPiSMAsSsAgI2JJACSvSMAESsAgLkrAICR4SMAo+sAgJfFIwCU8SMA4SsAgJkpAICbkSMA+SsAgJndIwD9KwCAnwktAAksAICdjdUAogkjAJ0pAIBBLACAofUjAEUsAICnGSMApCUkAG0sAICq7SQAeSwAgKgdIwCpeSQArhUjAK8JIwCsCSQArQkkALI9IwCJLACAsDEjALFhIwC2VSMAt0UjALRxIwC1XSMAulkjALsRIwCRLACAuV0jAL6JLQCVLACAvI0tANzpAICAuSUAgX0iAIKBIgCDmSIAhK0lAIXZJQCGuSIAh5EiAIiVIgCJ8SUAljIAgIuxJQCMgSUAjYElAI6dIgCPgSIAkLkiAJHpIgCStSIAk9EiAJT5IgCV1SIAlt0iAJfNIgCY+SIAmdUiAJrRIgCbmSIAqSwAgLEsAIDh6QCAvSwAgGUAAACh/SIAogEiAKMZIgDFLACApVklAKY5IgCnESIAqBUiAKlxJQDNLACAqzElAKwBJQCtASUArh0iAK8BIgCwOSIAsWkiALI1IgCzUSIAtHkiALVVIgC2XSIAt00iALh5IgC5VSIAulEiALsZIgD1LACA4SwAgO0sAIDxLACAgI0vAIGlLwCCrS8Ag70vAISlLwCFrS8AhqUvAIfdLwCI5S8Aie0vAIrlLwD5LACAAS0AgAUtAIANLQCAFS0AgJCRLwCRkS8AkpEvAJORLwCUsS8AlbEvAJa1LwCXRTMAmE0zAJlVMwCaPTMAmxkzAJyZMwCdiTMAnlUwAJ9JMACgwTAAockwAKLZMACj1TAApM0wAKX9MACm5TAApzUwAKi1MQCpuTEAqu0xAKuxmgCs0ZYArbE6AK61OgAZLQCAsEGUALHNlgCy1ZoAs8GWALTBlgC14ZoAtsGWALf9lgC4yZYAucGWALrZlgC71ZYAvLGWAL29lgC+qZYAv6WWAMUAAAChfSAAooEgACktAICkrScALS0AgDktAICnkSAAXS0AgKnxJwCqZScAq7EnAKyBJwCtgScArp0gAK+BIACwuSAAsekgALK1IABhLQCAtPkgALXVIAC23SAAt80gAEUtAIC51SAATS0AgLuZIACpLQCAcS0AgHUtAIB5LQCAgDknAIH9IACCASAAgxkgAG0tAICFWScAhjkgAIcRIACIFSAAiXEnAIrlJwCLMScAjAEnAI0BJwCOHSAAjwEgAJA5IACRaSAAkjUgAJNRIACUeSAAlVUgAJZdIACXTSAAmHkgAJlVIACaUSAAmxkgAJyFLgCdBdYAnoEuAJ+BLgCArT8AgbU/AIK9PwCDtT8AhK0/AIW5yACG1T8Ah80/AIj1PwCJ/T8AipnIAIvxPwCMATsAjQE7AI6NyACPOQQAkEkEAJFJBACSWQQAk1UEAJRNBACV3TwAlnkEAJd1BACYWQQAmSEEAJohBACbNdQAnCEEAJ3Z5gCeJQQAnx0EAKDpBACh9QQAos0/AKP1BACkFQQApfnUAKYhyACnIcgAqNHUAKktBACqOQQAq03CAKwtBACtdcgArh0EAK95BACwKQQAsTEEALI9BACzOQQAtC0EALX9BQC2qQUAt6kFALiZBQC5mQUAunkFALtFBQC8AQUAvQEFAL4BBQC/AQUAgC0HAIE1BwCCPQcAgzUHAIQtBwCFqQcAhqUHAIdl1QCILQYAiTEGAIoxBgCLDQYAjPnJAI15BgCOWQYAj1UGAJBpyQCRNQYAkj0GAJM1BgCULQYAlcUGAJZdAwCXVQMAmG0DAJl1AwCafQMAm3UDAJxtAwCdET0AnlkDAJ9ZAwCgqQMAoakDAKK5AwCjuQMApKkDAKWpAwCm2QMAp9kDAKjpAwCp6QMAqvkDAKv9AwCs5QMAre0DAK7lAwCvbcMAsKEDALGhAwCyoQMAs6EDALShAwC1zeYAtq0DALelAwC4yeYAuZkDALppAwC7aQMAvHkDAL15AwC+aQMAv2kDAIAAAACBLQCAfS0AgJUtAIDm6QCAsS0AgLUtAIC9LQCA0S0AgPQtAIDr6QCA8OkAgAAuAIAELgCACC4AgPwtAIAQLgCAoSkAgKUpAIAYLgCAIC4AgPXpAIA8LgCAQC4AgEwuAID66QCAVC4AgFguAIA3LwCAqSkAgGwuAICILgCAhC4AgATqAICQLgCACeoAgJwuAICYLgCAoC4AgLAuAIC0LgCArSkAgMQuAIDMLgCA0C4AgNQuAICxKQCADuoAgLUpAID3LgCA+y4AgP8uAIDV6wCAGOoAgNo1AIAvLwCAuSkAgDvqAIAN6wCAPy8AgEcvAIC9KQCAWy8AgGsvAICqIfQAq7U/AKilPwCpzecArkXwAK+hPwCsSfAArTH0AKJl4gCjvT8AoLk/AKG5PwCmlT8Ap50/AKSlPwClnT8Augk8AG8vAIC4CTwAuQk8AHcvAICHLwCAxSkAgMEpAICy3T8AswU9ALBN7wCx1T8Atn3wALe55AC0HT0AtWk8AB3qAICPLwCAoy8AgKcvAIC3LwCAyy8AgMMvAIDHLwCAgrX7AM8vAICA/T8AgfU/AOMvAIDnLwCA/y8AgAcwAICavT8Am/3NAJi9PwCZtT8Anlk/AJ9ZPwCcWT8AnVk/AJKBPwCTaekAkHnkAJGxPwCWgT8Al4H0AJQh5wCVmT8AFzAAgCswAIAs6gCAJzAAgBswAIAzMACAOzAAgE8wAIAx6gCAVzAAgEoAAABLMACAQzAAgMkpAIBfMACAZzAAgG8wAIBjMACAzSkAgIcwAIA26gCAszAAgPUwAIDRMACA2SkAgNUpAIDRKQCAnSsAgKErAID5MACA4TAAgK41AIA9KgCADTEAgCExAIAZMQCAT+oAgN0pAIA1MQCAKTEAgFIxAIBZ6gCAXjEAgD0xAIBmMQCAajEAgG4xAIByMQCAfjEAgF7qAICGMQCA5SkAgJIxAIBj6gCAljEAgOkpAICiMQCArjEAgL4xAIBo6gCA/+kAgG3qAIDeMQCAcuoAgLgJAQC5CQEAuhkBALsZAQC8CQEAvQkBAL45AQC/OQEAsM3FALE1zACymQ4As5kOALSJDgC1iQ4AtjkBALc5AQCo6dkAqckOAKrZDgCrqcUArMUOAK3NDgCuxQ4Ar/kOAKA1DgChPQ4AojUOAKOxxQCk8Q4ApfEOAKbxDgCn8Q4AmGkPAJlpDwCaeQ8Am3kPAJxpDwCdaQ8Ant0OAJ/NDgCQ+eoAkXEPAJJ9DwCTdQ8AlG0PAJVpDwCWWQ8Al1kPAIh5DwCJeQ8AigkPAIsJDwCMGQ8AjRkPAI4NzACPDQ8AgHkPAIF5DwCCSQ8Ag0kPAIRZDwCFWQ8AhkkPAIdJDwCKUQIAi1ECAIj5xgCJQQIAjnECAI/txgCMQQIAjUECAIIVAgCDHQIAgAUCAIEdAgCGdQIAh30CAIQFAgCFfQIAmsUCAJvNAgCYkc8AmYXaAJ7FAgCfzQIAnNUCAJ3NAgCSDQIAkxUCAJANAgCRBQIAlg0CAJf1AgCUDQIAlQUCAKo9AgCrRQIAqD0CAKk1AgCuXQIAr0UCAKxdAgCtVQIAol3GAKMBAgCgNQIAoQ0CAKYBAgCnxdgApBECAKURAgC6OQIAuzkCALg5AgC5OQIAvtkBAL/ZAQC82QEAvdkBALI9AgCzBQIAsD0CALE1AgC2GQIAtxkCALQdAgC16cIA6jEAgPIxAIDiMQCA/jEAgA4yAIAWMgCAIjIAgCYyAIB36gCACjIAgD4yAIBCMgCA7SkAgFIyAIB86gCANjIAgHIyAICB6gCAhuoAgHYyAICKMgCAgjIAgPEpAICOMgCAnjIAgJoyAICmMgCAw+kAgLYyAICL6gCAwjIAgJXqAIDWMgCA9jIAgJrqAIAKMwCADjMAgJ/qAICk6gCAKjMAgDozAID1KQCAPjMAgPkpAIBWMwCAWjMAgGYzAIByMwCA/SkAgIozAICp6gCApjMAgK7qAIAT6gCAwjMAgLPqAIC4AAAAuOoAgL3qAIABKgCABSoAgMfqAIDC6gCAzOoAgIAB3gCB8QcAgvEHAIPxBwCEFQIAhR0CAIYVAgCHEQIAiCXeAIld3gCKOQIAizkCAIwpAgCNKQIAjhkCAI99ygCQTd4AkWECAJJhAgCT7cEAlH0CAJVlAgCWIcAAl2kCAJhZAgCZMcIAmlUCAJstAgCcNQIAnT0CAJ4xAgCfMQIAoNECAKHRAgCi0QIAo9ECAKTxAgCl8QIApvECAKfxAgCo0QIAqdECAKrRAgCr0QIArDECAK0xAgCuMQIArzECALBRAgCxUQIAslECALNRAgC0cQIAtXECALZxAgC3cQIAuFECALlRAgC6+dwAu1UCALxNAgC9NQIAvj0CAL81AgC+7QYAv/UGALztBgC95QYAuskGALvJBgC4xcsAuckGALbtBgC39QYAtO0GALXlBgCyjQYAs/UGALDR3QCxhQYArvEGAK/xBgCs5QYAreEGAKr1BgCr/QYAqMUGAKn9BgCm9QYAp/0GAKTlBgCl/QYAovUGAKP9BgCg+QYAoZ3dAJ75BgCf+QYAnPkGAJ35BgCa+QYAm/kGAJj5BgCZ+QYAlvkGAJf5BgCUcd0AlfkGAJL9BgCT5QYAkP0GAJH1BgCO/QYAj4UGAIz9BgCN9QYAiuEGAIsB3QCI8QYAifEGAIbBBgCHwQYAhPEGAIXxBgCCkccAg+EGAIDpBgCBxcAAgAAAANHqAIACNACABjQAgBI0AIARKgCAFSoAgNvqAIAmNACAGSoAgODqAIDl6gCA6uoAgJY0AIAdKgCAojQAgKY0AIDv6gCA9OoAgL40AIAhKgCA+eoAgNI0AIDWNACAJSoAgP7qAIDyNACAKSoAgAI1AID6NACACjUAgAjrAIAiNQCALSoAgC41AIA2NQCARjUAgDEqAIAS6wCAF+sAgDUqAIAc6wCAXjUAgCHrAIBqNQCAdjUAgCbrAIAr6wCAkjUAgDDrAICaNQCAQOoAgDkqAICyNQCAtjUAgEEqAIC6NQCAFC4AgDXrAIA66wCAReoAgErqAIDeNQCA9jcAgIDNAQCB1QEAgt0BAIPVAQCEzQEAhfUBAIb9AQCH9QEAiM0BAInVAQCK3QEAi/UJAIzJAQCNyQEAjgEcAI89HwCQRR8AkU0fAJJFHwCTXR8AlEUfAJVNHwCWRR8Al30fAJhBxwCZQR8AmkEfAJtBHwCcQR8AnUEfAJ5BHwCfYd8AoL0fAKHFHwCizR8Ao8UfAKTdHwClxR8Aps0fAKfFHwCo/R8AqcUfAKrNHwCrxR8ArN0fAK3FHwCuzR8Ar8UfALC9HwCxRR8Ask0fALNFHwC0/ckAtVkfALZJHwC3SR8AuHkfALl5HwC6SR8Au8XdALxVHwC9XR8AvlUfAL9NHwAKNgCABjYAgA42AIAZLACAEjYAgBY2AIAaNgCAIjYAgD/rAIAmNgCAOjYAgD42AIAqNgCAQjYAgFY2AIA2NgCASjYAgE42AIBSNgCAROsAgE7rAIBJ6wCASSoAgHI2AIB2NgCAfjYAgGLrAICCNgCAU+sAgE0qAIBRKgCAWOsAgF3rAIBVKgCAojYAgKo2AICuNgCAujYAgLY2AIDCNgCAvjYAgMY2AIDKNgCA0jYAgFkqAIDaNgCA3jYAgF0qAIDuNgCAZ+sAgP42AIACNwCAYSoAgA43AICVKQCAbOsAgHHrAIBlKgCAaSoAgDo3AIB26wCAkjcAgJY3AICuNwCAgLUBAIG9AQCCtQEAg80BAITt9ACF0QEAhtEBAIfRAQCI8QEAifEBAIrxAQCL8QEAjNEBAI3RAQCO0QEAj9EBAJB9wwCRBcMAkl35AJO9AQCUpQEAla0BAJalAQCXXQMAmGUDAJltAwCaZQMAm30DAJxlAwCdbQMAnmUDAJ85wwCgoQMAoaEDAKKhAwCjoQMApKEDAKWhAwCmoQMAp6EDAKjhAwCp4QMAquEDAKvhAwCs4QMAreEDAK7hAwCv4QMAsKEDALGhAwCyoQMAs6EDALShAwC1oQMAtqEDALehAwC4YQMAuWEDALphAwC7YQMAvGEDAL1hAwC+pcMAv6HDALo3AICA6wCA0ukAgMY3AIDCNwCAzjcAgNfpAIDaNwCAhesAgIrrAIAmOACAMjgAgDo4AICP6wCAPjgAgGY4AIByOACAdjgAgG44AICCOACAhjgAgJTrAICSOACAbSoAgJo4AICZ6wCAcSoAgNI4AICkLgCA6jgAgJ7rAICo6wCAdSoAgHkqAIASOQCAresAgH0qAICy6wCAMjkAgLfrAIBKOQCAgSoAgFo5AIBmOQCAbjkAgHY5AICFKgCAvOsAgKY5AICyOQCAiSoAgI0qAIC2OQCAwesAgJEqAIDG6wCAy+sAgNDrAICVKgCA9jkAgPo5AIACOgCACjoAgNrrAICQ1QEAkd0BAJLVAQCT7QEAlPUBAJXB+wCW8QEAl/n7AJjNAQCZ1QEAmt0BAJvVAQCcyfsAnckBAEUqAICPAAAAgNkBAIHZAQCC6QEAg+kBAIT5AQCF+QEAhukBAIfpAQCI2QEAidkBAIoJwQCLrQEAjLUBAI29AQCOtQEAj60BAKAAAAChAAAAogAAAKMAAACkAAAApQAAAKYAAACnAAAAqAAAAKkAAACqAAAAqwAAAKwAAACtAAAArgAAAK8AAACwAAAAsQAAALIAAACzAAAAtAAAALUAAAC2AAAAtwAAALgAAAC5AAAAugAAALsAAAC8AAAAvQAAAL4AAAC/AAAAACAAIMyBACDMgwAgzIQAIMyFACDMhgAgzIcAIMyIACDMiMyAACDMiMyBACDMiM2CACDMigAgzIsAIMyTACDMk8yAACDMk8yBACDMk82CACDMlAAgzJTMgAAgzJTMgQAgzJTNggAgzKcAIMyoACDMswAgzYIAIM2FACDZiwAg2YwAINmM2ZEAINmNACDZjdmRACDZjgAg2Y7ZkQAg2Y8AINmP2ZEAINmQACDZkNmRACDZkQAg2ZHZsAAg2ZIAIOOCmQAg44KaACEAISEAIT8AIgAjACQAJQAmACcAKAAoMSkAKDEwKQAoMTEpACgxMikAKDEzKQAoMTQpACgxNSkAKDE2KQAoMTcpACgxOCkAKDE5KQAoMikAKDIwKQAoMykAKDQpACg1KQAoNikAKDcpACg4KQAoOSkAKEEpAChCKQAoQykAKEQpAChFKQAoRikAKEcpAChIKQAoSSkAKEopAChLKQAoTCkAKE0pAChOKQAoTykAKFApAChRKQAoUikAKFMpAChUKQAoVSkAKFYpAChXKQAoWCkAKFkpAChaKQAoYSkAKGIpAChjKQAoZCkAKGUpAChmKQAoZykAKGgpAChpKQAoaikAKGspAChsKQAobSkAKG4pAChvKQAocCkAKHEpAChyKQAocykAKHQpACh1KQAodikAKHcpACh4KQAoeSkAKHopACjhhIApACjhhIIpACjhhIMpACjhhIUpACjhhIYpACjhhIcpACjhhIkpACjhhIspACjhhIwpACjhhI4pACjhhI8pACjhhJApACjhhJEpACjhhJIpACjkuIApACjkuIMpACjkuIkpACjkuZ0pACjkuowpACjkupQpACjku6MpACjkvIEpACjkvJEpACjlhaspACjlha0pACjlirQpACjljYEpACjljZQpACjlkI0pACjlkbwpACjlm5spACjlnJ8pACjlraYpACjml6UpACjmnIgpACjmnIkpACjmnKgpACjmoKopACjmsLQpACjngaspACjnibkpACjnm6MpACjnpL4pACjnpZ0pACjnpa0pACjoh6opACjoh7MpACjosqEpACjos4cpACjph5EpACjqsIApACjrgpgpACjri6QpACjrnbwpACjrp4gpACjrsJQpACjsgqwpACjslYQpACjsmKTsoIQpACjsmKTtm4QpACjsnpApACjso7wpACjssKgpACjsubQpACjtg4ApACjtjIwpACjtlZgpACkAKgArACwALQAuAC4uAC4uLgAvADAAMCwAMC4AMOKBhDMAMOeCuQAxADEsADEuADEwADEwLgAxMOaXpQAxMOaciAAxMOeCuQAxMQAxMS4AMTHml6UAMTHmnIgAMTHngrkAMTIAMTIuADEy5pelADEy5pyIADEy54K5ADEzADEzLgAxM+aXpQAxM+eCuQAxNAAxNC4AMTTml6UAMTTngrkAMTUAMTUuADE15pelADE154K5ADE2ADE2LgAxNuaXpQAxNueCuQAxNwAxNy4AMTfml6UAMTfngrkAMTgAMTguADE45pelADE454K5ADE5ADE5LgAxOeaXpQAxOeeCuQAx4oGEADHigYQxMAAx4oGEMgAx4oGEMwAx4oGENAAx4oGENQAx4oGENgAx4oGENwAx4oGEOAAx4oGEOQAx5pelADHmnIgAMeeCuQAyADIsADIuADIwADIwLgAyMOaXpQAyMOeCuQAyMQAyMeaXpQAyMeeCuQAyMgAyMuaXpQAyMueCuQAyMwAyM+aXpQAyM+eCuQAyNAAyNOaXpQAyNOeCuQAyNQAyNeaXpQAyNgAyNuaXpQAyNwAyN+aXpQAyOAAyOOaXpQAyOQAyOeaXpQAy4oGEMwAy4oGENQAy5pelADLmnIgAMueCuQAzADMsADMuADMwADMw5pelADMxADMx5pelADMyADMzADM0ADM1ADM2ADM3ADM4ADM5ADPigYQ0ADPigYQ1ADPigYQ4ADPml6UAM+aciAAz54K5ADQANCwANC4ANDAANDEANDIANDMANDQANDUANDYANDcANDgANDkANOKBhDUANOaXpQA05pyIADTngrkANQA1LAA1LgA1MAA14oGENgA14oGEOAA15pelADXmnIgANeeCuQA2ADYsADYuADbml6UANuaciAA254K5ADcANywANy4AN+KBhDgAN+aXpQA35pyIADfngrkAOAA4LAA4LgA45pelADjmnIgAOOeCuQA5ADksADkuADnml6UAOeaciAA554K5ADoAOjo9ADsAPAA9AD09AD09PQA+AD8APyEAPz8AQABBAEFVAEHiiJVtAEIAQnEAQwBDRABDby4AQ+KIlWtnAEQAREoARFoARHoARMW9AETFvgBFAEYARkFYAEcAR0IAR0h6AEdQYQBHeQBIAEhQAEhWAEhnAEh6AEkASUkASUlJAElKAElVAElWAElYAEoASwBLQgBLSwBLTQBMAExKAExURABMagBMwrcATQBNQgBNQwBNRABNSHoATVBhAE1WAE1XAE3OqQBOAE5KAE5qAE5vAE8AUABQSABQUE0AUFBWAFBSAFBURQBQYQBRAFIAUnMAUwBTRABTTQBTUwBTdgBUAFRFTABUSHoAVE0AVQBWAFZJAFZJSQBWSUlJAFbiiJVtAFcAV0MAV1oAV2IAWABYSQBYSUkAWQBaAFsAXABdAF4AXwBgAGEAYS5tLgBhL2MAYS9zAGHKvgBiAGJhcgBjAGMvbwBjL3UAY2FsAGNjAGNkAGNtAGNtMgBjbTMAZABkQgBkYQBkbABkbQBkbTIAZG0zAGR6AGTFvgBlAGVWAGVyZwBmAGZmAGZmaQBmZmwAZmkAZmwAZm0AZwBnYWwAaABoUGEAaGEAaQBpaQBpaWkAaWoAaW4AaXYAaXgAagBrAGtBAGtIegBrUGEAa1YAa1cAa2NhbABrZwBrbABrbQBrbTIAa20zAGt0AGvOqQBsAGxqAGxtAGxuAGxvZwBseABswrcAbQBtMgBtMwBtQQBtVgBtVwBtYgBtZwBtaWwAbWwAbW0AbW0yAG1tMwBtb2wAbXMAbeKIlXMAbeKIlXMyAG4AbkEAbkYAblYAblcAbmoAbm0AbnMAbwBvVgBwAHAubS4AcEEAcEYAcFYAcFcAcGMAcHMAcQByAHJhZAByYWTiiJVzAHJhZOKIlXMyAHMAc3IAc3QAdAB1AHYAdmkAdmlpAHZpaWkAdwB4AHhpAHhpaQB5AHoAewB8AH0AwqIAwqMAwqUAwqYAwqwAwrBDAMKwRgDCtwDDgADDgQDDggDDgwDDhADDhQDDhgDDhwDDiADDiQDDigDDiwDDjADDjQDDjgDDjwDDkQDDkgDDkwDDlADDlQDDlgDDmQDDmgDDmwDDnADDnQDDoADDoQDDogDDowDDpADDpQDDpwDDqADDqQDDqgDDqwDDrADDrQDDrgDDrwDDsADDsQDDsgDDswDDtADDtQDDtgDDuQDDugDDuwDDvADDvQDDvwDEgADEgQDEggDEgwDEhADEhQDEhgDEhwDEiADEiQDEigDEiwDEjADEjQDEjgDEjwDEkgDEkwDElADElQDElgDElwDEmADEmQDEmgDEmwDEnADEnQDEngDEnwDEoADEoQDEogDEowDEpADEpQDEpgDEpwDEqADEqQDEqgDEqwDErADErQDErgDErwDEsADEsQDEtADEtQDEtgDEtwDEuQDEugDEuwDEvADEvQDEvgDFgwDFhADFhQDFhgDFhwDFiADFiwDFjADFjQDFjgDFjwDFkADFkQDFkwDFlADFlQDFlgDFlwDFmADFmQDFmgDFmwDFnADFnQDFngDFnwDFoADFoQDFogDFowDFpADFpQDFqADFqQDFqgDFqwDFrADFrQDFrgDFrwDFsADFsQDFsgDFswDFtADFtQDFtgDFtwDFuADFuQDFugDFuwDFvADFvQDFvgDGjgDGkADGoADGoQDGqwDGrwDGsADHjQDHjgDHjwDHkADHkQDHkgDHkwDHlADHlQDHlgDHlwDHmADHmQDHmgDHmwDHnADHngDHnwDHoADHoQDHogDHowDHpgDHpwDHqADHqQDHqgDHqwDHrADHrQDHrgDHrwDHsADHtADHtQDHuADHuQDHugDHuwDHvADHvQDHvgDHvwDIgADIgQDIggDIgwDIhADIhQDIhgDIhwDIiADIiQDIigDIiwDIjADIjQDIjgDIjwDIkADIkQDIkgDIkwDIlADIlQDIlgDIlwDImADImQDImgDImwDIngDInwDIogDIpgDIpwDIqADIqQDIqgDIqwDIrADIrQDIrgDIrwDIsADIsQDIsgDIswDItwDJkADJkQDJkgDJlADJlQDJmQDJmwDJnADJnwDJoQDJowDJpQDJpgDJqADJqQDJqgDJqwDJrQDJrwDJsADJsQDJsgDJswDJtADJtQDJuADJuQDJuwDKgQDKggDKgwDKiQDKigDKiwDKjADKkADKkQDKkgDKlQDKnQDKnwDKuQDKvG4AzIAAzIEAzIjMgQDMkwDOhgDOiADOiQDOigDOjADOjgDOjwDOkADOkQDOkgDOkwDOlADOlQDOlgDOlwDOmADOmQDOmgDOmwDOnADOnQDOngDOnwDOoADOoQDOowDOpADOpQDOpgDOpwDOqADOqQDOqgDOqwDOrADOrQDOrgDOrwDOsADOsQDOsgDOswDOtADOtQDOtgDOtwDOuADOuQDOugDOuwDOvADOvEEAzrxGAM68VgDOvFcAzrxnAM68bADOvG0AzrxzAM69AM6+AM6/AM+AAM+BAM+CAM+DAM+EAM+FAM+GAM+HAM+IAM+JAM+KAM+LAM+MAM+NAM+OAM+cAM+dANCAANCBANCDANCHANCMANCNANCOANCZANC5ANC9ANGKANGMANGQANGRANGTANGXANGcANGdANGeANG2ANG3ANOBANOCANOQANORANOSANOTANOWANOXANOaANObANOcANOdANOeANOfANOiANOjANOkANOlANOmANOnANOqANOrANOsANOtANOuANOvANOwANOxANOyANOzANO0ANO1ANO4ANO5ANWl1oIA1bTVpQDVtNWrANW01a0A1bTVtgDVvtW2ANeQANeQ1rcA15DWuADXkNa8ANeQ15wA15EA15HWvADXkda/ANeSANeS1rwA15MA15PWvADXlADXlNa8ANeV1rkA15XWvADXlta8ANeY1rwA15nWtADXmda8ANea1rwA15sA15vWvADXm9a/ANecANec1rwA150A157WvADXoNa8ANeh1rwA16IA16PWvADXpNa8ANek1r8A16bWvADXp9a8ANeoANeo1rwA16nWvADXqda814EA16nWvNeCANep14EA16nXggDXqgDXqta8ANey1rcA2KEA2KIA2KMA2KQA2KUA2KYA2KbYpwDYptisANim2K0A2KbYrgDYptixANim2LIA2KbZhQDYptmGANim2YcA2KbZiADYptmJANim2YoA2KbbhgDYptuHANim24gA2KbbkADYptuVANinANin2YPYqNixANin2YTZhNmHANin2YsA2KfZtADYqADYqNisANio2K0A2KjYrdmKANio2K4A2KjYrtmKANio2LEA2KjYsgDYqNmFANio2YYA2KjZhwDYqNmJANio2YoA2KkA2KoA2KrYrADYqtis2YUA2KrYrNmJANiq2KzZigDYqtitANiq2K3YrADYqtit2YUA2KrYrgDYqtiu2YUA2KrYrtmJANiq2K7ZigDYqtixANiq2LIA2KrZhQDYqtmF2KwA2KrZhditANiq2YXYrgDYqtmF2YkA2KrZhdmKANiq2YYA2KrZhwDYqtmJANiq2YoA2KsA2KvYrADYq9ixANir2LIA2KvZhQDYq9mGANir2YcA2KvZiQDYq9mKANisANis2K0A2KzYrdmJANis2K3ZigDYrNmEINis2YTYp9mE2YcA2KzZhQDYrNmF2K0A2KzZhdmJANis2YXZigDYrNmJANis2YoA2K0A2K3YrADYrdis2YoA2K3ZhQDYrdmF2YkA2K3ZhdmKANit2YkA2K3ZigDYrgDYrtisANiu2K0A2K7ZhQDYrtmJANiu2YoA2K8A2LAA2LDZsADYsQDYsdiz2YjZhADYsdmwANix24zYp9mEANiyANizANiz2KwA2LPYrNitANiz2KzZiQDYs9itANiz2K3YrADYs9iuANiz2K7ZiQDYs9iu2YoA2LPYsQDYs9mFANiz2YXYrADYs9mF2K0A2LPZhdmFANiz2YcA2LPZiQDYs9mKANi0ANi02KwA2LTYrNmKANi02K0A2LTYrdmFANi02K3ZigDYtNiuANi02LEA2LTZhQDYtNmF2K4A2LTZhdmFANi02YcA2LTZiQDYtNmKANi1ANi12K0A2LXYrditANi12K3ZigDYtdiuANi12LEA2LXZhNi52YUA2LXZhNmJANi12YTZiSDYp9mE2YTZhyDYudmE2YrZhyDZiNiz2YTZhQDYtdmE25IA2LXZhQDYtdmF2YUA2LXZiQDYtdmKANi2ANi22KwA2LbYrQDYttit2YkA2LbYrdmKANi22K4A2LbYrtmFANi22LEA2LbZhQDYttmJANi22YoA2LcA2LfYrQDYt9mFANi32YXYrQDYt9mF2YUA2LfZhdmKANi32YkA2LfZigDYuADYuNmFANi5ANi52KwA2LnYrNmFANi52YTZitmHANi52YUA2LnZhdmFANi52YXZiQDYudmF2YoA2LnZiQDYudmKANi6ANi62KwA2LrZhQDYutmF2YUA2LrZhdmJANi62YXZigDYutmJANi62YoA2YDZiwDZgNmOANmA2Y7ZkQDZgNmPANmA2Y/ZkQDZgNmQANmA2ZDZkQDZgNmRANmA2ZIA2YEA2YHYrADZgditANmB2K4A2YHYrtmFANmB2YUA2YHZhdmKANmB2YkA2YHZigDZggDZgtitANmC2YTbkgDZgtmFANmC2YXYrQDZgtmF2YUA2YLZhdmKANmC2YkA2YLZigDZgwDZg9inANmD2KwA2YPYrQDZg9iuANmD2YQA2YPZhQDZg9mF2YUA2YPZhdmKANmD2YkA2YPZigDZhADZhNiiANmE2KMA2YTYpQDZhNinANmE2KwA2YTYrNisANmE2KzZhQDZhNis2YoA2YTYrQDZhNit2YUA2YTYrdmJANmE2K3ZigDZhNiuANmE2K7ZhQDZhNmFANmE2YXYrQDZhNmF2YoA2YTZhwDZhNmJANmE2YoA2YUA2YXYpwDZhdisANmF2KzYrQDZhdis2K4A2YXYrNmFANmF2KzZigDZhditANmF2K3YrADZhdit2YUA2YXYrdmF2K8A2YXYrdmKANmF2K4A2YXYrtisANmF2K7ZhQDZhdiu2YoA2YXZhQDZhdmF2YoA2YXZiQDZhdmKANmGANmG2KwA2YbYrNitANmG2KzZhQDZhtis2YkA2YbYrNmKANmG2K0A2YbYrdmFANmG2K3ZiQDZhtit2YoA2YbYrgDZhtixANmG2LIA2YbZhQDZhtmF2YkA2YbZhdmKANmG2YYA2YbZhwDZhtmJANmG2YoA2YcA2YfYrADZh9mFANmH2YXYrADZh9mF2YUA2YfZiQDZh9mKANmH2bAA2YgA2YjYs9mE2YUA2YjZtADZiQDZidmwANmKANmK2KwA2YrYrNmKANmK2K0A2YrYrdmKANmK2K4A2YrYsQDZitiyANmK2YUA2YrZhdmFANmK2YXZigDZitmGANmK2YcA2YrZiQDZitmKANmK2bQA2a4A2a8A2bEA2bkA2boA2bsA2b4A2b8A2oAA2oMA2oQA2oYA2ocA2ogA2owA2o0A2o4A2pEA2pgA2qEA2qQA2qYA2qkA2q0A2q8A2rEA2rMA2roA2rsA2r4A24AA24EA24IA24UA24YA24cA24fZtADbiADbiQDbiwDbjADbkADbkgDbkwDgpJXgpLwA4KSW4KS8AOCkl+CkvADgpJzgpLwA4KSh4KS8AOCkouCkvADgpKkA4KSr4KS8AOCkr+CkvADgpLEA4KS0AOCmoeCmvADgpqLgprwA4Kav4Ka8AOCniwDgp4wA4KiW4Ki8AOCol+CovADgqJzgqLwA4Kir4Ki8AOCosuCovADgqLjgqLwA4Kyh4Ky8AOCsouCsvADgrYgA4K2LAOCtjADgrpQA4K+KAOCviwDgr4wA4LGIAOCzgADgs4cA4LOIAOCzigDgs4sA4LWKAOC1iwDgtYwA4LeaAOC3nADgt50A4LeeAOC5jeC4sgDguqvgupkA4Lqr4LqhAOC7jeC6sgDgvIsA4L2A4L61AOC9guC+twDgvYzgvrcA4L2R4L63AOC9luC+twDgvZvgvrcA4L2x4L2yAOC9seC9tADgvbHgvoAA4L6Q4L61AOC+kuC+twDgvpzgvrcA4L6h4L63AOC+puC+twDgvqvgvrcA4L6y4L2x4L6AAOC+suC+gADgvrPgvbHgvoAA4L6z4L6AAOGApgDhg5wA4YSAAOGEgQDhhIIA4YSDAOGEhADhhIUA4YSGAOGEhwDhhIgA4YSJAOGEigDhhIsA4YSMAOGEjQDhhI4A4YSPAOGEkADhhJEA4YSSAOGElADhhJUA4YSaAOGEnADhhJ0A4YSeAOGEoADhhKEA4YSiAOGEowDhhKcA4YSpAOGEqwDhhKwA4YStAOGErgDhhK8A4YSyAOGEtgDhhYAA4YWHAOGFjADhhZcA4YWYAOGFmQDhhaAA4YWhAOGFogDhhaMA4YWkAOGFpQDhhaYA4YWnAOGFqADhhakA4YWqAOGFqwDhhawA4YWtAOGFrgDhha8A4YWwAOGFsQDhhbIA4YWzAOGFtADhhbUA4YaEAOGGhQDhhogA4YaRAOGGkgDhhpQA4YaeAOGGoQDhhqoA4YasAOGGrQDhhrAA4YaxAOGGsgDhhrMA4Ya0AOGGtQDhh4cA4YeIAOGHjADhh44A4YeTAOGHlwDhh5kA4YedAOGHnwDhh7EA4YeyAOGshgDhrIgA4ayKAOGsjADhrI4A4aySAOGsuwDhrL0A4a2AAOGtgQDhrYMA4bSCAOG0lgDhtJcA4bScAOG0nQDhtKUA4bW7AOG2hQDhuIAA4biBAOG4ggDhuIMA4biEAOG4hQDhuIYA4biHAOG4iADhuIkA4biKAOG4iwDhuIwA4biNAOG4jgDhuI8A4biQAOG4kQDhuJIA4biTAOG4lADhuJUA4biWAOG4lwDhuJgA4biZAOG4mgDhuJsA4bicAOG4nQDhuJ4A4bifAOG4oADhuKEA4biiAOG4owDhuKQA4bilAOG4pgDhuKcA4bioAOG4qQDhuKoA4birAOG4rADhuK0A4biuAOG4rwDhuLAA4bixAOG4sgDhuLMA4bi0AOG4tQDhuLYA4bi3AOG4uADhuLkA4bi6AOG4uwDhuLwA4bi9AOG4vgDhuL8A4bmAAOG5gQDhuYIA4bmDAOG5hADhuYUA4bmGAOG5hwDhuYgA4bmJAOG5igDhuYsA4bmMAOG5jQDhuY4A4bmPAOG5kADhuZEA4bmSAOG5kwDhuZQA4bmVAOG5lgDhuZcA4bmYAOG5mQDhuZoA4bmbAOG5nADhuZ0A4bmeAOG5nwDhuaAA4bmhAOG5ogDhuaMA4bmkAOG5pQDhuaYA4bmnAOG5qADhuakA4bmqAOG5qwDhuawA4bmtAOG5rgDhua8A4bmwAOG5sQDhubIA4bmzAOG5tADhubUA4bm2AOG5twDhubgA4bm5AOG5ugDhubsA4bm8AOG5vQDhub4A4bm/AOG6gADhuoEA4bqCAOG6gwDhuoQA4bqFAOG6hgDhuocA4bqIAOG6iQDhuooA4bqLAOG6jADhuo0A4bqOAOG6jwDhupAA4bqRAOG6kgDhupMA4bqUAOG6lQDhupYA4bqXAOG6mADhupkA4bqgAOG6oQDhuqIA4bqjAOG6pADhuqUA4bqmAOG6pwDhuqgA4bqpAOG6qgDhuqsA4bqsAOG6rQDhuq4A4bqvAOG6sADhurEA4bqyAOG6swDhurQA4bq1AOG6tgDhurcA4bq4AOG6uQDhuroA4bq7AOG6vADhur0A4bq+AOG6vwDhu4AA4buBAOG7ggDhu4MA4buEAOG7hQDhu4YA4buHAOG7iADhu4kA4buKAOG7iwDhu4wA4buNAOG7jgDhu48A4buQAOG7kQDhu5IA4buTAOG7lADhu5UA4buWAOG7lwDhu5gA4buZAOG7mgDhu5sA4bucAOG7nQDhu54A4bufAOG7oADhu6EA4buiAOG7owDhu6QA4bulAOG7pgDhu6cA4buoAOG7qQDhu6oA4burAOG7rADhu60A4buuAOG7rwDhu7AA4buxAOG7sgDhu7MA4bu0AOG7tQDhu7YA4bu3AOG7uADhu7kA4byAAOG8gQDhvIIA4byDAOG8hADhvIUA4byGAOG8hwDhvIgA4byJAOG8igDhvIsA4byMAOG8jQDhvI4A4byPAOG8kADhvJEA4bySAOG8kwDhvJQA4byVAOG8mADhvJkA4byaAOG8mwDhvJwA4bydAOG8oADhvKEA4byiAOG8owDhvKQA4bylAOG8pgDhvKcA4byoAOG8qQDhvKoA4byrAOG8rADhvK0A4byuAOG8rwDhvLAA4byxAOG8sgDhvLMA4by0AOG8tQDhvLYA4by3AOG8uADhvLkA4by6AOG8uwDhvLwA4by9AOG8vgDhvL8A4b2AAOG9gQDhvYIA4b2DAOG9hADhvYUA4b2IAOG9iQDhvYoA4b2LAOG9jADhvY0A4b2QAOG9kQDhvZIA4b2TAOG9lADhvZUA4b2WAOG9lwDhvZkA4b2bAOG9nQDhvZ8A4b2gAOG9oQDhvaIA4b2jAOG9pADhvaUA4b2mAOG9pwDhvagA4b2pAOG9qgDhvasA4b2sAOG9rQDhva4A4b2vAOG9sADhvbIA4b20AOG9tgDhvbgA4b26AOG9vADhvoAA4b6BAOG+ggDhvoMA4b6EAOG+hQDhvoYA4b6HAOG+iADhvokA4b6KAOG+iwDhvowA4b6NAOG+jgDhvo8A4b6QAOG+kQDhvpIA4b6TAOG+lADhvpUA4b6WAOG+lwDhvpgA4b6ZAOG+mgDhvpsA4b6cAOG+nQDhvp4A4b6fAOG+oADhvqEA4b6iAOG+owDhvqQA4b6lAOG+pgDhvqcA4b6oAOG+qQDhvqoA4b6rAOG+rADhvq0A4b6uAOG+rwDhvrAA4b6xAOG+sgDhvrMA4b60AOG+tgDhvrcA4b64AOG+uQDhvroA4b68AOG/ggDhv4MA4b+EAOG/hgDhv4cA4b+IAOG/igDhv4wA4b+QAOG/kQDhv5IA4b+WAOG/lwDhv5gA4b+ZAOG/mgDhv6AA4b+hAOG/ogDhv6QA4b+lAOG/pgDhv6cA4b+oAOG/qQDhv6oA4b+sAOG/sgDhv7MA4b+0AOG/tgDhv7cA4b+4AOG/ugDhv7wA4oCQAOKAkwDigJQA4oCy4oCyAOKAsuKAsuKAsgDigLLigLLigLLigLIA4oC14oC1AOKAteKAteKAtQDigqkA4oaQAOKGkQDihpIA4oaTAOKGmgDihpsA4oauAOKHjQDih44A4oePAOKIggDiiIQA4oiHAOKIiQDiiIwA4oiRAOKIkgDiiKQA4oimAOKIq+KIqwDiiKviiKviiKsA4oir4oir4oir4oirAOKIruKIrgDiiK7iiK7iiK4A4omBAOKJhADiiYcA4omJAOKJoADiiaIA4omtAOKJrgDiia8A4omwAOKJsQDiibQA4om1AOKJuADiibkA4oqAAOKKgQDiioQA4oqFAOKKiADiiokA4oqsAOKKrQDiiq4A4oqvAOKLoADii6EA4ouiAOKLowDii6oA4ourAOKLrADii60A4pSCAOKWoADil4sA4qaFAOKmhgDiq53MuADitaEA44CBAOOAggDjgIgA44CJAOOAigDjgIsA44CMAOOAjQDjgI4A44CPAOOAkADjgJEA44CSAOOAlADjgJRT44CVAOOAlOS4ieOAlQDjgJTkuozjgJUA44CU5Yud44CVAOOAlOWuieOAlQDjgJTmiZPjgJUA44CU5pWX44CVAOOAlOacrOOAlQDjgJTngrnjgJUA44CU55uX44CVAOOAlQDjgJYA44CXAOOBjADjgY4A44GQAOOBkgDjgZQA44GWAOOBmADjgZoA44GcAOOBngDjgaAA44GiAOOBpQDjgacA44GpAOOBsADjgbEA44GzAOOBtADjgbYA44G3AOOBuQDjgboA44G744GLAOOBvADjgb0A44KI44KKAOOClADjgpkA44KaAOOCngDjgqEA44KiAOOCouODkeODvOODiADjgqLjg6vjg5XjgqEA44Ki44Oz44Oa44KiAOOCouODvOODqwDjgqMA44KkAOOCpOODi+ODs+OCsADjgqTjg7Pjg4EA44KlAOOCpgDjgqbjgqnjg7MA44KnAOOCqADjgqjjgrnjgq/jg7zjg4kA44Ko44O844Kr44O8AOOCqQDjgqoA44Kq44Oz44K5AOOCquODvOODoADjgqsA44Kr44Kk44OqAOOCq+ODqeODg+ODiADjgqvjg63jg6rjg7wA44KsAOOCrOODreODswDjgqzjg7Pjg54A44KtAOOCreODpeODquODvADjgq3jg60A44Kt44Ot44Kw44Op44OgAOOCreODreODoeODvOODiOODqwDjgq3jg63jg6/jg4Pjg4gA44KuAOOCruOCrADjgq7jg4vjg7wA44Ku44Or44OA44O8AOOCrwDjgq/jg6vjgrzjgqTjg60A44Kv44Ot44O844ONAOOCsADjgrDjg6njg6AA44Kw44Op44Og44OI44OzAOOCsQDjgrHjg7zjgrkA44KyAOOCswDjgrPjgrMA44Kz44OIAOOCs+ODq+ODigDjgrPjg7zjg50A44K0AOOCtQDjgrXjgqTjgq/jg6sA44K144Oz44OB44O844OgAOOCtgDjgrcA44K344Oq44Oz44KwAOOCuADjgrkA44K6AOOCuwDjgrvjg7Pjg4EA44K744Oz44OIAOOCvADjgr0A44K+AOOCvwDjg4AA44OA44O844K5AOODgQDjg4IA44ODAOODhADjg4UA44OGAOODhwDjg4fjgrcA44OIAOODiOODswDjg4kA44OJ44OrAOODigDjg4rjg44A44OLAOODjADjg40A44OOAOODjuODg+ODiADjg48A44OP44Kk44OEAOODkADjg5Djg7zjg6zjg6sA44ORAOODkeODvOOCu+ODs+ODiADjg5Hjg7zjg4QA44OSAOODkwDjg5Pjg6sA44OUAOODlOOCouOCueODiOODqwDjg5Tjgq/jg6sA44OU44KzAOODlQDjg5XjgqHjg6njg4Pjg4kA44OV44Kj44O844OIAOODleODqeODswDjg5YA44OW44OD44K344Kn44OrAOODlwDjg5gA44OY44Kv44K/44O844OrAOODmOODq+ODhADjg5kA44OZ44O844K/AOODmgDjg5rjgr0A44Oa44OL44OSAOODmuODs+OCuQDjg5rjg7zjgrgA44ObAOODm+ODswDjg5vjg7zjg6sA44Ob44O844OzAOODnADjg5zjg6vjg4gA44OdAOODneOCpOODs+ODiADjg53jg7Pjg4kA44OeAOODnuOCpOOCr+ODrQDjg57jgqTjg6sA44Oe44OD44OPAOODnuODq+OCrwDjg57jg7Pjgrfjg6fjg7MA44OfAOODn+OCr+ODreODswDjg5/jg6oA44Of44Oq44OQ44O844OrAOODoADjg6EA44Oh44KsAOODoeOCrOODiOODswDjg6Hjg7zjg4jjg6sA44OiAOODowDjg6QA44Ok44O844OJAOODpOODvOODqwDjg6UA44OmAOODpuOCouODswDjg6cA44OoAOODqQDjg6oA44Oq44OD44OI44OrAOODquODqQDjg6sA44Or44OU44O8AOODq+ODvOODluODqwDjg6wA44Os44OgAOODrOODs+ODiOOCsuODswDjg60A44OvAOODr+ODg+ODiADjg7AA44OxAOODsgDjg7MA44O0AOODtwDjg7gA44O5AOODugDjg7sA44O8AOODvgDjkp4A45K5AOOSuwDjk58A45SVAOObrgDjm7wA456BAOOgrwDjoaIA46G8AOOjhwDjo6MA46ScAOOkugDjqK4A46msAOOrpADjrIgA46yZAOOtiQDjrp0A47CYAOOxjgDjtLMA47aWAOO6rADjurgA47ybAOO/vADkgIgA5ICYAOSAuQDkgYYA5IKWAOSDowDkhK8A5IiCAOSIpwDkiqAA5IyBAOSMtADkjZkA5I+VAOSPmQDkkIsA5JGrAOSUqwDklZ0A5JWhAOSVqwDkl5cA5Je5AOSYtQDkmr4A5JuHAOSmlQDkp6YA5KmuAOSptgDkqrIA5KyzAOSvjgDks44A5LOtAOSzuADktZYA5LiAAOS4gQDkuIMA5LiJAOS4igDkuIsA5LiNAOS4mQDkuKYA5LioAOS4rQDkuLIA5Li2AOS4uADkuLkA5Li9AOS4vwDkuYEA5LmZAOS5nQDkuoIA5LqFAOS6hgDkuowA5LqUAOS6oADkuqQA5LquAOS6ugDku4AA5LuMAOS7pADkvIEA5LyRAOS9oADkvoAA5L6GAOS+iwDkvq4A5L67AOS+vwDlgIIA5YCrAOWBugDlgpkA5YOPAOWDmgDlg6cA5YSqAOWEvwDlhYAA5YWFAOWFjQDlhZQA5YWkAOWFpQDlhacA5YWoAOWFqQDlhasA5YWtAOWFtwDlhoAA5YaCAOWGjQDlhpIA5YaVAOWGlgDlhpcA5YaZAOWGpADlhqsA5YasAOWGtQDlhrcA5YeJAOWHjADlh5wA5YeeAOWHoADlh7UA5YiAAOWIgwDliIcA5YiXAOWInQDliKkA5Yi6AOWIuwDliYYA5YmNAOWJsgDlibcA5YqJAOWKmwDliqMA5YqzAOWKtADli4cA5YuJAOWLkgDli54A5YukAOWLtQDli7kA5Yu6AOWMhQDljIYA5YyVAOWMlwDljJoA5Yy4AOWMuwDljL8A5Y2BAOWNhADljYUA5Y2JAOWNkQDljZQA5Y2aAOWNnADljakA5Y2wAOWNswDljbUA5Y29AOWNvwDljoIA5Y62AOWPgwDlj4gA5Y+KAOWPjADlj58A5Y+jAOWPpQDlj6sA5Y+vAOWPsQDlj7MA5ZCGAOWQiADlkI0A5ZCPAOWQnQDlkLgA5ZC5AOWRggDlkYgA5ZGoAOWSngDlkqIA5ZK9AOWTtgDllJAA5ZWPAOWVkwDllZUA5ZWjAOWWhADllocA5ZaZAOWWnQDllqsA5ZazAOWWtgDll4AA5ZeCAOWXogDlmIYA5ZmRAOWZqADlmbQA5ZuXAOWbmwDlm7kA5ZyWAOWclwDlnJ8A5ZywAOWeiwDln44A5Z+0AOWgjQDloLEA5aCyAOWhgADloZoA5aGeAOWiqADloqwA5aKzAOWjmADlo58A5aOrAOWjrgDlo7AA5aOyAOWjtwDlpIIA5aSGAOWkigDlpJUA5aSaAOWknADlpKIA5aSnAOWkp+atowDlpKkA5aWEAOWliADlpZEA5aWUAOWlogDlpbMA5aeYAOWnrADlqJsA5ainAOWpogDlqaYA5aq1AOWsiADlrKgA5ay+AOWtkADlrZcA5a2mAOWugADlroUA5a6XAOWvgwDlr5gA5a+nAOWvrgDlr7MA5a+4AOWvvwDlsIYA5bCPAOWwogDlsLgA5bC/AOWxoADlsaIA5bGkAOWxpQDlsa4A5bGxAOWyjQDls4AA5bSZAOW1gwDltZAA5bWrAOW1rgDltbwA5bayAOW2ugDlt5sA5behAOW3ogDlt6UA5bemAOW3sQDlt70A5be+AOW4qADluL0A5bmpAOW5sgDlubPmiJAA5bm0AOW5ugDlubwA5bm/AOW6pgDlurAA5bqzAOW6tgDlu4kA5buKAOW7kgDlu5MA5buZAOW7rADlu7QA5bu+AOW8hADlvIsA5byTAOW8ogDlvZAA5b2TAOW9oQDlvaIA5b2pAOW9qwDlvbMA5b6LAOW+jADlvpcA5b6aAOW+qQDlvq0A5b+DAOW/jQDlv5cA5b+1AOW/uQDmgJIA5oCcAOaBtQDmgoEA5oKUAOaDhwDmg5gA5oOhAOaEiADmhYQA5oWIAOaFjADmhY4A5oWgAOaFqADmhboA5oaOAOaGkADmhqQA5oavAOaGsgDmh54A5oeyAOaHtgDmiIAA5oiIAOaIkADmiJsA5oiuAOaItADmiLYA5omLAOaJkwDmiZ0A5oqVAOaKsQDmi4kA5ouPAOaLkwDmi5QA5ou8AOaLvgDmjIcA5oy9AOaNkADmjZUA5o2oAOaNuwDmjoMA5o6gAOaOqQDmj4QA5o+FAOaPpADmkJwA5pCiAOaRkgDmkakA5pG3AOaRvgDmkpoA5pKdAOaThADmlK8A5pS0AOaVjwDmlZYA5pWsAOaVuADmlocA5paXAOaWmQDmlqQA5pawAOaWuQDml4UA5pegAOaXogDml6MA5pelAOaYjuayuwDmmJMA5pigAOaYreWSjADmmYkA5pm0AOaaiADmmpEA5pqcAOaatADmm4YA5puwAOabtADmm7gA5pyAAOaciADmnIkA5pyXAOacmwDmnKEA5pyoAOadjgDmnZMA5p2WAOadngDmnbsA5p6FAOaelwDmn7MA5p+6AOaglwDmoJ8A5qCqAOagquW8j+S8muekvgDmoZIA5qKBAOaihQDmoo4A5qKoAOaklADmpYIA5qajAOanqgDmqIIA5qiTAOaqqADmq5MA5qubAOashADmrKAA5qyhAOatlADmraIA5q2jAOatsgDmrbcA5q25AOaunwDmrq4A5q6zAOauugDmrrsA5q+LAOavjQDmr5QA5q+bAOawjwDmsJQA5rC0AOaxjgDmsacA5rKIAOayvwDms4wA5rONAOazpQDms6gA5rSWAOa0mwDmtJ4A5rS0AOa0vgDmtYEA5rWpAOa1qgDmtbcA5rW4AOa2hQDmt4sA5reaAOa3qgDmt7kA5riaAOa4rwDmua4A5rqAAOa6nADmuroA5ruHAOa7iwDmu5EA5rubAOa8jwDmvJQA5ryiAOa8owDmva4A5r+GAOa/qwDmv74A54CbAOeAngDngLkA54GKAOeBqwDngbAA54G3AOeBvQDngpkA54KtAOeDiADng5kA54ShAOeFhQDnhYkA54WuAOeGnADnh44A54eQAOeIkADniJsA54ioAOeIqgDniKsA54i1AOeItgDniLsA54i/AOeJhwDniZAA54mZAOeJmwDniaIA54m5AOeKgADnipUA54qsAOeKrwDni4AA54u8AOeMqgDnjbUA5426AOeOhADnjocA546JAOeOiwDnjqUA546yAOePngDnkIYA55CJAOeQogDnkYcA55GcAOeRqQDnkbEA55KFAOeSiQDnkpgA55OKAOeTnADnk6YA55SGAOeUmADnlJ8A55SkAOeUqADnlLAA55SyAOeUswDnlLcA55S7AOeUvgDnlZkA55WlAOeVsADnlosA55aSAOeXogDnmJAA55idAOeYnwDnmYIA55mpAOeZtgDnmb0A55quAOeavwDnm4oA55ubAOebowDnm6cA55uuAOebtADnnIEA55yeAOecnwDnnYAA552KAOeeiwDnnqcA55+bAOefogDnn7MA56GOAOehqwDnoowA56KRAOejigDno4wA56O7AOekqgDnpLoA56S8AOekvgDnpYgA56WJAOelkADnpZYA56WdAOelngDnpaUA56W/AOemgQDnpo0A56aOAOemjwDnpq4A56a4AOemvgDnp4oA56eYAOenqwDnqJwA56mAAOepigDnqY8A56m0AOepugDnqoEA56qxAOeriwDnq64A56u5AOesoADnro8A56+AAOevhgDnr4kA57C+AOexoADnsbMA57G7AOeykgDnsr4A57OSAOezlgDns6MA57OnAOezqADns7gA57SAAOe0kADntKIA57SvAOe1ggDntZsA57WjAOe2oADntr4A57eHAOe3tADnuIIA57iJAOe4twDnuYEA57mFAOe8tgDnvL4A572RAOe9sgDnvbkA5726AOe+hQDnvooA576VAOe+mgDnvr0A57+6AOiAgQDogIUA6ICMAOiAkgDogLMA6IGGAOiBoADoga8A6IGwAOiBvgDogb8A6IKJAOiCiwDogq0A6IKyAOiEgwDohL4A6IeYAOiHowDoh6gA6IeqAOiHrQDoh7MA6Ie8AOiIgQDoiIQA6IiMAOiImADoiJsA6IifAOiJrgDoia8A6ImyAOiJuADoibkA6IqLAOiKkQDoip0A6IqxAOiKswDoir0A6IulAOiLpgDojJ0A6IyjAOiMtgDojZIA6I2TAOiNowDojq0A6I69AOiPiQDoj4oA6I+MAOiPnADoj6cA6I+vAOiPsQDokL0A6JGJAOiRlwDok64A6JOxAOiTswDok7wA6JSWAOiVpADol40A6Je6AOiYhgDomJIA6JitAOiYvwDomY0A6JmQAOiZnADomacA6JmpAOiZqwDomogA6JqpAOibogDonI4A6JyoAOidqwDonbkA6J6GAOieugDon6EA6KCBAOignwDooYAA6KGMAOihoADooaMA6KOCAOijjwDoo5cA6KOeAOijoQDoo7gA6KO6AOikkADopYEA6KWkAOilvgDopoYA6KaLAOimlgDop5IA6KejAOiogADoqqAA6KqqAOiqvwDoq4sA6KuSAOirlgDoq60A6Ku4AOirvgDorIEA6Ky5AOitmADoroAA6K6KAOiwtwDosYYA6LGIAOixlQDosbgA6LKdAOiyoQDosqkA6LKrAOizgQDos4IA6LOHAOiziADos5MA6LSIAOi0mwDotaQA6LWwAOi1twDotrMA6La8AOi3iwDot68A6LewAOi6qwDou4oA6LuUAOi8pgDovKoA6Ly4AOi8uwDovaIA6L6bAOi+ngDovrAA6L61AOi+tgDpgKMA6YC4AOmBigDpgakA6YGyAOmBvADpgo8A6YKRAOmClADpg44A6YOeAOmDsQDpg70A6YSRAOmEmwDphYkA6YWqAOmGmQDphrQA6YeGAOmHjADph48A6YeRAOmItADpiLgA6Ym2AOmJvADpi5cA6YuYAOmMhADpjYoA6Y+5AOmQlQDplbcA6ZaAAOmWiwDplq0A6Za3AOmYnADpmK4A6ZmLAOmZjQDpmbUA6Zm4AOmZvADpmoYA6ZqjAOmatgDpmrcA6Zq4AOmauQDpm4MA6ZuiAOmbowDpm6gA6Zu2AOmbtwDpnKMA6ZyyAOmdiADpnZEA6Z2WAOmdngDpnaIA6Z2pAOmfiwDpn5sA6Z+gAOmfrQDpn7MA6Z+/AOmggQDpoIUA6aCLAOmgmADpoKkA6aC7AOmhngDpoqgA6aObAOmjnwDpo6IA6aOvAOmjvADppKgA6aSpAOmmlgDpppkA6aanAOmmrADpp4IA6aexAOmnvgDpqaoA6aqoAOmrmADpq58A6aySAOmspQDprK8A6ayyAOmsvADprZoA6a2vAOmxgADpsZcA6bOlAOmzvQDptacA6ba0AOm3ugDpuJ4A6bm1AOm5vwDpupcA6bqfAOm6pQDpursA6buDAOm7jQDpu44A6buRAOm7uQDpu70A6bu+AOm8hQDpvI4A6byPAOm8kwDpvJYA6bygAOm8uwDpvYMA6b2KAOm9kgDpvo0A6b6OAOm+nADpvp8A6b6gAOqcpwDqna8A6qy3AOqtkgDqsIAA6rCBAOqwggDqsIMA6rCEAOqwhQDqsIYA6rCHAOqwiADqsIkA6rCKAOqwiwDqsIwA6rCNAOqwjgDqsI8A6rCQAOqwkQDqsJIA6rCTAOqwlADqsJUA6rCWAOqwlwDqsJgA6rCZAOqwmgDqsJsA6rCcAOqwnQDqsJ4A6rCfAOqwoADqsKEA6rCiAOqwowDqsKQA6rClAOqwpgDqsKcA6rCoAOqwqQDqsKoA6rCrAOqwrADqsK0A6rCuAOqwrwDqsLAA6rCxAOqwsgDqsLMA6rC0AOqwtQDqsLYA6rC3AOqwuADqsLkA6rC6AOqwuwDqsLwA6rC9AOqwvgDqsL8A6rGAAOqxgQDqsYIA6rGDAOqxhADqsYUA6rGGAOqxhwDqsYgA6rGJAOqxigDqsYsA6rGMAOqxjQDqsY4A6rGPAOqxkADqsZEA6rGSAOqxkwDqsZQA6rGVAOqxlgDqsZcA6rGYAOqxmQDqsZoA6rGbAOqxnADqsZ0A6rGeAOqxnwDqsaAA6rGhAOqxogDqsaMA6rGkAOqxpQDqsaYA6rGnAOqxqADqsakA6rGqAOqxqwDqsawA6rGtAOqxrgDqsa8A6rGwAOqxsQDqsbIA6rGzAOqxtADqsbUA6rG2AOqxtwDqsbgA6rG5AOqxugDqsbsA6rG8AOqxvQDqsb4A6rG/AOqygADqsoEA6rKCAOqygwDqsoQA6rKFAOqyhgDqsocA6rKIAOqyiQDqsooA6rKLAOqyjADqso0A6rKOAOqyjwDqspAA6rKRAOqykgDqspMA6rKUAOqylQDqspYA6rKXAOqymADqspkA6rKaAOqymwDqspwA6rKdAOqyngDqsp8A6rKgAOqyoQDqsqIA6rKjAOqypADqsqUA6rKmAOqypwDqsqgA6rKpAOqyqgDqsqsA6rKsAOqyrQDqsq4A6rKvAOqysADqsrEA6rKyAOqyswDqsrQA6rK1AOqytgDqsrcA6rK4AOqyuQDqsroA6rK7AOqyvADqsr0A6rK+AOqyvwDqs4AA6rOBAOqzggDqs4MA6rOEAOqzhQDqs4YA6rOHAOqziADqs4kA6rOKAOqziwDqs4wA6rONAOqzjgDqs48A6rOQAOqzkQDqs5IA6rOTAOqzlADqs5UA6rOWAOqzlwDqs5gA6rOZAOqzmgDqs5sA6rOcAOqznQDqs54A6rOfAOqzoADqs6EA6rOiAOqzowDqs6QA6rOlAOqzpgDqs6cA6rOoAOqzqQDqs6oA6rOrAOqzrADqs60A6rOuAOqzrwDqs7AA6rOxAOqzsgDqs7MA6rO0AOqztQDqs7YA6rO3AOqzuADqs7kA6rO6AOqzuwDqs7wA6rO9AOqzvgDqs78A6rSAAOq0gQDqtIIA6rSDAOq0hADqtIUA6rSGAOq0hwDqtIgA6rSJAOq0igDqtIsA6rSMAOq0jQDqtI4A6rSPAOq0kADqtJEA6rSSAOq0kwDqtJQA6rSVAOq0lgDqtJcA6rSYAOq0mQDqtJoA6rSbAOq0nADqtJ0A6rSeAOq0nwDqtKAA6rShAOq0ogDqtKMA6rSkAOq0pQDqtKYA6rSnAOq0qADqtKkA6rSqAOq0qwDqtKwA6rStAOq0rgDqtK8A6rSwAOq0sQDqtLIA6rSzAOq0tADqtLUA6rS2AOq0twDqtLgA6rS5AOq0ugDqtLsA6rS8AOq0vQDqtL4A6rS/AOq1gADqtYEA6rWCAOq1gwDqtYQA6rWFAOq1hgDqtYcA6rWIAOq1iQDqtYoA6rWLAOq1jADqtY0A6rWOAOq1jwDqtZAA6rWRAOq1kgDqtZMA6rWUAOq1lQDqtZYA6rWXAOq1mADqtZkA6rWaAOq1mwDqtZwA6rWdAOq1ngDqtZ8A6rWgAOq1oQDqtaIA6rWjAOq1pADqtaUA6rWmAOq1pwDqtagA6rWpAOq1qgDqtasA6rWsAOq1rQDqta4A6rWvAOq1sADqtbEA6rWyAOq1swDqtbQA6rW1AOq1tgDqtbcA6rW4AOq1uQDqtboA6rW7AOq1vADqtb0A6rW+AOq1vwDqtoAA6raBAOq2ggDqtoMA6raEAOq2hQDqtoYA6raHAOq2iADqtokA6raKAOq2iwDqtowA6raNAOq2jgDqto8A6raQAOq2kQDqtpIA6raTAOq2lADqtpUA6raWAOq2lwDqtpgA6raZAOq2mgDqtpsA6racAOq2nQDqtp4A6rafAOq2oADqtqEA6raiAOq2owDqtqQA6ralAOq2pgDqtqcA6raoAOq2qQDqtqoA6rarAOq2rADqtq0A6rauAOq2rwDqtrAA6raxAOq2sgDqtrMA6ra0AOq2tQDqtrYA6ra3AOq2uADqtrkA6ra6AOq2uwDqtrwA6ra9AOq2vgDqtr8A6reAAOq3gQDqt4IA6reDAOq3hADqt4UA6reGAOq3hwDqt4gA6reJAOq3igDqt4sA6reMAOq3jQDqt44A6rePAOq3kADqt5EA6reSAOq3kwDqt5QA6reVAOq3lgDqt5cA6reYAOq3mQDqt5oA6rebAOq3nADqt50A6reeAOq3nwDqt6AA6rehAOq3ogDqt6MA6rekAOq3pQDqt6YA6renAOq3qADqt6kA6reqAOq3qwDqt6wA6retAOq3rgDqt68A6rewAOq3sQDqt7IA6rezAOq3tADqt7UA6re2AOq3twDqt7gA6re5AOq3ugDqt7sA6re8AOq3vQDqt74A6re/AOq4gADquIEA6riCAOq4gwDquIQA6riFAOq4hgDquIcA6riIAOq4iQDquIoA6riLAOq4jADquI0A6riOAOq4jwDquJAA6riRAOq4kgDquJMA6riUAOq4lQDquJYA6riXAOq4mADquJkA6riaAOq4mwDquJwA6ridAOq4ngDquJ8A6rigAOq4oQDquKIA6rijAOq4pADquKUA6rimAOq4pwDquKgA6ripAOq4qgDquKsA6risAOq4rQDquK4A6rivAOq4sADquLEA6riyAOq4swDquLQA6ri1AOq4tgDquLcA6ri4AOq4uQDquLoA6ri7AOq4vADquL0A6ri+AOq4vwDquYAA6rmBAOq5ggDquYMA6rmEAOq5hQDquYYA6rmHAOq5iADquYkA6rmKAOq5iwDquYwA6rmNAOq5jgDquY8A6rmQAOq5kQDquZIA6rmTAOq5lADquZUA6rmWAOq5lwDquZgA6rmZAOq5mgDquZsA6rmcAOq5nQDquZ4A6rmfAOq5oADquaEA6rmiAOq5owDquaQA6rmlAOq5pgDquacA6rmoAOq5qQDquaoA6rmrAOq5rADqua0A6rmuAOq5rwDqubAA6rmxAOq5sgDqubMA6rm0AOq5tQDqubYA6rm3AOq5uADqubkA6rm6AOq5uwDqubwA6rm9AOq5vgDqub8A6rqAAOq6gQDquoIA6rqDAOq6hADquoUA6rqGAOq6hwDquogA6rqJAOq6igDquosA6rqMAOq6jQDquo4A6rqPAOq6kADqupEA6rqSAOq6kwDqupQA6rqVAOq6lgDqupcA6rqYAOq6mQDqupoA6rqbAOq6nADqup0A6rqeAOq6nwDquqAA6rqhAOq6ogDquqMA6rqkAOq6pQDquqYA6rqnAOq6qADquqkA6rqqAOq6qwDquqwA6rqtAOq6rgDquq8A6rqwAOq6sQDqurIA6rqzAOq6tADqurUA6rq2AOq6twDqurgA6rq5AOq6ugDqursA6rq8AOq6vQDqur4A6rq/AOq7gADqu4EA6ruCAOq7gwDqu4QA6ruFAOq7hgDqu4cA6ruIAOq7iQDqu4oA6ruLAOq7jADqu40A6ruOAOq7jwDqu5AA6ruRAOq7kgDqu5MA6ruUAOq7lQDqu5YA6ruXAOq7mADqu5kA6ruaAOq7mwDqu5wA6rudAOq7ngDqu58A6rugAOq7oQDqu6IA6rujAOq7pADqu6UA6rumAOq7pwDqu6gA6rupAOq7qgDqu6sA6rusAOq7rQDqu64A6ruvAOq7sADqu7EA6ruyAOq7swDqu7QA6ru1AOq7tgDqu7cA6ru4AOq7uQDqu7oA6ru7AOq7vADqu70A6ru+AOq7vwDqvIAA6ryBAOq8ggDqvIMA6ryEAOq8hQDqvIYA6ryHAOq8iADqvIkA6ryKAOq8iwDqvIwA6ryNAOq8jgDqvI8A6ryQAOq8kQDqvJIA6ryTAOq8lADqvJUA6ryWAOq8lwDqvJgA6ryZAOq8mgDqvJsA6rycAOq8nQDqvJ4A6ryfAOq8oADqvKEA6ryiAOq8owDqvKQA6rylAOq8pgDqvKcA6ryoAOq8qQDqvKoA6ryrAOq8rADqvK0A6ryuAOq8rwDqvLAA6ryxAOq8sgDqvLMA6ry0AOq8tQDqvLYA6ry3AOq8uADqvLkA6ry6AOq8uwDqvLwA6ry9AOq8vgDqvL8A6r2AAOq9gQDqvYIA6r2DAOq9hADqvYUA6r2GAOq9hwDqvYgA6r2JAOq9igDqvYsA6r2MAOq9jQDqvY4A6r2PAOq9kADqvZEA6r2SAOq9kwDqvZQA6r2VAOq9lgDqvZcA6r2YAOq9mQDqvZoA6r2bAOq9nADqvZ0A6r2eAOq9nwDqvaAA6r2hAOq9ogDqvaMA6r2kAOq9pQDqvaYA6r2nAOq9qADqvakA6r2qAOq9qwDqvawA6r2tAOq9rgDqva8A6r2wAOq9sQDqvbIA6r2zAOq9tADqvbUA6r22AOq9twDqvbgA6r25AOq9ugDqvbsA6r28AOq9vQDqvb4A6r2/AOq+gADqvoEA6r6CAOq+gwDqvoQA6r6FAOq+hgDqvocA6r6IAOq+iQDqvooA6r6LAOq+jADqvo0A6r6OAOq+jwDqvpAA6r6RAOq+kgDqvpMA6r6UAOq+lQDqvpYA6r6XAOq+mADqvpkA6r6aAOq+mwDqvpwA6r6dAOq+ngDqvp8A6r6gAOq+oQDqvqIA6r6jAOq+pADqvqUA6r6mAOq+pwDqvqgA6r6pAOq+qgDqvqsA6r6sAOq+rQDqvq4A6r6vAOq+sADqvrEA6r6yAOq+swDqvrQA6r61AOq+tgDqvrcA6r64AOq+uQDqvroA6r67AOq+vADqvr0A6r6+AOq+vwDqv4AA6r+BAOq/ggDqv4MA6r+EAOq/hQDqv4YA6r+HAOq/iADqv4kA6r+KAOq/iwDqv4wA6r+NAOq/jgDqv48A6r+QAOq/kQDqv5IA6r+TAOq/lADqv5UA6r+WAOq/lwDqv5gA6r+ZAOq/mgDqv5sA6r+cAOq/nQDqv54A6r+fAOq/oADqv6EA6r+iAOq/owDqv6QA6r+lAOq/pgDqv6cA6r+oAOq/qQDqv6oA6r+rAOq/rADqv60A6r+uAOq/rwDqv7AA6r+xAOq/sgDqv7MA6r+0AOq/tQDqv7YA6r+3AOq/uADqv7kA6r+6AOq/uwDqv7wA6r+9AOq/vgDqv78A64CAAOuAgQDrgIIA64CDAOuAhADrgIUA64CGAOuAhwDrgIgA64CJAOuAigDrgIsA64CMAOuAjQDrgI4A64CPAOuAkADrgJEA64CSAOuAkwDrgJQA64CVAOuAlgDrgJcA64CYAOuAmQDrgJoA64CbAOuAnADrgJ0A64CeAOuAnwDrgKAA64ChAOuAogDrgKMA64CkAOuApQDrgKYA64CnAOuAqADrgKkA64CqAOuAqwDrgKwA64CtAOuArgDrgK8A64CwAOuAsQDrgLIA64CzAOuAtADrgLUA64C2AOuAtwDrgLgA64C5AOuAugDrgLsA64C8AOuAvQDrgL4A64C/AOuBgADrgYEA64GCAOuBgwDrgYQA64GFAOuBhgDrgYcA64GIAOuBiQDrgYoA64GLAOuBjADrgY0A64GOAOuBjwDrgZAA64GRAOuBkgDrgZMA64GUAOuBlQDrgZYA64GXAOuBmADrgZkA64GaAOuBmwDrgZwA64GdAOuBngDrgZ8A64GgAOuBoQDrgaIA64GjAOuBpADrgaUA64GmAOuBpwDrgagA64GpAOuBqgDrgasA64GsAOuBrQDrga4A64GvAOuBsADrgbEA64GyAOuBswDrgbQA64G1AOuBtgDrgbcA64G4AOuBuQDrgboA64G7AOuBvADrgb0A64G+AOuBvwDrgoAA64KBAOuCggDrgoMA64KEAOuChQDrgoYA64KHAOuCiADrgokA64KKAOuCiwDrgowA64KNAOuCjgDrgo8A64KQAOuCkQDrgpIA64KTAOuClADrgpUA64KWAOuClwDrgpgA64KZAOuCmgDrgpsA64KcAOuCnQDrgp4A64KfAOuCoADrgqEA64KiAOuCowDrgqQA64KlAOuCpgDrgqcA64KoAOuCqQDrgqoA64KrAOuCrADrgq0A64KuAOuCrwDrgrAA64KxAOuCsgDrgrMA64K0AOuCtQDrgrYA64K3AOuCuADrgrkA64K6AOuCuwDrgrwA64K9AOuCvgDrgr8A64OAAOuDgQDrg4IA64ODAOuDhADrg4UA64OGAOuDhwDrg4gA64OJAOuDigDrg4sA64OMAOuDjQDrg44A64OPAOuDkADrg5EA64OSAOuDkwDrg5QA64OVAOuDlgDrg5cA64OYAOuDmQDrg5oA64ObAOuDnADrg50A64OeAOuDnwDrg6AA64OhAOuDogDrg6MA64OkAOuDpQDrg6YA64OnAOuDqADrg6kA64OqAOuDqwDrg6wA64OtAOuDrgDrg68A64OwAOuDsQDrg7IA64OzAOuDtADrg7UA64O2AOuDtwDrg7gA64O5AOuDugDrg7sA64O8AOuDvQDrg74A64O/AOuEgADrhIEA64SCAOuEgwDrhIQA64SFAOuEhgDrhIcA64SIAOuEiQDrhIoA64SLAOuEjADrhI0A64SOAOuEjwDrhJAA64SRAOuEkgDrhJMA64SUAOuElQDrhJYA64SXAOuEmADrhJkA64SaAOuEmwDrhJwA64SdAOuEngDrhJ8A64SgAOuEoQDrhKIA64SjAOuEpADrhKUA64SmAOuEpwDrhKgA64SpAOuEqgDrhKsA64SsAOuErQDrhK4A64SvAOuEsADrhLEA64SyAOuEswDrhLQA64S1AOuEtgDrhLcA64S4AOuEuQDrhLoA64S7AOuEvADrhL0A64S+AOuEvwDrhYAA64WBAOuFggDrhYMA64WEAOuFhQDrhYYA64WHAOuFiADrhYkA64WKAOuFiwDrhYwA64WNAOuFjgDrhY8A64WQAOuFkQDrhZIA64WTAOuFlADrhZUA64WWAOuFlwDrhZgA64WZAOuFmgDrhZsA64WcAOuFnQDrhZ4A64WfAOuFoADrhaEA64WiAOuFowDrhaQA64WlAOuFpgDrhacA64WoAOuFqQDrhaoA64WrAOuFrADrha0A64WuAOuFrwDrhbAA64WxAOuFsgDrhbMA64W0AOuFtQDrhbYA64W3AOuFuADrhbkA64W6AOuFuwDrhbwA64W9AOuFvgDrhb8A64aAAOuGgQDrhoIA64aDAOuGhADrhoUA64aGAOuGhwDrhogA64aJAOuGigDrhosA64aMAOuGjQDrho4A64aPAOuGkADrhpEA64aSAOuGkwDrhpQA64aVAOuGlgDrhpcA64aYAOuGmQDrhpoA64abAOuGnADrhp0A64aeAOuGnwDrhqAA64ahAOuGogDrhqMA64akAOuGpQDrhqYA64anAOuGqADrhqkA64aqAOuGqwDrhqwA64atAOuGrgDrhq8A64awAOuGsQDrhrIA64azAOuGtADrhrUA64a2AOuGtwDrhrgA64a5AOuGugDrhrsA64a8AOuGvQDrhr4A64a/AOuHgADrh4EA64eCAOuHgwDrh4QA64eFAOuHhgDrh4cA64eIAOuHiQDrh4oA64eLAOuHjADrh40A64eOAOuHjwDrh5AA64eRAOuHkgDrh5MA64eUAOuHlQDrh5YA64eXAOuHmADrh5kA64eaAOuHmwDrh5wA64edAOuHngDrh58A64egAOuHoQDrh6IA64ejAOuHpADrh6UA64emAOuHpwDrh6gA64epAOuHqgDrh6sA64esAOuHrQDrh64A64evAOuHsADrh7EA64eyAOuHswDrh7QA64e1AOuHtgDrh7cA64e4AOuHuQDrh7oA64e7AOuHvADrh70A64e+AOuHvwDriIAA64iBAOuIggDriIMA64iEAOuIhQDriIYA64iHAOuIiADriIkA64iKAOuIiwDriIwA64iNAOuIjgDriI8A64iQAOuIkQDriJIA64iTAOuIlADriJUA64iWAOuIlwDriJgA64iZAOuImgDriJsA64icAOuInQDriJ4A64ifAOuIoADriKEA64iiAOuIowDriKQA64ilAOuIpgDriKcA64ioAOuIqQDriKoA64irAOuIrADriK0A64iuAOuIrwDriLAA64ixAOuIsgDriLMA64i0AOuItQDriLYA64i3AOuIuADriLkA64i6AOuIuwDriLwA64i9AOuIvgDriL8A64mAAOuJgQDriYIA64mDAOuJhADriYUA64mGAOuJhwDriYgA64mJAOuJigDriYsA64mMAOuJjQDriY4A64mPAOuJkADriZEA64mSAOuJkwDriZQA64mVAOuJlgDriZcA64mYAOuJmQDriZoA64mbAOuJnADriZ0A64meAOuJnwDriaAA64mhAOuJogDriaMA64mkAOuJpQDriaYA64mnAOuJqADriakA64mqAOuJqwDriawA64mtAOuJrgDria8A64mwAOuJsQDribIA64mzAOuJtADribUA64m2AOuJtwDribgA64m5AOuJugDribsA64m8AOuJvQDrib4A64m/AOuKgADrioEA64qCAOuKgwDrioQA64qFAOuKhgDriocA64qIAOuKiQDriooA64qLAOuKjADrio0A64qOAOuKjwDripAA64qRAOuKkgDripMA64qUAOuKlQDripYA64qXAOuKmADripkA64qaAOuKmwDripwA64qdAOuKngDrip8A64qgAOuKoQDriqIA64qjAOuKpADriqUA64qmAOuKpwDriqgA64qpAOuKqgDriqsA64qsAOuKrQDriq4A64qvAOuKsADrirEA64qyAOuKswDrirQA64q1AOuKtgDrircA64q4AOuKuQDriroA64q7AOuKvADrir0A64q+AOuKvwDri4AA64uBAOuLggDri4MA64uEAOuLhQDri4YA64uHAOuLiADri4kA64uKAOuLiwDri4wA64uNAOuLjgDri48A64uQAOuLkQDri5IA64uTAOuLlADri5UA64uWAOuLlwDri5gA64uZAOuLmgDri5sA64ucAOuLnQDri54A64ufAOuLoADri6EA64uiAOuLowDri6QA64ulAOuLpgDri6cA64uoAOuLqQDri6oA64urAOuLrADri60A64uuAOuLrwDri7AA64uxAOuLsgDri7MA64u0AOuLtQDri7YA64u3AOuLuADri7kA64u6AOuLuwDri7wA64u9AOuLvgDri78A64yAAOuMgQDrjIIA64yDAOuMhADrjIUA64yGAOuMhwDrjIgA64yJAOuMigDrjIsA64yMAOuMjQDrjI4A64yPAOuMkADrjJEA64ySAOuMkwDrjJQA64yVAOuMlgDrjJcA64yYAOuMmQDrjJoA64ybAOuMnADrjJ0A64yeAOuMnwDrjKAA64yhAOuMogDrjKMA64ykAOuMpQDrjKYA64ynAOuMqADrjKkA64yqAOuMqwDrjKwA64ytAOuMrgDrjK8A64ywAOuMsQDrjLIA64yzAOuMtADrjLUA64y2AOuMtwDrjLgA64y5AOuMugDrjLsA64y8AOuMvQDrjL4A64y/AOuNgADrjYEA642CAOuNgwDrjYQA642FAOuNhgDrjYcA642IAOuNiQDrjYoA642LAOuNjADrjY0A642OAOuNjwDrjZAA642RAOuNkgDrjZMA642UAOuNlQDrjZYA642XAOuNmADrjZkA642aAOuNmwDrjZwA642dAOuNngDrjZ8A642gAOuNoQDrjaIA642jAOuNpADrjaUA642mAOuNpwDrjagA642pAOuNqgDrjasA642sAOuNrQDrja4A642vAOuNsADrjbEA642yAOuNswDrjbQA6421AOuNtgDrjbcA6424AOuNuQDrjboA6427AOuNvADrjb0A642+AOuNvwDrjoAA646BAOuOggDrjoMA646EAOuOhQDrjoYA646HAOuOiADrjokA646KAOuOiwDrjowA646NAOuOjgDrjo8A646QAOuOkQDrjpIA646TAOuOlADrjpUA646WAOuOlwDrjpgA646ZAOuOmgDrjpsA646cAOuOnQDrjp4A646fAOuOoADrjqEA646iAOuOowDrjqQA646lAOuOpgDrjqcA646oAOuOqQDrjqoA646rAOuOrADrjq0A646uAOuOrwDrjrAA646xAOuOsgDrjrMA6460AOuOtQDrjrYA6463AOuOuADrjrkA6466AOuOuwDrjrwA6469AOuOvgDrjr8A64+AAOuPgQDrj4IA64+DAOuPhADrj4UA64+GAOuPhwDrj4gA64+JAOuPigDrj4sA64+MAOuPjQDrj44A64+PAOuPkADrj5EA64+SAOuPkwDrj5QA64+VAOuPlgDrj5cA64+YAOuPmQDrj5oA64+bAOuPnADrj50A64+eAOuPnwDrj6AA64+hAOuPogDrj6MA64+kAOuPpQDrj6YA64+nAOuPqADrj6kA64+qAOuPqwDrj6wA64+tAOuPrgDrj68A64+wAOuPsQDrj7IA64+zAOuPtADrj7UA64+2AOuPtwDrj7gA64+5AOuPugDrj7sA64+8AOuPvQDrj74A64+/AOuQgADrkIEA65CCAOuQgwDrkIQA65CFAOuQhgDrkIcA65CIAOuQiQDrkIoA65CLAOuQjADrkI0A65COAOuQjwDrkJAA65CRAOuQkgDrkJMA65CUAOuQlQDrkJYA65CXAOuQmADrkJkA65CaAOuQmwDrkJwA65CdAOuQngDrkJ8A65CgAOuQoQDrkKIA65CjAOuQpADrkKUA65CmAOuQpwDrkKgA65CpAOuQqgDrkKsA65CsAOuQrQDrkK4A65CvAOuQsADrkLEA65CyAOuQswDrkLQA65C1AOuQtgDrkLcA65C4AOuQuQDrkLoA65C7AOuQvADrkL0A65C+AOuQvwDrkYAA65GBAOuRggDrkYMA65GEAOuRhQDrkYYA65GHAOuRiADrkYkA65GKAOuRiwDrkYwA65GNAOuRjgDrkY8A65GQAOuRkQDrkZIA65GTAOuRlADrkZUA65GWAOuRlwDrkZgA65GZAOuRmgDrkZsA65GcAOuRnQDrkZ4A65GfAOuRoADrkaEA65GiAOuRowDrkaQA65GlAOuRpgDrkacA65GoAOuRqQDrkaoA65GrAOuRrADrka0A65GuAOuRrwDrkbAA65GxAOuRsgDrkbMA65G0AOuRtQDrkbYA65G3AOuRuADrkbkA65G6AOuRuwDrkbwA65G9AOuRvgDrkb8A65KAAOuSgQDrkoIA65KDAOuShADrkoUA65KGAOuShwDrkogA65KJAOuSigDrkosA65KMAOuSjQDrko4A65KPAOuSkADrkpEA65KSAOuSkwDrkpQA65KVAOuSlgDrkpcA65KYAOuSmQDrkpoA65KbAOuSnADrkp0A65KeAOuSnwDrkqAA65KhAOuSogDrkqMA65KkAOuSpQDrkqYA65KnAOuSqADrkqkA65KqAOuSqwDrkqwA65KtAOuSrgDrkq8A65KwAOuSsQDrkrIA65KzAOuStADrkrUA65K2AOuStwDrkrgA65K5AOuSugDrkrsA65K8AOuSvQDrkr4A65K/AOuTgADrk4EA65OCAOuTgwDrk4QA65OFAOuThgDrk4cA65OIAOuTiQDrk4oA65OLAOuTjADrk40A65OOAOuTjwDrk5AA65ORAOuTkgDrk5MA65OUAOuTlQDrk5YA65OXAOuTmADrk5kA65OaAOuTmwDrk5wA65OdAOuTngDrk58A65OgAOuToQDrk6IA65OjAOuTpADrk6UA65OmAOuTpwDrk6gA65OpAOuTqgDrk6sA65OsAOuTrQDrk64A65OvAOuTsADrk7EA65OyAOuTswDrk7QA65O1AOuTtgDrk7cA65O4AOuTuQDrk7oA65O7AOuTvADrk70A65O+AOuTvwDrlIAA65SBAOuUggDrlIMA65SEAOuUhQDrlIYA65SHAOuUiADrlIkA65SKAOuUiwDrlIwA65SNAOuUjgDrlI8A65SQAOuUkQDrlJIA65STAOuUlADrlJUA65SWAOuUlwDrlJgA65SZAOuUmgDrlJsA65ScAOuUnQDrlJ4A65SfAOuUoADrlKEA65SiAOuUowDrlKQA65SlAOuUpgDrlKcA65SoAOuUqQDrlKoA65SrAOuUrADrlK0A65SuAOuUrwDrlLAA65SxAOuUsgDrlLMA65S0AOuUtQDrlLYA65S3AOuUuADrlLkA65S6AOuUuwDrlLwA65S9AOuUvgDrlL8A65WAAOuVgQDrlYIA65WDAOuVhADrlYUA65WGAOuVhwDrlYgA65WJAOuVigDrlYsA65WMAOuVjQDrlY4A65WPAOuVkADrlZEA65WSAOuVkwDrlZQA65WVAOuVlgDrlZcA65WYAOuVmQDrlZoA65WbAOuVnADrlZ0A65WeAOuVnwDrlaAA65WhAOuVogDrlaMA65WkAOuVpQDrlaYA65WnAOuVqADrlakA65WqAOuVqwDrlawA65WtAOuVrgDrla8A65WwAOuVsQDrlbIA65WzAOuVtADrlbUA65W2AOuVtwDrlbgA65W5AOuVugDrlbsA65W8AOuVvQDrlb4A65W/AOuWgADrloEA65aCAOuWgwDrloQA65aFAOuWhgDrlocA65aIAOuWiQDrlooA65aLAOuWjADrlo0A65aOAOuWjwDrlpAA65aRAOuWkgDrlpMA65aUAOuWlQDrlpYA65aXAOuWmADrlpkA65aaAOuWmwDrlpwA65adAOuWngDrlp8A65agAOuWoQDrlqIA65ajAOuWpADrlqUA65amAOuWpwDrlqgA65apAOuWqgDrlqsA65asAOuWrQDrlq4A65avAOuWsADrlrEA65ayAOuWswDrlrQA65a1AOuWtgDrlrcA65a4AOuWuQDrlroA65a7AOuWvADrlr0A65a+AOuWvwDrl4AA65eBAOuXggDrl4MA65eEAOuXhQDrl4YA65eHAOuXiADrl4kA65eKAOuXiwDrl4wA65eNAOuXjgDrl48A65eQAOuXkQDrl5IA65eTAOuXlADrl5UA65eWAOuXlwDrl5gA65eZAOuXmgDrl5sA65ecAOuXnQDrl54A65efAOuXoADrl6EA65eiAOuXowDrl6QA65elAOuXpgDrl6cA65eoAOuXqQDrl6oA65erAOuXrADrl60A65euAOuXrwDrl7AA65exAOuXsgDrl7MA65e0AOuXtQDrl7YA65e3AOuXuADrl7kA65e6AOuXuwDrl7wA65e9AOuXvgDrl78A65iAAOuYgQDrmIIA65iDAOuYhADrmIUA65iGAOuYhwDrmIgA65iJAOuYigDrmIsA65iMAOuYjQDrmI4A65iPAOuYkADrmJEA65iSAOuYkwDrmJQA65iVAOuYlgDrmJcA65iYAOuYmQDrmJoA65ibAOuYnADrmJ0A65ieAOuYnwDrmKAA65ihAOuYogDrmKMA65ikAOuYpQDrmKYA65inAOuYqADrmKkA65iqAOuYqwDrmKwA65itAOuYrgDrmK8A65iwAOuYsQDrmLIA65izAOuYtADrmLUA65i2AOuYtwDrmLgA65i5AOuYugDrmLsA65i8AOuYvQDrmL4A65i/AOuZgADrmYEA65mCAOuZgwDrmYQA65mFAOuZhgDrmYcA65mIAOuZiQDrmYoA65mLAOuZjADrmY0A65mOAOuZjwDrmZAA65mRAOuZkgDrmZMA65mUAOuZlQDrmZYA65mXAOuZmADrmZkA65maAOuZmwDrmZwA65mdAOuZngDrmZ8A65mgAOuZoQDrmaIA65mjAOuZpADrmaUA65mmAOuZpwDrmagA65mpAOuZqgDrmasA65msAOuZrQDrma4A65mvAOuZsADrmbEA65myAOuZswDrmbQA65m1AOuZtgDrmbcA65m4AOuZuQDrmboA65m7AOuZvADrmb0A65m+AOuZvwDrmoAA65qBAOuaggDrmoMA65qEAOuahQDrmoYA65qHAOuaiADrmokA65qKAOuaiwDrmowA65qNAOuajgDrmo8A65qQAOuakQDrmpIA65qTAOualADrmpUA65qWAOualwDrmpgA65qZAOuamgDrmpsA65qcAOuanQDrmp4A65qfAOuaoADrmqEA65qiAOuaowDrmqQA65qlAOuapgDrmqcA65qoAOuaqQDrmqoA65qrAOuarADrmq0A65quAOuarwDrmrAA65qxAOuasgDrmrMA65q0AOuatQDrmrYA65q3AOuauADrmrkA65q6AOuauwDrmrwA65q9AOuavgDrmr8A65uAAOubgQDrm4IA65uDAOubhADrm4UA65uGAOubhwDrm4gA65uJAOubigDrm4sA65uMAOubjQDrm44A65uPAOubkADrm5EA65uSAOubkwDrm5QA65uVAOublgDrm5cA65uYAOubmQDrm5oA65ubAOubnADrm50A65ueAOubnwDrm6AA65uhAOubogDrm6MA65ukAOubpQDrm6YA65unAOubqADrm6kA65uqAOubqwDrm6wA65utAOubrgDrm68A65uwAOubsQDrm7IA65uzAOubtADrm7UA65u2AOubtwDrm7gA65u5AOubugDrm7sA65u8AOubvQDrm74A65u/AOucgADrnIEA65yCAOucgwDrnIQA65yFAOuchgDrnIcA65yIAOuciQDrnIoA65yLAOucjADrnI0A65yOAOucjwDrnJAA65yRAOuckgDrnJMA65yUAOuclQDrnJYA65yXAOucmADrnJkA65yaAOucmwDrnJwA65ydAOucngDrnJ8A65ygAOucoQDrnKIA65yjAOucpADrnKUA65ymAOucpwDrnKgA65ypAOucqgDrnKsA65ysAOucrQDrnK4A65yvAOucsADrnLEA65yyAOucswDrnLQA65y1AOuctgDrnLcA65y4AOucuQDrnLoA65y7AOucvADrnL0A65y+AOucvwDrnYAA652BAOudggDrnYMA652EAOudhQDrnYYA652HAOudiADrnYkA652KAOudiwDrnYwA652NAOudjgDrnY8A652QAOudkQDrnZIA652TAOudlADrnZUA652WAOudlwDrnZgA652ZAOudmgDrnZsA652cAOudnQDrnZ4A652fAOudoADrnaEA652iAOudowDrnaQA652lAOudpgDrnacA652oAOudqQDrnaoA652rAOudrADrna0A652uAOudrwDrnbAA652xAOudsgDrnbMA6520AOudtQDrnbYA6523AOuduADrnbkA6526AOuduwDrnbwA6529AOudvgDrnb8A656AAOuegQDrnoIA656DAOuehADrnoUA656GAOuehwDrnogA656JAOueigDrnosA656MAOuejQDrno4A656PAOuekADrnpEA656SAOuekwDrnpQA656VAOuelgDrnpcA656YAOuemQDrnpoA656bAOuenADrnp0A656eAOuenwDrnqAA656hAOueogDrnqMA656kAOuepQDrnqYA656nAOueqADrnqkA656qAOueqwDrnqwA656tAOuergDrnq8A656wAOuesQDrnrIA656zAOuetADrnrUA6562AOuetwDrnrgA6565AOueugDrnrsA6568AOuevQDrnr4A656/AOufgADrn4EA65+CAOufgwDrn4QA65+FAOufhgDrn4cA65+IAOufiQDrn4oA65+LAOufjADrn40A65+OAOufjwDrn5AA65+RAOufkgDrn5MA65+UAOuflQDrn5YA65+XAOufmADrn5kA65+aAOufmwDrn5wA65+dAOufngDrn58A65+gAOufoQDrn6IA65+jAOufpADrn6UA65+mAOufpwDrn6gA65+pAOufqgDrn6sA65+sAOufrQDrn64A65+vAOufsADrn7EA65+yAOufswDrn7QA65+1AOuftgDrn7cA65+4AOufuQDrn7oA65+7AOufvADrn70A65++AOufvwDroIAA66CBAOugggDroIMA66CEAOughQDroIYA66CHAOugiADroIkA66CKAOugiwDroIwA66CNAOugjgDroI8A66CQAOugkQDroJIA66CTAOuglADroJUA66CWAOuglwDroJgA66CZAOugmgDroJsA66CcAOugnQDroJ4A66CfAOugoADroKEA66CiAOugowDroKQA66ClAOugpgDroKcA66CoAOugqQDroKoA66CrAOugrADroK0A66CuAOugrwDroLAA66CxAOugsgDroLMA66C0AOugtQDroLYA66C3AOuguADroLkA66C6AOuguwDroLwA66C9AOugvgDroL8A66GAAOuhgQDroYIA66GDAOuhhADroYUA66GGAOuhhwDroYgA66GJAOuhigDroYsA66GMAOuhjQDroY4A66GPAOuhkADroZEA66GSAOuhkwDroZQA66GVAOuhlgDroZcA66GYAOuhmQDroZoA66GbAOuhnADroZ0A66GeAOuhnwDroaAA66GhAOuhogDroaMA66GkAOuhpQDroaYA66GnAOuhqADroakA66GqAOuhqwDroawA66GtAOuhrgDroa8A66GwAOuhsQDrobIA66GzAOuhtADrobUA66G2AOuhtwDrobgA66G5AOuhugDrobsA66G8AOuhvQDrob4A66G/AOuigADrooEA66KCAOuigwDrooQA66KFAOuihgDroocA66KIAOuiiQDroooA66KLAOuijADroo0A66KOAOuijwDropAA66KRAOuikgDropMA66KUAOuilQDropYA66KXAOuimADropkA66KaAOuimwDropwA66KdAOuingDrop8A66KgAOuioQDroqIA66KjAOuipADroqUA66KmAOuipwDroqgA66KpAOuiqgDroqsA66KsAOuirQDroq4A66KvAOuisADrorEA66KyAOuiswDrorQA66K1AOuitgDrorcA66K4AOuiuQDroroA66K7AOuivADror0A66K+AOuivwDro4AA66OBAOujggDro4MA66OEAOujhQDro4YA66OHAOujiADro4kA66OKAOujiwDro4wA66ONAOujjgDro48A66OQAOujkQDro5IA66OTAOujlADro5UA66OWAOujlwDro5gA66OZAOujmgDro5sA66OcAOujnQDro54A66OfAOujoADro6EA66OiAOujowDro6QA66OlAOujpgDro6cA66OoAOujqQDro6oA66OrAOujrADro60A66OuAOujrwDro7AA66OxAOujsgDro7MA66O0AOujtQDro7YA66O3AOujuADro7kA66O6AOujuwDro7wA66O9AOujvgDro78A66SAAOukgQDrpIIA66SDAOukhADrpIUA66SGAOukhwDrpIgA66SJAOukigDrpIsA66SMAOukjQDrpI4A66SPAOukkADrpJEA66SSAOukkwDrpJQA66SVAOuklgDrpJcA66SYAOukmQDrpJoA66SbAOuknADrpJ0A66SeAOuknwDrpKAA66ShAOukogDrpKMA66SkAOukpQDrpKYA66SnAOukqADrpKkA66SqAOukqwDrpKwA66StAOukrgDrpK8A66SwAOuksQDrpLIA66SzAOuktADrpLUA66S2AOuktwDrpLgA66S5AOukugDrpLsA66S8AOukvQDrpL4A66S/AOulgADrpYEA66WCAOulgwDrpYQA66WFAOulhgDrpYcA66WIAOuliQDrpYoA66WLAOuljADrpY0A66WOAOuljwDrpZAA66WRAOulkgDrpZMA66WUAOullQDrpZYA66WXAOulmADrpZkA66WaAOulmwDrpZwA66WdAOulngDrpZ8A66WgAOuloQDrpaIA66WjAOulpADrpaUA66WmAOulpwDrpagA66WpAOulqgDrpasA66WsAOulrQDrpa4A66WvAOulsADrpbEA66WyAOulswDrpbQA66W1AOultgDrpbcA66W4AOuluQDrpboA66W7AOulvADrpb0A66W+AOulvwDrpoAA66aBAOumggDrpoMA66aEAOumhQDrpoYA66aHAOumiADrpokA66aKAOumiwDrpowA66aNAOumjgDrpo8A66aQAOumkQDrppIA66aTAOumlADrppUA66aWAOumlwDrppgA66aZAOummgDrppsA66acAOumnQDrpp4A66afAOumoADrpqEA66aiAOumowDrpqQA66alAOumpgDrpqcA66aoAOumqQDrpqoA66arAOumrADrpq0A66auAOumrwDrprAA66axAOumsgDrprMA66a0AOumtQDrprYA66a3AOumuADrprkA66a6AOumuwDrprwA66a9AOumvgDrpr8A66eAAOungQDrp4IA66eDAOunhADrp4UA66eGAOunhwDrp4gA66eJAOunigDrp4sA66eMAOunjQDrp44A66ePAOunkADrp5EA66eSAOunkwDrp5QA66eVAOunlgDrp5cA66eYAOunmQDrp5oA66ebAOunnADrp50A66eeAOunnwDrp6AA66ehAOunogDrp6MA66ekAOunpQDrp6YA66enAOunqADrp6kA66eqAOunqwDrp6wA66etAOunrgDrp68A66ewAOunsQDrp7IA66ezAOuntADrp7UA66e2AOuntwDrp7gA66e5AOunugDrp7sA66e8AOunvQDrp74A66e/AOuogADrqIEA66iCAOuogwDrqIQA66iFAOuohgDrqIcA66iIAOuoiQDrqIoA66iLAOuojADrqI0A66iOAOuojwDrqJAA66iRAOuokgDrqJMA66iUAOuolQDrqJYA66iXAOuomADrqJkA66iaAOuomwDrqJwA66idAOuongDrqJ8A66igAOuooQDrqKIA66ijAOuopADrqKUA66imAOuopwDrqKgA66ipAOuoqgDrqKsA66isAOuorQDrqK4A66ivAOuosADrqLEA66iyAOuoswDrqLQA66i1AOuotgDrqLcA66i4AOuouQDrqLoA66i7AOuovADrqL0A66i+AOuovwDrqYAA66mBAOupggDrqYMA66mEAOuphQDrqYYA66mHAOupiADrqYkA66mKAOupiwDrqYwA66mNAOupjgDrqY8A66mQAOupkQDrqZIA66mTAOuplADrqZUA66mWAOuplwDrqZgA66mZAOupmgDrqZsA66mcAOupnQDrqZ4A66mfAOupoADrqaEA66miAOupowDrqaQA66mlAOuppgDrqacA66moAOupqQDrqaoA66mrAOuprADrqa0A66muAOuprwDrqbAA66mxAOupsgDrqbMA66m0AOuptQDrqbYA66m3AOupuADrqbkA66m6AOupuwDrqbwA66m9AOupvgDrqb8A66qAAOuqgQDrqoIA66qDAOuqhADrqoUA66qGAOuqhwDrqogA66qJAOuqigDrqosA66qMAOuqjQDrqo4A66qPAOuqkADrqpEA66qSAOuqkwDrqpQA66qVAOuqlgDrqpcA66qYAOuqmQDrqpoA66qbAOuqnADrqp0A66qeAOuqnwDrqqAA66qhAOuqogDrqqMA66qkAOuqpQDrqqYA66qnAOuqqADrqqkA66qqAOuqqwDrqqwA66qtAOuqrgDrqq8A66qwAOuqsQDrqrIA66qzAOuqtADrqrUA66q2AOuqtwDrqrgA66q5AOuqugDrqrsA66q8AOuqvQDrqr4A66q/AOurgADrq4EA66uCAOurgwDrq4QA66uFAOurhgDrq4cA66uIAOuriQDrq4oA66uLAOurjADrq40A66uOAOurjwDrq5AA66uRAOurkgDrq5MA66uUAOurlQDrq5YA66uXAOurmADrq5kA66uaAOurmwDrq5wA66udAOurngDrq58A66ugAOuroQDrq6IA66ujAOurpADrq6UA66umAOurpwDrq6gA66upAOurqgDrq6sA66usAOurrQDrq64A66uvAOursADrq7EA66uyAOurswDrq7QA66u1AOurtgDrq7cA66u4AOuruQDrq7oA66u7AOurvADrq70A66u+AOurvwDrrIAA66yBAOusggDrrIMA66yEAOushQDrrIYA66yHAOusiADrrIkA66yKAOusiwDrrIwA66yNAOusjgDrrI8A66yQAOuskQDrrJIA66yTAOuslADrrJUA66yWAOuslwDrrJgA66yZAOusmgDrrJsA66ycAOusnQDrrJ4A66yfAOusoADrrKEA66yiAOusowDrrKQA66ylAOuspgDrrKcA66yoAOusqQDrrKoA66yrAOusrADrrK0A66yuAOusrwDrrLAA66yxAOussgDrrLMA66y0AOustQDrrLYA66y3AOusuADrrLkA66y6AOusuwDrrLwA66y9AOusvgDrrL8A662AAOutgQDrrYIA662DAOuthADrrYUA662GAOuthwDrrYgA662JAOutigDrrYsA662MAOutjQDrrY4A662PAOutkADrrZEA662SAOutkwDrrZQA662VAOutlgDrrZcA662YAOutmQDrrZoA662bAOutnADrrZ0A662eAOutnwDrraAA662hAOutogDrraMA662kAOutpQDrraYA662nAOutqADrrakA662qAOutqwDrrawA662tAOutrgDrra8A662wAOutsQDrrbIA662zAOuttADrrbUA6622AOuttwDrrbgA6625AOutugDrrbsA6628AOutvQDrrb4A662/AOuugADrroEA666CAOuugwDrroQA666FAOuuhgDrrocA666IAOuuiQDrrooA666LAOuujADrro0A666OAOuujwDrrpAA666RAOuukgDrrpMA666UAOuulQDrrpYA666XAOuumADrrpkA666aAOuumwDrrpwA666dAOuungDrrp8A666gAOuuoQDrrqIA666jAOuupADrrqUA666mAOuupwDrrqgA666pAOuuqgDrrqsA666sAOuurQDrrq4A666vAOuusADrrrEA666yAOuuswDrrrQA6661AOuutgDrrrcA6664AOuuuQDrrroA6667AOuuvADrrr0A666+AOuuvwDrr4AA66+BAOuvggDrr4MA66+EAOuvhQDrr4YA66+HAOuviADrr4kA66+KAOuviwDrr4wA66+NAOuvjgDrr48A66+QAOuvkQDrr5IA66+TAOuvlADrr5UA66+WAOuvlwDrr5gA66+ZAOuvmgDrr5sA66+cAOuvnQDrr54A66+fAOuvoADrr6EA66+iAOuvowDrr6QA66+lAOuvpgDrr6cA66+oAOuvqQDrr6oA66+rAOuvrADrr60A66+uAOuvrwDrr7AA66+xAOuvsgDrr7MA66+0AOuvtQDrr7YA66+3AOuvuADrr7kA66+6AOuvuwDrr7wA66+9AOuvvgDrr78A67CAAOuwgQDrsIIA67CDAOuwhADrsIUA67CGAOuwhwDrsIgA67CJAOuwigDrsIsA67CMAOuwjQDrsI4A67CPAOuwkADrsJEA67CSAOuwkwDrsJQA67CVAOuwlgDrsJcA67CYAOuwmQDrsJoA67CbAOuwnADrsJ0A67CeAOuwnwDrsKAA67ChAOuwogDrsKMA67CkAOuwpQDrsKYA67CnAOuwqADrsKkA67CqAOuwqwDrsKwA67CtAOuwrgDrsK8A67CwAOuwsQDrsLIA67CzAOuwtADrsLUA67C2AOuwtwDrsLgA67C5AOuwugDrsLsA67C8AOuwvQDrsL4A67C/AOuxgADrsYEA67GCAOuxgwDrsYQA67GFAOuxhgDrsYcA67GIAOuxiQDrsYoA67GLAOuxjADrsY0A67GOAOuxjwDrsZAA67GRAOuxkgDrsZMA67GUAOuxlQDrsZYA67GXAOuxmADrsZkA67GaAOuxmwDrsZwA67GdAOuxngDrsZ8A67GgAOuxoQDrsaIA67GjAOuxpADrsaUA67GmAOuxpwDrsagA67GpAOuxqgDrsasA67GsAOuxrQDrsa4A67GvAOuxsADrsbEA67GyAOuxswDrsbQA67G1AOuxtgDrsbcA67G4AOuxuQDrsboA67G7AOuxvADrsb0A67G+AOuxvwDrsoAA67KBAOuyggDrsoMA67KEAOuyhQDrsoYA67KHAOuyiADrsokA67KKAOuyiwDrsowA67KNAOuyjgDrso8A67KQAOuykQDrspIA67KTAOuylADrspUA67KWAOuylwDrspgA67KZAOuymgDrspsA67KcAOuynQDrsp4A67KfAOuyoADrsqEA67KiAOuyowDrsqQA67KlAOuypgDrsqcA67KoAOuyqQDrsqoA67KrAOuyrADrsq0A67KuAOuyrwDrsrAA67KxAOuysgDrsrMA67K0AOuytQDrsrYA67K3AOuyuADrsrkA67K6AOuyuwDrsrwA67K9AOuyvgDrsr8A67OAAOuzgQDrs4IA67ODAOuzhADrs4UA67OGAOuzhwDrs4gA67OJAOuzigDrs4sA67OMAOuzjQDrs44A67OPAOuzkADrs5EA67OSAOuzkwDrs5QA67OVAOuzlgDrs5cA67OYAOuzmQDrs5oA67ObAOuznADrs50A67OeAOuznwDrs6AA67OhAOuzogDrs6MA67OkAOuzpQDrs6YA67OnAOuzqADrs6kA67OqAOuzqwDrs6wA67OtAOuzrgDrs68A67OwAOuzsQDrs7IA67OzAOuztADrs7UA67O2AOuztwDrs7gA67O5AOuzugDrs7sA67O8AOuzvQDrs74A67O/AOu0gADrtIEA67SCAOu0gwDrtIQA67SFAOu0hgDrtIcA67SIAOu0iQDrtIoA67SLAOu0jADrtI0A67SOAOu0jwDrtJAA67SRAOu0kgDrtJMA67SUAOu0lQDrtJYA67SXAOu0mADrtJkA67SaAOu0mwDrtJwA67SdAOu0ngDrtJ8A67SgAOu0oQDrtKIA67SjAOu0pADrtKUA67SmAOu0pwDrtKgA67SpAOu0qgDrtKsA67SsAOu0rQDrtK4A67SvAOu0sADrtLEA67SyAOu0swDrtLQA67S1AOu0tgDrtLcA67S4AOu0uQDrtLoA67S7AOu0vADrtL0A67S+AOu0vwDrtYAA67WBAOu1ggDrtYMA67WEAOu1hQDrtYYA67WHAOu1iADrtYkA67WKAOu1iwDrtYwA67WNAOu1jgDrtY8A67WQAOu1kQDrtZIA67WTAOu1lADrtZUA67WWAOu1lwDrtZgA67WZAOu1mgDrtZsA67WcAOu1nQDrtZ4A67WfAOu1oADrtaEA67WiAOu1owDrtaQA67WlAOu1pgDrtacA67WoAOu1qQDrtaoA67WrAOu1rADrta0A67WuAOu1rwDrtbAA67WxAOu1sgDrtbMA67W0AOu1tQDrtbYA67W3AOu1uADrtbkA67W6AOu1uwDrtbwA67W9AOu1vgDrtb8A67aAAOu2gQDrtoIA67aDAOu2hADrtoUA67aGAOu2hwDrtogA67aJAOu2igDrtosA67aMAOu2jQDrto4A67aPAOu2kADrtpEA67aSAOu2kwDrtpQA67aVAOu2lgDrtpcA67aYAOu2mQDrtpoA67abAOu2nADrtp0A67aeAOu2nwDrtqAA67ahAOu2ogDrtqMA67akAOu2pQDrtqYA67anAOu2qADrtqkA67aqAOu2qwDrtqwA67atAOu2rgDrtq8A67awAOu2sQDrtrIA67azAOu2tADrtrUA67a2AOu2twDrtrgA67a5AOu2ugDrtrsA67a8AOu2vQDrtr4A67a/AOu3gADrt4EA67eCAOu3gwDrt4QA67eFAOu3hgDrt4cA67eIAOu3iQDrt4oA67eLAOu3jADrt40A67eOAOu3jwDrt5AA67eRAOu3kgDrt5MA67eUAOu3lQDrt5YA67eXAOu3mADrt5kA67eaAOu3mwDrt5wA67edAOu3ngDrt58A67egAOu3oQDrt6IA67ejAOu3pADrt6UA67emAOu3pwDrt6gA67epAOu3qgDrt6sA67esAOu3rQDrt64A67evAOu3sADrt7EA67eyAOu3swDrt7QA67e1AOu3tgDrt7cA67e4AOu3uQDrt7oA67e7AOu3vADrt70A67e+AOu3vwDruIAA67iBAOu4ggDruIMA67iEAOu4hQDruIYA67iHAOu4iADruIkA67iKAOu4iwDruIwA67iNAOu4jgDruI8A67iQAOu4kQDruJIA67iTAOu4lADruJUA67iWAOu4lwDruJgA67iZAOu4mgDruJsA67icAOu4nQDruJ4A67ifAOu4oADruKEA67iiAOu4owDruKQA67ilAOu4pgDruKcA67ioAOu4qQDruKoA67irAOu4rADruK0A67iuAOu4rwDruLAA67ixAOu4sgDruLMA67i0AOu4tQDruLYA67i3AOu4uADruLkA67i6AOu4uwDruLwA67i9AOu4vgDruL8A67mAAOu5gQDruYIA67mDAOu5hADruYUA67mGAOu5hwDruYgA67mJAOu5igDruYsA67mMAOu5jQDruY4A67mPAOu5kADruZEA67mSAOu5kwDruZQA67mVAOu5lgDruZcA67mYAOu5mQDruZoA67mbAOu5nADruZ0A67meAOu5nwDruaAA67mhAOu5ogDruaMA67mkAOu5pQDruaYA67mnAOu5qADruakA67mqAOu5qwDruawA67mtAOu5rgDrua8A67mwAOu5sQDrubIA67mzAOu5tADrubUA67m2AOu5twDrubgA67m5AOu5ugDrubsA67m8AOu5vQDrub4A67m/AOu6gADruoEA67qCAOu6gwDruoQA67qFAOu6hgDruocA67qIAOu6iQDruooA67qLAOu6jADruo0A67qOAOu6jwDrupAA67qRAOu6kgDrupMA67qUAOu6lQDrupYA67qXAOu6mADrupkA67qaAOu6mwDrupwA67qdAOu6ngDrup8A67qgAOu6oQDruqIA67qjAOu6pADruqUA67qmAOu6pwDruqgA67qpAOu6qgDruqsA67qsAOu6rQDruq4A67qvAOu6sADrurEA67qyAOu6swDrurQA67q1AOu6tgDrurcA67q4AOu6uQDruroA67q7AOu6vADrur0A67q+AOu6vwDru4AA67uBAOu7ggDru4MA67uEAOu7hQDru4YA67uHAOu7iADru4kA67uKAOu7iwDru4wA67uNAOu7jgDru48A67uQAOu7kQDru5IA67uTAOu7lADru5UA67uWAOu7lwDru5gA67uZAOu7mgDru5sA67ucAOu7nQDru54A67ufAOu7oADru6EA67uiAOu7owDru6QA67ulAOu7pgDru6cA67uoAOu7qQDru6oA67urAOu7rADru60A67uuAOu7rwDru7AA67uxAOu7sgDru7MA67u0AOu7tQDru7YA67u3AOu7uADru7kA67u6AOu7uwDru7wA67u9AOu7vgDru78A67yAAOu8gQDrvIIA67yDAOu8hADrvIUA67yGAOu8hwDrvIgA67yJAOu8igDrvIsA67yMAOu8jQDrvI4A67yPAOu8kADrvJEA67ySAOu8kwDrvJQA67yVAOu8lgDrvJcA67yYAOu8mQDrvJoA67ybAOu8nADrvJ0A67yeAOu8nwDrvKAA67yhAOu8ogDrvKMA67ykAOu8pQDrvKYA67ynAOu8qADrvKkA67yqAOu8qwDrvKwA67ytAOu8rgDrvK8A67ywAOu8sQDrvLIA67yzAOu8tADrvLUA67y2AOu8twDrvLgA67y5AOu8ugDrvLsA67y8AOu8vQDrvL4A67y/AOu9gADrvYEA672CAOu9gwDrvYQA672FAOu9hgDrvYcA672IAOu9iQDrvYoA672LAOu9jADrvY0A672OAOu9jwDrvZAA672RAOu9kgDrvZMA672UAOu9lQDrvZYA672XAOu9mADrvZkA672aAOu9mwDrvZwA672dAOu9ngDrvZ8A672gAOu9oQDrvaIA672jAOu9pADrvaUA672mAOu9pwDrvagA672pAOu9qgDrvasA672sAOu9rQDrva4A672vAOu9sADrvbEA672yAOu9swDrvbQA6721AOu9tgDrvbcA6724AOu9uQDrvboA6727AOu9vADrvb0A672+AOu9vwDrvoAA676BAOu+ggDrvoMA676EAOu+hQDrvoYA676HAOu+iADrvokA676KAOu+iwDrvowA676NAOu+jgDrvo8A676QAOu+kQDrvpIA676TAOu+lADrvpUA676WAOu+lwDrvpgA676ZAOu+mgDrvpsA676cAOu+nQDrvp4A676fAOu+oADrvqEA676iAOu+owDrvqQA676lAOu+pgDrvqcA676oAOu+qQDrvqoA676rAOu+rADrvq0A676uAOu+rwDrvrAA676xAOu+sgDrvrMA6760AOu+tQDrvrYA6763AOu+uADrvrkA6766AOu+uwDrvrwA6769AOu+vgDrvr8A67+AAOu/gQDrv4IA67+DAOu/hADrv4UA67+GAOu/hwDrv4gA67+JAOu/igDrv4sA67+MAOu/jQDrv44A67+PAOu/kADrv5EA67+SAOu/kwDrv5QA67+VAOu/lgDrv5cA67+YAOu/mQDrv5oA67+bAOu/nADrv50A67+eAOu/nwDrv6AA67+hAOu/ogDrv6MA67+kAOu/pQDrv6YA67+nAOu/qADrv6kA67+qAOu/qwDrv6wA67+tAOu/rgDrv68A67+wAOu/sQDrv7IA67+zAOu/tADrv7UA67+2AOu/twDrv7gA67+5AOu/ugDrv7sA67+8AOu/vQDrv74A67+/AOyAgADsgIEA7ICCAOyAgwDsgIQA7ICFAOyAhgDsgIcA7ICIAOyAiQDsgIoA7ICLAOyAjADsgI0A7ICOAOyAjwDsgJAA7ICRAOyAkgDsgJMA7ICUAOyAlQDsgJYA7ICXAOyAmADsgJkA7ICaAOyAmwDsgJwA7ICdAOyAngDsgJ8A7ICgAOyAoQDsgKIA7ICjAOyApADsgKUA7ICmAOyApwDsgKgA7ICpAOyAqgDsgKsA7ICsAOyArQDsgK4A7ICvAOyAsADsgLEA7ICyAOyAswDsgLQA7IC1AOyAtgDsgLcA7IC4AOyAuQDsgLoA7IC7AOyAvADsgL0A7IC+AOyAvwDsgYAA7IGBAOyBggDsgYMA7IGEAOyBhQDsgYYA7IGHAOyBiADsgYkA7IGKAOyBiwDsgYwA7IGNAOyBjgDsgY8A7IGQAOyBkQDsgZIA7IGTAOyBlADsgZUA7IGWAOyBlwDsgZgA7IGZAOyBmgDsgZsA7IGcAOyBnQDsgZ4A7IGfAOyBoADsgaEA7IGiAOyBowDsgaQA7IGlAOyBpgDsgacA7IGoAOyBqQDsgaoA7IGrAOyBrADsga0A7IGuAOyBrwDsgbAA7IGxAOyBsgDsgbMA7IG0AOyBtQDsgbYA7IG3AOyBuADsgbkA7IG6AOyBuwDsgbwA7IG9AOyBvgDsgb8A7IKAAOyCgQDsgoIA7IKDAOyChADsgoUA7IKGAOyChwDsgogA7IKJAOyCigDsgosA7IKMAOyCjQDsgo4A7IKPAOyCkADsgpEA7IKSAOyCkwDsgpQA7IKVAOyClgDsgpcA7IKYAOyCmQDsgpoA7IKbAOyCnADsgp0A7IKeAOyCnwDsgqAA7IKhAOyCogDsgqMA7IKkAOyCpQDsgqYA7IKnAOyCqADsgqkA7IKqAOyCqwDsgqwA7IKtAOyCrgDsgq8A7IKwAOyCsQDsgrIA7IKzAOyCtADsgrUA7IK2AOyCtwDsgrgA7IK5AOyCugDsgrsA7IK8AOyCvQDsgr4A7IK/AOyDgADsg4EA7IOCAOyDgwDsg4QA7IOFAOyDhgDsg4cA7IOIAOyDiQDsg4oA7IOLAOyDjADsg40A7IOOAOyDjwDsg5AA7IORAOyDkgDsg5MA7IOUAOyDlQDsg5YA7IOXAOyDmADsg5kA7IOaAOyDmwDsg5wA7IOdAOyDngDsg58A7IOgAOyDoQDsg6IA7IOjAOyDpADsg6UA7IOmAOyDpwDsg6gA7IOpAOyDqgDsg6sA7IOsAOyDrQDsg64A7IOvAOyDsADsg7EA7IOyAOyDswDsg7QA7IO1AOyDtgDsg7cA7IO4AOyDuQDsg7oA7IO7AOyDvADsg70A7IO+AOyDvwDshIAA7ISBAOyEggDshIMA7ISEAOyEhQDshIYA7ISHAOyEiADshIkA7ISKAOyEiwDshIwA7ISNAOyEjgDshI8A7ISQAOyEkQDshJIA7ISTAOyElADshJUA7ISWAOyElwDshJgA7ISZAOyEmgDshJsA7IScAOyEnQDshJ4A7ISfAOyEoADshKEA7ISiAOyEowDshKQA7ISlAOyEpgDshKcA7ISoAOyEqQDshKoA7ISrAOyErADshK0A7ISuAOyErwDshLAA7ISxAOyEsgDshLMA7IS0AOyEtQDshLYA7IS3AOyEuADshLkA7IS6AOyEuwDshLwA7IS9AOyEvgDshL8A7IWAAOyFgQDshYIA7IWDAOyFhADshYUA7IWGAOyFhwDshYgA7IWJAOyFigDshYsA7IWMAOyFjQDshY4A7IWPAOyFkADshZEA7IWSAOyFkwDshZQA7IWVAOyFlgDshZcA7IWYAOyFmQDshZoA7IWbAOyFnADshZ0A7IWeAOyFnwDshaAA7IWhAOyFogDshaMA7IWkAOyFpQDshaYA7IWnAOyFqADshakA7IWqAOyFqwDshawA7IWtAOyFrgDsha8A7IWwAOyFsQDshbIA7IWzAOyFtADshbUA7IW2AOyFtwDshbgA7IW5AOyFugDshbsA7IW8AOyFvQDshb4A7IW/AOyGgADshoEA7IaCAOyGgwDshoQA7IaFAOyGhgDshocA7IaIAOyGiQDshooA7IaLAOyGjADsho0A7IaOAOyGjwDshpAA7IaRAOyGkgDshpMA7IaUAOyGlQDshpYA7IaXAOyGmADshpkA7IaaAOyGmwDshpwA7IadAOyGngDshp8A7IagAOyGoQDshqIA7IajAOyGpADshqUA7IamAOyGpwDshqgA7IapAOyGqgDshqsA7IasAOyGrQDshq4A7IavAOyGsADshrEA7IayAOyGswDshrQA7Ia1AOyGtgDshrcA7Ia4AOyGuQDshroA7Ia7AOyGvADshr0A7Ia+AOyGvwDsh4AA7IeBAOyHggDsh4MA7IeEAOyHhQDsh4YA7IeHAOyHiADsh4kA7IeKAOyHiwDsh4wA7IeNAOyHjgDsh48A7IeQAOyHkQDsh5IA7IeTAOyHlADsh5UA7IeWAOyHlwDsh5gA7IeZAOyHmgDsh5sA7IecAOyHnQDsh54A7IefAOyHoADsh6EA7IeiAOyHowDsh6QA7IelAOyHpgDsh6cA7IeoAOyHqQDsh6oA7IerAOyHrADsh60A7IeuAOyHrwDsh7AA7IexAOyHsgDsh7MA7Ie0AOyHtQDsh7YA7Ie3AOyHuADsh7kA7Ie6AOyHuwDsh7wA7Ie9AOyHvgDsh78A7IiAAOyIgQDsiIIA7IiDAOyIhADsiIUA7IiGAOyIhwDsiIgA7IiJAOyIigDsiIsA7IiMAOyIjQDsiI4A7IiPAOyIkADsiJEA7IiSAOyIkwDsiJQA7IiVAOyIlgDsiJcA7IiYAOyImQDsiJoA7IibAOyInADsiJ0A7IieAOyInwDsiKAA7IihAOyIogDsiKMA7IikAOyIpQDsiKYA7IinAOyIqADsiKkA7IiqAOyIqwDsiKwA7IitAOyIrgDsiK8A7IiwAOyIsQDsiLIA7IizAOyItADsiLUA7Ii2AOyItwDsiLgA7Ii5AOyIugDsiLsA7Ii8AOyIvQDsiL4A7Ii/AOyJgADsiYEA7ImCAOyJgwDsiYQA7ImFAOyJhgDsiYcA7ImIAOyJiQDsiYoA7ImLAOyJjADsiY0A7ImOAOyJjwDsiZAA7ImRAOyJkgDsiZMA7ImUAOyJlQDsiZYA7ImXAOyJmADsiZkA7ImaAOyJmwDsiZwA7ImdAOyJngDsiZ8A7ImgAOyJoQDsiaIA7ImjAOyJpADsiaUA7ImmAOyJpwDsiagA7ImpAOyJqgDsiasA7ImsAOyJrQDsia4A7ImvAOyJsADsibEA7ImyAOyJswDsibQA7Im1AOyJtgDsibcA7Im4AOyJuQDsiboA7Im7AOyJvADsib0A7Im+AOyJvwDsioAA7IqBAOyKggDsioMA7IqEAOyKhQDsioYA7IqHAOyKiADsiokA7IqKAOyKiwDsiowA7IqNAOyKjgDsio8A7IqQAOyKkQDsipIA7IqTAOyKlADsipUA7IqWAOyKlwDsipgA7IqZAOyKmgDsipsA7IqcAOyKnQDsip4A7IqfAOyKoADsiqEA7IqiAOyKowDsiqQA7IqlAOyKpgDsiqcA7IqoAOyKqQDsiqoA7IqrAOyKrADsiq0A7IquAOyKrwDsirAA7IqxAOyKsgDsirMA7Iq0AOyKtQDsirYA7Iq3AOyKuADsirkA7Iq6AOyKuwDsirwA7Iq9AOyKvgDsir8A7IuAAOyLgQDsi4IA7IuDAOyLhADsi4UA7IuGAOyLhwDsi4gA7IuJAOyLigDsi4sA7IuMAOyLjQDsi44A7IuPAOyLkADsi5EA7IuSAOyLkwDsi5QA7IuVAOyLlgDsi5cA7IuYAOyLmQDsi5oA7IubAOyLnADsi50A7IueAOyLnwDsi6AA7IuhAOyLogDsi6MA7IukAOyLpQDsi6YA7IunAOyLqADsi6kA7IuqAOyLqwDsi6wA7IutAOyLrgDsi68A7IuwAOyLsQDsi7IA7IuzAOyLtADsi7UA7Iu2AOyLtwDsi7gA7Iu5AOyLugDsi7sA7Iu8AOyLvQDsi74A7Iu/AOyMgADsjIEA7IyCAOyMgwDsjIQA7IyFAOyMhgDsjIcA7IyIAOyMiQDsjIoA7IyLAOyMjADsjI0A7IyOAOyMjwDsjJAA7IyRAOyMkgDsjJMA7IyUAOyMlQDsjJYA7IyXAOyMmADsjJkA7IyaAOyMmwDsjJwA7IydAOyMngDsjJ8A7IygAOyMoQDsjKIA7IyjAOyMpADsjKUA7IymAOyMpwDsjKgA7IypAOyMqgDsjKsA7IysAOyMrQDsjK4A7IyvAOyMsADsjLEA7IyyAOyMswDsjLQA7Iy1AOyMtgDsjLcA7Iy4AOyMuQDsjLoA7Iy7AOyMvADsjL0A7Iy+AOyMvwDsjYAA7I2BAOyNggDsjYMA7I2EAOyNhQDsjYYA7I2HAOyNiADsjYkA7I2KAOyNiwDsjYwA7I2NAOyNjgDsjY8A7I2QAOyNkQDsjZIA7I2TAOyNlADsjZUA7I2WAOyNlwDsjZgA7I2ZAOyNmgDsjZsA7I2cAOyNnQDsjZ4A7I2fAOyNoADsjaEA7I2iAOyNowDsjaQA7I2lAOyNpgDsjacA7I2oAOyNqQDsjaoA7I2rAOyNrADsja0A7I2uAOyNrwDsjbAA7I2xAOyNsgDsjbMA7I20AOyNtQDsjbYA7I23AOyNuADsjbkA7I26AOyNuwDsjbwA7I29AOyNvgDsjb8A7I6AAOyOgQDsjoIA7I6DAOyOhADsjoUA7I6GAOyOhwDsjogA7I6JAOyOigDsjosA7I6MAOyOjQDsjo4A7I6PAOyOkADsjpEA7I6SAOyOkwDsjpQA7I6VAOyOlgDsjpcA7I6YAOyOmQDsjpoA7I6bAOyOnADsjp0A7I6eAOyOnwDsjqAA7I6hAOyOogDsjqMA7I6kAOyOpQDsjqYA7I6nAOyOqADsjqkA7I6qAOyOqwDsjqwA7I6tAOyOrgDsjq8A7I6wAOyOsQDsjrIA7I6zAOyOtADsjrUA7I62AOyOtwDsjrgA7I65AOyOugDsjrsA7I68AOyOvQDsjr4A7I6/AOyPgADsj4EA7I+CAOyPgwDsj4QA7I+FAOyPhgDsj4cA7I+IAOyPiQDsj4oA7I+LAOyPjADsj40A7I+OAOyPjwDsj5AA7I+RAOyPkgDsj5MA7I+UAOyPlQDsj5YA7I+XAOyPmADsj5kA7I+aAOyPmwDsj5wA7I+dAOyPngDsj58A7I+gAOyPoQDsj6IA7I+jAOyPpADsj6UA7I+mAOyPpwDsj6gA7I+pAOyPqgDsj6sA7I+sAOyPrQDsj64A7I+vAOyPsADsj7EA7I+yAOyPswDsj7QA7I+1AOyPtgDsj7cA7I+4AOyPuQDsj7oA7I+7AOyPvADsj70A7I++AOyPvwDskIAA7JCBAOyQggDskIMA7JCEAOyQhQDskIYA7JCHAOyQiADskIkA7JCKAOyQiwDskIwA7JCNAOyQjgDskI8A7JCQAOyQkQDskJIA7JCTAOyQlADskJUA7JCWAOyQlwDskJgA7JCZAOyQmgDskJsA7JCcAOyQnQDskJ4A7JCfAOyQoADskKEA7JCiAOyQowDskKQA7JClAOyQpgDskKcA7JCoAOyQqQDskKoA7JCrAOyQrADskK0A7JCuAOyQrwDskLAA7JCxAOyQsgDskLMA7JC0AOyQtQDskLYA7JC3AOyQuADskLkA7JC6AOyQuwDskLwA7JC9AOyQvgDskL8A7JGAAOyRgQDskYIA7JGDAOyRhADskYUA7JGGAOyRhwDskYgA7JGJAOyRigDskYsA7JGMAOyRjQDskY4A7JGPAOyRkADskZEA7JGSAOyRkwDskZQA7JGVAOyRlgDskZcA7JGYAOyRmQDskZoA7JGbAOyRnADskZ0A7JGeAOyRnwDskaAA7JGhAOyRogDskaMA7JGkAOyRpQDskaYA7JGnAOyRqADskakA7JGqAOyRqwDskawA7JGtAOyRrgDska8A7JGwAOyRsQDskbIA7JGzAOyRtADskbUA7JG2AOyRtwDskbgA7JG5AOyRugDskbsA7JG8AOyRvQDskb4A7JG/AOySgADskoEA7JKCAOySgwDskoQA7JKFAOyShgDskocA7JKIAOySiQDskooA7JKLAOySjADsko0A7JKOAOySjwDskpAA7JKRAOySkgDskpMA7JKUAOySlQDskpYA7JKXAOySmADskpkA7JKaAOySmwDskpwA7JKdAOySngDskp8A7JKgAOySoQDskqIA7JKjAOySpADskqUA7JKmAOySpwDskqgA7JKpAOySqgDskqsA7JKsAOySrQDskq4A7JKvAOySsADskrEA7JKyAOySswDskrQA7JK1AOyStgDskrcA7JK4AOySuQDskroA7JK7AOySvADskr0A7JK+AOySvwDsk4AA7JOBAOyTggDsk4MA7JOEAOyThQDsk4YA7JOHAOyTiADsk4kA7JOKAOyTiwDsk4wA7JONAOyTjgDsk48A7JOQAOyTkQDsk5IA7JOTAOyTlADsk5UA7JOWAOyTlwDsk5gA7JOZAOyTmgDsk5sA7JOcAOyTnQDsk54A7JOfAOyToADsk6EA7JOiAOyTowDsk6QA7JOlAOyTpgDsk6cA7JOoAOyTqQDsk6oA7JOrAOyTrADsk60A7JOuAOyTrwDsk7AA7JOxAOyTsgDsk7MA7JO0AOyTtQDsk7YA7JO3AOyTuADsk7kA7JO6AOyTuwDsk7wA7JO9AOyTvgDsk78A7JSAAOyUgQDslIIA7JSDAOyUhADslIUA7JSGAOyUhwDslIgA7JSJAOyUigDslIsA7JSMAOyUjQDslI4A7JSPAOyUkADslJEA7JSSAOyUkwDslJQA7JSVAOyUlgDslJcA7JSYAOyUmQDslJoA7JSbAOyUnADslJ0A7JSeAOyUnwDslKAA7JShAOyUogDslKMA7JSkAOyUpQDslKYA7JSnAOyUqADslKkA7JSqAOyUqwDslKwA7JStAOyUrgDslK8A7JSwAOyUsQDslLIA7JSzAOyUtADslLUA7JS2AOyUtwDslLgA7JS5AOyUugDslLsA7JS8AOyUvQDslL4A7JS/AOyVgADslYEA7JWCAOyVgwDslYQA7JWFAOyVhgDslYcA7JWIAOyViQDslYoA7JWLAOyVjADslY0A7JWOAOyVjwDslZAA7JWRAOyVkgDslZMA7JWUAOyVlQDslZYA7JWXAOyVmADslZkA7JWaAOyVmwDslZwA7JWdAOyVngDslZ8A7JWgAOyVoQDslaIA7JWjAOyVpADslaUA7JWmAOyVpwDslagA7JWpAOyVqgDslasA7JWsAOyVrQDsla4A7JWvAOyVsADslbEA7JWyAOyVswDslbQA7JW1AOyVtgDslbcA7JW4AOyVuQDslboA7JW7AOyVvADslb0A7JW+AOyVvwDsloAA7JaBAOyWggDsloMA7JaEAOyWhQDsloYA7JaHAOyWiADslokA7JaKAOyWiwDslowA7JaNAOyWjgDslo8A7JaQAOyWkQDslpIA7JaTAOyWlADslpUA7JaWAOyWlwDslpgA7JaZAOyWmgDslpsA7JacAOyWnQDslp4A7JafAOyWoADslqEA7JaiAOyWowDslqQA7JalAOyWpgDslqcA7JaoAOyWqQDslqoA7JarAOyWrADslq0A7JauAOyWrwDslrAA7JaxAOyWsgDslrMA7Ja0AOyWtQDslrYA7Ja3AOyWuADslrkA7Ja6AOyWuwDslrwA7Ja9AOyWvgDslr8A7JeAAOyXgQDsl4IA7JeDAOyXhADsl4UA7JeGAOyXhwDsl4gA7JeJAOyXigDsl4sA7JeMAOyXjQDsl44A7JePAOyXkADsl5EA7JeSAOyXkwDsl5QA7JeVAOyXlgDsl5cA7JeYAOyXmQDsl5oA7JebAOyXnADsl50A7JeeAOyXnwDsl6AA7JehAOyXogDsl6MA7JekAOyXpQDsl6YA7JenAOyXqADsl6kA7JeqAOyXqwDsl6wA7JetAOyXrgDsl68A7JewAOyXsQDsl7IA7JezAOyXtADsl7UA7Je2AOyXtwDsl7gA7Je5AOyXugDsl7sA7Je8AOyXvQDsl74A7Je/AOyYgADsmIEA7JiCAOyYgwDsmIQA7JiFAOyYhgDsmIcA7JiIAOyYiQDsmIoA7JiLAOyYjADsmI0A7JiOAOyYjwDsmJAA7JiRAOyYkgDsmJMA7JiUAOyYlQDsmJYA7JiXAOyYmADsmJkA7JiaAOyYmwDsmJwA7JidAOyYngDsmJ8A7JigAOyYoQDsmKIA7JijAOyYpADsmKUA7JimAOyYpwDsmKgA7JipAOyYqgDsmKsA7JisAOyYrQDsmK4A7JivAOyYsADsmLEA7JiyAOyYswDsmLQA7Ji1AOyYtgDsmLcA7Ji4AOyYuQDsmLoA7Ji7AOyYvADsmL0A7Ji+AOyYvwDsmYAA7JmBAOyZggDsmYMA7JmEAOyZhQDsmYYA7JmHAOyZiADsmYkA7JmKAOyZiwDsmYwA7JmNAOyZjgDsmY8A7JmQAOyZkQDsmZIA7JmTAOyZlADsmZUA7JmWAOyZlwDsmZgA7JmZAOyZmgDsmZsA7JmcAOyZnQDsmZ4A7JmfAOyZoADsmaEA7JmiAOyZowDsmaQA7JmlAOyZpgDsmacA7JmoAOyZqQDsmaoA7JmrAOyZrADsma0A7JmuAOyZrwDsmbAA7JmxAOyZsgDsmbMA7Jm0AOyZtQDsmbYA7Jm3AOyZuADsmbkA7Jm6AOyZuwDsmbwA7Jm9AOyZvgDsmb8A7JqAAOyagQDsmoIA7JqDAOyahADsmoUA7JqGAOyahwDsmogA7JqJAOyaigDsmosA7JqMAOyajQDsmo4A7JqPAOyakADsmpEA7JqSAOyakwDsmpQA7JqVAOyalgDsmpcA7JqYAOyamQDsmpoA7JqbAOyanADsmp0A7JqeAOyanwDsmqAA7JqhAOyaogDsmqMA7JqkAOyapQDsmqYA7JqnAOyaqADsmqkA7JqqAOyaqwDsmqwA7JqtAOyargDsmq8A7JqwAOyasQDsmrIA7JqzAOyatADsmrUA7Jq2AOyatwDsmrgA7Jq5AOyaugDsmrsA7Jq8AOyavQDsmr4A7Jq/AOybgADsm4EA7JuCAOybgwDsm4QA7JuFAOybhgDsm4cA7JuIAOybiQDsm4oA7JuLAOybjADsm40A7JuOAOybjwDsm5AA7JuRAOybkgDsm5MA7JuUAOyblQDsm5YA7JuXAOybmADsm5kA7JuaAOybmwDsm5wA7JudAOybngDsm58A7JugAOyboQDsm6IA7JujAOybpADsm6UA7JumAOybpwDsm6gA7JupAOybqgDsm6sA7JusAOybrQDsm64A7JuvAOybsADsm7EA7JuyAOybswDsm7QA7Ju1AOybtgDsm7cA7Ju4AOybuQDsm7oA7Ju7AOybvADsm70A7Ju+AOybvwDsnIAA7JyBAOycggDsnIMA7JyEAOychQDsnIYA7JyHAOyciADsnIkA7JyKAOyciwDsnIwA7JyNAOycjgDsnI8A7JyQAOyckQDsnJIA7JyTAOyclADsnJUA7JyWAOyclwDsnJgA7JyZAOycmgDsnJsA7JycAOycnQDsnJ4A7JyfAOycoADsnKEA7JyiAOycowDsnKQA7JylAOycpgDsnKcA7JyoAOycqQDsnKoA7JyrAOycrADsnK0A7JyuAOycrwDsnLAA7JyxAOycsgDsnLMA7Jy0AOyctQDsnLYA7Jy3AOycuADsnLkA7Jy6AOycuwDsnLwA7Jy9AOycvgDsnL8A7J2AAOydgQDsnYIA7J2DAOydhADsnYUA7J2GAOydhwDsnYgA7J2JAOydigDsnYsA7J2MAOydjQDsnY4A7J2PAOydkADsnZEA7J2SAOydkwDsnZQA7J2VAOydlgDsnZcA7J2YAOydmQDsnZoA7J2bAOydnADsnZ0A7J2eAOydnwDsnaAA7J2hAOydogDsnaMA7J2kAOydpQDsnaYA7J2nAOydqADsnakA7J2qAOydqwDsnawA7J2tAOydrgDsna8A7J2wAOydsQDsnbIA7J2zAOydtADsnbUA7J22AOydtwDsnbgA7J25AOydugDsnbsA7J28AOydvQDsnb4A7J2/AOyegADsnoEA7J6CAOyegwDsnoQA7J6FAOyehgDsnocA7J6IAOyeiQDsnooA7J6LAOyejADsno0A7J6OAOyejwDsnpAA7J6RAOyekgDsnpMA7J6UAOyelQDsnpYA7J6XAOyemADsnpkA7J6aAOyemwDsnpwA7J6dAOyengDsnp8A7J6gAOyeoQDsnqIA7J6jAOyepADsnqUA7J6mAOyepwDsnqgA7J6pAOyeqgDsnqsA7J6sAOyerQDsnq4A7J6vAOyesADsnrEA7J6yAOyeswDsnrQA7J61AOyetgDsnrcA7J64AOyeuQDsnroA7J67AOyevADsnr0A7J6+AOyevwDsn4AA7J+BAOyfggDsn4MA7J+EAOyfhQDsn4YA7J+HAOyfiADsn4kA7J+KAOyfiwDsn4wA7J+NAOyfjgDsn48A7J+QAOyfkQDsn5IA7J+TAOyflADsn5UA7J+WAOyflwDsn5gA7J+ZAOyfmgDsn5sA7J+cAOyfnQDsn54A7J+fAOyfoADsn6EA7J+iAOyfowDsn6QA7J+lAOyfpgDsn6cA7J+oAOyfqQDsn6oA7J+rAOyfrADsn60A7J+uAOyfrwDsn7AA7J+xAOyfsgDsn7MA7J+0AOyftQDsn7YA7J+3AOyfuADsn7kA7J+6AOyfuwDsn7wA7J+9AOyfvgDsn78A7KCAAOyggQDsoIIA7KCDAOyghADsoIUA7KCGAOyghwDsoIgA7KCJAOygigDsoIsA7KCMAOygjQDsoI4A7KCPAOygkADsoJEA7KCSAOygkwDsoJQA7KCVAOyglgDsoJcA7KCYAOygmQDsoJoA7KCbAOygnADsoJ0A7KCeAOygnwDsoKAA7KChAOygogDsoKMA7KCkAOygpQDsoKYA7KCnAOygqADsoKkA7KCqAOygqwDsoKwA7KCtAOygrgDsoK8A7KCwAOygsQDsoLIA7KCzAOygtADsoLUA7KC2AOygtwDsoLgA7KC5AOygugDsoLsA7KC8AOygvQDsoL4A7KC/AOyhgADsoYEA7KGCAOyhgwDsoYQA7KGFAOyhhgDsoYcA7KGIAOyhiQDsoYoA7KGLAOyhjADsoY0A7KGOAOyhjwDsoZAA7KGRAOyhkgDsoZMA7KGUAOyhlQDsoZYA7KGXAOyhmADsoZkA7KGaAOyhmwDsoZwA7KGdAOyhngDsoZ8A7KGgAOyhoQDsoaIA7KGjAOyhpADsoaUA7KGmAOyhpwDsoagA7KGpAOyhqgDsoasA7KGsAOyhrQDsoa4A7KGvAOyhsADsobEA7KGyAOyhswDsobQA7KG1AOyhtgDsobcA7KG4AOyhuQDsoboA7KG7AOyhvADsob0A7KG+AOyhvwDsooAA7KKBAOyiggDsooMA7KKEAOyihQDsooYA7KKHAOyiiADsookA7KKKAOyiiwDsoowA7KKNAOyijgDsoo8A7KKQAOyikQDsopIA7KKTAOyilADsopUA7KKWAOyilwDsopgA7KKZAOyimgDsopsA7KKcAOyinQDsop4A7KKfAOyioADsoqEA7KKiAOyiowDsoqQA7KKlAOyipgDsoqcA7KKoAOyiqQDsoqoA7KKrAOyirADsoq0A7KKuAOyirwDsorAA7KKxAOyisgDsorMA7KK0AOyitQDsorYA7KK3AOyiuADsorkA7KK6AOyiuwDsorwA7KK9AOyivgDsor8A7KOAAOyjgQDso4IA7KODAOyjhADso4UA7KOGAOyjhwDso4gA7KOJAOyjigDso4sA7KOMAOyjjQDso44A7KOPAOyjkADso5EA7KOSAOyjkwDso5QA7KOVAOyjlgDso5cA7KOYAOyjmQDso5oA7KObAOyjnADso50A7KOeAOyjnwDso6AA7KOhAOyjogDso6MA7KOkAOyjpQDso6YA7KOnAOyjqADso6kA7KOqAOyjqwDso6wA7KOtAOyjrgDso68A7KOwAOyjsQDso7IA7KOzAOyjtADso7UA7KO2AOyjtwDso7gA7KO5AOyjugDso7sA7KO8AOyjvOydmADso70A7KO+AOyjvwDspIAA7KSBAOykggDspIMA7KSEAOykhQDspIYA7KSHAOykiADspIkA7KSKAOykiwDspIwA7KSNAOykjgDspI8A7KSQAOykkQDspJIA7KSTAOyklADspJUA7KSWAOyklwDspJgA7KSZAOykmgDspJsA7KScAOyknQDspJ4A7KSfAOykoADspKEA7KSiAOykowDspKQA7KSlAOykpgDspKcA7KSoAOykqQDspKoA7KSrAOykrADspK0A7KSuAOykrwDspLAA7KSxAOyksgDspLMA7KS0AOyktQDspLYA7KS3AOykuADspLkA7KS6AOykuwDspLwA7KS9AOykvgDspL8A7KWAAOylgQDspYIA7KWDAOylhADspYUA7KWGAOylhwDspYgA7KWJAOyligDspYsA7KWMAOyljQDspY4A7KWPAOylkADspZEA7KWSAOylkwDspZQA7KWVAOyllgDspZcA7KWYAOylmQDspZoA7KWbAOylnADspZ0A7KWeAOylnwDspaAA7KWhAOylogDspaMA7KWkAOylpQDspaYA7KWnAOylqADspakA7KWqAOylqwDspawA7KWtAOylrgDspa8A7KWwAOylsQDspbIA7KWzAOyltADspbUA7KW2AOyltwDspbgA7KW5AOylugDspbsA7KW8AOylvQDspb4A7KW/AOymgADspoEA7KaCAOymgwDspoQA7KaFAOymhgDspocA7KaIAOymiQDspooA7KaLAOymjADspo0A7KaOAOymjwDsppAA7KaRAOymkgDsppMA7KaUAOymlQDsppYA7KaXAOymmADsppkA7KaaAOymmwDsppwA7KadAOymngDspp8A7KagAOymoQDspqIA7KajAOympADspqUA7KamAOympwDspqgA7KapAOymqgDspqsA7KasAOymrQDspq4A7KavAOymsADsprEA7KayAOymswDsprQA7Ka1AOymtgDsprcA7Ka4AOymuQDsproA7Ka7AOymvADspr0A7Ka+AOymvwDsp4AA7KeBAOynggDsp4MA7KeEAOynhQDsp4YA7KeHAOyniADsp4kA7KeKAOyniwDsp4wA7KeNAOynjgDsp48A7KeQAOynkQDsp5IA7KeTAOynlADsp5UA7KeWAOynlwDsp5gA7KeZAOynmgDsp5sA7KecAOynnQDsp54A7KefAOynoADsp6EA7KeiAOynowDsp6QA7KelAOynpgDsp6cA7KeoAOynqQDsp6oA7KerAOynrADsp60A7KeuAOynrwDsp7AA7KexAOynsgDsp7MA7Ke0AOyntQDsp7YA7Ke3AOynuADsp7kA7Ke6AOynuwDsp7wA7Ke9AOynvgDsp78A7KiAAOyogQDsqIIA7KiDAOyohADsqIUA7KiGAOyohwDsqIgA7KiJAOyoigDsqIsA7KiMAOyojQDsqI4A7KiPAOyokADsqJEA7KiSAOyokwDsqJQA7KiVAOyolgDsqJcA7KiYAOyomQDsqJoA7KibAOyonADsqJ0A7KieAOyonwDsqKAA7KihAOyoogDsqKMA7KikAOyopQDsqKYA7KinAOyoqADsqKkA7KiqAOyoqwDsqKwA7KitAOyorgDsqK8A7KiwAOyosQDsqLIA7KizAOyotADsqLUA7Ki2AOyotwDsqLgA7Ki5AOyougDsqLsA7Ki8AOyovQDsqL4A7Ki/AOypgADsqYEA7KmCAOypgwDsqYQA7KmFAOyphgDsqYcA7KmIAOypiQDsqYoA7KmLAOypjADsqY0A7KmOAOypjwDsqZAA7KmRAOypkgDsqZMA7KmUAOyplQDsqZYA7KmXAOypmADsqZkA7KmaAOypmwDsqZwA7KmdAOypngDsqZ8A7KmgAOypoQDsqaIA7KmjAOyppADsqaUA7KmmAOyppwDsqagA7KmpAOypqgDsqasA7KmsAOyprQDsqa4A7KmvAOypsADsqbEA7KmyAOypswDsqbQA7Km1AOyptgDsqbcA7Km4AOypuQDsqboA7Km7AOypvADsqb0A7Km+AOypvwDsqoAA7KqBAOyqggDsqoMA7KqEAOyqhQDsqoYA7KqHAOyqiADsqokA7KqKAOyqiwDsqowA7KqNAOyqjgDsqo8A7KqQAOyqkQDsqpIA7KqTAOyqlADsqpUA7KqWAOyqlwDsqpgA7KqZAOyqmgDsqpsA7KqcAOyqnQDsqp4A7KqfAOyqoADsqqEA7KqiAOyqowDsqqQA7KqlAOyqpgDsqqcA7KqoAOyqqQDsqqoA7KqrAOyqrADsqq0A7KquAOyqrwDsqrAA7KqxAOyqsgDsqrMA7Kq0AOyqtQDsqrYA7Kq3AOyquADsqrkA7Kq6AOyquwDsqrwA7Kq9AOyqvgDsqr8A7KuAAOyrgQDsq4IA7KuDAOyrhADsq4UA7KuGAOyrhwDsq4gA7KuJAOyrigDsq4sA7KuMAOyrjQDsq44A7KuPAOyrkADsq5EA7KuSAOyrkwDsq5QA7KuVAOyrlgDsq5cA7KuYAOyrmQDsq5oA7KubAOyrnADsq50A7KueAOyrnwDsq6AA7KuhAOyrogDsq6MA7KukAOyrpQDsq6YA7KunAOyrqADsq6kA7KuqAOyrqwDsq6wA7KutAOyrrgDsq68A7KuwAOyrsQDsq7IA7KuzAOyrtADsq7UA7Ku2AOyrtwDsq7gA7Ku5AOyrugDsq7sA7Ku8AOyrvQDsq74A7Ku/AOysgADsrIEA7KyCAOysgwDsrIQA7KyFAOyshgDsrIcA7KyIAOysiQDsrIoA7KyLAOysjADsrI0A7KyOAOysjwDsrJAA7KyRAOyskgDsrJMA7KyUAOyslQDsrJYA7KyXAOysmADsrJkA7KyaAOysmwDsrJwA7KydAOysngDsrJ8A7KygAOysoQDsrKIA7KyjAOyspADsrKUA7KymAOyspwDsrKgA7KypAOysqgDsrKsA7KysAOysrQDsrK4A7KyvAOyssADsrLEA7KyyAOysswDsrLQA7Ky1AOystgDsrLcA7Ky4AOysuQDsrLoA7Ky7AOysvADsrL0A7Ky+AOysvwDsrYAA7K2BAOytggDsrYMA7K2EAOythQDsrYYA7K2HAOytiADsrYkA7K2KAOytiwDsrYwA7K2NAOytjgDsrY8A7K2QAOytkQDsrZIA7K2TAOytlADsrZUA7K2WAOytlwDsrZgA7K2ZAOytmgDsrZsA7K2cAOytnQDsrZ4A7K2fAOytoADsraEA7K2iAOytowDsraQA7K2lAOytpgDsracA7K2oAOytqQDsraoA7K2rAOytrADsra0A7K2uAOytrwDsrbAA7K2xAOytsgDsrbMA7K20AOyttQDsrbYA7K23AOytuADsrbkA7K26AOytuwDsrbwA7K29AOytvgDsrb8A7K6AAOyugQDsroIA7K6DAOyuhADsroUA7K6GAOyuhwDsrogA7K6JAOyuigDsrosA7K6MAOyujQDsro4A7K6PAOyukADsrpEA7K6SAOyukwDsrpQA7K6VAOyulgDsrpcA7K6YAOyumQDsrpoA7K6bAOyunADsrp0A7K6eAOyunwDsrqAA7K6hAOyuogDsrqMA7K6kAOyupQDsrqYA7K6nAOyuqADsrqkA7K6qAOyuqwDsrqwA7K6tAOyurgDsrq8A7K6wAOyusQDsrrIA7K6zAOyutADsrrUA7K62AOyutwDsrrgA7K65AOyuugDsrrsA7K68AOyuvQDsrr4A7K6/AOyvgADsr4EA7K+CAOyvgwDsr4QA7K+FAOyvhgDsr4cA7K+IAOyviQDsr4oA7K+LAOyvjADsr40A7K+OAOyvjwDsr5AA7K+RAOyvkgDsr5MA7K+UAOyvlQDsr5YA7K+XAOyvmADsr5kA7K+aAOyvmwDsr5wA7K+dAOyvngDsr58A7K+gAOyvoQDsr6IA7K+jAOyvpADsr6UA7K+mAOyvpwDsr6gA7K+pAOyvqgDsr6sA7K+sAOyvrQDsr64A7K+vAOyvsADsr7EA7K+yAOyvswDsr7QA7K+1AOyvtgDsr7cA7K+4AOyvuQDsr7oA7K+7AOyvvADsr70A7K++AOyvvwDssIAA7LCBAOywggDssIMA7LCEAOywhQDssIYA7LCHAOywiADssIkA7LCKAOywiwDssIwA7LCNAOywjgDssI8A7LCQAOywkQDssJIA7LCTAOywlADssJUA7LCWAOywlwDssJgA7LCZAOywmgDssJsA7LCcAOywnQDssJ4A7LCfAOywoADssKEA7LCiAOywowDssKQA7LClAOywpgDssKcA7LCoAOywqQDssKoA7LCrAOywrADssK0A7LCuAOywrwDssLAA7LCxAOywsgDssLMA7LC0AOywtQDssLYA7LC3AOywuADssLjqs6AA7LC5AOywugDssLsA7LC8AOywvQDssL4A7LC/AOyxgADssYEA7LGCAOyxgwDssYQA7LGFAOyxhgDssYcA7LGIAOyxiQDssYoA7LGLAOyxjADssY0A7LGOAOyxjwDssZAA7LGRAOyxkgDssZMA7LGUAOyxlQDssZYA7LGXAOyxmADssZkA7LGaAOyxmwDssZwA7LGdAOyxngDssZ8A7LGgAOyxoQDssaIA7LGjAOyxpADssaUA7LGmAOyxpwDssagA7LGpAOyxqgDssasA7LGsAOyxrQDssa4A7LGvAOyxsADssbEA7LGyAOyxswDssbQA7LG1AOyxtgDssbcA7LG4AOyxuQDssboA7LG7AOyxvADssb0A7LG+AOyxvwDssoAA7LKBAOyyggDssoMA7LKEAOyyhQDssoYA7LKHAOyyiADssokA7LKKAOyyiwDssowA7LKNAOyyjgDsso8A7LKQAOyykQDsspIA7LKTAOyylADsspUA7LKWAOyylwDsspgA7LKZAOyymgDsspsA7LKcAOyynQDssp4A7LKfAOyyoADssqEA7LKiAOyyowDssqQA7LKlAOyypgDssqcA7LKoAOyyqQDssqoA7LKrAOyyrADssq0A7LKuAOyyrwDssrAA7LKxAOyysgDssrMA7LK0AOyytQDssrYA7LK3AOyyuADssrkA7LK6AOyyuwDssrwA7LK9AOyyvgDssr8A7LOAAOyzgQDss4IA7LODAOyzhADss4UA7LOGAOyzhwDss4gA7LOJAOyzigDss4sA7LOMAOyzjQDss44A7LOPAOyzkADss5EA7LOSAOyzkwDss5QA7LOVAOyzlgDss5cA7LOYAOyzmQDss5oA7LObAOyznADss50A7LOeAOyznwDss6AA7LOhAOyzogDss6MA7LOkAOyzpQDss6YA7LOnAOyzqADss6kA7LOqAOyzqwDss6wA7LOtAOyzrgDss68A7LOwAOyzsQDss7IA7LOzAOyztADss7UA7LO2AOyztwDss7gA7LO5AOyzugDss7sA7LO8AOyzvQDss74A7LO/AOy0gADstIEA7LSCAOy0gwDstIQA7LSFAOy0hgDstIcA7LSIAOy0iQDstIoA7LSLAOy0jADstI0A7LSOAOy0jwDstJAA7LSRAOy0kgDstJMA7LSUAOy0lQDstJYA7LSXAOy0mADstJkA7LSaAOy0mwDstJwA7LSdAOy0ngDstJ8A7LSgAOy0oQDstKIA7LSjAOy0pADstKUA7LSmAOy0pwDstKgA7LSpAOy0qgDstKsA7LSsAOy0rQDstK4A7LSvAOy0sADstLEA7LSyAOy0swDstLQA7LS1AOy0tgDstLcA7LS4AOy0uQDstLoA7LS7AOy0vADstL0A7LS+AOy0vwDstYAA7LWBAOy1ggDstYMA7LWEAOy1hQDstYYA7LWHAOy1iADstYkA7LWKAOy1iwDstYwA7LWNAOy1jgDstY8A7LWQAOy1kQDstZIA7LWTAOy1lADstZUA7LWWAOy1lwDstZgA7LWZAOy1mgDstZsA7LWcAOy1nQDstZ4A7LWfAOy1oADstaEA7LWiAOy1owDstaQA7LWlAOy1pgDstacA7LWoAOy1qQDstaoA7LWrAOy1rADsta0A7LWuAOy1rwDstbAA7LWxAOy1sgDstbMA7LW0AOy1tQDstbYA7LW3AOy1uADstbkA7LW6AOy1uwDstbwA7LW9AOy1vgDstb8A7LaAAOy2gQDstoIA7LaDAOy2hADstoUA7LaGAOy2hwDstogA7LaJAOy2igDstosA7LaMAOy2jQDsto4A7LaPAOy2kADstpEA7LaSAOy2kwDstpQA7LaVAOy2lgDstpcA7LaYAOy2mQDstpoA7LabAOy2nADstp0A7LaeAOy2nwDstqAA7LahAOy2ogDstqMA7LakAOy2pQDstqYA7LanAOy2qADstqkA7LaqAOy2qwDstqwA7LatAOy2rgDstq8A7LawAOy2sQDstrIA7LazAOy2tADstrUA7La2AOy2twDstrgA7La5AOy2ugDstrsA7La8AOy2vQDstr4A7La/AOy3gADst4EA7LeCAOy3gwDst4QA7LeFAOy3hgDst4cA7LeIAOy3iQDst4oA7LeLAOy3jADst40A7LeOAOy3jwDst5AA7LeRAOy3kgDst5MA7LeUAOy3lQDst5YA7LeXAOy3mADst5kA7LeaAOy3mwDst5wA7LedAOy3ngDst58A7LegAOy3oQDst6IA7LejAOy3pADst6UA7LemAOy3pwDst6gA7LepAOy3qgDst6sA7LesAOy3rQDst64A7LevAOy3sADst7EA7LeyAOy3swDst7QA7Le1AOy3tgDst7cA7Le4AOy3uQDst7oA7Le7AOy3vADst70A7Le+AOy3vwDsuIAA7LiBAOy4ggDsuIMA7LiEAOy4hQDsuIYA7LiHAOy4iADsuIkA7LiKAOy4iwDsuIwA7LiNAOy4jgDsuI8A7LiQAOy4kQDsuJIA7LiTAOy4lADsuJUA7LiWAOy4lwDsuJgA7LiZAOy4mgDsuJsA7LicAOy4nQDsuJ4A7LifAOy4oADsuKEA7LiiAOy4owDsuKQA7LilAOy4pgDsuKcA7LioAOy4qQDsuKoA7LirAOy4rADsuK0A7LiuAOy4rwDsuLAA7LixAOy4sgDsuLMA7Li0AOy4tQDsuLYA7Li3AOy4uADsuLkA7Li6AOy4uwDsuLwA7Li9AOy4vgDsuL8A7LmAAOy5gQDsuYIA7LmDAOy5hADsuYUA7LmGAOy5hwDsuYgA7LmJAOy5igDsuYsA7LmMAOy5jQDsuY4A7LmPAOy5kADsuZEA7LmSAOy5kwDsuZQA7LmVAOy5lgDsuZcA7LmYAOy5mQDsuZoA7LmbAOy5nADsuZ0A7LmeAOy5nwDsuaAA7LmhAOy5ogDsuaMA7LmkAOy5pQDsuaYA7LmnAOy5qADsuakA7LmqAOy5qwDsuawA7LmtAOy5rgDsua8A7LmwAOy5sQDsubIA7LmzAOy5tADsubUA7Lm2AOy5twDsubgA7Lm5AOy5ugDsubsA7Lm8AOy5vQDsub4A7Lm/AOy6gADsuoEA7LqCAOy6gwDsuoQA7LqFAOy6hgDsuocA7LqIAOy6iQDsuooA7LqLAOy6jADsuo0A7LqOAOy6jwDsupAA7LqRAOy6kgDsupMA7LqUAOy6lQDsupYA7LqXAOy6mADsupkA7LqaAOy6mwDsupwA7LqdAOy6ngDsup8A7LqgAOy6oQDsuqIA7LqjAOy6pADsuqUA7LqmAOy6pwDsuqgA7LqpAOy6qgDsuqsA7LqsAOy6rQDsuq4A7LqvAOy6sADsurEA7LqyAOy6swDsurQA7Lq1AOy6tgDsurcA7Lq4AOy6uQDsuroA7Lq7AOy6vADsur0A7Lq+AOy6vwDsu4AA7LuBAOy7ggDsu4MA7LuEAOy7hQDsu4YA7LuHAOy7iADsu4kA7LuKAOy7iwDsu4wA7LuNAOy7jgDsu48A7LuQAOy7kQDsu5IA7LuTAOy7lADsu5UA7LuWAOy7lwDsu5gA7LuZAOy7mgDsu5sA7LucAOy7nQDsu54A7LufAOy7oADsu6EA7LuiAOy7owDsu6QA7LulAOy7pgDsu6cA7LuoAOy7qQDsu6oA7LurAOy7rADsu60A7LuuAOy7rwDsu7AA7LuxAOy7sgDsu7MA7Lu0AOy7tQDsu7YA7Lu3AOy7uADsu7kA7Lu6AOy7uwDsu7wA7Lu9AOy7vgDsu78A7LyAAOy8gQDsvIIA7LyDAOy8hADsvIUA7LyGAOy8hwDsvIgA7LyJAOy8igDsvIsA7LyMAOy8jQDsvI4A7LyPAOy8kADsvJEA7LySAOy8kwDsvJQA7LyVAOy8lgDsvJcA7LyYAOy8mQDsvJoA7LybAOy8nADsvJ0A7LyeAOy8nwDsvKAA7LyhAOy8ogDsvKMA7LykAOy8pQDsvKYA7LynAOy8qADsvKkA7LyqAOy8qwDsvKwA7LytAOy8rgDsvK8A7LywAOy8sQDsvLIA7LyzAOy8tADsvLUA7Ly2AOy8twDsvLgA7Ly5AOy8ugDsvLsA7Ly8AOy8vQDsvL4A7Ly/AOy9gADsvYEA7L2CAOy9gwDsvYQA7L2FAOy9hgDsvYcA7L2IAOy9iQDsvYoA7L2LAOy9jADsvY0A7L2OAOy9jwDsvZAA7L2RAOy9kgDsvZMA7L2UAOy9lQDsvZYA7L2XAOy9mADsvZkA7L2aAOy9mwDsvZwA7L2dAOy9ngDsvZ8A7L2gAOy9oQDsvaIA7L2jAOy9pADsvaUA7L2mAOy9pwDsvagA7L2pAOy9qgDsvasA7L2sAOy9rQDsva4A7L2vAOy9sADsvbEA7L2yAOy9swDsvbQA7L21AOy9tgDsvbcA7L24AOy9uQDsvboA7L27AOy9vADsvb0A7L2+AOy9vwDsvoAA7L6BAOy+ggDsvoMA7L6EAOy+hQDsvoYA7L6HAOy+iADsvokA7L6KAOy+iwDsvowA7L6NAOy+jgDsvo8A7L6QAOy+kQDsvpIA7L6TAOy+lADsvpUA7L6WAOy+lwDsvpgA7L6ZAOy+mgDsvpsA7L6cAOy+nQDsvp4A7L6fAOy+oADsvqEA7L6iAOy+owDsvqQA7L6lAOy+pgDsvqcA7L6oAOy+qQDsvqoA7L6rAOy+rADsvq0A7L6uAOy+rwDsvrAA7L6xAOy+sgDsvrMA7L60AOy+tQDsvrYA7L63AOy+uADsvrkA7L66AOy+uwDsvrwA7L69AOy+vgDsvr8A7L+AAOy/gQDsv4IA7L+DAOy/hADsv4UA7L+GAOy/hwDsv4gA7L+JAOy/igDsv4sA7L+MAOy/jQDsv44A7L+PAOy/kADsv5EA7L+SAOy/kwDsv5QA7L+VAOy/lgDsv5cA7L+YAOy/mQDsv5oA7L+bAOy/nADsv50A7L+eAOy/nwDsv6AA7L+hAOy/ogDsv6MA7L+kAOy/pQDsv6YA7L+nAOy/qADsv6kA7L+qAOy/qwDsv6wA7L+tAOy/rgDsv68A7L+wAOy/sQDsv7IA7L+zAOy/tADsv7UA7L+2AOy/twDsv7gA7L+5AOy/ugDsv7sA7L+8AOy/vQDsv74A7L+/AO2AgADtgIEA7YCCAO2AgwDtgIQA7YCFAO2AhgDtgIcA7YCIAO2AiQDtgIoA7YCLAO2AjADtgI0A7YCOAO2AjwDtgJAA7YCRAO2AkgDtgJMA7YCUAO2AlQDtgJYA7YCXAO2AmADtgJkA7YCaAO2AmwDtgJwA7YCdAO2AngDtgJ8A7YCgAO2AoQDtgKIA7YCjAO2ApADtgKUA7YCmAO2ApwDtgKgA7YCpAO2AqgDtgKsA7YCsAO2ArQDtgK4A7YCvAO2AsADtgLEA7YCyAO2AswDtgLQA7YC1AO2AtgDtgLcA7YC4AO2AuQDtgLoA7YC7AO2AvADtgL0A7YC+AO2AvwDtgYAA7YGBAO2BggDtgYMA7YGEAO2BhQDtgYYA7YGHAO2BiADtgYkA7YGKAO2BiwDtgYwA7YGNAO2BjgDtgY8A7YGQAO2BkQDtgZIA7YGTAO2BlADtgZUA7YGWAO2BlwDtgZgA7YGZAO2BmgDtgZsA7YGcAO2BnQDtgZ4A7YGfAO2BoADtgaEA7YGiAO2BowDtgaQA7YGlAO2BpgDtgacA7YGoAO2BqQDtgaoA7YGrAO2BrADtga0A7YGuAO2BrwDtgbAA7YGxAO2BsgDtgbMA7YG0AO2BtQDtgbYA7YG3AO2BuADtgbkA7YG6AO2BuwDtgbwA7YG9AO2BvgDtgb8A7YKAAO2CgQDtgoIA7YKDAO2ChADtgoUA7YKGAO2ChwDtgogA7YKJAO2CigDtgosA7YKMAO2CjQDtgo4A7YKPAO2CkADtgpEA7YKSAO2CkwDtgpQA7YKVAO2ClgDtgpcA7YKYAO2CmQDtgpoA7YKbAO2CnADtgp0A7YKeAO2CnwDtgqAA7YKhAO2CogDtgqMA7YKkAO2CpQDtgqYA7YKnAO2CqADtgqkA7YKqAO2CqwDtgqwA7YKtAO2CrgDtgq8A7YKwAO2CsQDtgrIA7YKzAO2CtADtgrUA7YK2AO2CtwDtgrgA7YK5AO2CugDtgrsA7YK8AO2CvQDtgr4A7YK/AO2DgADtg4EA7YOCAO2DgwDtg4QA7YOFAO2DhgDtg4cA7YOIAO2DiQDtg4oA7YOLAO2DjADtg40A7YOOAO2DjwDtg5AA7YORAO2DkgDtg5MA7YOUAO2DlQDtg5YA7YOXAO2DmADtg5kA7YOaAO2DmwDtg5wA7YOdAO2DngDtg58A7YOgAO2DoQDtg6IA7YOjAO2DpADtg6UA7YOmAO2DpwDtg6gA7YOpAO2DqgDtg6sA7YOsAO2DrQDtg64A7YOvAO2DsADtg7EA7YOyAO2DswDtg7QA7YO1AO2DtgDtg7cA7YO4AO2DuQDtg7oA7YO7AO2DvADtg70A7YO+AO2DvwDthIAA7YSBAO2EggDthIMA7YSEAO2EhQDthIYA7YSHAO2EiADthIkA7YSKAO2EiwDthIwA7YSNAO2EjgDthI8A7YSQAO2EkQDthJIA7YSTAO2ElADthJUA7YSWAO2ElwDthJgA7YSZAO2EmgDthJsA7YScAO2EnQDthJ4A7YSfAO2EoADthKEA7YSiAO2EowDthKQA7YSlAO2EpgDthKcA7YSoAO2EqQDthKoA7YSrAO2ErADthK0A7YSuAO2ErwDthLAA7YSxAO2EsgDthLMA7YS0AO2EtQDthLYA7YS3AO2EuADthLkA7YS6AO2EuwDthLwA7YS9AO2EvgDthL8A7YWAAO2FgQDthYIA7YWDAO2FhADthYUA7YWGAO2FhwDthYgA7YWJAO2FigDthYsA7YWMAO2FjQDthY4A7YWPAO2FkADthZEA7YWSAO2FkwDthZQA7YWVAO2FlgDthZcA7YWYAO2FmQDthZoA7YWbAO2FnADthZ0A7YWeAO2FnwDthaAA7YWhAO2FogDthaMA7YWkAO2FpQDthaYA7YWnAO2FqADthakA7YWqAO2FqwDthawA7YWtAO2FrgDtha8A7YWwAO2FsQDthbIA7YWzAO2FtADthbUA7YW2AO2FtwDthbgA7YW5AO2FugDthbsA7YW8AO2FvQDthb4A7YW/AO2GgADthoEA7YaCAO2GgwDthoQA7YaFAO2GhgDthocA7YaIAO2GiQDthooA7YaLAO2GjADtho0A7YaOAO2GjwDthpAA7YaRAO2GkgDthpMA7YaUAO2GlQDthpYA7YaXAO2GmADthpkA7YaaAO2GmwDthpwA7YadAO2GngDthp8A7YagAO2GoQDthqIA7YajAO2GpADthqUA7YamAO2GpwDthqgA7YapAO2GqgDthqsA7YasAO2GrQDthq4A7YavAO2GsADthrEA7YayAO2GswDthrQA7Ya1AO2GtgDthrcA7Ya4AO2GuQDthroA7Ya7AO2GvADthr0A7Ya+AO2GvwDth4AA7YeBAO2HggDth4MA7YeEAO2HhQDth4YA7YeHAO2HiADth4kA7YeKAO2HiwDth4wA7YeNAO2HjgDth48A7YeQAO2HkQDth5IA7YeTAO2HlADth5UA7YeWAO2HlwDth5gA7YeZAO2HmgDth5sA7YecAO2HnQDth54A7YefAO2HoADth6EA7YeiAO2HowDth6QA7YelAO2HpgDth6cA7YeoAO2HqQDth6oA7YerAO2HrADth60A7YeuAO2HrwDth7AA7YexAO2HsgDth7MA7Ye0AO2HtQDth7YA7Ye3AO2HuADth7kA7Ye6AO2HuwDth7wA7Ye9AO2HvgDth78A7YiAAO2IgQDtiIIA7YiDAO2IhADtiIUA7YiGAO2IhwDtiIgA7YiJAO2IigDtiIsA7YiMAO2IjQDtiI4A7YiPAO2IkADtiJEA7YiSAO2IkwDtiJQA7YiVAO2IlgDtiJcA7YiYAO2ImQDtiJoA7YibAO2InADtiJ0A7YieAO2InwDtiKAA7YihAO2IogDtiKMA7YikAO2IpQDtiKYA7YinAO2IqADtiKkA7YiqAO2IqwDtiKwA7YitAO2IrgDtiK8A7YiwAO2IsQDtiLIA7YizAO2ItADtiLUA7Yi2AO2ItwDtiLgA7Yi5AO2IugDtiLsA7Yi8AO2IvQDtiL4A7Yi/AO2JgADtiYEA7YmCAO2JgwDtiYQA7YmFAO2JhgDtiYcA7YmIAO2JiQDtiYoA7YmLAO2JjADtiY0A7YmOAO2JjwDtiZAA7YmRAO2JkgDtiZMA7YmUAO2JlQDtiZYA7YmXAO2JmADtiZkA7YmaAO2JmwDtiZwA7YmdAO2JngDtiZ8A7YmgAO2JoQDtiaIA7YmjAO2JpADtiaUA7YmmAO2JpwDtiagA7YmpAO2JqgDtiasA7YmsAO2JrQDtia4A7YmvAO2JsADtibEA7YmyAO2JswDtibQA7Ym1AO2JtgDtibcA7Ym4AO2JuQDtiboA7Ym7AO2JvADtib0A7Ym+AO2JvwDtioAA7YqBAO2KggDtioMA7YqEAO2KhQDtioYA7YqHAO2KiADtiokA7YqKAO2KiwDtiowA7YqNAO2KjgDtio8A7YqQAO2KkQDtipIA7YqTAO2KlADtipUA7YqWAO2KlwDtipgA7YqZAO2KmgDtipsA7YqcAO2KnQDtip4A7YqfAO2KoADtiqEA7YqiAO2KowDtiqQA7YqlAO2KpgDtiqcA7YqoAO2KqQDtiqoA7YqrAO2KrADtiq0A7YquAO2KrwDtirAA7YqxAO2KsgDtirMA7Yq0AO2KtQDtirYA7Yq3AO2KuADtirkA7Yq6AO2KuwDtirwA7Yq9AO2KvgDtir8A7YuAAO2LgQDti4IA7YuDAO2LhADti4UA7YuGAO2LhwDti4gA7YuJAO2LigDti4sA7YuMAO2LjQDti44A7YuPAO2LkADti5EA7YuSAO2LkwDti5QA7YuVAO2LlgDti5cA7YuYAO2LmQDti5oA7YubAO2LnADti50A7YueAO2LnwDti6AA7YuhAO2LogDti6MA7YukAO2LpQDti6YA7YunAO2LqADti6kA7YuqAO2LqwDti6wA7YutAO2LrgDti68A7YuwAO2LsQDti7IA7YuzAO2LtADti7UA7Yu2AO2LtwDti7gA7Yu5AO2LugDti7sA7Yu8AO2LvQDti74A7Yu/AO2MgADtjIEA7YyCAO2MgwDtjIQA7YyFAO2MhgDtjIcA7YyIAO2MiQDtjIoA7YyLAO2MjADtjI0A7YyOAO2MjwDtjJAA7YyRAO2MkgDtjJMA7YyUAO2MlQDtjJYA7YyXAO2MmADtjJkA7YyaAO2MmwDtjJwA7YydAO2MngDtjJ8A7YygAO2MoQDtjKIA7YyjAO2MpADtjKUA7YymAO2MpwDtjKgA7YypAO2MqgDtjKsA7YysAO2MrQDtjK4A7YyvAO2MsADtjLEA7YyyAO2MswDtjLQA7Yy1AO2MtgDtjLcA7Yy4AO2MuQDtjLoA7Yy7AO2MvADtjL0A7Yy+AO2MvwDtjYAA7Y2BAO2NggDtjYMA7Y2EAO2NhQDtjYYA7Y2HAO2NiADtjYkA7Y2KAO2NiwDtjYwA7Y2NAO2NjgDtjY8A7Y2QAO2NkQDtjZIA7Y2TAO2NlADtjZUA7Y2WAO2NlwDtjZgA7Y2ZAO2NmgDtjZsA7Y2cAO2NnQDtjZ4A7Y2fAO2NoADtjaEA7Y2iAO2NowDtjaQA7Y2lAO2NpgDtjacA7Y2oAO2NqQDtjaoA7Y2rAO2NrADtja0A7Y2uAO2NrwDtjbAA7Y2xAO2NsgDtjbMA7Y20AO2NtQDtjbYA7Y23AO2NuADtjbkA7Y26AO2NuwDtjbwA7Y29AO2NvgDtjb8A7Y6AAO2OgQDtjoIA7Y6DAO2OhADtjoUA7Y6GAO2OhwDtjogA7Y6JAO2OigDtjosA7Y6MAO2OjQDtjo4A7Y6PAO2OkADtjpEA7Y6SAO2OkwDtjpQA7Y6VAO2OlgDtjpcA7Y6YAO2OmQDtjpoA7Y6bAO2OnADtjp0A7Y6eAO2OnwDtjqAA7Y6hAO2OogDtjqMA7Y6kAO2OpQDtjqYA7Y6nAO2OqADtjqkA7Y6qAO2OqwDtjqwA7Y6tAO2OrgDtjq8A7Y6wAO2OsQDtjrIA7Y6zAO2OtADtjrUA7Y62AO2OtwDtjrgA7Y65AO2OugDtjrsA7Y68AO2OvQDtjr4A7Y6/AO2PgADtj4EA7Y+CAO2PgwDtj4QA7Y+FAO2PhgDtj4cA7Y+IAO2PiQDtj4oA7Y+LAO2PjADtj40A7Y+OAO2PjwDtj5AA7Y+RAO2PkgDtj5MA7Y+UAO2PlQDtj5YA7Y+XAO2PmADtj5kA7Y+aAO2PmwDtj5wA7Y+dAO2PngDtj58A7Y+gAO2PoQDtj6IA7Y+jAO2PpADtj6UA7Y+mAO2PpwDtj6gA7Y+pAO2PqgDtj6sA7Y+sAO2PrQDtj64A7Y+vAO2PsADtj7EA7Y+yAO2PswDtj7QA7Y+1AO2PtgDtj7cA7Y+4AO2PuQDtj7oA7Y+7AO2PvADtj70A7Y++AO2PvwDtkIAA7ZCBAO2QggDtkIMA7ZCEAO2QhQDtkIYA7ZCHAO2QiADtkIkA7ZCKAO2QiwDtkIwA7ZCNAO2QjgDtkI8A7ZCQAO2QkQDtkJIA7ZCTAO2QlADtkJUA7ZCWAO2QlwDtkJgA7ZCZAO2QmgDtkJsA7ZCcAO2QnQDtkJ4A7ZCfAO2QoADtkKEA7ZCiAO2QowDtkKQA7ZClAO2QpgDtkKcA7ZCoAO2QqQDtkKoA7ZCrAO2QrADtkK0A7ZCuAO2QrwDtkLAA7ZCxAO2QsgDtkLMA7ZC0AO2QtQDtkLYA7ZC3AO2QuADtkLkA7ZC6AO2QuwDtkLwA7ZC9AO2QvgDtkL8A7ZGAAO2RgQDtkYIA7ZGDAO2RhADtkYUA7ZGGAO2RhwDtkYgA7ZGJAO2RigDtkYsA7ZGMAO2RjQDtkY4A7ZGPAO2RkADtkZEA7ZGSAO2RkwDtkZQA7ZGVAO2RlgDtkZcA7ZGYAO2RmQDtkZoA7ZGbAO2RnADtkZ0A7ZGeAO2RnwDtkaAA7ZGhAO2RogDtkaMA7ZGkAO2RpQDtkaYA7ZGnAO2RqADtkakA7ZGqAO2RqwDtkawA7ZGtAO2RrgDtka8A7ZGwAO2RsQDtkbIA7ZGzAO2RtADtkbUA7ZG2AO2RtwDtkbgA7ZG5AO2RugDtkbsA7ZG8AO2RvQDtkb4A7ZG/AO2SgADtkoEA7ZKCAO2SgwDtkoQA7ZKFAO2ShgDtkocA7ZKIAO2SiQDtkooA7ZKLAO2SjADtko0A7ZKOAO2SjwDtkpAA7ZKRAO2SkgDtkpMA7ZKUAO2SlQDtkpYA7ZKXAO2SmADtkpkA7ZKaAO2SmwDtkpwA7ZKdAO2SngDtkp8A7ZKgAO2SoQDtkqIA7ZKjAO2SpADtkqUA7ZKmAO2SpwDtkqgA7ZKpAO2SqgDtkqsA7ZKsAO2SrQDtkq4A7ZKvAO2SsADtkrEA7ZKyAO2SswDtkrQA7ZK1AO2StgDtkrcA7ZK4AO2SuQDtkroA7ZK7AO2SvADtkr0A7ZK+AO2SvwDtk4AA7ZOBAO2TggDtk4MA7ZOEAO2ThQDtk4YA7ZOHAO2TiADtk4kA7ZOKAO2TiwDtk4wA7ZONAO2TjgDtk48A7ZOQAO2TkQDtk5IA7ZOTAO2TlADtk5UA7ZOWAO2TlwDtk5gA7ZOZAO2TmgDtk5sA7ZOcAO2TnQDtk54A7ZOfAO2ToADtk6EA7ZOiAO2TowDtk6QA7ZOlAO2TpgDtk6cA7ZOoAO2TqQDtk6oA7ZOrAO2TrADtk60A7ZOuAO2TrwDtk7AA7ZOxAO2TsgDtk7MA7ZO0AO2TtQDtk7YA7ZO3AO2TuADtk7kA7ZO6AO2TuwDtk7wA7ZO9AO2TvgDtk78A7ZSAAO2UgQDtlIIA7ZSDAO2UhADtlIUA7ZSGAO2UhwDtlIgA7ZSJAO2UigDtlIsA7ZSMAO2UjQDtlI4A7ZSPAO2UkADtlJEA7ZSSAO2UkwDtlJQA7ZSVAO2UlgDtlJcA7ZSYAO2UmQDtlJoA7ZSbAO2UnADtlJ0A7ZSeAO2UnwDtlKAA7ZShAO2UogDtlKMA7ZSkAO2UpQDtlKYA7ZSnAO2UqADtlKkA7ZSqAO2UqwDtlKwA7ZStAO2UrgDtlK8A7ZSwAO2UsQDtlLIA7ZSzAO2UtADtlLUA7ZS2AO2UtwDtlLgA7ZS5AO2UugDtlLsA7ZS8AO2UvQDtlL4A7ZS/AO2VgADtlYEA7ZWCAO2VgwDtlYQA7ZWFAO2VhgDtlYcA7ZWIAO2ViQDtlYoA7ZWLAO2VjADtlY0A7ZWOAO2VjwDtlZAA7ZWRAO2VkgDtlZMA7ZWUAO2VlQDtlZYA7ZWXAO2VmADtlZkA7ZWaAO2VmwDtlZwA7ZWdAO2VngDtlZ8A7ZWgAO2VoQDtlaIA7ZWjAO2VpADtlaUA7ZWmAO2VpwDtlagA7ZWpAO2VqgDtlasA7ZWsAO2VrQDtla4A7ZWvAO2VsADtlbEA7ZWyAO2VswDtlbQA7ZW1AO2VtgDtlbcA7ZW4AO2VuQDtlboA7ZW7AO2VvADtlb0A7ZW+AO2VvwDtloAA7ZaBAO2WggDtloMA7ZaEAO2WhQDtloYA7ZaHAO2WiADtlokA7ZaKAO2WiwDtlowA7ZaNAO2WjgDtlo8A7ZaQAO2WkQDtlpIA7ZaTAO2WlADtlpUA7ZaWAO2WlwDtlpgA7ZaZAO2WmgDtlpsA7ZacAO2WnQDtlp4A7ZafAO2WoADtlqEA7ZaiAO2WowDtlqQA7ZalAO2WpgDtlqcA7ZaoAO2WqQDtlqoA7ZarAO2WrADtlq0A7ZauAO2WrwDtlrAA7ZaxAO2WsgDtlrMA7Za0AO2WtQDtlrYA7Za3AO2WuADtlrkA7Za6AO2WuwDtlrwA7Za9AO2WvgDtlr8A7ZeAAO2XgQDtl4IA7ZeDAO2XhADtl4UA7ZeGAO2XhwDtl4gA7ZeJAO2XigDtl4sA7ZeMAO2XjQDtl44A7ZePAO2XkADtl5EA7ZeSAO2XkwDtl5QA7ZeVAO2XlgDtl5cA7ZeYAO2XmQDtl5oA7ZebAO2XnADtl50A7ZeeAO2XnwDtl6AA7ZehAO2XogDtl6MA7ZekAO2XpQDtl6YA7ZenAO2XqADtl6kA7ZeqAO2XqwDtl6wA7ZetAO2XrgDtl68A7ZewAO2XsQDtl7IA7ZezAO2XtADtl7UA7Ze2AO2XtwDtl7gA7Ze5AO2XugDtl7sA7Ze8AO2XvQDtl74A7Ze/AO2YgADtmIEA7ZiCAO2YgwDtmIQA7ZiFAO2YhgDtmIcA7ZiIAO2YiQDtmIoA7ZiLAO2YjADtmI0A7ZiOAO2YjwDtmJAA7ZiRAO2YkgDtmJMA7ZiUAO2YlQDtmJYA7ZiXAO2YmADtmJkA7ZiaAO2YmwDtmJwA7ZidAO2YngDtmJ8A7ZigAO2YoQDtmKIA7ZijAO2YpADtmKUA7ZimAO2YpwDtmKgA7ZipAO2YqgDtmKsA7ZisAO2YrQDtmK4A7ZivAO2YsADtmLEA7ZiyAO2YswDtmLQA7Zi1AO2YtgDtmLcA7Zi4AO2YuQDtmLoA7Zi7AO2YvADtmL0A7Zi+AO2YvwDtmYAA7ZmBAO2ZggDtmYMA7ZmEAO2ZhQDtmYYA7ZmHAO2ZiADtmYkA7ZmKAO2ZiwDtmYwA7ZmNAO2ZjgDtmY8A7ZmQAO2ZkQDtmZIA7ZmTAO2ZlADtmZUA7ZmWAO2ZlwDtmZgA7ZmZAO2ZmgDtmZsA7ZmcAO2ZnQDtmZ4A7ZmfAO2ZoADtmaEA7ZmiAO2ZowDtmaQA7ZmlAO2ZpgDtmacA7ZmoAO2ZqQDtmaoA7ZmrAO2ZrADtma0A7ZmuAO2ZrwDtmbAA7ZmxAO2ZsgDtmbMA7Zm0AO2ZtQDtmbYA7Zm3AO2ZuADtmbkA7Zm6AO2ZuwDtmbwA7Zm9AO2ZvgDtmb8A7ZqAAO2agQDtmoIA7ZqDAO2ahADtmoUA7ZqGAO2ahwDtmogA7ZqJAO2aigDtmosA7ZqMAO2ajQDtmo4A7ZqPAO2akADtmpEA7ZqSAO2akwDtmpQA7ZqVAO2algDtmpcA7ZqYAO2amQDtmpoA7ZqbAO2anADtmp0A7ZqeAO2anwDtmqAA7ZqhAO2aogDtmqMA7ZqkAO2apQDtmqYA7ZqnAO2aqADtmqkA7ZqqAO2aqwDtmqwA7ZqtAO2argDtmq8A7ZqwAO2asQDtmrIA7ZqzAO2atADtmrUA7Zq2AO2atwDtmrgA7Zq5AO2augDtmrsA7Zq8AO2avQDtmr4A7Zq/AO2bgADtm4EA7ZuCAO2bgwDtm4QA7ZuFAO2bhgDtm4cA7ZuIAO2biQDtm4oA7ZuLAO2bjADtm40A7ZuOAO2bjwDtm5AA7ZuRAO2bkgDtm5MA7ZuUAO2blQDtm5YA7ZuXAO2bmADtm5kA7ZuaAO2bmwDtm5wA7ZudAO2bngDtm58A7ZugAO2boQDtm6IA7ZujAO2bpADtm6UA7ZumAO2bpwDtm6gA7ZupAO2bqgDtm6sA7ZusAO2brQDtm64A7ZuvAO2bsADtm7EA7ZuyAO2bswDtm7QA7Zu1AO2btgDtm7cA7Zu4AO2buQDtm7oA7Zu7AO2bvADtm70A7Zu+AO2bvwDtnIAA7ZyBAO2cggDtnIMA7ZyEAO2chQDtnIYA7ZyHAO2ciADtnIkA7ZyKAO2ciwDtnIwA7ZyNAO2cjgDtnI8A7ZyQAO2ckQDtnJIA7ZyTAO2clADtnJUA7ZyWAO2clwDtnJgA7ZyZAO2cmgDtnJsA7ZycAO2cnQDtnJ4A7ZyfAO2coADtnKEA7ZyiAO2cowDtnKQA7ZylAO2cpgDtnKcA7ZyoAO2cqQDtnKoA7ZyrAO2crADtnK0A7ZyuAO2crwDtnLAA7ZyxAO2csgDtnLMA7Zy0AO2ctQDtnLYA7Zy3AO2cuADtnLkA7Zy6AO2cuwDtnLwA7Zy9AO2cvgDtnL8A7Z2AAO2dgQDtnYIA7Z2DAO2dhADtnYUA7Z2GAO2dhwDtnYgA7Z2JAO2digDtnYsA7Z2MAO2djQDtnY4A7Z2PAO2dkADtnZEA7Z2SAO2dkwDtnZQA7Z2VAO2dlgDtnZcA7Z2YAO2dmQDtnZoA7Z2bAO2dnADtnZ0A7Z2eAO2dnwDtnaAA7Z2hAO2dogDtnaMA7Z2kAO2dpQDtnaYA7Z2nAO2dqADtnakA7Z2qAO2dqwDtnawA7Z2tAO2drgDtna8A7Z2wAO2dsQDtnbIA7Z2zAO2dtADtnbUA7Z22AO2dtwDtnbgA7Z25AO2dugDtnbsA7Z28AO2dvQDtnb4A7Z2/AO2egADtnoEA7Z6CAO2egwDtnoQA7Z6FAO2ehgDtnocA7Z6IAO2eiQDtnooA7Z6LAO2ejADtno0A7Z6OAO2ejwDtnpAA7Z6RAO2ekgDtnpMA7Z6UAO2elQDtnpYA7Z6XAO2emADtnpkA7Z6aAO2emwDtnpwA7Z6dAO2engDtnp8A7Z6gAO2eoQDtnqIA7Z6jAPCRgpoA8JGCnADwkYKrAPCRhK4A8JGErwDwkY2LAPCRjYwA8JGSuwDwkZK8APCRkr4A8JGWugDwkZa7APCdhZfwnYWlAPCdhZjwnYWlAPCdhZjwnYWl8J2FrgDwnYWY8J2FpfCdha8A8J2FmPCdhaXwnYWwAPCdhZjwnYWl8J2FsQDwnYWY8J2FpfCdhbIA8J2GufCdhaUA8J2GufCdhaXwnYWuAPCdhrnwnYWl8J2FrwDwnYa68J2FpQDwnYa68J2FpfCdha4A8J2GuvCdhaXwnYWvAPCghKIA8KCUnADwoJSlAPCglYsA8KCYugDwoKCEAPCgo54A8KCorADwoK2jAPChk6QA8KGaqADwoZuqAPChp4gA8KGsmADwobSLAPCht6QA8KG3pgDwooaDAPCihp8A8KKMsQDwopuUAPCioYQA8KKhigDwoqyMAPCir7EA8KOAigDwo4q4APCjjZ8A8KOOkwDwo46cAPCjj4MA8KOPlQDwo5GtAPCjmqMA8KOipwDwo6qNAPCjq7oA8KOyvADwo7SeAPCju5EA8KO9ngDwo76OAPCkiaMA8KSLrgDwpI6rAPCkmIgA8KSctQDwpKCUAPCksLYA8KSykgDwpL6hAPCkvrgA8KWBhADwpYOyAPClg7MA8KWEmQDwpYSzAPCliYkA8KWQnQDwpZimAPClmpoA8KWbhQDwpaW8APClqqcA8KWuqwDwpbKAAPCls5AA8KW+hgDwpoeaAPCmiKgA8KaJhwDwpouZAPCmjL4A8KaTmgDwppSjAPCmlqgA8KaepwDwpp61APCmrLwA8KawtgDwprOVAPCmtasA8Ka8rADwpr6xAPCng5IA8KePigDwp5mnAPCnoq4A8KelpgDwp7KoAPCnu5MA8Ke8rwDwqJeSAPCol60A8KicrgDwqK+6APCotbcA8KmFhQDwqYefAPCpiJoA8KmQigDwqZKWAPCplrYA8KmssADwqoOOAPCqhIUA8KqIjgDwqoqRAPCqjpIA8KqYgAA=" + }, + { + "type": "Strip", + "strip_left": false, + "strip_right": true + }, + { + "type": "Replace", + "pattern": { + "Regex": " {2,}" + }, + "content": "▁" + } + ] + }, + "pre_tokenizer": { + "type": "Metaspace", + "replacement": "▁", + "add_prefix_space": true, + "prepend_scheme": "first" + }, + "post_processor": { + "type": "TemplateProcessing", + "single": [ + { + "Sequence": { + "id": "A", + "type_id": 0 + } + }, + { + "SpecialToken": { + "id": "", + "type_id": 0 + } + } + ], + "pair": [ + { + "Sequence": { + "id": "A", + "type_id": 0 + } + }, + { + "SpecialToken": { + "id": "", + "type_id": 0 + } + }, + { + "Sequence": { + "id": "B", + "type_id": 0 + } + }, + { + "SpecialToken": { + "id": "", + "type_id": 0 + } + } + ], + "special_tokens": { + "": { + "id": "", + "ids": [ + 1 + ], + "tokens": [ + "" + ] + } + } + }, + "decoder": { + "type": "Metaspace", + "replacement": "▁", + "add_prefix_space": true, + "prepend_scheme": "always" + }, + "model": { + "type": "Unigram", + "unk_id": 2, + "vocab": [ + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "▁", + -2.0122928619384766 + ], + [ + "X", + -2.486478805541992 + ], + [ + ".", + -3.5449328422546387 + ], + [ + ",", + -3.649247407913208 + ], + [ + "s", + -3.9033992290496826 + ], + [ + "▁the", + -3.9598512649536133 + ], + [ + "a", + -4.097104549407959 + ], + [ + ":", + -4.414328098297119 + ], + [ + "▁and", + -4.420670986175537 + ], + [ + "▁to", + -4.4523234367370605 + ], + [ + "▁of", + -4.572070121765137 + ], + [ + "▁fill", + -4.575019836425781 + ], + [ + "e", + -4.674920082092285 + ], + [ + "▁in", + -4.812063694000244 + ], + [ + "t", + -5.063905715942383 + ], + [ + "-", + -5.129043102264404 + ], + [ + "▁is", + -5.283425331115723 + ], + [ + "▁de", + -5.344141960144043 + ], + [ + "▁for", + -5.3930158615112305 + ], + [ + "’", + -5.4228339195251465 + ], + [ + "i", + -5.469857692718506 + ], + [ + "▁that", + -5.576240539550781 + ], + [ + "▁you", + -5.596375465393066 + ], + [ + "d", + -5.6047282218933105 + ], + [ + "▁I", + -5.6640448570251465 + ], + [ + "▁with", + -5.703730583190918 + ], + [ + "n", + -5.737886905670166 + ], + [ + "▁on", + -5.784142971038818 + ], + [ + "'", + -5.828996181488037 + ], + [ + "o", + -5.925558090209961 + ], + [ + "▁are", + -5.931313991546631 + ], + [ + "▁it", + -5.939518928527832 + ], + [ + "en", + -5.9465556144714355 + ], + [ + "▁be", + -5.9556708335876465 + ], + [ + "▁The", + -5.990020751953125 + ], + [ + "▁as", + -6.057407379150391 + ], + [ + "▁your", + -6.132311820983887 + ], + [ + "l", + -6.139498710632324 + ], + [ + "▁(", + -6.184796333312988 + ], + [ + "▁or", + -6.241950035095215 + ], + [ + "▁have", + -6.27459192276001 + ], + [ + "▁at", + -6.327472686767578 + ], + [ + "▁from", + -6.349645137786865 + ], + [ + "▁an", + -6.350090980529785 + ], + [ + "▁was", + -6.350385665893555 + ], + [ + "▁this", + -6.352563381195068 + ], + [ + "er", + -6.3604278564453125 + ], + [ + "▁la", + -6.3624043464660645 + ], + [ + "m", + -6.375206470489502 + ], + [ + "r", + -6.376530170440674 + ], + [ + "ing", + -6.3778581619262695 + ], + [ + "▁can", + -6.387146472930908 + ], + [ + "!", + -6.421379566192627 + ], + [ + "▁will", + -6.423982620239258 + ], + [ + "▁by", + -6.44155216217041 + ], + [ + "?", + -6.585887432098389 + ], + [ + "▁not", + -6.5959086418151855 + ], + [ + "re", + -6.620072364807129 + ], + [ + ")", + -6.63656759262085 + ], + [ + "▁we", + -6.643022060394287 + ], + [ + "y", + -6.654535293579102 + ], + [ + "▁und", + -6.741473197937012 + ], + [ + "▁has", + -6.7602033615112305 + ], + [ + "▁all", + -6.768176555633545 + ], + [ + "▁die", + -6.8641204833984375 + ], + [ + "▁but", + -6.906830310821533 + ], + [ + "▁our", + -6.909878730773926 + ], + [ + "▁their", + -6.91325044631958 + ], + [ + "▁A", + -6.915814399719238 + ], + [ + "▁more", + -6.918668746948242 + ], + [ + "▁un", + -6.924930572509766 + ], + [ + "▁der", + -6.925402641296387 + ], + [ + "c", + -6.925714015960693 + ], + [ + "u", + -6.932939052581787 + ], + [ + "in", + -6.934063911437988 + ], + [ + "▁so", + -6.947050094604492 + ], + [ + "▁they", + -6.989297866821289 + ], + [ + "▁one", + -7.012735843658447 + ], + [ + "▁about", + -7.071486473083496 + ], + [ + "▁my", + -7.072140693664551 + ], + [ + "ul", + -7.076492786407471 + ], + [ + "▁which", + -7.097039222717285 + ], + [ + "à", + -7.099997520446777 + ], + [ + "▁In", + -7.100254535675049 + ], + [ + "/", + -7.100865840911865 + ], + [ + "he", + -7.104752540588379 + ], + [ + "f", + -7.110044002532959 + ], + [ + "▁le", + -7.112937927246094 + ], + [ + "▁out", + -7.128556728363037 + ], + [ + "▁also", + -7.133583068847656 + ], + [ + "▁des", + -7.156766414642334 + ], + [ + "▁It", + -7.162121295928955 + ], + [ + "▁up", + -7.1723432540893555 + ], + [ + "▁\"", + -7.172809600830078 + ], + [ + "▁time", + -7.178046703338623 + ], + [ + "ă", + -7.183253765106201 + ], + [ + "if", + -7.185171127319336 + ], + [ + "▁This", + -7.191652297973633 + ], + [ + "▁We", + -7.223267078399658 + ], + [ + "p", + -7.224130153656006 + ], + [ + "▁do", + -7.228212356567383 + ], + [ + "–", + -7.235409736633301 + ], + [ + "▁“", + -7.238142013549805 + ], + [ + "on", + -7.240827560424805 + ], + [ + "h", + -7.2543206214904785 + ], + [ + "▁si", + -7.276725769042969 + ], + [ + "le", + -7.2994256019592285 + ], + [ + "▁les", + -7.312957286834717 + ], + [ + "▁în", + -7.314571857452393 + ], + [ + "▁his", + -7.324767112731934 + ], + [ + "▁who", + -7.35105562210083 + ], + [ + "▁like", + -7.371364116668701 + ], + [ + "b", + -7.375369071960449 + ], + [ + "▁when", + -7.380199432373047 + ], + [ + ";", + -7.380846977233887 + ], + [ + "▁been", + -7.38668966293335 + ], + [ + "▁other", + -7.388518333435059 + ], + [ + "ly", + -7.394660949707031 + ], + [ + "\"", + -7.407205104827881 + ], + [ + "g", + -7.407997131347656 + ], + [ + "▁cu", + -7.415276527404785 + ], + [ + "▁care", + -7.432408332824707 + ], + [ + "▁what", + -7.433043003082275 + ], + [ + "▁new", + -7.4370903968811035 + ], + [ + "or", + -7.445409774780273 + ], + [ + "▁some", + -7.461953639984131 + ], + [ + "▁get", + -7.479001998901367 + ], + [ + "▁were", + -7.491549491882324 + ], + [ + "▁just", + -7.492495536804199 + ], + [ + "▁there", + -7.493194103240967 + ], + [ + "▁would", + -7.494382381439209 + ], + [ + "S", + -7.4974141120910645 + ], + [ + "▁them", + -7.513596057891846 + ], + [ + "▁any", + -7.520544052124023 + ], + [ + ").", + -7.521052360534668 + ], + [ + "al", + -7.523056983947754 + ], + [ + "▁into", + -7.527902603149414 + ], + [ + "▁me", + -7.528337001800537 + ], + [ + "▁had", + -7.532425403594971 + ], + [ + "▁se", + -7.5451483726501465 + ], + [ + "▁make", + -7.5827131271362305 + ], + [ + "at", + -7.589433670043945 + ], + [ + "▁than", + -7.592360019683838 + ], + [ + "▁du", + -7.595852375030518 + ], + [ + "▁over", + -7.6078782081604 + ], + [ + "▁You", + -7.626111030578613 + ], + [ + "▁how", + -7.635554313659668 + ], + [ + "▁no", + -7.63729190826416 + ], + [ + "▁people", + -7.639947414398193 + ], + [ + "an", + -7.64084005355835 + ], + [ + "”", + -7.644528865814209 + ], + [ + "é", + -7.646921157836914 + ], + [ + "it", + -7.648641109466553 + ], + [ + "▁If", + -7.648687839508057 + ], + [ + "k", + -7.6605634689331055 + ], + [ + "▁pe", + -7.662139415740967 + ], + [ + "is", + -7.66726016998291 + ], + [ + "▁her", + -7.6733808517456055 + ], + [ + "▁work", + -7.680386543273926 + ], + [ + "ve", + -7.687412738800049 + ], + [ + "▁only", + -7.69785737991333 + ], + [ + "▁may", + -7.702393531799316 + ], + [ + "▁its", + -7.702449798583984 + ], + [ + "▁first", + -7.704373836517334 + ], + [ + "▁most", + -7.708309173583984 + ], + [ + "▁well", + -7.708758354187012 + ], + [ + "▁use", + -7.715085983276367 + ], + [ + "▁zu", + -7.718777656555176 + ], + [ + "▁pour", + -7.736708164215088 + ], + [ + "z", + -7.745654106140137 + ], + [ + "il", + -7.745913982391357 + ], + [ + "▁need", + -7.74778938293457 + ], + [ + "▁these", + -7.763317584991455 + ], + [ + "▁din", + -7.769891262054443 + ], + [ + "▁den", + -7.775663375854492 + ], + [ + "▁us", + -7.778133869171143 + ], + [ + "able", + -7.779712200164795 + ], + [ + "▁S", + -7.781893730163574 + ], + [ + "▁mit", + -7.792516231536865 + ], + [ + "▁very", + -7.79970645904541 + ], + [ + "▁am", + -7.814100742340088 + ], + [ + "&", + -7.829529285430908 + ], + [ + "▁au", + -7.83012056350708 + ], + [ + "▁many", + -7.83834171295166 + ], + [ + "▁mai", + -7.84363317489624 + ], + [ + "A", + -7.849830150604248 + ], + [ + "th", + -7.855541229248047 + ], + [ + "▁through", + -7.859585285186768 + ], + [ + "▁pentru", + -7.86391544342041 + ], + [ + "▁two", + -7.873607158660889 + ], + [ + "▁von", + -7.874959945678711 + ], + [ + "▁way", + -7.887117385864258 + ], + [ + "ll", + -7.887749195098877 + ], + [ + "I", + -7.891303539276123 + ], + [ + "▁ce", + -7.9015631675720215 + ], + [ + "▁și", + -7.904444694519043 + ], + [ + "▁help", + -7.907405853271484 + ], + [ + "▁best", + -7.907911777496338 + ], + [ + "),", + -7.908212184906006 + ], + [ + "un", + -7.925017833709717 + ], + [ + "▁years", + -7.925964832305908 + ], + [ + "▁2", + -7.9282684326171875 + ], + [ + "▁C", + -7.936962604522705 + ], + [ + "▁nu", + -7.939520835876465 + ], + [ + "▁good", + -7.943995952606201 + ], + [ + "v", + -7.94746732711792 + ], + [ + "▁1", + -7.94765567779541 + ], + [ + "w", + -7.947978496551514 + ], + [ + "▁das", + -7.960538864135742 + ], + [ + "▁ca", + -7.962430477142334 + ], + [ + "▁where", + -7.964908123016357 + ], + [ + "▁know", + -7.96622896194458 + ], + [ + "▁year", + -7.971063613891602 + ], + [ + "▁He", + -7.974609375 + ], + [ + "▁see", + -7.980011463165283 + ], + [ + "▁für", + -7.984004497528076 + ], + [ + "▁auf", + -7.984249114990234 + ], + [ + "▁3", + -7.984433650970459 + ], + [ + "de", + -7.985401153564453 + ], + [ + "est", + -8.002091407775879 + ], + [ + "▁back", + -8.007022857666016 + ], + [ + "▁such", + -8.008523941040039 + ], + [ + "▁should", + -8.011754989624023 + ], + [ + "x", + -8.015050888061523 + ], + [ + "▁after", + -8.01761245727539 + ], + [ + "▁could", + -8.019674301147461 + ], + [ + "▁ist", + -8.020784378051758 + ], + [ + "▁now", + -8.022845268249512 + ], + [ + "▁much", + -8.023111343383789 + ], + [ + "and", + -8.02390193939209 + ], + [ + "...", + -8.030110359191895 + ], + [ + "▁home", + -8.036273956298828 + ], + [ + "to", + -8.03821086883545 + ], + [ + "▁ein", + -8.04833984375 + ], + [ + "▁even", + -8.048656463623047 + ], + [ + "▁que", + -8.049829483032227 + ], + [ + "▁day", + -8.051553726196289 + ], + [ + "▁take", + -8.054189682006836 + ], + [ + "▁want", + -8.054435729980469 + ], + [ + "▁For", + -8.06217098236084 + ], + [ + "▁said", + -8.063249588012695 + ], + [ + "▁sur", + -8.073471069335938 + ], + [ + "▁une", + -8.077030181884766 + ], + [ + "▁să", + -8.082921028137207 + ], + [ + "▁dans", + -8.084549903869629 + ], + [ + "▁great", + -8.088057518005371 + ], + [ + "▁este", + -8.08947467803955 + ], + [ + "▁because", + -8.094311714172363 + ], + [ + "▁information", + -8.104085922241211 + ], + [ + "ului", + -8.105451583862305 + ], + [ + "▁find", + -8.112174987792969 + ], + [ + "C", + -8.119946479797363 + ], + [ + "▁she", + -8.125317573547363 + ], + [ + "▁im", + -8.126056671142578 + ], + [ + "ation", + -8.130115509033203 + ], + [ + "▁then", + -8.13021469116211 + ], + [ + "▁est", + -8.13099479675293 + ], + [ + "▁par", + -8.138585090637207 + ], + [ + "▁used", + -8.141871452331543 + ], + [ + "▁E", + -8.146790504455566 + ], + [ + "▁made", + -8.149978637695312 + ], + [ + "▁So", + -8.15785026550293 + ], + [ + "am", + -8.16288948059082 + ], + [ + "▁eine", + -8.165464401245117 + ], + [ + "▁şi", + -8.168368339538574 + ], + [ + "▁business", + -8.17335033416748 + ], + [ + "▁right", + -8.173593521118164 + ], + [ + "▁here", + -8.176125526428223 + ], + [ + "▁being", + -8.184967041015625 + ], + [ + "▁B", + -8.185355186462402 + ], + [ + "▁those", + -8.185736656188965 + ], + [ + "▁before", + -8.194721221923828 + ], + [ + "▁And", + -8.199501037597656 + ], + [ + "▁P", + -8.200712203979492 + ], + [ + "ers", + -8.200922012329102 + ], + [ + "▁don", + -8.204029083251953 + ], + [ + "B", + -8.20487117767334 + ], + [ + "▁life", + -8.206265449523926 + ], + [ + "▁go", + -8.209736824035645 + ], + [ + "▁As", + -8.210551261901855 + ], + [ + "▁M", + -8.221170425415039 + ], + [ + "▁each", + -8.22955322265625 + ], + [ + "▁qui", + -8.23323917388916 + ], + [ + "▁place", + -8.236248970031738 + ], + [ + "com", + -8.237479209899902 + ], + [ + "ant", + -8.252915382385254 + ], + [ + "▁sich", + -8.255932807922363 + ], + [ + "▁There", + -8.261948585510254 + ], + [ + "ar", + -8.264991760253906 + ], + [ + "▁Sie", + -8.273868560791016 + ], + [ + "▁own", + -8.277531623840332 + ], + [ + "▁part", + -8.279440879821777 + ], + [ + "ent", + -8.281047821044922 + ], + [ + "▁world", + -8.28173542022705 + ], + [ + "ment", + -8.282004356384277 + ], + [ + "▁while", + -8.294474601745605 + ], + [ + "▁But", + -8.295366287231445 + ], + [ + "▁around", + -8.300799369812012 + ], + [ + "▁L", + -8.301082611083984 + ], + [ + "us", + -8.304039001464844 + ], + [ + "▁plus", + -8.313054084777832 + ], + [ + "▁To", + -8.313691139221191 + ], + [ + "▁5", + -8.31412410736084 + ], + [ + "▁high", + -8.31862735748291 + ], + [ + "▁long", + -8.319378852844238 + ], + [ + "D", + -8.320075035095215 + ], + [ + "▁D", + -8.320279121398926 + ], + [ + "▁really", + -8.322924613952637 + ], + [ + "▁nicht", + -8.332040786743164 + ], + [ + "▁Le", + -8.335328102111816 + ], + [ + "▁service", + -8.3412504196167 + ], + [ + "▁4", + -8.342093467712402 + ], + [ + "▁different", + -8.342538833618164 + ], + [ + "▁Die", + -8.348092079162598 + ], + [ + "▁think", + -8.353771209716797 + ], + [ + "—", + -8.355998039245605 + ], + [ + "▁auch", + -8.357160568237305 + ], + [ + "▁look", + -8.362202644348145 + ], + [ + "▁both", + -8.366817474365234 + ], + [ + "lor", + -8.36687183380127 + ], + [ + "▁down", + -8.367999076843262 + ], + [ + "ten", + -8.368885040283203 + ], + [ + "▁La", + -8.378066062927246 + ], + [ + "▁off", + -8.380044937133789 + ], + [ + "▁vous", + -8.380541801452637 + ], + [ + "▁They", + -8.381462097167969 + ], + [ + "M", + -8.383248329162598 + ], + [ + "▁pas", + -8.384513854980469 + ], + [ + "▁data", + -8.385709762573242 + ], + [ + "▁T", + -8.386754989624023 + ], + [ + "▁love", + -8.388101577758789 + ], + [ + "▁every", + -8.390009880065918 + ], + [ + "▁10", + -8.391179084777832 + ], + [ + "▁last", + -8.392083168029785 + ], + [ + "▁same", + -8.393481254577637 + ], + [ + "▁using", + -8.395487785339355 + ], + [ + "▁free", + -8.408831596374512 + ], + [ + "▁dem", + -8.40894889831543 + ], + [ + "▁still", + -8.409984588623047 + ], + [ + "ate", + -8.410931587219238 + ], + [ + "ist", + -8.415611267089844 + ], + [ + "▁between", + -8.420283317565918 + ], + [ + "P", + -8.420982360839844 + ], + [ + "be", + -8.428167343139648 + ], + [ + "▁available", + -8.429443359375 + ], + [ + "man", + -8.432978630065918 + ], + [ + "▁company", + -8.439678192138672 + ], + [ + "▁G", + -8.441640853881836 + ], + [ + "▁experience", + -8.444950103759766 + ], + [ + "▁going", + -8.449073791503906 + ], + [ + "▁site", + -8.453832626342773 + ], + [ + "j", + -8.455142974853516 + ], + [ + "are", + -8.456900596618652 + ], + [ + "▁set", + -8.470661163330078 + ], + [ + "2", + -8.473684310913086 + ], + [ + "▁system", + -8.474678039550781 + ], + [ + "▁important", + -8.476791381835938 + ], + [ + "▁few", + -8.482437133789062 + ], + [ + "▁fi", + -8.482551574707031 + ], + [ + "ich", + -8.483301162719727 + ], + [ + "▁What", + -8.488649368286133 + ], + [ + "▁services", + -8.502433776855469 + ], + [ + "▁under", + -8.502569198608398 + ], + [ + "▁When", + -8.50308895111084 + ], + [ + "▁online", + -8.50699520111084 + ], + [ + "▁New", + -8.51494312286377 + ], + [ + "▁come", + -8.524871826171875 + ], + [ + "▁provide", + -8.525650024414062 + ], + [ + "F", + -8.526449203491211 + ], + [ + "▁team", + -8.52782154083252 + ], + [ + "▁always", + -8.529409408569336 + ], + [ + "▁De", + -8.530412673950195 + ], + [ + "▁că", + -8.532517433166504 + ], + [ + "▁him", + -8.53586196899414 + ], + [ + "▁F", + -8.538305282592773 + ], + [ + "▁things", + -8.550079345703125 + ], + [ + "▁including", + -8.550943374633789 + ], + [ + "▁support", + -8.552608489990234 + ], + [ + "▁number", + -8.554113388061523 + ], + [ + "T", + -8.557183265686035 + ], + [ + "▁during", + -8.55886459350586 + ], + [ + "▁family", + -8.560463905334473 + ], + [ + "▁little", + -8.561317443847656 + ], + [ + "▁three", + -8.567726135253906 + ], + [ + "▁water", + -8.56810188293457 + ], + [ + "▁man", + -8.569759368896484 + ], + [ + "▁An", + -8.57192611694336 + ], + [ + "based", + -8.572155952453613 + ], + [ + "▁R", + -8.57442855834961 + ], + [ + "▁sau", + -8.574433326721191 + ], + [ + "▁avec", + -8.576035499572754 + ], + [ + "▁better", + -8.576830863952637 + ], + [ + "▁„", + -8.582253456115723 + ], + [ + "▁too", + -8.58635425567627 + ], + [ + "ge", + -8.586719512939453 + ], + [ + "▁must", + -8.589736938476562 + ], + [ + "▁per", + -8.589916229248047 + ], + [ + "ele", + -8.590399742126465 + ], + [ + "▁oder", + -8.59264850616455 + ], + [ + "au", + -8.59555435180664 + ], + [ + "▁aus", + -8.595727920532227 + ], + [ + "▁werden", + -8.598653793334961 + ], + [ + "▁does", + -8.599140167236328 + ], + [ + "▁without", + -8.599270820617676 + ], + [ + "▁ou", + -8.599929809570312 + ], + [ + "▁design", + -8.60101318359375 + ], + [ + "▁va", + -8.605440139770508 + ], + [ + "▁did", + -8.615679740905762 + ], + [ + "▁O", + -8.619062423706055 + ], + [ + "▁U", + -8.623565673828125 + ], + [ + "up", + -8.62901496887207 + ], + [ + "▁end", + -8.63367748260498 + ], + [ + "▁local", + -8.636231422424316 + ], + [ + "▁next", + -8.638967514038086 + ], + [ + "▁sure", + -8.64098072052002 + ], + [ + "▁lot", + -8.64644718170166 + ], + [ + "▁Re", + -8.647016525268555 + ], + [ + "▁top", + -8.647642135620117 + ], + [ + "▁Our", + -8.656886100769043 + ], + [ + "▁small", + -8.656978607177734 + ], + [ + "▁full", + -8.659418106079102 + ], + [ + "▁something", + -8.662886619567871 + ], + [ + "ung", + -8.666722297668457 + ], + [ + "▁vor", + -8.673250198364258 + ], + [ + "E", + -8.673337936401367 + ], + [ + "▁give", + -8.67603588104248 + ], + [ + "▁might", + -8.67660903930664 + ], + [ + "▁another", + -8.679330825805664 + ], + [ + "▁6", + -8.680779457092285 + ], + [ + "▁All", + -8.681318283081055 + ], + [ + "▁process", + -8.681672096252441 + ], + [ + "L", + -8.682575225830078 + ], + [ + "▁found", + -8.68941593170166 + ], + [ + "▁sind", + -8.690044403076172 + ], + [ + "▁since", + -8.69528865814209 + ], + [ + "▁With", + -8.695560455322266 + ], + [ + "K", + -8.696988105773926 + ], + [ + "um", + -8.701016426086426 + ], + [ + "▁within", + -8.701669692993164 + ], + [ + "▁post", + -8.706608772277832 + ], + [ + "▁car", + -8.709365844726562 + ], + [ + "une", + -8.714099884033203 + ], + [ + "▁N", + -8.715041160583496 + ], + [ + "▁J", + -8.715597152709961 + ], + [ + "ic", + -8.71823787689209 + ], + [ + "R", + -8.722309112548828 + ], + [ + "ter", + -8.727437019348145 + ], + [ + "ur", + -8.728265762329102 + ], + [ + "▁She", + -8.73131275177002 + ], + [ + "▁public", + -8.732009887695312 + ], + [ + "▁keep", + -8.735784530639648 + ], + [ + "▁H", + -8.736178398132324 + ], + [ + "▁order", + -8.740762710571289 + ], + [ + "▁start", + -8.742195129394531 + ], + [ + "ez", + -8.74746322631836 + ], + [ + "▁‘", + -8.749832153320312 + ], + [ + "uri", + -8.751104354858398 + ], + [ + "▁20", + -8.752482414245605 + ], + [ + "▁On", + -8.753515243530273 + ], + [ + "▁offer", + -8.763005256652832 + ], + [ + "▁quality", + -8.764988899230957 + ], + [ + "▁working", + -8.769987106323242 + ], + [ + "▁No", + -8.770307540893555 + ], + [ + "▁That", + -8.775156021118164 + ], + [ + "▁game", + -8.7863187789917 + ], + [ + "▁bei", + -8.786642074584961 + ], + [ + "▁today", + -8.788661003112793 + ], + [ + "▁never", + -8.794586181640625 + ], + [ + "▁week", + -8.79587173461914 + ], + [ + "▁St", + -8.797786712646484 + ], + [ + "▁feel", + -8.799317359924316 + ], + [ + "▁put", + -8.801899909973145 + ], + [ + "▁website", + -8.80322265625 + ], + [ + "Y", + -8.804483413696289 + ], + [ + "▁days", + -8.804709434509277 + ], + [ + "▁program", + -8.805448532104492 + ], + [ + "▁looking", + -8.810463905334473 + ], + [ + "▁K", + -8.810808181762695 + ], + [ + "▁students", + -8.811436653137207 + ], + [ + "▁create", + -8.811800956726074 + ], + [ + "▁change", + -8.812616348266602 + ], + [ + "▁book", + -8.812932014465332 + ], + [ + "ity", + -8.813761711120605 + ], + [ + "▁At", + -8.815207481384277 + ], + [ + "▁possible", + -8.815670013427734 + ], + [ + "▁sunt", + -8.81651496887207 + ], + [ + "▁7", + -8.818120002746582 + ], + [ + "▁real", + -8.823369026184082 + ], + [ + "▁al", + -8.824172019958496 + ], + [ + "▁making", + -8.825371742248535 + ], + [ + "▁Be", + -8.825761795043945 + ], + [ + "▁products", + -8.82592487335205 + ], + [ + "▁case", + -8.82653522491455 + ], + [ + "▁school", + -8.8272066116333 + ], + [ + "▁say", + -8.830352783203125 + ], + [ + "area", + -8.832084655761719 + ], + [ + "▁My", + -8.833836555480957 + ], + [ + "▁point", + -8.834731101989746 + ], + [ + "▁als", + -8.83560848236084 + ], + [ + "▁children", + -8.836194038391113 + ], + [ + "▁course", + -8.844061851501465 + ], + [ + "▁show", + -8.847993850708008 + ], + [ + "▁8", + -8.849273681640625 + ], + [ + "▁These", + -8.849345207214355 + ], + [ + "▁18", + -8.851140975952148 + ], + [ + "▁large", + -8.851323127746582 + ], + [ + "co", + -8.854362487792969 + ], + [ + "▁über", + -8.854788780212402 + ], + [ + "▁second", + -8.856559753417969 + ], + [ + "▁market", + -8.859807014465332 + ], + [ + "▁fost", + -8.86048698425293 + ], + [ + "▁easy", + -8.863983154296875 + ], + [ + "▁plan", + -8.864302635192871 + ], + [ + "▁project", + -8.864927291870117 + ], + [ + "G", + -8.865178108215332 + ], + [ + "W", + -8.869574546813965 + ], + [ + "3", + -8.871939659118652 + ], + [ + "▁son", + -8.873332023620605 + ], + [ + "la", + -8.879053115844727 + ], + [ + "▁face", + -8.88137435913086 + ], + [ + "▁needs", + -8.88148021697998 + ], + [ + "ch", + -8.883138656616211 + ], + [ + "▁personal", + -8.88343620300293 + ], + [ + "me", + -8.886031150817871 + ], + [ + "▁sont", + -8.887377738952637 + ], + [ + "▁je", + -8.894930839538574 + ], + [ + "▁non", + -8.895471572875977 + ], + [ + "▁got", + -8.896591186523438 + ], + [ + "▁Do", + -8.897382736206055 + ], + [ + "the", + -8.89765453338623 + ], + [ + "▁health", + -8.89908504486084 + ], + [ + "▁special", + -8.90555477142334 + ], + [ + ".\"", + -8.907710075378418 + ], + [ + "1", + -8.907852172851562 + ], + [ + "den", + -8.908616065979004 + ], + [ + "▁state", + -8.909355163574219 + ], + [ + "▁open", + -8.91019058227539 + ], + [ + "▁money", + -8.91053581237793 + ], + [ + "▁again", + -8.913084983825684 + ], + [ + "▁food", + -8.913167953491211 + ], + [ + "▁page", + -8.914595603942871 + ], + [ + "▁together", + -8.91628360748291 + ], + [ + "age", + -8.919108390808105 + ], + [ + "▁qu", + -8.921928405761719 + ], + [ + "hat", + -8.922386169433594 + ], + [ + "▁ver", + -8.926993370056152 + ], + [ + "▁W", + -8.927785873413086 + ], + [ + "▁away", + -8.928759574890137 + ], + [ + "▁wird", + -8.931641578674316 + ], + [ + "▁until", + -8.934249877929688 + ], + [ + "V", + -8.934935569763184 + ], + [ + "▁pre", + -8.935851097106934 + ], + [ + "▁One", + -8.936429977416992 + ], + [ + "▁product", + -8.936561584472656 + ], + [ + "▁often", + -8.939326286315918 + ], + [ + "▁wir", + -8.944111824035645 + ], + [ + "▁nach", + -8.945127487182617 + ], + [ + "▁include", + -8.946555137634277 + ], + [ + "▁um", + -8.948204040527344 + ], + [ + "▁room", + -8.953709602355957 + ], + [ + "▁group", + -8.953767776489258 + ], + [ + "▁name", + -8.954949378967285 + ], + [ + "ce", + -8.955448150634766 + ], + [ + "H", + -8.956180572509766 + ], + [ + "N", + -8.958139419555664 + ], + [ + "▁person", + -8.958183288574219 + ], + [ + "▁social", + -8.958606719970703 + ], + [ + "▁list", + -8.963666915893555 + ], + [ + "▁How", + -8.964127540588379 + ], + [ + "▁why", + -8.96571159362793 + ], + [ + "▁community", + -8.965995788574219 + ], + [ + "▁contact", + -8.973031044006348 + ], + [ + "­", + -8.9755859375 + ], + [ + "▁co", + -8.979683876037598 + ], + [ + "▁play", + -8.983960151672363 + ], + [ + "▁having", + -8.984169960021973 + ], + [ + "▁power", + -8.986917495727539 + ], + [ + "▁call", + -8.991690635681152 + ], + [ + "▁against", + -8.991816520690918 + ], + [ + "▁become", + -8.997780799865723 + ], + [ + "▁cost", + -9.003793716430664 + ], + [ + "▁V", + -9.004593849182129 + ], + [ + "▁research", + -9.006913185119629 + ], + [ + "▁12", + -9.007307052612305 + ], + [ + "▁wie", + -9.008277893066406 + ], + [ + "der", + -9.008386611938477 + ], + [ + "▁thing", + -9.014028549194336 + ], + [ + "▁along", + -9.017301559448242 + ], + [ + "4", + -9.017330169677734 + ], + [ + "▁access", + -9.020391464233398 + ], + [ + "▁level", + -9.020505905151367 + ], + [ + "▁price", + -9.022817611694336 + ], + [ + "▁einen", + -9.023714065551758 + ], + [ + "▁side", + -9.026359558105469 + ], + [ + "▁Un", + -9.026851654052734 + ], + [ + "▁means", + -9.030416488647461 + ], + [ + "(", + -9.032341957092285 + ], + [ + "▁big", + -9.034374237060547 + ], + [ + "▁God", + -9.036499977111816 + ], + [ + "▁dass", + -9.037314414978027 + ], + [ + "im", + -9.037374496459961 + ], + [ + "▁30", + -9.037432670593262 + ], + [ + "▁event", + -9.041665077209473 + ], + [ + "▁development", + -9.042060852050781 + ], + [ + "▁form", + -9.04226303100586 + ], + [ + "▁read", + -9.042579650878906 + ], + [ + "▁hand", + -9.043194770812988 + ], + [ + "▁control", + -9.04446792602539 + ], + [ + "▁However", + -9.046320915222168 + ], + [ + "▁done", + -9.048060417175293 + ], + [ + "▁job", + -9.051692008972168 + ], + [ + "▁hard", + -9.056619644165039 + ], + [ + "▁war", + -9.057538032531738 + ], + [ + "▁area", + -9.0584135055542 + ], + [ + "▁add", + -9.0586576461792 + ], + [ + "▁votre", + -9.0593900680542 + ], + [ + "▁live", + -9.059494018554688 + ], + [ + "▁range", + -9.060099601745605 + ], + [ + "▁After", + -9.060164451599121 + ], + [ + "▁Les", + -9.060513496398926 + ], + [ + "▁far", + -9.064413070678711 + ], + [ + "ver", + -9.064727783203125 + ], + [ + "▁old", + -9.069576263427734 + ], + [ + "▁perfect", + -9.06976318359375 + ], + [ + "▁15", + -9.070429801940918 + ], + [ + "▁space", + -9.073654174804688 + ], + [ + "▁house", + -9.074068069458008 + ], + [ + "ine", + -9.07408618927002 + ], + [ + "▁enough", + -9.074334144592285 + ], + [ + "0", + -9.075824737548828 + ], + [ + "▁several", + -9.077119827270508 + ], + [ + "The", + -9.081155776977539 + ], + [ + "mm", + -9.085619926452637 + ], + [ + "▁University", + -9.08637523651123 + ], + [ + "▁diese", + -9.087566375732422 + ], + [ + "▁Co", + -9.088335990905762 + ], + [ + "▁comes", + -9.088497161865234 + ], + [ + "▁across", + -9.088857650756836 + ], + [ + "▁already", + -9.090097427368164 + ], + [ + ",”", + -9.090341567993164 + ], + [ + "▁body", + -9.09276294708252 + ], + [ + "▁Das", + -9.094594955444336 + ], + [ + "▁einer", + -9.095956802368164 + ], + [ + "▁left", + -9.09921646118164 + ], + [ + "▁future", + -9.105711936950684 + ], + [ + "▁times", + -9.106670379638672 + ], + [ + "▁dar", + -9.109651565551758 + ], + [ + "▁simple", + -9.110408782958984 + ], + [ + "ry", + -9.112407684326172 + ], + [ + "▁getting", + -9.113155364990234 + ], + [ + "▁try", + -9.115362167358398 + ], + [ + "ți", + -9.116897583007812 + ], + [ + "ness", + -9.120043754577637 + ], + [ + "▁makes", + -9.120377540588379 + ], + [ + "▁past", + -9.120619773864746 + ], + [ + "ca", + -9.12130069732666 + ], + [ + "▁light", + -9.122207641601562 + ], + [ + "▁Der", + -9.122997283935547 + ], + [ + "▁run", + -9.125843048095703 + ], + [ + "▁four", + -9.126943588256836 + ], + [ + "ance", + -9.130500793457031 + ], + [ + "▁ever", + -9.131503105163574 + ], + [ + "▁einem", + -9.131816864013672 + ], + [ + "▁below", + -9.133723258972168 + ], + [ + "O", + -9.134073257446289 + ], + [ + "▁9", + -9.137282371520996 + ], + [ + "▁learn", + -9.14004135131836 + ], + [ + "out", + -9.140358924865723 + ], + [ + "▁video", + -9.143178939819336 + ], + [ + "▁etc", + -9.146929740905762 + ], + [ + "▁«", + -9.148795127868652 + ], + [ + "▁zum", + -9.149712562561035 + ], + [ + "▁kann", + -9.1504487991333 + ], + [ + "▁minutes", + -9.151180267333984 + ], + [ + "▁example", + -9.154194831848145 + ], + [ + "▁nous", + -9.154619216918945 + ], + [ + "▁Se", + -9.157441139221191 + ], + [ + "▁sie", + -9.159955024719238 + ], + [ + "▁industry", + -9.161614418029785 + ], + [ + "▁problem", + -9.162016868591309 + ], + [ + "J", + -9.162480354309082 + ], + [ + "▁country", + -9.163366317749023 + ], + [ + "▁fact", + -9.164189338684082 + ], + [ + "▁type", + -9.164190292358398 + ], + [ + "ner", + -9.164238929748535 + ], + [ + "▁companies", + -9.165864944458008 + ], + [ + "▁line", + -9.169849395751953 + ], + [ + "▁city", + -9.172713279724121 + ], + [ + "▁check", + -9.173710823059082 + ], + [ + "▁doing", + -9.174406051635742 + ], + [ + "elle", + -9.175037384033203 + ], + [ + "▁fun", + -9.176549911499023 + ], + [ + "▁En", + -9.177546501159668 + ], + [ + "▁Your", + -9.178601264953613 + ], + [ + "ling", + -9.181450843811035 + ], + [ + "▁share", + -9.18185806274414 + ], + [ + "ile", + -9.182005882263184 + ], + [ + "▁actually", + -9.187544822692871 + ], + [ + "▁value", + -9.187751770019531 + ], + [ + "zi", + -9.188661575317383 + ], + [ + "▁ab", + -9.1898832321167 + ], + [ + "▁offers", + -9.1905517578125 + ], + [ + "▁less", + -9.190573692321777 + ], + [ + "▁night", + -9.193560600280762 + ], + [ + "▁Dr", + -9.19518756866455 + ], + [ + "▁started", + -9.195454597473145 + ], + [ + "▁least", + -9.198020935058594 + ], + [ + "▁short", + -9.198562622070312 + ], + [ + "▁main", + -9.201143264770508 + ], + [ + "▁single", + -9.202939987182617 + ], + [ + "▁though", + -9.203780174255371 + ], + [ + "▁prin", + -9.203930854797363 + ], + [ + "time", + -9.20531177520752 + ], + [ + "▁hours", + -9.206608772277832 + ], + [ + "▁others", + -9.206849098205566 + ], + [ + "▁called", + -9.20730209350586 + ], + [ + "▁visit", + -9.208869934082031 + ], + [ + "▁bit", + -9.209009170532227 + ], + [ + "ée", + -9.210821151733398 + ], + [ + "▁customers", + -9.211383819580078 + ], + [ + "▁music", + -9.212000846862793 + ], + [ + "▁members", + -9.217191696166992 + ], + [ + "ies", + -9.21743392944336 + ], + [ + "▁pay", + -9.219176292419434 + ], + [ + "nd", + -9.219744682312012 + ], + [ + "▁once", + -9.221125602722168 + ], + [ + "gen", + -9.2217378616333 + ], + [ + "▁können", + -9.222976684570312 + ], + [ + "▁low", + -9.223771095275879 + ], + [ + "▁durch", + -9.227394104003906 + ], + [ + "▁story", + -9.228075981140137 + ], + [ + "▁understand", + -9.22953987121582 + ], + [ + "“", + -9.229856491088867 + ], + [ + "▁Am", + -9.231831550598145 + ], + [ + "▁didn", + -9.234603881835938 + ], + [ + "▁content", + -9.237217903137207 + ], + [ + "son", + -9.24180793762207 + ], + [ + "▁building", + -9.242242813110352 + ], + [ + "▁result", + -9.242605209350586 + ], + [ + "▁aux", + -9.243107795715332 + ], + [ + "▁complete", + -9.244999885559082 + ], + [ + "▁doesn", + -9.24510669708252 + ], + [ + "▁haben", + -9.246070861816406 + ], + [ + "▁questions", + -9.24661636352539 + ], + [ + "line", + -9.247077941894531 + ], + [ + "▁technology", + -9.247429847717285 + ], + [ + "▁Pro", + -9.247976303100586 + ], + [ + "▁current", + -9.248504638671875 + ], + [ + "▁won", + -9.248883247375488 + ], + [ + "▁let", + -9.250710487365723 + ], + [ + "▁features", + -9.251978874206543 + ], + [ + "▁please", + -9.258262634277344 + ], + [ + "5", + -9.258519172668457 + ], + [ + "▁above", + -9.259394645690918 + ], + [ + "ive", + -9.262128829956055 + ], + [ + "▁management", + -9.262394905090332 + ], + [ + "▁lui", + -9.262539863586426 + ], + [ + "her", + -9.263057708740234 + ], + [ + "▁training", + -9.265711784362793 + ], + [ + "▁everything", + -9.2665433883667 + ], + [ + "▁noch", + -9.266846656799316 + ], + [ + "▁came", + -9.267708778381348 + ], + [ + "▁web", + -9.272823333740234 + ], + [ + "▁ensure", + -9.272987365722656 + ], + [ + "▁months", + -9.273130416870117 + ], + [ + "▁art", + -9.27313232421875 + ], + [ + "▁sub", + -9.274359703063965 + ], + [ + "▁million", + -9.274559020996094 + ], + [ + "▁professional", + -9.275035858154297 + ], + [ + "▁results", + -9.278368949890137 + ], + [ + "▁kind", + -9.278395652770996 + ], + [ + "▁season", + -9.279285430908203 + ], + [ + "▁unique", + -9.281067848205566 + ], + [ + "ze", + -9.284360885620117 + ], + [ + "▁enjoy", + -9.28487777709961 + ], + [ + "▁early", + -9.287765502929688 + ], + [ + "▁major", + -9.288202285766602 + ], + [ + "▁yet", + -9.29152774810791 + ], + [ + "▁Ver", + -9.293331146240234 + ], + [ + "one", + -9.296777725219727 + ], + [ + "▁media", + -9.29719352722168 + ], + [ + "▁[", + -9.30095100402832 + ], + [ + "▁property", + -9.302969932556152 + ], + [ + "▁beautiful", + -9.304466247558594 + ], + [ + "▁given", + -9.305286407470703 + ], + [ + "▁due", + -9.306716918945312 + ], + [ + "▁government", + -9.307181358337402 + ], + [ + "▁nur", + -9.30881404876709 + ], + [ + "▁email", + -9.309103012084961 + ], + [ + "▁total", + -9.311080932617188 + ], + [ + "▁natural", + -9.311264038085938 + ], + [ + "▁test", + -9.311450004577637 + ], + [ + "▁provides", + -9.311640739440918 + ], + [ + "▁various", + -9.312631607055664 + ], + [ + "▁American", + -9.315605163574219 + ], + [ + "▁moment", + -9.318109512329102 + ], + [ + "▁air", + -9.318952560424805 + ], + [ + "▁idea", + -9.319236755371094 + ], + [ + "▁known", + -9.319981575012207 + ], + [ + "▁Il", + -9.320504188537598 + ], + [ + "▁friends", + -9.320576667785645 + ], + [ + "▁final", + -9.320919036865234 + ], + [ + "▁buy", + -9.32139778137207 + ], + [ + "▁specific", + -9.322234153747559 + ], + [ + "▁issues", + -9.32454776763916 + ], + [ + "▁took", + -9.325233459472656 + ], + [ + "▁mind", + -9.326258659362793 + ], + [ + "▁study", + -9.32675838470459 + ], + [ + "▁addition", + -9.328418731689453 + ], + [ + "▁size", + -9.332446098327637 + ], + [ + "▁pro", + -9.334047317504883 + ], + [ + "▁film", + -9.33545970916748 + ], + [ + "▁pot", + -9.335636138916016 + ], + [ + "▁thought", + -9.338120460510254 + ], + [ + "▁tell", + -9.33890438079834 + ], + [ + "▁While", + -9.339675903320312 + ], + [ + "▁head", + -9.339983940124512 + ], + [ + "▁clients", + -9.340429306030273 + ], + [ + "▁performance", + -9.346199989318848 + ], + [ + "▁question", + -9.346835136413574 + ], + [ + "▁whether", + -9.347925186157227 + ], + [ + "▁certain", + -9.34826946258545 + ], + [ + "▁model", + -9.348764419555664 + ], + [ + "▁following", + -9.350926399230957 + ], + [ + "▁energy", + -9.354207992553711 + ], + [ + "▁office", + -9.354207992553711 + ], + [ + "▁whole", + -9.356687545776367 + ], + [ + "▁bring", + -9.356956481933594 + ], + [ + "▁required", + -9.35726261138916 + ], + [ + "ţi", + -9.358223915100098 + ], + [ + "▁date", + -9.358695030212402 + ], + [ + "_", + -9.358983039855957 + ], + [ + "que", + -9.359789848327637 + ], + [ + "▁da", + -9.360264778137207 + ], + [ + "▁US", + -9.36120319366455 + ], + [ + "▁taking", + -9.36143684387207 + ], + [ + "go", + -9.362788200378418 + ], + [ + "▁living", + -9.36341667175293 + ], + [ + "▁someone", + -9.363489151000977 + ], + [ + "▁heart", + -9.365120887756348 + ], + [ + "▁key", + -9.365775108337402 + ], + [ + "▁areas", + -9.366238594055176 + ], + [ + "▁says", + -9.367013931274414 + ], + [ + "▁2018", + -9.369132041931152 + ], + [ + "▁month", + -9.37012767791748 + ], + [ + "▁Er", + -9.371354103088379 + ], + [ + "ste", + -9.375077247619629 + ], + [ + "▁11", + -9.375179290771484 + ], + [ + "▁front", + -9.37528133392334 + ], + [ + "▁Now", + -9.37669563293457 + ], + [ + "▁class", + -9.376946449279785 + ], + [ + "▁choose", + -9.377082824707031 + ], + [ + "pe", + -9.37808609008789 + ], + [ + "▁further", + -9.379021644592285 + ], + [ + "▁believe", + -9.37936019897461 + ], + [ + "of", + -9.379590034484863 + ], + [ + "▁among", + -9.380990982055664 + ], + [ + "sch", + -9.381686210632324 + ], + [ + "▁child", + -9.382609367370605 + ], + [ + "▁aber", + -9.38376235961914 + ], + [ + "▁Please", + -9.386269569396973 + ], + [ + "rea", + -9.387248992919922 + ], + [ + "▁later", + -9.387272834777832 + ], + [ + "▁amount", + -9.388760566711426 + ], + [ + "ice", + -9.390128135681152 + ], + [ + "▁National", + -9.390177726745605 + ], + [ + "▁style", + -9.390748977661133 + ], + [ + "▁tout", + -9.391490936279297 + ], + [ + "▁staff", + -9.392939567565918 + ], + [ + "▁white", + -9.397933959960938 + ], + [ + "▁ge", + -9.399179458618164 + ], + [ + "▁five", + -9.400984764099121 + ], + [ + "▁blog", + -9.40109920501709 + ], + [ + "▁designed", + -9.40125846862793 + ], + [ + "▁went", + -9.402216911315918 + ], + [ + "▁Da", + -9.40268611907959 + ], + [ + "▁general", + -9.403801918029785 + ], + [ + "▁rest", + -9.403874397277832 + ], + [ + "▁zur", + -9.40579891204834 + ], + [ + "▁quite", + -9.405948638916016 + ], + [ + "per", + -9.40687084197998 + ], + [ + "▁customer", + -9.408379554748535 + ], + [ + "▁close", + -9.408747673034668 + ], + [ + "▁Some", + -9.41054630279541 + ], + [ + "▁women", + -9.41075611114502 + ], + [ + "▁move", + -9.410761833190918 + ], + [ + "▁software", + -9.411357879638672 + ], + [ + "▁Ein", + -9.413651466369629 + ], + [ + "▁Ab", + -9.413823127746582 + ], + [ + "▁history", + -9.413864135742188 + ], + [ + "▁either", + -9.41564655303955 + ], + [ + "▁seen", + -9.417396545410156 + ], + [ + "▁card", + -9.419726371765137 + ], + [ + "▁City", + -9.421541213989258 + ], + [ + "▁hope", + -9.421769142150879 + ], + [ + "▁16", + -9.422072410583496 + ], + [ + "és", + -9.422825813293457 + ], + [ + "va", + -9.423294067382812 + ], + [ + "▁Al", + -9.423827171325684 + ], + [ + "▁especially", + -9.424827575683594 + ], + [ + "▁view", + -9.426136016845703 + ], + [ + "men", + -9.427363395690918 + ], + [ + "▁account", + -9.427489280700684 + ], + [ + "▁needed", + -9.429777145385742 + ], + [ + "▁United", + -9.429789543151855 + ], + [ + "]", + -9.432387351989746 + ], + [ + "▁yourself", + -9.432788848876953 + ], + [ + "▁100", + -9.433059692382812 + ], + [ + "▁receive", + -9.433417320251465 + ], + [ + "▁ideas", + -9.43369197845459 + ], + [ + "▁writing", + -9.434585571289062 + ], + [ + "▁simply", + -9.434741973876953 + ], + [ + "▁present", + -9.435087203979492 + ], + [ + "▁continue", + -9.436107635498047 + ], + [ + "▁application", + -9.44115161895752 + ], + [ + "▁build", + -9.44187068939209 + ], + [ + "▁turn", + -9.44249439239502 + ], + [ + "ated", + -9.442923545837402 + ], + [ + "▁everyone", + -9.443060874938965 + ], + [ + "cette", + -9.443114280700684 + ], + [ + "▁bien", + -9.444964408874512 + ], + [ + "less", + -9.445222854614258 + ], + [ + "▁Si", + -9.445359230041504 + ], + [ + "▁original", + -9.446867942810059 + ], + [ + "8", + -9.44794750213623 + ], + [ + "▁individual", + -9.448895454406738 + ], + [ + "tre", + -9.449433326721191 + ], + [ + "▁works", + -9.45171070098877 + ], + [ + "▁options", + -9.451821327209473 + ], + [ + "▁May", + -9.454456329345703 + ], + [ + "▁Not", + -9.454940795898438 + ], + [ + "▁report", + -9.455467224121094 + ], + [ + "mer", + -9.457239151000977 + ], + [ + "▁human", + -9.459118843078613 + ], + [ + "▁provided", + -9.459603309631348 + ], + [ + "▁By", + -9.460925102233887 + ], + [ + "▁series", + -9.462006568908691 + ], + [ + "7", + -9.46226692199707 + ], + [ + "▁modern", + -9.463875770568848 + ], + [ + "▁meet", + -9.463921546936035 + ], + [ + "▁50", + -9.464119911193848 + ], + [ + "▁25", + -9.46969985961914 + ], + [ + "▁color", + -9.470091819763184 + ], + [ + "▁download", + -9.470109939575195 + ], + [ + "▁Here", + -9.471144676208496 + ], + [ + "6", + -9.471323013305664 + ], + [ + "▁poate", + -9.471449851989746 + ], + [ + "▁În", + -9.472321510314941 + ], + [ + "▁phone", + -9.473695755004883 + ], + [ + "▁likely", + -9.474374771118164 + ], + [ + "▁table", + -9.476469993591309 + ], + [ + "▁ma", + -9.476551055908203 + ], + [ + "▁Or", + -9.479181289672852 + ], + [ + "Z", + -9.48026180267334 + ], + [ + "▁19", + -9.482215881347656 + ], + [ + "▁insurance", + -9.482544898986816 + ], + [ + "▁anything", + -9.483808517456055 + ], + [ + "▁search", + -9.485033988952637 + ], + [ + "▁Ge", + -9.48520565032959 + ], + [ + "▁issue", + -9.485564231872559 + ], + [ + "▁includes", + -9.485688209533691 + ], + [ + "▁clear", + -9.487342834472656 + ], + [ + "les", + -9.488021850585938 + ], + [ + "▁almost", + -9.488259315490723 + ], + [ + "ilor", + -9.48935317993164 + ], + [ + "▁14", + -9.490717887878418 + ], + [ + "by", + -9.494056701660156 + ], + [ + "▁Du", + -9.49624252319336 + ], + [ + "▁mais", + -9.497303009033203 + ], + [ + "ier", + -9.499163627624512 + ], + [ + "▁law", + -9.49924087524414 + ], + [ + "▁added", + -9.500134468078613 + ], + [ + "▁con", + -9.500962257385254 + ], + [ + ",\"", + -9.501530647277832 + ], + [ + "▁ago", + -9.502127647399902 + ], + [ + "▁His", + -9.504697799682617 + ], + [ + "▁points", + -9.504981994628906 + ], + [ + "▁mult", + -9.505581855773926 + ], + [ + "▁financial", + -9.506216049194336 + ], + [ + "▁problems", + -9.506428718566895 + ], + [ + "▁however", + -9.50648307800293 + ], + [ + "▁events", + -9.50675106048584 + ], + [ + "▁half", + -9.507889747619629 + ], + [ + "ard", + -9.511183738708496 + ], + [ + "▁ask", + -9.51156997680664 + ], + [ + "▁version", + -9.511631965637207 + ], + [ + "end", + -9.512478828430176 + ], + [ + "▁created", + -9.512639999389648 + ], + [ + "▁lead", + -9.512917518615723 + ], + [ + "▁focus", + -9.513853073120117 + ], + [ + "▁increase", + -9.515096664428711 + ], + [ + "ex", + -9.515118598937988 + ], + [ + "▁allow", + -9.515798568725586 + ], + [ + "▁extra", + -9.516464233398438 + ], + [ + "▁24", + -9.516692161560059 + ], + [ + "▁credit", + -9.516772270202637 + ], + [ + "▁production", + -9.516801834106445 + ], + [ + "zu", + -9.517256736755371 + ], + [ + "▁black", + -9.51754093170166 + ], + [ + "▁systems", + -9.518040657043457 + ], + [ + "▁17", + -9.518178939819336 + ], + [ + "▁opportunity", + -9.518531799316406 + ], + [ + "▁bis", + -9.519219398498535 + ], + [ + "▁fast", + -9.519807815551758 + ], + [ + "ring", + -9.521166801452637 + ], + [ + "▁Don", + -9.522114753723145 + ], + [ + "▁via", + -9.52242660522461 + ], + [ + "fer", + -9.5225248336792 + ], + [ + "▁comme", + -9.522799491882324 + ], + [ + "▁popular", + -9.523722648620605 + ], + [ + "▁South", + -9.524491310119629 + ], + [ + "ating", + -9.525003433227539 + ], + [ + "▁State", + -9.525198936462402 + ], + [ + "ator", + -9.525679588317871 + ], + [ + "▁common", + -9.525968551635742 + ], + [ + "con", + -9.526727676391602 + ], + [ + "▁throughout", + -9.527557373046875 + ], + [ + "▁risk", + -9.52774715423584 + ], + [ + "▁young", + -9.528532028198242 + ], + [ + "▁Je", + -9.528688430786133 + ], + [ + "▁image", + -9.52928352355957 + ], + [ + "ha", + -9.529376983642578 + ], + [ + "▁third", + -9.529587745666504 + ], + [ + "▁taken", + -9.530049324035645 + ], + [ + "▁Z", + -9.5314302444458 + ], + [ + "▁dis", + -9.5316162109375 + ], + [ + "▁From", + -9.533575057983398 + ], + [ + "▁details", + -9.534862518310547 + ], + [ + "▁games", + -9.53516674041748 + ], + [ + "▁practice", + -9.536040306091309 + ], + [ + "che", + -9.536151885986328 + ], + [ + "▁security", + -9.537364959716797 + ], + [ + "▁medical", + -9.537653923034668 + ], + [ + "▁learning", + -9.537806510925293 + ], + [ + "▁material", + -9.538509368896484 + ], + [ + "▁international", + -9.540703773498535 + ], + [ + "▁forward", + -9.541245460510254 + ], + [ + "▁paper", + -9.541247367858887 + ], + [ + "▁action", + -9.541348457336426 + ], + [ + "▁file", + -9.542378425598145 + ], + [ + "▁oil", + -9.543096542358398 + ], + [ + "▁self", + -9.54377555847168 + ], + [ + "▁private", + -9.545247077941895 + ], + [ + "▁interest", + -9.545559883117676 + ], + [ + "bar", + -9.546065330505371 + ], + [ + "▁sale", + -9.547115325927734 + ], + [ + "▁stay", + -9.547348976135254 + ], + [ + "ke", + -9.548089981079102 + ], + [ + "▁San", + -9.549053192138672 + ], + [ + "▁matter", + -9.549870491027832 + ], + [ + "▁reason", + -9.550254821777344 + ], + [ + "ted", + -9.55147647857666 + ], + [ + "▁potential", + -9.551742553710938 + ], + [ + "▁brand", + -9.552441596984863 + ], + [ + "▁field", + -9.55315113067627 + ], + [ + "▁treatment", + -9.553420066833496 + ], + [ + "▁period", + -9.553516387939453 + ], + [ + "▁York", + -9.553890228271484 + ], + [ + "▁Park", + -9.554738998413086 + ], + [ + "▁acest", + -9.556009292602539 + ], + [ + "ou", + -9.556926727294922 + ], + [ + "▁Ce", + -9.557014465332031 + ], + [ + "▁ready", + -9.558111190795898 + ], + [ + "▁rather", + -9.55860424041748 + ], + [ + "▁outside", + -9.560086250305176 + ], + [ + "▁standard", + -9.560121536254883 + ], + [ + "▁located", + -9.560770034790039 + ], + [ + "▁marketing", + -9.562313079833984 + ], + [ + "cu", + -9.564041137695312 + ], + [ + "▁Can", + -9.564562797546387 + ], + [ + "▁education", + -9.566105842590332 + ], + [ + "use", + -9.566640853881836 + ], + [ + "▁role", + -9.566828727722168 + ], + [ + "▁men", + -9.571505546569824 + ], + [ + "▁probably", + -9.571550369262695 + ], + [ + "▁store", + -9.57221508026123 + ], + [ + "▁John", + -9.572355270385742 + ], + [ + "▁rate", + -9.573956489562988 + ], + [ + "▁code", + -9.573994636535645 + ], + [ + "▁kids", + -9.574408531188965 + ], + [ + "▁currently", + -9.57552719116211 + ], + [ + "▁near", + -9.576475143432617 + ], + [ + "▁sales", + -9.576716423034668 + ], + [ + "▁usually", + -9.577012062072754 + ], + [ + "▁activities", + -9.577242851257324 + ], + [ + "▁party", + -9.577371597290039 + ], + [ + "▁leur", + -9.577434539794922 + ], + [ + "▁particular", + -9.577627182006836 + ], + [ + "▁mehr", + -9.577707290649414 + ], + [ + "ill", + -9.578757286071777 + ], + [ + "▁percent", + -9.579113006591797 + ], + [ + "▁fait", + -9.579537391662598 + ], + [ + "▁happy", + -9.579904556274414 + ], + [ + "▁inside", + -9.58005428314209 + ], + [ + "▁save", + -9.580510139465332 + ], + [ + "▁skills", + -9.580765724182129 + ], + [ + "▁consider", + -9.581025123596191 + ], + [ + "▁recent", + -9.58161735534668 + ], + [ + "▁strong", + -9.581781387329102 + ], + [ + "▁position", + -9.582076072692871 + ], + [ + "▁knowledge", + -9.582303047180176 + ], + [ + "▁tax", + -9.583868980407715 + ], + [ + "▁users", + -9.584261894226074 + ], + [ + "und", + -9.585564613342285 + ], + [ + "▁coming", + -9.585904121398926 + ], + [ + "▁article", + -9.585923194885254 + ], + [ + "min", + -9.586345672607422 + ], + [ + "▁sein", + -9.586555480957031 + ], + [ + "▁travel", + -9.586871147155762 + ], + [ + "▁changes", + -9.58765983581543 + ], + [ + "▁impact", + -9.588181495666504 + ], + [ + "▁wanted", + -9.588460922241211 + ], + [ + "▁address", + -9.5885591506958 + ], + [ + "▁soon", + -9.58873462677002 + ], + [ + "▁North", + -9.588915824890137 + ], + [ + "ată", + -9.589237213134766 + ], + [ + "▁trying", + -9.58985424041748 + ], + [ + "▁app", + -9.590612411499023 + ], + [ + "▁School", + -9.592510223388672 + ], + [ + "▁Es", + -9.592548370361328 + ], + [ + "we", + -9.59261703491211 + ], + [ + "▁conditions", + -9.59292984008789 + ], + [ + "▁digital", + -9.593293190002441 + ], + [ + "▁similar", + -9.594805717468262 + ], + [ + "▁solution", + -9.59514331817627 + ], + [ + "▁location", + -9.595183372497559 + ], + [ + "▁Of", + -9.595418930053711 + ], + [ + "▁follow", + -9.595842361450195 + ], + [ + "▁red", + -9.597526550292969 + ], + [ + "▁review", + -9.599202156066895 + ], + [ + "▁skin", + -9.599575996398926 + ], + [ + "▁pretty", + -9.600369453430176 + ], + [ + "day", + -9.600558280944824 + ], + [ + "▁dé", + -9.602072715759277 + ], + [ + "▁cause", + -9.602169036865234 + ], + [ + "▁Sa", + -9.602463722229004 + ], + [ + "▁user", + -9.602520942687988 + ], + [ + "▁Man", + -9.603377342224121 + ], + [ + "”.", + -9.604146003723145 + ], + [ + "▁Just", + -9.604366302490234 + ], + [ + "▁faire", + -9.604475021362305 + ], + [ + "▁member", + -9.605619430541992 + ], + [ + "▁iar", + -9.606892585754395 + ], + [ + "▁higher", + -9.607715606689453 + ], + [ + "▁step", + -9.607887268066406 + ], + [ + "▁wide", + -9.608185768127441 + ], + [ + "▁uns", + -9.608920097351074 + ], + [ + "▁World", + -9.609135627746582 + ], + [ + "▁additional", + -9.61176586151123 + ], + [ + "ber", + -9.613197326660156 + ], + [ + "▁easily", + -9.613990783691406 + ], + [ + "▁deal", + -9.615070343017578 + ], + [ + "▁ways", + -9.615514755249023 + ], + [ + "▁mobile", + -9.616837501525879 + ], + [ + "▁national", + -9.616913795471191 + ], + [ + "▁couple", + -9.617389678955078 + ], + [ + "▁ihre", + -9.61939811706543 + ], + [ + "▁choice", + -9.619612693786621 + ], + [ + "for", + -9.619686126708984 + ], + [ + "ous", + -9.62070083618164 + ], + [ + "▁Google", + -9.620855331420898 + ], + [ + "▁environment", + -9.622426986694336 + ], + [ + "urile", + -9.623322486877441 + ], + [ + "▁Center", + -9.626680374145508 + ], + [ + "mp", + -9.628592491149902 + ], + [ + "▁»", + -9.629727363586426 + ], + [ + "qui", + -9.630680084228516 + ], + [ + "▁growth", + -9.631048202514648 + ], + [ + "ler", + -9.633174896240234 + ], + [ + "▁improve", + -9.63360595703125 + ], + [ + "▁items", + -9.6336669921875 + ], + [ + "▁Nu", + -9.63393783569336 + ], + [ + "▁leave", + -9.634074211120605 + ], + [ + "▁true", + -9.634805679321289 + ], + [ + "▁wurde", + -9.63487434387207 + ], + [ + "▁cannot", + -9.635004043579102 + ], + [ + "▁13", + -9.635096549987793 + ], + [ + "▁running", + -9.636015892028809 + ], + [ + "▁anti", + -9.636177062988281 + ], + [ + "▁option", + -9.636306762695312 + ], + [ + "▁reading", + -9.63657283782959 + ], + [ + "▁Car", + -9.636698722839355 + ], + [ + "▁Wir", + -9.638110160827637 + ], + [ + "▁April", + -9.63975715637207 + ], + [ + "▁behind", + -9.640642166137695 + ], + [ + "▁client", + -9.640750885009766 + ], + [ + "▁cover", + -9.641012191772461 + ], + [ + "▁stop", + -9.641090393066406 + ], + [ + "ja", + -9.641277313232422 + ], + [ + "▁built", + -9.641307830810547 + ], + [ + "▁Con", + -9.641313552856445 + ], + [ + "ement", + -9.641366004943848 + ], + [ + "▁projects", + -9.641828536987305 + ], + [ + "▁variety", + -9.641840934753418 + ], + [ + "▁Ihre", + -9.642666816711426 + ], + [ + "ș", + -9.64302921295166 + ], + [ + "▁unter", + -9.64385986328125 + ], + [ + "▁longer", + -9.646577835083008 + ], + [ + "year", + -9.647161483764648 + ], + [ + "▁photo", + -9.648370742797852 + ], + [ + "▁Also", + -9.64933967590332 + ], + [ + "▁received", + -9.651098251342773 + ], + [ + "▁return", + -9.652676582336426 + ], + [ + "00", + -9.653081893920898 + ], + [ + "▁bar", + -9.653343200683594 + ], + [ + "ary", + -9.654427528381348 + ], + [ + "elor", + -9.655137062072754 + ], + [ + "▁Home", + -9.656189918518066 + ], + [ + "our", + -9.656298637390137 + ], + [ + "▁Me", + -9.65771198272705 + ], + [ + "▁held", + -9.659111022949219 + ], + [ + "▁click", + -9.66014289855957 + ], + [ + "▁ex", + -9.660178184509277 + ], + [ + "▁cum", + -9.661561965942383 + ], + [ + "▁takes", + -9.66395378112793 + ], + [ + "▁computer", + -9.665796279907227 + ], + [ + "▁told", + -9.668192863464355 + ], + [ + "+", + -9.670648574829102 + ], + [ + "▁patients", + -9.670809745788574 + ], + [ + "ting", + -9.672165870666504 + ], + [ + "▁direct", + -9.672248840332031 + ], + [ + "▁quickly", + -9.672410011291504 + ], + [ + "tic", + -9.672877311706543 + ], + [ + "▁vom", + -9.673723220825195 + ], + [ + "▁di", + -9.67381477355957 + ], + [ + "▁kitchen", + -9.674022674560547 + ], + [ + "▁network", + -9.675640106201172 + ], + [ + "▁2015", + -9.676688194274902 + ], + [ + "▁effective", + -9.677227020263672 + ], + [ + "▁collection", + -9.677703857421875 + ], + [ + "▁2017", + -9.677751541137695 + ], + [ + "▁words", + -9.678145408630371 + ], + [ + "▁cele", + -9.678857803344727 + ], + [ + "▁student", + -9.678862571716309 + ], + [ + "▁amazing", + -9.678932189941406 + ], + [ + "eur", + -9.680419921875 + ], + [ + ".”", + -9.68227481842041 + ], + [ + "▁ale", + -9.682716369628906 + ], + [ + "”,", + -9.68414306640625 + ], + [ + "▁purchase", + -9.684350967407227 + ], + [ + "▁mean", + -9.68477725982666 + ], + [ + "▁West", + -9.686846733093262 + ], + [ + "▁nice", + -9.6889066696167 + ], + [ + "▁age", + -9.689131736755371 + ], + [ + "▁base", + -9.68923568725586 + ], + [ + "▁summer", + -9.68928337097168 + ], + [ + "▁multi", + -9.689496994018555 + ], + [ + "▁allows", + -9.689573287963867 + ], + [ + "▁latest", + -9.689604759216309 + ], + [ + "▁global", + -9.68992805480957 + ], + [ + "▁chance", + -9.690792083740234 + ], + [ + "▁sense", + -9.690872192382812 + ], + [ + "ieren", + -9.692789077758789 + ], + [ + "▁difficult", + -9.693133354187012 + ], + [ + "ité", + -9.694750785827637 + ], + [ + "ka", + -9.694792747497559 + ], + [ + "du", + -9.69483757019043 + ], + [ + "▁providing", + -9.695744514465332 + ], + [ + "▁Art", + -9.696940422058105 + ], + [ + "▁drive", + -9.698554992675781 + ], + [ + "▁Go", + -9.698877334594727 + ], + [ + "▁très", + -9.699414253234863 + ], + [ + "U", + -9.699579238891602 + ], + [ + "▁Pre", + -9.699846267700195 + ], + [ + "▁shows", + -9.700040817260742 + ], + [ + "▁hair", + -9.701324462890625 + ], + [ + "▁success", + -9.701513290405273 + ], + [ + "▁UK", + -9.703169822692871 + ], + [ + "red", + -9.703241348266602 + ], + [ + "ü", + -9.703370094299316 + ], + [ + "ish", + -9.703631401062012 + ], + [ + "▁weeks", + -9.704839706420898 + ], + [ + "▁solutions", + -9.7055025100708 + ], + [ + "▁Pe", + -9.7057523727417 + ], + [ + "▁equipment", + -9.706141471862793 + ], + [ + "și", + -9.706482887268066 + ], + [ + "▁worked", + -9.707073211669922 + ], + [ + "\".", + -9.708627700805664 + ], + [ + "▁legal", + -9.708720207214355 + ], + [ + "▁bad", + -9.70892333984375 + ], + [ + "▁40", + -9.709561347961426 + ], + [ + "▁Internet", + -9.709798812866211 + ], + [ + "▁included", + -9.709976196289062 + ], + [ + "▁upon", + -9.710977554321289 + ], + [ + "▁excellent", + -9.71106243133545 + ], + [ + "▁goal", + -9.71130084991455 + ], + [ + "▁El", + -9.711408615112305 + ], + [ + "▁Mo", + -9.711703300476074 + ], + [ + "▁policy", + -9.71319580078125 + ], + [ + "▁aussi", + -9.713537216186523 + ], + [ + "▁weight", + -9.713687896728516 + ], + [ + "ici", + -9.715133666992188 + ], + [ + "▁approach", + -9.715584754943848 + ], + [ + "▁six", + -9.71579647064209 + ], + [ + "▁entire", + -9.715911865234375 + ], + [ + "9", + -9.71633529663086 + ], + [ + "▁send", + -9.716832160949707 + ], + [ + "▁1.", + -9.718971252441406 + ], + [ + "▁wenn", + -9.719056129455566 + ], + [ + "▁photos", + -9.71993637084961 + ], + [ + "://", + -9.721014022827148 + ], + [ + "ger", + -9.72281551361084 + ], + [ + "▁favorite", + -9.723104476928711 + ], + [ + "ley", + -9.723477363586426 + ], + [ + "▁else", + -9.72463321685791 + ], + [ + "▁types", + -9.72468376159668 + ], + [ + "▁link", + -9.725333213806152 + ], + [ + "▁recently", + -9.72584056854248 + ], + [ + "▁Mit", + -9.72631549835205 + ], + [ + "▁hot", + -9.726548194885254 + ], + [ + "tra", + -9.726597785949707 + ], + [ + "ş", + -9.727307319641113 + ], + [ + "▁according", + -9.728511810302734 + ], + [ + "▁necessary", + -9.728511810302734 + ], + [ + "▁multiple", + -9.729269027709961 + ], + [ + "▁Im", + -9.729510307312012 + ], + [ + "▁sehr", + -9.729660034179688 + ], + [ + "▁sign", + -9.732263565063477 + ], + [ + "▁anyone", + -9.73283576965332 + ], + [ + "▁land", + -9.733613014221191 + ], + [ + "▁States", + -9.734037399291992 + ], + [ + "▁unsere", + -9.734119415283203 + ], + [ + "ées", + -9.734639167785645 + ], + [ + "We", + -9.735671043395996 + ], + [ + "▁nothing", + -9.735845565795898 + ], + [ + "▁commercial", + -9.736858367919922 + ], + [ + "ful", + -9.737265586853027 + ], + [ + "▁seems", + -9.739325523376465 + ], + [ + "▁International", + -9.740097045898438 + ], + [ + "▁March", + -9.74163818359375 + ], + [ + "▁Thanks", + -9.743307113647461 + ], + [ + "▁County", + -9.74365234375 + ], + [ + "▁books", + -9.744638442993164 + ], + [ + "▁Ca", + -9.7451753616333 + ], + [ + "▁mi", + -9.746304512023926 + ], + [ + "▁meeting", + -9.746662139892578 + ], + [ + "▁tools", + -9.747593879699707 + ], + [ + "▁cut", + -9.747650146484375 + ], + [ + "▁related", + -9.74765682220459 + ], + [ + "▁lives", + -9.748003005981445 + ], + [ + "way", + -9.748501777648926 + ], + [ + "▁develop", + -9.748651504516602 + ], + [ + "▁sound", + -9.748723983764648 + ], + [ + "▁safe", + -9.748950958251953 + ], + [ + "▁Her", + -9.74937629699707 + ], + [ + "▁average", + -9.751277923583984 + ], + [ + "▁clean", + -9.75174331665039 + ], + [ + "▁talk", + -9.752362251281738 + ], + [ + "▁peut", + -9.75241756439209 + ], + [ + "▁dann", + -9.752546310424805 + ], + [ + "▁terms", + -9.753265380859375 + ], + [ + "▁foarte", + -9.753512382507324 + ], + [ + "▁super", + -9.754284858703613 + ], + [ + "▁programs", + -9.754853248596191 + ], + [ + "▁decision", + -9.75540828704834 + ], + [ + "▁costs", + -9.756058692932129 + ], + [ + "▁être", + -9.756291389465332 + ], + [ + "▁2019", + -9.757674217224121 + ], + [ + "led", + -9.759482383728027 + ], + [ + "▁parents", + -9.759617805480957 + ], + [ + "▁Mr", + -9.761702537536621 + ], + [ + "▁lower", + -9.762362480163574 + ], + [ + "▁door", + -9.762978553771973 + ], + [ + "▁été", + -9.763933181762695 + ], + [ + "▁box", + -9.764954566955566 + ], + [ + "▁record", + -9.765517234802246 + ], + [ + "▁win", + -9.765650749206543 + ], + [ + "ster", + -9.766402244567871 + ], + [ + "▁America", + -9.766748428344727 + ], + [ + "▁immer", + -9.768763542175293 + ], + [ + "▁road", + -9.76996898651123 + ], + [ + "▁leading", + -9.772759437561035 + ], + [ + "▁section", + -9.772838592529297 + ], + [ + "▁Facebook", + -9.772990226745605 + ], + [ + "▁Most", + -9.7738676071167 + ], + [ + "iert", + -9.77435302734375 + ], + [ + "▁morning", + -9.774497032165527 + ], + [ + "▁asked", + -9.775190353393555 + ], + [ + "▁involved", + -9.77551555633545 + ], + [ + "▁hier", + -9.777607917785645 + ], + [ + "▁images", + -9.77821159362793 + ], + [ + "▁House", + -9.778263092041016 + ], + [ + "▁highly", + -9.780763626098633 + ], + [ + "▁Bar", + -9.781620979309082 + ], + [ + "▁Service", + -9.782510757446289 + ], + [ + "▁attention", + -9.784318923950195 + ], + [ + "▁normal", + -9.784571647644043 + ], + [ + "▁plans", + -9.785883903503418 + ], + [ + "▁source", + -9.785930633544922 + ], + [ + "▁Aus", + -9.788092613220215 + ], + [ + "▁benefits", + -9.788655281066895 + ], + [ + "▁ses", + -9.789348602294922 + ], + [ + "des", + -9.789867401123047 + ], + [ + "▁internet", + -9.789949417114258 + ], + [ + "▁materials", + -9.790080070495605 + ], + [ + "▁même", + -9.791318893432617 + ], + [ + "▁fine", + -9.791522026062012 + ], + [ + "▁fit", + -9.792226791381836 + ], + [ + "▁21", + -9.792612075805664 + ], + [ + "▁itself", + -9.793739318847656 + ], + [ + "▁wieder", + -9.793972969055176 + ], + [ + "▁Many", + -9.795313835144043 + ], + [ + "▁nature", + -9.795402526855469 + ], + [ + "▁pain", + -9.795467376708984 + ], + [ + "▁device", + -9.796183586120605 + ], + [ + "art", + -9.796989440917969 + ], + [ + "pro", + -9.7971830368042 + ], + [ + "▁France", + -9.797271728515625 + ], + [ + "lich", + -9.797314643859863 + ], + [ + "▁2014", + -9.799542427062988 + ], + [ + "▁inter", + -9.799964904785156 + ], + [ + "▁Li", + -9.800453186035156 + ], + [ + "▁career", + -9.801136016845703 + ], + [ + "▁looks", + -9.80145263671875 + ], + [ + "▁ré", + -9.802245140075684 + ], + [ + "▁ability", + -9.802556991577148 + ], + [ + "▁situation", + -9.803154945373535 + ], + [ + "ville", + -9.803157806396484 + ], + [ + "▁2016", + -9.80319595336914 + ], + [ + "tes", + -9.803462982177734 + ], + [ + "▁remember", + -9.803879737854004 + ], + [ + "▁TV", + -9.803998947143555 + ], + [ + "▁levels", + -9.805853843688965 + ], + [ + "▁subject", + -9.807723999023438 + ], + [ + "ally", + -9.80844497680664 + ], + [ + "▁reduce", + -9.810232162475586 + ], + [ + "▁*", + -9.8108491897583 + ], + [ + "▁Day", + -9.810867309570312 + ], + [ + "▁write", + -9.812152862548828 + ], + [ + "▁pick", + -9.814252853393555 + ], + [ + "ence", + -9.815399169921875 + ], + [ + "▁fresh", + -9.816520690917969 + ], + [ + "▁traditional", + -9.816662788391113 + ], + [ + "chi", + -9.817692756652832 + ], + [ + "▁machine", + -9.818047523498535 + ], + [ + "▁resources", + -9.819125175476074 + ], + [ + "â", + -9.819502830505371 + ], + [ + "▁countries", + -9.820009231567383 + ], + [ + "▁Even", + -9.820342063903809 + ], + [ + "▁green", + -9.821283340454102 + ], + [ + "▁Free", + -9.821910858154297 + ], + [ + "▁daily", + -9.822112083435059 + ], + [ + "▁respect", + -9.823013305664062 + ], + [ + "▁instead", + -9.823714256286621 + ], + [ + "▁Once", + -9.82418155670166 + ], + [ + "▁word", + -9.824407577514648 + ], + [ + "▁construction", + -9.82489013671875 + ], + [ + "▁huge", + -9.825064659118652 + ], + [ + "▁feature", + -9.825220108032227 + ], + [ + "▁themselves", + -9.826369285583496 + ], + [ + "▁loss", + -9.82919692993164 + ], + [ + "%", + -9.830063819885254 + ], + [ + "▁safety", + -9.830256462097168 + ], + [ + "▁economic", + -9.831406593322754 + ], + [ + "▁require", + -9.831945419311523 + ], + [ + "30", + -9.83255386352539 + ], + [ + "▁planning", + -9.833393096923828 + ], + [ + "▁mal", + -9.834482192993164 + ], + [ + "▁directly", + -9.835214614868164 + ], + [ + "ure", + -9.835719108581543 + ], + [ + "▁track", + -9.835734367370605 + ], + [ + "▁tool", + -9.836135864257812 + ], + [ + "▁positive", + -9.836392402648926 + ], + [ + "▁piece", + -9.837076187133789 + ], + [ + "▁parts", + -9.837140083312988 + ], + [ + "ang", + -9.83740520477295 + ], + [ + "▁trip", + -9.837453842163086 + ], + [ + "▁organization", + -9.837935447692871 + ], + [ + "▁sites", + -9.838274002075195 + ], + [ + "▁fire", + -9.83831787109375 + ], + [ + "▁China", + -9.838876724243164 + ], + [ + "▁Pour", + -9.839289665222168 + ], + [ + "▁plant", + -9.84011459350586 + ], + [ + "▁board", + -9.840341567993164 + ], + [ + "▁interesting", + -9.841227531433105 + ], + [ + "gar", + -9.841713905334473 + ], + [ + "▁fie", + -9.841752052307129 + ], + [ + "▁late", + -9.842166900634766 + ], + [ + "▁wall", + -9.842294692993164 + ], + [ + "▁walk", + -9.842741966247559 + ], + [ + "ham", + -9.843868255615234 + ], + [ + "▁Ne", + -9.845427513122559 + ], + [ + "▁First", + -9.845462799072266 + ], + [ + "▁double", + -9.845701217651367 + ], + [ + "▁budget", + -9.847657203674316 + ], + [ + "▁cases", + -9.847670555114746 + ], + [ + "cal", + -9.849738121032715 + ], + [ + "old", + -9.849796295166016 + ], + [ + "▁Bo", + -9.849822998046875 + ], + [ + "▁spend", + -9.850439071655273 + ], + [ + "port", + -9.850828170776367 + ], + [ + "▁worth", + -9.850934028625488 + ], + [ + "ique", + -9.851308822631836 + ], + [ + "nes", + -9.85190486907959 + ], + [ + "cul", + -9.852272033691406 + ], + [ + "era", + -9.85296630859375 + ], + [ + "▁text", + -9.853032112121582 + ], + [ + "▁decided", + -9.854948997497559 + ], + [ + "▁floor", + -9.855036735534668 + ], + [ + "▁requirements", + -9.85529899597168 + ], + [ + "▁cel", + -9.855361938476562 + ], + [ + "▁effect", + -9.855412483215332 + ], + [ + "▁gibt", + -9.856159210205078 + ], + [ + "▁news", + -9.859238624572754 + ], + [ + "▁vos", + -9.859931945800781 + ], + [ + "▁players", + -9.86057186126709 + ], + [ + "▁saw", + -9.862728118896484 + ], + [ + "▁auto", + -9.863056182861328 + ], + [ + "▁town", + -9.863207817077637 + ], + [ + "▁myself", + -9.864106178283691 + ], + [ + "▁lost", + -9.864988327026367 + ], + [ + "▁$", + -9.865124702453613 + ], + [ + "▁June", + -9.86609172821045 + ], + [ + "▁significant", + -9.866196632385254 + ], + [ + "▁giving", + -9.866230010986328 + ], + [ + "▁stand", + -9.866744041442871 + ], + [ + "▁stock", + -9.867657661437988 + ], + [ + "▁hold", + -9.867766380310059 + ], + [ + "▁Are", + -9.869078636169434 + ], + [ + "▁shall", + -9.86923599243164 + ], + [ + "▁ideal", + -9.869279861450195 + ], + [ + "▁London", + -9.87080192565918 + ], + [ + "▁answer", + -9.870853424072266 + ], + [ + "▁Vor", + -9.87157917022705 + ], + [ + "▁gives", + -9.873115539550781 + ], + [ + "ative", + -9.87316608428955 + ], + [ + "▁timp", + -9.873167991638184 + ], + [ + "▁center", + -9.87362289428711 + ], + [ + "▁Group", + -9.874580383300781 + ], + [ + "▁sans", + -9.875143051147461 + ], + [ + "▁Ar", + -9.875466346740723 + ], + [ + "▁Ma", + -9.875568389892578 + ], + [ + "▁reach", + -9.876279830932617 + ], + [ + "ren", + -9.876652717590332 + ], + [ + "▁More", + -9.877446174621582 + ], + [ + "mit", + -9.878068923950195 + ], + [ + "▁guide", + -9.87833309173584 + ], + [ + "▁fully", + -9.878828048706055 + ], + [ + "▁Since", + -9.878952980041504 + ], + [ + "▁Inc", + -9.87923812866211 + ], + [ + "▁culture", + -9.879780769348145 + ], + [ + "eat", + -9.880531311035156 + ], + [ + "▁written", + -9.880722999572754 + ], + [ + "▁Ho", + -9.881338119506836 + ], + [ + "▁India", + -9.881625175476074 + ], + [ + "▁Well", + -9.881708145141602 + ], + [ + "back", + -9.881752967834473 + ], + [ + "▁goes", + -9.882170677185059 + ], + [ + "▁completely", + -9.88217544555664 + ], + [ + "▁tour", + -9.883081436157227 + ], + [ + "▁began", + -9.883196830749512 + ], + [ + "▁picture", + -9.883255958557129 + ], + [ + "▁mare", + -9.88353157043457 + ], + [ + "▁playing", + -9.884223937988281 + ], + [ + "▁trebuie", + -9.884926795959473 + ], + [ + "ils", + -9.884940147399902 + ], + [ + "chen", + -9.885220527648926 + ], + [ + "▁hit", + -9.885416984558105 + ], + [ + "▁complex", + -9.88591480255127 + ], + [ + "▁Thank", + -9.886140823364258 + ], + [ + "▁Let", + -9.886350631713867 + ], + [ + "▁applications", + -9.887116432189941 + ], + [ + "▁friend", + -9.888312339782715 + ], + [ + "▁English", + -9.889549255371094 + ], + [ + "▁charge", + -9.890040397644043 + ], + [ + "▁recommend", + -9.893453598022461 + ], + [ + "▁message", + -9.893672943115234 + ], + [ + "In", + -9.893722534179688 + ], + [ + "▁Mar", + -9.894762992858887 + ], + [ + "pp", + -9.895845413208008 + ], + [ + "▁method", + -9.89692497253418 + ], + [ + "▁successful", + -9.897004127502441 + ], + [ + "tion", + -9.898880958557129 + ], + [ + "▁release", + -9.899920463562012 + ], + [ + "▁creating", + -9.900403022766113 + ], + [ + "▁despre", + -9.90141773223877 + ], + [ + "esc", + -9.902434349060059 + ], + [ + "▁eye", + -9.902752876281738 + ], + [ + "▁apply", + -9.905945777893066 + ], + [ + "net", + -9.906000137329102 + ], + [ + "side", + -9.906539916992188 + ], + [ + "▁ar", + -9.906949996948242 + ], + [ + "▁platform", + -9.90713882446289 + ], + [ + "▁touch", + -9.907329559326172 + ], + [ + "▁towards", + -9.90785026550293 + ], + [ + "▁match", + -9.908224105834961 + ], + [ + "▁Black", + -9.909344673156738 + ], + [ + "▁fall", + -9.90961742401123 + ], + [ + "▁ground", + -9.910234451293945 + ], + [ + "▁High", + -9.910740852355957 + ], + [ + "▁Q", + -9.911155700683594 + ], + [ + "▁schon", + -9.911709785461426 + ], + [ + "▁hotel", + -9.911751747131348 + ], + [ + "▁prices", + -9.912031173706055 + ], + [ + "▁developed", + -9.913411140441895 + ], + [ + "uk", + -9.913476943969727 + ], + [ + "ide", + -9.91367244720459 + ], + [ + "▁September", + -9.91370964050293 + ], + [ + "ized", + -9.914202690124512 + ], + [ + "▁War", + -9.914704322814941 + ], + [ + "!!", + -9.916285514831543 + ], + [ + "▁grow", + -9.916997909545898 + ], + [ + "▁watch", + -9.917067527770996 + ], + [ + "▁storage", + -9.917412757873535 + ], + [ + "eau", + -9.917513847351074 + ], + [ + "can", + -9.918373107910156 + ], + [ + "▁Get", + -9.919524192810059 + ], + [ + "▁See", + -9.91953182220459 + ], + [ + "▁European", + -9.919703483581543 + ], + [ + "▁language", + -9.91982650756836 + ], + [ + "ează", + -9.920175552368164 + ], + [ + "▁court", + -9.920334815979004 + ], + [ + "▁Why", + -9.921106338500977 + ], + [ + "▁hear", + -9.921342849731445 + ], + [ + "▁doar", + -9.921804428100586 + ], + [ + "lan", + -9.92330265045166 + ], + [ + "▁Christmas", + -9.923810958862305 + ], + [ + "▁Web", + -9.923871994018555 + ], + [ + "vo", + -9.92405891418457 + ], + [ + "▁sent", + -9.924983024597168 + ], + [ + "▁businesses", + -9.925868034362793 + ], + [ + "▁Red", + -9.926278114318848 + ], + [ + "tel", + -9.926375389099121 + ], + [ + "▁Ha", + -9.926508903503418 + ], + [ + "▁wonderful", + -9.926653861999512 + ], + [ + "ations", + -9.926738739013672 + ], + [ + "za", + -9.92748737335205 + ], + [ + "▁22", + -9.928659439086914 + ], + [ + "▁thinking", + -9.92941665649414 + ], + [ + "▁became", + -9.929733276367188 + ], + [ + "▁cool", + -9.929835319519043 + ], + [ + "▁speed", + -9.930370330810547 + ], + [ + "mar", + -9.930426597595215 + ], + [ + "▁--", + -9.931743621826172 + ], + [ + "▁groups", + -9.931920051574707 + ], + [ + "▁interested", + -9.93198299407959 + ], + [ + "ak", + -9.93218994140625 + ], + [ + "▁60", + -9.932672500610352 + ], + [ + "▁screen", + -9.93370246887207 + ], + [ + "▁Design", + -9.933789253234863 + ], + [ + "▁limited", + -9.935648918151855 + ], + [ + "▁expected", + -9.935959815979004 + ], + [ + "▁opportunities", + -9.936376571655273 + ], + [ + "▁regular", + -9.936870574951172 + ], + [ + "off", + -9.93702220916748 + ], + [ + "▁Best", + -9.937298774719238 + ], + [ + "Re", + -9.938436508178711 + ], + [ + "▁ihr", + -9.938719749450684 + ], + [ + "▁Great", + -9.938907623291016 + ], + [ + "▁employees", + -9.93924617767334 + ], + [ + "▁custom", + -9.939679145812988 + ], + [ + "▁multe", + -9.940123558044434 + ], + [ + "let", + -9.940876007080078 + ], + [ + "▁benefit", + -9.942487716674805 + ], + [ + "▁term", + -9.942623138427734 + ], + [ + "▁bine", + -9.942869186401367 + ], + [ + "▁deep", + -9.944526672363281 + ], + [ + "▁August", + -9.94526481628418 + ], + [ + "▁President", + -9.945381164550781 + ], + [ + "▁Auf", + -9.945854187011719 + ], + [ + "▁wish", + -9.946924209594727 + ], + [ + "▁sometimes", + -9.947274208068848 + ], + [ + "ari", + -9.947793960571289 + ], + [ + "▁pressure", + -9.948184967041016 + ], + [ + "▁ani", + -9.94859504699707 + ], + [ + "▁trade", + -9.949930191040039 + ], + [ + "▁firm", + -9.950027465820312 + ], + [ + "▁comment", + -9.95003604888916 + ], + [ + "▁November", + -9.950242042541504 + ], + [ + "▁expect", + -9.951102256774902 + ], + [ + "▁2012", + -9.952491760253906 + ], + [ + "▁Ich", + -9.95328140258789 + ], + [ + "▁relationship", + -9.95363998413086 + ], + [ + "▁active", + -9.954682350158691 + ], + [ + "org", + -9.954710960388184 + ], + [ + "▁heat", + -9.956732749938965 + ], + [ + "▁wood", + -9.95678997039795 + ], + [ + "▁notre", + -9.957921028137207 + ], + [ + "▁function", + -9.958330154418945 + ], + [ + "▁2.", + -9.95909309387207 + ], + [ + "▁wedding", + -9.960049629211426 + ], + [ + "▁starting", + -9.961235046386719 + ], + [ + "▁Health", + -9.961249351501465 + ], + [ + "\",", + -9.961713790893555 + ], + [ + "▁death", + -9.962173461914062 + ], + [ + "▁pages", + -9.962764739990234 + ], + [ + "▁vehicle", + -9.96293830871582 + ], + [ + "▁request", + -9.963874816894531 + ], + [ + "▁helps", + -9.963916778564453 + ], + [ + "▁blue", + -9.964017868041992 + ], + [ + "▁analysis", + -9.964414596557617 + ], + [ + "▁posted", + -9.964544296264648 + ], + [ + "▁healthy", + -9.964814186096191 + ], + [ + "▁contract", + -9.964988708496094 + ], + [ + "▁•", + -9.965263366699219 + ], + [ + "▁Each", + -9.965293884277344 + ], + [ + "▁Fa", + -9.966179847717285 + ], + [ + "▁dintre", + -9.966221809387207 + ], + [ + "▁Friday", + -9.967202186584473 + ], + [ + "▁considered", + -9.967992782592773 + ], + [ + "cher", + -9.96826457977295 + ], + [ + "▁quick", + -9.968731880187988 + ], + [ + "▁understanding", + -9.96916389465332 + ], + [ + "▁condition", + -9.969378471374512 + ], + [ + "ization", + -9.971049308776855 + ], + [ + "▁document", + -9.971664428710938 + ], + [ + "▁prevent", + -9.971890449523926 + ], + [ + "▁growing", + -9.9725341796875 + ], + [ + "▁protection", + -9.972620964050293 + ], + [ + "▁cat", + -9.974002838134766 + ], + [ + "▁#", + -9.975058555603027 + ], + [ + "10", + -9.975275039672852 + ], + [ + "▁join", + -9.9759521484375 + ], + [ + "▁serve", + -9.976580619812012 + ], + [ + "▁blood", + -9.977095603942871 + ], + [ + "▁July", + -9.977341651916504 + ], + [ + "▁region", + -9.977787971496582 + ], + [ + "car", + -9.97933578491211 + ], + [ + "▁entre", + -9.979788780212402 + ], + [ + "▁physical", + -9.981287002563477 + ], + [ + "▁cash", + -9.9813232421875 + ], + [ + "aux", + -9.981823921203613 + ], + [ + "ng", + -9.982654571533203 + ], + [ + "▁stage", + -9.98281478881836 + ], + [ + "▁seem", + -9.983034133911133 + ], + [ + "▁definitely", + -9.983795166015625 + ], + [ + "▁investment", + -9.983827590942383 + ], + [ + "▁purpose", + -9.985441207885742 + ], + [ + "▁begin", + -9.985486030578613 + ], + [ + "®", + -9.985495567321777 + ], + [ + "▁break", + -9.985701560974121 + ], + [ + "itate", + -9.987293243408203 + ], + [ + "▁moving", + -9.989288330078125 + ], + [ + "▁met", + -9.990678787231445 + ], + [ + "ize", + -9.990833282470703 + ], + [ + "▁select", + -9.991165161132812 + ], + [ + "▁tous", + -9.991310119628906 + ], + [ + "▁Europe", + -9.991639137268066 + ], + [ + "@", + -9.992724418640137 + ], + [ + "▁individuals", + -9.993392944335938 + ], + [ + "▁Zeit", + -9.993524551391602 + ], + [ + "gu", + -9.995670318603516 + ], + [ + "▁unit", + -9.995753288269043 + ], + [ + "▁noi", + -9.996089935302734 + ], + [ + "▁places", + -9.996171951293945 + ], + [ + "all", + -9.99632453918457 + ], + [ + "▁wait", + -9.996755599975586 + ], + [ + "▁difference", + -9.997234344482422 + ], + [ + "▁round", + -9.998015403747559 + ], + [ + "50", + -9.99953842163086 + ], + [ + "rie", + -9.999545097351074 + ], + [ + "▁Et", + -9.999933242797852 + ], + [ + "20", + -10.000725746154785 + ], + [ + "▁activity", + -10.000792503356934 + ], + [ + "е", + -10.000866889953613 + ], + [ + "▁Windows", + -10.001087188720703 + ], + [ + "▁produce", + -10.001385688781738 + ], + [ + "▁keine", + -10.00212574005127 + ], + [ + "▁Air", + -10.002567291259766 + ], + [ + "▁January", + -10.004890441894531 + ], + [ + "▁deux", + -10.005081176757812 + ], + [ + "▁entry", + -10.005208015441895 + ], + [ + "king", + -10.006500244140625 + ], + [ + "▁goals", + -10.006736755371094 + ], + [ + "▁previous", + -10.0077543258667 + ], + [ + "▁+", + -10.008035659790039 + ], + [ + "▁Business", + -10.008259773254395 + ], + [ + "ont", + -10.008552551269531 + ], + [ + "▁Sunday", + -10.008694648742676 + ], + [ + "▁offering", + -10.010359764099121 + ], + [ + "▁response", + -10.011018753051758 + ], + [ + "▁surface", + -10.011393547058105 + ], + [ + "▁Department", + -10.01212215423584 + ], + [ + "▁exactly", + -10.012190818786621 + ], + [ + "▁Online", + -10.012577056884766 + ], + [ + "dem", + -10.013803482055664 + ], + [ + "ischen", + -10.014006614685059 + ], + [ + "▁hands", + -10.015100479125977 + ], + [ + "▁hour", + -10.016197204589844 + ], + [ + "▁dog", + -10.016946792602539 + ], + [ + "▁damage", + -10.017006874084473 + ], + [ + "▁capital", + -10.018792152404785 + ], + [ + "▁toate", + -10.020488739013672 + ], + [ + "▁wrong", + -10.020674705505371 + ], + [ + "unui", + -10.022201538085938 + ], + [ + "tri", + -10.023979187011719 + ], + [ + "▁sell", + -10.023999214172363 + ], + [ + "▁published", + -10.024175643920898 + ], + [ + "▁families", + -10.024675369262695 + ], + [ + "▁avoid", + -10.025490760803223 + ], + [ + "▁Ko", + -10.025506019592285 + ], + [ + "▁mod", + -10.026697158813477 + ], + [ + "rat", + -10.027653694152832 + ], + [ + "▁Make", + -10.0299654006958 + ], + [ + "▁October", + -10.030153274536133 + ], + [ + "▁former", + -10.031285285949707 + ], + [ + "▁Services", + -10.03281021118164 + ], + [ + "▁felt", + -10.033045768737793 + ], + [ + "▁selection", + -10.033309936523438 + ], + [ + "eaza", + -10.034177780151367 + ], + [ + "gel", + -10.034422874450684 + ], + [ + "▁Good", + -10.035792350769043 + ], + [ + "▁actual", + -10.0364351272583 + ], + [ + "▁gut", + -10.036853790283203 + ], + [ + "▁gas", + -10.03708553314209 + ], + [ + "15", + -10.038182258605957 + ], + [ + "▁structure", + -10.038285255432129 + ], + [ + "▁act", + -10.0386381149292 + ], + [ + "▁Zu", + -10.038654327392578 + ], + [ + "▁creative", + -10.039134979248047 + ], + [ + "▁Vi", + -10.039159774780273 + ], + [ + "▁shop", + -10.04066276550293 + ], + [ + "▁Lo", + -10.040735244750977 + ], + [ + "şi", + -10.042192459106445 + ], + [ + "▁mis", + -10.042224884033203 + ], + [ + "ungen", + -10.042301177978516 + ], + [ + "▁fan", + -10.04240608215332 + ], + [ + "▁|", + -10.043391227722168 + ], + [ + "▁Bei", + -10.044037818908691 + ], + [ + "▁protect", + -10.04454517364502 + ], + [ + "▁Na", + -10.0447998046875 + ], + [ + "q", + -10.045693397521973 + ], + [ + "ok", + -10.04710578918457 + ], + [ + "▁California", + -10.047263145446777 + ], + [ + "▁political", + -10.047301292419434 + ], + [ + "25", + -10.047530174255371 + ], + [ + "▁feeling", + -10.047913551330566 + ], + [ + "▁ces", + -10.048321723937988 + ], + [ + "▁display", + -10.048857688903809 + ], + [ + "▁essential", + -10.04964542388916 + ], + [ + "ând", + -10.049971580505371 + ], + [ + "▁seine", + -10.050551414489746 + ], + [ + "▁soft", + -10.050915718078613 + ], + [ + "ach", + -10.05102252960205 + ], + [ + "▁happen", + -10.051118850708008 + ], + [ + "▁Paul", + -10.053346633911133 + ], + [ + "▁Cu", + -10.054024696350098 + ], + [ + "house", + -10.055376052856445 + ], + [ + "ante", + -10.05582046508789 + ], + [ + "▁easier", + -10.056551933288574 + ], + [ + "▁sort", + -10.0567045211792 + ], + [ + "▁Post", + -10.057138442993164 + ], + [ + "▁accept", + -10.05730152130127 + ], + [ + "field", + -10.057648658752441 + ], + [ + "zen", + -10.057741165161133 + ], + [ + "▁character", + -10.057848930358887 + ], + [ + "▁beginning", + -10.058433532714844 + ], + [ + "▁Jesus", + -10.058760643005371 + ], + [ + "▁weekend", + -10.059663772583008 + ], + [ + "▁certainly", + -10.06114387512207 + ], + [ + "▁THE", + -10.061254501342773 + ], + [ + "▁alle", + -10.06189250946045 + ], + [ + "▁transport", + -10.062220573425293 + ], + [ + "▁Saturday", + -10.063043594360352 + ], + [ + "▁basic", + -10.064136505126953 + ], + [ + "▁loved", + -10.06431770324707 + ], + [ + "ros", + -10.065333366394043 + ], + [ + "▁offered", + -10.065996170043945 + ], + [ + "▁camera", + -10.067024230957031 + ], + [ + "▁Green", + -10.06789779663086 + ], + [ + "ology", + -10.069480895996094 + ], + [ + "ä", + -10.069646835327148 + ], + [ + "▁manage", + -10.070416450500488 + ], + [ + "▁paid", + -10.070881843566895 + ], + [ + "▁advice", + -10.071617126464844 + ], + [ + "▁patient", + -10.072234153747559 + ], + [ + "▁spent", + -10.072272300720215 + ], + [ + "▁mir", + -10.072366714477539 + ], + [ + "▁baby", + -10.072400093078613 + ], + [ + "ö", + -10.073193550109863 + ], + [ + "▁basis", + -10.073338508605957 + ], + [ + "▁cancer", + -10.073765754699707 + ], + [ + "▁Although", + -10.07400894165039 + ], + [ + "▁gift", + -10.074336051940918 + ], + [ + "▁3.", + -10.074871063232422 + ], + [ + "dieser", + -10.075157165527344 + ], + [ + "▁overall", + -10.07520580291748 + ], + [ + "▁Sch", + -10.075265884399414 + ], + [ + "▁Ex", + -10.076258659362793 + ], + [ + "▁December", + -10.07689094543457 + ], + [ + "▁released", + -10.078214645385742 + ], + [ + "▁prior", + -10.07900333404541 + ], + [ + "▁sowie", + -10.081072807312012 + ], + [ + "▁club", + -10.081326484680176 + ], + [ + "▁Street", + -10.081535339355469 + ], + [ + "▁College", + -10.08254623413086 + ], + [ + "▁î", + -10.083059310913086 + ], + [ + "over", + -10.083159446716309 + ], + [ + "▁gave", + -10.08454704284668 + ], + [ + "▁truly", + -10.084784507751465 + ], + [ + "par", + -10.084806442260742 + ], + [ + "▁Canada", + -10.084888458251953 + ], + [ + "▁existing", + -10.085420608520508 + ], + [ + "lie", + -10.086335182189941 + ], + [ + "▁ganz", + -10.086658477783203 + ], + [ + "▁setting", + -10.087109565734863 + ], + [ + "▁supply", + -10.08739185333252 + ], + [ + "▁college", + -10.087540626525879 + ], + [ + "▁communication", + -10.088407516479492 + ], + [ + "▁23", + -10.088834762573242 + ], + [ + "▁pass", + -10.091546058654785 + ], + [ + "▁devices", + -10.091872215270996 + ], + [ + "▁glass", + -10.092083930969238 + ], + [ + "▁experienced", + -10.092395782470703 + ], + [ + "▁grand", + -10.093363761901855 + ], + [ + "▁Po", + -10.093396186828613 + ], + [ + "▁beyond", + -10.094029426574707 + ], + [ + "▁format", + -10.094165802001953 + ], + [ + "▁mon", + -10.09461498260498 + ], + [ + "▁perform", + -10.094635009765625 + ], + [ + "sten", + -10.095130920410156 + ], + [ + "▁1,", + -10.096270561218262 + ], + [ + "▁Per", + -10.096640586853027 + ], + [ + "▁sold", + -10.097247123718262 + ], + [ + "▁rates", + -10.0972900390625 + ], + [ + "▁regarding", + -10.097782135009766 + ], + [ + "▁Paris", + -10.098291397094727 + ], + [ + "▁Dar", + -10.099579811096191 + ], + [ + "▁challenge", + -10.099649429321289 + ], + [ + "▁feet", + -10.100564002990723 + ], + [ + "▁Su", + -10.102017402648926 + ], + [ + "je", + -10.102593421936035 + ], + [ + "▁Bank", + -10.102627754211426 + ], + [ + "ven", + -10.103126525878906 + ], + [ + "jo", + -10.103290557861328 + ], + [ + "▁band", + -10.10348892211914 + ], + [ + "▁delivery", + -10.104915618896484 + ], + [ + "Vous", + -10.104924201965332 + ], + [ + "tele", + -10.10495376586914 + ], + [ + "▁East", + -10.105379104614258 + ], + [ + "▁pictures", + -10.106067657470703 + ], + [ + "▁useful", + -10.106481552124023 + ], + [ + "*", + -10.107648849487305 + ], + [ + "▁increased", + -10.107746124267578 + ], + [ + "▁stories", + -10.108119010925293 + ], + [ + "sion", + -10.108280181884766 + ], + [ + "bra", + -10.108345985412598 + ], + [ + "▁brought", + -10.108466148376465 + ], + [ + "▁effort", + -10.109898567199707 + ], + [ + "▁payment", + -10.11058235168457 + ], + [ + "▁heard", + -10.110925674438477 + ], + [ + "▁played", + -10.111245155334473 + ], + [ + "▁White", + -10.111417770385742 + ], + [ + "▁metal", + -10.111721992492676 + ], + [ + "tal", + -10.111754417419434 + ], + [ + "▁engine", + -10.112006187438965 + ], + [ + "▁Club", + -10.11218547821045 + ], + [ + "ical", + -10.114581108093262 + ], + [ + "▁effects", + -10.115421295166016 + ], + [ + "▁degree", + -10.115763664245605 + ], + [ + "▁bed", + -10.1159086227417 + ], + [ + "ette", + -10.115991592407227 + ], + [ + "▁David", + -10.116386413574219 + ], + [ + "°", + -10.117666244506836 + ], + [ + "▁Au", + -10.117938041687012 + ], + [ + "▁Company", + -10.11845874786377 + ], + [ + "▁player", + -10.11938190460205 + ], + [ + "▁Today", + -10.120569229125977 + ], + [ + "▁maintain", + -10.12093448638916 + ], + [ + "▁minute", + -10.121193885803223 + ], + [ + "mail", + -10.122172355651855 + ], + [ + "▁race", + -10.122366905212402 + ], + [ + "▁comfortable", + -10.123887062072754 + ], + [ + "▁responsible", + -10.124085426330566 + ], + [ + "vor", + -10.124622344970703 + ], + [ + "▁associated", + -10.124695777893066 + ], + [ + "▁weather", + -10.124701499938965 + ], + [ + "▁$1", + -10.125639915466309 + ], + [ + "▁tried", + -10.126176834106445 + ], + [ + "▁Check", + -10.127649307250977 + ], + [ + "▁solid", + -10.127864837646484 + ], + [ + "▁movie", + -10.128364562988281 + ], + [ + "▁coffee", + -10.12874698638916 + ], + [ + "board", + -10.129073143005371 + ], + [ + "▁po", + -10.12946605682373 + ], + [ + "▁warm", + -10.129583358764648 + ], + [ + "▁connect", + -10.131733894348145 + ], + [ + "▁Ad", + -10.133807182312012 + ], + [ + "work", + -10.133859634399414 + ], + [ + "mal", + -10.13397216796875 + ], + [ + "▁Act", + -10.134634971618652 + ], + [ + "▁achieve", + -10.134769439697266 + ], + [ + "▁Nach", + -10.136604309082031 + ], + [ + "www", + -10.136669158935547 + ], + [ + "term", + -10.13672161102295 + ], + [ + "▁claim", + -10.137251853942871 + ], + [ + "▁particularly", + -10.138245582580566 + ], + [ + "▁cas", + -10.138396263122559 + ], + [ + "▁furniture", + -10.138461112976074 + ], + [ + "▁finish", + -10.13896369934082 + ], + [ + "▁temps", + -10.139026641845703 + ], + [ + "▁disease", + -10.139115333557129 + ], + [ + "▁lots", + -10.139196395874023 + ], + [ + "▁ball", + -10.139307975769043 + ], + [ + "▁sun", + -10.14010238647461 + ], + [ + "▁strategy", + -10.140498161315918 + ], + [ + "bre", + -10.140518188476562 + ], + [ + "▁mine", + -10.141541481018066 + ], + [ + "▁Click", + -10.141743659973145 + ], + [ + "ran", + -10.141983032226562 + ], + [ + "▁Will", + -10.142234802246094 + ], + [ + "▁garden", + -10.142974853515625 + ], + [ + "▁stuff", + -10.14359188079834 + ], + [ + "▁limit", + -10.144641876220703 + ], + [ + "▁bottom", + -10.14494800567627 + ], + [ + "▁shown", + -10.144962310791016 + ], + [ + "ship", + -10.145271301269531 + ], + [ + "▁habe", + -10.145858764648438 + ], + [ + "▁Super", + -10.146219253540039 + ], + [ + "▁completed", + -10.146971702575684 + ], + [ + "▁wine", + -10.146979331970215 + ], + [ + "ische", + -10.147262573242188 + ], + [ + "▁largest", + -10.147466659545898 + ], + [ + "▁appropriate", + -10.148261070251465 + ], + [ + "▁immediately", + -10.150248527526855 + ], + [ + "▁Hi", + -10.152358055114746 + ], + [ + "▁trust", + -10.152767181396484 + ], + [ + "ability", + -10.154254913330078 + ], + [ + "▁powerful", + -10.155101776123047 + ], + [ + "▁helping", + -10.155620574951172 + ], + [ + "▁schedule", + -10.155688285827637 + ], + [ + "▁correct", + -10.155707359313965 + ], + [ + "▁transfer", + -10.156496047973633 + ], + [ + "pre", + -10.15665340423584 + ], + [ + "▁journey", + -10.15688419342041 + ], + [ + "pm", + -10.157002449035645 + ], + [ + "don", + -10.158435821533203 + ], + [ + "▁highest", + -10.159249305725098 + ], + [ + "▁finally", + -10.15999698638916 + ], + [ + "form", + -10.160258293151855 + ], + [ + "▁extremely", + -10.160404205322266 + ], + [ + "▁window", + -10.160501480102539 + ], + [ + "▁Over", + -10.162222862243652 + ], + [ + "▁remove", + -10.162469863891602 + ], + [ + "wood", + -10.162479400634766 + ], + [ + "▁2013", + -10.163631439208984 + ], + [ + "▁mother", + -10.164072036743164 + ], + [ + "▁Auto", + -10.16436767578125 + ], + [ + "▁annual", + -10.164615631103516 + ], + [ + "▁Star", + -10.164834976196289 + ], + [ + "▁Di", + -10.166138648986816 + ], + [ + "о", + -10.16711139678955 + ], + [ + "▁gold", + -10.167129516601562 + ], + [ + "tar", + -10.167352676391602 + ], + [ + "ju", + -10.167750358581543 + ], + [ + "▁Use", + -10.169474601745605 + ], + [ + "▁thanks", + -10.16960334777832 + ], + [ + "▁centre", + -10.170127868652344 + ], + [ + "▁Australia", + -10.170358657836914 + ], + [ + "▁estate", + -10.170504570007324 + ], + [ + "▁eyes", + -10.1714448928833 + ], + [ + "▁force", + -10.171592712402344 + ], + [ + "▁income", + -10.17395305633545 + ], + [ + "▁science", + -10.174036026000977 + ], + [ + "ori", + -10.174230575561523 + ], + [ + "▁enter", + -10.174851417541504 + ], + [ + "▁28", + -10.175408363342285 + ], + [ + "ire", + -10.17568302154541 + ], + [ + "▁schools", + -10.175797462463379 + ], + [ + "▁restaurant", + -10.176088333129883 + ], + [ + "▁Council", + -10.177032470703125 + ], + [ + "aus", + -10.177885055541992 + ], + [ + "▁agree", + -10.17905330657959 + ], + [ + "▁campaign", + -10.179192543029785 + ], + [ + "▁Ta", + -10.179428100585938 + ], + [ + "▁letter", + -10.179814338684082 + ], + [ + "▁central", + -10.179931640625 + ], + [ + "▁Because", + -10.180054664611816 + ], + [ + "▁path", + -10.180349349975586 + ], + [ + "▁loc", + -10.180882453918457 + ], + [ + "▁files", + -10.182587623596191 + ], + [ + "▁population", + -10.182705879211426 + ], + [ + "▁explore", + -10.182723999023438 + ], + [ + "▁mid", + -10.182734489440918 + ], + [ + "▁concept", + -10.182748794555664 + ], + [ + "▁church", + -10.183015823364258 + ], + [ + "80", + -10.183026313781738 + ], + [ + "▁einfach", + -10.185834884643555 + ], + [ + "▁reasons", + -10.186690330505371 + ], + [ + "▁determine", + -10.186755180358887 + ], + [ + "▁February", + -10.187095642089844 + ], + [ + "▁evidence", + -10.18797779083252 + ], + [ + "▁sleep", + -10.188036918640137 + ], + [ + "▁Board", + -10.188652992248535 + ], + [ + "▁maybe", + -10.189635276794434 + ], + [ + "▁wasn", + -10.189701080322266 + ], + [ + "▁Monday", + -10.190101623535156 + ], + [ + "▁director", + -10.190481185913086 + ], + [ + "well", + -10.190974235534668 + ], + [ + "During", + -10.191001892089844 + ], + [ + "▁sweet", + -10.191061973571777 + ], + [ + "▁assist", + -10.19124984741211 + ], + [ + "▁police", + -10.191511154174805 + ], + [ + "▁repair", + -10.191729545593262 + ], + [ + "▁techniques", + -10.191733360290527 + ], + [ + "▁served", + -10.191808700561523 + ], + [ + "vi", + -10.192037582397461 + ], + [ + "▁sports", + -10.192331314086914 + ], + [ + "▁opening", + -10.192401885986328 + ], + [ + "▁ones", + -10.192731857299805 + ], + [ + "▁notice", + -10.193460464477539 + ], + [ + "▁PC", + -10.193547248840332 + ], + [ + "▁alte", + -10.194242477416992 + ], + [ + "▁Bi", + -10.194340705871582 + ], + [ + "▁cold", + -10.195606231689453 + ], + [ + "▁billion", + -10.195794105529785 + ], + [ + "▁balance", + -10.196361541748047 + ], + [ + "cer", + -10.196417808532715 + ], + [ + "▁nearly", + -10.196725845336914 + ], + [ + "▁wear", + -10.197259902954102 + ], + [ + "free", + -10.19760799407959 + ], + [ + "▁Have", + -10.197748184204102 + ], + [ + "▁comfort", + -10.199211120605469 + ], + [ + "▁studies", + -10.199225425720215 + ], + [ + "▁traffic", + -10.199540138244629 + ], + [ + "▁item", + -10.200214385986328 + ], + [ + "▁teaching", + -10.200467109680176 + ], + [ + "▁turned", + -10.201326370239258 + ], + [ + "isation", + -10.201354026794434 + ], + [ + "12", + -10.202038764953613 + ], + [ + "▁greater", + -10.202167510986328 + ], + [ + "▁knew", + -10.20233154296875 + ], + [ + "▁Association", + -10.203333854675293 + ], + [ + "▁Office", + -10.203802108764648 + ], + [ + "▁established", + -10.204085350036621 + ], + [ + "45", + -10.204170227050781 + ], + [ + "▁Love", + -10.204318046569824 + ], + [ + "▁changed", + -10.204882621765137 + ], + [ + "▁pan", + -10.205184936523438 + ], + [ + "van", + -10.20565414428711 + ], + [ + "▁Mi", + -10.205663681030273 + ], + [ + "▁tend", + -10.20637321472168 + ], + [ + "▁connection", + -10.206522941589355 + ], + [ + "▁lack", + -10.206954002380371 + ], + [ + "▁bank", + -10.208464622497559 + ], + [ + "cat", + -10.208720207214355 + ], + [ + "▁helped", + -10.209071159362793 + ], + [ + "▁spot", + -10.209417343139648 + ], + [ + "▁spring", + -10.20974063873291 + ], + [ + "▁Wi", + -10.210912704467773 + ], + [ + "▁Mac", + -10.211682319641113 + ], + [ + "▁Christ", + -10.212015151977539 + ], + [ + "▁saying", + -10.212835311889648 + ], + [ + "▁General", + -10.213062286376953 + ], + [ + "▁port", + -10.213099479675293 + ], + [ + "▁Mal", + -10.213156700134277 + ], + [ + "▁System", + -10.213486671447754 + ], + [ + "▁According", + -10.2152738571167 + ], + [ + "▁chiar", + -10.21568489074707 + ], + [ + "log", + -10.21576976776123 + ], + [ + "▁mix", + -10.215974807739258 + ], + [ + "▁Lake", + -10.216042518615723 + ], + [ + "▁intr", + -10.216590881347656 + ], + [ + "▁deliver", + -10.216793060302734 + ], + [ + "mon", + -10.216931343078613 + ], + [ + "▁Ro", + -10.217060089111328 + ], + [ + "▁Management", + -10.217504501342773 + ], + [ + "bri", + -10.218718528747559 + ], + [ + "▁pieces", + -10.218774795532227 + ], + [ + "▁announced", + -10.218926429748535 + ], + [ + "▁Yes", + -10.219268798828125 + ], + [ + "▁dark", + -10.220884323120117 + ], + [ + "val", + -10.221765518188477 + ], + [ + "▁rights", + -10.22309684753418 + ], + [ + "▁Diese", + -10.223100662231445 + ], + [ + "ki", + -10.223350524902344 + ], + [ + "vent", + -10.22375774383545 + ], + [ + "▁born", + -10.22380542755127 + ], + [ + "▁muss", + -10.224031448364258 + ], + [ + "compared", + -10.224660873413086 + ], + [ + "▁demand", + -10.224669456481934 + ], + [ + "▁handle", + -10.225493431091309 + ], + [ + "▁mode", + -10.226058006286621 + ], + [ + "lic", + -10.226137161254883 + ], + [ + "▁ahead", + -10.226436614990234 + ], + [ + "▁sharing", + -10.227599143981934 + ], + [ + "▁micro", + -10.227779388427734 + ], + [ + "▁Par", + -10.228626251220703 + ], + [ + "▁Every", + -10.22950553894043 + ], + [ + "▁bag", + -10.229736328125 + ], + [ + "▁daca", + -10.22974967956543 + ], + [ + "▁Apple", + -10.23022174835205 + ], + [ + "▁Mark", + -10.230239868164062 + ], + [ + "▁larger", + -10.231284141540527 + ], + [ + "eze", + -10.231978416442871 + ], + [ + "▁progress", + -10.232234001159668 + ], + [ + "▁stress", + -10.232929229736328 + ], + [ + "▁cards", + -10.233663558959961 + ], + [ + "▁driving", + -10.233738899230957 + ], + [ + "▁dry", + -10.233970642089844 + ], + [ + "▁relevant", + -10.234556198120117 + ], + [ + "▁Jo", + -10.234825134277344 + ], + [ + "▁tree", + -10.235036849975586 + ], + [ + "▁reported", + -10.235770225524902 + ], + [ + "ities", + -10.23577880859375 + ], + [ + "▁tea", + -10.235806465148926 + ], + [ + "▁although", + -10.236145973205566 + ], + [ + "▁Research", + -10.236261367797852 + ], + [ + "▁pool", + -10.23691463470459 + ], + [ + "▁fin", + -10.237163543701172 + ], + [ + "▁Und", + -10.238130569458008 + ], + [ + "▁decide", + -10.239217758178711 + ], + [ + "▁expert", + -10.239344596862793 + ], + [ + "rate", + -10.239428520202637 + ], + [ + "zeit", + -10.239971160888672 + ], + [ + "▁26", + -10.24040412902832 + ], + [ + "▁Ka", + -10.24056339263916 + ], + [ + "▁fix", + -10.240666389465332 + ], + [ + "igen", + -10.240713119506836 + ], + [ + "▁direction", + -10.241188049316406 + ], + [ + "▁star", + -10.241661071777344 + ], + [ + "▁middle", + -10.241889953613281 + ], + [ + "▁Ja", + -10.241962432861328 + ], + [ + "▁Land", + -10.24207878112793 + ], + [ + "ken", + -10.242605209350586 + ], + [ + "▁button", + -10.242630004882812 + ], + [ + "▁rules", + -10.242656707763672 + ], + [ + "▁également", + -10.242706298828125 + ], + [ + "▁viel", + -10.243158340454102 + ], + [ + "▁welcome", + -10.243682861328125 + ], + [ + "că", + -10.243932723999023 + ], + [ + "▁Top", + -10.245308876037598 + ], + [ + "▁allowed", + -10.245487213134766 + ], + [ + "▁tip", + -10.245584487915039 + ], + [ + "▁cei", + -10.245768547058105 + ], + [ + "▁Nous", + -10.246004104614258 + ], + [ + "té", + -10.246850967407227 + ], + [ + "▁unei", + -10.246903419494629 + ], + [ + "▁efforts", + -10.247260093688965 + ], + [ + "▁note", + -10.247719764709473 + ], + [ + "▁title", + -10.247977256774902 + ], + [ + "ric", + -10.248047828674316 + ], + [ + "berg", + -10.248252868652344 + ], + [ + "▁ainsi", + -10.248576164245605 + ], + [ + "▁led", + -10.248713493347168 + ], + [ + "▁alone", + -10.248786926269531 + ], + [ + "ward", + -10.249215126037598 + ], + [ + "▁vie", + -10.249323844909668 + ], + [ + "▁brain", + -10.249427795410156 + ], + [ + "light", + -10.250100135803223 + ], + [ + "▁Court", + -10.250598907470703 + ], + [ + "set", + -10.250869750976562 + ], + [ + "▁steps", + -10.251251220703125 + ], + [ + "pri", + -10.251391410827637 + ], + [ + "Q", + -10.251654624938965 + ], + [ + "sti", + -10.251938819885254 + ], + [ + "▁voice", + -10.252121925354004 + ], + [ + "▁models", + -10.252705574035645 + ], + [ + "▁parties", + -10.25442886352539 + ], + [ + "▁radio", + -10.255270957946777 + ], + [ + "▁mission", + -10.25545883178711 + ], + [ + "▁methods", + -10.255658149719238 + ], + [ + "▁Te", + -10.256019592285156 + ], + [ + "air", + -10.256489753723145 + ], + [ + "▁essay", + -10.256719589233398 + ], + [ + "my", + -10.256826400756836 + ], + [ + "▁competition", + -10.257049560546875 + ], + [ + "ses", + -10.257447242736816 + ], + [ + "▁serious", + -10.258724212646484 + ], + [ + "▁Ti", + -10.258733749389648 + ], + [ + "▁Hand", + -10.259561538696289 + ], + [ + "not", + -10.25958251953125 + ], + [ + "▁winter", + -10.261277198791504 + ], + [ + "24", + -10.261724472045898 + ], + [ + "▁vision", + -10.26174545288086 + ], + [ + "▁technical", + -10.262110710144043 + ], + [ + "▁cross", + -10.262799263000488 + ], + [ + "▁update", + -10.262947082519531 + ], + [ + "▁Team", + -10.263564109802246 + ], + [ + "▁evening", + -10.264286041259766 + ], + [ + "▁experts", + -10.26435661315918 + ], + [ + "part", + -10.264640808105469 + ], + [ + "▁wo", + -10.265190124511719 + ], + [ + "▁App", + -10.265729904174805 + ], + [ + "▁peu", + -10.266267776489258 + ], + [ + "▁mich", + -10.26630687713623 + ], + [ + "▁reports", + -10.267001152038574 + ], + [ + "▁km", + -10.267594337463379 + ], + [ + "▁print", + -10.2678804397583 + ], + [ + "▁Hotel", + -10.268101692199707 + ], + [ + "▁earlier", + -10.268235206604004 + ], + [ + "▁uses", + -10.26826286315918 + ], + [ + "▁menu", + -10.268416404724121 + ], + [ + "▁miles", + -10.26845645904541 + ], + [ + "▁classes", + -10.268463134765625 + ], + [ + "▁mo", + -10.268525123596191 + ], + [ + "▁loan", + -10.2691011428833 + ], + [ + "▁host", + -10.269192695617676 + ], + [ + "▁author", + -10.269274711608887 + ], + [ + "-1", + -10.269434928894043 + ], + [ + "▁bun", + -10.269940376281738 + ], + [ + "19", + -10.270011901855469 + ], + [ + "uch", + -10.270670890808105 + ], + [ + "ble", + -10.270813941955566 + ], + [ + "▁holiday", + -10.270859718322754 + ], + [ + "los", + -10.271894454956055 + ], + [ + "▁looked", + -10.272663116455078 + ], + [ + "▁Test", + -10.272759437561035 + ], + [ + "▁moved", + -10.273000717163086 + ], + [ + "▁numbers", + -10.273306846618652 + ], + [ + "▁covered", + -10.273405075073242 + ], + [ + "ker", + -10.273696899414062 + ], + [ + "TM", + -10.273768424987793 + ], + [ + "▁album", + -10.274727821350098 + ], + [ + "▁27", + -10.27476692199707 + ], + [ + "▁când", + -10.27523422241211 + ], + [ + "▁shopping", + -10.275248527526855 + ], + [ + "▁Ihr", + -10.27531623840332 + ], + [ + "▁requires", + -10.275786399841309 + ], + [ + "▁USA", + -10.275909423828125 + ], + [ + "000", + -10.275951385498047 + ], + [ + "▁official", + -10.276010513305664 + ], + [ + "▁states", + -10.276346206665039 + ], + [ + "▁tips", + -10.276570320129395 + ], + [ + "ible", + -10.277321815490723 + ], + [ + "▁Lu", + -10.27756404876709 + ], + [ + "ces", + -10.278343200683594 + ], + [ + "▁figure", + -10.27839469909668 + ], + [ + "▁Take", + -10.278576850891113 + ], + [ + "▁după", + -10.278687477111816 + ], + [ + "▁teams", + -10.278980255126953 + ], + [ + "▁song", + -10.279138565063477 + ], + [ + "▁master", + -10.279386520385742 + ], + [ + "ED", + -10.279841423034668 + ], + [ + "▁cleaning", + -10.280523300170898 + ], + [ + "▁drop", + -10.280651092529297 + ], + [ + "▁primary", + -10.2808837890625 + ], + [ + "▁Life", + -10.28108024597168 + ], + [ + "▁carry", + -10.281129837036133 + ], + [ + "▁initial", + -10.281270980834961 + ], + [ + "▁encore", + -10.281617164611816 + ], + [ + "▁Add", + -10.281670570373535 + ], + [ + "▁woman", + -10.282076835632324 + ], + [ + "▁Water", + -10.282219886779785 + ], + [ + "▁advantage", + -10.28277587890625 + ], + [ + "see", + -10.283234596252441 + ], + [ + "ré", + -10.283341407775879 + ], + [ + "▁motor", + -10.283479690551758 + ], + [ + "mel", + -10.2838716506958 + ], + [ + "▁finding", + -10.284419059753418 + ], + [ + "▁plastic", + -10.286365509033203 + ], + [ + "▁IT", + -10.286602973937988 + ], + [ + "▁Church", + -10.286916732788086 + ], + [ + "▁shape", + -10.287345886230469 + ], + [ + "▁gets", + -10.287763595581055 + ], + [ + "▁followed", + -10.288186073303223 + ], + [ + "▁100%", + -10.288315773010254 + ], + [ + "▁Program", + -10.28912353515625 + ], + [ + "▁Another", + -10.28934383392334 + ], + [ + "▁zwei", + -10.289522171020508 + ], + [ + "▁father", + -10.289839744567871 + ], + [ + "▁rich", + -10.290282249450684 + ], + [ + "où", + -10.290810585021973 + ], + [ + "▁lines", + -10.290934562683105 + ], + [ + "▁distance", + -10.291757583618164 + ], + [ + "▁cell", + -10.291876792907715 + ], + [ + "▁parte", + -10.292072296142578 + ], + [ + "bit", + -10.292445182800293 + ], + [ + "▁perhaps", + -10.292749404907227 + ], + [ + "rii", + -10.293590545654297 + ], + [ + "▁session", + -10.294137954711914 + ], + [ + "▁Pentru", + -10.294528007507324 + ], + [ + "ING", + -10.295049667358398 + ], + [ + "ants", + -10.295478820800781 + ], + [ + "▁remain", + -10.295543670654297 + ], + [ + "13", + -10.295588493347168 + ], + [ + "▁finished", + -10.295763969421387 + ], + [ + "bel", + -10.298725128173828 + ], + [ + "▁organizations", + -10.299455642700195 + ], + [ + "▁Any", + -10.299896240234375 + ], + [ + "▁taste", + -10.300277709960938 + ], + [ + "Whether", + -10.300600051879883 + ], + [ + "ram", + -10.300874710083008 + ], + [ + "like", + -10.301307678222656 + ], + [ + "▁artist", + -10.301319122314453 + ], + [ + "aire", + -10.303369522094727 + ], + [ + "▁French", + -10.303386688232422 + ], + [ + "▁donc", + -10.303634643554688 + ], + [ + "ow", + -10.30386734008789 + ], + [ + "▁200", + -10.303993225097656 + ], + [ + "▁paint", + -10.304465293884277 + ], + [ + "▁Open", + -10.304535865783691 + ], + [ + "▁appear", + -10.304722785949707 + ], + [ + "▁Washington", + -10.304765701293945 + ], + [ + "▁target", + -10.30491828918457 + ], + [ + "pir", + -10.305578231811523 + ], + [ + "▁generally", + -10.305987358093262 + ], + [ + "▁British", + -10.306790351867676 + ], + [ + "▁seven", + -10.306937217712402 + ], + [ + "▁bio", + -10.307162284851074 + ], + [ + "▁sector", + -10.307358741760254 + ], + [ + "90", + -10.30777359008789 + ], + [ + "▁fapt", + -10.307881355285645 + ], + [ + "▁prefer", + -10.308316230773926 + ], + [ + "▁partner", + -10.308427810668945 + ], + [ + "ăm", + -10.308547973632812 + ], + [ + "▁diverse", + -10.308610916137695 + ], + [ + "▁onto", + -10.309283256530762 + ], + [ + "▁refer", + -10.309828758239746 + ], + [ + "▁Law", + -10.310302734375 + ], + [ + "▁Ri", + -10.310596466064453 + ], + [ + "▁critical", + -10.310735702514648 + ], + [ + "▁copy", + -10.310897827148438 + ], + [ + "ck", + -10.311517715454102 + ], + [ + "ix", + -10.311732292175293 + ], + [ + "tag", + -10.311793327331543 + ], + [ + "▁Road", + -10.311936378479004 + ], + [ + "▁concern", + -10.312053680419922 + ], + [ + "▁maximum", + -10.312095642089844 + ], + [ + "▁train", + -10.312148094177246 + ], + [ + "▁într", + -10.312189102172852 + ], + [ + "ura", + -10.313023567199707 + ], + [ + "▁Qu", + -10.313481330871582 + ], + [ + "▁links", + -10.313538551330566 + ], + [ + "▁audience", + -10.313969612121582 + ], + [ + "▁foot", + -10.314554214477539 + ], + [ + "▁Blue", + -10.314605712890625 + ], + [ + "ification", + -10.315386772155762 + ], + [ + "▁developing", + -10.315847396850586 + ], + [ + "▁interior", + -10.315876007080078 + ], + [ + "=", + -10.316556930541992 + ], + [ + "▁aceasta", + -10.31698989868164 + ], + [ + "▁dedicated", + -10.317373275756836 + ], + [ + "▁movement", + -10.317383766174316 + ], + [ + "sta", + -10.318868637084961 + ], + [ + "▁challenges", + -10.319018363952637 + ], + [ + "inte", + -10.319074630737305 + ], + [ + "▁Euro", + -10.319075584411621 + ], + [ + "▁classic", + -10.320341110229492 + ], + [ + "▁Um", + -10.320767402648926 + ], + [ + "▁alternative", + -10.321407318115234 + ], + [ + "mann", + -10.321614265441895 + ], + [ + "▁Une", + -10.322278022766113 + ], + [ + "qu", + -10.322415351867676 + ], + [ + "▁heavy", + -10.322434425354004 + ], + [ + "▁install", + -10.322484970092773 + ], + [ + "▁fiind", + -10.322504043579102 + ], + [ + "▁leaders", + -10.323003768920898 + ], + [ + "▁views", + -10.323019981384277 + ], + [ + "▁www", + -10.323084831237793 + ], + [ + "▁standards", + -10.323270797729492 + ], + [ + "ong", + -10.323580741882324 + ], + [ + "40", + -10.323833465576172 + ], + [ + "▁cm", + -10.323848724365234 + ], + [ + "▁park", + -10.324324607849121 + ], + [ + "▁himself", + -10.324419021606445 + ], + [ + "▁People", + -10.324649810791016 + ], + [ + "▁separate", + -10.324843406677246 + ], + [ + "▁secure", + -10.325018882751465 + ], + [ + "sie", + -10.325084686279297 + ], + [ + "▁maintenance", + -10.325199127197266 + ], + [ + "▁encourage", + -10.32766056060791 + ], + [ + "ein", + -10.328139305114746 + ], + [ + "▁reviews", + -10.328202247619629 + ], + [ + "▁Michael", + -10.328210830688477 + ], + [ + "▁background", + -10.328283309936523 + ], + [ + "▁therefore", + -10.328433990478516 + ], + [ + "▁server", + -10.328487396240234 + ], + [ + "▁dream", + -10.328742027282715 + ], + [ + "ping", + -10.329025268554688 + ], + [ + "▁block", + -10.329855918884277 + ], + [ + "▁2009", + -10.330734252929688 + ], + [ + "▁facilities", + -10.330931663513184 + ], + [ + "▁II", + -10.331367492675781 + ], + [ + "▁attend", + -10.33156967163086 + ], + [ + "▁cap", + -10.33224105834961 + ], + [ + "35", + -10.332416534423828 + ], + [ + "▁steel", + -10.332796096801758 + ], + [ + "▁shared", + -10.333391189575195 + ], + [ + "▁doctor", + -10.333939552307129 + ], + [ + "▁River", + -10.33411693572998 + ], + [ + "▁Bay", + -10.334456443786621 + ], + [ + "▁length", + -10.335005760192871 + ], + [ + "▁jobs", + -10.335466384887695 + ], + [ + "▁Plus", + -10.335992813110352 + ], + [ + "▁station", + -10.336140632629395 + ], + [ + "▁elements", + -10.336268424987793 + ], + [ + "▁rock", + -10.336668014526367 + ], + [ + "▁professionals", + -10.336670875549316 + ], + [ + "cle", + -10.336777687072754 + ], + [ + "▁dont", + -10.336873054504395 + ], + [ + "urilor", + -10.337142944335938 + ], + [ + "▁gain", + -10.337271690368652 + ], + [ + "▁programme", + -10.337540626525879 + ], + [ + "▁Cor", + -10.338377952575684 + ], + [ + "▁leader", + -10.338542938232422 + ], + [ + "ării", + -10.33876895904541 + ], + [ + "▁>", + -10.339137077331543 + ], + [ + "▁task", + -10.339471817016602 + ], + [ + "▁seeing", + -10.339943885803223 + ], + [ + "▁statement", + -10.34045696258545 + ], + [ + "vin", + -10.341094017028809 + ], + [ + "▁fish", + -10.341700553894043 + ], + [ + "▁advanced", + -10.342403411865234 + ], + [ + "▁discuss", + -10.342494010925293 + ], + [ + "die", + -10.342904090881348 + ], + [ + "isch", + -10.342944145202637 + ], + [ + "▁plenty", + -10.342947959899902 + ], + [ + "▁Hall", + -10.343120574951172 + ], + [ + "▁Other", + -10.343339920043945 + ], + [ + "▁homes", + -10.344944953918457 + ], + [ + "▁Ni", + -10.345016479492188 + ], + [ + "▁testing", + -10.345102310180664 + ], + [ + "▁Last", + -10.345392227172852 + ], + [ + "▁Note", + -10.345595359802246 + ], + [ + "▁talking", + -10.345934867858887 + ], + [ + "▁exchange", + -10.347042083740234 + ], + [ + "▁exercise", + -10.347189903259277 + ], + [ + "▁cea", + -10.347546577453613 + ], + [ + "▁wife", + -10.34820556640625 + ], + [ + "▁Für", + -10.348480224609375 + ], + [ + "▁Texas", + -10.34981918334961 + ], + [ + "▁fr", + -10.35065746307373 + ], + [ + "▁speak", + -10.350894927978516 + ], + [ + "17", + -10.351007461547852 + ], + [ + "70", + -10.351462364196777 + ], + [ + "▁promote", + -10.351851463317871 + ], + [ + "tul", + -10.351990699768066 + ], + [ + "apos", + -10.35208511352539 + ], + [ + "▁Jahr", + -10.35214900970459 + ], + [ + "▁Trump", + -10.352204322814941 + ], + [ + "▁ohne", + -10.352357864379883 + ], + [ + "▁learned", + -10.353700637817383 + ], + [ + "▁Sp", + -10.353803634643555 + ], + [ + "▁owner", + -10.354275703430176 + ], + [ + "mor", + -10.354422569274902 + ], + [ + "▁fois", + -10.354452133178711 + ], + [ + "▁meaning", + -10.35518741607666 + ], + [ + "▁dacă", + -10.355249404907227 + ], + [ + "nic", + -10.355484008789062 + ], + [ + "а", + -10.355525970458984 + ], + [ + "14", + -10.355767250061035 + ], + [ + "▁driver", + -10.356258392333984 + ], + [ + "▁Amazon", + -10.3567533493042 + ], + [ + "▁flow", + -10.358469009399414 + ], + [ + "▁shot", + -10.358726501464844 + ], + [ + "▁sous", + -10.35914421081543 + ], + [ + "▁Gold", + -10.359339714050293 + ], + [ + "▁straight", + -10.359562873840332 + ], + [ + "▁conference", + -10.359610557556152 + ], + [ + "▁peste", + -10.359662055969238 + ], + [ + "whose", + -10.36030101776123 + ], + [ + "▁installation", + -10.36050796508789 + ], + [ + "▁produced", + -10.360607147216797 + ], + [ + "▁independent", + -10.36192512512207 + ], + [ + "▁Institute", + -10.362021446228027 + ], + [ + "▁James", + -10.362373352050781 + ], + [ + "▁mental", + -10.362601280212402 + ], + [ + "ara", + -10.362798690795898 + ], + [ + "ium", + -10.363021850585938 + ], + [ + "▁husband", + -10.36306095123291 + ], + [ + "▁guests", + -10.363907814025879 + ], + [ + "27", + -10.364319801330566 + ], + [ + "▁Che", + -10.364651679992676 + ], + [ + "▁Indian", + -10.364694595336914 + ], + [ + "zer", + -10.36478042602539 + ], + [ + "▁minimum", + -10.364962577819824 + ], + [ + "500", + -10.365096092224121 + ], + [ + "▁sit", + -10.36561393737793 + ], + [ + "put", + -10.36656379699707 + ], + [ + "▁avea", + -10.36665153503418 + ], + [ + "▁ride", + -10.367088317871094 + ], + [ + "gan", + -10.367152214050293 + ], + [ + "▁Ke", + -10.36747932434082 + ], + [ + "book", + -10.367515563964844 + ], + [ + "ages", + -10.368019104003906 + ], + [ + "▁presented", + -10.368157386779785 + ], + [ + "▁Com", + -10.368927955627441 + ], + [ + "▁Call", + -10.369053840637207 + ], + [ + "▁fee", + -10.369847297668457 + ], + [ + "ări", + -10.369905471801758 + ], + [ + "▁putea", + -10.37072467803955 + ], + [ + "▁Public", + -10.371030807495117 + ], + [ + "▁pa", + -10.371152877807617 + ], + [ + "28", + -10.371233940124512 + ], + [ + "▁Director", + -10.37126350402832 + ], + [ + "▁contains", + -10.3717622756958 + ], + [ + "▁factors", + -10.372554779052734 + ], + [ + "▁famous", + -10.372614860534668 + ], + [ + "▁bathroom", + -10.373040199279785 + ], + [ + "▁core", + -10.37353229522705 + ], + [ + "▁viele", + -10.373610496520996 + ], + [ + "▁acum", + -10.374361991882324 + ], + [ + "▁animal", + -10.374407768249512 + ], + [ + "▁Ihnen", + -10.374425888061523 + ], + [ + "▁Find", + -10.374545097351074 + ], + [ + "▁Fall", + -10.374861717224121 + ], + [ + "ford", + -10.376051902770996 + ], + [ + "▁coverage", + -10.3765287399292 + ], + [ + "▁smart", + -10.376830101013184 + ], + [ + "ries", + -10.376893997192383 + ], + [ + "▁memory", + -10.3772554397583 + ], + [ + "▁dance", + -10.377443313598633 + ], + [ + "11", + -10.37746810913086 + ], + [ + "▁communities", + -10.377655982971191 + ], + [ + "eurs", + -10.378050804138184 + ], + [ + "▁Florida", + -10.378463745117188 + ], + [ + "▁sport", + -10.379366874694824 + ], + [ + "▁bus", + -10.37992000579834 + ], + [ + "▁colors", + -10.379969596862793 + ], + [ + "▁affect", + -10.380044937133789 + ], + [ + "▁score", + -10.380183219909668 + ], + [ + "▁properties", + -10.38050365447998 + ], + [ + "18", + -10.380593299865723 + ], + [ + "▁astfel", + -10.381312370300293 + ], + [ + "▁beach", + -10.382407188415527 + ], + [ + "▁friendly", + -10.382795333862305 + ], + [ + "izing", + -10.38288688659668 + ], + [ + "▁buying", + -10.383146286010742 + ], + [ + "▁forget", + -10.383195877075195 + ], + [ + "este", + -10.383198738098145 + ], + [ + "▁capacity", + -10.38360595703125 + ], + [ + "▁lose", + -10.383692741394043 + ], + [ + "▁listed", + -10.38407039642334 + ], + [ + "ica", + -10.384084701538086 + ], + [ + "han", + -10.384085655212402 + ], + [ + "▁selbst", + -10.384390830993652 + ], + [ + "▁values", + -10.384391784667969 + ], + [ + "▁Power", + -10.384559631347656 + ], + [ + "▁comments", + -10.384831428527832 + ], + [ + "eux", + -10.385346412658691 + ], + [ + "ați", + -10.385419845581055 + ], + [ + "▁context", + -10.385710716247559 + ], + [ + "liche", + -10.385944366455078 + ], + [ + "▁keeping", + -10.38620662689209 + ], + [ + "▁2008", + -10.38647174835205 + ], + [ + "▁su", + -10.386670112609863 + ], + [ + "▁biggest", + -10.386838912963867 + ], + [ + "▁fiecare", + -10.387356758117676 + ], + [ + "ight", + -10.38845157623291 + ], + [ + "▁toute", + -10.389808654785156 + ], + [ + "▁dinner", + -10.389827728271484 + ], + [ + "bau", + -10.390706062316895 + ], + [ + "▁Mai", + -10.390762329101562 + ], + [ + "▁status", + -10.390776634216309 + ], + [ + "rez", + -10.391340255737305 + ], + [ + "▁selected", + -10.391549110412598 + ], + [ + "▁cells", + -10.392601013183594 + ], + [ + "▁eight", + -10.393319129943848 + ], + [ + "▁package", + -10.393320083618164 + ], + [ + "▁scale", + -10.39333724975586 + ], + [ + "din", + -10.39336109161377 + ], + [ + "▁Who", + -10.393381118774414 + ], + [ + "▁century", + -10.393399238586426 + ], + [ + "▁bi", + -10.393516540527344 + ], + [ + "▁Africa", + -10.39384937286377 + ], + [ + "▁http", + -10.394133567810059 + ], + [ + "▁named", + -10.394230842590332 + ], + [ + "▁adding", + -10.394901275634766 + ], + [ + "▁mention", + -10.395039558410645 + ], + [ + "▁casino", + -10.395421981811523 + ], + [ + "▁couldn", + -10.395624160766602 + ], + [ + "▁outdoor", + -10.395912170410156 + ], + [ + "▁sugar", + -10.3960542678833 + ], + [ + "▁prepared", + -10.396124839782715 + ], + [ + "21", + -10.396528244018555 + ], + [ + "▁Ba", + -10.396632194519043 + ], + [ + "vers", + -10.396697998046875 + ], + [ + "ration", + -10.396773338317871 + ], + [ + "▁ja", + -10.397035598754883 + ], + [ + "▁aspect", + -10.397224426269531 + ], + [ + "▁31", + -10.397462844848633 + ], + [ + "▁treat", + -10.397475242614746 + ], + [ + "tru", + -10.397841453552246 + ], + [ + "▁flat", + -10.397890090942383 + ], + [ + "32", + -10.397989273071289 + ], + [ + "▁reality", + -10.398238182067871 + ], + [ + "▁waste", + -10.39876937866211 + ], + [ + "▁King", + -10.399649620056152 + ], + [ + "▁drug", + -10.399870872497559 + ], + [ + "▁operations", + -10.400120735168457 + ], + [ + "▁aim", + -10.40042495727539 + ], + [ + "▁fans", + -10.400444984436035 + ], + [ + "▁vers", + -10.400891304016113 + ], + [ + "▁plants", + -10.400971412658691 + ], + [ + "▁Dis", + -10.401477813720703 + ], + [ + "▁Daten", + -10.401510238647461 + ], + [ + "être", + -10.40267276763916 + ], + [ + "▁placed", + -10.40326976776123 + ], + [ + "▁bon", + -10.403977394104004 + ], + [ + "beim", + -10.4041109085083 + ], + [ + "▁slow", + -10.40501880645752 + ], + [ + "cri", + -10.405512809753418 + ], + [ + "▁Care", + -10.405691146850586 + ], + [ + "mes", + -10.406211853027344 + ], + [ + "26", + -10.406257629394531 + ], + [ + "box", + -10.406330108642578 + ], + [ + "▁helpful", + -10.406362533569336 + ], + [ + "▁documents", + -10.406543731689453 + ], + [ + "▁visitors", + -10.406773567199707 + ], + [ + "ture", + -10.406862258911133 + ], + [ + "▁Menschen", + -10.406891822814941 + ], + [ + "▁Chi", + -10.406975746154785 + ], + [ + "▁recipe", + -10.40764045715332 + ], + [ + "▁kept", + -10.407693862915039 + ], + [ + "▁Grand", + -10.407915115356445 + ], + [ + "▁operating", + -10.408178329467773 + ], + [ + "point", + -10.408329010009766 + ], + [ + "▁bin", + -10.40837287902832 + ], + [ + "▁Tri", + -10.40845775604248 + ], + [ + "Be", + -10.408512115478516 + ], + [ + "▁experiences", + -10.40856647491455 + ], + [ + "▁academic", + -10.408608436584473 + ], + [ + "▁finden", + -10.40870475769043 + ], + [ + "▁sera", + -10.409092903137207 + ], + [ + "act", + -10.410541534423828 + ], + [ + "▁Pa", + -10.410907745361328 + ], + [ + "▁society", + -10.411056518554688 + ], + [ + "▁combination", + -10.411237716674805 + ], + [ + "5%", + -10.41182804107666 + ], + [ + "▁owners", + -10.41188907623291 + ], + [ + "▁poor", + -10.412039756774902 + ], + [ + "▁Robert", + -10.412378311157227 + ], + [ + "▁military", + -10.412964820861816 + ], + [ + "▁economy", + -10.413033485412598 + ], + [ + "▁aware", + -10.413055419921875 + ], + [ + "rot", + -10.413443565368652 + ], + [ + "mie", + -10.413544654846191 + ], + [ + "▁Thursday", + -10.414399147033691 + ], + [ + "▁2011", + -10.41490650177002 + ], + [ + "▁fantastic", + -10.41554069519043 + ], + [ + "▁numerous", + -10.415921211242676 + ], + [ + "▁fair", + -10.4165620803833 + ], + [ + "med", + -10.416753768920898 + ], + [ + "▁welche", + -10.416893005371094 + ], + [ + "▁fruit", + -10.41712760925293 + ], + [ + "ku", + -10.417325019836426 + ], + [ + "▁Social", + -10.417583465576172 + ], + [ + "▁funds", + -10.418157577514648 + ], + [ + "▁atunci", + -10.418214797973633 + ], + [ + "▁Part", + -10.418238639831543 + ], + [ + "▁Big", + -10.418301582336426 + ], + [ + "▁2010", + -10.419414520263672 + ], + [ + "▁detail", + -10.419889450073242 + ], + [ + "▁Peter", + -10.419942855834961 + ], + [ + "ani", + -10.420196533203125 + ], + [ + "▁Wie", + -10.420795440673828 + ], + [ + "▁Tu", + -10.421649932861328 + ], + [ + "ear", + -10.421706199645996 + ], + [ + "▁Wenn", + -10.421941757202148 + ], + [ + "▁manager", + -10.42199993133545 + ], + [ + "▁Dan", + -10.422409057617188 + ], + [ + "▁Pi", + -10.42257308959961 + ], + [ + "▁wants", + -10.422652244567871 + ], + [ + "▁Data", + -10.42322826385498 + ], + [ + "pos", + -10.42387580871582 + ], + [ + "▁older", + -10.423946380615234 + ], + [ + "▁Download", + -10.424071311950684 + ], + [ + "▁Was", + -10.424107551574707 + ], + [ + "▁corner", + -10.424195289611816 + ], + [ + "▁president", + -10.424199104309082 + ], + [ + "mas", + -10.424248695373535 + ], + [ + "▁smaller", + -10.424361228942871 + ], + [ + "▁bright", + -10.424459457397461 + ], + [ + "▁proper", + -10.424582481384277 + ], + [ + "▁Kinder", + -10.424637794494629 + ], + [ + "▁Two", + -10.424668312072754 + ], + [ + "▁award", + -10.42471694946289 + ], + [ + "▁premier", + -10.425211906433105 + ], + [ + "▁seek", + -10.425646781921387 + ], + [ + "▁thank", + -10.425662994384766 + ], + [ + "▁proud", + -10.426509857177734 + ], + [ + "▁workers", + -10.426774024963379 + ], + [ + "▁2000", + -10.426970481872559 + ], + [ + "▁gone", + -10.427482604980469 + ], + [ + "▁medium", + -10.427693367004395 + ], + [ + "▁grade", + -10.42777156829834 + ], + [ + "▁Ru", + -10.427800178527832 + ], + [ + "cro", + -10.427851676940918 + ], + [ + "▁interview", + -10.428311347961426 + ], + [ + "23", + -10.428787231445312 + ], + [ + "▁mari", + -10.429442405700684 + ], + [ + "▁80", + -10.429756164550781 + ], + [ + "▁Ga", + -10.430047035217285 + ], + [ + "▁90", + -10.431839942932129 + ], + [ + "▁anderen", + -10.432605743408203 + ], + [ + "▁cultural", + -10.433018684387207 + ], + [ + "but", + -10.433144569396973 + ], + [ + "rum", + -10.433300018310547 + ], + [ + "get", + -10.43338680267334 + ], + [ + "▁pop", + -10.433582305908203 + ], + [ + "▁Information", + -10.433594703674316 + ], + [ + "▁press", + -10.434972763061523 + ], + [ + "▁Project", + -10.435359001159668 + ], + [ + "▁excited", + -10.435755729675293 + ], + [ + "▁Saint", + -10.436088562011719 + ], + [ + "▁England", + -10.436192512512207 + ], + [ + "▁beauty", + -10.43643856048584 + ], + [ + "▁agreement", + -10.436464309692383 + ], + [ + "▁Like", + -10.437565803527832 + ], + [ + "▁strength", + -10.437664985656738 + ], + [ + "▁waiting", + -10.438165664672852 + ], + [ + "и", + -10.438270568847656 + ], + [ + "Le", + -10.438329696655273 + ], + [ + "▁residents", + -10.43835735321045 + ], + [ + "▁Ben", + -10.438603401184082 + ], + [ + "▁mentioned", + -10.439260482788086 + ], + [ + "▁etwas", + -10.43930721282959 + ], + [ + "▁rooms", + -10.439347267150879 + ], + [ + "▁neue", + -10.439501762390137 + ], + [ + "▁Microsoft", + -10.439726829528809 + ], + [ + "▁passed", + -10.440205574035645 + ], + [ + "▁sea", + -10.440893173217773 + ], + [ + "▁electric", + -10.441244125366211 + ], + [ + "▁forms", + -10.441384315490723 + ], + [ + "▁Central", + -10.441597938537598 + ], + [ + "▁Lord", + -10.442625999450684 + ], + [ + "ute", + -10.442763328552246 + ], + [ + "▁pré", + -10.442790031433105 + ], + [ + "▁square", + -10.44308090209961 + ], + [ + "itatea", + -10.443451881408691 + ], + [ + "▁debt", + -10.443757057189941 + ], + [ + "▁street", + -10.443975448608398 + ], + [ + "▁pi", + -10.444917678833008 + ], + [ + "▁happened", + -10.445326805114746 + ], + [ + "▁Tuesday", + -10.445592880249023 + ], + [ + "recht", + -10.446094512939453 + ], + [ + "▁Eine", + -10.44627857208252 + ], + [ + "▁Set", + -10.446768760681152 + ], + [ + "▁federal", + -10.4468412399292 + ], + [ + "CC", + -10.446905136108398 + ], + [ + "....", + -10.446938514709473 + ], + [ + "lig", + -10.447463035583496 + ], + [ + "▁Christian", + -10.44870662689209 + ], + [ + "▁truth", + -10.449213981628418 + ], + [ + "▁map", + -10.449728012084961 + ], + [ + "▁secret", + -10.449979782104492 + ], + [ + "▁Chinese", + -10.450844764709473 + ], + [ + "hol", + -10.450895309448242 + ], + [ + "▁wrote", + -10.451505661010742 + ], + [ + "▁hospital", + -10.451783180236816 + ], + [ + "▁Island", + -10.451870918273926 + ], + [ + "▁frame", + -10.451946258544922 + ], + [ + "▁sources", + -10.452117919921875 + ], + [ + "pan", + -10.453242301940918 + ], + [ + "▁29", + -10.453530311584473 + ], + [ + "▁changing", + -10.454547882080078 + ], + [ + "▁Where", + -10.454627990722656 + ], + [ + "▁negative", + -10.45471477508545 + ], + [ + "▁processes", + -10.45491886138916 + ], + [ + "▁leadership", + -10.455029487609863 + ], + [ + "▁nos", + -10.455195426940918 + ], + [ + "▁info", + -10.455780029296875 + ], + [ + "▁Gu", + -10.45595645904541 + ], + [ + "▁CO", + -10.45605182647705 + ], + [ + "▁reference", + -10.456884384155273 + ], + [ + "▁corporate", + -10.457097053527832 + ], + [ + "▁characters", + -10.457563400268555 + ], + [ + "▁dining", + -10.4577054977417 + ], + [ + "▁becoming", + -10.459708213806152 + ], + [ + "▁4.", + -10.460311889648438 + ], + [ + "▁Science", + -10.460626602172852 + ], + [ + "▁Education", + -10.461943626403809 + ], + [ + "▁camp", + -10.46207046508789 + ], + [ + "fall", + -10.462146759033203 + ], + [ + "▁Auch", + -10.462471961975098 + ], + [ + "▁topic", + -10.462519645690918 + ], + [ + "▁influence", + -10.463460922241211 + ], + [ + "▁70", + -10.463892936706543 + ], + [ + "▁identify", + -10.464459419250488 + ], + [ + "▁(19", + -10.464646339416504 + ], + [ + "care", + -10.465216636657715 + ], + [ + "ions", + -10.466215133666992 + ], + [ + "ray", + -10.4663724899292 + ], + [ + "▁Both", + -10.466577529907227 + ], + [ + "▁collect", + -10.466997146606445 + ], + [ + "▁practices", + -10.467667579650879 + ], + [ + "▁fight", + -10.468058586120605 + ], + [ + "▁injury", + -10.46873664855957 + ], + [ + "▁nici", + -10.46905517578125 + ], + [ + "▁depuis", + -10.469563484191895 + ], + [ + "▁actions", + -10.469609260559082 + ], + [ + "▁Wednesday", + -10.47089958190918 + ], + [ + "▁bill", + -10.471086502075195 + ], + [ + "▁cheap", + -10.471318244934082 + ], + [ + "lui", + -10.471719741821289 + ], + [ + "▁awesome", + -10.471731185913086 + ], + [ + "tig", + -10.472554206848145 + ], + [ + "▁expensive", + -10.472636222839355 + ], + [ + "ceea", + -10.472834587097168 + ], + [ + "▁exact", + -10.472907066345215 + ], + [ + "22", + -10.473462104797363 + ], + [ + "▁avant", + -10.47352123260498 + ], + [ + "▁fat", + -10.47353744506836 + ], + [ + "▁spending", + -10.474353790283203 + ], + [ + "▁designs", + -10.47608470916748 + ], + [ + "▁damit", + -10.4761323928833 + ], + [ + "▁comp", + -10.47619342803955 + ], + [ + "▁whatever", + -10.476434707641602 + ], + [ + "▁Light", + -10.476442337036133 + ], + [ + "▁quarter", + -10.47680377960205 + ], + [ + "hand", + -10.477301597595215 + ], + [ + "▁connected", + -10.477584838867188 + ], + [ + "▁technologies", + -10.47772216796875 + ], + [ + "ges", + -10.477808952331543 + ], + [ + "▁shower", + -10.478998184204102 + ], + [ + "▁500", + -10.47923469543457 + ], + [ + "▁Time", + -10.479436874389648 + ], + [ + "▁zone", + -10.480525970458984 + ], + [ + "▁vote", + -10.480624198913574 + ], + [ + "▁andere", + -10.480871200561523 + ], + [ + "▁otherwise", + -10.480988502502441 + ], + [ + "tur", + -10.481294631958008 + ], + [ + "▁happens", + -10.481504440307617 + ], + [ + "hin", + -10.481597900390625 + ], + [ + "▁volume", + -10.482161521911621 + ], + [ + "▁thousands", + -10.482391357421875 + ], + [ + "war", + -10.482551574707031 + ], + [ + "▁Play", + -10.482900619506836 + ], + [ + "▁temperature", + -10.48371410369873 + ], + [ + "▁industrial", + -10.483830451965332 + ], + [ + "▁fuel", + -10.483915328979492 + ], + [ + "100", + -10.48409366607666 + ], + [ + "top", + -10.484210014343262 + ], + [ + "kin", + -10.484312057495117 + ], + [ + "▁efficient", + -10.484414100646973 + ], + [ + "teil", + -10.484525680541992 + ], + [ + "alt", + -10.484578132629395 + ], + [ + "▁monde", + -10.48483657836914 + ], + [ + "▁Ra", + -10.484899520874023 + ], + [ + "▁bedroom", + -10.485103607177734 + ], + [ + "▁showing", + -10.485316276550293 + ], + [ + "▁continued", + -10.485490798950195 + ], + [ + "▁Plan", + -10.48552131652832 + ], + [ + "▁assistance", + -10.486014366149902 + ], + [ + "▁discover", + -10.48622989654541 + ], + [ + "▁Year", + -10.486238479614258 + ], + [ + "▁applied", + -10.486433029174805 + ], + [ + "▁audio", + -10.48755931854248 + ], + [ + "▁thus", + -10.487645149230957 + ], + [ + "▁permet", + -10.48806095123291 + ], + [ + "▁fashion", + -10.488532066345215 + ], + [ + "cra", + -10.488645553588867 + ], + [ + "ious", + -10.488700866699219 + ], + [ + "▁focused", + -10.489258766174316 + ], + [ + "16", + -10.48930549621582 + ], + [ + "▁arm", + -10.489364624023438 + ], + [ + "▁Their", + -10.489789962768555 + ], + [ + "▁Foundation", + -10.49022388458252 + ], + [ + "▁majority", + -10.49022388458252 + ], + [ + "▁wind", + -10.490785598754883 + ], + [ + "▁bought", + -10.491056442260742 + ], + [ + "▁factor", + -10.491918563842773 + ], + [ + "▁opened", + -10.49213695526123 + ], + [ + "tern", + -10.492374420166016 + ], + [ + "▁cars", + -10.492597579956055 + ], + [ + "▁exciting", + -10.492691040039062 + ], + [ + "▁affordable", + -10.493510246276855 + ], + [ + "ches", + -10.493563652038574 + ], + [ + "▁panel", + -10.493720054626465 + ], + [ + "▁caused", + -10.493793487548828 + ], + [ + "▁travail", + -10.493998527526855 + ], + [ + "▁roof", + -10.494073867797852 + ], + [ + "▁enable", + -10.494202613830566 + ], + [ + "▁toward", + -10.494491577148438 + ], + [ + "▁Development", + -10.494688987731934 + ], + [ + "▁foreign", + -10.495308876037598 + ], + [ + "avi", + -10.495320320129395 + ], + [ + "long", + -10.495328903198242 + ], + [ + "De", + -10.49578857421875 + ], + [ + "▁Mon", + -10.49588394165039 + ], + [ + "▁Va", + -10.495942115783691 + ], + [ + "AP", + -10.496097564697266 + ], + [ + "▁asta", + -10.49720573425293 + ], + [ + "▁prepare", + -10.497220993041992 + ], + [ + "▁German", + -10.497261047363281 + ], + [ + "▁Centre", + -10.497325897216797 + ], + [ + "ère", + -10.497367858886719 + ], + [ + "▁fear", + -10.497537612915039 + ], + [ + "▁Este", + -10.497878074645996 + ], + [ + "▁Des", + -10.49793529510498 + ], + [ + "▁Kon", + -10.499308586120605 + ], + [ + "á", + -10.499866485595703 + ], + [ + "stand", + -10.500805854797363 + ], + [ + "▁Real", + -10.500842094421387 + ], + [ + "lichen", + -10.50098705291748 + ], + [ + "▁Beach", + -10.501455307006836 + ], + [ + "▁expertise", + -10.50185775756836 + ], + [ + "▁route", + -10.502445220947266 + ], + [ + "▁nation", + -10.502551078796387 + ], + [ + "▁snow", + -10.503022193908691 + ], + [ + "▁articles", + -10.503127098083496 + ], + [ + "▁Wood", + -10.504426956176758 + ], + [ + "▁operation", + -10.50494384765625 + ], + [ + "▁passion", + -10.505215644836426 + ], + [ + "▁cand", + -10.505690574645996 + ], + [ + "haus", + -10.505701065063477 + ], + [ + "OR", + -10.505711555480957 + ], + [ + "▁senior", + -10.506511688232422 + ], + [ + "▁becomes", + -10.506546020507812 + ], + [ + "▁sounds", + -10.506878852844238 + ], + [ + "▁enjoyed", + -10.50704574584961 + ], + [ + "▁gegen", + -10.507533073425293 + ], + [ + "▁courses", + -10.507919311523438 + ], + [ + "▁absolutely", + -10.508257865905762 + ], + [ + "tim", + -10.508264541625977 + ], + [ + "uff", + -10.508516311645508 + ], + [ + "▁moins", + -10.50860595703125 + ], + [ + "▁TO", + -10.509060859680176 + ], + [ + "▁fabric", + -10.509267807006836 + ], + [ + "poli", + -10.509326934814453 + ], + [ + "▁Bre", + -10.509761810302734 + ], + [ + "▁bo", + -10.509916305541992 + ], + [ + "▁Elle", + -10.510469436645508 + ], + [ + "bu", + -10.512336730957031 + ], + [ + "▁participants", + -10.512401580810547 + ], + [ + "stone", + -10.512794494628906 + ], + [ + "ties", + -10.51366138458252 + ], + [ + "▁listen", + -10.513700485229492 + ], + [ + "▁Spiel", + -10.513752937316895 + ], + [ + "pot", + -10.513872146606445 + ], + [ + "▁selling", + -10.514358520507812 + ], + [ + "▁geht", + -10.514680862426758 + ], + [ + "▁mini", + -10.515146255493164 + ], + [ + "▁trans", + -10.515408515930176 + ], + [ + "▁ingredients", + -10.515642166137695 + ], + [ + "auf", + -10.515671730041504 + ], + [ + "▁orice", + -10.51595401763916 + ], + [ + "▁Next", + -10.516300201416016 + ], + [ + "▁cream", + -10.516756057739258 + ], + [ + "▁edge", + -10.516973495483398 + ], + [ + "▁recommended", + -10.517022132873535 + ], + [ + "▁Form", + -10.517277717590332 + ], + [ + "▁processing", + -10.51746940612793 + ], + [ + "vert", + -10.517709732055664 + ], + [ + "▁described", + -10.518362998962402 + ], + [ + "▁installed", + -10.51884937286377 + ], + [ + "▁managed", + -10.518952369689941 + ], + [ + "▁electronic", + -10.518966674804688 + ], + [ + "▁performed", + -10.519064903259277 + ], + [ + "▁raise", + -10.519098281860352 + ], + [ + "▁imagine", + -10.519281387329102 + ], + [ + "down", + -10.51952838897705 + ], + [ + "▁fond", + -10.519978523254395 + ], + [ + "▁Inter", + -10.520434379577637 + ], + [ + "▁Mc", + -10.520550727844238 + ], + [ + "▁Dans", + -10.520679473876953 + ], + [ + "istic", + -10.520966529846191 + ], + [ + "▁miss", + -10.521052360534668 + ], + [ + "sur", + -10.521062850952148 + ], + [ + "▁Col", + -10.521879196166992 + ], + [ + "cut", + -10.522021293640137 + ], + [ + "▁dupa", + -10.522160530090332 + ], + [ + "▁Twitter", + -10.522604942321777 + ], + [ + "▁bowl", + -10.523721694946289 + ], + [ + "▁remains", + -10.5237455368042 + ], + [ + "▁Jan", + -10.524046897888184 + ], + [ + "▁smooth", + -10.524162292480469 + ], + [ + "▁fees", + -10.524415969848633 + ], + [ + "▁aid", + -10.524494171142578 + ], + [ + "▁presence", + -10.524827003479004 + ], + [ + "▁Android", + -10.52499771118164 + ], + [ + "▁decisions", + -10.52539348602295 + ], + [ + "▁names", + -10.5254487991333 + ], + [ + "▁Music", + -10.525546073913574 + ], + [ + "▁innovative", + -10.525578498840332 + ], + [ + "▁Tom", + -10.525997161865234 + ], + [ + "▁spread", + -10.526165962219238 + ], + [ + "▁lovely", + -10.526222229003906 + ], + [ + "▁daughter", + -10.526397705078125 + ], + [ + "US", + -10.527050971984863 + ], + [ + "▁facility", + -10.52710247039795 + ], + [ + "▁peace", + -10.527105331420898 + ], + [ + "▁department", + -10.527277946472168 + ], + [ + "▁weiter", + -10.527591705322266 + ], + [ + "▁Sun", + -10.527756690979004 + ], + [ + "▁fund", + -10.527772903442383 + ], + [ + "▁2018.", + -10.52792739868164 + ], + [ + "▁discussion", + -10.528186798095703 + ], + [ + "75", + -10.528799057006836 + ], + [ + "EC", + -10.529126167297363 + ], + [ + "▁lunch", + -10.529144287109375 + ], + [ + "▁videos", + -10.52927017211914 + ], + [ + "05", + -10.531253814697266 + ], + [ + "ige", + -10.531266212463379 + ], + [ + "▁parking", + -10.531564712524414 + ], + [ + "▁relationships", + -10.531732559204102 + ], + [ + "▁George", + -10.532986640930176 + ], + [ + "▁teachers", + -10.53299617767334 + ], + [ + "room", + -10.533458709716797 + ], + [ + "▁Tra", + -10.533605575561523 + ], + [ + "▁Sam", + -10.533651351928711 + ], + [ + "▁properly", + -10.535590171813965 + ], + [ + "▁Book", + -10.535629272460938 + ], + [ + "▁CA", + -10.536957740783691 + ], + [ + "▁calls", + -10.53756046295166 + ], + [ + "▁stat", + -10.538175582885742 + ], + [ + "ux", + -10.538220405578613 + ], + [ + "▁soit", + -10.538439750671387 + ], + [ + "▁Community", + -10.538684844970703 + ], + [ + "▁Jahren", + -10.538714408874512 + ], + [ + "▁increasing", + -10.539575576782227 + ], + [ + "▁civil", + -10.540184020996094 + ], + [ + "app", + -10.540573120117188 + ], + [ + "▁35", + -10.540589332580566 + ], + [ + "▁rise", + -10.540600776672363 + ], + [ + "▁dabei", + -10.540989875793457 + ], + [ + "▁studio", + -10.541803359985352 + ], + [ + "▁policies", + -10.542054176330566 + ], + [ + "▁agent", + -10.542055130004883 + ], + [ + "▁Before", + -10.542601585388184 + ], + [ + "▁Cal", + -10.543017387390137 + ], + [ + "▁2005", + -10.543404579162598 + ], + [ + "▁sample", + -10.543777465820312 + ], + [ + "▁manner", + -10.545186996459961 + ], + [ + "wing", + -10.54521369934082 + ], + [ + "stra", + -10.545552253723145 + ], + [ + "▁fel", + -10.545793533325195 + ], + [ + "▁Show", + -10.545952796936035 + ], + [ + "▁scene", + -10.54656982421875 + ], + [ + "mic", + -10.546764373779297 + ], + [ + "nom", + -10.546995162963867 + ], + [ + "▁typically", + -10.547088623046875 + ], + [ + "▁pair", + -10.547104835510254 + ], + [ + "▁detailed", + -10.547394752502441 + ], + [ + "▁Work", + -10.547422409057617 + ], + [ + "▁cities", + -10.547451972961426 + ], + [ + "▁Rock", + -10.54749584197998 + ], + [ + "▁Gar", + -10.547906875610352 + ], + [ + "▁serving", + -10.548352241516113 + ], + [ + "▁machen", + -10.548521995544434 + ], + [ + "▁trees", + -10.54888916015625 + ], + [ + "▁accident", + -10.549199104309082 + ], + [ + "▁cloud", + -10.54920482635498 + ], + [ + "▁animals", + -10.549297332763672 + ], + [ + "▁Den", + -10.549897193908691 + ], + [ + "▁Wa", + -10.54990291595459 + ], + [ + "▁suggest", + -10.550220489501953 + ], + [ + "putting", + -10.550407409667969 + ], + [ + "▁suite", + -10.550434112548828 + ], + [ + "▁clearly", + -10.550849914550781 + ], + [ + "▁net", + -10.551287651062012 + ], + [ + "▁funding", + -10.551506996154785 + ], + [ + "▁salt", + -10.551935195922852 + ], + [ + "▁Men", + -10.552119255065918 + ], + [ + "ped", + -10.552419662475586 + ], + [ + "▁Food", + -10.553142547607422 + ], + [ + "▁leaving", + -10.553544998168945 + ], + [ + "▁Government", + -10.554243087768555 + ], + [ + "ick", + -10.554381370544434 + ], + [ + "▁seat", + -10.555121421813965 + ], + [ + "▁Los", + -10.555183410644531 + ], + [ + "▁teacher", + -10.555587768554688 + ], + [ + "▁iPhone", + -10.555693626403809 + ], + [ + "▁300", + -10.556120872497559 + ], + [ + "▁commitment", + -10.556180000305176 + ], + [ + "▁aspects", + -10.556498527526855 + ], + [ + "▁previously", + -10.55711555480957 + ], + [ + "▁cent", + -10.5572509765625 + ], + [ + "▁Vo", + -10.557341575622559 + ], + [ + "▁artists", + -10.557963371276855 + ], + [ + "▁runs", + -10.558130264282227 + ], + [ + ">", + -10.558155059814453 + ], + [ + "▁Gi", + -10.558273315429688 + ], + [ + "▁mar", + -10.5585355758667 + ], + [ + "!!!", + -10.558544158935547 + ], + [ + "▁Media", + -10.558943748474121 + ], + [ + "▁feedback", + -10.559109687805176 + ], + [ + "▁resolution", + -10.559117317199707 + ], + [ + "IN", + -10.55915641784668 + ], + [ + "▁wurden", + -10.55952262878418 + ], + [ + "▁busy", + -10.559832572937012 + ], + [ + "▁adult", + -10.5600004196167 + ], + [ + "29", + -10.560487747192383 + ], + [ + "elles", + -10.561375617980957 + ], + [ + "▁closed", + -10.561762809753418 + ], + [ + "▁trouble", + -10.561767578125 + ], + [ + "▁rent", + -10.561984062194824 + ], + [ + "lot", + -10.56224536895752 + ], + [ + "▁importance", + -10.562314987182617 + ], + [ + "▁units", + -10.56257438659668 + ], + [ + "Pro", + -10.562713623046875 + ], + [ + "▁provider", + -10.563005447387695 + ], + [ + "▁visual", + -10.563288688659668 + ], + [ + "IT", + -10.563385009765625 + ], + [ + "▁diet", + -10.563733100891113 + ], + [ + "▁appearance", + -10.563932418823242 + ], + [ + "pin", + -10.564576148986816 + ], + [ + "▁Din", + -10.564760208129883 + ], + [ + "▁eating", + -10.565516471862793 + ], + [ + "Fi", + -10.565762519836426 + ], + [ + "ball", + -10.565765380859375 + ], + [ + "är", + -10.565861701965332 + ], + [ + "ney", + -10.565878868103027 + ], + [ + "▁records", + -10.566070556640625 + ], + [ + "▁Fi", + -10.566180229187012 + ], + [ + "▁faut", + -10.566329002380371 + ], + [ + "▁CD", + -10.566803932189941 + ], + [ + "ign", + -10.566930770874023 + ], + [ + "▁vă", + -10.566996574401855 + ], + [ + "▁agency", + -10.567153930664062 + ], + [ + "ierung", + -10.567323684692383 + ], + [ + "▁Back", + -10.567361831665039 + ], + [ + "▁windows", + -10.567545890808105 + ], + [ + "▁pull", + -10.567888259887695 + ], + [ + "ash", + -10.567959785461426 + ], + [ + "▁profit", + -10.568593978881836 + ], + [ + "▁brings", + -10.568605422973633 + ], + [ + "▁Committee", + -10.569122314453125 + ], + [ + "▁girl", + -10.569174766540527 + ], + [ + "▁vehicles", + -10.569372177124023 + ], + [ + "▁Hier", + -10.569567680358887 + ], + [ + "ES", + -10.569639205932617 + ], + [ + "până", + -10.569880485534668 + ], + [ + "▁Kunden", + -10.570380210876465 + ], + [ + "pen", + -10.570462226867676 + ], + [ + "▁explain", + -10.570505142211914 + ], + [ + "▁cadru", + -10.570760726928711 + ], + [ + "▁attack", + -10.571100234985352 + ], + [ + "▁markets", + -10.571115493774414 + ], + [ + "▁claims", + -10.571340560913086 + ], + [ + "▁walking", + -10.571385383605957 + ], + [ + "▁pouv", + -10.571528434753418 + ], + [ + "low", + -10.571642875671387 + ], + [ + "▁showed", + -10.572114944458008 + ], + [ + "▁principal", + -10.57211971282959 + ], + [ + "▁lucru", + -10.572144508361816 + ], + [ + "▁precum", + -10.572712898254395 + ], + [ + "TA", + -10.573094367980957 + ], + [ + "▁partners", + -10.573104858398438 + ], + [ + "▁exist", + -10.573136329650879 + ], + [ + "▁internal", + -10.57334041595459 + ], + [ + "hen", + -10.573945045471191 + ], + [ + "▁Master", + -10.573966979980469 + ], + [ + "unless", + -10.574013710021973 + ], + [ + "▁doubt", + -10.574721336364746 + ], + [ + "$", + -10.574785232543945 + ], + [ + "▁Long", + -10.574888229370117 + ], + [ + "▁leaves", + -10.574907302856445 + ], + [ + "allowing", + -10.575063705444336 + ], + [ + "pol", + -10.575272560119629 + ], + [ + "▁Up", + -10.575491905212402 + ], + [ + "▁Contact", + -10.576093673706055 + ], + [ + "▁practical", + -10.57708740234375 + ], + [ + "▁suit", + -10.57758903503418 + ], + [ + "▁Site", + -10.577656745910645 + ], + [ + "▁formation", + -10.57768726348877 + ], + [ + "▁signal", + -10.578215599060059 + ], + [ + "▁approximately", + -10.578414916992188 + ], + [ + "▁ourselves", + -10.578497886657715 + ], + [ + "▁colour", + -10.578519821166992 + ], + [ + "▁species", + -10.578530311584473 + ], + [ + "▁advance", + -10.578753471374512 + ], + [ + "▁PM", + -10.57891845703125 + ], + [ + "ans", + -10.579121589660645 + ], + [ + "▁locations", + -10.579397201538086 + ], + [ + "vous", + -10.579601287841797 + ], + [ + "▁updated", + -10.579636573791504 + ], + [ + "▁faith", + -10.579673767089844 + ], + [ + "mus", + -10.579740524291992 + ], + [ + "▁stores", + -10.579863548278809 + ], + [ + "heim", + -10.580127716064453 + ], + [ + "▁suitable", + -10.580558776855469 + ], + [ + "▁continues", + -10.580703735351562 + ], + [ + "▁fac", + -10.581133842468262 + ], + [ + "ever", + -10.581156730651855 + ], + [ + "▁Bill", + -10.581195831298828 + ], + [ + "▁chose", + -10.58121109008789 + ], + [ + "▁inform", + -10.581228256225586 + ], + [ + "▁environmental", + -10.581427574157715 + ], + [ + "▁responsibility", + -10.58188533782959 + ], + [ + "99", + -10.582542419433594 + ], + [ + "▁competitive", + -10.583723068237305 + ], + [ + "▁strategies", + -10.583903312683105 + ], + [ + "▁toujours", + -10.584270477294922 + ], + [ + "tive", + -10.58430290222168 + ], + [ + "▁automatically", + -10.585600852966309 + ], + [ + "▁dress", + -10.585609436035156 + ], + [ + "▁Minister", + -10.585624694824219 + ], + [ + "har", + -10.586076736450195 + ], + [ + "▁Start", + -10.586249351501465 + ], + [ + "▁=", + -10.586563110351562 + ], + [ + "▁pattern", + -10.58659553527832 + ], + [ + "tier", + -10.58676528930664 + ], + [ + "▁pays", + -10.587034225463867 + ], + [ + "▁profile", + -10.58725357055664 + ], + [ + "▁raised", + -10.587263107299805 + ], + [ + "ange", + -10.587288856506348 + ], + [ + "▁drink", + -10.587762832641602 + ], + [ + "▁element", + -10.588042259216309 + ], + [ + "▁landscape", + -10.58875560760498 + ], + [ + "▁Tag", + -10.589073181152344 + ], + [ + "▁cheese", + -10.589590072631836 + ], + [ + "ific", + -10.590009689331055 + ], + [ + "▁Stadt", + -10.590181350708008 + ], + [ + "39", + -10.591398239135742 + ], + [ + "▁launch", + -10.592113494873047 + ], + [ + "▁wouldn", + -10.592150688171387 + ], + [ + "AS", + -10.592202186584473 + ], + [ + "▁push", + -10.593059539794922 + ], + [ + "▁mill", + -10.593452453613281 + ], + [ + "▁mass", + -10.593647003173828 + ], + [ + "▁category", + -10.593790054321289 + ], + [ + "sondern", + -10.594050407409668 + ], + [ + "col", + -10.594111442565918 + ], + [ + "▁climate", + -10.594313621520996 + ], + [ + "lier", + -10.594437599182129 + ], + [ + "▁slightly", + -10.595514297485352 + ], + [ + "95", + -10.596519470214844 + ], + [ + "ace", + -10.596612930297852 + ], + [ + "▁domain", + -10.597633361816406 + ], + [ + "kan", + -10.598306655883789 + ], + [ + "▁feed", + -10.598485946655273 + ], + [ + "▁Live", + -10.598837852478027 + ], + [ + "▁Mais", + -10.599113464355469 + ], + [ + "▁après", + -10.599365234375 + ], + [ + "▁village", + -10.59941577911377 + ], + [ + "▁hatte", + -10.59968090057373 + ], + [ + "▁joined", + -10.599881172180176 + ], + [ + "▁Museum", + -10.600311279296875 + ], + [ + "head", + -10.600855827331543 + ], + [ + "▁draw", + -10.6009521484375 + ], + [ + "▁concerns", + -10.600966453552246 + ], + [ + "ER", + -10.601505279541016 + ], + [ + "▁technique", + -10.601648330688477 + ], + [ + "▁Bio", + -10.601861000061035 + ], + [ + "▁Sea", + -10.601881980895996 + ], + [ + "▁@", + -10.601927757263184 + ], + [ + "wer", + -10.6021146774292 + ], + [ + "▁battery", + -10.602462768554688 + ], + [ + "▁mostly", + -10.60267448425293 + ], + [ + "▁familiar", + -10.602680206298828 + ], + [ + "▁Sub", + -10.602689743041992 + ], + [ + "▁delicious", + -10.603222846984863 + ], + [ + "doch", + -10.60326099395752 + ], + [ + "60", + -10.603395462036133 + ], + [ + "▁carte", + -10.603611946105957 + ], + [ + "▁avut", + -10.604146957397461 + ], + [ + "▁premium", + -10.60460376739502 + ], + [ + "▁attempt", + -10.604704856872559 + ], + [ + "▁Über", + -10.60473346710205 + ], + [ + "▁combined", + -10.604935646057129 + ], + [ + "lement", + -10.604947090148926 + ], + [ + "▁voi", + -10.605031967163086 + ], + [ + "▁wonder", + -10.605376243591309 + ], + [ + "▁failure", + -10.606106758117676 + ], + [ + "which", + -10.606147766113281 + ], + [ + "esti", + -10.606316566467285 + ], + [ + "31", + -10.606547355651855 + ], + [ + "▁sta", + -10.606734275817871 + ], + [ + "▁transform", + -10.60673999786377 + ], + [ + "▁license", + -10.606743812561035 + ], + [ + "▁depending", + -10.606758117675781 + ], + [ + "▁specifically", + -10.606782913208008 + ], + [ + "▁OF", + -10.60693645477295 + ], + [ + "band", + -10.606959342956543 + ], + [ + "▁Sport", + -10.60731315612793 + ], + [ + "list", + -10.607434272766113 + ], + [ + "▁Tour", + -10.60753059387207 + ], + [ + "▁Israel", + -10.607564926147461 + ], + [ + "▁filled", + -10.607722282409668 + ], + [ + "▁manual", + -10.60776138305664 + ], + [ + "▁watching", + -10.608621597290039 + ], + [ + "▁rule", + -10.608877182006836 + ], + [ + "mat", + -10.60901927947998 + ], + [ + "▁notes", + -10.609585762023926 + ], + [ + "▁Oh", + -10.60960578918457 + ], + [ + "▁bereits", + -10.609634399414062 + ], + [ + "▁foundation", + -10.609916687011719 + ], + [ + "▁vital", + -10.610146522521973 + ], + [ + "▁lassen", + -10.610747337341309 + ], + [ + "▁cât", + -10.611162185668945 + ], + [ + "▁shipping", + -10.611433029174805 + ], + [ + "▁registered", + -10.611513137817383 + ], + [ + "▁jour", + -10.612669944763184 + ], + [ + "▁island", + -10.61276626586914 + ], + [ + "▁sets", + -10.613068580627441 + ], + [ + "▁football", + -10.613683700561523 + ], + [ + "▁EU", + -10.613860130310059 + ], + [ + "▁stone", + -10.614019393920898 + ], + [ + "▁Press", + -10.614699363708496 + ], + [ + "▁adapt", + -10.615066528320312 + ], + [ + "ised", + -10.615425109863281 + ], + [ + "▁thoughts", + -10.615434646606445 + ], + [ + "▁doors", + -10.615851402282715 + ], + [ + "€", + -10.615954399108887 + ], + [ + "▁components", + -10.616040229797363 + ], + [ + "rig", + -10.616332054138184 + ], + [ + "▁generation", + -10.616585731506348 + ], + [ + "▁guess", + -10.616700172424316 + ], + [ + "cker", + -10.61694049835205 + ], + [ + "▁realize", + -10.617207527160645 + ], + [ + "▁Roman", + -10.617310523986816 + ], + [ + "▁contre", + -10.617693901062012 + ], + [ + "▁Out", + -10.617938995361328 + ], + [ + "▁IN", + -10.619051933288574 + ], + [ + "cip", + -10.619085311889648 + ], + [ + "59", + -10.619330406188965 + ], + [ + "▁enhance", + -10.619768142700195 + ], + [ + "▁battle", + -10.61982250213623 + ], + [ + "▁monitor", + -10.619863510131836 + ], + [ + "▁Martin", + -10.62045955657959 + ], + [ + "▁websites", + -10.620461463928223 + ], + [ + "▁DE", + -10.620599746704102 + ], + [ + "▁Festival", + -10.620951652526855 + ], + [ + "ân", + -10.62131118774414 + ], + [ + "▁Place", + -10.621419906616211 + ], + [ + "▁rare", + -10.621554374694824 + ], + [ + "această", + -10.621726989746094 + ], + [ + "▁sollte", + -10.621731758117676 + ], + [ + "▁Read", + -10.621816635131836 + ], + [ + "ware", + -10.622169494628906 + ], + [ + "Those", + -10.622671127319336 + ], + [ + "ende", + -10.623543739318848 + ], + [ + "▁prix", + -10.623835563659668 + ], + [ + "▁roman", + -10.624101638793945 + ], + [ + "▁creation", + -10.624224662780762 + ], + [ + "▁confidence", + -10.624552726745605 + ], + [ + "▁Japan", + -10.624638557434082 + ], + [ + "▁rain", + -10.624942779541016 + ], + [ + "▁guys", + -10.62518310546875 + ], + [ + "▁south", + -10.625236511230469 + ], + [ + "▁trading", + -10.625646591186523 + ], + [ + "▁€", + -10.626100540161133 + ], + [ + "▁Film", + -10.626341819763184 + ], + [ + "▁pana", + -10.627065658569336 + ], + [ + "▁asemenea", + -10.627066612243652 + ], + [ + "36", + -10.627190589904785 + ], + [ + "▁instance", + -10.627884864807129 + ], + [ + "cou", + -10.629385948181152 + ], + [ + "▁nun", + -10.630074501037598 + ], + [ + "▁Pass", + -10.630390167236328 + ], + [ + "Cette", + -10.630579948425293 + ], + [ + "▁Network", + -10.630876541137695 + ], + [ + "▁prime", + -10.631010055541992 + ], + [ + "▁spiritual", + -10.632098197937012 + ], + [ + "▁tough", + -10.633030891418457 + ], + [ + "▁AND", + -10.633086204528809 + ], + [ + "▁Cat", + -10.633601188659668 + ], + [ + "▁boat", + -10.633611679077148 + ], + [ + "▁leads", + -10.634864807128906 + ], + [ + "▁Germany", + -10.63509750366211 + ], + [ + "▁valuable", + -10.635635375976562 + ], + [ + "57", + -10.635892868041992 + ], + [ + "lect", + -10.636148452758789 + ], + [ + "▁distribution", + -10.636445045471191 + ], + [ + "dar", + -10.636518478393555 + ], + [ + "▁Manager", + -10.637701988220215 + ], + [ + "cha", + -10.637725830078125 + ], + [ + "▁obtain", + -10.637741088867188 + ], + [ + "GB", + -10.637908935546875 + ], + [ + "▁unor", + -10.638079643249512 + ], + [ + "schaft", + -10.638603210449219 + ], + [ + "▁zwischen", + -10.638723373413086 + ], + [ + "▁winning", + -10.639172554016113 + ], + [ + "▁suis", + -10.639811515808105 + ], + [ + "58", + -10.640130996704102 + ], + [ + "▁Party", + -10.640372276306152 + ], + [ + "▁ceva", + -10.640416145324707 + ], + [ + "▁comprehensive", + -10.640684127807617 + ], + [ + "▁aceste", + -10.640726089477539 + ], + [ + "▁committed", + -10.640726089477539 + ], + [ + "▁Hu", + -10.641382217407227 + ], + [ + "ţ", + -10.64149284362793 + ], + [ + "▁north", + -10.642021179199219 + ], + [ + "werk", + -10.642542839050293 + ], + [ + "▁interface", + -10.642794609069824 + ], + [ + "▁Valley", + -10.64281177520752 + ], + [ + "▁anywhere", + -10.64281177520752 + ], + [ + "▁Only", + -10.642851829528809 + ], + [ + "TE", + -10.643295288085938 + ], + [ + "hui", + -10.6436767578125 + ], + [ + "bus", + -10.643951416015625 + ], + [ + "vis", + -10.6439790725708 + ], + [ + "▁Society", + -10.645116806030273 + ], + [ + "▁reliable", + -10.64556884765625 + ], + [ + "▁quelques", + -10.64563274383545 + ], + [ + "tech", + -10.646187782287598 + ], + [ + "ual", + -10.646377563476562 + ], + [ + "▁educational", + -10.646418571472168 + ], + [ + "serv", + -10.646490097045898 + ], + [ + "▁opinion", + -10.646628379821777 + ], + [ + "▁appears", + -10.646702766418457 + ], + [ + "▁count", + -10.646795272827148 + ], + [ + "irea", + -10.646981239318848 + ], + [ + "ban", + -10.647504806518555 + ], + [ + "▁45", + -10.647530555725098 + ], + [ + "▁contain", + -10.647661209106445 + ], + [ + "ost", + -10.647663116455078 + ], + [ + "▁anul", + -10.647706031799316 + ], + [ + "rien", + -10.648159980773926 + ], + [ + "gra", + -10.648360252380371 + ], + [ + "▁counter", + -10.648946762084961 + ], + [ + "-3", + -10.650411605834961 + ], + [ + "▁resource", + -10.650463104248047 + ], + [ + "▁Wo", + -10.6505126953125 + ], + [ + "▁posts", + -10.650618553161621 + ], + [ + "▁employee", + -10.651320457458496 + ], + [ + "rol", + -10.651863098144531 + ], + [ + "▁ended", + -10.651969909667969 + ], + [ + "met", + -10.653080940246582 + ], + [ + "▁meine", + -10.653165817260742 + ], + [ + "▁reached", + -10.653368949890137 + ], + [ + "gri", + -10.653716087341309 + ], + [ + "▁Bra", + -10.65374755859375 + ], + [ + "▁conduct", + -10.654294967651367 + ], + [ + "▁housing", + -10.654422760009766 + ], + [ + "▁tickets", + -10.654792785644531 + ], + [ + "▁database", + -10.655674934387207 + ], + [ + "IL", + -10.656150817871094 + ], + [ + "▁perspective", + -10.656359672546387 + ], + [ + "▁Har", + -10.656404495239258 + ], + [ + "▁error", + -10.656549453735352 + ], + [ + "▁meal", + -10.656569480895996 + ], + [ + "▁hearing", + -10.657238006591797 + ], + [ + "▁transition", + -10.657302856445312 + ], + [ + "▁browser", + -10.657609939575195 + ], + [ + "▁supported", + -10.657609939575195 + ], + [ + "▁starts", + -10.658814430236816 + ], + [ + "țe", + -10.658902168273926 + ], + [ + "▁adults", + -10.658905029296875 + ], + [ + "▁România", + -10.65917682647705 + ], + [ + "dra", + -10.659884452819824 + ], + [ + "▁worry", + -10.660222053527832 + ], + [ + "▁avoir", + -10.660497665405273 + ], + [ + "▁regional", + -10.660507202148438 + ], + [ + "▁min", + -10.660722732543945 + ], + [ + "▁Does", + -10.660806655883789 + ], + [ + "▁Keep", + -10.661200523376465 + ], + [ + "rom", + -10.661237716674805 + ], + [ + "sco", + -10.661320686340332 + ], + [ + "tem", + -10.661898612976074 + ], + [ + "▁Old", + -10.661954879760742 + ], + [ + "▁Under", + -10.662552833557129 + ], + [ + "▁Commission", + -10.662557601928711 + ], + [ + "▁Bau", + -10.6632661819458 + ], + [ + "▁News", + -10.663358688354492 + ], + [ + "▁mois", + -10.663444519042969 + ], + [ + "▁respond", + -10.66356372833252 + ], + [ + "▁alles", + -10.663878440856934 + ], + [ + "▁chair", + -10.664475440979004 + ], + [ + "▁ho", + -10.664854049682617 + ], + [ + "right", + -10.664908409118652 + ], + [ + "▁totally", + -10.665532112121582 + ], + [ + "gle", + -10.665534973144531 + ], + [ + "▁32", + -10.665604591369629 + ], + [ + "66", + -10.665664672851562 + ], + [ + "town", + -10.665902137756348 + ], + [ + "Ch", + -10.666261672973633 + ], + [ + "▁gr", + -10.66629695892334 + ], + [ + "▁garage", + -10.666328430175781 + ], + [ + "ții", + -10.666495323181152 + ], + [ + "▁Union", + -10.667136192321777 + ], + [ + "ică", + -10.667343139648438 + ], + [ + "▁2,", + -10.668437004089355 + ], + [ + "▁reflect", + -10.669163703918457 + ], + [ + "▁retail", + -10.669388771057129 + ], + [ + "▁unde", + -10.669605255126953 + ], + [ + "▁accessible", + -10.670262336730957 + ], + [ + "water", + -10.67059326171875 + ], + [ + "▁regard", + -10.670710563659668 + ], + [ + "▁logo", + -10.671489715576172 + ], + [ + "▁inspired", + -10.671518325805664 + ], + [ + "▁Wall", + -10.671859741210938 + ], + [ + "▁Ste", + -10.672093391418457 + ], + [ + "▁asking", + -10.672179222106934 + ], + [ + "▁Journal", + -10.673028945922852 + ], + [ + "▁Teil", + -10.674042701721191 + ], + [ + "▁collaboration", + -10.674185752868652 + ], + [ + "▁acid", + -10.674266815185547 + ], + [ + "▁Fund", + -10.674382209777832 + ], + [ + "▁spirit", + -10.6744384765625 + ], + [ + "despite", + -10.674457550048828 + ], + [ + "▁delivered", + -10.674821853637695 + ], + [ + "▁girls", + -10.675374984741211 + ], + [ + "▁Look", + -10.675896644592285 + ], + [ + "rant", + -10.675949096679688 + ], + [ + "▁District", + -10.676460266113281 + ], + [ + "▁rental", + -10.676709175109863 + ], + [ + "▁spune", + -10.676733016967773 + ], + [ + "els", + -10.677544593811035 + ], + [ + "▁permanent", + -10.677659034729004 + ], + [ + "▁iron", + -10.677709579467773 + ], + [ + "▁Thomas", + -10.677745819091797 + ], + [ + "EL", + -10.678071022033691 + ], + [ + "▁except", + -10.678074836730957 + ], + [ + "▁catch", + -10.678366661071777 + ], + [ + "▁providers", + -10.678375244140625 + ], + [ + "▁2006", + -10.678435325622559 + ], + [ + "▁chat", + -10.679931640625 + ], + [ + "▁emergency", + -10.680281639099121 + ], + [ + "gre", + -10.68030834197998 + ], + [ + "site", + -10.680888175964355 + ], + [ + "▁missing", + -10.68089485168457 + ], + [ + "abil", + -10.680914878845215 + ], + [ + "▁Hill", + -10.68099594116211 + ], + [ + "urs", + -10.681312561035156 + ], + [ + "▁plusieurs", + -10.681716918945312 + ], + [ + "▁birthday", + -10.681726455688477 + ], + [ + "DS", + -10.682019233703613 + ], + [ + "ersten", + -10.682381629943848 + ], + [ + "▁5.", + -10.68252944946289 + ], + [ + "▁library", + -10.68333911895752 + ], + [ + "▁earth", + -10.683515548706055 + ], + [ + "CI", + -10.683645248413086 + ], + [ + "▁lighting", + -10.684442520141602 + ], + [ + "▁fixed", + -10.684879302978516 + ], + [ + "tori", + -10.684891700744629 + ], + [ + "▁replace", + -10.684995651245117 + ], + [ + "▁administration", + -10.685074806213379 + ], + [ + "leurs", + -10.685229301452637 + ], + [ + "▁meat", + -10.686142921447754 + ], + [ + "▁songs", + -10.686662673950195 + ], + [ + "▁confirm", + -10.686866760253906 + ], + [ + "▁rapid", + -10.68698787689209 + ], + [ + "▁Special", + -10.686995506286621 + ], + [ + "▁holding", + -10.687115669250488 + ], + [ + "▁honor", + -10.687271118164062 + ], + [ + "▁Market", + -10.687409400939941 + ], + [ + "La", + -10.687535285949707 + ], + [ + "▁measure", + -10.687760353088379 + ], + [ + "▁guarantee", + -10.68785572052002 + ], + [ + "▁switch", + -10.68813419342041 + ], + [ + "▁extensive", + -10.688294410705566 + ], + [ + "▁Neu", + -10.688674926757812 + ], + [ + "avez", + -10.688901901245117 + ], + [ + "▁protein", + -10.688984870910645 + ], + [ + "▁infrastructure", + -10.689454078674316 + ], + [ + "▁functions", + -10.689494132995605 + ], + [ + "▁cont", + -10.689496040344238 + ], + [ + "row", + -10.689760208129883 + ], + [ + "star", + -10.689773559570312 + ], + [ + "▁Port", + -10.690192222595215 + ], + [ + "Using", + -10.690336227416992 + ], + [ + "▁faster", + -10.690557479858398 + ], + [ + "44", + -10.691168785095215 + ], + [ + "▁measures", + -10.691615104675293 + ], + [ + "▁celor", + -10.69186019897461 + ], + [ + "▁exam", + -10.69189739227295 + ], + [ + "200", + -10.69202995300293 + ], + [ + "î", + -10.692545890808105 + ], + [ + "▁conversation", + -10.692832946777344 + ], + [ + "▁brands", + -10.692959785461426 + ], + [ + "▁Code", + -10.69359016418457 + ], + [ + "▁Website", + -10.693748474121094 + ], + [ + "OS", + -10.693782806396484 + ], + [ + "▁alors", + -10.693822860717773 + ], + [ + "▁organ", + -10.694032669067383 + ], + [ + "▁removed", + -10.694823265075684 + ], + [ + "▁Head", + -10.694905281066895 + ], + [ + "▁Cha", + -10.694908142089844 + ], + [ + "▁visiting", + -10.694928169250488 + ], + [ + "▁wild", + -10.694928169250488 + ], + [ + "▁seit", + -10.694962501525879 + ], + [ + "49", + -10.695109367370605 + ], + [ + "▁organic", + -10.69539737701416 + ], + [ + "aţi", + -10.695775032043457 + ], + [ + "▁kit", + -10.695947647094727 + ], + [ + "68", + -10.695959091186523 + ], + [ + "▁flowers", + -10.696124076843262 + ], + [ + "▁appreciate", + -10.697006225585938 + ], + [ + "▁dead", + -10.697439193725586 + ], + [ + "▁Fire", + -10.697539329528809 + ], + [ + "▁cela", + -10.697591781616211 + ], + [ + "▁Ph", + -10.697633743286133 + ], + [ + "▁arrive", + -10.697921752929688 + ], + [ + "▁purposes", + -10.698213577270508 + ], + [ + "▁qualité", + -10.698226928710938 + ], + [ + "▁restaurants", + -10.698478698730469 + ], + [ + "▁advertising", + -10.698541641235352 + ], + [ + "cur", + -10.69855785369873 + ], + [ + "▁ça", + -10.698973655700684 + ], + [ + "▁introduced", + -10.699088096618652 + ], + [ + "▁returned", + -10.699111938476562 + ], + [ + "▁desire", + -10.699511528015137 + ], + [ + "▁soul", + -10.699983596801758 + ], + [ + "▁Technology", + -10.699994087219238 + ], + [ + ");", + -10.700163841247559 + ], + [ + "▁Royal", + -10.700282096862793 + ], + [ + "tant", + -10.70068645477295 + ], + [ + "▁possibly", + -10.700702667236328 + ], + [ + "▁consumers", + -10.700812339782715 + ], + [ + "▁doua", + -10.70097541809082 + ], + [ + "ified", + -10.70097827911377 + ], + [ + "▁Award", + -10.70114803314209 + ], + [ + "toutes", + -10.70130443572998 + ], + [ + "▁meant", + -10.701325416564941 + ], + [ + "ezi", + -10.701616287231445 + ], + [ + "▁plu", + -10.701766014099121 + ], + [ + "ţii", + -10.7021484375 + ], + [ + "▁talent", + -10.702789306640625 + ], + [ + "▁Security", + -10.703309059143066 + ], + [ + "arii", + -10.703352928161621 + ], + [ + "▁zi", + -10.703455924987793 + ], + [ + "▁Shop", + -10.703667640686035 + ], + [ + "▁breakfast", + -10.704107284545898 + ], + [ + "▁trial", + -10.704485893249512 + ], + [ + "ami", + -10.704936981201172 + ], + [ + "▁register", + -10.705301284790039 + ], + [ + "unserer", + -10.705646514892578 + ], + [ + "▁solar", + -10.705697059631348 + ], + [ + "▁deals", + -10.70591926574707 + ], + [ + "▁Ku", + -10.7059326171875 + ], + [ + "To", + -10.706186294555664 + ], + [ + "bat", + -10.70680046081543 + ], + [ + "MC", + -10.707010269165039 + ], + [ + "▁Global", + -10.707018852233887 + ], + [ + "у", + -10.707405090332031 + ], + [ + "▁nor", + -10.707818984985352 + ], + [ + "▁milk", + -10.707868576049805 + ], + [ + "▁choices", + -10.708206176757812 + ], + [ + "»", + -10.7086763381958 + ], + [ + "▁Sur", + -10.708695411682129 + ], + [ + "more", + -10.708739280700684 + ], + [ + "48", + -10.709024429321289 + ], + [ + "67", + -10.709375381469727 + ], + [ + "▁replacement", + -10.709942817687988 + ], + [ + "34", + -10.710440635681152 + ], + [ + "▁chocolate", + -10.710485458374023 + ], + [ + "▁Family", + -10.71059513092041 + ], + [ + "This", + -10.71122932434082 + ], + [ + "▁novel", + -10.711435317993164 + ], + [ + "▁Chicago", + -10.711563110351562 + ], + [ + "▁participate", + -10.71166706085205 + ], + [ + "▁trei", + -10.712727546691895 + ], + [ + "▁monthly", + -10.713729858398438 + ], + [ + "▁survey", + -10.713977813720703 + ], + [ + "▁End", + -10.714285850524902 + ], + [ + "▁Medical", + -10.71442699432373 + ], + [ + "autres", + -10.714678764343262 + ], + [ + "rich", + -10.714698791503906 + ], + [ + "▁bike", + -10.714703559875488 + ], + [ + "▁eventually", + -10.714717864990234 + ], + [ + "▁HD", + -10.714722633361816 + ], + [ + "bil", + -10.714744567871094 + ], + [ + "cent", + -10.714902877807617 + ], + [ + "▁afin", + -10.715676307678223 + ], + [ + "▁surgery", + -10.716160774230957 + ], + [ + "▁sin", + -10.716455459594727 + ], + [ + "▁manufacturing", + -10.716955184936523 + ], + [ + "▁consumer", + -10.717245101928711 + ], + [ + "system", + -10.717306137084961 + ], + [ + "▁object", + -10.717400550842285 + ], + [ + "▁Ju", + -10.717422485351562 + ], + [ + "ered", + -10.7178373336792 + ], + [ + "rac", + -10.718070030212402 + ], + [ + "▁clinical", + -10.718664169311523 + ], + [ + "▁dollars", + -10.719761848449707 + ], + [ + "▁chain", + -10.71994686126709 + ], + [ + "▁afternoon", + -10.720196723937988 + ], + [ + "▁ligne", + -10.720422744750977 + ], + [ + "▁accounts", + -10.721806526184082 + ], + [ + "ving", + -10.722037315368652 + ], + [ + "▁Australian", + -10.72240924835205 + ], + [ + "38", + -10.722542762756348 + ], + [ + "▁persoane", + -10.72258472442627 + ], + [ + "▁grande", + -10.722668647766113 + ], + [ + "▁Report", + -10.723472595214844 + ], + [ + "▁revenue", + -10.723649024963379 + ], + [ + "▁spre", + -10.723760604858398 + ], + [ + "▁cutting", + -10.7239990234375 + ], + [ + "▁approved", + -10.724133491516113 + ], + [ + "▁glad", + -10.724188804626465 + ], + [ + "chaque", + -10.724395751953125 + ], + [ + "win", + -10.724435806274414 + ], + [ + "▁waren", + -10.724733352661133 + ], + [ + "▁launched", + -10.725071907043457 + ], + [ + "▁layer", + -10.725645065307617 + ], + [ + "▁airport", + -10.725716590881348 + ], + [ + "▁effectively", + -10.72572135925293 + ], + [ + "▁coach", + -10.725946426391602 + ], + [ + "dé", + -10.726130485534668 + ], + [ + "LE", + -10.72627067565918 + ], + [ + "▁müssen", + -10.726386070251465 + ], + [ + "plan", + -10.726641654968262 + ], + [ + "dan", + -10.726705551147461 + ], + [ + "55", + -10.726786613464355 + ], + [ + "bringing", + -10.726895332336426 + ], + [ + "▁$2", + -10.726995468139648 + ], + [ + "nce", + -10.727181434631348 + ], + [ + "▁inspiration", + -10.728177070617676 + ], + [ + "You", + -10.728657722473145 + ], + [ + "▁soll", + -10.729095458984375 + ], + [ + "▁seemed", + -10.729595184326172 + ], + [ + "▁flight", + -10.729687690734863 + ], + [ + "▁prima", + -10.729883193969727 + ], + [ + "▁Welt", + -10.730123519897461 + ], + [ + "▁jetzt", + -10.730315208435059 + ], + [ + "ky", + -10.730428695678711 + ], + [ + "▁Western", + -10.73054027557373 + ], + [ + "▁label", + -10.730600357055664 + ], + [ + "▁möglich", + -10.73081111907959 + ], + [ + "▁input", + -10.730862617492676 + ], + [ + "▁laws", + -10.730995178222656 + ], + [ + "▁personnes", + -10.731708526611328 + ], + [ + "▁paying", + -10.731731414794922 + ], + [ + "▁Uhr", + -10.73173713684082 + ], + [ + "▁Mary", + -10.731745719909668 + ], + [ + "pur", + -10.73190689086914 + ], + [ + "▁covers", + -10.732133865356445 + ], + [ + "▁throw", + -10.732522964477539 + ], + [ + "▁Tor", + -10.733281135559082 + ], + [ + "▁bat", + -10.73355484008789 + ], + [ + "▁Gr", + -10.73373031616211 + ], + [ + "▁farm", + -10.73376178741455 + ], + [ + "▁improved", + -10.733843803405762 + ], + [ + "▁fără", + -10.734286308288574 + ], + [ + "▁theme", + -10.73437213897705 + ], + [ + "pens", + -10.734865188598633 + ], + [ + "▁Cup", + -10.734975814819336 + ], + [ + "▁settings", + -10.735114097595215 + ], + [ + "▁hire", + -10.735234260559082 + ], + [ + "▁massive", + -10.735248565673828 + ], + [ + "▁generate", + -10.735405921936035 + ], + [ + "▁earn", + -10.735837936401367 + ], + [ + "▁tab", + -10.736431121826172 + ], + [ + "For", + -10.736616134643555 + ], + [ + "gang", + -10.736891746520996 + ], + [ + "▁hin", + -10.73709487915039 + ], + [ + "▁roll", + -10.737113952636719 + ], + [ + "▁engagement", + -10.737157821655273 + ], + [ + "▁signed", + -10.737177848815918 + ], + [ + "▁League", + -10.737323760986328 + ], + [ + "▁registration", + -10.737931251525879 + ], + [ + "▁première", + -10.738763809204102 + ], + [ + "isse", + -10.73896598815918 + ], + [ + "▁university", + -10.739027976989746 + ], + [ + "ell", + -10.739157676696777 + ], + [ + "▁nou", + -10.739169120788574 + ], + [ + "rog", + -10.739191055297852 + ], + [ + "▁sitting", + -10.739206314086914 + ], + [ + "▁cazul", + -10.739571571350098 + ], + [ + "▁surrounding", + -10.73983383178711 + ], + [ + "▁Asia", + -10.740357398986816 + ], + [ + "▁bath", + -10.740825653076172 + ], + [ + "hal", + -10.740923881530762 + ], + [ + "▁plate", + -10.741026878356934 + ], + [ + "▁tests", + -10.741151809692383 + ], + [ + "▁presentation", + -10.741156578063965 + ], + [ + "▁chicken", + -10.741501808166504 + ], + [ + "▁Val", + -10.741586685180664 + ], + [ + "ably", + -10.74166488647461 + ], + [ + "▁magazine", + -10.741697311401367 + ], + [ + "▁Maybe", + -10.74187183380127 + ], + [ + "▁sauce", + -10.742673873901367 + ], + [ + "TC", + -10.742887496948242 + ], + [ + "▁exclusive", + -10.74296760559082 + ], + [ + "86", + -10.74306869506836 + ], + [ + "▁teeth", + -10.743474960327148 + ], + [ + "▁regularly", + -10.743524551391602 + ], + [ + "sed", + -10.743824005126953 + ], + [ + "gro", + -10.744174003601074 + ], + [ + "He", + -10.744211196899414 + ], + [ + "▁2017.", + -10.744302749633789 + ], + [ + "▁template", + -10.74489688873291 + ], + [ + "▁gleich", + -10.744938850402832 + ], + [ + "bal", + -10.745061874389648 + ], + [ + "▁African", + -10.74511432647705 + ], + [ + "în", + -10.745231628417969 + ], + [ + "▁rep", + -10.74543571472168 + ], + [ + "▁beat", + -10.74588394165039 + ], + [ + "▁deck", + -10.746064186096191 + ], + [ + "▁intended", + -10.746221542358398 + ], + [ + "▁para", + -10.746513366699219 + ], + [ + "▁IP", + -10.746712684631348 + ], + [ + "▁bra", + -10.746881484985352 + ], + [ + "▁forces", + -10.746966361999512 + ], + [ + "▁routine", + -10.747184753417969 + ], + [ + "▁Jahre", + -10.747758865356445 + ], + [ + "▁Bad", + -10.74797534942627 + ], + [ + "▁drivers", + -10.748074531555176 + ], + [ + "▁updates", + -10.748095512390137 + ], + [ + "▁elegant", + -10.748279571533203 + ], + [ + "▁external", + -10.748444557189941 + ], + [ + "▁engineering", + -10.748819351196289 + ], + [ + "ender", + -10.749544143676758 + ], + [ + "table", + -10.749755859375 + ], + [ + "inter", + -10.749878883361816 + ], + [ + "▁Romania", + -10.749948501586914 + ], + [ + "▁zile", + -10.750468254089355 + ], + [ + "▁luxury", + -10.750570297241211 + ], + [ + "▁calling", + -10.750750541687012 + ], + [ + "▁cooking", + -10.75101375579834 + ], + [ + "▁component", + -10.75114631652832 + ], + [ + "wan", + -10.75121021270752 + ], + [ + "schen", + -10.751212120056152 + ], + [ + "▁birth", + -10.751242637634277 + ], + [ + "asupra", + -10.751349449157715 + ], + [ + "Co", + -10.751471519470215 + ], + [ + "▁opt", + -10.75153923034668 + ], + [ + "▁discovered", + -10.751860618591309 + ], + [ + "▁teach", + -10.752084732055664 + ], + [ + "▁Son", + -10.75234317779541 + ], + [ + "▁guest", + -10.752384185791016 + ], + [ + "▁dogs", + -10.752695083618164 + ], + [ + "▁2003", + -10.752745628356934 + ], + [ + "▁behavior", + -10.752750396728516 + ], + [ + "pé", + -10.7529935836792 + ], + [ + "63", + -10.75316333770752 + ], + [ + "▁Human", + -10.753702163696289 + ], + [ + "▁expression", + -10.754800796508789 + ], + [ + "▁nevoie", + -10.754936218261719 + ], + [ + "▁recherche", + -10.75528621673584 + ], + [ + "ging", + -10.755767822265625 + ], + [ + "related", + -10.755948066711426 + ], + [ + "▁discount", + -10.756040573120117 + ], + [ + "▁Brown", + -10.756054878234863 + ], + [ + "▁Such", + -10.756107330322266 + ], + [ + "▁Ve", + -10.757149696350098 + ], + [ + "▁height", + -10.757265090942383 + ], + [ + "clo", + -10.757414817810059 + ], + [ + "▁incredible", + -10.757912635803223 + ], + [ + "▁bas", + -10.757916450500488 + ], + [ + "▁mă", + -10.75798225402832 + ], + [ + "▁purchased", + -10.758240699768066 + ], + [ + "▁compte", + -10.75831127166748 + ], + [ + "▁instructions", + -10.758537292480469 + ], + [ + "▁Instead", + -10.75866985321045 + ], + [ + "▁output", + -10.758706092834473 + ], + [ + "▁mom", + -10.758886337280273 + ], + [ + "DR", + -10.759828567504883 + ], + [ + "89", + -10.760168075561523 + ], + [ + "▁reduced", + -10.760621070861816 + ], + [ + "98", + -10.7606840133667 + ], + [ + "▁constant", + -10.760879516601562 + ], + [ + "▁therapy", + -10.762417793273926 + ], + [ + "▁capable", + -10.762757301330566 + ], + [ + "mark", + -10.763265609741211 + ], + [ + "▁Sometimes", + -10.76332950592041 + ], + [ + "▁joy", + -10.763419151306152 + ], + [ + "▁perfectly", + -10.763589859008789 + ], + [ + "▁painting", + -10.763704299926758 + ], + [ + "avait", + -10.763765335083008 + ], + [ + "▁Sha", + -10.764384269714355 + ], + [ + "▁dat", + -10.764463424682617 + ], + [ + "▁produits", + -10.764479637145996 + ], + [ + "tric", + -10.76456356048584 + ], + [ + "ierte", + -10.765153884887695 + ], + [ + "▁Smith", + -10.765836715698242 + ], + [ + "▁trebui", + -10.766264915466309 + ], + [ + "▁beaucoup", + -10.766630172729492 + ], + [ + "▁chosen", + -10.767189025878906 + ], + [ + "▁cre", + -10.76732063293457 + ], + [ + "▁complet", + -10.767341613769531 + ], + [ + "▁Ltd", + -10.767599105834961 + ], + [ + "▁recovery", + -10.76781940460205 + ], + [ + "▁district", + -10.768423080444336 + ], + [ + "78", + -10.768640518188477 + ], + [ + "▁Unter", + -10.76872730255127 + ], + [ + "▁schnell", + -10.768729209899902 + ], + [ + "▁apart", + -10.768943786621094 + ], + [ + "▁phase", + -10.76894760131836 + ], + [ + "▁seeking", + -10.769091606140137 + ], + [ + "▁mark", + -10.769148826599121 + ], + [ + "▁pet", + -10.769233703613281 + ], + [ + "▁PDF", + -10.769296646118164 + ], + [ + "▁efficiency", + -10.769577980041504 + ], + [ + "▁buildings", + -10.769611358642578 + ], + [ + "69", + -10.769723892211914 + ], + [ + "▁sens", + -10.769858360290527 + ], + [ + "▁Video", + -10.770115852355957 + ], + [ + "▁destination", + -10.770181655883789 + ], + [ + "▁female", + -10.770319938659668 + ], + [ + "▁supporting", + -10.770674705505371 + ], + [ + "▁signs", + -10.77077865600586 + ], + [ + "▁appeal", + -10.770784378051758 + ], + [ + "76", + -10.77110481262207 + ], + [ + "▁favourite", + -10.771612167358398 + ], + [ + "ock", + -10.771702766418457 + ], + [ + "▁readers", + -10.771757125854492 + ], + [ + "▁Did", + -10.771868705749512 + ], + [ + "rou", + -10.772045135498047 + ], + [ + "PA", + -10.77222728729248 + ], + [ + "▁Jean", + -10.772480964660645 + ], + [ + "▁Em", + -10.772586822509766 + ], + [ + "pass", + -10.77280330657959 + ], + [ + "▁Zi", + -10.773090362548828 + ], + [ + "▁între", + -10.773261070251465 + ], + [ + "▁fly", + -10.773427963256836 + ], + [ + "mos", + -10.773666381835938 + ], + [ + "▁emotional", + -10.773860931396484 + ], + [ + "asse", + -10.774768829345703 + ], + [ + "▁sessions", + -10.775086402893066 + ], + [ + "▁symptoms", + -10.77564811706543 + ], + [ + "▁died", + -10.776217460632324 + ], + [ + "▁seconds", + -10.776628494262695 + ], + [ + "▁procedure", + -10.777206420898438 + ], + [ + "▁express", + -10.777420997619629 + ], + [ + "▁două", + -10.777885437011719 + ], + [ + "▁valid", + -10.778393745422363 + ], + [ + "▁euro", + -10.7788667678833 + ], + [ + "▁interests", + -10.779032707214355 + ], + [ + "Having", + -10.779237747192383 + ], + [ + "▁hundreds", + -10.779669761657715 + ], + [ + "grad", + -10.780023574829102 + ], + [ + "▁neuen", + -10.780084609985352 + ], + [ + "▁cook", + -10.780552864074707 + ], + [ + "▁pur", + -10.780834197998047 + ], + [ + "▁charges", + -10.781024932861328 + ], + [ + "sche", + -10.78118896484375 + ], + [ + "▁smile", + -10.781468391418457 + ], + [ + "▁festival", + -10.781611442565918 + ], + [ + "cho", + -10.781672477722168 + ], + [ + "▁£", + -10.781937599182129 + ], + [ + "cht", + -10.78201675415039 + ], + [ + "▁macht", + -10.782021522521973 + ], + [ + "▁Wasser", + -10.782028198242188 + ], + [ + "▁Cap", + -10.78226375579834 + ], + [ + "▁Learn", + -10.78274154663086 + ], + [ + "▁load", + -10.783162117004395 + ], + [ + "▁aici", + -10.783225059509277 + ], + [ + "▁Ch", + -10.784143447875977 + ], + [ + "▁cycle", + -10.784223556518555 + ], + [ + "▁carried", + -10.784337997436523 + ], + [ + "▁jusqu", + -10.784517288208008 + ], + [ + "stein", + -10.78505802154541 + ], + [ + "ski", + -10.78513240814209 + ], + [ + "cap", + -10.78579330444336 + ], + [ + "▁Bal", + -10.785852432250977 + ], + [ + "▁minor", + -10.786053657531738 + ], + [ + "77", + -10.786175727844238 + ], + [ + "▁considering", + -10.78632640838623 + ], + [ + "innen", + -10.78644847869873 + ], + [ + "▁greatest", + -10.787055015563965 + ], + [ + "▁Training", + -10.787137031555176 + ], + [ + "08", + -10.787307739257812 + ], + [ + "▁significantly", + -10.787607192993164 + ], + [ + "gé", + -10.787728309631348 + ], + [ + "▁dumpster", + -10.788351058959961 + ], + [ + "▁allem", + -10.788930892944336 + ], + [ + "▁bonus", + -10.7889404296875 + ], + [ + "▁guy", + -10.789036750793457 + ], + [ + "fel", + -10.78904914855957 + ], + [ + "▁lifestyle", + -10.789241790771484 + ], + [ + "▁Bro", + -10.78961181640625 + ], + [ + "▁implement", + -10.789687156677246 + ], + [ + "lock", + -10.790046691894531 + ], + [ + "▁Earth", + -10.790142059326172 + ], + [ + "kar", + -10.790733337402344 + ], + [ + "▁invest", + -10.790833473205566 + ], + [ + "▁river", + -10.790933609008789 + ], + [ + "▁accurate", + -10.791494369506836 + ], + [ + "▁mu", + -10.791579246520996 + ], + [ + "▁celebrate", + -10.792119979858398 + ], + [ + "▁ran", + -10.79256820678711 + ], + [ + "▁bigger", + -10.792988777160645 + ], + [ + "▁Mer", + -10.793476104736328 + ], + [ + "▁millions", + -10.793486595153809 + ], + [ + "▁partie", + -10.793563842773438 + ], + [ + "▁dazu", + -10.793951988220215 + ], + [ + "▁Full", + -10.794130325317383 + ], + [ + "gie", + -10.794207572937012 + ], + [ + "bot", + -10.794373512268066 + ], + [ + "roll", + -10.79472827911377 + ], + [ + "▁Women", + -10.795303344726562 + ], + [ + "▁compare", + -10.796135902404785 + ], + [ + "▁van", + -10.796503067016602 + ], + [ + "▁apps", + -10.796521186828613 + ], + [ + "PC", + -10.797050476074219 + ], + [ + "▁drei", + -10.79736042022705 + ], + [ + "▁maison", + -10.797588348388672 + ], + [ + "▁knows", + -10.797712326049805 + ], + [ + "rid", + -10.797972679138184 + ], + [ + "62", + -10.798396110534668 + ], + [ + "class", + -10.798508644104004 + ], + [ + "▁chez", + -10.798669815063477 + ], + [ + "char", + -10.798828125 + ], + [ + "88", + -10.798989295959473 + ], + [ + "▁cast", + -10.79948902130127 + ], + [ + "▁examples", + -10.79973030090332 + ], + [ + "▁Therefore", + -10.799823760986328 + ], + [ + "▁topics", + -10.799941062927246 + ], + [ + "with", + -10.80013656616211 + ], + [ + "▁Anti", + -10.800555229187012 + ], + [ + "how", + -10.800620079040527 + ], + [ + "▁whom", + -10.80094051361084 + ], + [ + "▁Deutschland", + -10.801124572753906 + ], + [ + "tine", + -10.80113697052002 + ], + [ + "▁CEO", + -10.801224708557129 + ], + [ + "▁truck", + -10.801350593566895 + ], + [ + "▁Which", + -10.8015718460083 + ], + [ + "erie", + -10.802017211914062 + ], + [ + "fect", + -10.802069664001465 + ], + [ + "bou", + -10.8026762008667 + ], + [ + "▁(1", + -10.802818298339844 + ], + [ + "sum", + -10.802980422973633 + ], + [ + "▁bonne", + -10.803068161010742 + ], + [ + "▁remaining", + -10.80321216583252 + ], + [ + "▁equal", + -10.803543090820312 + ], + [ + "▁engage", + -10.803561210632324 + ], + [ + "▁RE", + -10.803849220275879 + ], + [ + "style", + -10.804182052612305 + ], + [ + "▁urma", + -10.804337501525879 + ], + [ + "▁Grund", + -10.80496883392334 + ], + [ + "ür", + -10.8051176071167 + ], + [ + "▁font", + -10.805353164672852 + ], + [ + "▁assets", + -10.805916786193848 + ], + [ + "AL", + -10.806102752685547 + ], + [ + "▁rear", + -10.80635929107666 + ], + [ + "▁contemporary", + -10.80646800994873 + ], + [ + "▁occur", + -10.8067045211792 + ], + [ + "rated", + -10.806941986083984 + ], + [ + "▁tight", + -10.807088851928711 + ], + [ + "▁machines", + -10.807921409606934 + ], + [ + "▁0.", + -10.808456420898438 + ], + [ + "▁Aber", + -10.808470726013184 + ], + [ + "sol", + -10.808517456054688 + ], + [ + "rü", + -10.80858039855957 + ], + [ + "▁2007", + -10.809479713439941 + ], + [ + "gg", + -10.809488296508789 + ], + [ + "▁unul", + -10.809691429138184 + ], + [ + "▁était", + -10.809908866882324 + ], + [ + "▁capture", + -10.809980392456055 + ], + [ + "▁command", + -10.810037612915039 + ], + [ + "▁wire", + -10.810425758361816 + ], + [ + "▁shift", + -10.810762405395508 + ], + [ + "▁bread", + -10.81084156036377 + ], + [ + "▁causes", + -10.810937881469727 + ], + [ + "PI", + -10.810938835144043 + ], + [ + "SC", + -10.811086654663086 + ], + [ + "▁lights", + -10.811190605163574 + ], + [ + "▁lived", + -10.811293601989746 + ], + [ + "mul", + -10.811446189880371 + ], + [ + "▁Cur", + -10.811917304992676 + ], + [ + "▁Richard", + -10.811973571777344 + ], + [ + "37", + -10.812638282775879 + ], + [ + "▁cup", + -10.812737464904785 + ], + [ + "▁fields", + -10.812983512878418 + ], + [ + "▁crusher", + -10.813389778137207 + ], + [ + "65", + -10.813774108886719 + ], + [ + "avons", + -10.813822746276855 + ], + [ + "▁gear", + -10.813835144042969 + ], + [ + "▁standing", + -10.813844680786133 + ], + [ + "▁thick", + -10.81445026397705 + ], + [ + "aff", + -10.815132141113281 + ], + [ + "ments", + -10.815434455871582 + ], + [ + "▁conflict", + -10.815728187561035 + ], + [ + "ität", + -10.815825462341309 + ], + [ + "▁worse", + -10.816295623779297 + ], + [ + "SE", + -10.816332817077637 + ], + [ + "imi", + -10.816459655761719 + ], + [ + "▁dating", + -10.817033767700195 + ], + [ + "Do", + -10.817073822021484 + ], + [ + "▁flexible", + -10.817093849182129 + ], + [ + "ologie", + -10.817131996154785 + ], + [ + "SU", + -10.817200660705566 + ], + [ + "▁contribute", + -10.817306518554688 + ], + [ + "▁denn", + -10.817428588867188 + ], + [ + "▁appointment", + -10.81746768951416 + ], + [ + "▁ticket", + -10.817523002624512 + ], + [ + "bed", + -10.817892074584961 + ], + [ + "▁2019.", + -10.817936897277832 + ], + [ + "▁tasks", + -10.81871223449707 + ], + [ + "▁carbon", + -10.818734169006348 + ], + [ + "▁situations", + -10.819400787353516 + ], + [ + "MA", + -10.819402694702148 + ], + [ + "▁portion", + -10.819498062133789 + ], + [ + "▁urban", + -10.819585800170898 + ], + [ + "▁Canadian", + -10.819805145263672 + ], + [ + "▁Bur", + -10.819937705993652 + ], + [ + "▁pack", + -10.81995964050293 + ], + [ + "▁effet", + -10.819992065429688 + ], + [ + "▁Ball", + -10.82008171081543 + ], + [ + "▁timpul", + -10.82014274597168 + ], + [ + "▁owned", + -10.820211410522461 + ], + [ + "▁surprise", + -10.820413589477539 + ], + [ + "▁Mu", + -10.820582389831543 + ], + [ + "▁decades", + -10.821001052856445 + ], + [ + "▁affected", + -10.821728706359863 + ], + [ + "▁proven", + -10.821732521057129 + ], + [ + "▁Fe", + -10.821990966796875 + ], + [ + "zy", + -10.822042465209961 + ], + [ + "42", + -10.822175979614258 + ], + [ + "▁trend", + -10.8223876953125 + ], + [ + "▁autres", + -10.82262897491455 + ], + [ + "No", + -10.823028564453125 + ], + [ + "▁nine", + -10.823565483093262 + ], + [ + "ON", + -10.82376480102539 + ], + [ + "NE", + -10.823953628540039 + ], + [ + "oli", + -10.824359893798828 + ], + [ + "▁Daniel", + -10.824434280395508 + ], + [ + "▁spa", + -10.824939727783203 + ], + [ + "▁messages", + -10.825084686279297 + ], + [ + "PS", + -10.825183868408203 + ], + [ + "47", + -10.825703620910645 + ], + [ + "▁doch", + -10.826032638549805 + ], + [ + "▁improvement", + -10.826187133789062 + ], + [ + "▁mountain", + -10.826350212097168 + ], + [ + "▁Room", + -10.826451301574707 + ], + [ + "▁edition", + -10.826546669006348 + ], + [ + "▁musical", + -10.826712608337402 + ], + [ + "CP", + -10.827024459838867 + ], + [ + "▁Mill", + -10.827027320861816 + ], + [ + "▁steht", + -10.827740669250488 + ], + [ + "▁determined", + -10.828083038330078 + ], + [ + "you", + -10.828392028808594 + ], + [ + "weg", + -10.828554153442383 + ], + [ + "▁Digital", + -10.828624725341797 + ], + [ + "▁filter", + -10.828903198242188 + ], + [ + "▁youth", + -10.829047203063965 + ], + [ + "▁assessment", + -10.829301834106445 + ], + [ + "▁butter", + -10.829370498657227 + ], + [ + "▁Watch", + -10.829427719116211 + ], + [ + "▁zusammen", + -10.829471588134766 + ], + [ + "▁View", + -10.829606056213379 + ], + [ + "09", + -10.829649925231934 + ], + [ + "▁sole", + -10.829816818237305 + ], + [ + ".00", + -10.830018997192383 + ], + [ + "33", + -10.83015251159668 + ], + [ + "▁export", + -10.830229759216309 + ], + [ + "ery", + -10.830373764038086 + ], + [ + "▁zurück", + -10.830426216125488 + ], + [ + "▁walls", + -10.83048152923584 + ], + [ + "▁recognize", + -10.8306884765625 + ], + [ + "law", + -10.830801963806152 + ], + [ + "▁parent", + -10.830863952636719 + ], + [ + "ST", + -10.831357955932617 + ], + [ + "▁description", + -10.831669807434082 + ], + [ + "MS", + -10.831887245178223 + ], + [ + "SM", + -10.83189582824707 + ], + [ + "▁Finally", + -10.831940650939941 + ], + [ + "▁hardware", + -10.831965446472168 + ], + [ + "ident", + -10.832464218139648 + ], + [ + "▁brown", + -10.832566261291504 + ], + [ + "▁kinds", + -10.832950592041016 + ], + [ + "▁Arts", + -10.83297061920166 + ], + [ + "▁concert", + -10.83341121673584 + ], + [ + "▁sec", + -10.83342456817627 + ], + [ + "▁represent", + -10.833512306213379 + ], + [ + "▁institutions", + -10.833597183227539 + ], + [ + "▁fur", + -10.833998680114746 + ], + [ + "▁Support", + -10.83403205871582 + ], + [ + "87", + -10.834076881408691 + ], + [ + "▁ease", + -10.834178924560547 + ], + [ + "▁feels", + -10.834218978881836 + ], + [ + "▁sheet", + -10.834342002868652 + ], + [ + "▁Though", + -10.83437442779541 + ], + [ + "▁propose", + -10.834381103515625 + ], + [ + "▁personnel", + -10.834409713745117 + ], + [ + "bie", + -10.834794044494629 + ], + [ + "▁contest", + -10.834836959838867 + ], + [ + "▁successfully", + -10.835152626037598 + ], + [ + "▁direkt", + -10.835397720336914 + ], + [ + "bietet", + -10.835597038269043 + ], + [ + "▁submit", + -10.835888862609863 + ], + [ + "▁sicher", + -10.835919380187988 + ], + [ + "▁Personal", + -10.83607006072998 + ], + [ + "94", + -10.836341857910156 + ], + [ + "61", + -10.836400985717773 + ], + [ + "▁Very", + -10.836540222167969 + ], + [ + "bol", + -10.836603164672852 + ], + [ + "▁ha", + -10.837089538574219 + ], + [ + "▁channel", + -10.8372220993042 + ], + [ + "mut", + -10.837289810180664 + ], + [ + "▁mouth", + -10.837342262268066 + ], + [ + "▁vast", + -10.837395668029785 + ], + [ + "▁Ob", + -10.837569236755371 + ], + [ + "lit", + -10.83763313293457 + ], + [ + "▁poly", + -10.837878227233887 + ], + [ + "▁trained", + -10.838102340698242 + ], + [ + "▁specialist", + -10.838122367858887 + ], + [ + "UL", + -10.83822250366211 + ], + [ + "▁seiner", + -10.838336944580078 + ], + [ + "SS", + -10.838627815246582 + ], + [ + "▁vacation", + -10.838672637939453 + ], + [ + "▁resume", + -10.839157104492188 + ], + [ + "▁constantly", + -10.839717864990234 + ], + [ + "▁treated", + -10.83986759185791 + ], + [ + "▁150", + -10.840936660766602 + ], + [ + "▁native", + -10.841246604919434 + ], + [ + "▁Russian", + -10.841329574584961 + ], + [ + "▁patterns", + -10.841371536254883 + ], + [ + "▁knowing", + -10.841670989990234 + ], + [ + "▁Pan", + -10.841682434082031 + ], + [ + "peri", + -10.841848373413086 + ], + [ + "aci", + -10.841864585876465 + ], + [ + "▁answers", + -10.842114448547363 + ], + [ + "▁heute", + -10.842985153198242 + ], + [ + "93", + -10.843056678771973 + ], + [ + "▁Winter", + -10.844083786010742 + ], + [ + "▁yes", + -10.844173431396484 + ], + [ + "SP", + -10.844185829162598 + ], + [ + "].", + -10.844388008117676 + ], + [ + "▁kein", + -10.844862937927246 + ], + [ + "▁introduce", + -10.8450927734375 + ], + [ + "-4", + -10.84555435180664 + ], + [ + "▁shoot", + -10.845762252807617 + ], + [ + "AR", + -10.84576416015625 + ], + [ + "▁receiving", + -10.845864295959473 + ], + [ + "▁intre", + -10.84702205657959 + ], + [ + "▁appeared", + -10.84708023071289 + ], + [ + "▁brother", + -10.847321510314941 + ], + [ + "▁extend", + -10.847765922546387 + ], + [ + "▁fara", + -10.848737716674805 + ], + [ + "▁kommt", + -10.848876953125 + ], + [ + "ali", + -10.848913192749023 + ], + [ + "▁numai", + -10.849047660827637 + ], + [ + "▁scientific", + -10.84913158416748 + ], + [ + "▁virtual", + -10.849145889282227 + ], + [ + "▁Ac", + -10.849513053894043 + ], + [ + "▁procedures", + -10.849631309509277 + ], + [ + "▁silver", + -10.849821090698242 + ], + [ + "▁leather", + -10.849979400634766 + ], + [ + "DA", + -10.85014820098877 + ], + [ + "▁executive", + -10.850263595581055 + ], + [ + "▁officials", + -10.850496292114258 + ], + [ + "▁agencies", + -10.850503921508789 + ], + [ + "▁Software", + -10.850540161132812 + ], + [ + "▁cor", + -10.850690841674805 + ], + [ + "Con", + -10.850741386413574 + ], + [ + "▁log", + -10.851066589355469 + ], + [ + "ț", + -10.851147651672363 + ], + [ + "02", + -10.851195335388184 + ], + [ + "▁7.", + -10.85245132446289 + ], + [ + "▁accepted", + -10.852483749389648 + ], + [ + "▁Berlin", + -10.852538108825684 + ], + [ + "ID", + -10.852582931518555 + ], + [ + "cot", + -10.852788925170898 + ], + [ + "▁employment", + -10.852799415588379 + ], + [ + "run", + -10.853020668029785 + ], + [ + "▁identified", + -10.853178977966309 + ], + [ + "96", + -10.853887557983398 + ], + [ + "▁déjà", + -10.853944778442383 + ], + [ + "▁cuisine", + -10.853952407836914 + ], + [ + "turi", + -10.854070663452148 + ], + [ + "▁Japanese", + -10.854316711425781 + ], + [ + "▁golf", + -10.854514122009277 + ], + [ + "▁Ki", + -10.854787826538086 + ], + [ + "▁carefully", + -10.854863166809082 + ], + [ + "▁remote", + -10.854973793029785 + ], + [ + "▁2018,", + -10.855148315429688 + ], + [ + "▁sus", + -10.855154991149902 + ], + [ + "tique", + -10.855293273925781 + ], + [ + "▁residential", + -10.855695724487305 + ], + [ + "97", + -10.855809211730957 + ], + [ + "▁Spring", + -10.855908393859863 + ], + [ + "▁Marketing", + -10.856186866760254 + ], + [ + "▁Control", + -10.85630989074707 + ], + [ + "var", + -10.856344223022461 + ], + [ + "▁historical", + -10.8563814163208 + ], + [ + "▁freedom", + -10.856423377990723 + ], + [ + "sure", + -10.856426239013672 + ], + [ + "▁broken", + -10.856796264648438 + ], + [ + "▁criminal", + -10.856949806213379 + ], + [ + "▁innovation", + -10.857075691223145 + ], + [ + "▁Italian", + -10.857192039489746 + ], + [ + "sper", + -10.857282638549805 + ], + [ + "▁cake", + -10.857653617858887 + ], + [ + "▁candidates", + -10.857894897460938 + ], + [ + "▁sizes", + -10.858267784118652 + ], + [ + "pel", + -10.858366966247559 + ], + [ + "▁frequently", + -10.85889720916748 + ], + [ + "▁planet", + -10.859138488769531 + ], + [ + "▁writer", + -10.859519958496094 + ], + [ + "1,", + -10.859569549560547 + ], + [ + "uvent", + -10.85959529876709 + ], + [ + "▁awareness", + -10.859807968139648 + ], + [ + "name", + -10.859954833984375 + ], + [ + "▁Children", + -10.859980583190918 + ], + [ + "▁relatively", + -10.860311508178711 + ], + [ + "▁pu", + -10.860321998596191 + ], + [ + "▁quiet", + -10.86038875579834 + ], + [ + "▁planned", + -10.860716819763184 + ], + [ + "▁election", + -10.861419677734375 + ], + [ + "▁6.", + -10.861761093139648 + ], + [ + "▁broad", + -10.861772537231445 + ], + [ + "▁skill", + -10.861835479736328 + ], + [ + "▁reasonable", + -10.862037658691406 + ], + [ + "▁Fort", + -10.862283706665039 + ], + [ + "▁aceea", + -10.862407684326172 + ], + [ + "▁arrived", + -10.86263370513916 + ], + [ + "▁payments", + -10.862680435180664 + ], + [ + "ack", + -10.862700462341309 + ], + [ + "▁Ort", + -10.863354682922363 + ], + [ + "▁investors", + -10.863364219665527 + ], + [ + "▁operate", + -10.86351203918457 + ], + [ + "ME", + -10.863556861877441 + ], + [ + "dic", + -10.863683700561523 + ], + [ + "▁foods", + -10.863731384277344 + ], + [ + "▁stick", + -10.863831520080566 + ], + [ + "▁agents", + -10.86412525177002 + ], + [ + "▁crowd", + -10.864175796508789 + ], + [ + "▁Students", + -10.864480972290039 + ], + [ + "▁concerned", + -10.864609718322754 + ], + [ + "test", + -10.864740371704102 + ], + [ + "▁designer", + -10.865334510803223 + ], + [ + "▁Conference", + -10.865593910217285 + ], + [ + "▁saving", + -10.866105079650879 + ], + [ + "▁recorded", + -10.866422653198242 + ], + [ + "▁proposed", + -10.866564750671387 + ], + [ + "▁ship", + -10.86657428741455 + ], + [ + "▁cred", + -10.867274284362793 + ], + [ + "▁Ci", + -10.867440223693848 + ], + [ + "RE", + -10.867619514465332 + ], + [ + "▁tradition", + -10.867753982543945 + ], + [ + "▁worldwide", + -10.867779731750488 + ], + [ + "64", + -10.867944717407227 + ], + [ + "▁television", + -10.867989540100098 + ], + [ + "▁projet", + -10.868102073669434 + ], + [ + "ency", + -10.868487358093262 + ], + [ + "▁struggle", + -10.868514060974121 + ], + [ + "▁twice", + -10.868955612182617 + ], + [ + "▁Off", + -10.869234085083008 + ], + [ + "▁begins", + -10.869577407836914 + ], + [ + "key", + -10.869794845581055 + ], + [ + "▁Table", + -10.869963645935059 + ], + [ + "▁demande", + -10.870177268981934 + ], + [ + "▁liquid", + -10.870441436767578 + ], + [ + "meter", + -10.870684623718262 + ], + [ + "▁2001", + -10.871190071105957 + ], + [ + "▁willing", + -10.871660232543945 + ], + [ + "▁medicine", + -10.871707916259766 + ], + [ + "▁expand", + -10.871747970581055 + ], + [ + "▁2004", + -10.871804237365723 + ], + [ + "▁2002", + -10.872016906738281 + ], + [ + "▁accord", + -10.872292518615723 + ], + [ + "▁Chris", + -10.872446060180664 + ], + [ + "▁prove", + -10.872543334960938 + ], + [ + "ston", + -10.872740745544434 + ], + [ + "mettre", + -10.872800827026367 + ], + [ + "▁moments", + -10.873537063598633 + ], + [ + "tik", + -10.87368392944336 + ], + [ + "such", + -10.874055862426758 + ], + [ + "2.", + -10.874431610107422 + ], + [ + "▁UN", + -10.874561309814453 + ], + [ + "▁jump", + -10.874737739562988 + ], + [ + "▁dish", + -10.87539291381836 + ], + [ + "▁Key", + -10.875663757324219 + ], + [ + "▁challenging", + -10.875975608825684 + ], + [ + "▁domestic", + -10.876410484313965 + ], + [ + "▁impressive", + -10.876752853393555 + ], + [ + "iger", + -10.877022743225098 + ], + [ + "▁Ram", + -10.877157211303711 + ], + [ + "▁doit", + -10.877263069152832 + ], + [ + "▁concrete", + -10.87734317779541 + ], + [ + "▁Unternehmen", + -10.877397537231445 + ], + [ + "▁LED", + -10.877429008483887 + ], + [ + "▁trouver", + -10.877533912658691 + ], + [ + "▁fundamental", + -10.877875328063965 + ], + [ + "▁implementation", + -10.878121376037598 + ], + [ + "85", + -10.878247261047363 + ], + [ + "▁hosting", + -10.87856388092041 + ], + [ + "▁Game", + -10.878691673278809 + ], + [ + "▁taught", + -10.878981590270996 + ], + [ + "tung", + -10.879016876220703 + ], + [ + "ront", + -10.87940502166748 + ], + [ + "▁shoes", + -10.879639625549316 + ], + [ + "79", + -10.8797607421875 + ], + [ + "▁stunning", + -10.879778861999512 + ], + [ + "▁Congress", + -10.880142211914062 + ], + [ + "▁Ent", + -10.880278587341309 + ], + [ + "▁Wer", + -10.880607604980469 + ], + [ + "▁alt", + -10.880608558654785 + ], + [ + "ör", + -10.880699157714844 + ], + [ + "▁calm", + -10.8808012008667 + ], + [ + "46", + -10.881132125854492 + ], + [ + "▁Daca", + -10.881404876708984 + ], + [ + "71", + -10.881938934326172 + ], + [ + "▁Dec", + -10.882392883300781 + ], + [ + "▁Fo", + -10.882437705993652 + ], + [ + "▁defense", + -10.88313102722168 + ], + [ + "▁expectations", + -10.883166313171387 + ], + [ + "▁Alle", + -10.88318920135498 + ], + [ + "▁brief", + -10.883691787719727 + ], + [ + "▁Hospital", + -10.883975982666016 + ], + [ + "▁sides", + -10.884121894836426 + ], + [ + "▁yellow", + -10.884140014648438 + ], + [ + "lei", + -10.88451862335205 + ], + [ + "▁speaking", + -10.884589195251465 + ], + [ + "▁crucial", + -10.885198593139648 + ], + [ + "▁Town", + -10.8854341506958 + ], + [ + "▁married", + -10.885574340820312 + ], + [ + "▁acesta", + -10.885583877563477 + ], + [ + "▁noted", + -10.885611534118652 + ], + [ + "▁Word", + -10.885659217834473 + ], + [ + "▁conducted", + -10.885963439941406 + ], + [ + "▁decor", + -10.886249542236328 + ], + [ + "kon", + -10.886565208435059 + ], + [ + "▁supplies", + -10.8866605758667 + ], + [ + "▁adventure", + -10.886691093444824 + ], + [ + "▁exhibition", + -10.887163162231445 + ], + [ + "heit", + -10.887300491333008 + ], + [ + "▁36", + -10.88744831085205 + ], + [ + "eria", + -10.887505531311035 + ], + [ + "ines", + -10.887551307678223 + ], + [ + "ological", + -10.887582778930664 + ], + [ + "quel", + -10.88806438446045 + ], + [ + "▁Van", + -10.88825511932373 + ], + [ + "-19", + -10.88853645324707 + ], + [ + "2,", + -10.888566970825195 + ], + [ + "▁Band", + -10.888989448547363 + ], + [ + "▁soil", + -10.889184951782227 + ], + [ + "▁Tim", + -10.889599800109863 + ], + [ + "▁NOT", + -10.88968563079834 + ], + [ + "▁pilot", + -10.889753341674805 + ], + [ + "▁Sh", + -10.889774322509766 + ], + [ + "Ho", + -10.890361785888672 + ], + [ + "CA", + -10.890509605407715 + ], + [ + "▁Eu", + -10.890745162963867 + ], + [ + "▁committee", + -10.890829086303711 + ], + [ + "▁Store", + -10.891075134277344 + ], + [ + "▁joint", + -10.89111614227295 + ], + [ + "▁Op", + -10.891315460205078 + ], + [ + "▁Jack", + -10.891985893249512 + ], + [ + "quality", + -10.89216423034668 + ], + [ + "▁Has", + -10.892489433288574 + ], + [ + "▁wenig", + -10.892507553100586 + ], + [ + "hood", + -10.892545700073242 + ], + [ + "▁Class", + -10.892582893371582 + ], + [ + "rus", + -10.892773628234863 + ], + [ + "▁grown", + -10.89294719696045 + ], + [ + "▁About", + -10.893518447875977 + ], + [ + "▁sum", + -10.893942832946777 + ], + [ + "▁Fair", + -10.893946647644043 + ], + [ + "SA", + -10.894149780273438 + ], + [ + "92", + -10.894185066223145 + ], + [ + "▁fourth", + -10.894354820251465 + ], + [ + "▁featured", + -10.894384384155273 + ], + [ + "▁Pen", + -10.89444637298584 + ], + [ + "▁natürlich", + -10.894885063171387 + ], + [ + "ched", + -10.894901275634766 + ], + [ + "▁ban", + -10.895112991333008 + ], + [ + "anne", + -10.89522647857666 + ], + [ + "▁theory", + -10.895413398742676 + ], + [ + "bin", + -10.895438194274902 + ], + [ + "iers", + -10.895819664001465 + ], + [ + "▁strategic", + -10.895903587341309 + ], + [ + "▁jours", + -10.895956039428711 + ], + [ + "▁communicate", + -10.896124839782715 + ], + [ + "▁pin", + -10.896320343017578 + ], + [ + "▁Bon", + -10.89721393585205 + ], + [ + "kom", + -10.897290229797363 + ], + [ + "-5", + -10.898177146911621 + ], + [ + "▁degrees", + -10.898643493652344 + ], + [ + "▁entertainment", + -10.899014472961426 + ], + [ + "ară", + -10.899248123168945 + ], + [ + "ales", + -10.899425506591797 + ], + [ + "▁pendant", + -10.89954662322998 + ], + [ + "▁Series", + -10.899575233459473 + ], + [ + "▁holds", + -10.899592399597168 + ], + [ + "▁Mini", + -10.899828910827637 + ], + [ + "▁Obama", + -10.899898529052734 + ], + [ + "▁conform", + -10.900163650512695 + ], + [ + "-10", + -10.900216102600098 + ], + [ + "▁preparation", + -10.9009370803833 + ], + [ + "▁autre", + -10.90105152130127 + ], + [ + "▁mortgage", + -10.901155471801758 + ], + [ + "▁Kan", + -10.901508331298828 + ], + [ + "▁typical", + -10.901538848876953 + ], + [ + "01", + -10.901711463928223 + ], + [ + "▁Review", + -10.901862144470215 + ], + [ + "▁laptop", + -10.902127265930176 + ], + [ + "CR", + -10.902610778808594 + ], + [ + "▁thread", + -10.90265941619873 + ], + [ + "BS", + -10.902661323547363 + ], + [ + "▁upper", + -10.902700424194336 + ], + [ + "▁searching", + -10.902932167053223 + ], + [ + "▁pen", + -10.903214454650879 + ], + [ + "▁Middle", + -10.90333080291748 + ], + [ + "73", + -10.903359413146973 + ], + [ + "▁leg", + -10.903650283813477 + ], + [ + "onic", + -10.904272079467773 + ], + [ + "IS", + -10.904356956481934 + ], + [ + "▁Kar", + -10.904623985290527 + ], + [ + "anz", + -10.9046630859375 + ], + [ + "▁circuit", + -10.904901504516602 + ], + [ + "▁Casino", + -10.905384063720703 + ], + [ + "07", + -10.90584659576416 + ], + [ + "▁petit", + -10.905906677246094 + ], + [ + "TV", + -10.905978202819824 + ], + [ + "level", + -10.906311988830566 + ], + [ + "▁Point", + -10.906312942504883 + ], + [ + "rau", + -10.906474113464355 + ], + [ + "▁cabinet", + -10.906991958618164 + ], + [ + "▁failed", + -10.907042503356934 + ], + [ + "▁stated", + -10.907126426696777 + ], + [ + "LA", + -10.907461166381836 + ], + [ + "▁privacy", + -10.907596588134766 + ], + [ + "vol", + -10.907901763916016 + ], + [ + "ativ", + -10.908151626586914 + ], + [ + "▁matters", + -10.908210754394531 + ], + [ + "▁Mor", + -10.908555030822754 + ], + [ + "▁Ur", + -10.90860652923584 + ], + [ + "view", + -10.908968925476074 + ], + [ + "▁consultation", + -10.90921688079834 + ], + [ + "TS", + -10.909296989440918 + ], + [ + "▁apartment", + -10.909412384033203 + ], + [ + "▁integrated", + -10.909425735473633 + ], + [ + "74", + -10.909669876098633 + ], + [ + "▁Through", + -10.909710884094238 + ], + [ + "▁kick", + -10.909798622131348 + ], + [ + "▁perioada", + -10.90993881225586 + ], + [ + "▁entirely", + -10.909953117370605 + ], + [ + "▁impossible", + -10.91015911102295 + ], + [ + "▁consideration", + -10.910268783569336 + ], + [ + "▁Alt", + -10.91054916381836 + ], + [ + "▁Come", + -10.911089897155762 + ], + [ + "▁outstanding", + -10.911276817321777 + ], + [ + "83", + -10.911727905273438 + ], + [ + "▁prezent", + -10.911859512329102 + ], + [ + "▁Local", + -10.911993980407715 + ], + [ + "▁Camp", + -10.912056922912598 + ], + [ + "▁bear", + -10.912067413330078 + ], + [ + "enden", + -10.912262916564941 + ], + [ + "life", + -10.91236686706543 + ], + [ + "▁Haus", + -10.912516593933105 + ], + [ + "▁William", + -10.912644386291504 + ], + [ + "“,", + -10.912665367126465 + ], + [ + "▁Instagram", + -10.91285514831543 + ], + [ + "▁solve", + -10.913195610046387 + ], + [ + "▁Ze", + -10.913431167602539 + ], + [ + "▁everyday", + -10.91357135772705 + ], + [ + "bla", + -10.913615226745605 + ], + [ + "eng", + -10.913662910461426 + ], + [ + "ough", + -10.914246559143066 + ], + [ + "84", + -10.914483070373535 + ], + [ + "?\"", + -10.914599418640137 + ], + [ + "rely", + -10.91476821899414 + ], + [ + "TH", + -10.914841651916504 + ], + [ + "lang", + -10.91511058807373 + ], + [ + "82", + -10.915817260742188 + ], + [ + "▁removal", + -10.91589641571045 + ], + [ + "ală", + -10.915956497192383 + ], + [ + "▁circumstances", + -10.916097640991211 + ], + [ + "ente", + -10.91622257232666 + ], + [ + "▁lieu", + -10.91645336151123 + ], + [ + "▁2016.", + -10.91710376739502 + ], + [ + "▁ales", + -10.917342185974121 + ], + [ + "▁pure", + -10.917482376098633 + ], + [ + "▁choosing", + -10.917590141296387 + ], + [ + "▁Russia", + -10.917698860168457 + ], + [ + "amp", + -10.917703628540039 + ], + [ + "▁Santa", + -10.91788387298584 + ], + [ + "▁happening", + -10.918203353881836 + ], + [ + "▁crew", + -10.91822338104248 + ], + [ + "▁lei", + -10.91855239868164 + ], + [ + "IP", + -10.91858196258545 + ], + [ + "RO", + -10.919425964355469 + ], + [ + "▁resort", + -10.919514656066895 + ], + [ + "ened", + -10.919689178466797 + ], + [ + "MB", + -10.920031547546387 + ], + [ + "▁styles", + -10.920052528381348 + ], + [ + "▁dernier", + -10.920533180236816 + ], + [ + "uck", + -10.920699119567871 + ], + [ + "▁Guide", + -10.920710563659668 + ], + [ + "fic", + -10.92096996307373 + ], + [ + "▁fitness", + -10.921977996826172 + ], + [ + "▁healthcare", + -10.92223072052002 + ], + [ + "mol", + -10.92237663269043 + ], + [ + "▁vis", + -10.922721862792969 + ], + [ + "▁atmosphere", + -10.922972679138184 + ], + [ + "▁motion", + -10.922989845275879 + ], + [ + "▁closer", + -10.923114776611328 + ], + [ + "▁SA", + -10.92335319519043 + ], + [ + "▁default", + -10.923371315002441 + ], + [ + "▁architecture", + -10.923471450805664 + ], + [ + "iile", + -10.923528671264648 + ], + [ + "zel", + -10.923675537109375 + ], + [ + "cla", + -10.92387866973877 + ], + [ + "OP", + -10.924382209777832 + ], + [ + "▁west", + -10.924965858459473 + ], + [ + "▁Energy", + -10.925613403320312 + ], + [ + "▁positions", + -10.925777435302734 + ], + [ + "▁contrast", + -10.925885200500488 + ], + [ + "▁serves", + -10.92605972290039 + ], + [ + "cup", + -10.926340103149414 + ], + [ + "▁rose", + -10.926485061645508 + ], + [ + "pers", + -10.92664623260498 + ], + [ + "▁noise", + -10.926846504211426 + ], + [ + "mont", + -10.92690658569336 + ], + [ + "#", + -10.927061080932617 + ], + [ + "lies", + -10.927326202392578 + ], + [ + "pat", + -10.927718162536621 + ], + [ + "IC", + -10.927956581115723 + ], + [ + "arc", + -10.927989959716797 + ], + [ + "▁winner", + -10.928524017333984 + ], + [ + "tent", + -10.928732872009277 + ], + [ + "▁Preis", + -10.929106712341309 + ], + [ + "▁vin", + -10.929254531860352 + ], + [ + "blo", + -10.92929458618164 + ], + [ + "ție", + -10.929520606994629 + ], + [ + "▁OR", + -10.930315017700195 + ], + [ + "▁Buch", + -10.930798530578613 + ], + [ + "▁nearby", + -10.931190490722656 + ], + [ + "▁meetings", + -10.931290626525879 + ], + [ + "▁48", + -10.931465148925781 + ], + [ + "▁quand", + -10.93152904510498 + ], + [ + "▁usual", + -10.931936264038086 + ], + [ + "▁weitere", + -10.932539939880371 + ], + [ + "▁caught", + -10.932571411132812 + ], + [ + "▁issued", + -10.932626724243164 + ], + [ + "ști", + -10.932896614074707 + ], + [ + "upcoming", + -10.933232307434082 + ], + [ + "▁agreed", + -10.933233261108398 + ], + [ + "place", + -10.933353424072266 + ], + [ + "▁Brand", + -10.93344497680664 + ], + [ + "▁relation", + -10.933969497680664 + ], + [ + "▁atât", + -10.934090614318848 + ], + [ + "▁Tre", + -10.934176445007324 + ], + [ + "▁lors", + -10.934438705444336 + ], + [ + "▁adopt", + -10.934452056884766 + ], + [ + "▁celui", + -10.93458366394043 + ], + [ + "cken", + -10.93505859375 + ], + [ + "▁partnership", + -10.935284614562988 + ], + [ + "?”", + -10.935376167297363 + ], + [ + "▁ba", + -10.935746192932129 + ], + [ + "▁ID", + -10.935832023620605 + ], + [ + "▁consistent", + -10.935835838317871 + ], + [ + "▁Ya", + -10.935941696166992 + ], + [ + "▁Academy", + -10.936182022094727 + ], + [ + "cial", + -10.936230659484863 + ], + [ + "1%", + -10.936366081237793 + ], + [ + "▁mise", + -10.936684608459473 + ], + [ + "▁gute", + -10.936728477478027 + ], + [ + "gli", + -10.936939239501953 + ], + [ + "▁Bu", + -10.937679290771484 + ], + [ + "▁reduction", + -10.937917709350586 + ], + [ + "acy", + -10.938126564025879 + ], + [ + "aga", + -10.938161849975586 + ], + [ + "▁Sc", + -10.938273429870605 + ], + [ + "▁Informationen", + -10.938308715820312 + ], + [ + "▁kommen", + -10.938352584838867 + ], + [ + "press", + -10.93837833404541 + ], + [ + "▁bridge", + -10.938379287719727 + ], + [ + "▁qualified", + -10.938671112060547 + ], + [ + "position", + -10.938821792602539 + ], + [ + "▁combat", + -10.938933372497559 + ], + [ + "!\"", + -10.938993453979492 + ], + [ + "eva", + -10.939217567443848 + ], + [ + "oase", + -10.939380645751953 + ], + [ + "▁inner", + -10.939410209655762 + ], + [ + "▁loans", + -10.939720153808594 + ], + [ + "made", + -10.939786911010742 + ], + [ + "▁Mexico", + -10.93993091583252 + ], + [ + "▁formal", + -10.940092086791992 + ], + [ + "▁fell", + -10.94021987915039 + ], + [ + "91", + -10.940524101257324 + ], + [ + "▁campus", + -10.9407320022583 + ], + [ + "ienne", + -10.940869331359863 + ], + [ + "▁framework", + -10.94105339050293 + ], + [ + "ncing", + -10.941157341003418 + ], + [ + "▁Para", + -10.941222190856934 + ], + [ + "▁password", + -10.941298484802246 + ], + [ + "▁sei", + -10.941422462463379 + ], + [ + "▁Cross", + -10.941532135009766 + ], + [ + "▁Ten", + -10.941873550415039 + ], + [ + "bank", + -10.941887855529785 + ], + [ + "▁gun", + -10.942000389099121 + ], + [ + "ient", + -10.942021369934082 + ], + [ + "▁usage", + -10.942176818847656 + ], + [ + "▁(2", + -10.942278861999512 + ], + [ + "Gra", + -10.942320823669434 + ], + [ + "▁prea", + -10.94253158569336 + ], + [ + "▁Als", + -10.942619323730469 + ], + [ + "▁finance", + -10.942638397216797 + ], + [ + "tate", + -10.942665100097656 + ], + [ + "ition", + -10.942703247070312 + ], + [ + "▁regulations", + -10.942741394042969 + ], + [ + "▁Professional", + -10.943001747131348 + ], + [ + "▁pl", + -10.94336986541748 + ], + [ + "▁SEO", + -10.943472862243652 + ], + [ + "▁trecut", + -10.943487167358398 + ], + [ + "▁aller", + -10.943509101867676 + ], + [ + "▁violence", + -10.943986892700195 + ], + [ + "▁membership", + -10.944117546081543 + ], + [ + "▁picked", + -10.944162368774414 + ], + [ + "▁collected", + -10.9443359375 + ], + [ + "▁extended", + -10.944449424743652 + ], + [ + "▁religious", + -10.944661140441895 + ], + [ + "▁salle", + -10.944767951965332 + ], + [ + "RA", + -10.944781303405762 + ], + [ + "▁blend", + -10.945232391357422 + ], + [ + "▁Min", + -10.94532299041748 + ], + [ + "kal", + -10.945887565612793 + ], + [ + "▁featuring", + -10.945902824401855 + ], + [ + "▁researchers", + -10.946263313293457 + ], + [ + "▁Search", + -10.946558952331543 + ], + [ + "CE", + -10.946675300598145 + ], + [ + "▁recognized", + -10.94682502746582 + ], + [ + "▁semi", + -10.94692611694336 + ], + [ + "▁exposure", + -10.94718074798584 + ], + [ + "grew", + -10.947466850280762 + ], + [ + "▁candidate", + -10.948250770568848 + ], + [ + "▁shares", + -10.948908805847168 + ], + [ + "▁edit", + -10.949745178222656 + ], + [ + "CS", + -10.949905395507812 + ], + [ + "▁Cl", + -10.950240135192871 + ], + [ + "▁Enjoy", + -10.951438903808594 + ], + [ + "▁hurt", + -10.951482772827148 + ], + [ + "▁bottle", + -10.951593399047852 + ], + [ + "▁Buy", + -10.95159912109375 + ], + [ + "▁superior", + -10.952286720275879 + ], + [ + "▁missed", + -10.952424049377441 + ], + [ + "▁workshop", + -10.952433586120605 + ], + [ + "action", + -10.952437400817871 + ], + [ + "ple", + -10.952699661254883 + ], + [ + "▁Schul", + -10.952814102172852 + ], + [ + "▁houses", + -10.953080177307129 + ], + [ + "▁2017,", + -10.953569412231445 + ], + [ + "▁killed", + -10.953750610351562 + ], + [ + "▁calendar", + -10.954306602478027 + ], + [ + "▁Mike", + -10.954597473144531 + ], + [ + "FA", + -10.954627990722656 + ], + [ + "nut", + -10.95487117767334 + ], + [ + "▁establish", + -10.955140113830566 + ], + [ + "▁alcohol", + -10.95514965057373 + ], + [ + "▁closely", + -10.955170631408691 + ], + [ + "▁MA", + -10.955381393432617 + ], + [ + "pul", + -10.955389022827148 + ], + [ + "▁defined", + -10.955666542053223 + ], + [ + "aires", + -10.955692291259766 + ], + [ + "▁Shi", + -10.955703735351562 + ], + [ + "▁plays", + -10.956303596496582 + ], + [ + "▁sister", + -10.95690631866455 + ], + [ + "▁cable", + -10.957179069519043 + ], + [ + "▁desk", + -10.957215309143066 + ], + [ + "▁apoi", + -10.957738876342773 + ], + [ + "▁identity", + -10.95785140991211 + ], + [ + "▁stars", + -10.957931518554688 + ], + [ + "▁fata", + -10.958008766174316 + ], + [ + "▁obvious", + -10.958330154418945 + ], + [ + "▁dental", + -10.95843505859375 + ], + [ + "AM", + -10.958802223205566 + ], + [ + "▁sharp", + -10.95881175994873 + ], + [ + "duc", + -10.959053993225098 + ], + [ + "▁manufacturer", + -10.95914077758789 + ], + [ + "!)", + -10.959270477294922 + ], + [ + "▁objects", + -10.959720611572266 + ], + [ + "▁Ag", + -10.959989547729492 + ], + [ + "referred", + -10.960195541381836 + ], + [ + "▁Ak", + -10.960308074951172 + ], + [ + "burg", + -10.960360527038574 + ], + [ + "▁nouveau", + -10.960854530334473 + ], + [ + "▁Pal", + -10.960994720458984 + ], + [ + "▁Arbeits", + -10.961280822753906 + ], + [ + "▁personally", + -10.961288452148438 + ], + [ + "▁Dé", + -10.961292266845703 + ], + [ + "▁import", + -10.961688041687012 + ], + [ + "▁justice", + -10.961913108825684 + ], + [ + "▁photography", + -10.962705612182617 + ], + [ + "▁portfolio", + -10.962841987609863 + ], + [ + "56", + -10.96314525604248 + ], + [ + "▁nouvelle", + -10.963293075561523 + ], + [ + "▁oven", + -10.964197158813477 + ], + [ + "▁400", + -10.964272499084473 + ], + [ + "▁mixed", + -10.964395523071289 + ], + [ + "▁relax", + -10.964427947998047 + ], + [ + "▁imp", + -10.964703559875488 + ], + [ + "▁».", + -10.964734077453613 + ], + [ + "▁mail", + -10.964777946472168 + ], + [ + "rage", + -10.964861869812012 + ], + [ + "nos", + -10.964974403381348 + ], + [ + "▁drugs", + -10.965195655822754 + ], + [ + "▁jede", + -10.965211868286133 + ], + [ + "▁einige", + -10.965232849121094 + ], + [ + "▁8.", + -10.965325355529785 + ], + [ + "ters", + -10.965412139892578 + ], + [ + "▁electrical", + -10.965432167053223 + ], + [ + "▁puis", + -10.965836524963379 + ], + [ + "▁films", + -10.965903282165527 + ], + [ + "41", + -10.966036796569824 + ], + [ + "▁moral", + -10.966398239135742 + ], + [ + "lage", + -10.966402053833008 + ], + [ + "▁spaces", + -10.966415405273438 + ], + [ + "▁Ed", + -10.966462135314941 + ], + [ + "▁classroom", + -10.966588020324707 + ], + [ + "▁große", + -10.966588973999023 + ], + [ + "▁baza", + -10.966887474060059 + ], + [ + "face", + -10.967308044433594 + ], + [ + "▁informed", + -10.967333793640137 + ], + [ + "▁improving", + -10.967477798461914 + ], + [ + "▁guidance", + -10.967880249023438 + ], + [ + "▁gallery", + -10.96800708770752 + ], + [ + "cular", + -10.968046188354492 + ], + [ + "53", + -10.968094825744629 + ], + [ + "Despite", + -10.968238830566406 + ], + [ + "▁forme", + -10.968304634094238 + ], + [ + "▁système", + -10.968415260314941 + ], + [ + "▁Win", + -10.968494415283203 + ], + [ + "▁Small", + -10.968537330627441 + ], + [ + "▁Mobile", + -10.968564987182617 + ], + [ + "▁tape", + -10.968606948852539 + ], + [ + "▁erhalten", + -10.968914985656738 + ], + [ + "▁movies", + -10.968928337097168 + ], + [ + "▁Unfortunately", + -10.968963623046875 + ], + [ + "▁Looking", + -10.96945858001709 + ], + [ + "▁guard", + -10.969584465026855 + ], + [ + "▁pr", + -10.969820976257324 + ], + [ + "▁confident", + -10.96988582611084 + ], + [ + "BA", + -10.970229148864746 + ], + [ + "bas", + -10.970272064208984 + ], + [ + "hum", + -10.97050666809082 + ], + [ + "ular", + -10.9705171585083 + ], + [ + "▁Still", + -10.970593452453613 + ], + [ + "▁flavor", + -10.970656394958496 + ], + [ + "▁boost", + -10.970773696899414 + ], + [ + "▁division", + -10.970842361450195 + ], + [ + "ising", + -10.971006393432617 + ], + [ + "▁monitoring", + -10.971044540405273 + ], + [ + "▁Sen", + -10.97105884552002 + ], + [ + "▁https", + -10.971527099609375 + ], + [ + "mainly", + -10.971735000610352 + ], + [ + "play", + -10.972251892089844 + ], + [ + "▁dynamic", + -10.972357749938965 + ], + [ + "▁coup", + -10.972370147705078 + ], + [ + "▁carpet", + -10.972561836242676 + ], + [ + "iner", + -10.972846984863281 + ], + [ + "ral", + -10.97325611114502 + ], + [ + "iser", + -10.973320007324219 + ], + [ + "RC", + -10.9739990234375 + ], + [ + "▁definition", + -10.97475814819336 + ], + [ + "▁Za", + -10.974767684936523 + ], + [ + "friendly", + -10.974883079528809 + ], + [ + "43", + -10.975123405456543 + ], + [ + "link", + -10.975180625915527 + ], + [ + "▁Multi", + -10.97519302368164 + ], + [ + "▁einmal", + -10.975272178649902 + ], + [ + "▁stopped", + -10.975394248962402 + ], + [ + "vel", + -10.975456237792969 + ], + [ + "▁ongoing", + -10.975565910339355 + ], + [ + "▁ancient", + -10.976259231567383 + ], + [ + "take", + -10.976301193237305 + ], + [ + "cia", + -10.976432800292969 + ], + [ + "▁USB", + -10.976545333862305 + ], + [ + "▁attorney", + -10.976866722106934 + ], + [ + "▁slot", + -10.976866722106934 + ], + [ + "▁Line", + -10.97693157196045 + ], + [ + "rice", + -10.977087020874023 + ], + [ + "ify", + -10.977520942687988 + ], + [ + "ó", + -10.978260040283203 + ], + [ + "▁flash", + -10.978483200073242 + ], + [ + "▁extension", + -10.978555679321289 + ], + [ + "▁Ende", + -10.979022979736328 + ], + [ + "▁powder", + -10.979114532470703 + ], + [ + "ească", + -10.979143142700195 + ], + [ + "03", + -10.979327201843262 + ], + [ + "▁normally", + -10.979416847229004 + ], + [ + "▁pun", + -10.980108261108398 + ], + [ + "viewed", + -10.980138778686523 + ], + [ + "ssen", + -10.980896949768066 + ], + [ + "ache", + -10.981121063232422 + ], + [ + "ește", + -10.98122787475586 + ], + [ + "▁PA", + -10.981266021728516 + ], + [ + "FI", + -10.981945991516113 + ], + [ + "▁Frank", + -10.98198127746582 + ], + [ + "▁apa", + -10.98242473602295 + ], + [ + "▁coast", + -10.982614517211914 + ], + [ + "▁boy", + -10.982665061950684 + ], + [ + "lim", + -10.982902526855469 + ], + [ + "▁putin", + -10.983194351196289 + ], + [ + "▁script", + -10.983332633972168 + ], + [ + "▁noticed", + -10.9837007522583 + ], + [ + "▁dealing", + -10.983922004699707 + ], + [ + "▁Trans", + -10.984100341796875 + ], + [ + "▁border", + -10.984447479248047 + ], + [ + "▁reputation", + -10.984657287597656 + ], + [ + "-2", + -10.984662055969238 + ], + [ + "HS", + -10.984707832336426 + ], + [ + "▁supports", + -10.984724998474121 + ], + [ + "▁horse", + -10.985146522521973 + ], + [ + "nik", + -10.98520565032959 + ], + [ + "▁clothes", + -10.985234260559082 + ], + [ + "▁Card", + -10.985612869262695 + ], + [ + "▁relief", + -10.98595905303955 + ], + [ + "▁Visit", + -10.986259460449219 + ], + [ + "▁luni", + -10.986593246459961 + ], + [ + "81", + -10.986693382263184 + ], + [ + "qua", + -10.986945152282715 + ], + [ + "▁Comp", + -10.98697280883789 + ], + [ + "▁investigation", + -10.987137794494629 + ], + [ + "▁depth", + -10.987598419189453 + ], + [ + "▁earned", + -10.987709045410156 + ], + [ + "▁Ren", + -10.988090515136719 + ], + [ + "▁Dumnezeu", + -10.988107681274414 + ], + [ + "▁Joe", + -10.988210678100586 + ], + [ + "▁goods", + -10.988288879394531 + ], + [ + "▁Vol", + -10.988686561584473 + ], + [ + "▁certified", + -10.989118576049805 + ], + [ + "▁favor", + -10.989326477050781 + ], + [ + "▁Scott", + -10.989599227905273 + ], + [ + "▁protest", + -10.989802360534668 + ], + [ + "▁pace", + -10.989803314208984 + ], + [ + "▁Angeles", + -10.990368843078613 + ], + [ + "inch", + -10.99050521850586 + ], + [ + "▁charged", + -10.99052619934082 + ], + [ + "code", + -10.990968704223633 + ], + [ + "▁convenient", + -10.99138355255127 + ], + [ + "▁Nord", + -10.991556167602539 + ], + [ + "▁yesterday", + -10.991691589355469 + ], + [ + "Dacă", + -10.99169635772705 + ], + [ + "▁Travel", + -10.991786003112793 + ], + [ + "▁kid", + -10.991941452026367 + ], + [ + "ction", + -10.991986274719238 + ], + [ + "▁groupe", + -10.992770195007324 + ], + [ + "pu", + -10.993056297302246 + ], + [ + "bzw", + -10.993196487426758 + ], + [ + "▁mixture", + -10.993513107299805 + ], + [ + "▁Farm", + -10.993715286254883 + ], + [ + "▁acces", + -10.993939399719238 + ], + [ + "matic", + -10.993950843811035 + ], + [ + "▁comparison", + -10.994006156921387 + ], + [ + "reich", + -10.994095802307129 + ], + [ + "pet", + -10.994502067565918 + ], + [ + "▁lit", + -10.994685173034668 + ], + [ + "▁organized", + -10.99476432800293 + ], + [ + "just", + -10.995564460754395 + ], + [ + "▁fellow", + -10.996004104614258 + ], + [ + "Ver", + -10.996209144592285 + ], + [ + "▁trends", + -10.99622631072998 + ], + [ + "▁evaluation", + -10.99626636505127 + ], + [ + "feld", + -10.99639892578125 + ], + [ + "▁Pu", + -10.99671459197998 + ], + [ + "▁equipped", + -10.99727725982666 + ], + [ + "▁catre", + -10.997278213500977 + ], + [ + "eck", + -10.997369766235352 + ], + [ + "▁facing", + -10.997998237609863 + ], + [ + "▁instrument", + -10.998361587524414 + ], + [ + "▁pleased", + -10.998507499694824 + ], + [ + "▁tap", + -10.998818397521973 + ], + [ + "dom", + -10.998826026916504 + ], + [ + "▁pump", + -10.999384880065918 + ], + [ + "▁functional", + -10.999429702758789 + ], + [ + "▁authority", + -10.999455451965332 + ], + [ + "▁experiment", + -10.999478340148926 + ], + [ + "LO", + -10.999529838562012 + ], + [ + "▁scheduled", + -10.999552726745605 + ], + [ + "halt", + -10.999604225158691 + ], + [ + "▁ceiling", + -10.999761581420898 + ], + [ + "▁Step", + -11.000310897827148 + ], + [ + "▁orders", + -11.00032901763916 + ], + [ + "▁speech", + -11.001046180725098 + ], + [ + "▁stands", + -11.001119613647461 + ], + [ + "▁disc", + -11.001920700073242 + ], + [ + "▁rec", + -11.001935958862305 + ], + [ + "▁Text", + -11.00243854522705 + ], + [ + "▁banks", + -11.00294017791748 + ], + [ + "▁oameni", + -11.003045082092285 + ], + [ + "▁communications", + -11.003194808959961 + ], + [ + "trag", + -11.003307342529297 + ], + [ + "▁trail", + -11.003803253173828 + ], + [ + "AN", + -11.00426197052002 + ], + [ + "▁Federal", + -11.004467964172363 + ], + [ + "▁quote", + -11.00455093383789 + ], + [ + "▁spus", + -11.004620552062988 + ], + [ + "▁managing", + -11.004990577697754 + ], + [ + "▁booking", + -11.00505256652832 + ], + [ + "▁Blog", + -11.005669593811035 + ], + [ + "▁tank", + -11.005681991577148 + ], + [ + "pon", + -11.005804061889648 + ], + [ + "GE", + -11.00582218170166 + ], + [ + "▁fiscal", + -11.005871772766113 + ], + [ + "▁satisfaction", + -11.006044387817383 + ], + [ + "cre", + -11.00614070892334 + ], + [ + "▁protected", + -11.006494522094727 + ], + [ + "▁enfants", + -11.006782531738281 + ], + [ + "▁dort", + -11.007554054260254 + ], + [ + "▁Mel", + -11.008041381835938 + ], + [ + "▁turns", + -11.00804615020752 + ], + [ + "▁savings", + -11.008106231689453 + ], + [ + "▁voir", + -11.008358001708984 + ], + [ + "▁Boston", + -11.008394241333008 + ], + [ + "▁debate", + -11.008469581604004 + ], + [ + "▁SO", + -11.008857727050781 + ], + [ + "▁tables", + -11.009193420410156 + ], + [ + "▁honest", + -11.009210586547852 + ], + [ + "mate", + -11.009283065795898 + ], + [ + "▁chart", + -11.0094633102417 + ], + [ + "decât", + -11.009682655334473 + ], + [ + "▁Radio", + -11.009685516357422 + ], + [ + "54", + -11.00986385345459 + ], + [ + "▁vol", + -11.010008811950684 + ], + [ + "last", + -11.010148048400879 + ], + [ + "▁tall", + -11.010408401489258 + ], + [ + "▁Should", + -11.010489463806152 + ], + [ + "▁sink", + -11.010525703430176 + ], + [ + "▁Right", + -11.010527610778809 + ], + [ + "▁male", + -11.010720252990723 + ], + [ + "▁Modern", + -11.010753631591797 + ], + [ + "▁indeed", + -11.010886192321777 + ], + [ + "▁Garden", + -11.011139869689941 + ], + [ + "▁Mod", + -11.011307716369629 + ], + [ + "▁turning", + -11.0115327835083 + ], + [ + "▁inches", + -11.011557579040527 + ], + [ + "▁Police", + -11.01183795928955 + ], + [ + "▁Pay", + -11.012016296386719 + ], + [ + "UE", + -11.0126371383667 + ], + [ + "mé", + -11.012652397155762 + ], + [ + "EE", + -11.013046264648438 + ], + [ + "▁cookies", + -11.013116836547852 + ], + [ + "rip", + -11.013351440429688 + ], + [ + "▁Motor", + -11.01352310180664 + ], + [ + "▁lung", + -11.01379680633545 + ], + [ + "▁Ap", + -11.013995170593262 + ], + [ + "▁sustainable", + -11.014066696166992 + ], + [ + "▁instant", + -11.014240264892578 + ], + [ + "▁Rose", + -11.014464378356934 + ], + [ + "▁Carolina", + -11.014906883239746 + ], + [ + "▁Help", + -11.014969825744629 + ], + [ + "IE", + -11.01535701751709 + ], + [ + "▁Jersey", + -11.015522956848145 + ], + [ + "▁Spanish", + -11.015586853027344 + ], + [ + "▁wheel", + -11.015660285949707 + ], + [ + "▁fishing", + -11.0158109664917 + ], + [ + "gram", + -11.015937805175781 + ], + [ + "▁ST", + -11.016227722167969 + ], + [ + "▁Nov", + -11.01632022857666 + ], + [ + "▁reporting", + -11.016362190246582 + ], + [ + "ked", + -11.016467094421387 + ], + [ + "▁Leben", + -11.016557693481445 + ], + [ + "▁organisation", + -11.016843795776367 + ], + [ + "▁tiny", + -11.017144203186035 + ], + [ + "▁Alex", + -11.017236709594727 + ], + [ + "▁obtained", + -11.017255783081055 + ], + [ + "▁Acest", + -11.017367362976074 + ], + [ + "▁dangerous", + -11.01749038696289 + ], + [ + "utter", + -11.017624855041504 + ], + [ + "▁rev", + -11.01801586151123 + ], + [ + "Un", + -11.018242835998535 + ], + [ + "▁revealed", + -11.018356323242188 + ], + [ + "▁decade", + -11.018709182739258 + ], + [ + "▁possibility", + -11.01945686340332 + ], + [ + "service", + -11.019577980041504 + ], + [ + "è", + -11.01966667175293 + ], + [ + "▁Chief", + -11.019674301147461 + ], + [ + "▁Durch", + -11.019795417785645 + ], + [ + "▁cadre", + -11.019843101501465 + ], + [ + "▁wearing", + -11.019845008850098 + ], + [ + "sized", + -11.01988410949707 + ], + [ + "LY", + -11.01989459991455 + ], + [ + "▁unser", + -11.019963264465332 + ], + [ + "▁2016,", + -11.019988059997559 + ], + [ + "▁fail", + -11.020028114318848 + ], + [ + "iques", + -11.020115852355957 + ], + [ + "▁Angel", + -11.020315170288086 + ], + [ + "▁transportation", + -11.020364761352539 + ], + [ + "▁dates", + -11.020395278930664 + ], + [ + "▁danger", + -11.020731925964355 + ], + [ + "▁forum", + -11.020828247070312 + ], + [ + "zug", + -11.020885467529297 + ], + [ + "▁filed", + -11.021199226379395 + ], + [ + "loc", + -11.021201133728027 + ], + [ + "éri", + -11.021234512329102 + ], + [ + "tribu", + -11.021393775939941 + ], + [ + "▁entered", + -11.021639823913574 + ], + [ + "▁porte", + -11.021928787231445 + ], + [ + "▁arts", + -11.021979331970215 + ], + [ + "▁reform", + -11.022001266479492 + ], + [ + "▁Main", + -11.022101402282715 + ], + [ + "▁dir", + -11.022111892700195 + ], + [ + "▁approval", + -11.022465705871582 + ], + [ + "▁juice", + -11.022750854492188 + ], + [ + "vier", + -11.022771835327148 + ], + [ + "▁nivel", + -11.02318000793457 + ], + [ + "▁returns", + -11.023423194885254 + ], + [ + "▁formed", + -11.023723602294922 + ], + [ + "▁combine", + -11.02436351776123 + ], + [ + "▁cours", + -11.024392127990723 + ], + [ + "▁Standard", + -11.024463653564453 + ], + [ + "▁certification", + -11.024677276611328 + ], + [ + "escu", + -11.024996757507324 + ], + [ + "▁achieved", + -11.025278091430664 + ], + [ + "▁Model", + -11.025280952453613 + ], + [ + "rul", + -11.025404930114746 + ], + [ + "▁Tage", + -11.025530815124512 + ], + [ + "▁injuries", + -11.02560806274414 + ], + [ + "▁Sal", + -11.025671005249023 + ], + [ + "▁expenses", + -11.025887489318848 + ], + [ + "▁cet", + -11.026009559631348 + ], + [ + "▁taxes", + -11.026028633117676 + ], + [ + "diesen", + -11.02626895904541 + ], + [ + "▁fairly", + -11.026638984680176 + ], + [ + "▁Access", + -11.026866912841797 + ], + [ + "wind", + -11.027122497558594 + ], + [ + "IM", + -11.027252197265625 + ], + [ + "ense", + -11.027548789978027 + ], + [ + "▁hang", + -11.027957916259766 + ], + [ + "▁citizens", + -11.028020858764648 + ], + [ + "3%", + -11.028101921081543 + ], + [ + "lum", + -11.028268814086914 + ], + [ + "▁discussed", + -11.028326034545898 + ], + [ + "AC", + -11.02841854095459 + ], + [ + "‘", + -11.0286865234375 + ], + [ + "▁Sol", + -11.028698921203613 + ], + [ + "06", + -11.028816223144531 + ], + [ + "stellen", + -11.029170989990234 + ], + [ + "▁participation", + -11.02917194366455 + ], + [ + "▁Box", + -11.029200553894043 + ], + [ + "▁bieten", + -11.029687881469727 + ], + [ + "▁Louis", + -11.029730796813965 + ], + [ + "▁lessons", + -11.029789924621582 + ], + [ + "▁visible", + -11.029966354370117 + ], + [ + "▁Cam", + -11.030128479003906 + ], + [ + "▁Ban", + -11.03053092956543 + ], + [ + "▁Far", + -11.03060245513916 + ], + [ + "▁travers", + -11.030759811401367 + ], + [ + "▁telling", + -11.030808448791504 + ], + [ + "▁magic", + -11.030855178833008 + ], + [ + "▁Night", + -11.031316757202148 + ], + [ + "▁judge", + -11.031400680541992 + ], + [ + "▁Pat", + -11.031482696533203 + ], + [ + "▁Southern", + -11.031901359558105 + ], + [ + "OL", + -11.031929969787598 + ], + [ + "fully", + -11.032191276550293 + ], + [ + "▁acestea", + -11.03223705291748 + ], + [ + "▁Order", + -11.032383918762207 + ], + [ + "▁facut", + -11.032523155212402 + ], + [ + "▁Matt", + -11.032600402832031 + ], + [ + "registr", + -11.03278923034668 + ], + [ + "▁Yet", + -11.032811164855957 + ], + [ + "ß", + -11.033596992492676 + ], + [ + "▁făcut", + -11.033618927001953 + ], + [ + "▁versions", + -11.033780097961426 + ], + [ + "▁Force", + -11.03396224975586 + ], + [ + "rick", + -11.034153938293457 + ], + [ + "▁rund", + -11.034563064575195 + ], + [ + "ike", + -11.034658432006836 + ], + [ + "▁Young", + -11.034675598144531 + ], + [ + "▁ski", + -11.034927368164062 + ], + [ + "CU", + -11.035385131835938 + ], + [ + "▁Second", + -11.035510063171387 + ], + [ + "▁graduate", + -11.03554916381836 + ], + [ + "▁Bible", + -11.036049842834473 + ], + [ + "▁vary", + -11.036060333251953 + ], + [ + "▁celebration", + -11.036151885986328 + ], + [ + "▁risks", + -11.036210060119629 + ], + [ + "erii", + -11.036327362060547 + ], + [ + "rance", + -11.036577224731445 + ], + [ + "▁MP", + -11.036787986755371 + ], + [ + "▁tale", + -11.036788940429688 + ], + [ + "▁Ford", + -11.037044525146484 + ], + [ + "▁attached", + -11.037278175354004 + ], + [ + "▁Sy", + -11.037312507629395 + ], + [ + "▁Ly", + -11.03765869140625 + ], + [ + "stellung", + -11.037687301635742 + ], + [ + "▁trop", + -11.0377197265625 + ], + [ + "▁années", + -11.037736892700195 + ], + [ + "▁linked", + -11.03792667388916 + ], + [ + "pit", + -11.038352012634277 + ], + [ + "So", + -11.03835391998291 + ], + [ + "ţe", + -11.038473129272461 + ], + [ + "▁origin", + -11.038509368896484 + ], + [ + "▁boys", + -11.039263725280762 + ], + [ + "holder", + -11.039352416992188 + ], + [ + "read", + -11.039461135864258 + ], + [ + "▁relative", + -11.03950023651123 + ], + [ + "▁industries", + -11.03958511352539 + ], + [ + "making", + -11.039688110351562 + ], + [ + "▁tun", + -11.039917945861816 + ], + [ + "▁forced", + -11.041061401367188 + ], + [ + "▁Welcome", + -11.041086196899414 + ], + [ + "▁explained", + -11.041138648986816 + ], + [ + "MP", + -11.041389465332031 + ], + [ + "▁Three", + -11.041613578796387 + ], + [ + "aza", + -11.041768074035645 + ], + [ + "▁1999", + -11.041924476623535 + ], + [ + "▁erst", + -11.042237281799316 + ], + [ + "RS", + -11.042623519897461 + ], + [ + "▁attractive", + -11.04279899597168 + ], + [ + "▁visited", + -11.042805671691895 + ], + [ + "▁nom", + -11.042874336242676 + ], + [ + "▁drum", + -11.042933464050293 + ], + [ + "cast", + -11.043068885803223 + ], + [ + "ogen", + -11.043105125427246 + ], + [ + "▁tech", + -11.04360294342041 + ], + [ + "▁Comment", + -11.043664932250977 + ], + [ + "▁Little", + -11.04405689239502 + ], + [ + "▁suggested", + -11.044086456298828 + ], + [ + "▁gar", + -11.044205665588379 + ], + [ + "▁crack", + -11.04458999633789 + ], + [ + "▁shooting", + -11.044676780700684 + ], + [ + "▁Try", + -11.044759750366211 + ], + [ + "▁Remember", + -11.045008659362793 + ], + [ + "▁folks", + -11.045217514038086 + ], + [ + "▁MS", + -11.045512199401855 + ], + [ + "▁Dia", + -11.04584789276123 + ], + [ + "3)", + -11.046561241149902 + ], + [ + "arbeit", + -11.04697036743164 + ], + [ + "▁pepper", + -11.047065734863281 + ], + [ + "zz", + -11.047107696533203 + ], + [ + "▁extreme", + -11.047235488891602 + ], + [ + "▁extrem", + -11.047367095947266 + ], + [ + "▁severe", + -11.047768592834473 + ], + [ + "▁networks", + -11.047882080078125 + ], + [ + "păr", + -11.047910690307617 + ], + [ + "sent", + -11.047933578491211 + ], + [ + "▁structures", + -11.048048973083496 + ], + [ + "▁Join", + -11.048078536987305 + ], + [ + "▁privind", + -11.048255920410156 + ], + [ + "▁marriage", + -11.04865837097168 + ], + [ + "▁liegt", + -11.048918724060059 + ], + [ + "eben", + -11.048995971679688 + ], + [ + "▁produse", + -11.049076080322266 + ], + [ + "▁tested", + -11.049090385437012 + ], + [ + "▁Queen", + -11.049134254455566 + ], + [ + "▁Tax", + -11.049687385559082 + ], + [ + "rian", + -11.049710273742676 + ], + [ + "▁Problem", + -11.050151824951172 + ], + [ + "izat", + -11.05023193359375 + ], + [ + "udi", + -11.050324440002441 + ], + [ + "▁LA", + -11.050718307495117 + ], + [ + "▁afford", + -11.051108360290527 + ], + [ + "▁percentage", + -11.05121898651123 + ], + [ + "▁cute", + -11.051547050476074 + ], + [ + "▁gorgeous", + -11.051891326904297 + ], + [ + "▁indoor", + -11.05190372467041 + ], + [ + "▁configuration", + -11.052103042602539 + ], + [ + "▁immediate", + -11.052303314208984 + ], + [ + "▁exemple", + -11.052450180053711 + ], + [ + "▁Being", + -11.052550315856934 + ], + [ + "▁introduction", + -11.052591323852539 + ], + [ + "ella", + -11.053206443786621 + ], + [ + "bare", + -11.053521156311035 + ], + [ + "▁besser", + -11.053539276123047 + ], + [ + "▁Put", + -11.053740501403809 + ], + [ + "gon", + -11.054248809814453 + ], + [ + "▁Italy", + -11.054259300231934 + ], + [ + "▁Thus", + -11.05435562133789 + ], + [ + "tari", + -11.054437637329102 + ], + [ + "0.000", + -11.054460525512695 + ], + [ + "▁Price", + -11.054651260375977 + ], + [ + "▁Trust", + -11.054824829101562 + ], + [ + "▁contra", + -11.054863929748535 + ], + [ + "▁layout", + -11.05504035949707 + ], + [ + "▁Ireland", + -11.055187225341797 + ], + [ + "ctor", + -11.055344581604004 + ], + [ + "atoare", + -11.055540084838867 + ], + [ + "pra", + -11.055729866027832 + ], + [ + "rent", + -11.055892944335938 + ], + [ + "▁Seite", + -11.05605411529541 + ], + [ + "▁ori", + -11.056280136108398 + ], + [ + "spiel", + -11.056541442871094 + ], + [ + "▁Times", + -11.056883811950684 + ], + [ + "primarily", + -11.056974411010742 + ], + [ + "nov", + -11.05703067779541 + ], + [ + "▁desired", + -11.057061195373535 + ], + [ + "▁Would", + -11.057072639465332 + ], + [ + "PL", + -11.057225227355957 + ], + [ + "▁originally", + -11.057367324829102 + ], + [ + "▁Ana", + -11.057463645935059 + ], + [ + "EN", + -11.05754566192627 + ], + [ + "▁occasion", + -11.05755615234375 + ], + [ + "▁grant", + -11.057572364807129 + ], + [ + "igkeit", + -11.057975769042969 + ], + [ + "▁scheme", + -11.058146476745605 + ], + [ + "▁2015.", + -11.058621406555176 + ], + [ + "izare", + -11.058778762817383 + ], + [ + "gate", + -11.058792114257812 + ], + [ + "▁poker", + -11.058899879455566 + ], + [ + "pping", + -11.058998107910156 + ], + [ + "▁Wild", + -11.059511184692383 + ], + [ + "▁YouTube", + -11.059995651245117 + ], + [ + "▁assume", + -11.060284614562988 + ], + [ + "с", + -11.060614585876465 + ], + [ + "▁rapport", + -11.060623168945312 + ], + [ + "▁labor", + -11.060996055603027 + ], + [ + "teur", + -11.061041831970215 + ], + [ + "▁genre", + -11.06116008758545 + ], + [ + "▁plat", + -11.061745643615723 + ], + [ + "▁listening", + -11.061750411987305 + ], + [ + "sky", + -11.061777114868164 + ], + [ + "▁neighborhood", + -11.061782836914062 + ], + [ + "▁3-", + -11.062150001525879 + ], + [ + "▁Library", + -11.062162399291992 + ], + [ + "agit", + -11.062249183654785 + ], + [ + "▁platforms", + -11.062849998474121 + ], + [ + "bei", + -11.062882423400879 + ], + [ + "AB", + -11.062897682189941 + ], + [ + "▁manufacturers", + -11.06295394897461 + ], + [ + "▁printing", + -11.063141822814941 + ], + [ + "▁crisis", + -11.063326835632324 + ], + [ + "▁Smart", + -11.06335163116455 + ], + [ + "▁drawing", + -11.063406944274902 + ], + [ + "MO", + -11.06348991394043 + ], + [ + "▁durable", + -11.063569068908691 + ], + [ + "chant", + -11.0636625289917 + ], + [ + "▁chemical", + -11.063764572143555 + ], + [ + "▁savoir", + -11.063776016235352 + ], + [ + "▁Max", + -11.063802719116211 + ], + [ + "gestellt", + -11.06380844116211 + ], + [ + "▁rural", + -11.063854217529297 + ], + [ + "52", + -11.064105033874512 + ], + [ + "▁invited", + -11.064169883728027 + ], + [ + "▁fil", + -11.0642728805542 + ], + [ + "▁Rob", + -11.064284324645996 + ], + [ + "▁Bell", + -11.064387321472168 + ], + [ + "▁neck", + -11.064831733703613 + ], + [ + "pac", + -11.064879417419434 + ], + [ + "wal", + -11.06491470336914 + ], + [ + "▁là", + -11.064922332763672 + ], + [ + "▁Virginia", + -11.065081596374512 + ], + [ + "▁applicable", + -11.06509017944336 + ], + [ + "▁abuse", + -11.065153121948242 + ], + [ + "aide", + -11.065321922302246 + ], + [ + "▁increases", + -11.065396308898926 + ], + [ + "▁moi", + -11.065568923950195 + ], + [ + "▁Non", + -11.065577507019043 + ], + [ + "▁Produkt", + -11.065627098083496 + ], + [ + "FC", + -11.065644264221191 + ], + [ + "▁shops", + -11.065677642822266 + ], + [ + "▁prendre", + -11.065923690795898 + ], + [ + "atul", + -11.065990447998047 + ], + [ + "▁sal", + -11.066137313842773 + ], + [ + "▁société", + -11.06627082824707 + ], + [ + "▁Hot", + -11.066329002380371 + ], + [ + "rim", + -11.066587448120117 + ], + [ + "gue", + -11.06661605834961 + ], + [ + "▁enterprise", + -11.066624641418457 + ], + [ + "▁33", + -11.067329406738281 + ], + [ + "mittel", + -11.067395210266113 + ], + [ + "ged", + -11.067439079284668 + ], + [ + "▁formula", + -11.06777286529541 + ], + [ + "▁spin", + -11.067784309387207 + ], + [ + "als", + -11.067826271057129 + ], + [ + "2%", + -11.06785774230957 + ], + [ + "bon", + -11.068192481994629 + ], + [ + "▁Executive", + -11.068323135375977 + ], + [ + "▁wirklich", + -11.068427085876465 + ], + [ + "îl", + -11.068608283996582 + ], + [ + "1.", + -11.068917274475098 + ], + [ + "▁Arm", + -11.069157600402832 + ], + [ + "▁rid", + -11.069358825683594 + ], + [ + "aries", + -11.069727897644043 + ], + [ + "▁incident", + -11.06982421875 + ], + [ + "▁copii", + -11.070008277893066 + ], + [ + "▁Charles", + -11.070141792297363 + ], + [ + "▁meals", + -11.070147514343262 + ], + [ + "▁wireless", + -11.070237159729004 + ], + [ + "Ex", + -11.070364952087402 + ], + [ + "▁Financial", + -11.070540428161621 + ], + [ + "▁AM", + -11.070615768432617 + ], + [ + "▁fest", + -11.070645332336426 + ], + [ + "▁Ol", + -11.071410179138184 + ], + [ + "oir", + -11.071447372436523 + ], + [ + "300", + -11.071893692016602 + ], + [ + "▁punct", + -11.072138786315918 + ], + [ + "▁Mad", + -11.07283878326416 + ], + [ + "▁Ali", + -11.072907447814941 + ], + [ + "lag", + -11.073214530944824 + ], + [ + "▁ocean", + -11.073314666748047 + ], + [ + "▁mirror", + -11.073326110839844 + ], + [ + "▁Additionally", + -11.073869705200195 + ], + [ + "alia", + -11.073884963989258 + ], + [ + "▁county", + -11.073899269104004 + ], + [ + "▁hip", + -11.074305534362793 + ], + [ + "dale", + -11.074395179748535 + ], + [ + "▁Stra", + -11.074429512023926 + ], + [ + "▁drag", + -11.074575424194336 + ], + [ + "▁Sand", + -11.074851036071777 + ], + [ + "▁historic", + -11.074980735778809 + ], + [ + "ière", + -11.075427055358887 + ], + [ + "▁examine", + -11.075624465942383 + ], + [ + "soci", + -11.075634002685547 + ], + [ + "ime", + -11.076088905334473 + ], + [ + "▁Insurance", + -11.07621955871582 + ], + [ + "▁crime", + -11.076736450195312 + ], + [ + "▁pare", + -11.076945304870605 + ], + [ + "▁craft", + -11.077105522155762 + ], + [ + "▁Building", + -11.077279090881348 + ], + [ + "mission", + -11.077534675598145 + ], + [ + "▁Americans", + -11.077573776245117 + ], + [ + "▁mg", + -11.077799797058105 + ], + [ + "▁passage", + -11.077938079833984 + ], + [ + "▁deposit", + -11.078346252441406 + ], + [ + "▁widely", + -11.078444480895996 + ], + [ + "nch", + -11.078453063964844 + ], + [ + "▁Coast", + -11.078756332397461 + ], + [ + "▁recipes", + -11.078784942626953 + ], + [ + "▁Ziel", + -11.07951545715332 + ], + [ + "▁duty", + -11.079646110534668 + ], + [ + "▁gerne", + -11.079704284667969 + ], + [ + "most", + -11.080034255981445 + ], + [ + "▁argument", + -11.080158233642578 + ], + [ + "▁root", + -11.08021354675293 + ], + [ + "▁consult", + -11.08024787902832 + ], + [ + "▁muscle", + -11.080255508422852 + ], + [ + "▁spoke", + -11.08038330078125 + ], + [ + "▁Cum", + -11.080950736999512 + ], + [ + "▁orange", + -11.081033706665039 + ], + [ + "▁reader", + -11.081123352050781 + ], + [ + "schw", + -11.081151008605957 + ], + [ + "▁commission", + -11.081332206726074 + ], + [ + "histoire", + -11.081811904907227 + ], + [ + "▁represents", + -11.082064628601074 + ], + [ + "▁meilleur", + -11.082343101501465 + ], + [ + "▁10.", + -11.082358360290527 + ], + [ + "HA", + -11.082427024841309 + ], + [ + "▁Systems", + -11.082573890686035 + ], + [ + "▁blind", + -11.082603454589844 + ], + [ + "▁HP", + -11.083221435546875 + ], + [ + "▁doi", + -11.083307266235352 + ], + [ + "▁signature", + -11.083404541015625 + ], + [ + "▁invite", + -11.083505630493164 + ], + [ + "▁Samsung", + -11.083802223205566 + ], + [ + "▁liber", + -11.083942413330078 + ], + [ + "▁letters", + -11.0840482711792 + ], + [ + "▁primul", + -11.084186553955078 + ], + [ + "▁losing", + -11.084328651428223 + ], + [ + "resulting", + -11.084467887878418 + ], + [ + "▁Computer", + -11.08474063873291 + ], + [ + "▁poll", + -11.0847749710083 + ], + [ + "rile", + -11.085102081298828 + ], + [ + "TI", + -11.085142135620117 + ], + [ + "▁cur", + -11.08566951751709 + ], + [ + "▁fonction", + -11.085833549499512 + ], + [ + "gat", + -11.086359977722168 + ], + [ + "AA", + -11.086480140686035 + ], + [ + "tiv", + -11.086692810058594 + ], + [ + "▁Str", + -11.087076187133789 + ], + [ + "ești", + -11.087677955627441 + ], + [ + "▁officer", + -11.0877046585083 + ], + [ + "reducing", + -11.08772087097168 + ], + [ + "▁gifts", + -11.08780288696289 + ], + [ + "▁performing", + -11.08788776397705 + ], + [ + "▁»,", + -11.088349342346191 + ], + [ + "▁guitar", + -11.08838939666748 + ], + [ + "▁segment", + -11.088580131530762 + ], + [ + "▁Tar", + -11.08861255645752 + ], + [ + "▁ultimately", + -11.088805198669434 + ], + [ + "▁cam", + -11.088960647583008 + ], + [ + "▁Arbeit", + -11.089076042175293 + ], + [ + "▁accessories", + -11.089418411254883 + ], + [ + "bad", + -11.089820861816406 + ], + [ + "home", + -11.0899019241333 + ], + [ + "▁clip", + -11.08995532989502 + ], + [ + "range", + -11.090432167053223 + ], + [ + "CM", + -11.090867042541504 + ], + [ + "▁printed", + -11.090883255004883 + ], + [ + "▁Pet", + -11.091177940368652 + ], + [ + "▁attract", + -11.091333389282227 + ], + [ + "date", + -11.091501235961914 + ], + [ + "▁Senior", + -11.091503143310547 + ], + [ + "▁genau", + -11.092177391052246 + ], + [ + "num", + -11.092435836791992 + ], + [ + "▁attended", + -11.092674255371094 + ], + [ + "▁Turn", + -11.092824935913086 + ], + [ + "▁History", + -11.092830657958984 + ], + [ + "some", + -11.092852592468262 + ], + [ + "▁describe", + -11.09308910369873 + ], + [ + "▁Lee", + -11.093143463134766 + ], + [ + "▁Fre", + -11.093314170837402 + ], + [ + "▁league", + -11.093345642089844 + ], + [ + "new", + -11.093505859375 + ], + [ + "tors", + -11.093535423278809 + ], + [ + "▁storm", + -11.094005584716797 + ], + [ + "▁Beispiel", + -11.094197273254395 + ], + [ + "▁index", + -11.094344139099121 + ], + [ + "▁awarded", + -11.094613075256348 + ], + [ + "state", + -11.094625473022461 + ], + [ + "▁1990", + -11.094874382019043 + ], + [ + "▁ends", + -11.094902992248535 + ], + [ + "kor", + -11.095070838928223 + ], + [ + "far", + -11.095418930053711 + ], + [ + "▁Page", + -11.095541000366211 + ], + [ + "▁promotion", + -11.095610618591309 + ], + [ + "▁weekly", + -11.095726013183594 + ], + [ + "400", + -11.095966339111328 + ], + [ + "iuni", + -11.096365928649902 + ], + [ + "▁Summer", + -11.096376419067383 + ], + [ + "▁thin", + -11.096627235412598 + ], + [ + "▁dafür", + -11.09669303894043 + ], + [ + "51", + -11.096769332885742 + ], + [ + "PR", + -11.096978187561035 + ], + [ + "▁Hy", + -11.097001075744629 + ], + [ + "gas", + -11.097013473510742 + ], + [ + "▁atat", + -11.097166061401367 + ], + [ + "▁mining", + -11.097347259521484 + ], + [ + "▁principles", + -11.09741497039795 + ], + [ + "gent", + -11.097545623779297 + ], + [ + "ika", + -11.097685813903809 + ], + [ + "▁religion", + -11.097787857055664 + ], + [ + "▁ordered", + -11.098284721374512 + ], + [ + "▁developers", + -11.098298072814941 + ], + [ + "▁pleasure", + -11.098456382751465 + ], + [ + "vit", + -11.098505020141602 + ], + [ + "mers", + -11.0988130569458 + ], + [ + "▁Section", + -11.098873138427734 + ], + [ + "▁por", + -11.098960876464844 + ], + [ + "▁Name", + -11.099200248718262 + ], + [ + "▁pink", + -11.099260330200195 + ], + [ + "dig", + -11.09934139251709 + ], + [ + "▁eligible", + -11.099397659301758 + ], + [ + "▁Happy", + -11.09941577911377 + ], + [ + "▁fo", + -11.099480628967285 + ], + [ + "▁availability", + -11.099541664123535 + ], + [ + "GO", + -11.099583625793457 + ], + [ + "▁Europa", + -11.099637985229492 + ], + [ + "▁Unit", + -11.099656105041504 + ], + [ + "▁1000", + -11.099837303161621 + ], + [ + "▁Berg", + -11.099846839904785 + ], + [ + "fini", + -11.099853515625 + ], + [ + "▁$3", + -11.100565910339355 + ], + [ + "iza", + -11.100749969482422 + ], + [ + "▁promo", + -11.100830078125 + ], + [ + "▁Low", + -11.101234436035156 + ], + [ + "abord", + -11.101326942443848 + ], + [ + "äh", + -11.101485252380371 + ], + [ + "▁Professor", + -11.101570129394531 + ], + [ + "▁array", + -11.101579666137695 + ], + [ + "▁hate", + -11.101594924926758 + ], + [ + "▁recording", + -11.101601600646973 + ], + [ + "RI", + -11.101649284362793 + ], + [ + "▁proof", + -11.101710319519043 + ], + [ + "lay", + -11.10185718536377 + ], + [ + "DE", + -11.102007865905762 + ], + [ + "▁surprised", + -11.102066040039062 + ], + [ + "▁boxes", + -11.102193832397461 + ], + [ + "▁noastre", + -11.102386474609375 + ], + [ + "zie", + -11.102387428283691 + ], + [ + "▁însă", + -11.10254192352295 + ], + [ + "▁ajuta", + -11.102783203125 + ], + [ + "▁weil", + -11.1028413772583 + ], + [ + "▁whenever", + -11.103026390075684 + ], + [ + "shi", + -11.103194236755371 + ], + [ + "satz", + -11.103605270385742 + ], + [ + "▁remind", + -11.10401725769043 + ], + [ + "▁consist", + -11.10412311553955 + ], + [ + "▁motiv", + -11.104240417480469 + ], + [ + "▁PS", + -11.1043062210083 + ], + [ + "▁trois", + -11.104543685913086 + ], + [ + "pad", + -11.10477352142334 + ], + [ + "▁besten", + -11.104904174804688 + ], + [ + "▁Stone", + -11.105140686035156 + ], + [ + "itz", + -11.105157852172852 + ], + [ + "fit", + -11.105164527893066 + ], + [ + "▁Mountain", + -11.105178833007812 + ], + [ + "OC", + -11.10519027709961 + ], + [ + "▁depends", + -11.105228424072266 + ], + [ + "▁Cover", + -11.105387687683105 + ], + [ + "▁bags", + -11.106058120727539 + ], + [ + "▁Bel", + -11.106199264526367 + ], + [ + "▁Engineering", + -11.106304168701172 + ], + [ + "▁flower", + -11.106647491455078 + ], + [ + "▁gratuit", + -11.106670379638672 + ], + [ + "▁smartphone", + -11.106780052185059 + ], + [ + "stan", + -11.107197761535645 + ], + [ + "spect", + -11.10726261138916 + ], + [ + "SL", + -11.107282638549805 + ], + [ + "sho", + -11.10738754272461 + ], + [ + "▁Ser", + -11.10791301727295 + ], + [ + "▁Perhaps", + -11.108247756958008 + ], + [ + "▁codes", + -11.108342170715332 + ], + [ + "▁Wind", + -11.10849666595459 + ], + [ + "aient", + -11.108757019042969 + ], + [ + "▁Prin", + -11.108802795410156 + ], + [ + "▁(1)", + -11.109090805053711 + ], + [ + "▁figures", + -11.109450340270996 + ], + [ + "▁ausge", + -11.10972785949707 + ], + [ + "▁episode", + -11.110050201416016 + ], + [ + "▁Spa", + -11.110370635986328 + ], + [ + "▁Silver", + -11.110386848449707 + ], + [ + "▁Sky", + -11.110396385192871 + ], + [ + "▁capabilities", + -11.1107177734375 + ], + [ + "▁Uni", + -11.11073112487793 + ], + [ + "▁încă", + -11.110876083374023 + ], + [ + "TO", + -11.111289978027344 + ], + [ + "▁Hal", + -11.111358642578125 + ], + [ + "ghi", + -11.111414909362793 + ], + [ + "▁sofa", + -11.111438751220703 + ], + [ + "hard", + -11.11150074005127 + ], + [ + "▁FOR", + -11.111587524414062 + ], + [ + "▁Ber", + -11.111820220947266 + ], + [ + "▁firms", + -11.11187744140625 + ], + [ + "▁memories", + -11.111883163452148 + ], + [ + "▁lift", + -11.11214542388916 + ], + [ + "▁sending", + -11.11214542388916 + ], + [ + "▁narrow", + -11.112646102905273 + ], + [ + "▁Steve", + -11.112784385681152 + ], + [ + "▁integration", + -11.112905502319336 + ], + [ + "known", + -11.113122940063477 + ], + [ + "▁nostru", + -11.113237380981445 + ], + [ + "iţi", + -11.113422393798828 + ], + [ + "▁Georgia", + -11.113759994506836 + ], + [ + "▁slowly", + -11.114026069641113 + ], + [ + "iere", + -11.114028930664062 + ], + [ + "aka", + -11.114255905151367 + ], + [ + "PE", + -11.114320755004883 + ], + [ + "▁venue", + -11.11468505859375 + ], + [ + "jar", + -11.11474609375 + ], + [ + "buch", + -11.114755630493164 + ], + [ + "rad", + -11.114858627319336 + ], + [ + "▁resistance", + -11.114899635314941 + ], + [ + "▁stehen", + -11.114914894104004 + ], + [ + "chin", + -11.11504077911377 + ], + [ + "▁weak", + -11.11535358428955 + ], + [ + "▁DVD", + -11.115598678588867 + ], + [ + "▁bodies", + -11.115856170654297 + ], + [ + "▁split", + -11.115884780883789 + ], + [ + "What", + -11.116231918334961 + ], + [ + "setzen", + -11.116467475891113 + ], + [ + "▁loves", + -11.116561889648438 + ], + [ + "▁kleine", + -11.117077827453613 + ], + [ + "▁increasingly", + -11.11746883392334 + ], + [ + "▁alert", + -11.117583274841309 + ], + [ + "▁AC", + -11.117647171020508 + ], + [ + "▁partir", + -11.117974281311035 + ], + [ + "▁ratio", + -11.11807918548584 + ], + [ + "▁keeps", + -11.118539810180664 + ], + [ + "▁Area", + -11.118544578552246 + ], + [ + "▁données", + -11.119071960449219 + ], + [ + "▁flag", + -11.119254112243652 + ], + [ + "▁NO", + -11.119277000427246 + ], + [ + "▁hotels", + -11.119336128234863 + ], + [ + "▁debut", + -11.119365692138672 + ], + [ + "▁suffer", + -11.119368553161621 + ], + [ + "▁hidden", + -11.119810104370117 + ], + [ + "▁clothing", + -11.120074272155762 + ], + [ + "▁household", + -11.120235443115234 + ], + [ + "medi", + -11.120268821716309 + ], + [ + "▁reste", + -11.120274543762207 + ], + [ + "bro", + -11.120381355285645 + ], + [ + "▁Bus", + -11.120405197143555 + ], + [ + "▁Ken", + -11.120572090148926 + ], + [ + "IR", + -11.120758056640625 + ], + [ + "▁suffering", + -11.121212005615234 + ], + [ + "▁publication", + -11.121246337890625 + ], + [ + "▁Mat", + -11.121360778808594 + ], + [ + "▁impression", + -11.121509552001953 + ], + [ + "▁founded", + -11.121562957763672 + ], + [ + "▁stable", + -11.121566772460938 + ], + [ + "▁promise", + -11.121719360351562 + ], + [ + "▁Cloud", + -11.121770858764648 + ], + [ + "▁prison", + -11.122099876403809 + ], + [ + "cor", + -11.122355461120605 + ], + [ + "▁Sports", + -11.122716903686523 + ], + [ + "▁erste", + -11.122745513916016 + ], + [ + "shire", + -11.122757911682129 + ], + [ + "▁recommendations", + -11.122916221618652 + ], + [ + "▁permit", + -11.123100280761719 + ], + [ + "▁tomorrow", + -11.123126983642578 + ], + [ + "▁lucky", + -11.123422622680664 + ], + [ + "▁realized", + -11.123449325561523 + ], + [ + "▁famille", + -11.123473167419434 + ], + [ + "▁Zealand", + -11.123542785644531 + ], + [ + "▁wooden", + -11.123601913452148 + ], + [ + "▁east", + -11.124269485473633 + ], + [ + "▁Bereich", + -11.12458324432373 + ], + [ + "während", + -11.124653816223145 + ], + [ + "rite", + -11.124836921691895 + ], + [ + "▁fla", + -11.124902725219727 + ], + [ + "platz", + -11.124991416931152 + ], + [ + "▁zero", + -11.125292778015137 + ], + [ + "▁priority", + -11.12535572052002 + ], + [ + "▁Airport", + -11.125506401062012 + ], + [ + "▁Kauf", + -11.125590324401855 + ], + [ + "▁ultimate", + -11.12601375579834 + ], + [ + "▁chest", + -11.126175880432129 + ], + [ + "▁tone", + -11.126376152038574 + ], + [ + "▁Kal", + -11.126431465148926 + ], + [ + "▁supposed", + -11.12669849395752 + ], + [ + "▁vedere", + -11.126846313476562 + ], + [ + "▁50%", + -11.126872062683105 + ], + [ + "▁Ger", + -11.127785682678223 + ], + [ + "pack", + -11.127849578857422 + ], + [ + "▁priv", + -11.128241539001465 + ], + [ + "▁Kit", + -11.128263473510742 + ], + [ + "▁tent", + -11.128457069396973 + ], + [ + "▁guidelines", + -11.128461837768555 + ], + [ + "▁Republic", + -11.128824234008789 + ], + [ + "including", + -11.129239082336426 + ], + [ + "▁chief", + -11.129615783691406 + ], + [ + "▁Living", + -11.129766464233398 + ], + [ + "keit", + -11.1298189163208 + ], + [ + "▁convert", + -11.129831314086914 + ], + [ + "tail", + -11.129928588867188 + ], + [ + "orient", + -11.129960060119629 + ], + [ + "eigenen", + -11.130245208740234 + ], + [ + "▁soup", + -11.130587577819824 + ], + [ + "▁zona", + -11.130661010742188 + ], + [ + "▁composition", + -11.130690574645996 + ], + [ + "▁Bob", + -11.130831718444824 + ], + [ + "▁exception", + -11.131170272827148 + ], + [ + "▁cr", + -11.131287574768066 + ], + [ + "▁str", + -11.131482124328613 + ], + [ + "▁Fl", + -11.13178825378418 + ], + [ + "AT", + -11.131909370422363 + ], + [ + "kel", + -11.132002830505371 + ], + [ + "▁pricing", + -11.132189750671387 + ], + [ + "▁Mass", + -11.132258415222168 + ], + [ + "vir", + -11.132333755493164 + ], + [ + "leg", + -11.132448196411133 + ], + [ + "▁rating", + -11.132455825805664 + ], + [ + "▁Sale", + -11.132628440856934 + ], + [ + "▁somewhere", + -11.132866859436035 + ], + [ + "▁submitted", + -11.133084297180176 + ], + [ + "▁Pop", + -11.133296012878418 + ], + [ + "▁papers", + -11.13330364227295 + ], + [ + "▁authorities", + -11.133326530456543 + ], + [ + "▁Person", + -11.133381843566895 + ], + [ + "▁kill", + -11.133512496948242 + ], + [ + "▁suggestions", + -11.133548736572266 + ], + [ + "-6", + -11.133644104003906 + ], + [ + "▁dust", + -11.133750915527344 + ], + [ + "taire", + -11.133805274963379 + ], + [ + "▁recognition", + -11.133870124816895 + ], + [ + "3.", + -11.134047508239746 + ], + [ + "▁Mont", + -11.134230613708496 + ], + [ + "▁produit", + -11.13430118560791 + ], + [ + "▁transmission", + -11.134340286254883 + ], + [ + "▁Th", + -11.13475513458252 + ], + [ + "▁passing", + -11.134928703308105 + ], + [ + "▁Partner", + -11.135161399841309 + ], + [ + "▁dire", + -11.135205268859863 + ], + [ + "▁DC", + -11.135432243347168 + ], + [ + "▁sky", + -11.135659217834473 + ], + [ + "▁Kitchen", + -11.135890007019043 + ], + [ + "▁fluid", + -11.135929107666016 + ], + [ + "▁scored", + -11.136005401611328 + ], + [ + "▁chapter", + -11.136100769042969 + ], + [ + "If", + -11.136231422424316 + ], + [ + "letzten", + -11.136275291442871 + ], + [ + "▁officers", + -11.13641357421875 + ], + [ + "▁avem", + -11.136631965637207 + ], + [ + "ister", + -11.136666297912598 + ], + [ + "▁involves", + -11.136688232421875 + ], + [ + "ico", + -11.136898040771484 + ], + [ + "bur", + -11.137056350708008 + ], + [ + "▁mieux", + -11.137064933776855 + ], + [ + "▁Photo", + -11.1371431350708 + ], + [ + "▁Cro", + -11.137228012084961 + ], + [ + "▁professor", + -11.137245178222656 + ], + [ + "▁besonders", + -11.137313842773438 + ], + [ + "д", + -11.137367248535156 + ], + [ + "▁alongside", + -11.137382507324219 + ], + [ + "▁stored", + -11.13770580291748 + ], + [ + "▁activ", + -11.137849807739258 + ], + [ + "▁setup", + -11.138169288635254 + ], + [ + "▁extract", + -11.138627052307129 + ], + [ + "▁accent", + -11.138633728027344 + ], + [ + "▁replaced", + -11.138638496398926 + ], + [ + "tec", + -11.138800621032715 + ], + [ + "▁Natur", + -11.138848304748535 + ], + [ + "▁Pacific", + -11.138887405395508 + ], + [ + "▁NY", + -11.139485359191895 + ], + [ + "▁Capital", + -11.139583587646484 + ], + [ + "▁forest", + -11.13969898223877 + ], + [ + "incredibly", + -11.14006233215332 + ], + [ + "▁choix", + -11.14021110534668 + ], + [ + "▁seriously", + -11.140281677246094 + ], + [ + "▁konnte", + -11.14030933380127 + ], + [ + "▁2014.", + -11.140443801879883 + ], + [ + "ensuring", + -11.140534400939941 + ], + [ + "▁handling", + -11.140661239624023 + ], + [ + "▁9.", + -11.140715599060059 + ], + [ + "▁relations", + -11.140876770019531 + ], + [ + "▁Kom", + -11.141045570373535 + ], + [ + "▁Hol", + -11.141282081604004 + ], + [ + "▁none", + -11.141515731811523 + ], + [ + "rob", + -11.141718864440918 + ], + [ + "▁Forum", + -11.141759872436523 + ], + [ + "hour", + -11.141776084899902 + ], + [ + "ème", + -11.141809463500977 + ], + [ + "▁Space", + -11.141986846923828 + ], + [ + "▁Ham", + -11.142992973327637 + ], + [ + "rap", + -11.143169403076172 + ], + [ + "▁Michigan", + -11.14317512512207 + ], + [ + "km", + -11.143202781677246 + ], + [ + "▁utilize", + -11.143548965454102 + ], + [ + "lov", + -11.143775939941406 + ], + [ + "▁luck", + -11.144388198852539 + ], + [ + "lä", + -11.144824981689453 + ], + [ + "▁healing", + -11.145010948181152 + ], + [ + "▁neu", + -11.145182609558105 + ], + [ + "aging", + -11.145251274108887 + ], + [ + "▁compliance", + -11.145583152770996 + ], + [ + "▁vertical", + -11.145675659179688 + ], + [ + "▁FREE", + -11.145729064941406 + ], + [ + "▁differences", + -11.146014213562012 + ], + [ + "▁Server", + -11.146252632141113 + ], + [ + "▁estimated", + -11.146378517150879 + ], + [ + "schutz", + -11.146692276000977 + ], + [ + "▁notamment", + -11.146736145019531 + ], + [ + "▁120", + -11.146919250488281 + ], + [ + "72", + -11.147282600402832 + ], + [ + "▁heating", + -11.147347450256348 + ], + [ + "late", + -11.14756965637207 + ], + [ + "▁younger", + -11.14783000946045 + ], + [ + "▁Intel", + -11.148171424865723 + ], + [ + "▁salad", + -11.148362159729004 + ], + [ + "▁commonly", + -11.148563385009766 + ], + [ + "▁treatments", + -11.148682594299316 + ], + [ + "▁speaker", + -11.148770332336426 + ], + [ + "▁producing", + -11.149120330810547 + ], + [ + "▁eggs", + -11.149367332458496 + ], + [ + "▁Spirit", + -11.149892807006836 + ], + [ + "▁beide", + -11.149918556213379 + ], + [ + "▁transaction", + -11.150283813476562 + ], + [ + "▁Machine", + -11.150464057922363 + ], + [ + "▁Games", + -11.150527000427246 + ], + [ + "▁niveau", + -11.150687217712402 + ], + [ + "▁Need", + -11.15082836151123 + ], + [ + "radi", + -11.150959968566895 + ], + [ + "mir", + -11.15096664428711 + ], + [ + "causing", + -11.151000022888184 + ], + [ + "▁début", + -11.151042938232422 + ], + [ + "▁rencontre", + -11.151063919067383 + ], + [ + "▁threat", + -11.151153564453125 + ], + [ + "▁enjoying", + -11.151320457458496 + ], + [ + "Com", + -11.151386260986328 + ], + [ + "▁Johnson", + -11.151555061340332 + ], + [ + "▁tournament", + -11.15156364440918 + ], + [ + "▁Micro", + -11.151582717895508 + ], + [ + "▁Drive", + -11.151667594909668 + ], + [ + "▁Cre", + -11.151866912841797 + ], + [ + "▁Lebens", + -11.151930809020996 + ], + [ + "▁categories", + -11.152358055114746 + ], + [ + "5,000", + -11.15261173248291 + ], + [ + "▁confirmed", + -11.152617454528809 + ], + [ + "pli", + -11.152763366699219 + ], + [ + "▁Francisco", + -11.153139114379883 + ], + [ + "▁raw", + -11.153157234191895 + ], + [ + "▁managers", + -11.153223991394043 + ], + [ + "ţie", + -11.153365135192871 + ], + [ + "UR", + -11.153368949890137 + ], + [ + "▁aproape", + -11.154065132141113 + ], + [ + "via", + -11.154606819152832 + ], + [ + "▁engaged", + -11.154646873474121 + ], + [ + "▁parti", + -11.154741287231445 + ], + [ + "▁posting", + -11.15517807006836 + ], + [ + "CO", + -11.155484199523926 + ], + [ + "▁bois", + -11.155815124511719 + ], + [ + "▁inch", + -11.15590763092041 + ], + [ + "vie", + -11.156068801879883 + ], + [ + "▁aside", + -11.156314849853516 + ], + [ + "▁exceptional", + -11.15658950805664 + ], + [ + "▁vintage", + -11.156668663024902 + ], + [ + "▁Him", + -11.156795501708984 + ], + [ + "▁expansion", + -11.156806945800781 + ], + [ + "▁Weg", + -11.157122611999512 + ], + [ + "▁authors", + -11.157535552978516 + ], + [ + "▁deine", + -11.15764045715332 + ], + [ + "▁Prime", + -11.158016204833984 + ], + [ + "▁scan", + -11.158055305480957 + ], + [ + "▁reg", + -11.158112525939941 + ], + [ + "ția", + -11.158141136169434 + ], + [ + "riv", + -11.158258438110352 + ], + [ + "selon", + -11.158440589904785 + ], + [ + "▁Studio", + -11.158571243286133 + ], + [ + "▁dich", + -11.158658027648926 + ], + [ + "▁vi", + -11.158745765686035 + ], + [ + "▁sequence", + -11.159016609191895 + ], + [ + "▁Four", + -11.159046173095703 + ], + [ + "RT", + -11.159050941467285 + ], + [ + "▁ihn", + -11.159072875976562 + ], + [ + "▁employ", + -11.159223556518555 + ], + [ + "umb", + -11.159659385681152 + ], + [ + "ită", + -11.159818649291992 + ], + [ + "▁Station", + -11.159950256347656 + ], + [ + "▁upload", + -11.159972190856934 + ], + [ + "▁upgrade", + -11.160445213317871 + ], + [ + "▁exterior", + -11.160528182983398 + ], + [ + "▁writers", + -11.160531997680664 + ], + [ + "▁plot", + -11.160543441772461 + ], + [ + "▁Gen", + -11.16068172454834 + ], + [ + "TER", + -11.160821914672852 + ], + [ + "-12", + -11.160930633544922 + ], + [ + "http", + -11.162168502807617 + ], + [ + "▁smell", + -11.1621732711792 + ], + [ + "post", + -11.162522315979004 + ], + [ + "von", + -11.162790298461914 + ], + [ + "mili", + -11.16280746459961 + ], + [ + "8%", + -11.162972450256348 + ], + [ + "▁Andrew", + -11.163065910339355 + ], + [ + "▁spun", + -11.16321086883545 + ], + [ + "▁grass", + -11.163444519042969 + ], + [ + "unter", + -11.163474082946777 + ], + [ + "▁burn", + -11.16356086730957 + ], + [ + "▁Gegen", + -11.163601875305176 + ], + [ + "fest", + -11.163721084594727 + ], + [ + "▁Northern", + -11.163738250732422 + ], + [ + "▁consumption", + -11.163775444030762 + ], + [ + "▁bird", + -11.164069175720215 + ], + [ + "▁Miss", + -11.164369583129883 + ], + [ + "anti", + -11.16447925567627 + ], + [ + "▁viata", + -11.164583206176758 + ], + [ + "bereich", + -11.164602279663086 + ], + [ + "▁Change", + -11.164871215820312 + ], + [ + "▁pouvoir", + -11.165255546569824 + ], + [ + "▁demonstrate", + -11.165435791015625 + ], + [ + "▁requirement", + -11.165483474731445 + ], + [ + "BI", + -11.16577434539795 + ], + [ + "ied", + -11.166099548339844 + ], + [ + "▁spray", + -11.166358947753906 + ], + [ + "▁calitate", + -11.166379928588867 + ], + [ + "▁souvent", + -11.1665620803833 + ], + [ + "▁samples", + -11.166682243347168 + ], + [ + "▁compete", + -11.166930198669434 + ], + [ + "ank", + -11.166946411132812 + ], + [ + "année", + -11.167037963867188 + ], + [ + "wick", + -11.167183876037598 + ], + [ + "iff", + -11.167254447937012 + ], + [ + "noi", + -11.167255401611328 + ], + [ + "ography", + -11.167450904846191 + ], + [ + "▁SE", + -11.167508125305176 + ], + [ + "▁250", + -11.16779899597168 + ], + [ + "▁wealth", + -11.167884826660156 + ], + [ + "4%", + -11.168235778808594 + ], + [ + "▁swimming", + -11.168269157409668 + ], + [ + "enne", + -11.168338775634766 + ], + [ + "Qu", + -11.168400764465332 + ], + [ + "▁connections", + -11.168476104736328 + ], + [ + "onne", + -11.16852855682373 + ], + [ + "▁Way", + -11.168676376342773 + ], + [ + "voll", + -11.168793678283691 + ], + [ + "▁extent", + -11.169041633605957 + ], + [ + "▁objective", + -11.169572830200195 + ], + [ + "▁clinic", + -11.169581413269043 + ], + [ + "NA", + -11.169848442077637 + ], + [ + "▁Hope", + -11.170098304748535 + ], + [ + "▁coat", + -11.170331954956055 + ], + [ + "▁depend", + -11.170393943786621 + ], + [ + "▁tine", + -11.170463562011719 + ], + [ + "acc", + -11.170486450195312 + ], + [ + "▁editor", + -11.170598983764648 + ], + [ + "▁Jim", + -11.170690536499023 + ], + [ + "600", + -11.171262741088867 + ], + [ + "▁module", + -11.171302795410156 + ], + [ + "▁deja", + -11.171821594238281 + ], + [ + "atur", + -11.171841621398926 + ], + [ + "▁maintaining", + -11.171918869018555 + ], + [ + "▁hoch", + -11.172059059143066 + ], + [ + "▁covering", + -11.17239761352539 + ], + [ + "vielen", + -11.172450065612793 + ], + [ + "hem", + -11.172531127929688 + ], + [ + "▁illegal", + -11.172656059265137 + ], + [ + "▁certificate", + -11.17329216003418 + ], + [ + "▁collective", + -11.173357963562012 + ], + [ + "▁blow", + -11.17343807220459 + ], + [ + "▁programming", + -11.17343807220459 + ], + [ + "HE", + -11.173727989196777 + ], + [ + "▁Division", + -11.173842430114746 + ], + [ + "▁ceux", + -11.174081802368164 + ], + [ + "▁saved", + -11.174202919006348 + ], + [ + "▁worst", + -11.17426586151123 + ], + [ + "▁arms", + -11.17430305480957 + ], + [ + "▁Officer", + -11.17463493347168 + ], + [ + "▁association", + -11.174838066101074 + ], + [ + "ington", + -11.1749906539917 + ], + [ + "▁belle", + -11.175024032592773 + ], + [ + "tting", + -11.17537784576416 + ], + [ + "▁attacks", + -11.175446510314941 + ], + [ + "▁vei", + -11.17546558380127 + ], + [ + "▁gerade", + -11.175470352172852 + ], + [ + "▁strain", + -11.175748825073242 + ], + [ + "▁offices", + -11.1759672164917 + ], + [ + "EM", + -11.17627239227295 + ], + [ + "EST", + -11.176509857177734 + ], + [ + "-8", + -11.176758766174316 + ], + [ + "▁faculty", + -11.176998138427734 + ], + [ + "▁Plant", + -11.177046775817871 + ], + [ + "pla", + -11.177295684814453 + ], + [ + "card", + -11.177618980407715 + ], + [ + "▁loose", + -11.177982330322266 + ], + [ + "▁PR", + -11.178044319152832 + ], + [ + "profit", + -11.178071022033691 + ], + [ + "▁channels", + -11.178119659423828 + ], + [ + "ATE", + -11.178257942199707 + ], + [ + "atic", + -11.178304672241211 + ], + [ + "wegen", + -11.178404808044434 + ], + [ + "word", + -11.178621292114258 + ], + [ + "▁sehen", + -11.178659439086914 + ], + [ + "▁nombre", + -11.178744316101074 + ], + [ + "▁DO", + -11.178763389587402 + ], + [ + "▁hoping", + -11.178949356079102 + ], + [ + "▁wollen", + -11.179091453552246 + ], + [ + "▁decat", + -11.179244995117188 + ], + [ + "IF", + -11.179386138916016 + ], + [ + "▁permission", + -11.179396629333496 + ], + [ + "▁Williams", + -11.179936408996582 + ], + [ + "▁beer", + -11.179962158203125 + ], + [ + "▁dernière", + -11.180052757263184 + ], + [ + "▁purchasing", + -11.18025016784668 + ], + [ + "▁pride", + -11.180416107177734 + ], + [ + "solv", + -11.180598258972168 + ], + [ + "ego", + -11.180691719055176 + ], + [ + "▁Oil", + -11.18079662322998 + ], + [ + "▁dishes", + -11.18102741241455 + ], + [ + "▁Baby", + -11.181109428405762 + ], + [ + "▁Roll", + -11.181137084960938 + ], + [ + "vez", + -11.18134593963623 + ], + [ + "▁drept", + -11.181367874145508 + ], + [ + "lly", + -11.18148136138916 + ], + [ + "▁potrivit", + -11.181495666503906 + ], + [ + "person", + -11.181961059570312 + ], + [ + "▁interactive", + -11.182269096374512 + ], + [ + "▁brilliant", + -11.182304382324219 + ], + [ + "▁000", + -11.182357788085938 + ], + [ + "▁giant", + -11.182657241821289 + ], + [ + "▁plain", + -11.182945251464844 + ], + [ + "▁lock", + -11.183197975158691 + ], + [ + "▁inspection", + -11.183762550354004 + ], + [ + "▁symbol", + -11.18392276763916 + ], + [ + "▁Gal", + -11.183953285217285 + ], + [ + "▁concepts", + -11.1840181350708 + ], + [ + "▁venture", + -11.18411922454834 + ], + [ + "▁Tr", + -11.184402465820312 + ], + [ + "▁Color", + -11.184469223022461 + ], + [ + "▁behalf", + -11.184635162353516 + ], + [ + "ink", + -11.184715270996094 + ], + [ + "atii", + -11.1848726272583 + ], + [ + "wie", + -11.184907913208008 + ], + [ + "▁stream", + -11.18514347076416 + ], + [ + "▁buyers", + -11.185192108154297 + ], + [ + "legen", + -11.185526847839355 + ], + [ + "iness", + -11.18578815460205 + ], + [ + "▁absolute", + -11.185945510864258 + ], + [ + "▁council", + -11.186067581176758 + ], + [ + "▁displayed", + -11.186172485351562 + ], + [ + "▁Bun", + -11.186405181884766 + ], + [ + "▁darauf", + -11.186585426330566 + ], + [ + "▁rod", + -11.186829566955566 + ], + [ + "▁repeat", + -11.186898231506348 + ], + [ + "quelle", + -11.187023162841797 + ], + [ + "lation", + -11.187433242797852 + ], + [ + "gul", + -11.18774700164795 + ], + [ + "▁compensation", + -11.188064575195312 + ], + [ + "▁string", + -11.1881685256958 + ], + [ + "▁joining", + -11.188251495361328 + ], + [ + "▁Pra", + -11.188429832458496 + ], + [ + "hab", + -11.188936233520508 + ], + [ + "▁plane", + -11.189024925231934 + ], + [ + "▁conversion", + -11.189078330993652 + ], + [ + "▁lesson", + -11.189361572265625 + ], + [ + "bound", + -11.1893949508667 + ], + [ + "▁seats", + -11.18946361541748 + ], + [ + "voc", + -11.189902305603027 + ], + [ + "▁Disney", + -11.190120697021484 + ], + [ + "esse", + -11.190277099609375 + ], + [ + "▁awards", + -11.190279006958008 + ], + [ + "▁initiative", + -11.190483093261719 + ], + [ + "UM", + -11.19050407409668 + ], + [ + "▁intelligence", + -11.190763473510742 + ], + [ + "▁laser", + -11.191128730773926 + ], + [ + "än", + -11.191228866577148 + ], + [ + "▁generated", + -11.191231727600098 + ], + [ + "▁allen", + -11.19186782836914 + ], + [ + "▁Aug", + -11.19261360168457 + ], + [ + "lini", + -11.192968368530273 + ], + [ + "▁Update", + -11.193015098571777 + ], + [ + "▁grab", + -11.193095207214355 + ], + [ + "▁Bridge", + -11.193219184875488 + ], + [ + "rock", + -11.193289756774902 + ], + [ + "hold", + -11.193461418151855 + ], + [ + "seinen", + -11.193643569946289 + ], + [ + "▁false", + -11.193758010864258 + ], + [ + "type", + -11.193792343139648 + ], + [ + "▁outcome", + -11.193906784057617 + ], + [ + "▁crazy", + -11.194161415100098 + ], + [ + "▁Platz", + -11.194281578063965 + ], + [ + "▁believed", + -11.194426536560059 + ], + [ + "▁adjust", + -11.194503784179688 + ], + [ + "▁entrance", + -11.194644927978516 + ], + [ + "▁Colorado", + -11.194751739501953 + ], + [ + "▁concentration", + -11.194865226745605 + ], + [ + "aid", + -11.194958686828613 + ], + [ + "▁regardless", + -11.195035934448242 + ], + [ + "▁mici", + -11.195063591003418 + ], + [ + "▁potentially", + -11.195109367370605 + ], + [ + "▁Custom", + -11.195867538452148 + ], + [ + "rag", + -11.196009635925293 + ], + [ + "▁employer", + -11.19604206085205 + ], + [ + "tagged", + -11.196158409118652 + ], + [ + "▁34", + -11.196271896362305 + ], + [ + "fro", + -11.196895599365234 + ], + [ + "▁Pas", + -11.197010040283203 + ], + [ + "▁AS", + -11.197013854980469 + ], + [ + "PP", + -11.197031021118164 + ], + [ + "stru", + -11.19741439819336 + ], + [ + "grâce", + -11.198037147521973 + ], + [ + "▁anyway", + -11.198240280151367 + ], + [ + "▁streets", + -11.1986083984375 + ], + [ + "▁Region", + -11.199190139770508 + ], + [ + "▁newly", + -11.199280738830566 + ], + [ + "▁assistant", + -11.199461936950684 + ], + [ + "▁requests", + -11.199618339538574 + ], + [ + "▁Ohio", + -11.199705123901367 + ], + [ + "▁continuing", + -11.200072288513184 + ], + [ + "▁îm", + -11.200136184692383 + ], + [ + "7%", + -11.20031452178955 + ], + [ + "▁basically", + -11.200325965881348 + ], + [ + "gabe", + -11.200334548950195 + ], + [ + "▁ultra", + -11.200355529785156 + ], + [ + "pic", + -11.200571060180664 + ], + [ + "▁jeder", + -11.200939178466797 + ], + [ + "▁Cook", + -11.201225280761719 + ], + [ + "▁tie", + -11.201227188110352 + ], + [ + "▁yard", + -11.20151424407959 + ], + [ + "▁wash", + -11.20152759552002 + ], + [ + "▁3,", + -11.20194149017334 + ], + [ + "▁exista", + -11.202128410339355 + ], + [ + "▁egg", + -11.202342987060547 + ], + [ + "▁marché", + -11.202616691589355 + ], + [ + "kommen", + -11.202630996704102 + ], + [ + "▁Select", + -11.202999114990234 + ], + [ + "geben", + -11.203126907348633 + ], + [ + "▁Joseph", + -11.203531265258789 + ], + [ + "▁Ces", + -11.203642845153809 + ], + [ + "▁hundred", + -11.203676223754883 + ], + [ + "even", + -11.203792572021484 + ], + [ + "gal", + -11.204232215881348 + ], + [ + "800", + -11.20443058013916 + ], + [ + "▁Jones", + -11.204599380493164 + ], + [ + "ova", + -11.204681396484375 + ], + [ + "▁careful", + -11.204727172851562 + ], + [ + "▁alarm", + -11.205070495605469 + ], + [ + "NI", + -11.205113410949707 + ], + [ + "▁residence", + -11.205327987670898 + ], + [ + "▁wäre", + -11.20590877532959 + ], + [ + "▁Dor", + -11.205986976623535 + ], + [ + "▁amounts", + -11.206369400024414 + ], + [ + "▁mistake", + -11.206687927246094 + ], + [ + "ates", + -11.206796646118164 + ], + [ + "▁bune", + -11.206951141357422 + ], + [ + "▁vegetables", + -11.207124710083008 + ], + [ + "▁Ann", + -11.207204818725586 + ], + [ + "logical", + -11.20776081085205 + ], + [ + "stadt", + -11.207806587219238 + ], + [ + "▁chances", + -11.207921981811523 + ], + [ + "%)", + -11.208030700683594 + ], + [ + "▁minimal", + -11.20810604095459 + ], + [ + "▁naturally", + -11.20817756652832 + ], + [ + "▁Geld", + -11.20822525024414 + ], + [ + "▁Yu", + -11.208361625671387 + ], + [ + "▁wrap", + -11.20840072631836 + ], + [ + "rest", + -11.208674430847168 + ], + [ + "▁legs", + -11.208758354187012 + ], + [ + "PM", + -11.208806991577148 + ], + [ + "▁Heart", + -11.208888053894043 + ], + [ + "▁suspect", + -11.209020614624023 + ], + [ + "Go", + -11.209098815917969 + ], + [ + "▁Fil", + -11.209175109863281 + ], + [ + "▁YOU", + -11.209175109863281 + ], + [ + "▁victory", + -11.209245681762695 + ], + [ + "pun", + -11.20960807800293 + ], + [ + "▁Zo", + -11.209632873535156 + ], + [ + "CT", + -11.209640502929688 + ], + [ + "▁trim", + -11.20969009399414 + ], + [ + "▁stuck", + -11.209836959838867 + ], + [ + "ators", + -11.209877014160156 + ], + [ + "▁Ideas", + -11.210016250610352 + ], + [ + "▁voyage", + -11.210166931152344 + ], + [ + "▁Restaurant", + -11.210205078125 + ], + [ + "▁pat", + -11.210234642028809 + ], + [ + "▁bond", + -11.210521697998047 + ], + [ + "▁Del", + -11.210552215576172 + ], + [ + "▁fighting", + -11.210705757141113 + ], + [ + "▁concerning", + -11.210867881774902 + ], + [ + "▁etwa", + -11.211141586303711 + ], + [ + "▁Thema", + -11.211237907409668 + ], + [ + "▁preferred", + -11.211423873901367 + ], + [ + "▁pitch", + -11.211465835571289 + ], + [ + "▁Singapore", + -11.211971282958984 + ], + [ + "▁tub", + -11.212018013000488 + ], + [ + "FT", + -11.212053298950195 + ], + [ + "▁Product", + -11.21212100982666 + ], + [ + "▁applying", + -11.212285995483398 + ], + [ + "▁Fr", + -11.212340354919434 + ], + [ + "ţa", + -11.212599754333496 + ], + [ + "▁iPad", + -11.212861061096191 + ], + [ + "PD", + -11.2129545211792 + ], + [ + "▁comun", + -11.212995529174805 + ], + [ + "▁pie", + -11.213286399841309 + ], + [ + "rank", + -11.21364688873291 + ], + [ + "tron", + -11.213677406311035 + ], + [ + "▁pest", + -11.213906288146973 + ], + [ + "▁herself", + -11.213936805725098 + ], + [ + "▁intense", + -11.213964462280273 + ], + [ + "foot", + -11.21413803100586 + ], + [ + "▁1998", + -11.2141695022583 + ], + [ + "▁anxiety", + -11.214616775512695 + ], + [ + "▁portable", + -11.214674949645996 + ], + [ + "▁harm", + -11.214735984802246 + ], + [ + "▁admit", + -11.214885711669922 + ], + [ + "sted", + -11.214900016784668 + ], + [ + "▁regions", + -11.215450286865234 + ], + [ + "cie", + -11.215556144714355 + ], + [ + "▁robust", + -11.21577262878418 + ], + [ + "▁stem", + -11.215982437133789 + ], + [ + "▁roles", + -11.216024398803711 + ], + [ + "▁Latin", + -11.216224670410156 + ], + [ + "▁Ré", + -11.216378211975098 + ], + [ + "▁ref", + -11.216381072998047 + ], + [ + "isme", + -11.216426849365234 + ], + [ + "▁contribution", + -11.216776847839355 + ], + [ + "▁forever", + -11.217447280883789 + ], + [ + "▁frei", + -11.21754264831543 + ], + [ + "▁mont", + -11.217818260192871 + ], + [ + "that", + -11.217999458312988 + ], + [ + "▁sensitive", + -11.218116760253906 + ], + [ + "▁wider", + -11.218175888061523 + ], + [ + "AF", + -11.218234062194824 + ], + [ + "▁liability", + -11.218748092651367 + ], + [ + "ţiei", + -11.219043731689453 + ], + [ + "▁Cho", + -11.219260215759277 + ], + [ + "aria", + -11.21960735321045 + ], + [ + "rang", + -11.21977710723877 + ], + [ + "▁Account", + -11.21986198425293 + ], + [ + "▁III", + -11.219941139221191 + ], + [ + "▁tooth", + -11.220222473144531 + ], + [ + "▁factory", + -11.220240592956543 + ], + [ + "▁dropped", + -11.220495223999023 + ], + [ + "horn", + -11.220780372619629 + ], + [ + "RP", + -11.221110343933105 + ], + [ + "▁container", + -11.22118091583252 + ], + [ + "fran", + -11.221474647521973 + ], + [ + "▁lawyer", + -11.221842765808105 + ], + [ + "▁Image", + -11.221907615661621 + ], + [ + "HO", + -11.22195816040039 + ], + [ + "▁incorporate", + -11.221992492675781 + ], + [ + "▁lume", + -11.22226333618164 + ], + [ + "GA", + -11.222331047058105 + ], + [ + "itati", + -11.222370147705078 + ], + [ + "autre", + -11.222665786743164 + ], + [ + "ierten", + -11.222688674926758 + ], + [ + "[", + -11.222746849060059 + ], + [ + "▁packages", + -11.222758293151855 + ], + [ + "▁Simon", + -11.22290325164795 + ], + [ + "▁somewhat", + -11.223734855651855 + ], + [ + "mbo", + -11.223737716674805 + ], + [ + "lite", + -11.223844528198242 + ], + [ + "▁eliminate", + -11.22395133972168 + ], + [ + "▁decrease", + -11.224117279052734 + ], + [ + "▁geben", + -11.224214553833008 + ], + [ + "▁approaches", + -11.224482536315918 + ], + [ + "▁tissue", + -11.224940299987793 + ], + [ + "▁personne", + -11.225192070007324 + ], + [ + "ional", + -11.225587844848633 + ], + [ + "unable", + -11.2256498336792 + ], + [ + "▁Case", + -11.225736618041992 + ], + [ + "hill", + -11.225744247436523 + ], + [ + "och", + -11.225862503051758 + ], + [ + "▁minister", + -11.225920677185059 + ], + [ + "▁Rad", + -11.226285934448242 + ], + [ + "▁yoga", + -11.226390838623047 + ], + [ + "▁encounter", + -11.22661018371582 + ], + [ + "text", + -11.22670841217041 + ], + [ + "▁OS", + -11.226719856262207 + ], + [ + "▁opera", + -11.22673225402832 + ], + [ + "▁loving", + -11.226977348327637 + ], + [ + "▁birds", + -11.227363586425781 + ], + [ + "▁prim", + -11.227389335632324 + ], + [ + "easca", + -11.227432250976562 + ], + [ + "park", + -11.227453231811523 + ], + [ + "fü", + -11.227797508239746 + ], + [ + "▁champion", + -11.227824211120605 + ], + [ + "▁warning", + -11.228245735168457 + ], + [ + "DC", + -11.228271484375 + ], + [ + "▁yield", + -11.228310585021973 + ], + [ + "raum", + -11.228334426879883 + ], + [ + "▁Student", + -11.228434562683105 + ], + [ + "▁Rev", + -11.22848892211914 + ], + [ + "▁Fu", + -11.228501319885254 + ], + [ + "▁intra", + -11.22854232788086 + ], + [ + "▁proces", + -11.228585243225098 + ], + [ + "▁margin", + -11.228621482849121 + ], + [ + "lands", + -11.228816986083984 + ], + [ + "04", + -11.228952407836914 + ], + [ + "▁Steel", + -11.229897499084473 + ], + [ + "▁besoin", + -11.230081558227539 + ], + [ + "şti", + -11.230561256408691 + ], + [ + "▁39", + -11.230635643005371 + ], + [ + "▁outcomes", + -11.230677604675293 + ], + [ + "wert", + -11.230719566345215 + ], + [ + "3,", + -11.23080062866211 + ], + [ + "▁hole", + -11.230888366699219 + ], + [ + "▁Create", + -11.23096752166748 + ], + [ + "▁hall", + -11.231266975402832 + ], + [ + "nach", + -11.231595039367676 + ], + [ + "▁indicate", + -11.232311248779297 + ], + [ + "cum", + -11.232604026794434 + ], + [ + "▁Mann", + -11.232690811157227 + ], + [ + "▁reaction", + -11.232828140258789 + ], + [ + "▁empty", + -11.23289680480957 + ], + [ + "▁Sign", + -11.232941627502441 + ], + [ + "▁pm", + -11.23300838470459 + ], + [ + "erung", + -11.23322582244873 + ], + [ + "▁würde", + -11.233592987060547 + ], + [ + "▁declarat", + -11.233602523803711 + ], + [ + "6%", + -11.23371410369873 + ], + [ + "▁Client", + -11.23377513885498 + ], + [ + "vil", + -11.234295845031738 + ], + [ + "▁electricity", + -11.234469413757324 + ], + [ + "▁75", + -11.234505653381348 + ], + [ + "▁buna", + -11.234505653381348 + ], + [ + "eşte", + -11.23473834991455 + ], + [ + "▁prop", + -11.234792709350586 + ], + [ + "▁journal", + -11.234883308410645 + ], + [ + "▁meu", + -11.23495101928711 + ], + [ + "▁chef", + -11.235034942626953 + ], + [ + "▁Ever", + -11.235102653503418 + ], + [ + "▁feelings", + -11.235466003417969 + ], + [ + "PT", + -11.23551082611084 + ], + [ + "▁proposal", + -11.235651969909668 + ], + [ + "▁Its", + -11.235709190368652 + ], + [ + "▁2013.", + -11.235795974731445 + ], + [ + "▁Bundes", + -11.23595142364502 + ], + [ + "▁droit", + -11.236333847045898 + ], + [ + "▁10%", + -11.236671447753906 + ], + [ + "gard", + -11.236772537231445 + ], + [ + "information", + -11.236814498901367 + ], + [ + "FE", + -11.237309455871582 + ], + [ + "▁Dun", + -11.237340927124023 + ], + [ + "▁Stock", + -11.237472534179688 + ], + [ + "ație", + -11.2374849319458 + ], + [ + "▁mag", + -11.237603187561035 + ], + [ + "▁br", + -11.237665176391602 + ], + [ + "▁sight", + -11.237772941589355 + ], + [ + "phone", + -11.237796783447266 + ], + [ + "▁Cy", + -11.237811088562012 + ], + [ + "▁opposite", + -11.238035202026367 + ], + [ + "ically", + -11.238235473632812 + ], + [ + "großen", + -11.238388061523438 + ], + [ + "▁Without", + -11.23845100402832 + ], + [ + "espace", + -11.238515853881836 + ], + [ + "▁chairs", + -11.238595008850098 + ], + [ + "▁matches", + -11.238685607910156 + ], + [ + "ateur", + -11.238697052001953 + ], + [ + "▁Cost", + -11.238699913024902 + ], + [ + "▁WordPress", + -11.238880157470703 + ], + [ + "▁Opera", + -11.239195823669434 + ], + [ + "walked", + -11.239234924316406 + ], + [ + "▁transactions", + -11.239521026611328 + ], + [ + "▁nuclear", + -11.239579200744629 + ], + [ + "ways", + -11.239594459533691 + ], + [ + "▁Oct", + -11.239738464355469 + ], + [ + "▁bomb", + -11.239835739135742 + ], + [ + "▁tracking", + -11.239879608154297 + ], + [ + "▁photograph", + -11.240066528320312 + ], + [ + "bio", + -11.240309715270996 + ], + [ + "▁branch", + -11.240363121032715 + ], + [ + "▁$5", + -11.240684509277344 + ], + [ + "▁diagram", + -11.240986824035645 + ], + [ + "▁Hard", + -11.241218566894531 + ], + [ + "bach", + -11.241232872009277 + ], + [ + "▁42", + -11.241249084472656 + ], + [ + "logy", + -11.241472244262695 + ], + [ + "▁tile", + -11.241593360900879 + ], + [ + "▁API", + -11.241833686828613 + ], + [ + "seront", + -11.24204158782959 + ], + [ + "ENT", + -11.242156982421875 + ], + [ + "▁accommodation", + -11.242409706115723 + ], + [ + "▁fiber", + -11.242438316345215 + ], + [ + "▁Give", + -11.242792129516602 + ], + [ + "▁Gas", + -11.242916107177734 + ], + [ + "▁Spain", + -11.243086814880371 + ], + [ + "▁listing", + -11.24312686920166 + ], + [ + "▁blocks", + -11.24349308013916 + ], + [ + "▁constitu", + -11.243762969970703 + ], + [ + "▁convenience", + -11.243797302246094 + ], + [ + "▁prize", + -11.243823051452637 + ], + [ + "▁aircraft", + -11.24404239654541 + ], + [ + "containing", + -11.244124412536621 + ], + [ + "▁vice", + -11.244247436523438 + ], + [ + "▁organisations", + -11.244304656982422 + ], + [ + "▁complicated", + -11.244588851928711 + ], + [ + "rons", + -11.244647979736328 + ], + [ + "▁bars", + -11.244670867919922 + ], + [ + "était", + -11.244705200195312 + ], + [ + "▁checking", + -11.245287895202637 + ], + [ + "vant", + -11.245542526245117 + ], + [ + "▁couch", + -11.245657920837402 + ], + [ + "▁brush", + -11.245870590209961 + ], + [ + "▁printer", + -11.245922088623047 + ], + [ + "▁Rat", + -11.246051788330078 + ], + [ + "▁announce", + -11.246057510375977 + ], + [ + "▁salari", + -11.246200561523438 + ], + [ + "▁Sk", + -11.246356964111328 + ], + [ + "pal", + -11.246383666992188 + ], + [ + "▁yards", + -11.24658203125 + ], + [ + "▁flexibility", + -11.246652603149414 + ], + [ + "▁jamais", + -11.24670696258545 + ], + [ + "UC", + -11.246740341186523 + ], + [ + "▁4,", + -11.246793746948242 + ], + [ + "▁Made", + -11.247078895568848 + ], + [ + "▁solche", + -11.247113227844238 + ], + [ + "▁tri", + -11.247237205505371 + ], + [ + "▁outfit", + -11.247243881225586 + ], + [ + "м", + -11.247267723083496 + ], + [ + "▁encouraged", + -11.247477531433105 + ], + [ + "trac", + -11.247552871704102 + ], + [ + "▁genetic", + -11.24755859375 + ], + [ + "▁beneficial", + -11.247747421264648 + ], + [ + "mă", + -11.247849464416504 + ], + [ + "involving", + -11.247879028320312 + ], + [ + "▁knee", + -11.247879028320312 + ], + [ + "▁respective", + -11.248316764831543 + ], + [ + "▁controlled", + -11.248350143432617 + ], + [ + "▁Rück", + -11.24837589263916 + ], + [ + "LC", + -11.248592376708984 + ], + [ + "▁highlight", + -11.248634338378906 + ], + [ + "chem", + -11.248797416687012 + ], + [ + "▁Bis", + -11.24956226348877 + ], + [ + "▁graphics", + -11.249592781066895 + ], + [ + "▁posibil", + -11.249672889709473 + ], + [ + "orul", + -11.249682426452637 + ], + [ + "imagin", + -11.249836921691895 + ], + [ + "▁draft", + -11.250006675720215 + ], + [ + "shaped", + -11.250219345092773 + ], + [ + "▁suggests", + -11.250221252441406 + ], + [ + "uvre", + -11.250509262084961 + ], + [ + "page", + -11.250545501708984 + ], + [ + "▁sentiment", + -11.250685691833496 + ], + [ + "▁loop", + -11.251015663146973 + ], + [ + "▁Quality", + -11.251839637756348 + ], + [ + "▁volunteers", + -11.251869201660156 + ], + [ + "▁representation", + -11.251923561096191 + ], + [ + "▁examination", + -11.252134323120117 + ], + [ + "▁(2)", + -11.252225875854492 + ], + [ + "assi", + -11.252435684204102 + ], + [ + "▁till", + -11.252486228942871 + ], + [ + "▁Catholic", + -11.252618789672852 + ], + [ + "▁2020", + -11.252726554870605 + ], + [ + "▁random", + -11.252764701843262 + ], + [ + "tage", + -11.253146171569824 + ], + [ + "▁baking", + -11.253690719604492 + ], + [ + "▁Musik", + -11.253852844238281 + ], + [ + "▁SC", + -11.253867149353027 + ], + [ + "▁möchte", + -11.254390716552734 + ], + [ + "▁gene", + -11.254411697387695 + ], + [ + "▁kam", + -11.254928588867188 + ], + [ + "▁inspire", + -11.254974365234375 + ], + [ + "unk", + -11.255097389221191 + ], + [ + "▁Final", + -11.255477905273438 + ], + [ + "▁jeden", + -11.255497932434082 + ], + [ + "▁LLC", + -11.255962371826172 + ], + [ + "▁sistem", + -11.25613784790039 + ], + [ + "▁stages", + -11.256441116333008 + ], + [ + "▁texture", + -11.256613731384277 + ], + [ + "rib", + -11.256739616394043 + ], + [ + "lung", + -11.256782531738281 + ], + [ + "▁breath", + -11.256814002990723 + ], + [ + "▁hosted", + -11.256844520568848 + ], + [ + "▁Kingdom", + -11.257079124450684 + ], + [ + "▁politics", + -11.257121086120605 + ], + [ + "▁mood", + -11.257122993469238 + ], + [ + "cam", + -11.257285118103027 + ], + [ + "▁liked", + -11.257287979125977 + ], + [ + "▁Credit", + -11.257304191589355 + ], + [ + "tisch", + -11.257527351379395 + ], + [ + "▁everywhere", + -11.257692337036133 + ], + [ + "▁poti", + -11.257915496826172 + ], + [ + "▁fruits", + -11.258264541625977 + ], + [ + "oire", + -11.258322715759277 + ], + [ + "▁mesure", + -11.258586883544922 + ], + [ + "▁Studies", + -11.258838653564453 + ], + [ + "▁provision", + -11.25888729095459 + ], + [ + "▁Maria", + -11.258927345275879 + ], + [ + "▁necessarily", + -11.259103775024414 + ], + [ + "▁Net", + -11.259212493896484 + ], + [ + "▁scar", + -11.259307861328125 + ], + [ + "▁tracks", + -11.259424209594727 + ], + [ + "▁ads", + -11.259856224060059 + ], + [ + "termin", + -11.259861946105957 + ], + [ + "▁Yo", + -11.26022720336914 + ], + [ + "atory", + -11.260252952575684 + ], + [ + "itoare", + -11.26025676727295 + ], + [ + "▁colours", + -11.260563850402832 + ], + [ + "▁correctly", + -11.260817527770996 + ], + [ + "▁Trade", + -11.26090145111084 + ], + [ + "▁Week", + -11.261052131652832 + ], + [ + "▁Premier", + -11.261499404907227 + ], + [ + "▁designers", + -11.261600494384766 + ], + [ + "▁BE", + -11.261879920959473 + ], + [ + "▁desktop", + -11.261929512023926 + ], + [ + "▁lifetime", + -11.262046813964844 + ], + [ + "▁Kind", + -11.26213264465332 + ], + [ + "▁divers", + -11.262246131896973 + ], + [ + "rain", + -11.262260437011719 + ], + [ + "▁Von", + -11.262263298034668 + ], + [ + "▁bal", + -11.262568473815918 + ], + [ + "▁shots", + -11.262624740600586 + ], + [ + "▁accommodate", + -11.262767791748047 + ], + [ + "▁Paper", + -11.263001441955566 + ], + [ + "▁interaction", + -11.263191223144531 + ], + [ + "▁acquisition", + -11.263233184814453 + ], + [ + "▁neuro", + -11.26378345489502 + ], + [ + "▁institution", + -11.26391887664795 + ], + [ + "▁automatic", + -11.26403522491455 + ], + [ + "▁assess", + -11.264177322387695 + ], + [ + "▁manifest", + -11.264199256896973 + ], + [ + "▁audit", + -11.264202117919922 + ], + [ + "▁câte", + -11.264406204223633 + ], + [ + "▁insight", + -11.264533996582031 + ], + [ + "▁lange", + -11.264781951904297 + ], + [ + "▁retirement", + -11.264795303344727 + ], + [ + "sons", + -11.264864921569824 + ], + [ + "▁Asian", + -11.26492691040039 + ], + [ + "▁rail", + -11.264978408813477 + ], + [ + "▁Awards", + -11.264982223510742 + ], + [ + "Avec", + -11.265035629272461 + ], + [ + "SO", + -11.26511287689209 + ], + [ + "para", + -11.265304565429688 + ], + [ + "▁tant", + -11.265562057495117 + ], + [ + "▁strike", + -11.265693664550781 + ], + [ + "▁transformation", + -11.265742301940918 + ], + [ + "▁leicht", + -11.26586627960205 + ], + [ + "л", + -11.265996932983398 + ], + [ + "fat", + -11.26629638671875 + ], + [ + "▁Qui", + -11.266626358032227 + ], + [ + "▁chip", + -11.26663589477539 + ], + [ + "titude", + -11.266640663146973 + ], + [ + "▁Projekt", + -11.266998291015625 + ], + [ + "▁statt", + -11.267010688781738 + ], + [ + "▁findet", + -11.267184257507324 + ], + [ + "▁telephone", + -11.267251968383789 + ], + [ + "▁staying", + -11.267267227172852 + ], + [ + "▁Mess", + -11.267353057861328 + ], + [ + "▁patio", + -11.267382621765137 + ], + [ + "▁afla", + -11.267890930175781 + ], + [ + "▁administrative", + -11.267910957336426 + ], + [ + "▁gemeinsam", + -11.268129348754883 + ], + [ + "▁suppliers", + -11.268136024475098 + ], + [ + "ark", + -11.268181800842285 + ], + [ + "▁rice", + -11.268397331237793 + ], + [ + "▁stretch", + -11.268439292907715 + ], + [ + "▁compact", + -11.268651008605957 + ], + [ + "fire", + -11.268756866455078 + ], + [ + "в", + -11.268963813781738 + ], + [ + "vision", + -11.269035339355469 + ], + [ + "▁Mag", + -11.269368171691895 + ], + [ + "▁dreams", + -11.269472122192383 + ], + [ + "▁funny", + -11.26968765258789 + ], + [ + "▁lässt", + -11.270216941833496 + ], + [ + "cade", + -11.270448684692383 + ], + [ + "▁drama", + -11.270484924316406 + ], + [ + "▁schimb", + -11.270767211914062 + ], + [ + "PO", + -11.270785331726074 + ], + [ + "▁Sim", + -11.270806312561035 + ], + [ + "▁motivation", + -11.271045684814453 + ], + [ + "▁presents", + -11.27138614654541 + ], + [ + "▁1997", + -11.271828651428223 + ], + [ + "agi", + -11.271883010864258 + ], + [ + "▁optimal", + -11.27198314666748 + ], + [ + "▁folder", + -11.271995544433594 + ], + [ + "stro", + -11.272034645080566 + ], + [ + "▁Han", + -11.272072792053223 + ], + [ + "▁Ei", + -11.27220344543457 + ], + [ + "▁pus", + -11.272356986999512 + ], + [ + "▁Learning", + -11.272531509399414 + ], + [ + "oop", + -11.272603034973145 + ], + [ + "▁Type", + -11.272658348083496 + ], + [ + "space", + -11.272665023803711 + ], + [ + "▁define", + -11.273098945617676 + ], + [ + "▁plug", + -11.273098945617676 + ], + [ + "yard", + -11.273188591003418 + ], + [ + "▁utility", + -11.273297309875488 + ], + [ + "über", + -11.273561477661133 + ], + [ + "▁commun", + -11.273627281188965 + ], + [ + "▁directed", + -11.273842811584473 + ], + [ + "▁consent", + -11.273893356323242 + ], + [ + "▁DNA", + -11.274068832397461 + ], + [ + "▁statements", + -11.274130821228027 + ], + [ + "real", + -11.274298667907715 + ], + [ + "active", + -11.274430274963379 + ], + [ + "school", + -11.274965286254883 + ], + [ + "▁mic", + -11.275360107421875 + ], + [ + "▁acestui", + -11.275467872619629 + ], + [ + "scale", + -11.27550220489502 + ], + [ + "▁Mid", + -11.275628089904785 + ], + [ + "▁Chair", + -11.275874137878418 + ], + [ + "к", + -11.275936126708984 + ], + [ + "▁Bas", + -11.27630615234375 + ], + [ + "▁38", + -11.276379585266113 + ], + [ + "erin", + -11.276461601257324 + ], + [ + "▁Everyone", + -11.27686882019043 + ], + [ + "COM", + -11.276907920837402 + ], + [ + "▁chronic", + -11.277079582214355 + ], + [ + "▁doctors", + -11.277222633361816 + ], + [ + "▁sh", + -11.277276039123535 + ], + [ + "sport", + -11.27740478515625 + ], + [ + "▁volunteer", + -11.277512550354004 + ], + [ + "▁drinking", + -11.277839660644531 + ], + [ + "▁Mas", + -11.277868270874023 + ], + [ + "▁pursue", + -11.2780122756958 + ], + [ + "▁exposed", + -11.278536796569824 + ], + [ + "exe", + -11.278660774230957 + ], + [ + "hung", + -11.278841972351074 + ], + [ + "▁Tier", + -11.278921127319336 + ], + [ + "▁plac", + -11.279121398925781 + ], + [ + "▁proiect", + -11.279136657714844 + ], + [ + "▁literally", + -11.279288291931152 + ], + [ + "▁acolo", + -11.279412269592285 + ], + [ + "▁User", + -11.279485702514648 + ], + [ + "UT", + -11.279598236083984 + ], + [ + "▁hyper", + -11.279623985290527 + ], + [ + "▁seed", + -11.279794692993164 + ], + [ + "▁literature", + -11.2802734375 + ], + [ + "▁Holy", + -11.280373573303223 + ], + [ + "▁jeu", + -11.280396461486816 + ], + [ + "▁licensed", + -11.280896186828613 + ], + [ + "station", + -11.280900955200195 + ], + [ + "▁criteria", + -11.281292915344238 + ], + [ + "▁sufficient", + -11.281292915344238 + ], + [ + "▁gestion", + -11.281512260437012 + ], + [ + "▁pic", + -11.281549453735352 + ], + [ + "▁64", + -11.28170108795166 + ], + [ + "▁facts", + -11.281905174255371 + ], + [ + "▁Bild", + -11.282098770141602 + ], + [ + "obi", + -11.28212833404541 + ], + [ + "▁nie", + -11.282362937927246 + ], + [ + "▁Jewish", + -11.282756805419922 + ], + [ + "bor", + -11.28281307220459 + ], + [ + "▁1980", + -11.28286361694336 + ], + [ + "▁Fach", + -11.282917976379395 + ], + [ + "craft", + -11.283047676086426 + ], + [ + "▁Pakistan", + -11.283408164978027 + ], + [ + "▁Mos", + -11.283621788024902 + ], + [ + "▁toilet", + -11.283844947814941 + ], + [ + "partea", + -11.28391170501709 + ], + [ + "case", + -11.284221649169922 + ], + [ + "▁clock", + -11.28430461883545 + ], + [ + "▁parc", + -11.284602165222168 + ], + [ + "▁legislation", + -11.284692764282227 + ], + [ + "▁icon", + -11.284933090209961 + ], + [ + "etz", + -11.285178184509277 + ], + [ + "ept", + -11.285270690917969 + ], + [ + "▁Corporation", + -11.28585433959961 + ], + [ + "▁requested", + -11.285983085632324 + ], + [ + "▁column", + -11.286088943481445 + ], + [ + "rier", + -11.286120414733887 + ], + [ + "uß", + -11.2861967086792 + ], + [ + "▁wohl", + -11.286418914794922 + ], + [ + "tell", + -11.286569595336914 + ], + [ + "gno", + -11.286608695983887 + ], + [ + "▁diseases", + -11.286726951599121 + ], + [ + "Sch", + -11.286762237548828 + ], + [ + "▁colon", + -11.287075996398926 + ], + [ + "▁Based", + -11.28709602355957 + ], + [ + "▁flu", + -11.28725528717041 + ], + [ + "▁vocal", + -11.287408828735352 + ], + [ + "▁virus", + -11.287693977355957 + ], + [ + "▁traveling", + -11.287750244140625 + ], + [ + "bul", + -11.287837982177734 + ], + [ + "т", + -11.28794002532959 + ], + [ + "city", + -11.287961959838867 + ], + [ + "AU", + -11.287991523742676 + ], + [ + "wide", + -11.288037300109863 + ], + [ + "▁solo", + -11.288061141967773 + ], + [ + "▁functionality", + -11.288214683532715 + ], + [ + "▁reveal", + -11.28831672668457 + ], + [ + "sign", + -11.288952827453613 + ], + [ + "▁closing", + -11.288971900939941 + ], + [ + "▁peak", + -11.289087295532227 + ], + [ + "▁practic", + -11.289398193359375 + ], + [ + "than", + -11.289473533630371 + ], + [ + "▁driven", + -11.289484977722168 + ], + [ + "êtes", + -11.289548873901367 + ], + [ + "high", + -11.290016174316406 + ], + [ + "power", + -11.290226936340332 + ], + [ + "▁Lin", + -11.29028606414795 + ], + [ + "▁dose", + -11.29034423828125 + ], + [ + "▁pocket", + -11.290650367736816 + ], + [ + "▁Classic", + -11.29067611694336 + ], + [ + "▁packaging", + -11.290792465209961 + ], + [ + "▁distinct", + -11.290800094604492 + ], + [ + "▁côté", + -11.291094779968262 + ], + [ + "▁breast", + -11.29127025604248 + ], + [ + "▁folosit", + -11.29133129119873 + ], + [ + "▁drinks", + -11.291353225708008 + ], + [ + "▁Dog", + -11.291529655456543 + ], + [ + "ailleurs", + -11.291658401489258 + ], + [ + "▁caz", + -11.291804313659668 + ], + [ + "▁escape", + -11.29188346862793 + ], + [ + "▁warranty", + -11.291902542114258 + ], + [ + "▁pulled", + -11.291996955871582 + ], + [ + "data", + -11.292088508605957 + ], + [ + "▁facilitate", + -11.292213439941406 + ], + [ + "É", + -11.292335510253906 + ], + [ + "▁SP", + -11.292403221130371 + ], + [ + "lant", + -11.292557716369629 + ], + [ + "AD", + -11.29256534576416 + ], + [ + "▁Print", + -11.292802810668945 + ], + [ + "mond", + -11.292863845825195 + ], + [ + "▁strange", + -11.292875289916992 + ], + [ + "▁Hor", + -11.293227195739746 + ], + [ + "▁Collection", + -11.293328285217285 + ], + [ + "arm", + -11.29346752166748 + ], + [ + "cas", + -11.293691635131836 + ], + [ + "arrow", + -11.29379940032959 + ], + [ + "▁carrying", + -11.293927192687988 + ], + [ + "▁wave", + -11.294661521911621 + ], + [ + "setzt", + -11.294907569885254 + ], + [ + "▁construct", + -11.29514217376709 + ], + [ + "▁acts", + -11.295269966125488 + ], + [ + "▁Action", + -11.295342445373535 + ], + [ + "▁Kim", + -11.295354843139648 + ], + [ + "oxid", + -11.295459747314453 + ], + [ + "fish", + -11.295519828796387 + ], + [ + "▁damaged", + -11.295660018920898 + ], + [ + "▁Greek", + -11.295747756958008 + ], + [ + "▁belt", + -11.295772552490234 + ], + [ + "▁Prior", + -11.295778274536133 + ], + [ + "▁marks", + -11.295936584472656 + ], + [ + "▁lumea", + -11.296183586120605 + ], + [ + "▁twenty", + -11.296196937561035 + ], + [ + "▁locul", + -11.296360969543457 + ], + [ + "▁Army", + -11.296524047851562 + ], + [ + "apt", + -11.296602249145508 + ], + [ + "▁limits", + -11.296733856201172 + ], + [ + "▁cruise", + -11.296966552734375 + ], + [ + "▁List", + -11.296998023986816 + ], + [ + "utilisation", + -11.29753589630127 + ], + [ + "▁personality", + -11.297622680664062 + ], + [ + "▁sections", + -11.297759056091309 + ], + [ + "▁drawn", + -11.29797649383545 + ], + [ + "▁mold", + -11.298277854919434 + ], + [ + "▁Think", + -11.298333168029785 + ], + [ + "▁holidays", + -11.298355102539062 + ], + [ + "▁critic", + -11.298545837402344 + ], + [ + "grade", + -11.298660278320312 + ], + [ + "▁sick", + -11.299074172973633 + ], + [ + "▁characteristics", + -11.299237251281738 + ], + [ + "▁echipa", + -11.299272537231445 + ], + [ + "▁Fast", + -11.29929256439209 + ], + [ + "▁Br", + -11.299600601196289 + ], + [ + "▁Reise", + -11.299734115600586 + ], + [ + "teen", + -11.299749374389648 + ], + [ + "uci", + -11.299949645996094 + ], + [ + "!”", + -11.300180435180664 + ], + [ + "ppe", + -11.300532341003418 + ], + [ + "▁talked", + -11.301164627075195 + ], + [ + "▁gap", + -11.301473617553711 + ], + [ + "homme", + -11.301778793334961 + ], + [ + "▁interact", + -11.301934242248535 + ], + [ + "▁dollar", + -11.302276611328125 + ], + [ + "▁bone", + -11.302309036254883 + ], + [ + "▁Einsatz", + -11.302343368530273 + ], + [ + "▁sad", + -11.302434921264648 + ], + [ + "any", + -11.302445411682129 + ], + [ + "tation", + -11.302666664123535 + ], + [ + "▁Haupt", + -11.302748680114746 + ], + [ + "iva", + -11.302781105041504 + ], + [ + "▁Schu", + -11.302916526794434 + ], + [ + "▁evaluate", + -11.3036470413208 + ], + [ + "▁variant", + -11.303807258605957 + ], + [ + "▁IS", + -11.303879737854004 + ], + [ + "▁PRO", + -11.303947448730469 + ], + [ + "▁vine", + -11.303959846496582 + ], + [ + "rut", + -11.304062843322754 + ], + [ + "▁existence", + -11.30443286895752 + ], + [ + "-7", + -11.304525375366211 + ], + [ + "ancy", + -11.304702758789062 + ], + [ + "▁Want", + -11.305023193359375 + ], + [ + "alism", + -11.305127143859863 + ], + [ + "ranging", + -11.30550765991211 + ], + [ + "preis", + -11.305551528930664 + ], + [ + "All", + -11.305620193481445 + ], + [ + "▁reception", + -11.30565071105957 + ], + [ + "mai", + -11.305730819702148 + ], + [ + "▁lease", + -11.30577278137207 + ], + [ + "▁finest", + -11.30578899383545 + ], + [ + "▁evident", + -11.305874824523926 + ], + [ + "▁Easy", + -11.306075096130371 + ], + [ + "▁gilt", + -11.306085586547852 + ], + [ + "▁trips", + -11.306344985961914 + ], + [ + "▁skilled", + -11.306368827819824 + ], + [ + "consists", + -11.306456565856934 + ], + [ + "front", + -11.306635856628418 + ], + [ + "rati", + -11.306652069091797 + ], + [ + "▁Following", + -11.30678653717041 + ], + [ + "▁Medicine", + -11.307161331176758 + ], + [ + "▁pune", + -11.30729866027832 + ], + [ + "▁errors", + -11.307354927062988 + ], + [ + "arian", + -11.307613372802734 + ], + [ + "lib", + -11.30811882019043 + ], + [ + "SR", + -11.308351516723633 + ], + [ + "ML", + -11.308568000793457 + ], + [ + "▁Safety", + -11.308823585510254 + ], + [ + "▁clar", + -11.309355735778809 + ], + [ + "New", + -11.309764862060547 + ], + [ + "▁37", + -11.309773445129395 + ], + [ + "▁Administration", + -11.309823036193848 + ], + [ + "▁2.0", + -11.310120582580566 + ], + [ + "▁obviously", + -11.310196876525879 + ], + [ + "▁Mitarbeiter", + -11.310254096984863 + ], + [ + "▁improvements", + -11.31043529510498 + ], + [ + "▁Cut", + -11.310630798339844 + ], + [ + "▁Natural", + -11.310672760009766 + ], + [ + "▁arrival", + -11.311182975769043 + ], + [ + "▁pizza", + -11.311339378356934 + ], + [ + "eşti", + -11.311570167541504 + ], + [ + "cept", + -11.311654090881348 + ], + [ + "▁livre", + -11.311686515808105 + ], + [ + "▁nombreux", + -11.312195777893066 + ], + [ + "▁authentic", + -11.312231063842773 + ], + [ + "▁gemacht", + -11.312472343444824 + ], + [ + "▁broadcast", + -11.312478065490723 + ], + [ + "▁stronger", + -11.312545776367188 + ], + [ + "UP", + -11.31257152557373 + ], + [ + "▁centers", + -11.312614440917969 + ], + [ + "▁petite", + -11.312617301940918 + ], + [ + "▁spots", + -11.312626838684082 + ], + [ + "▁crystal", + -11.312756538391113 + ], + [ + "▁salon", + -11.313044548034668 + ], + [ + "▁gained", + -11.313098907470703 + ], + [ + "▁Mus", + -11.313215255737305 + ], + [ + "▁lens", + -11.313223838806152 + ], + [ + "▁ihm", + -11.313231468200684 + ], + [ + "minute", + -11.313573837280273 + ], + [ + "▁greatly", + -11.313587188720703 + ], + [ + "LP", + -11.31361198425293 + ], + [ + "rait", + -11.314027786254883 + ], + [ + "▁bid", + -11.314154624938965 + ], + [ + "▁cit", + -11.314203262329102 + ], + [ + "entreprise", + -11.31435775756836 + ], + [ + "▁55", + -11.314533233642578 + ], + [ + "▁respectively", + -11.314536094665527 + ], + [ + "▁lo", + -11.314638137817383 + ], + [ + "▁cons", + -11.314743995666504 + ], + [ + "▁Energie", + -11.315169334411621 + ], + [ + "▁OK", + -11.31521224975586 + ], + [ + "▁grill", + -11.315338134765625 + ], + [ + "▁heading", + -11.31549072265625 + ], + [ + "▁sollten", + -11.315491676330566 + ], + [ + "▁Fragen", + -11.315528869628906 + ], + [ + "▁Poli", + -11.315556526184082 + ], + [ + "▁studying", + -11.315723419189453 + ], + [ + "▁développement", + -11.315882682800293 + ], + [ + "▁foam", + -11.316035270690918 + ], + [ + "▁1996", + -11.316511154174805 + ], + [ + "▁disaster", + -11.31662654876709 + ], + [ + "▁cafe", + -11.317262649536133 + ], + [ + "▁moves", + -11.317267417907715 + ], + [ + "focuses", + -11.317712783813477 + ], + [ + "▁Avenue", + -11.317834854125977 + ], + [ + "▁humans", + -11.31784439086914 + ], + [ + "▁(3", + -11.318021774291992 + ], + [ + "▁région", + -11.318347930908203 + ], + [ + "▁DJ", + -11.318608283996582 + ], + [ + "shop", + -11.318819046020508 + ], + [ + "▁acting", + -11.318843841552734 + ], + [ + "▁Justice", + -11.318967819213867 + ], + [ + "▁trouve", + -11.319010734558105 + ], + [ + "▁Estate", + -11.319040298461914 + ], + [ + "▁strict", + -11.319231986999512 + ], + [ + "▁talks", + -11.319283485412598 + ], + [ + "▁mat", + -11.319290161132812 + ], + [ + "▁completion", + -11.319327354431152 + ], + [ + "delivering", + -11.31943416595459 + ], + [ + "CD", + -11.31973934173584 + ], + [ + "0%", + -11.319960594177246 + ], + [ + "▁creativity", + -11.320253372192383 + ], + [ + "BR", + -11.320272445678711 + ], + [ + "▁occurred", + -11.320357322692871 + ], + [ + "Car", + -11.320590019226074 + ], + [ + "▁rising", + -11.320761680603027 + ], + [ + "gger", + -11.32086181640625 + ], + [ + "▁Gene", + -11.320901870727539 + ], + [ + "▁workplace", + -11.320914268493652 + ], + [ + "phy", + -11.321065902709961 + ], + [ + "▁Bla", + -11.32107162475586 + ], + [ + "▁trailer", + -11.32120418548584 + ], + [ + "▁Forest", + -11.321205139160156 + ], + [ + "▁profession", + -11.321246147155762 + ], + [ + "▁Father", + -11.32137680053711 + ], + [ + "flu", + -11.321487426757812 + ], + [ + "tone", + -11.321489334106445 + ], + [ + "▁sexual", + -11.321736335754395 + ], + [ + "▁Map", + -11.321805953979492 + ], + [ + "OT", + -11.3218412399292 + ], + [ + "▁Us", + -11.321878433227539 + ], + [ + "tôt", + -11.321892738342285 + ], + [ + "▁Wert", + -11.321901321411133 + ], + [ + "preparing", + -11.322121620178223 + ], + [ + "isé", + -11.322243690490723 + ], + [ + "▁lake", + -11.322461128234863 + ], + [ + "eed", + -11.32270336151123 + ], + [ + "jun", + -11.322888374328613 + ], + [ + "▁implemented", + -11.323014259338379 + ], + [ + "vid", + -11.323116302490234 + ], + [ + "igne", + -11.323201179504395 + ], + [ + "▁follows", + -11.323214530944824 + ], + [ + "▁Eric", + -11.323430061340332 + ], + [ + "body", + -11.323530197143555 + ], + [ + "▁contained", + -11.323585510253906 + ], + [ + "▁massage", + -11.323715209960938 + ], + [ + "AV", + -11.323725700378418 + ], + [ + "▁insa", + -11.323850631713867 + ], + [ + "▁observed", + -11.323892593383789 + ], + [ + "▁marque", + -11.324137687683105 + ], + [ + "lines", + -11.324451446533203 + ], + [ + "▁Frage", + -11.324482917785645 + ], + [ + "largely", + -11.324647903442383 + ], + [ + "gegeben", + -11.32473087310791 + ], + [ + "▁colleagues", + -11.324762344360352 + ], + [ + "pha", + -11.32494068145752 + ], + [ + "▁representative", + -11.325217247009277 + ], + [ + "▁shut", + -11.325650215148926 + ], + [ + "▁secondary", + -11.325779914855957 + ], + [ + "▁exhibit", + -11.325927734375 + ], + [ + "1)", + -11.325932502746582 + ], + [ + "mid", + -11.326109886169434 + ], + [ + "▁Due", + -11.326229095458984 + ], + [ + "▁initiatives", + -11.326457023620605 + ], + [ + "▁occurs", + -11.326458930969238 + ], + [ + "lent", + -11.326478958129883 + ], + [ + "▁façon", + -11.326778411865234 + ], + [ + "▁iOS", + -11.326803207397461 + ], + [ + "▁exploring", + -11.327000617980957 + ], + [ + "▁stations", + -11.327103614807129 + ], + [ + "nton", + -11.327234268188477 + ], + [ + "▁Country", + -11.32729721069336 + ], + [ + "▁shouldn", + -11.327406883239746 + ], + [ + "▁casual", + -11.327611923217773 + ], + [ + "-18", + -11.32769775390625 + ], + [ + "▁maintained", + -11.32772445678711 + ], + [ + "▁cart", + -11.327790260314941 + ], + [ + "▁propre", + -11.327836036682129 + ], + [ + "▁asset", + -11.327948570251465 + ], + [ + "firm", + -11.32803726196289 + ], + [ + "gla", + -11.328231811523438 + ], + [ + "viv", + -11.3282470703125 + ], + [ + "▁scientists", + -11.328873634338379 + ], + [ + "▁Nor", + -11.328936576843262 + ], + [ + "ites", + -11.329320907592773 + ], + [ + "▁engaging", + -11.329933166503906 + ], + [ + "My", + -11.330178260803223 + ], + [ + "▁workshops", + -11.330282211303711 + ], + [ + "ffer", + -11.3303804397583 + ], + [ + "activité", + -11.33047103881836 + ], + [ + "▁tension", + -11.330567359924316 + ], + [ + "▁dual", + -11.330668449401855 + ], + [ + "uer", + -11.33084774017334 + ], + [ + "900", + -11.330941200256348 + ], + [ + "SF", + -11.33108139038086 + ], + [ + "▁kannst", + -11.331146240234375 + ], + [ + "▁bur", + -11.33115291595459 + ], + [ + "▁visitor", + -11.331156730651855 + ], + [ + "▁granted", + -11.331178665161133 + ], + [ + "▁union", + -11.331355094909668 + ], + [ + "▁tablet", + -11.331461906433105 + ], + [ + "▁Choose", + -11.33146858215332 + ], + [ + "ibil", + -11.331551551818848 + ], + [ + "▁settlement", + -11.331830978393555 + ], + [ + "genommen", + -11.331892967224121 + ], + [ + "▁marked", + -11.332956314086914 + ], + [ + "▁diagnostic", + -11.333370208740234 + ], + [ + "▁prayer", + -11.333529472351074 + ], + [ + "▁Toronto", + -11.334035873413086 + ], + [ + "trans", + -11.334146499633789 + ], + [ + "▁respectiv", + -11.334160804748535 + ], + [ + "▁2012.", + -11.334207534790039 + ], + [ + "icul", + -11.334394454956055 + ], + [ + "▁satisfied", + -11.334527969360352 + ], + [ + "▁Fla", + -11.334596633911133 + ], + [ + "▁estimate", + -11.334638595581055 + ], + [ + "▁Agency", + -11.33466911315918 + ], + [ + "OD", + -11.334708213806152 + ], + [ + "▁McC", + -11.334746360778809 + ], + [ + "bert", + -11.334748268127441 + ], + [ + "▁seal", + -11.334771156311035 + ], + [ + "aine", + -11.334839820861816 + ], + [ + "▁cauza", + -11.334848403930664 + ], + [ + "▁wallpaper", + -11.335081100463867 + ], + [ + "▁alb", + -11.33536434173584 + ], + [ + "▁Sound", + -11.335681915283203 + ], + [ + "worth", + -11.33572769165039 + ], + [ + "chten", + -11.335858345031738 + ], + [ + "programm", + -11.335896492004395 + ], + [ + "▁pounds", + -11.336215019226074 + ], + [ + "▁coaching", + -11.336278915405273 + ], + [ + "▁Furthermore", + -11.336454391479492 + ], + [ + "▁Korea", + -11.336471557617188 + ], + [ + "▁flour", + -11.336530685424805 + ], + [ + "▁sommes", + -11.33657169342041 + ], + [ + "▁Repair", + -11.33661937713623 + ], + [ + "”)", + -11.336642265319824 + ], + [ + "itch", + -11.336675643920898 + ], + [ + "blu", + -11.336786270141602 + ], + [ + "zar", + -11.336882591247559 + ], + [ + "▁diferite", + -11.33745002746582 + ], + [ + "▁Golf", + -11.337685585021973 + ], + [ + "arch", + -11.33772087097168 + ], + [ + "▁panels", + -11.337799072265625 + ], + [ + "jan", + -11.337956428527832 + ], + [ + "“.", + -11.338240623474121 + ], + [ + "izarea", + -11.338324546813965 + ], + [ + "▁golden", + -11.33854866027832 + ], + [ + "▁flying", + -11.338550567626953 + ], + [ + "▁museum", + -11.338700294494629 + ], + [ + "▁equivalent", + -11.338759422302246 + ], + [ + "▁Lang", + -11.339032173156738 + ], + [ + "schi", + -11.339539527893066 + ], + [ + "MI", + -11.339595794677734 + ], + [ + "▁faci", + -11.339838027954102 + ], + [ + "▁Rahmen", + -11.339988708496094 + ], + [ + "▁attending", + -11.340130805969238 + ], + [ + "′′", + -11.340483665466309 + ], + [ + "▁Tro", + -11.341070175170898 + ], + [ + "▁gaming", + -11.341447830200195 + ], + [ + "▁aujourd", + -11.341479301452637 + ], + [ + "▁Wochen", + -11.341526985168457 + ], + [ + "▁entering", + -11.341535568237305 + ], + [ + "its", + -11.34155559539795 + ], + [ + "▁Private", + -11.341866493225098 + ], + [ + "▁Ocean", + -11.34188175201416 + ], + [ + "▁01", + -11.342098236083984 + ], + [ + "▁coloring", + -11.342188835144043 + ], + [ + "ător", + -11.34253215789795 + ], + [ + "▁flooring", + -11.342548370361328 + ], + [ + "▁downtown", + -11.34276294708252 + ], + [ + "rab", + -11.342998504638672 + ], + [ + "HI", + -11.343221664428711 + ], + [ + "▁illness", + -11.343234062194824 + ], + [ + "▁whil", + -11.343307495117188 + ], + [ + "▁diamond", + -11.34333324432373 + ], + [ + "Mail", + -11.343419075012207 + ], + [ + "▁Dream", + -11.34344482421875 + ], + [ + "▁Golden", + -11.344099044799805 + ], + [ + "▁rein", + -11.344220161437988 + ], + [ + "▁hi", + -11.344283103942871 + ], + [ + "▁expressed", + -11.344489097595215 + ], + [ + "▁luat", + -11.344511985778809 + ], + [ + "▁Share", + -11.34453010559082 + ], + [ + "▁Programm", + -11.344706535339355 + ], + [ + "▁Sales", + -11.344707489013672 + ], + [ + "▁prof", + -11.344890594482422 + ], + [ + "▁MO", + -11.34505844116211 + ], + [ + "▁Short", + -11.345088958740234 + ], + [ + "▁charm", + -11.345290184020996 + ], + [ + "▁Cer", + -11.345373153686523 + ], + [ + "▁Run", + -11.34553337097168 + ], + [ + "▁tutorial", + -11.345589637756348 + ], + [ + "oul", + -11.34561824798584 + ], + [ + "▁Fest", + -11.345794677734375 + ], + [ + "▁uniform", + -11.345929145812988 + ], + [ + "aß", + -11.346014976501465 + ], + [ + "▁pipe", + -11.346076965332031 + ], + [ + "▁Square", + -11.346283912658691 + ], + [ + "▁Kosten", + -11.346365928649902 + ], + [ + "▁checked", + -11.346590042114258 + ], + [ + "▁65", + -11.346626281738281 + ], + [ + "▁Adam", + -11.346686363220215 + ], + [ + "cel", + -11.346700668334961 + ], + [ + "ello", + -11.346965789794922 + ], + [ + "▁Res", + -11.347023963928223 + ], + [ + "▁drain", + -11.34708309173584 + ], + [ + "ză", + -11.347129821777344 + ], + [ + "▁Tech", + -11.34739875793457 + ], + [ + "▁strive", + -11.34749698638916 + ], + [ + "cycl", + -11.347506523132324 + ], + [ + "▁stark", + -11.347541809082031 + ], + [ + "load", + -11.34754753112793 + ], + [ + "▁Stat", + -11.347589492797852 + ], + [ + "▁Rec", + -11.347622871398926 + ], + [ + "ians", + -11.347716331481934 + ], + [ + "▁Tin", + -11.347738265991211 + ], + [ + "▁Agreement", + -11.347840309143066 + ], + [ + "▁pret", + -11.348027229309082 + ], + [ + "-9", + -11.348326683044434 + ], + [ + "▁sentence", + -11.348380088806152 + ], + [ + "▁Direct", + -11.348426818847656 + ], + [ + "▁Rep", + -11.348465919494629 + ], + [ + "▁Prozent", + -11.348799705505371 + ], + [ + "▁invitation", + -11.34882640838623 + ], + [ + "▁refund", + -11.349113464355469 + ], + [ + "▁Kids", + -11.349287986755371 + ], + [ + "stock", + -11.349383354187012 + ], + [ + "TP", + -11.349400520324707 + ], + [ + "▁tau", + -11.34941291809082 + ], + [ + "from", + -11.349421501159668 + ], + [ + "▁Ash", + -11.349451065063477 + ], + [ + "store", + -11.349535942077637 + ], + [ + "▁Common", + -11.34958553314209 + ], + [ + "▁Qualität", + -11.34968376159668 + ], + [ + "▁strongly", + -11.349727630615234 + ], + [ + "▁importante", + -11.34979248046875 + ], + [ + "ome", + -11.349912643432617 + ], + [ + "▁surtout", + -11.349946022033691 + ], + [ + "enables", + -11.35020637512207 + ], + [ + "▁decent", + -11.350221633911133 + ], + [ + "▁neutral", + -11.350237846374512 + ], + [ + "▁produs", + -11.350356101989746 + ], + [ + "bury", + -11.350451469421387 + ], + [ + "▁Level", + -11.350618362426758 + ], + [ + "▁interes", + -11.350699424743652 + ], + [ + "mov", + -11.350797653198242 + ], + [ + "▁backup", + -11.350939750671387 + ], + [ + "même", + -11.351094245910645 + ], + [ + "doc", + -11.351119041442871 + ], + [ + "▁#1", + -11.35130786895752 + ], + [ + "▁specified", + -11.351495742797852 + ], + [ + "▁founder", + -11.351655960083008 + ], + [ + "And", + -11.352090835571289 + ], + [ + "isten", + -11.352149963378906 + ], + [ + "▁lecture", + -11.352729797363281 + ], + [ + "▁wake", + -11.352895736694336 + ], + [ + "▁vraiment", + -11.352980613708496 + ], + [ + "▁swing", + -11.353188514709473 + ], + [ + "▁addresses", + -11.353275299072266 + ], + [ + "▁Verfügung", + -11.353504180908203 + ], + [ + "▁deadline", + -11.353761672973633 + ], + [ + "н", + -11.353791236877441 + ], + [ + "▁Content", + -11.353970527648926 + ], + [ + "▁Gre", + -11.354111671447754 + ], + [ + "▁Experience", + -11.354378700256348 + ], + [ + "tura", + -11.354458808898926 + ], + [ + "▁exit", + -11.354642868041992 + ], + [ + "▁Britain", + -11.354652404785156 + ], + [ + "▁Sunt", + -11.354684829711914 + ], + [ + "▁documentation", + -11.354690551757812 + ], + [ + "▁showcase", + -11.3547945022583 + ], + [ + "▁photographs", + -11.354822158813477 + ], + [ + "qué", + -11.35483169555664 + ], + [ + "zin", + -11.354909896850586 + ], + [ + "pres", + -11.354933738708496 + ], + [ + "▁decline", + -11.354955673217773 + ], + [ + "▁Large", + -11.355030059814453 + ], + [ + "▁bills", + -11.355141639709473 + ], + [ + "▁entitled", + -11.355222702026367 + ], + [ + "▁passionate", + -11.355393409729004 + ], + [ + "▁workout", + -11.355413436889648 + ], + [ + "▁Again", + -11.35560417175293 + ], + [ + "▁Haut", + -11.35582160949707 + ], + [ + "▁guaranteed", + -11.35599136352539 + ], + [ + "▁vue", + -11.35600471496582 + ], + [ + "▁farmers", + -11.356224060058594 + ], + [ + "▁admission", + -11.356500625610352 + ], + [ + "▁manière", + -11.357080459594727 + ], + [ + "▁reverse", + -11.357121467590332 + ], + [ + "▁FL", + -11.357142448425293 + ], + [ + "▁terminal", + -11.357206344604492 + ], + [ + "GI", + -11.35731029510498 + ], + [ + "▁speakers", + -11.35739803314209 + ], + [ + "▁responses", + -11.357398986816406 + ], + [ + "▁Doch", + -11.357457160949707 + ], + [ + "▁2013,", + -11.357717514038086 + ], + [ + "▁phones", + -11.357789993286133 + ], + [ + "ential", + -11.357851028442383 + ], + [ + "▁operator", + -11.357916831970215 + ], + [ + "▁steam", + -11.358036994934082 + ], + [ + "burn", + -11.358091354370117 + ], + [ + "▁seul", + -11.35815715789795 + ], + [ + "▁unusual", + -11.358322143554688 + ], + [ + "▁educate", + -11.358403205871582 + ], + [ + "▁Que", + -11.358680725097656 + ], + [ + "▁believes", + -11.359137535095215 + ], + [ + "▁succeed", + -11.359344482421875 + ], + [ + "▁delay", + -11.359533309936523 + ], + [ + "▁deeper", + -11.359633445739746 + ], + [ + "▁reaching", + -11.359890937805176 + ], + [ + "▁objectives", + -11.360086441040039 + ], + [ + "▁temporary", + -11.36028003692627 + ], + [ + "▁artistic", + -11.360421180725098 + ], + [ + "▁sou", + -11.360471725463867 + ], + [ + "▁transparent", + -11.36062240600586 + ], + [ + "There", + -11.360798835754395 + ], + [ + "ception", + -11.360836029052734 + ], + [ + "▁excess", + -11.360939979553223 + ], + [ + "▁gathering", + -11.361008644104004 + ], + [ + "▁Save", + -11.361095428466797 + ], + [ + "ază", + -11.361166000366211 + ], + [ + "▁français", + -11.361197471618652 + ], + [ + "▁laid", + -11.361210823059082 + ], + [ + "▁modul", + -11.361394882202148 + ], + [ + "avoir", + -11.361465454101562 + ], + [ + "under", + -11.362113952636719 + ], + [ + "dding", + -11.362226486206055 + ], + [ + "▁falls", + -11.362232208251953 + ], + [ + "▁Möglichkeit", + -11.362369537353516 + ], + [ + "▁ceremony", + -11.362370491027832 + ], + [ + "rai", + -11.36237621307373 + ], + [ + "▁Bor", + -11.362709045410156 + ], + [ + "▁Below", + -11.362750053405762 + ], + [ + "4)", + -11.362759590148926 + ], + [ + "▁Field", + -11.362833023071289 + ], + [ + "wear", + -11.362935066223145 + ], + [ + "motion", + -11.362948417663574 + ], + [ + "print", + -11.363311767578125 + ], + [ + "game", + -11.363360404968262 + ], + [ + "▁Irish", + -11.363458633422852 + ], + [ + "▁Las", + -11.363458633422852 + ], + [ + "Among", + -11.363570213317871 + ], + [ + "atori", + -11.363580703735352 + ], + [ + "▁ajuns", + -11.363837242126465 + ], + [ + "▁alive", + -11.363860130310059 + ], + [ + "▁retour", + -11.363900184631348 + ], + [ + "▁smoke", + -11.3640775680542 + ], + [ + "▁math", + -11.364285469055176 + ], + [ + "▁Ye", + -11.364337921142578 + ], + [ + "▁Denn", + -11.36436653137207 + ], + [ + "▁1995", + -11.364412307739258 + ], + [ + "▁bani", + -11.364644050598145 + ], + [ + "raz", + -11.364998817443848 + ], + [ + "world", + -11.365026473999023 + ], + [ + "▁engines", + -11.365140914916992 + ], + [ + "nehmen", + -11.365192413330078 + ], + [ + "stor", + -11.365328788757324 + ], + [ + "▁interpret", + -11.365403175354004 + ], + [ + "▁Ven", + -11.365489959716797 + ], + [ + "▁cotton", + -11.365622520446777 + ], + [ + "▁represented", + -11.366004943847656 + ], + [ + "▁fabulous", + -11.366166114807129 + ], + [ + "▁gender", + -11.366301536560059 + ], + [ + "Mar", + -11.366668701171875 + ], + [ + "vic", + -11.366991996765137 + ], + [ + "▁newsletter", + -11.367432594299316 + ], + [ + "sburg", + -11.367574691772461 + ], + [ + "pond", + -11.36838436126709 + ], + [ + "▁Carl", + -11.368454933166504 + ], + [ + "▁bunch", + -11.368714332580566 + ], + [ + "▁tower", + -11.368847846984863 + ], + [ + "▁trigger", + -11.368976593017578 + ], + [ + "▁explanation", + -11.369091033935547 + ], + [ + "Man", + -11.369114875793457 + ], + [ + "iunea", + -11.369168281555176 + ], + [ + "▁announcement", + -11.369492530822754 + ], + [ + "▁seeds", + -11.36952018737793 + ], + [ + "▁shell", + -11.369865417480469 + ], + [ + "▁Working", + -11.36989688873291 + ], + [ + "viz", + -11.370267868041992 + ], + [ + "▁Simply", + -11.370329856872559 + ], + [ + "sub", + -11.37037181854248 + ], + [ + "▁Village", + -11.37060832977295 + ], + [ + "▁falling", + -11.370742797851562 + ], + [ + "▁fits", + -11.37084674835205 + ], + [ + "▁wichtig", + -11.37088394165039 + ], + [ + "▁Down", + -11.37108039855957 + ], + [ + "bble", + -11.371573448181152 + ], + [ + "▁Orange", + -11.37165641784668 + ], + [ + "promoting", + -11.371932029724121 + ], + [ + "▁rapidly", + -11.37217903137207 + ], + [ + "▁translation", + -11.372330665588379 + ], + [ + "nig", + -11.3723726272583 + ], + [ + "fusion", + -11.37240982055664 + ], + [ + "kosten", + -11.372611045837402 + ], + [ + "2)", + -11.372783660888672 + ], + [ + "▁Express", + -11.372958183288574 + ], + [ + "▁Sw", + -11.373003959655762 + ], + [ + "▁frequency", + -11.373086929321289 + ], + [ + "▁diversity", + -11.373348236083984 + ], + [ + "MT", + -11.373452186584473 + ], + [ + "▁bekannt", + -11.373530387878418 + ], + [ + "lion", + -11.373871803283691 + ], + [ + "▁cop", + -11.37393856048584 + ], + [ + "▁Customer", + -11.374072074890137 + ], + [ + "▁demands", + -11.374427795410156 + ], + [ + "▁corn", + -11.374516487121582 + ], + [ + "▁Hamburg", + -11.374551773071289 + ], + [ + "SD", + -11.374628067016602 + ], + [ + "▁Rome", + -11.374677658081055 + ], + [ + "▁Pur", + -11.374750137329102 + ], + [ + "▁stamp", + -11.374885559082031 + ], + [ + "▁grateful", + -11.374967575073242 + ], + [ + "RM", + -11.37511157989502 + ], + [ + "▁Pl", + -11.37511920928955 + ], + [ + "▁Tele", + -11.375154495239258 + ], + [ + "▁plugin", + -11.375492095947266 + ], + [ + "▁maxim", + -11.375675201416016 + ], + [ + "▁Hoch", + -11.37574577331543 + ], + [ + "igung", + -11.375823020935059 + ], + [ + "▁Entwicklung", + -11.375858306884766 + ], + [ + "▁File", + -11.375931739807129 + ], + [ + "▁Eastern", + -11.376070022583008 + ], + [ + "▁scrap", + -11.376331329345703 + ], + [ + "▁acquired", + -11.376338958740234 + ], + [ + "sau", + -11.376364707946777 + ], + [ + "▁Klein", + -11.376452445983887 + ], + [ + "▁milioane", + -11.376492500305176 + ], + [ + "▁Stand", + -11.376693725585938 + ], + [ + "▁childhood", + -11.37671184539795 + ], + [ + "▁artificial", + -11.376752853393555 + ], + [ + "▁substantial", + -11.376851081848145 + ], + [ + "druck", + -11.377315521240234 + ], + [ + "▁Kra", + -11.377562522888184 + ], + [ + "▁performances", + -11.377645492553711 + ], + [ + "▁row", + -11.377824783325195 + ], + [ + "NT", + -11.377899169921875 + ], + [ + "mod", + -11.377904891967773 + ], + [ + "remained", + -11.378399848937988 + ], + [ + "▁nimic", + -11.378462791442871 + ], + [ + "▁Limited", + -11.378555297851562 + ], + [ + "▁cookie", + -11.378718376159668 + ], + [ + "▁retain", + -11.378816604614258 + ], + [ + "▁600", + -11.379144668579102 + ], + [ + "▁eigene", + -11.379158020019531 + ], + [ + "▁tune", + -11.379209518432617 + ], + [ + "NS", + -11.379256248474121 + ], + [ + "▁dad", + -11.379284858703613 + ], + [ + "Moreover", + -11.379415512084961 + ], + [ + "ès", + -11.379434585571289 + ], + [ + "▁worship", + -11.379439353942871 + ], + [ + "▁Material", + -11.3794584274292 + ], + [ + "▁verb", + -11.379528045654297 + ], + [ + "ziehen", + -11.37957763671875 + ], + [ + "lton", + -11.379645347595215 + ], + [ + "▁boot", + -11.379982948303223 + ], + [ + "plo", + -11.380118370056152 + ], + [ + "CF", + -11.380212783813477 + ], + [ + "GM", + -11.380215644836426 + ], + [ + "▁Mix", + -11.38046932220459 + ], + [ + "▁Front", + -11.380474090576172 + ], + [ + "▁repairs", + -11.380655288696289 + ], + [ + "▁proportion", + -11.381068229675293 + ], + [ + "▁habit", + -11.381132125854492 + ], + [ + "▁hide", + -11.38156509399414 + ], + [ + "focusing", + -11.381707191467285 + ], + [ + "▁Annual", + -11.381717681884766 + ], + [ + "▁twin", + -11.3817777633667 + ], + [ + "▁acord", + -11.381780624389648 + ], + [ + "ehr", + -11.381814956665039 + ], + [ + "month", + -11.382303237915039 + ], + [ + "venir", + -11.382535934448242 + ], + [ + "Or", + -11.38254165649414 + ], + [ + "awa", + -11.382600784301758 + ], + [ + "lass", + -11.382735252380371 + ], + [ + "ffe", + -11.383048057556152 + ], + [ + "iți", + -11.383074760437012 + ], + [ + "NO", + -11.3831148147583 + ], + [ + "▁scope", + -11.383295059204102 + ], + [ + "▁lowest", + -11.383527755737305 + ], + [ + "▁afraid", + -11.383572578430176 + ], + [ + "▁subjects", + -11.383578300476074 + ], + [ + "▁templates", + -11.383586883544922 + ], + [ + "▁jos", + -11.383604049682617 + ], + [ + "DM", + -11.383687973022461 + ], + [ + "ensemble", + -11.383792877197266 + ], + [ + "▁Ski", + -11.383941650390625 + ], + [ + "DP", + -11.384099960327148 + ], + [ + "▁grip", + -11.384171485900879 + ], + [ + "2-", + -11.38436222076416 + ], + [ + "▁sécurité", + -11.384743690490723 + ], + [ + "▁mono", + -11.384749412536621 + ], + [ + "▁controls", + -11.384854316711426 + ], + [ + "SV", + -11.384879112243652 + ], + [ + "install", + -11.384970664978027 + ], + [ + "berry", + -11.385042190551758 + ], + [ + "nial", + -11.385120391845703 + ], + [ + "shed", + -11.385462760925293 + ], + [ + "▁celle", + -11.385830879211426 + ], + [ + "FR", + -11.385936737060547 + ], + [ + "äng", + -11.385950088500977 + ], + [ + "▁gaz", + -11.385984420776367 + ], + [ + "êt", + -11.386184692382812 + ], + [ + "▁viewing", + -11.386412620544434 + ], + [ + "▁asigura", + -11.386524200439453 + ], + [ + "bling", + -11.3865327835083 + ], + [ + "master", + -11.386919975280762 + ], + [ + "▁Fin", + -11.387160301208496 + ], + [ + "VC", + -11.387365341186523 + ], + [ + "▁patent", + -11.387715339660645 + ], + [ + "▁Clean", + -11.38773250579834 + ], + [ + "▁1970", + -11.387789726257324 + ], + [ + "▁Char", + -11.387971878051758 + ], + [ + "thi", + -11.388010025024414 + ], + [ + "bli", + -11.388141632080078 + ], + [ + "▁haut", + -11.388307571411133 + ], + [ + "tica", + -11.38836669921875 + ], + [ + "▁venit", + -11.388578414916992 + ], + [ + "▁compatible", + -11.388678550720215 + ], + [ + "▁hanging", + -11.388690948486328 + ], + [ + "UN", + -11.388842582702637 + ], + [ + "▁forth", + -11.388911247253418 + ], + [ + "▁painted", + -11.388912200927734 + ], + [ + "lip", + -11.389031410217285 + ], + [ + "▁deeply", + -11.389089584350586 + ], + [ + "▁participating", + -11.389242172241211 + ], + [ + "▁Iran", + -11.38968276977539 + ], + [ + "▁conventional", + -11.389769554138184 + ], + [ + "ARE", + -11.38985824584961 + ], + [ + "▁accuracy", + -11.389896392822266 + ], + [ + "▁Familie", + -11.389955520629883 + ], + [ + "▁Dir", + -11.39001178741455 + ], + [ + "▁gehen", + -11.390127182006836 + ], + [ + "▁moderne", + -11.39022159576416 + ], + [ + "▁Iraq", + -11.39050579071045 + ], + [ + "▁vente", + -11.390582084655762 + ], + [ + "▁Donald", + -11.390998840332031 + ], + [ + "▁passer", + -11.391051292419434 + ], + [ + "▁mehrere", + -11.391267776489258 + ], + [ + "▁Everything", + -11.391291618347168 + ], + [ + "▁studied", + -11.391307830810547 + ], + [ + "▁acquire", + -11.391312599182129 + ], + [ + "für", + -11.391477584838867 + ], + [ + "▁gal", + -11.391502380371094 + ], + [ + "▁headed", + -11.391809463500977 + ], + [ + "▁screening", + -11.391865730285645 + ], + [ + "▁findings", + -11.392303466796875 + ], + [ + "▁nutrition", + -11.392305374145508 + ], + [ + "▁Secretary", + -11.392308235168457 + ], + [ + "duct", + -11.392431259155273 + ], + [ + "born", + -11.392436027526855 + ], + [ + "«", + -11.39261531829834 + ], + [ + "▁statistics", + -11.392616271972656 + ], + [ + "▁Sydney", + -11.392800331115723 + ], + [ + "▁Prof", + -11.392829895019531 + ], + [ + "▁dialogue", + -11.39327621459961 + ], + [ + "▁gather", + -11.393425941467285 + ], + [ + "valu", + -11.393746376037598 + ], + [ + "▁currency", + -11.394073486328125 + ], + [ + "▁Kat", + -11.394092559814453 + ], + [ + "gotten", + -11.394189834594727 + ], + [ + "main", + -11.39432144165039 + ], + [ + "▁coin", + -11.394340515136719 + ], + [ + "▁Nick", + -11.394380569458008 + ], + [ + "vă", + -11.394658088684082 + ], + [ + "▁Victoria", + -11.394832611083984 + ], + [ + "▁conclusion", + -11.3949613571167 + ], + [ + "▁lemon", + -11.394998550415039 + ], + [ + "▁Article", + -11.39516830444336 + ], + [ + "▁necesar", + -11.39516830444336 + ], + [ + "mag", + -11.395180702209473 + ], + [ + "▁riding", + -11.39537239074707 + ], + [ + "▁Eli", + -11.395599365234375 + ], + [ + "▁cord", + -11.395635604858398 + ], + [ + "wä", + -11.39572811126709 + ], + [ + "ußerdem", + -11.395737648010254 + ], + [ + "▁Bed", + -11.395759582519531 + ], + [ + "▁layers", + -11.395833015441895 + ], + [ + "▁harder", + -11.395975112915039 + ], + [ + "▁processor", + -11.396040916442871 + ], + [ + "▁Ils", + -11.39613151550293 + ], + [ + "▁Edition", + -11.39615535736084 + ], + [ + "▁Link", + -11.396393775939941 + ], + [ + "éré", + -11.396461486816406 + ], + [ + "▁nume", + -11.396576881408691 + ], + [ + "▁Boy", + -11.39659595489502 + ], + [ + "▁equally", + -11.396646499633789 + ], + [ + "▁Regel", + -11.397119522094727 + ], + [ + "▁hopes", + -11.397185325622559 + ], + [ + "odor", + -11.397311210632324 + ], + [ + "▁initially", + -11.397430419921875 + ], + [ + "▁$4", + -11.3974609375 + ], + [ + "▁exemplu", + -11.397537231445312 + ], + [ + "▁vari", + -11.397565841674805 + ], + [ + "schl", + -11.397698402404785 + ], + [ + "▁southern", + -11.39809799194336 + ], + [ + "▁mein", + -11.39818000793457 + ], + [ + "▁1994", + -11.398300170898438 + ], + [ + "▁importantly", + -11.398401260375977 + ], + [ + "▁succes", + -11.398526191711426 + ], + [ + "▁developer", + -11.398598670959473 + ], + [ + "▁lips", + -11.39889144897461 + ], + [ + "▁attitude", + -11.39900016784668 + ], + [ + "▁Age", + -11.399541854858398 + ], + [ + "▁corps", + -11.399713516235352 + ], + [ + "▁clicking", + -11.39976978302002 + ], + [ + "▁putem", + -11.399832725524902 + ], + [ + "▁journée", + -11.40003776550293 + ], + [ + "boy", + -11.4002103805542 + ], + [ + "▁injured", + -11.40028190612793 + ], + [ + "▁watched", + -11.400433540344238 + ], + [ + "▁flights", + -11.40079116821289 + ], + [ + "turn", + -11.400980949401855 + ], + [ + "▁stainless", + -11.401562690734863 + ], + [ + "▁besondere", + -11.40156364440918 + ], + [ + "▁Tur", + -11.401596069335938 + ], + [ + "▁hiring", + -11.401650428771973 + ], + [ + "▁roads", + -11.401727676391602 + ], + [ + "ificat", + -11.401785850524902 + ], + [ + "▁Flor", + -11.402045249938965 + ], + [ + "▁puternic", + -11.402215003967285 + ], + [ + "▁unexpected", + -11.40223503112793 + ], + [ + "▁Est", + -11.40238094329834 + ], + [ + "▁adopted", + -11.40253734588623 + ], + [ + "▁Fox", + -11.402647972106934 + ], + [ + "▁contributions", + -11.402870178222656 + ], + [ + "sec", + -11.402968406677246 + ], + [ + "IO", + -11.403059959411621 + ], + [ + "▁santé", + -11.403432846069336 + ], + [ + "▁Tree", + -11.403763771057129 + ], + [ + "▁scurt", + -11.40381908416748 + ], + [ + "▁Products", + -11.403848648071289 + ], + [ + "▁forecast", + -11.403998374938965 + ], + [ + "▁actor", + -11.404143333435059 + ], + [ + "▁Gallery", + -11.404149055480957 + ], + [ + "▁continuous", + -11.404163360595703 + ], + [ + "▁Hat", + -11.404291152954102 + ], + [ + "▁slip", + -11.404501914978027 + ], + [ + "9%", + -11.404960632324219 + ], + [ + "▁depression", + -11.405043601989746 + ], + [ + "UI", + -11.405229568481445 + ], + [ + "abile", + -11.405648231506348 + ], + [ + "▁merit", + -11.405671119689941 + ], + [ + "▁Fer", + -11.405805587768555 + ], + [ + "▁robot", + -11.405888557434082 + ], + [ + "▁gel", + -11.40589427947998 + ], + [ + "▁gentle", + -11.406017303466797 + ], + [ + "▁wanting", + -11.406071662902832 + ], + [ + "▁understood", + -11.406157493591309 + ], + [ + "▁terrain", + -11.406161308288574 + ], + [ + "▁associate", + -11.406176567077637 + ], + [ + "▁discussions", + -11.40632152557373 + ], + [ + "▁Job", + -11.406365394592285 + ], + [ + "spec", + -11.406440734863281 + ], + [ + "Dabei", + -11.406475067138672 + ], + [ + "etic", + -11.406517028808594 + ], + [ + "gol", + -11.40654468536377 + ], + [ + "▁20%", + -11.406584739685059 + ], + [ + "▁grup", + -11.406606674194336 + ], + [ + "▁Doctor", + -11.406813621520996 + ], + [ + "verse", + -11.407246589660645 + ], + [ + "▁victim", + -11.407258033752441 + ], + [ + "ță", + -11.407302856445312 + ], + [ + "▁scores", + -11.407544136047363 + ], + [ + "▁Policy", + -11.407634735107422 + ], + [ + "▁Anna", + -11.407736778259277 + ], + [ + "IV", + -11.407804489135742 + ], + [ + "▁mineral", + -11.408202171325684 + ], + [ + "live", + -11.40821647644043 + ], + [ + "▁grey", + -11.408368110656738 + ], + [ + "struct", + -11.40852165222168 + ], + [ + "▁emails", + -11.408738136291504 + ], + [ + "▁anymore", + -11.409114837646484 + ], + [ + "▁productivity", + -11.409387588500977 + ], + [ + "▁Dark", + -11.409463882446289 + ], + [ + "▁neither", + -11.409481048583984 + ], + [ + "▁quotes", + -11.409611701965332 + ], + [ + "LS", + -11.410368919372559 + ], + [ + "▁Arizona", + -11.41040325164795 + ], + [ + "night", + -11.410497665405273 + ], + [ + "élé", + -11.411019325256348 + ], + [ + "▁assigned", + -11.411153793334961 + ], + [ + "▁satellite", + -11.411328315734863 + ], + [ + "▁stability", + -11.411665916442871 + ], + [ + "▁networking", + -11.41172981262207 + ], + [ + "▁Transport", + -11.411847114562988 + ], + [ + "▁persons", + -11.411856651306152 + ], + [ + "fund", + -11.412043571472168 + ], + [ + "▁pratique", + -11.41213321685791 + ], + [ + "▁inca", + -11.412134170532227 + ], + [ + "iller", + -11.412349700927734 + ], + [ + "▁packed", + -11.41239070892334 + ], + [ + "▁Vegas", + -11.412484169006348 + ], + [ + "▁offre", + -11.412493705749512 + ], + [ + "▁Bin", + -11.412518501281738 + ], + [ + "stop", + -11.412609100341797 + ], + [ + "mini", + -11.412860870361328 + ], + [ + "▁jam", + -11.412877082824707 + ], + [ + "cord", + -11.41289234161377 + ], + [ + "▁Beautiful", + -11.412996292114258 + ], + [ + "▁trash", + -11.413012504577637 + ], + [ + "▁wise", + -11.413092613220215 + ], + [ + "▁accounting", + -11.413178443908691 + ], + [ + "▁différents", + -11.413182258605957 + ], + [ + "▁stil", + -11.413214683532715 + ], + [ + "suit", + -11.413951873779297 + ], + [ + "▁vier", + -11.414209365844727 + ], + [ + "▁permis", + -11.414224624633789 + ], + [ + "flow", + -11.414238929748535 + ], + [ + "▁col", + -11.414749145507812 + ], + [ + "ected", + -11.414960861206055 + ], + [ + "▁singer", + -11.414999008178711 + ], + [ + "▁GmbH", + -11.415038108825684 + ], + [ + "tics", + -11.415094375610352 + ], + [ + "▁ser", + -11.415159225463867 + ], + [ + "On", + -11.415315628051758 + ], + [ + "▁insights", + -11.415605545043945 + ], + [ + "BB", + -11.415946960449219 + ], + [ + "▁differ", + -11.415959358215332 + ], + [ + "▁Glass", + -11.416131973266602 + ], + [ + "▁Six", + -11.416482925415039 + ], + [ + "▁subscription", + -11.416584968566895 + ], + [ + "BC", + -11.416606903076172 + ], + [ + "▁returning", + -11.416664123535156 + ], + [ + "kleinen", + -11.416693687438965 + ], + [ + "▁advantages", + -11.416747093200684 + ], + [ + "omme", + -11.416852951049805 + ], + [ + "lus", + -11.417071342468262 + ], + [ + "now", + -11.417141914367676 + ], + [ + "▁Pack", + -11.417253494262695 + ], + [ + "▁leak", + -11.417333602905273 + ], + [ + "▁muscles", + -11.41748332977295 + ], + [ + "▁davon", + -11.417492866516113 + ], + [ + "mph", + -11.417858123779297 + ], + [ + "▁temple", + -11.417868614196777 + ], + [ + "▁Après", + -11.417901039123535 + ], + [ + "▁Illinois", + -11.41801643371582 + ], + [ + "▁variable", + -11.418065071105957 + ], + [ + "▁judgment", + -11.418389320373535 + ], + [ + "gran", + -11.41861629486084 + ], + [ + "▁pose", + -11.418621063232422 + ], + [ + "das", + -11.418647766113281 + ], + [ + "ures", + -11.418673515319824 + ], + [ + "▁Championship", + -11.418689727783203 + ], + [ + "ebenfalls", + -11.41872501373291 + ], + [ + "▁hydro", + -11.418753623962402 + ], + [ + "▁angle", + -11.419268608093262 + ], + [ + "▁5-", + -11.41940975189209 + ], + [ + "▁gest", + -11.419547080993652 + ], + [ + "▁Frau", + -11.420233726501465 + ], + [ + "▁knock", + -11.420275688171387 + ], + [ + "FS", + -11.420442581176758 + ], + [ + "spi", + -11.420577049255371 + ], + [ + "▁Regional", + -11.420717239379883 + ], + [ + "lets", + -11.421098709106445 + ], + [ + "▁Date", + -11.42115592956543 + ], + [ + "▁Finance", + -11.421211242675781 + ], + [ + "▁Dann", + -11.421320915222168 + ], + [ + "Star", + -11.421380043029785 + ], + [ + "▁Creek", + -11.421393394470215 + ], + [ + "▁fu", + -11.421648979187012 + ], + [ + "wohn", + -11.422141075134277 + ], + [ + "▁anniversary", + -11.422219276428223 + ], + [ + "▁investments", + -11.422292709350586 + ], + [ + "▁universal", + -11.422601699829102 + ], + [ + "▁pit", + -11.422745704650879 + ], + [ + "ște", + -11.422784805297852 + ], + [ + "▁lab", + -11.422822952270508 + ], + [ + "dienst", + -11.422884941101074 + ], + [ + "▁pal", + -11.422889709472656 + ], + [ + "▁graphic", + -11.42289924621582 + ], + [ + "▁bearing", + -11.422900199890137 + ], + [ + "▁stylish", + -11.423087120056152 + ], + [ + "▁mé", + -11.42319393157959 + ], + [ + "▁există", + -11.42326545715332 + ], + [ + "▁découvrir", + -11.423477172851562 + ], + [ + "comp", + -11.423606872558594 + ], + [ + "ridge", + -11.423667907714844 + ], + [ + "▁heads", + -11.423765182495117 + ], + [ + "▁consequences", + -11.423835754394531 + ], + [ + "self", + -11.423842430114746 + ], + [ + "fried", + -11.423870086669922 + ], + [ + "▁inventory", + -11.424199104309082 + ], + [ + "▁strip", + -11.42422866821289 + ], + [ + "▁Civil", + -11.42424488067627 + ], + [ + "bell", + -11.424307823181152 + ], + [ + "▁neben", + -11.424444198608398 + ], + [ + "▁Perfect", + -11.424470901489258 + ], + [ + "▁Notre", + -11.424478530883789 + ], + [ + "▁fraud", + -11.424630165100098 + ], + [ + "▁employers", + -11.424656867980957 + ], + [ + "▁Jackson", + -11.42470645904541 + ], + [ + "▁probleme", + -11.424915313720703 + ], + [ + "▁richtig", + -11.424957275390625 + ], + [ + "▁Method", + -11.425009727478027 + ], + [ + "▁tired", + -11.425010681152344 + ], + [ + "dies", + -11.425031661987305 + ], + [ + "▁Number", + -11.425315856933594 + ], + [ + "rland", + -11.425652503967285 + ], + [ + "▁latter", + -11.426031112670898 + ], + [ + "rendre", + -11.426064491271973 + ], + [ + "▁cameras", + -11.426095962524414 + ], + [ + "▁euch", + -11.426630020141602 + ], + [ + "▁Description", + -11.427038192749023 + ], + [ + "Spec", + -11.427061080932617 + ], + [ + "▁mile", + -11.427437782287598 + ], + [ + "▁Challenge", + -11.427474021911621 + ], + [ + "▁Solutions", + -11.427504539489746 + ], + [ + "▁trusted", + -11.427509307861328 + ], + [ + "▁einge", + -11.427515029907227 + ], + [ + "rück", + -11.427528381347656 + ], + [ + "▁Ober", + -11.427635192871094 + ], + [ + "kes", + -11.42764949798584 + ], + [ + "▁Log", + -11.427684783935547 + ], + [ + "▁dessert", + -11.427776336669922 + ], + [ + "▁murder", + -11.428033828735352 + ], + [ + "▁1/2", + -11.428311347961426 + ], + [ + "▁Provide", + -11.42872142791748 + ], + [ + "nivelul", + -11.428800582885742 + ], + [ + "nici", + -11.428818702697754 + ], + [ + "▁observe", + -11.42889404296875 + ], + [ + "▁prescription", + -11.429162979125977 + ], + [ + "▁Sau", + -11.429170608520508 + ], + [ + "▁genuine", + -11.42919635772705 + ], + [ + "▁operated", + -11.429231643676758 + ], + [ + "▁generous", + -11.429267883300781 + ], + [ + "▁weapons", + -11.429458618164062 + ], + [ + "▁belief", + -11.4295015335083 + ], + [ + "▁consum", + -11.429584503173828 + ], + [ + "▁unknown", + -11.430116653442383 + ], + [ + "deoarece", + -11.430135726928711 + ], + [ + "Art", + -11.430147171020508 + ], + [ + "▁kurz", + -11.430183410644531 + ], + [ + "▁Gut", + -11.430258750915527 + ], + [ + "▁medication", + -11.430522918701172 + ], + [ + "▁Mau", + -11.43058967590332 + ], + [ + "▁divorce", + -11.430678367614746 + ], + [ + "▁claimed", + -11.430811882019043 + ], + [ + "halten", + -11.430848121643066 + ], + [ + "▁Cons", + -11.43089485168457 + ], + [ + "▁operational", + -11.430975914001465 + ], + [ + "▁Hong", + -11.431081771850586 + ], + [ + "VI", + -11.431143760681152 + ], + [ + "▁Blick", + -11.431485176086426 + ], + [ + "▁lamp", + -11.431706428527832 + ], + [ + "pati", + -11.431853294372559 + ], + [ + "▁4-", + -11.43192195892334 + ], + [ + "▁interven", + -11.431964874267578 + ], + [ + "ques", + -11.43201732635498 + ], + [ + "▁Talk", + -11.432096481323242 + ], + [ + "▁zeigt", + -11.432318687438965 + ], + [ + "▁targeted", + -11.432390213012695 + ], + [ + "round", + -11.432640075683594 + ], + [ + "enfant", + -11.432748794555664 + ], + [ + "▁Reg", + -11.432836532592773 + ], + [ + "▁instruments", + -11.432872772216797 + ], + [ + "▁calcul", + -11.433363914489746 + ], + [ + "▁Henry", + -11.4335298538208 + ], + [ + "▁Cla", + -11.433616638183594 + ], + [ + "▁rack", + -11.433661460876465 + ], + [ + "sehen", + -11.43375301361084 + ], + [ + "▁ending", + -11.433754920959473 + ], + [ + "▁resolve", + -11.434130668640137 + ], + [ + "▁advise", + -11.434178352355957 + ], + [ + "▁sociale", + -11.434386253356934 + ], + [ + "▁cabin", + -11.434536933898926 + ], + [ + "▁involve", + -11.43480396270752 + ], + [ + "gă", + -11.434889793395996 + ], + [ + "▁automat", + -11.435132026672363 + ], + [ + "▁consultant", + -11.435258865356445 + ], + [ + "Bu", + -11.435370445251465 + ], + [ + "▁safely", + -11.435466766357422 + ], + [ + "état", + -11.435478210449219 + ], + [ + "▁pros", + -11.435657501220703 + ], + [ + "▁lies", + -11.435659408569336 + ], + [ + "▁Brian", + -11.435914993286133 + ], + [ + "▁talented", + -11.435954093933105 + ], + [ + "pus", + -11.43599796295166 + ], + [ + "▁hub", + -11.436060905456543 + ], + [ + "▁Ji", + -11.436066627502441 + ], + [ + "▁sought", + -11.436102867126465 + ], + [ + "▁energie", + -11.436210632324219 + ], + [ + "▁möchten", + -11.43634033203125 + ], + [ + "▁11.", + -11.436558723449707 + ], + [ + "▁Kong", + -11.436662673950195 + ], + [ + "▁grave", + -11.43666934967041 + ], + [ + "▁lists", + -11.436800956726074 + ], + [ + "tati", + -11.436809539794922 + ], + [ + "verschiedenen", + -11.43692398071289 + ], + [ + "dam", + -11.437061309814453 + ], + [ + "▁charity", + -11.437249183654785 + ], + [ + "▁breaking", + -11.43735122680664 + ], + [ + "kins", + -11.43747329711914 + ], + [ + "▁könnte", + -11.437517166137695 + ], + [ + "▁appointed", + -11.437532424926758 + ], + [ + "roc", + -11.4376859664917 + ], + [ + "▁Senate", + -11.437979698181152 + ], + [ + "wit", + -11.438002586364746 + ], + [ + "▁emerging", + -11.438162803649902 + ], + [ + "▁année", + -11.438288688659668 + ], + [ + "▁Cool", + -11.438365936279297 + ], + [ + "▁sensor", + -11.43842887878418 + ], + [ + "How", + -11.438488960266113 + ], + [ + "▁Ryan", + -11.438626289367676 + ], + [ + "▁computers", + -11.43871784210205 + ], + [ + "▁fault", + -11.4388427734375 + ], + [ + "▁présent", + -11.438843727111816 + ], + [ + "ulation", + -11.439149856567383 + ], + [ + "▁stir", + -11.439348220825195 + ], + [ + "lauf", + -11.439703941345215 + ], + [ + "▁AI", + -11.440389633178711 + ], + [ + "▁Bri", + -11.440438270568848 + ], + [ + "▁bain", + -11.441011428833008 + ], + [ + "▁5,", + -11.441287994384766 + ], + [ + "schein", + -11.44157886505127 + ], + [ + "▁weiß", + -11.441596031188965 + ], + [ + "▁possibilities", + -11.44235610961914 + ], + [ + "gur", + -11.442413330078125 + ], + [ + "▁hinter", + -11.442647933959961 + ], + [ + "Innen", + -11.442755699157715 + ], + [ + "▁vorba", + -11.442992210388184 + ], + [ + "fahren", + -11.443008422851562 + ], + [ + "▁Cell", + -11.443072319030762 + ], + [ + "univers", + -11.443137168884277 + ], + [ + "▁Follow", + -11.443424224853516 + ], + [ + "▁emotions", + -11.44360637664795 + ], + [ + "▁Ministry", + -11.443694114685059 + ], + [ + "▁curriculum", + -11.443694114685059 + ], + [ + "Je", + -11.443764686584473 + ], + [ + "▁gab", + -11.444080352783203 + ], + [ + "▁sigur", + -11.444270133972168 + ], + [ + "rise", + -11.444416999816895 + ], + [ + "Pri", + -11.44466495513916 + ], + [ + "▁stabil", + -11.444781303405762 + ], + [ + "▁superb", + -11.445100784301758 + ], + [ + "▁Oak", + -11.44510269165039 + ], + [ + "▁rubber", + -11.445286750793457 + ], + [ + "▁tag", + -11.445306777954102 + ], + [ + "PG", + -11.445361137390137 + ], + [ + "▁Heat", + -11.445477485656738 + ], + [ + "▁thousand", + -11.445504188537598 + ], + [ + "▁meets", + -11.445521354675293 + ], + [ + "▁faced", + -11.445578575134277 + ], + [ + "▁reserve", + -11.445640563964844 + ], + [ + "cateva", + -11.445767402648926 + ], + [ + "▁gym", + -11.445771217346191 + ], + [ + "▁vitamin", + -11.445960998535156 + ], + [ + "▁Rest", + -11.446457862854004 + ], + [ + "▁Single", + -11.446535110473633 + ], + [ + "▁Stephen", + -11.446623802185059 + ], + [ + "▁trick", + -11.446824073791504 + ], + [ + "DU", + -11.44694709777832 + ], + [ + "▁telefon", + -11.44711685180664 + ], + [ + "▁gând", + -11.447120666503906 + ], + [ + "▁primit", + -11.447345733642578 + ], + [ + "▁Connect", + -11.447351455688477 + ], + [ + "▁führt", + -11.447440147399902 + ], + [ + "▁Info", + -11.447500228881836 + ], + [ + "▁recall", + -11.447848320007324 + ], + [ + "▁restore", + -11.447885513305664 + ], + [ + "lege", + -11.44792652130127 + ], + [ + "▁franchise", + -11.448189735412598 + ], + [ + "▁seulement", + -11.44856071472168 + ], + [ + "reci", + -11.448598861694336 + ], + [ + "▁2019,", + -11.44864273071289 + ], + [ + "▁Ring", + -11.448663711547852 + ], + [ + "▁assembly", + -11.448678970336914 + ], + [ + "intérieur", + -11.448775291442871 + ], + [ + "▁shade", + -11.44887924194336 + ], + [ + "▁meaningful", + -11.448881149291992 + ], + [ + "bag", + -11.448989868164062 + ], + [ + "ONE", + -11.449249267578125 + ], + [ + "▁globe", + -11.449287414550781 + ], + [ + "▁WA", + -11.449406623840332 + ], + [ + "▁intervention", + -11.449495315551758 + ], + [ + "öl", + -11.449531555175781 + ], + [ + "▁Marine", + -11.45029067993164 + ], + [ + "▁Angebot", + -11.450512886047363 + ], + [ + "▁align", + -11.450618743896484 + ], + [ + "▁temperatures", + -11.450634956359863 + ], + [ + "ifier", + -11.45091724395752 + ], + [ + "▁Nigeria", + -11.451189041137695 + ], + [ + "▁survive", + -11.451216697692871 + ], + [ + "ounce", + -11.451275825500488 + ], + [ + "▁placement", + -11.451416969299316 + ], + [ + "▁deci", + -11.451528549194336 + ], + [ + "▁Taylor", + -11.451759338378906 + ], + [ + "step", + -11.45190715789795 + ], + [ + "▁Geschichte", + -11.452054023742676 + ], + [ + "▁Bet", + -11.452169418334961 + ], + [ + "▁Nature", + -11.45224380493164 + ], + [ + "▁FC", + -11.452256202697754 + ], + [ + "▁ownership", + -11.452286720275879 + ], + [ + "▁behaviour", + -11.452474594116211 + ], + [ + "▁deutlich", + -11.452532768249512 + ], + [ + "▁wondering", + -11.452798843383789 + ], + [ + "▁cleaner", + -11.453295707702637 + ], + [ + "uring", + -11.4534912109375 + ], + [ + "rä", + -11.453496932983398 + ], + [ + "▁ga", + -11.454296112060547 + ], + [ + "ador", + -11.454482078552246 + ], + [ + "▁artwork", + -11.454564094543457 + ], + [ + "ologic", + -11.45457649230957 + ], + [ + "▁eigentlich", + -11.454848289489746 + ], + [ + "▁hell", + -11.45522403717041 + ], + [ + "source", + -11.455251693725586 + ], + [ + "▁gem", + -11.455265045166016 + ], + [ + "▁boss", + -11.455307006835938 + ], + [ + "▁arise", + -11.455460548400879 + ], + [ + "about", + -11.455711364746094 + ], + [ + "▁SI", + -11.455951690673828 + ], + [ + "▁ME", + -11.45610237121582 + ], + [ + "akt", + -11.456191062927246 + ], + [ + "▁Style", + -11.456259727478027 + ], + [ + "▁Körper", + -11.456493377685547 + ], + [ + "gui", + -11.456799507141113 + ], + [ + "▁navigate", + -11.456819534301758 + ], + [ + "▁Meanwhile", + -11.456977844238281 + ], + [ + "▁așa", + -11.457111358642578 + ], + [ + "▁bulk", + -11.457298278808594 + ], + [ + "▁directions", + -11.457310676574707 + ], + [ + "▁brick", + -11.457747459411621 + ], + [ + "▁Poly", + -11.457752227783203 + ], + [ + "▁politique", + -11.457772254943848 + ], + [ + "▁patch", + -11.457777976989746 + ], + [ + "ра", + -11.457816123962402 + ], + [ + "commerce", + -11.457844734191895 + ], + [ + "▁înainte", + -11.457884788513184 + ], + [ + "▁intelligent", + -11.45823860168457 + ], + [ + "▁infection", + -11.458426475524902 + ], + [ + "▁Tru", + -11.458494186401367 + ], + [ + "▁raising", + -11.458504676818848 + ], + [ + "tragen", + -11.458539009094238 + ], + [ + "▁portrait", + -11.45858383178711 + ], + [ + "▁meisten", + -11.458783149719238 + ], + [ + "▁organize", + -11.45893669128418 + ], + [ + "metric", + -11.458962440490723 + ], + [ + "▁Season", + -11.459036827087402 + ], + [ + "▁enforcement", + -11.459259033203125 + ], + [ + "origine", + -11.459836959838867 + ], + [ + "▁Ros", + -11.460065841674805 + ], + [ + "▁Mount", + -11.460083961486816 + ], + [ + "have", + -11.460237503051758 + ], + [ + "▁romantic", + -11.460258483886719 + ], + [ + "▁comic", + -11.460810661315918 + ], + [ + "▁greu", + -11.461116790771484 + ], + [ + "ET", + -11.46133041381836 + ], + [ + "▁hook", + -11.461407661437988 + ], + [ + "▁mort", + -11.461411476135254 + ], + [ + "▁indicated", + -11.461583137512207 + ], + [ + "▁7,", + -11.461982727050781 + ], + [ + "▁Neben", + -11.46204662322998 + ], + [ + "yer", + -11.46214485168457 + ], + [ + "▁momentul", + -11.46214771270752 + ], + [ + "note", + -11.462313652038574 + ], + [ + "▁baz", + -11.46231460571289 + ], + [ + "▁abroad", + -11.462320327758789 + ], + [ + "nite", + -11.462464332580566 + ], + [ + "▁bass", + -11.462701797485352 + ], + [ + "▁norm", + -11.462714195251465 + ], + [ + "▁É", + -11.462788581848145 + ], + [ + "4.", + -11.462881088256836 + ], + [ + "▁province", + -11.463004112243652 + ], + [ + "▁merge", + -11.463419914245605 + ], + [ + "arbeiten", + -11.463438987731934 + ], + [ + "-20", + -11.463574409484863 + ], + [ + "▁Nicht", + -11.463674545288086 + ], + [ + "spo", + -11.463783264160156 + ], + [ + "size", + -11.463815689086914 + ], + [ + "▁assure", + -11.463849067687988 + ], + [ + "charge", + -11.463987350463867 + ], + [ + "▁olive", + -11.464017868041992 + ], + [ + "▁Pot", + -11.46408462524414 + ], + [ + "▁Figure", + -11.4642333984375 + ], + [ + "clair", + -11.464336395263672 + ], + [ + "▁discipline", + -11.464600563049316 + ], + [ + "elli", + -11.464639663696289 + ], + [ + "▁tackle", + -11.465169906616211 + ], + [ + "▁buyer", + -11.465237617492676 + ], + [ + "▁loud", + -11.465479850769043 + ], + [ + "▁180", + -11.465534210205078 + ], + [ + "▁căt", + -11.465587615966797 + ], + [ + "▁Palm", + -11.465738296508789 + ], + [ + "away", + -11.46593189239502 + ], + [ + "▁Mother", + -11.46607494354248 + ], + [ + "onia", + -11.466240882873535 + ], + [ + "▁Protection", + -11.466416358947754 + ], + [ + "auto", + -11.466547966003418 + ], + [ + "▁Version", + -11.466583251953125 + ], + [ + "▁Nice", + -11.466714859008789 + ], + [ + "▁12.", + -11.46682071685791 + ], + [ + "▁0,", + -11.466835021972656 + ], + [ + "ATION", + -11.466911315917969 + ], + [ + "▁Produkte", + -11.466955184936523 + ], + [ + "▁tube", + -11.467084884643555 + ], + [ + "▁Houston", + -11.467106819152832 + ], + [ + "chu", + -11.467500686645508 + ], + [ + "pas", + -11.467717170715332 + ], + [ + "▁Ele", + -11.467801094055176 + ], + [ + "▁mountains", + -11.467835426330566 + ], + [ + "PH", + -11.467937469482422 + ], + [ + "▁languages", + -11.468672752380371 + ], + [ + "▁servicii", + -11.468722343444824 + ], + [ + "▁Stay", + -11.468999862670898 + ], + [ + "fil", + -11.469138145446777 + ], + [ + "▁propos", + -11.469801902770996 + ], + [ + "▁coll", + -11.469825744628906 + ], + [ + "▁mor", + -11.470197677612305 + ], + [ + "▁arrange", + -11.470410346984863 + ], + [ + "▁sorry", + -11.470475196838379 + ], + [ + "▁instruction", + -11.470723152160645 + ], + [ + "▁holes", + -11.47077465057373 + ], + [ + "letting", + -11.471046447753906 + ], + [ + "▁wa", + -11.471074104309082 + ], + [ + "▁Feb", + -11.471227645874023 + ], + [ + "omb", + -11.471232414245605 + ], + [ + "▁prise", + -11.471290588378906 + ], + [ + "VO", + -11.471305847167969 + ], + [ + "week", + -11.471349716186523 + ], + [ + "▁Event", + -11.471427917480469 + ], + [ + "▁AT", + -11.471485137939453 + ], + [ + "ket", + -11.471492767333984 + ], + [ + "haft", + -11.471579551696777 + ], + [ + "▁hits", + -11.47159194946289 + ], + [ + "foli", + -11.471681594848633 + ], + [ + "this", + -11.471948623657227 + ], + [ + "GP", + -11.471970558166504 + ], + [ + "▁Pin", + -11.472332954406738 + ], + [ + "▁Stein", + -11.472503662109375 + ], + [ + "thing", + -11.472512245178223 + ], + [ + "▁emphasis", + -11.472556114196777 + ], + [ + "▁Mur", + -11.472631454467773 + ], + [ + "▁Bag", + -11.472647666931152 + ], + [ + "cons", + -11.47273063659668 + ], + [ + "tons", + -11.472835540771484 + ], + [ + "lash", + -11.472987174987793 + ], + [ + "▁Grant", + -11.473104476928711 + ], + [ + "▁pris", + -11.473175048828125 + ], + [ + "▁bună", + -11.47323989868164 + ], + [ + "▁buc", + -11.473699569702148 + ], + [ + "▁passe", + -11.473746299743652 + ], + [ + "▁jewelry", + -11.474213600158691 + ], + [ + "iens", + -11.474342346191406 + ], + [ + "▁forma", + -11.47453784942627 + ], + [ + "▁Med", + -11.474651336669922 + ], + [ + "laufen", + -11.474778175354004 + ], + [ + "▁hunt", + -11.474977493286133 + ], + [ + "stayed", + -11.475086212158203 + ], + [ + "party", + -11.475152015686035 + ], + [ + "▁fra", + -11.47529411315918 + ], + [ + "▁scenes", + -11.475305557250977 + ], + [ + "▁absorb", + -11.47535228729248 + ], + [ + "▁abilities", + -11.475377082824707 + ], + [ + "lug", + -11.475507736206055 + ], + [ + "▁Sarah", + -11.475693702697754 + ], + [ + "mpf", + -11.47570514678955 + ], + [ + "▁fle", + -11.4757080078125 + ], + [ + "accès", + -11.475872993469238 + ], + [ + "▁solicit", + -11.475926399230957 + ], + [ + "pie", + -11.476278305053711 + ], + [ + "▁Zum", + -11.476296424865723 + ], + [ + "▁universe", + -11.476390838623047 + ], + [ + "▁exists", + -11.476449012756348 + ], + [ + "oane", + -11.476597785949707 + ], + [ + "IVE", + -11.47668743133545 + ], + [ + "▁2011.", + -11.476906776428223 + ], + [ + "▁specialists", + -11.477072715759277 + ], + [ + "▁mess", + -11.477309226989746 + ], + [ + "fach", + -11.477402687072754 + ], + [ + "▁Recht", + -11.477404594421387 + ], + [ + "▁hack", + -11.47755241394043 + ], + [ + "▁jacket", + -11.477564811706543 + ], + [ + "HC", + -11.47769832611084 + ], + [ + "▁substance", + -11.477728843688965 + ], + [ + "▁signing", + -11.477775573730469 + ], + [ + "▁allerdings", + -11.478032112121582 + ], + [ + "▁publish", + -11.478139877319336 + ], + [ + "▁Lab", + -11.478157043457031 + ], + [ + "▁agenda", + -11.478249549865723 + ], + [ + "lane", + -11.478299140930176 + ], + [ + "stream", + -11.478620529174805 + ], + [ + "schau", + -11.47879409790039 + ], + [ + "▁realizat", + -11.478971481323242 + ], + [ + "▁supplier", + -11.479019165039062 + ], + [ + "▁moderate", + -11.47902774810791 + ], + [ + "▁tours", + -11.479212760925293 + ], + [ + "▁narrative", + -11.479220390319824 + ], + [ + "ația", + -11.479279518127441 + ], + [ + "▁maps", + -11.479423522949219 + ], + [ + "treten", + -11.479447364807129 + ], + [ + "▁mars", + -11.479706764221191 + ], + [ + "▁moon", + -11.479745864868164 + ], + [ + "rose", + -11.479751586914062 + ], + [ + "▁exp", + -11.479766845703125 + ], + [ + "zahl", + -11.480154037475586 + ], + [ + "psych", + -11.480195999145508 + ], + [ + "▁gehört", + -11.48024845123291 + ], + [ + "▁bound", + -11.4803466796875 + ], + [ + "▁submission", + -11.480451583862305 + ], + [ + "▁clubs", + -11.480722427368164 + ], + [ + "Am", + -11.480755805969238 + ], + [ + "tenir", + -11.480782508850098 + ], + [ + "▁boast", + -11.480851173400879 + ], + [ + "▁boards", + -11.4810791015625 + ], + [ + "▁Geschäfts", + -11.481216430664062 + ], + [ + "zing", + -11.48126220703125 + ], + [ + "wort", + -11.48137092590332 + ], + [ + "lid", + -11.481417655944824 + ], + [ + "▁contractor", + -11.481528282165527 + ], + [ + "▁donner", + -11.481672286987305 + ], + [ + "▁coupon", + -11.481974601745605 + ], + [ + "adresse", + -11.482004165649414 + ], + [ + "colo", + -11.48210334777832 + ], + [ + "▁perception", + -11.482124328613281 + ], + [ + "NC", + -11.48222541809082 + ], + [ + "▁abge", + -11.482245445251465 + ], + [ + "▁cheaper", + -11.482268333435059 + ], + [ + "▁grace", + -11.482312202453613 + ], + [ + "▁resident", + -11.482718467712402 + ], + [ + "kla", + -11.4828462600708 + ], + [ + "▁bug", + -11.4828462600708 + ], + [ + "▁Available", + -11.482893943786621 + ], + [ + "▁BA", + -11.483323097229004 + ], + [ + "▁Met", + -11.483601570129395 + ], + [ + "▁climb", + -11.48365592956543 + ], + [ + "▁expanded", + -11.484349250793457 + ], + [ + "ying", + -11.484426498413086 + ], + [ + "▁matching", + -11.484469413757324 + ], + [ + "▁suffered", + -11.484733581542969 + ], + [ + "▁employed", + -11.484755516052246 + ], + [ + "pper", + -11.484843254089355 + ], + [ + "▁experiencing", + -11.484884262084961 + ], + [ + "ddy", + -11.484953880310059 + ], + [ + "▁philosophy", + -11.484955787658691 + ], + [ + "▁utilisé", + -11.485008239746094 + ], + [ + "▁Jane", + -11.485079765319824 + ], + [ + "LI", + -11.485087394714355 + ], + [ + "▁elected", + -11.485185623168945 + ], + [ + "▁MI", + -11.485264778137207 + ], + [ + "▁ISO", + -11.485340118408203 + ], + [ + "winning", + -11.48537540435791 + ], + [ + "▁vot", + -11.485424041748047 + ], + [ + "▁generic", + -11.485519409179688 + ], + [ + "▁Bol", + -11.485650062561035 + ], + [ + "▁copies", + -11.48568058013916 + ], + [ + "▁mechanical", + -11.48568058013916 + ], + [ + "günstig", + -11.485682487487793 + ], + [ + "roy", + -11.485770225524902 + ], + [ + "Astfel", + -11.485808372497559 + ], + [ + "media", + -11.485868453979492 + ], + [ + "▁shoulder", + -11.4859037399292 + ], + [ + "▁directory", + -11.486000061035156 + ], + [ + "▁banking", + -11.486016273498535 + ], + [ + "▁mistakes", + -11.486040115356445 + ], + [ + "▁Fran", + -11.486425399780273 + ], + [ + "▁Jon", + -11.486544609069824 + ], + [ + "▁spare", + -11.486579895019531 + ], + [ + "metri", + -11.486668586730957 + ], + [ + "▁mask", + -11.486879348754883 + ], + [ + "▁consistently", + -11.48695182800293 + ], + [ + "▁Columbia", + -11.487278938293457 + ], + [ + "roid", + -11.48774242401123 + ], + [ + "essen", + -11.487935066223145 + ], + [ + "▁(“", + -11.48798656463623 + ], + [ + "▁série", + -11.488212585449219 + ], + [ + "▁Phil", + -11.488249778747559 + ], + [ + "▁usor", + -11.488249778747559 + ], + [ + "▁stood", + -11.488279342651367 + ], + [ + "▁racing", + -11.488335609436035 + ], + [ + "▁Comme", + -11.488555908203125 + ], + [ + "▁exceed", + -11.488565444946289 + ], + [ + "на", + -11.488618850708008 + ], + [ + "▁activate", + -11.48873233795166 + ], + [ + "▁circle", + -11.488836288452148 + ], + [ + "▁bold", + -11.488956451416016 + ], + [ + "▁handy", + -11.48909854888916 + ], + [ + "merely", + -11.489114761352539 + ], + [ + "▁Edward", + -11.489147186279297 + ], + [ + "▁contracts", + -11.489530563354492 + ], + [ + "ê", + -11.489595413208008 + ], + [ + "▁campaigns", + -11.489673614501953 + ], + [ + "▁ought", + -11.489733695983887 + ], + [ + "▁nursing", + -11.489781379699707 + ], + [ + "▁Jr", + -11.489917755126953 + ], + [ + "▁rarely", + -11.490032196044922 + ], + [ + "▁Mir", + -11.490050315856934 + ], + [ + "▁diagnosis", + -11.490379333496094 + ], + [ + "▁Theatre", + -11.490394592285156 + ], + [ + "▁producer", + -11.490407943725586 + ], + [ + "Currently", + -11.490492820739746 + ], + [ + "▁fitting", + -11.490580558776855 + ], + [ + "▁ajunge", + -11.490618705749512 + ], + [ + "minte", + -11.490754127502441 + ], + [ + "▁termen", + -11.490838050842285 + ], + [ + "▁Linux", + -11.491013526916504 + ], + [ + "▁1-", + -11.491068840026855 + ], + [ + "▁hätte", + -11.491202354431152 + ], + [ + "▁Resort", + -11.49129867553711 + ], + [ + "image", + -11.491527557373047 + ], + [ + "▁Rod", + -11.49189281463623 + ], + [ + "▁Fly", + -11.491924285888672 + ], + [ + "try", + -11.492317199707031 + ], + [ + "▁expense", + -11.49245834350586 + ], + [ + "▁Interior", + -11.492799758911133 + ], + [ + "▁fence", + -11.492920875549316 + ], + [ + "▁Kontakt", + -11.493063926696777 + ], + [ + "▁ALL", + -11.493142127990723 + ], + [ + "VA", + -11.493229866027832 + ], + [ + "▁Exchange", + -11.493316650390625 + ], + [ + "ranked", + -11.493558883666992 + ], + [ + "▁Performance", + -11.493621826171875 + ], + [ + "prim", + -11.493635177612305 + ], + [ + "▁basket", + -11.493694305419922 + ], + [ + "▁Vice", + -11.493703842163086 + ], + [ + "phan", + -11.4937105178833 + ], + [ + "▁broke", + -11.494003295898438 + ], + [ + "voir", + -11.49431324005127 + ], + [ + "arg", + -11.494512557983398 + ], + [ + "ART", + -11.494529724121094 + ], + [ + "▁floors", + -11.494856834411621 + ], + [ + "pression", + -11.495025634765625 + ], + [ + "▁possession", + -11.49507999420166 + ], + [ + "▁domaine", + -11.49510669708252 + ], + [ + "▁valeur", + -11.495132446289062 + ], + [ + "▁suddenly", + -11.495282173156738 + ], + [ + "▁mild", + -11.495304107666016 + ], + [ + "▁aflat", + -11.495431900024414 + ], + [ + "▁Tea", + -11.495731353759766 + ], + [ + "tritt", + -11.495767593383789 + ], + [ + "▁Mittel", + -11.495773315429688 + ], + [ + "▁regulatory", + -11.49580192565918 + ], + [ + "▁spectacular", + -11.495905876159668 + ], + [ + "fahrt", + -11.495949745178223 + ], + [ + "GS", + -11.496026039123535 + ], + [ + "MM", + -11.4961576461792 + ], + [ + "▁environments", + -11.496203422546387 + ], + [ + "▁Raum", + -11.496381759643555 + ], + [ + "▁lay", + -11.496664047241211 + ], + [ + "▁cré", + -11.496713638305664 + ], + [ + "▁Selbst", + -11.496726989746094 + ], + [ + "▁opposition", + -11.496821403503418 + ], + [ + "two", + -11.49729061126709 + ], + [ + "▁Clark", + -11.497822761535645 + ], + [ + "▁Netz", + -11.497845649719238 + ], + [ + "bald", + -11.497983932495117 + ], + [ + "▁Innovation", + -11.4982271194458 + ], + [ + "▁overcome", + -11.49825382232666 + ], + [ + "quot", + -11.499013900756836 + ], + [ + "▁Sin", + -11.499106407165527 + ], + [ + "▁Sto", + -11.499320983886719 + ], + [ + "▁grain", + -11.499560356140137 + ], + [ + "▁collections", + -11.499724388122559 + ], + [ + "▁applies", + -11.49986743927002 + ], + [ + "mach", + -11.499934196472168 + ], + [ + "▁wheels", + -11.499958992004395 + ], + [ + "▁universities", + -11.500049591064453 + ], + [ + "▁Ray", + -11.500182151794434 + ], + [ + "lina", + -11.500238418579102 + ], + [ + "▁arrangements", + -11.500393867492676 + ], + [ + "▁western", + -11.500728607177734 + ], + [ + "rous", + -11.500768661499023 + ], + [ + "aise", + -11.500784873962402 + ], + [ + "▁highlights", + -11.50112533569336 + ], + [ + "▁intend", + -11.501265525817871 + ], + [ + "aimed", + -11.501358032226562 + ], + [ + "▁Scotland", + -11.501360893249512 + ], + [ + "▁acestei", + -11.501466751098633 + ], + [ + "graf", + -11.50150203704834 + ], + [ + "duction", + -11.501517295837402 + ], + [ + "path", + -11.50156021118164 + ], + [ + "▁evil", + -11.501633644104004 + ], + [ + "▁scris", + -11.501791000366211 + ], + [ + "▁disposition", + -11.501927375793457 + ], + [ + "▁designing", + -11.5020751953125 + ], + [ + "zwar", + -11.502172470092773 + ], + [ + "▁Retrieve", + -11.50217342376709 + ], + [ + "▁aggressive", + -11.502374649047852 + ], + [ + "▁Glen", + -11.502411842346191 + ], + [ + "▁daher", + -11.502473831176758 + ], + [ + "▁Quick", + -11.502494812011719 + ], + [ + "▁recover", + -11.502632141113281 + ], + [ + "▁prominent", + -11.50288200378418 + ], + [ + "▁visits", + -11.503198623657227 + ], + [ + "▁Mis", + -11.503376960754395 + ], + [ + "▁edited", + -11.503456115722656 + ], + [ + "▁distributed", + -11.503564834594727 + ], + [ + "▁dés", + -11.503580093383789 + ], + [ + "▁alter", + -11.5035982131958 + ], + [ + "▁cooked", + -11.503697395324707 + ], + [ + "embl", + -11.503706932067871 + ], + [ + "Univers", + -11.503715515136719 + ], + [ + "▁Minuten", + -11.504156112670898 + ], + [ + "▁compris", + -11.504179954528809 + ], + [ + "rais", + -11.504182815551758 + ], + [ + "essentially", + -11.504199028015137 + ], + [ + "▁rel", + -11.504340171813965 + ], + [ + "▁appel", + -11.504570007324219 + ], + [ + "▁trace", + -11.504788398742676 + ], + [ + "relating", + -11.504830360412598 + ], + [ + "dès", + -11.504937171936035 + ], + [ + "aste", + -11.504961013793945 + ], + [ + "▁raison", + -11.504963874816895 + ], + [ + "▁frequent", + -11.505281448364258 + ], + [ + "▁beds", + -11.505316734313965 + ], + [ + "▁Miami", + -11.505511283874512 + ], + [ + "▁vibrant", + -11.50564193725586 + ], + [ + "▁Kam", + -11.505721092224121 + ], + [ + "▁klar", + -11.505861282348633 + ], + [ + "▁Tan", + -11.50598430633545 + ], + [ + "▁vidéo", + -11.506032943725586 + ], + [ + "▁Kur", + -11.506115913391113 + ], + [ + "▁themes", + -11.506134033203125 + ], + [ + "▁struggling", + -11.506440162658691 + ], + [ + "▁Magazine", + -11.506444931030273 + ], + [ + "maker", + -11.506476402282715 + ], + [ + "veni", + -11.506564140319824 + ], + [ + "▁Groß", + -11.506732940673828 + ], + [ + "▁streaming", + -11.506772994995117 + ], + [ + "▁analyze", + -11.506876945495605 + ], + [ + "▁titles", + -11.506982803344727 + ], + [ + "pier", + -11.507316589355469 + ], + [ + "▁participant", + -11.507347106933594 + ], + [ + "aims", + -11.507607460021973 + ], + [ + "▁convention", + -11.507638931274414 + ], + [ + "▁flood", + -11.507780075073242 + ], + [ + "▁nights", + -11.507842063903809 + ], + [ + "▁titre", + -11.50792407989502 + ], + [ + "▁voul", + -11.508010864257812 + ], + [ + "weit", + -11.50816822052002 + ], + [ + "where", + -11.508213996887207 + ], + [ + "▁Seiten", + -11.508286476135254 + ], + [ + "▁relaxing", + -11.508628845214844 + ], + [ + "▁piano", + -11.50883674621582 + ], + [ + "▁Pick", + -11.508842468261719 + ], + [ + "▁Sony", + -11.508955001831055 + ], + [ + "▁enhanced", + -11.509017944335938 + ], + [ + "▁visa", + -11.50915241241455 + ], + [ + "CH", + -11.50930118560791 + ], + [ + "▁instantly", + -11.50930404663086 + ], + [ + "▁Fan", + -11.509721755981445 + ], + [ + "▁diabetes", + -11.509988784790039 + ], + [ + "▁popul", + -11.50999641418457 + ], + [ + "Ang", + -11.510232925415039 + ], + [ + "▁Ask", + -11.510295867919922 + ], + [ + "cate", + -11.510650634765625 + ], + [ + "▁simplu", + -11.510666847229004 + ], + [ + "nahme", + -11.510685920715332 + ], + [ + "▁dentist", + -11.510842323303223 + ], + [ + "ubi", + -11.510920524597168 + ], + [ + "article", + -11.511030197143555 + ], + [ + "▁graph", + -11.511094093322754 + ], + [ + "▁rival", + -11.51121711730957 + ], + [ + "jahr", + -11.5113525390625 + ], + [ + "▁bloc", + -11.511370658874512 + ], + [ + "fern", + -11.511427879333496 + ], + [ + "▁dispar", + -11.511516571044922 + ], + [ + "▁servers", + -11.511582374572754 + ], + [ + "▁patru", + -11.511610984802246 + ], + [ + "▁Within", + -11.511634826660156 + ], + [ + "▁situated", + -11.511896133422852 + ], + [ + "▁HR", + -11.511981964111328 + ], + [ + "▁leaf", + -11.511981964111328 + ], + [ + "▁curs", + -11.512049674987793 + ], + [ + "antes", + -11.512325286865234 + ], + [ + "lux", + -11.512406349182129 + ], + [ + "▁1993", + -11.512463569641113 + ], + [ + "stance", + -11.512650489807129 + ], + [ + "▁northern", + -11.512683868408203 + ], + [ + "lves", + -11.512718200683594 + ], + [ + "▁contractors", + -11.512882232666016 + ], + [ + "▁dimensions", + -11.512920379638672 + ], + [ + "▁rolling", + -11.513068199157715 + ], + [ + "▁automobile", + -11.513211250305176 + ], + [ + "▁cru", + -11.51342487335205 + ], + [ + "▁displays", + -11.513570785522461 + ], + [ + "web", + -11.513812065124512 + ], + [ + "had", + -11.513850212097168 + ], + [ + "▁Never", + -11.513893127441406 + ], + [ + "▁2-", + -11.513932228088379 + ], + [ + "vine", + -11.51393985748291 + ], + [ + "▁Wahl", + -11.513975143432617 + ], + [ + "▁Markt", + -11.514166831970215 + ], + [ + "▁Double", + -11.514227867126465 + ], + [ + "▁acknowledge", + -11.514229774475098 + ], + [ + "stal", + -11.514288902282715 + ], + [ + "▁equity", + -11.514620780944824 + ], + [ + "▁ministry", + -11.514823913574219 + ], + [ + "▁Lor", + -11.514875411987305 + ], + [ + "▁sud", + -11.514968872070312 + ], + [ + "idée", + -11.515044212341309 + ], + [ + "▁measured", + -11.515448570251465 + ], + [ + "▁editing", + -11.515609741210938 + ], + [ + "▁singur", + -11.515620231628418 + ], + [ + "▁coal", + -11.515623092651367 + ], + [ + "▁dramatic", + -11.516212463378906 + ], + [ + "AG", + -11.516251564025879 + ], + [ + "asca", + -11.516280174255371 + ], + [ + "▁crash", + -11.516321182250977 + ], + [ + "ischer", + -11.516597747802734 + ], + [ + "▁Pla", + -11.516871452331543 + ], + [ + "▁psycho", + -11.517054557800293 + ], + [ + "piece", + -11.517118453979492 + ], + [ + "▁finger", + -11.517121315002441 + ], + [ + "▁Hollywood", + -11.517123222351074 + ], + [ + "▁Cr", + -11.517345428466797 + ], + [ + "▁locally", + -11.517622947692871 + ], + [ + "▁mouse", + -11.517792701721191 + ], + [ + "▁Base", + -11.517867088317871 + ], + [ + "uite", + -11.518095016479492 + ], + [ + "▁detect", + -11.518099784851074 + ], + [ + "cea", + -11.518150329589844 + ], + [ + "▁bull", + -11.518194198608398 + ], + [ + "▁curve", + -11.518208503723145 + ], + [ + "été", + -11.518218994140625 + ], + [ + "ddle", + -11.51839542388916 + ], + [ + "▁span", + -11.518523216247559 + ], + [ + "WS", + -11.518878936767578 + ], + [ + "CL", + -11.519017219543457 + ], + [ + "▁officially", + -11.519042015075684 + ], + [ + "▁corect", + -11.519168853759766 + ], + [ + "▁Artikel", + -11.5193510055542 + ], + [ + "▁customized", + -11.520099639892578 + ], + [ + "▁intellectual", + -11.52018928527832 + ], + [ + "▁heures", + -11.520334243774414 + ], + [ + "schule", + -11.520444869995117 + ], + [ + "▁investing", + -11.520585060119629 + ], + [ + "▁parallel", + -11.521227836608887 + ], + [ + "▁loi", + -11.521263122558594 + ], + [ + "ările", + -11.521566390991211 + ], + [ + "р", + -11.521679878234863 + ], + [ + "▁bench", + -11.521724700927734 + ], + [ + "▁principle", + -11.521756172180176 + ], + [ + "▁Galaxy", + -11.521829605102539 + ], + [ + "ța", + -11.522237777709961 + ], + [ + "▁(4", + -11.522418975830078 + ], + [ + "▁bedrooms", + -11.522578239440918 + ], + [ + "née", + -11.52273941040039 + ], + [ + "▁surely", + -11.52275276184082 + ], + [ + "very", + -11.522927284240723 + ], + [ + "stelle", + -11.523200988769531 + ], + [ + "activ", + -11.523216247558594 + ], + [ + "cite", + -11.523551940917969 + ], + [ + "▁Original", + -11.523553848266602 + ], + [ + "▁palm", + -11.523665428161621 + ], + [ + "▁losses", + -11.523934364318848 + ], + [ + "▁newspaper", + -11.524153709411621 + ], + [ + "ciu", + -11.52436351776123 + ], + [ + "▁Hold", + -11.524392127990723 + ], + [ + "BO", + -11.524422645568848 + ], + [ + "▁CON", + -11.524598121643066 + ], + [ + "▁modified", + -11.524624824523926 + ], + [ + "▁stake", + -11.524735450744629 + ], + [ + "▁Ton", + -11.524798393249512 + ], + [ + "▁luna", + -11.524968147277832 + ], + [ + "▁Mind", + -11.525094985961914 + ], + [ + "lap", + -11.525150299072266 + ], + [ + "▁opinions", + -11.525247573852539 + ], + [ + "▁Jordan", + -11.525351524353027 + ], + [ + "div", + -11.52537727355957 + ], + [ + "indi", + -11.525418281555176 + ], + [ + "▁Story", + -11.525476455688477 + ], + [ + "▁affiliate", + -11.52585506439209 + ], + [ + "▁matière", + -11.525918960571289 + ], + [ + "▁fifth", + -11.526399612426758 + ], + [ + "▁sheets", + -11.52645492553711 + ], + [ + "▁puțin", + -11.526909828186035 + ], + [ + "ush", + -11.526947021484375 + ], + [ + "geführt", + -11.526993751525879 + ], + [ + "▁Falls", + -11.527168273925781 + ], + [ + "legi", + -11.527295112609863 + ], + [ + "▁auction", + -11.527326583862305 + ], + [ + "▁cooperation", + -11.52735424041748 + ], + [ + "▁Fee", + -11.527474403381348 + ], + [ + "▁Daily", + -11.52774715423584 + ], + [ + "pies", + -11.527853965759277 + ], + [ + "▁basketball", + -11.527976036071777 + ], + [ + "removing", + -11.528056144714355 + ], + [ + "Besides", + -11.528294563293457 + ], + [ + "▁Body", + -11.528355598449707 + ], + [ + "▁AD", + -11.528369903564453 + ], + [ + "RU", + -11.528435707092285 + ], + [ + "ţia", + -11.52894401550293 + ], + [ + "▁Extra", + -11.528986930847168 + ], + [ + "▁Practice", + -11.52900218963623 + ], + [ + "▁Jeff", + -11.529017448425293 + ], + [ + "▁început", + -11.529253005981445 + ], + [ + "ching", + -11.529269218444824 + ], + [ + "▁Gift", + -11.529281616210938 + ], + [ + "kk", + -11.529295921325684 + ], + [ + "\")", + -11.529349327087402 + ], + [ + "▁Austin", + -11.529651641845703 + ], + [ + "thro", + -11.529766082763672 + ], + [ + "▁camping", + -11.529810905456543 + ], + [ + "▁theatre", + -11.529850959777832 + ], + [ + "école", + -11.529916763305664 + ], + [ + "vient", + -11.530159950256348 + ], + [ + "▁faces", + -11.530226707458496 + ], + [ + "▁constructed", + -11.530437469482422 + ], + [ + "▁overnight", + -11.530472755432129 + ], + [ + "▁locale", + -11.530574798583984 + ], + [ + "▁roots", + -11.530611038208008 + ], + [ + "▁bu", + -11.530662536621094 + ], + [ + "4,", + -11.530683517456055 + ], + [ + "▁Enterprise", + -11.530865669250488 + ], + [ + "screen", + -11.530935287475586 + ], + [ + "▁Chef", + -11.53096866607666 + ], + [ + "▁Along", + -11.531298637390137 + ], + [ + "▁MD", + -11.531431198120117 + ], + [ + "▁Supreme", + -11.531597137451172 + ], + [ + "En", + -11.531655311584473 + ], + [ + "▁verwendet", + -11.532015800476074 + ], + [ + "▁processed", + -11.532425880432129 + ], + [ + "▁vendors", + -11.532549858093262 + ], + [ + "▁FA", + -11.532651901245117 + ], + [ + "▁44", + -11.532716751098633 + ], + [ + "▁beautifully", + -11.532933235168457 + ], + [ + "▁eficient", + -11.533092498779297 + ], + [ + "▁Wil", + -11.533117294311523 + ], + [ + "▁Member", + -11.533121109008789 + ], + [ + "▁damages", + -11.5332670211792 + ], + [ + "▁mutual", + -11.533288955688477 + ], + [ + "SN", + -11.533506393432617 + ], + [ + "▁Dave", + -11.533665657043457 + ], + [ + "??", + -11.533998489379883 + ], + [ + "stat", + -11.534090995788574 + ], + [ + "▁tourist", + -11.534374237060547 + ], + [ + "fie", + -11.534425735473633 + ], + [ + "şte", + -11.534754753112793 + ], + [ + "▁donne", + -11.534764289855957 + ], + [ + "▁shadow", + -11.53493881225586 + ], + [ + "▁dough", + -11.534993171691895 + ], + [ + "▁Gro", + -11.535002708435059 + ], + [ + "▁Mah", + -11.535066604614258 + ], + [ + "RF", + -11.535126686096191 + ], + [ + "▁mechanism", + -11.535163879394531 + ], + [ + "▁2011,", + -11.535179138183594 + ], + [ + "▁Alter", + -11.53530502319336 + ], + [ + "▁opposed", + -11.53538990020752 + ], + [ + "▁Fri", + -11.535501480102539 + ], + [ + "▁remarkable", + -11.535572052001953 + ], + [ + "oral", + -11.535635948181152 + ], + [ + "▁verschiedene", + -11.535653114318848 + ], + [ + "▁difficulty", + -11.535691261291504 + ], + [ + "▁Application", + -11.535840034484863 + ], + [ + "▁Hay", + -11.535888671875 + ], + [ + "▁continua", + -11.535935401916504 + ], + [ + "EP", + -11.53609848022461 + ], + [ + "▁Pr", + -11.53617000579834 + ], + [ + "▁Lady", + -11.53631591796875 + ], + [ + "▁interval", + -11.536457061767578 + ], + [ + "▁Mil", + -11.536504745483398 + ], + [ + "▁2010.", + -11.537042617797852 + ], + [ + "VE", + -11.537074089050293 + ], + [ + "integr", + -11.537360191345215 + ], + [ + "▁création", + -11.537415504455566 + ], + [ + "weed", + -11.537456512451172 + ], + [ + "EG", + -11.53760051727295 + ], + [ + "▁6,", + -11.537784576416016 + ], + [ + "▁god", + -11.537866592407227 + ], + [ + "▁accomplish", + -11.537947654724121 + ], + [ + "▁thoroughly", + -11.538019180297852 + ], + [ + "2019", + -11.538228988647461 + ], + [ + "izer", + -11.538246154785156 + ], + [ + "▁Wal", + -11.538300514221191 + ], + [ + "ifying", + -11.538701057434082 + ], + [ + "▁Wohn", + -11.539227485656738 + ], + [ + "▁Holz", + -11.539474487304688 + ], + [ + "▁Advanced", + -11.539528846740723 + ], + [ + "▁honey", + -11.539626121520996 + ], + [ + "proof", + -11.539634704589844 + ], + [ + "▁saison", + -11.540029525756836 + ], + [ + "ându", + -11.540035247802734 + ], + [ + "▁Kevin", + -11.540116310119629 + ], + [ + "▁shelter", + -11.540199279785156 + ], + [ + "▁discut", + -11.540257453918457 + ], + [ + "▁hike", + -11.540257453918457 + ], + [ + "ités", + -11.540461540222168 + ], + [ + "▁boutique", + -11.540672302246094 + ], + [ + "▁Email", + -11.54067611694336 + ], + [ + "▁cosmetic", + -11.540830612182617 + ], + [ + "dian", + -11.540916442871094 + ], + [ + "▁hohe", + -11.540940284729004 + ], + [ + "▁absence", + -11.541071891784668 + ], + [ + "axi", + -11.541136741638184 + ], + [ + "nah", + -11.541178703308105 + ], + [ + "▁Frauen", + -11.541236877441406 + ], + [ + "▁actively", + -11.541278839111328 + ], + [ + "bind", + -11.541468620300293 + ], + [ + "▁everybody", + -11.541740417480469 + ], + [ + "▁controller", + -11.541802406311035 + ], + [ + "▁1.5", + -11.5418062210083 + ], + [ + "erau", + -11.541842460632324 + ], + [ + "gehen", + -11.541988372802734 + ], + [ + "▁scenario", + -11.542038917541504 + ], + [ + "▁odd", + -11.542083740234375 + ], + [ + "▁Ultra", + -11.542089462280273 + ], + [ + "▁finishing", + -11.542366981506348 + ], + [ + "▁cuts", + -11.542383193969727 + ], + [ + "▁financing", + -11.542515754699707 + ], + [ + "▁Chance", + -11.542579650878906 + ], + [ + "surrounded", + -11.542818069458008 + ], + [ + "▁joc", + -11.542903900146484 + ], + [ + "▁shelf", + -11.543004035949707 + ], + [ + "tief", + -11.54308032989502 + ], + [ + "▁Sir", + -11.543146133422852 + ], + [ + "▁Agent", + -11.543197631835938 + ], + [ + "▁scratch", + -11.543560981750488 + ], + [ + "2,000", + -11.54360294342041 + ], + [ + "nutri", + -11.54365348815918 + ], + [ + "nier", + -11.544063568115234 + ], + [ + "▁Dur", + -11.544175148010254 + ], + [ + "▁grid", + -11.544268608093262 + ], + [ + "road", + -11.544413566589355 + ], + [ + "▁pets", + -11.544429779052734 + ], + [ + "stud", + -11.54448127746582 + ], + [ + "OM", + -11.544569969177246 + ], + [ + "Die", + -11.544877052307129 + ], + [ + "▁800", + -11.54496955871582 + ], + [ + "▁arrangement", + -11.545088768005371 + ], + [ + "▁Sri", + -11.545185089111328 + ], + [ + "▁Patrick", + -11.545187950134277 + ], + [ + "ava", + -11.545212745666504 + ], + [ + "▁pension", + -11.54523754119873 + ], + [ + "dung", + -11.545353889465332 + ], + [ + "▁Chapter", + -11.545475006103516 + ], + [ + "▁Property", + -11.545475006103516 + ], + [ + "▁structural", + -11.545571327209473 + ], + [ + "▁overview", + -11.545731544494629 + ], + [ + "2015", + -11.545917510986328 + ], + [ + "▁lawn", + -11.545924186706543 + ], + [ + "▁Vin", + -11.546219825744629 + ], + [ + "lik", + -11.546402931213379 + ], + [ + "dus", + -11.546418190002441 + ], + [ + "Several", + -11.54654598236084 + ], + [ + "▁Bou", + -11.546670913696289 + ], + [ + "▁copper", + -11.546703338623047 + ], + [ + "▁duration", + -11.546867370605469 + ], + [ + "inate", + -11.546982765197754 + ], + [ + "▁podcast", + -11.547204971313477 + ], + [ + "▁Self", + -11.547208786010742 + ], + [ + "▁Construction", + -11.547491073608398 + ], + [ + "achat", + -11.54768180847168 + ], + [ + "???", + -11.547683715820312 + ], + [ + "▁Electric", + -11.547974586486816 + ], + [ + "▁Mrs", + -11.54799747467041 + ], + [ + "▁CT", + -11.548019409179688 + ], + [ + "▁proceed", + -11.548324584960938 + ], + [ + "▁Course", + -11.548333168029785 + ], + [ + "▁Frei", + -11.548699378967285 + ], + [ + "▁heavily", + -11.548868179321289 + ], + [ + "rique", + -11.548872947692871 + ], + [ + "version", + -11.549016952514648 + ], + [ + "▁representatives", + -11.549118041992188 + ], + [ + "▁tourism", + -11.549182891845703 + ], + [ + "▁shirt", + -11.5494966506958 + ], + [ + "▁rough", + -11.549507141113281 + ], + [ + "▁weniger", + -11.549735069274902 + ], + [ + "▁keyboard", + -11.550058364868164 + ], + [ + "▁heritage", + -11.550149917602539 + ], + [ + "kat", + -11.550535202026367 + ], + [ + "assez", + -11.550567626953125 + ], + [ + "▁cabinets", + -11.550591468811035 + ], + [ + "▁Komm", + -11.550762176513672 + ], + [ + "▁impressed", + -11.55078411102295 + ], + [ + "▁Oregon", + -11.550788879394531 + ], + [ + "▁Davis", + -11.55081558227539 + ], + [ + "specialized", + -11.55097770690918 + ], + [ + "▁gross", + -11.550999641418457 + ], + [ + "Located", + -11.551044464111328 + ], + [ + "ttle", + -11.551044464111328 + ], + [ + "▁2010,", + -11.551224708557129 + ], + [ + "chan", + -11.551253318786621 + ], + [ + "mine", + -11.551305770874023 + ], + [ + "▁aduce", + -11.551637649536133 + ], + [ + "▁subsequent", + -11.551729202270508 + ], + [ + "▁demo", + -11.551851272583008 + ], + [ + "aba", + -11.552209854125977 + ], + [ + "▁shock", + -11.552389144897461 + ], + [ + "▁theater", + -11.552854537963867 + ], + [ + "▁engineers", + -11.55294418334961 + ], + [ + "▁feu", + -11.553037643432617 + ], + [ + "▁Rot", + -11.553058624267578 + ], + [ + "▁addressed", + -11.553155899047852 + ], + [ + "▁Letter", + -11.553431510925293 + ], + [ + "gré", + -11.553448677062988 + ], + [ + "▁quantity", + -11.553449630737305 + ], + [ + "▁Seit", + -11.553640365600586 + ], + [ + "▁bacteria", + -11.553681373596191 + ], + [ + "kg", + -11.55408000946045 + ], + [ + "▁conservation", + -11.554191589355469 + ], + [ + "▁entreprises", + -11.55420207977295 + ], + [ + "▁pleasant", + -11.554207801818848 + ], + [ + "armed", + -11.554228782653809 + ], + [ + "dorf", + -11.554286003112793 + ], + [ + "fact", + -11.554320335388184 + ], + [ + "▁Much", + -11.554388046264648 + ], + [ + "▁laugh", + -11.55482006072998 + ], + [ + "▁blade", + -11.554835319519043 + ], + [ + "amine", + -11.554838180541992 + ], + [ + "▁insert", + -11.55493450164795 + ], + [ + "▁toys", + -11.555326461791992 + ], + [ + "▁в", + -11.555726051330566 + ], + [ + "cell", + -11.555747985839844 + ], + [ + "▁strengthen", + -11.555864334106445 + ], + [ + "GR", + -11.555882453918457 + ], + [ + "▁autor", + -11.556114196777344 + ], + [ + "▁LI", + -11.556147575378418 + ], + [ + "▁oamenii", + -11.556184768676758 + ], + [ + "▁Modell", + -11.556222915649414 + ], + [ + "▁sophisticated", + -11.556225776672363 + ], + [ + "▁Write", + -11.556283950805664 + ], + [ + "eți", + -11.556295394897461 + ], + [ + "say", + -11.556641578674316 + ], + [ + "▁nutzen", + -11.556783676147461 + ], + [ + "▁amenities", + -11.556979179382324 + ], + [ + "chel", + -11.557068824768066 + ], + [ + "Unlike", + -11.55720043182373 + ], + [ + "▁Bilder", + -11.557208061218262 + ], + [ + "fertig", + -11.55722713470459 + ], + [ + "PER", + -11.557244300842285 + ], + [ + "▁apparently", + -11.557282447814941 + ], + [ + "▁pointed", + -11.557332992553711 + ], + [ + "lop", + -11.557435989379883 + ], + [ + "▁commande", + -11.557848930358887 + ], + [ + "▁NEW", + -11.557923316955566 + ], + [ + "▁primi", + -11.55798625946045 + ], + [ + "▁aluminum", + -11.558046340942383 + ], + [ + "ificare", + -11.558063507080078 + ], + [ + "open", + -11.55815315246582 + ], + [ + "▁establishment", + -11.558305740356445 + ], + [ + "▁blanc", + -11.558349609375 + ], + [ + "▁1960", + -11.558454513549805 + ], + [ + "▁parameters", + -11.55856990814209 + ], + [ + "schluss", + -11.558685302734375 + ], + [ + "▁jet", + -11.55879020690918 + ], + [ + "gam", + -11.55902099609375 + ], + [ + "▁oral", + -11.559290885925293 + ], + [ + "▁tons", + -11.559348106384277 + ], + [ + "▁AL", + -11.55935001373291 + ], + [ + "▁intention", + -11.55947494506836 + ], + [ + "ives", + -11.55974292755127 + ], + [ + "▁BMW", + -11.559837341308594 + ], + [ + "gun", + -11.559967041015625 + ], + [ + "leben", + -11.560046195983887 + ], + [ + "▁Fresh", + -11.56010913848877 + ], + [ + "▁tuturor", + -11.560193061828613 + ], + [ + "▁marine", + -11.560208320617676 + ], + [ + "mile", + -11.560260772705078 + ], + [ + "▁alta", + -11.560271263122559 + ], + [ + "nnen", + -11.56050968170166 + ], + [ + "▁courts", + -11.560530662536621 + ], + [ + "▁Hello", + -11.560791015625 + ], + [ + "BL", + -11.560895919799805 + ], + [ + "▁reply", + -11.560962677001953 + ], + [ + "environnement", + -11.560975074768066 + ], + [ + "American", + -11.560995101928711 + ], + [ + "▁Tell", + -11.561040878295898 + ], + [ + "▁chic", + -11.56148624420166 + ], + [ + "bir", + -11.561542510986328 + ], + [ + "▁singing", + -11.561788558959961 + ], + [ + "▁earnings", + -11.561819076538086 + ], + [ + "▁ensemble", + -11.562082290649414 + ], + [ + "▁($", + -11.562169075012207 + ], + [ + "▁Tout", + -11.562192916870117 + ], + [ + "▁Abs", + -11.562264442443848 + ], + [ + "▁describes", + -11.562322616577148 + ], + [ + "▁navigation", + -11.5625 + ], + [ + "▁destul", + -11.562532424926758 + ], + [ + "legate", + -11.562586784362793 + ], + [ + "tral", + -11.562599182128906 + ], + [ + "aţie", + -11.562753677368164 + ], + [ + "▁supplied", + -11.562775611877441 + ], + [ + "▁paar", + -11.562911987304688 + ], + [ + "ionat", + -11.563241958618164 + ], + [ + "9.", + -11.563263893127441 + ], + [ + "▁41", + -11.563348770141602 + ], + [ + "▁Track", + -11.563451766967773 + ], + [ + "▁happiness", + -11.563636779785156 + ], + [ + "▁Personen", + -11.563680648803711 + ], + [ + "▁sac", + -11.56373119354248 + ], + [ + "▁shapes", + -11.563774108886719 + ], + [ + "eld", + -11.56393051147461 + ], + [ + "bett", + -11.563963890075684 + ], + [ + "tile", + -11.56400203704834 + ], + [ + "▁divided", + -11.564035415649414 + ], + [ + "▁13.", + -11.56403923034668 + ], + [ + "market", + -11.564109802246094 + ], + [ + "crafted", + -11.564115524291992 + ], + [ + "▁periods", + -11.564120292663574 + ], + [ + "uş", + -11.564568519592285 + ], + [ + "▁trainer", + -11.56460952758789 + ], + [ + "▁Licht", + -11.564871788024902 + ], + [ + "▁advisor", + -11.564948081970215 + ], + [ + "▁Herr", + -11.564980506896973 + ], + [ + "▁Halloween", + -11.565147399902344 + ], + [ + "alter", + -11.565154075622559 + ], + [ + "▁radical", + -11.565155029296875 + ], + [ + "▁nose", + -11.56527042388916 + ], + [ + "▁Sat", + -11.565323829650879 + ], + [ + "▁Mom", + -11.565372467041016 + ], + [ + "moni", + -11.565377235412598 + ], + [ + "▁semn", + -11.565397262573242 + ], + [ + "vé", + -11.565672874450684 + ], + [ + "identifie", + -11.56570053100586 + ], + [ + "▁hatten", + -11.565957069396973 + ], + [ + "completing", + -11.565959930419922 + ], + [ + "▁gust", + -11.565963745117188 + ], + [ + "▁creat", + -11.56601333618164 + ], + [ + "ché", + -11.566075325012207 + ], + [ + "pay", + -11.566216468811035 + ], + [ + "▁Money", + -11.566229820251465 + ], + [ + "IG", + -11.566243171691895 + ], + [ + "▁Cash", + -11.566327095031738 + ], + [ + "altă", + -11.566420555114746 + ], + [ + "▁bekommen", + -11.566620826721191 + ], + [ + "▁43", + -11.56662654876709 + ], + [ + "▁supplement", + -11.566637992858887 + ], + [ + "▁Early", + -11.566754341125488 + ], + [ + "▁mattress", + -11.56692123413086 + ], + [ + "▁worn", + -11.567182540893555 + ], + [ + "rov", + -11.567197799682617 + ], + [ + "▁pray", + -11.56733226776123 + ], + [ + "▁beans", + -11.567673683166504 + ], + [ + "▁passé", + -11.567782402038574 + ], + [ + "▁facilit", + -11.56782054901123 + ], + [ + "▁meters", + -11.56784439086914 + ], + [ + "cke", + -11.568163871765137 + ], + [ + "▁Villa", + -11.568199157714844 + ], + [ + "▁Diego", + -11.568217277526855 + ], + [ + "▁chips", + -11.568244934082031 + ], + [ + "▁mes", + -11.568349838256836 + ], + [ + "▁Seattle", + -11.568421363830566 + ], + [ + "BU", + -11.568621635437012 + ], + [ + "▁nevoi", + -11.568714141845703 + ], + [ + "▁lets", + -11.568737030029297 + ], + [ + "▁hopefully", + -11.56894302368164 + ], + [ + "▁AG", + -11.568954467773438 + ], + [ + "liable", + -11.568999290466309 + ], + [ + "pound", + -11.569067001342773 + ], + [ + "près", + -11.569085121154785 + ], + [ + "arul", + -11.56920337677002 + ], + [ + "isiert", + -11.569281578063965 + ], + [ + "▁Expert", + -11.569297790527344 + ], + [ + "▁particulier", + -11.569367408752441 + ], + [ + "stoff", + -11.569952964782715 + ], + [ + "▁interpretation", + -11.56999397277832 + ], + [ + "După", + -11.57007884979248 + ], + [ + "sait", + -11.57011604309082 + ], + [ + "▁nouvelles", + -11.570173263549805 + ], + [ + "▁Ok", + -11.570175170898438 + ], + [ + "tap", + -11.570301055908203 + ], + [ + "▁targets", + -11.570327758789062 + ], + [ + "rung", + -11.57052230834961 + ], + [ + "▁stare", + -11.570576667785645 + ], + [ + "▁efficiently", + -11.570908546447754 + ], + [ + "EV", + -11.571003913879395 + ], + [ + "évit", + -11.571310997009277 + ], + [ + "▁Moldova", + -11.571542739868164 + ], + [ + "▁Face", + -11.571663856506348 + ], + [ + "▁flo", + -11.57168960571289 + ], + [ + "▁acestora", + -11.5717134475708 + ], + [ + "▁Victor", + -11.57183837890625 + ], + [ + "▁breed", + -11.57198429107666 + ], + [ + "morph", + -11.572230339050293 + ], + [ + "sley", + -11.572274208068848 + ], + [ + "mot", + -11.57234001159668 + ], + [ + "▁URL", + -11.572395324707031 + ], + [ + "ellen", + -11.572502136230469 + ], + [ + "▁resist", + -11.572781562805176 + ], + [ + "zon", + -11.57282829284668 + ], + [ + "ndel", + -11.572967529296875 + ], + [ + "will", + -11.572989463806152 + ], + [ + "▁alege", + -11.573076248168945 + ], + [ + "▁Easter", + -11.573114395141602 + ], + [ + "▁Bat", + -11.573190689086914 + ], + [ + "▁Höhe", + -11.573223114013672 + ], + [ + "▁fascinating", + -11.573387145996094 + ], + [ + "▁Know", + -11.5735445022583 + ], + [ + "illon", + -11.573602676391602 + ], + [ + "flex", + -11.57363224029541 + ], + [ + "who", + -11.573701858520508 + ], + [ + "▁Always", + -11.573729515075684 + ], + [ + "▁Bush", + -11.573777198791504 + ], + [ + "ICE", + -11.574009895324707 + ], + [ + "verein", + -11.57448673248291 + ], + [ + "▁später", + -11.57448959350586 + ], + [ + "▁cherch", + -11.574575424194336 + ], + [ + "makers", + -11.574753761291504 + ], + [ + "versus", + -11.574790954589844 + ], + [ + "▁Clear", + -11.574846267700195 + ], + [ + "▁Pennsylvania", + -11.574912071228027 + ], + [ + "Dieser", + -11.575041770935059 + ], + [ + "▁picking", + -11.575072288513184 + ], + [ + "▁restoration", + -11.57513427734375 + ], + [ + "▁interviews", + -11.575201988220215 + ], + [ + "pressed", + -11.575210571289062 + ], + [ + "nnerhalb", + -11.575674057006836 + ], + [ + "▁connecting", + -11.575834274291992 + ], + [ + "jou", + -11.575943946838379 + ], + [ + "▁react", + -11.576189041137695 + ], + [ + "▁Merci", + -11.576223373413086 + ], + [ + "▁Phone", + -11.576356887817383 + ], + [ + "▁1)", + -11.57652473449707 + ], + [ + "▁victims", + -11.576618194580078 + ], + [ + "▁Spo", + -11.576685905456543 + ], + [ + "atului", + -11.576735496520996 + ], + [ + "▁Harry", + -11.576837539672852 + ], + [ + "▁Sala", + -11.576875686645508 + ], + [ + "Pol", + -11.577075958251953 + ], + [ + "▁Clo", + -11.577167510986328 + ], + [ + "▁Erfolg", + -11.577211380004883 + ], + [ + "autour", + -11.577308654785156 + ], + [ + "▁Template", + -11.577314376831055 + ], + [ + "▁invention", + -11.57754898071289 + ], + [ + "▁schwer", + -11.57761287689209 + ], + [ + "vac", + -11.577625274658203 + ], + [ + "▁Trail", + -11.577627182006836 + ], + [ + "▁Vietnam", + -11.577638626098633 + ], + [ + "▁Size", + -11.577689170837402 + ], + [ + "▁Bern", + -11.577783584594727 + ], + [ + "▁emp", + -11.577845573425293 + ], + [ + "▁shake", + -11.57787799835205 + ], + [ + "▁Ave", + -11.57794189453125 + ], + [ + "▁productive", + -11.578009605407715 + ], + [ + "▁apple", + -11.578015327453613 + ], + [ + "▁portal", + -11.578052520751953 + ], + [ + "▁ceramic", + -11.578082084655762 + ], + [ + "▁pad", + -11.578110694885254 + ], + [ + "▁Syn", + -11.578316688537598 + ], + [ + "Ab", + -11.57845401763916 + ], + [ + "▁syn", + -11.578761100769043 + ], + [ + "find", + -11.578888893127441 + ], + [ + "▁settle", + -11.578909873962402 + ], + [ + "▁général", + -11.578965187072754 + ], + [ + "▁okay", + -11.579032897949219 + ], + [ + "▁receipt", + -11.57906436920166 + ], + [ + "orii", + -11.579117774963379 + ], + [ + "▁Mission", + -11.579122543334961 + ], + [ + "entrée", + -11.579304695129395 + ], + [ + "▁besteht", + -11.579394340515137 + ], + [ + "▁wisdom", + -11.57950210571289 + ], + [ + "▁heraus", + -11.579645156860352 + ], + [ + "▁balanced", + -11.579753875732422 + ], + [ + "▁habits", + -11.579773902893066 + ], + [ + "tang", + -11.579888343811035 + ], + [ + "ură", + -11.580151557922363 + ], + [ + "▁winners", + -11.580182075500488 + ], + [ + "ç", + -11.580215454101562 + ], + [ + "▁folosi", + -11.580242156982422 + ], + [ + "aliment", + -11.5802583694458 + ], + [ + "▁fiction", + -11.580373764038086 + ], + [ + "▁Spe", + -11.580534934997559 + ], + [ + "▁elsewhere", + -11.580663681030273 + ], + [ + "▁dependent", + -11.580808639526367 + ], + [ + "▁Anne", + -11.581167221069336 + ], + [ + "▁excellence", + -11.581695556640625 + ], + [ + "▁Feel", + -11.581753730773926 + ], + [ + "lieb", + -11.581811904907227 + ], + [ + "▁sectors", + -11.581865310668945 + ], + [ + "▁expir", + -11.581886291503906 + ], + [ + "▁surfaces", + -11.58191204071045 + ], + [ + "▁minim", + -11.581937789916992 + ], + [ + "▁tumor", + -11.58204460144043 + ], + [ + "▁paragraph", + -11.582289695739746 + ], + [ + "▁disk", + -11.58232307434082 + ], + [ + "▁tonight", + -11.582379341125488 + ], + [ + "▁precious", + -11.582794189453125 + ], + [ + "▁console", + -11.58288288116455 + ], + [ + "Th", + -11.582939147949219 + ], + [ + "neu", + -11.583020210266113 + ], + [ + "effective", + -11.5839262008667 + ], + [ + "▁Republican", + -11.583944320678711 + ], + [ + "format", + -11.584297180175781 + ], + [ + "▁preserve", + -11.58436107635498 + ], + [ + "▁wiring", + -11.584599494934082 + ], + [ + "▁exercises", + -11.584757804870605 + ], + [ + "▁pregnancy", + -11.584774017333984 + ], + [ + "tries", + -11.58481502532959 + ], + [ + "▁jeunes", + -11.584883689880371 + ], + [ + "▁publishing", + -11.584932327270508 + ], + [ + "▁nehmen", + -11.584935188293457 + ], + [ + "▁capability", + -11.5849609375 + ], + [ + "▁prompt", + -11.584965705871582 + ], + [ + "▁Further", + -11.58497428894043 + ], + [ + "▁semaine", + -11.585173606872559 + ], + [ + "abo", + -11.585216522216797 + ], + [ + "▁evolution", + -11.585319519042969 + ], + [ + "▁Sud", + -11.585403442382812 + ], + [ + "▁frais", + -11.585525512695312 + ], + [ + "LT", + -11.585619926452637 + ], + [ + "▁stack", + -11.58581829071045 + ], + [ + "▁Inside", + -11.585854530334473 + ], + [ + "▁programmes", + -11.585997581481934 + ], + [ + "▁passes", + -11.586196899414062 + ], + [ + "mü", + -11.586474418640137 + ], + [ + "▁progressive", + -11.586518287658691 + ], + [ + "▁calculator", + -11.58658218383789 + ], + [ + "▁Core", + -11.586655616760254 + ], + [ + "BT", + -11.586956977844238 + ], + [ + "core", + -11.586996078491211 + ], + [ + "▁Moon", + -11.587004661560059 + ], + [ + "▁tender", + -11.587040901184082 + ], + [ + "durch", + -11.58721923828125 + ], + [ + "▁commune", + -11.587453842163086 + ], + [ + "▁Prince", + -11.587594032287598 + ], + [ + "▁demonstrated", + -11.587693214416504 + ], + [ + "▁conversations", + -11.587890625 + ], + [ + "▁fri", + -11.587984085083008 + ], + [ + "igh", + -11.587992668151855 + ], + [ + "being", + -11.588334083557129 + ], + [ + "pause", + -11.58853530883789 + ], + [ + "▁Bear", + -11.58871841430664 + ], + [ + "ayant", + -11.588875770568848 + ], + [ + "▁Industry", + -11.588967323303223 + ], + [ + "▁sponsor", + -11.589012145996094 + ], + [ + "▁numele", + -11.589098930358887 + ], + [ + "▁VA", + -11.589167594909668 + ], + [ + "▁Sommer", + -11.589366912841797 + ], + [ + "TB", + -11.589380264282227 + ], + [ + "▁optional", + -11.589505195617676 + ], + [ + "▁Landes", + -11.589812278747559 + ], + [ + "coli", + -11.589963912963867 + ], + [ + "empt", + -11.59018325805664 + ], + [ + "▁Iron", + -11.590620040893555 + ], + [ + "▁1992", + -11.59090518951416 + ], + [ + "▁attempts", + -11.59090518951416 + ], + [ + "halb", + -11.590960502624512 + ], + [ + "▁photographer", + -11.59097671508789 + ], + [ + "▁witness", + -11.59097957611084 + ], + [ + "bru", + -11.591073989868164 + ], + [ + "▁Ras", + -11.59107780456543 + ], + [ + "▁burden", + -11.591142654418945 + ], + [ + "▁kaufen", + -11.591256141662598 + ], + [ + "▁vu", + -11.591362953186035 + ], + [ + "▁Wedding", + -11.591601371765137 + ], + [ + "▁Kla", + -11.591604232788086 + ], + [ + "occasion", + -11.591915130615234 + ], + [ + "▁keys", + -11.592131614685059 + ], + [ + "▁oferi", + -11.592279434204102 + ], + [ + "▁puzzle", + -11.592302322387695 + ], + [ + "eaux", + -11.59254264831543 + ], + [ + "▁Eco", + -11.592805862426758 + ], + [ + "▁52", + -11.592817306518555 + ], + [ + "▁Elizabeth", + -11.59284496307373 + ], + [ + "▁dispose", + -11.593144416809082 + ], + [ + "▁cluster", + -11.59326171875 + ], + [ + "iki", + -11.593283653259277 + ], + [ + "▁Guys", + -11.593595504760742 + ], + [ + "▁Economic", + -11.593632698059082 + ], + [ + "▁apar", + -11.593677520751953 + ], + [ + "▁ziua", + -11.593688011169434 + ], + [ + "▁integral", + -11.593740463256836 + ], + [ + "▁tac", + -11.59376335144043 + ], + [ + "▁restrictions", + -11.593778610229492 + ], + [ + "▁nerve", + -11.593794822692871 + ], + [ + "▁Stop", + -11.59386157989502 + ], + [ + "burger", + -11.593897819519043 + ], + [ + "explo", + -11.593944549560547 + ], + [ + "lö", + -11.593958854675293 + ], + [ + "NP", + -11.594077110290527 + ], + [ + "▁Brook", + -11.59418773651123 + ], + [ + "▁Close", + -11.594278335571289 + ], + [ + "▁representing", + -11.59446907043457 + ], + [ + "▁certaine", + -11.594767570495605 + ], + [ + "▁discovery", + -11.594836235046387 + ], + [ + "▁rece", + -11.594964981079102 + ], + [ + "FF", + -11.594970703125 + ], + [ + "▁salary", + -11.595069885253906 + ], + [ + "▁Wolf", + -11.595137596130371 + ], + [ + "▁deserve", + -11.595166206359863 + ], + [ + "ţele", + -11.595417976379395 + ], + [ + "gathered", + -11.595934867858887 + ], + [ + "▁comply", + -11.59599494934082 + ], + [ + "lagen", + -11.596034049987793 + ], + [ + "ătoare", + -11.596192359924316 + ], + [ + "▁relate", + -11.596410751342773 + ], + [ + "▁Roger", + -11.59656810760498 + ], + [ + "▁blame", + -11.596575736999512 + ], + [ + "▁Jen", + -11.596914291381836 + ], + [ + "▁army", + -11.596936225891113 + ], + [ + "▁$10", + -11.597129821777344 + ], + [ + "▁Cabinet", + -11.597185134887695 + ], + [ + "Gu", + -11.597367286682129 + ], + [ + "▁wildlife", + -11.597452163696289 + ], + [ + "▁Memorial", + -11.597643852233887 + ], + [ + "▁Holiday", + -11.597742080688477 + ], + [ + "▁curat", + -11.598291397094727 + ], + [ + "iilor", + -11.598299026489258 + ], + [ + "▁fleet", + -11.598408699035645 + ], + [ + "▁reviewed", + -11.59843635559082 + ], + [ + "cet", + -11.598450660705566 + ], + [ + "▁virtually", + -11.598487854003906 + ], + [ + "▁Crusher", + -11.59852409362793 + ], + [ + "▁slide", + -11.59858226776123 + ], + [ + "▁générale", + -11.598604202270508 + ], + [ + "▁sensation", + -11.598630905151367 + ], + [ + "▁garlic", + -11.598638534545898 + ], + [ + "5)", + -11.598657608032227 + ], + [ + "▁batteries", + -11.598756790161133 + ], + [ + "SH", + -11.59876823425293 + ], + [ + "▁seller", + -11.59882926940918 + ], + [ + "design", + -11.598871231079102 + ], + [ + "5.", + -11.598944664001465 + ], + [ + "▁Overall", + -11.598969459533691 + ], + [ + "▁investigate", + -11.599058151245117 + ], + [ + "max", + -11.599064826965332 + ], + [ + "▁attach", + -11.599166870117188 + ], + [ + "▁Future", + -11.599209785461426 + ], + [ + "OUR", + -11.599284172058105 + ], + [ + "▁LE", + -11.59968090057373 + ], + [ + "▁bite", + -11.599811553955078 + ], + [ + "tige", + -11.599874496459961 + ], + [ + "▁twist", + -11.59987735748291 + ], + [ + "hole", + -11.600180625915527 + ], + [ + "▁Tony", + -11.600510597229004 + ], + [ + "LU", + -11.600598335266113 + ], + [ + "▁Organization", + -11.600617408752441 + ], + [ + "▁invit", + -11.600632667541504 + ], + [ + "▁Ant", + -11.600739479064941 + ], + [ + "NR", + -11.600788116455078 + ], + [ + "sorgt", + -11.600854873657227 + ], + [ + "▁Lan", + -11.600860595703125 + ], + [ + "▁Manchester", + -11.60091495513916 + ], + [ + "schrift", + -11.601066589355469 + ], + [ + "▁kg", + -11.601150512695312 + ], + [ + "▁aroma", + -11.60132884979248 + ], + [ + "▁Source", + -11.601388931274414 + ], + [ + "▁permite", + -11.601445198059082 + ], + [ + "▁Consider", + -11.601457595825195 + ], + [ + "▁Artist", + -11.601627349853516 + ], + [ + "▁transmit", + -11.601783752441406 + ], + [ + "oasa", + -11.601834297180176 + ], + [ + "▁Zen", + -11.60198974609375 + ], + [ + "ANT", + -11.602235794067383 + ], + [ + "▁consulting", + -11.602404594421387 + ], + [ + "▁commence", + -11.6025390625 + ], + [ + "▁quilt", + -11.60261058807373 + ], + [ + "owned", + -11.602642059326172 + ], + [ + "▁bro", + -11.602689743041992 + ], + [ + "▁integrate", + -11.602715492248535 + ], + [ + "▁Ontario", + -11.602775573730469 + ], + [ + "TF", + -11.602832794189453 + ], + [ + "▁Study", + -11.602887153625488 + ], + [ + "▁ensuite", + -11.603155136108398 + ], + [ + "itatii", + -11.603180885314941 + ], + [ + "Mon", + -11.603235244750977 + ], + [ + "-11", + -11.603299140930176 + ], + [ + "what", + -11.603384017944336 + ], + [ + "▁Things", + -11.60361385345459 + ], + [ + "▁Eye", + -11.603819847106934 + ], + [ + "▁présente", + -11.603828430175781 + ], + [ + "tention", + -11.603915214538574 + ], + [ + "|", + -11.603957176208496 + ], + [ + "stall", + -11.603963851928711 + ], + [ + "▁beef", + -11.603992462158203 + ], + [ + "figur", + -11.604005813598633 + ], + [ + "▁cancel", + -11.604146003723145 + ], + [ + "▁domeniul", + -11.604252815246582 + ], + [ + "▁360", + -11.604290008544922 + ], + [ + "▁sleeping", + -11.6045560836792 + ], + [ + "▁traitement", + -11.604580879211426 + ], + [ + "ühl", + -11.604769706726074 + ], + [ + "▁Environmental", + -11.604835510253906 + ], + [ + "cier", + -11.604894638061523 + ], + [ + "▁NC", + -11.604907035827637 + ], + [ + "pub", + -11.604925155639648 + ], + [ + "▁addiction", + -11.605071067810059 + ], + [ + "▁nest", + -11.605128288269043 + ], + [ + "▁ON", + -11.605395317077637 + ], + [ + "▁discrimin", + -11.605396270751953 + ], + [ + "▁proved", + -11.605517387390137 + ], + [ + "▁occasions", + -11.605864524841309 + ], + [ + "OH", + -11.606184959411621 + ], + [ + "▁lawyers", + -11.606203079223633 + ], + [ + "own", + -11.606290817260742 + ], + [ + "▁Meeting", + -11.606596946716309 + ], + [ + "▁Industrial", + -11.606704711914062 + ], + [ + "owed", + -11.606736183166504 + ], + [ + "▁Cel", + -11.606793403625488 + ], + [ + "legt", + -11.60706615447998 + ], + [ + "ily", + -11.607085227966309 + ], + [ + "▁wins", + -11.607155799865723 + ], + [ + "▁strap", + -11.607367515563965 + ], + [ + "digit", + -11.607441902160645 + ], + [ + "▁hinaus", + -11.607504844665527 + ], + [ + "mple", + -11.607712745666504 + ], + [ + "▁(5", + -11.607797622680664 + ], + [ + "▁pdf", + -11.607894897460938 + ], + [ + "▁eco", + -11.607915878295898 + ], + [ + "▁junior", + -11.608172416687012 + ], + [ + "DB", + -11.608556747436523 + ], + [ + "gelegt", + -11.608636856079102 + ], + [ + "ION", + -11.608678817749023 + ], + [ + "▁competitors", + -11.60880184173584 + ], + [ + "▁Arab", + -11.60898208618164 + ], + [ + "▁Secret", + -11.609148979187012 + ], + [ + "▁Kunst", + -11.609283447265625 + ], + [ + "▁worried", + -11.609297752380371 + ], + [ + "meiner", + -11.609378814697266 + ], + [ + "▁Magic", + -11.609450340270996 + ], + [ + "▁groß", + -11.609537124633789 + ], + [ + "▁travaux", + -11.609748840332031 + ], + [ + "▁sollen", + -11.609772682189941 + ], + [ + "▁Sciences", + -11.609850883483887 + ], + [ + "▁athletes", + -11.610055923461914 + ], + [ + "▁discounts", + -11.610079765319824 + ], + [ + "kit", + -11.610211372375488 + ], + [ + "lind", + -11.610305786132812 + ], + [ + "▁enjoyable", + -11.610421180725098 + ], + [ + "ground", + -11.610489845275879 + ], + [ + "▁Tat", + -11.610529899597168 + ], + [ + "▁passengers", + -11.610576629638672 + ], + [ + "▁Dami", + -11.610677719116211 + ], + [ + "▁Major", + -11.61070728302002 + ], + [ + "watch", + -11.610796928405762 + ], + [ + "working", + -11.610908508300781 + ], + [ + "arrêt", + -11.610923767089844 + ], + [ + "▁subtle", + -11.611069679260254 + ], + [ + "▁epi", + -11.611197471618652 + ], + [ + "▁Jahres", + -11.61128044128418 + ], + [ + "▁cooling", + -11.61141586303711 + ], + [ + "▁makeup", + -11.611427307128906 + ], + [ + "jet", + -11.611495018005371 + ], + [ + "▁Given", + -11.611519813537598 + ], + [ + "plex", + -11.61158275604248 + ], + [ + "▁exploit", + -11.611590385437012 + ], + [ + "rine", + -11.611604690551758 + ], + [ + "▁delivers", + -11.612122535705566 + ], + [ + "▁summary", + -11.612236022949219 + ], + [ + "▁beaches", + -11.612459182739258 + ], + [ + "lift", + -11.612550735473633 + ], + [ + "▁Suite", + -11.612554550170898 + ], + [ + "▁Assistant", + -11.612688064575195 + ], + [ + "▁taxi", + -11.61273193359375 + ], + [ + "▁peaceful", + -11.612805366516113 + ], + [ + "▁Mode", + -11.612980842590332 + ], + [ + "▁Fun", + -11.613059043884277 + ], + [ + "▁diameter", + -11.613142967224121 + ], + [ + "▁phrase", + -11.613150596618652 + ], + [ + "ACT", + -11.613265037536621 + ], + [ + "▁différentes", + -11.613322257995605 + ], + [ + "▁14.", + -11.613417625427246 + ], + [ + "▁CE", + -11.61352825164795 + ], + [ + "▁2)", + -11.613739013671875 + ], + [ + "▁Nat", + -11.613785743713379 + ], + [ + "▁delete", + -11.61388111114502 + ], + [ + "other", + -11.613930702209473 + ], + [ + "hang", + -11.613985061645508 + ], + [ + "▁sujet", + -11.614117622375488 + ], + [ + "▁precise", + -11.614212989807129 + ], + [ + "▁Total", + -11.614290237426758 + ], + [ + "▁chambre", + -11.614483833312988 + ], + [ + "sati", + -11.614666938781738 + ], + [ + "▁Metal", + -11.614995956420898 + ], + [ + "rust", + -11.615038871765137 + ], + [ + "▁Brazil", + -11.615508079528809 + ], + [ + "▁hybrid", + -11.615636825561523 + ], + [ + "ops", + -11.615691184997559 + ], + [ + "▁electro", + -11.615789413452148 + ], + [ + "utz", + -11.61608600616455 + ], + [ + "▁quoi", + -11.616246223449707 + ], + [ + "▁adoption", + -11.616331100463867 + ], + [ + "3.5", + -11.616518020629883 + ], + [ + "50,000", + -11.616599082946777 + ], + [ + "veti", + -11.616630554199219 + ], + [ + "hir", + -11.616957664489746 + ], + [ + "▁adequate", + -11.617067337036133 + ], + [ + "ologist", + -11.617109298706055 + ], + [ + "torii", + -11.617295265197754 + ], + [ + "wasser", + -11.617355346679688 + ], + [ + "▁Authority", + -11.617362976074219 + ], + [ + "▁donation", + -11.617364883422852 + ], + [ + "700", + -11.617375373840332 + ], + [ + "▁somehow", + -11.617375373840332 + ], + [ + "▁kostenlos", + -11.617425918579102 + ], + [ + "▁generations", + -11.617537498474121 + ], + [ + "▁Turkey", + -11.617711067199707 + ], + [ + "rata", + -11.617819786071777 + ], + [ + "▁animation", + -11.618206024169922 + ], + [ + "▁CH", + -11.618281364440918 + ], + [ + "ending", + -11.618317604064941 + ], + [ + "welt", + -11.618376731872559 + ], + [ + "bac", + -11.618380546569824 + ], + [ + "MG", + -11.618460655212402 + ], + [ + "▁parks", + -11.618468284606934 + ], + [ + "▁placing", + -11.618870735168457 + ], + [ + "sort", + -11.61915111541748 + ], + [ + "▁Bitcoin", + -11.619163513183594 + ], + [ + "▁disorder", + -11.619282722473145 + ], + [ + "MAN", + -11.619302749633789 + ], + [ + "aught", + -11.619412422180176 + ], + [ + "▁guides", + -11.61956787109375 + ], + [ + "▁circul", + -11.619651794433594 + ], + [ + "▁Steven", + -11.619954109191895 + ], + [ + "rrière", + -11.619976997375488 + ], + [ + "▁Arch", + -11.61999225616455 + ], + [ + "▁plates", + -11.620091438293457 + ], + [ + "MR", + -11.620118141174316 + ], + [ + "▁cow", + -11.620142936706543 + ], + [ + "▁integrity", + -11.620210647583008 + ], + [ + "▁(18", + -11.620217323303223 + ], + [ + "▁totul", + -11.62024211883545 + ], + [ + "jack", + -11.620373725891113 + ], + [ + "▁privire", + -11.620588302612305 + ], + [ + "▁terme", + -11.620752334594727 + ], + [ + "▁execution", + -11.620781898498535 + ], + [ + "▁organism", + -11.620838165283203 + ], + [ + "▁führen", + -11.620853424072266 + ], + [ + "▁patron", + -11.620940208435059 + ], + [ + "▁appreciated", + -11.62096881866455 + ], + [ + "liant", + -11.62100601196289 + ], + [ + "▁Solar", + -11.621055603027344 + ], + [ + "▁vinyl", + -11.621134757995605 + ], + [ + "▁treasure", + -11.621137619018555 + ], + [ + "▁retro", + -11.621167182922363 + ], + [ + "▁bout", + -11.621174812316895 + ], + [ + "lab", + -11.621183395385742 + ], + [ + "▁dimension", + -11.621394157409668 + ], + [ + "called", + -11.62146282196045 + ], + [ + "▁intern", + -11.621479034423828 + ], + [ + "issement", + -11.62173843383789 + ], + [ + "▁Erst", + -11.621837615966797 + ], + [ + "▁stellen", + -11.621920585632324 + ], + [ + "▁familia", + -11.622069358825684 + ], + [ + "▁notion", + -11.622176170349121 + ], + [ + "▁Could", + -11.622322082519531 + ], + [ + "Getting", + -11.622323036193848 + ], + [ + "▁drives", + -11.622397422790527 + ], + [ + "▁Israeli", + -11.622520446777344 + ], + [ + "▁nations", + -11.622546195983887 + ], + [ + "▁duties", + -11.622700691223145 + ], + [ + "▁personalized", + -11.622788429260254 + ], + [ + "▁weren", + -11.62282657623291 + ], + [ + "▁chemicals", + -11.622847557067871 + ], + [ + "▁killing", + -11.622913360595703 + ], + [ + "▁masa", + -11.622994422912598 + ], + [ + "▁parce", + -11.623026847839355 + ], + [ + "▁lady", + -11.623178482055664 + ], + [ + "ides", + -11.623221397399902 + ], + [ + "▁execut", + -11.62340259552002 + ], + [ + "▁floral", + -11.62341594696045 + ], + [ + "▁Child", + -11.623428344726562 + ], + [ + "▁medal", + -11.623503684997559 + ], + [ + "▁casa", + -11.623603820800781 + ], + [ + "▁enabled", + -11.623650550842285 + ], + [ + "12.", + -11.624239921569824 + ], + [ + "nger", + -11.624266624450684 + ], + [ + "▁vent", + -11.624297142028809 + ], + [ + "▁urmă", + -11.624727249145508 + ], + [ + "▁Herz", + -11.624835968017578 + ], + [ + "▁Jay", + -11.624916076660156 + ], + [ + ".....", + -11.624942779541016 + ], + [ + "▁Kris", + -11.62499713897705 + ], + [ + "kenn", + -11.625001907348633 + ], + [ + "ress", + -11.625027656555176 + ], + [ + "weight", + -11.62519359588623 + ], + [ + "▁indicates", + -11.625198364257812 + ], + [ + "▁mentor", + -11.625328063964844 + ], + [ + "using", + -11.625386238098145 + ], + [ + "▁femmes", + -11.625460624694824 + ], + [ + "▁Jung", + -11.625528335571289 + ], + [ + "▁Send", + -11.625574111938477 + ], + [ + "▁seasons", + -11.625906944274902 + ], + [ + "▁aesthetic", + -11.625964164733887 + ], + [ + "▁Block", + -11.626086235046387 + ], + [ + "▁babies", + -11.626150131225586 + ], + [ + "zig", + -11.626242637634277 + ], + [ + "edge", + -11.626428604125977 + ], + [ + "▁alike", + -11.626458168029785 + ], + [ + "▁immune", + -11.626609802246094 + ], + [ + "▁magical", + -11.626710891723633 + ], + [ + "▁Snow", + -11.626748085021973 + ], + [ + "▁spacious", + -11.627058982849121 + ], + [ + "▁Melbourne", + -11.62706184387207 + ], + [ + "order", + -11.627081871032715 + ], + [ + "▁timing", + -11.627176284790039 + ], + [ + "▁inainte", + -11.627220153808594 + ], + [ + "▁width", + -11.627327919006348 + ], + [ + "bild", + -11.627386093139648 + ], + [ + "Tra", + -11.627429008483887 + ], + [ + "▁appliances", + -11.627449989318848 + ], + [ + "▁dirt", + -11.627498626708984 + ], + [ + "▁Rent", + -11.627689361572266 + ], + [ + "responsibilities", + -11.627747535705566 + ], + [ + "▁blogs", + -11.62778377532959 + ], + [ + "nächsten", + -11.627799034118652 + ], + [ + "▁argue", + -11.627928733825684 + ], + [ + "▁Resume", + -11.627985954284668 + ], + [ + "▁Michel", + -11.628044128417969 + ], + [ + "▁terrible", + -11.628092765808105 + ], + [ + "graph", + -11.628151893615723 + ], + [ + "bird", + -11.628202438354492 + ], + [ + "▁Simple", + -11.628457069396973 + ], + [ + "nning", + -11.628658294677734 + ], + [ + "▁coconut", + -11.628683090209961 + ], + [ + "▁comprise", + -11.628787994384766 + ], + [ + "heure", + -11.628918647766113 + ], + [ + "▁nichts", + -11.628921508789062 + ], + [ + "▁manufacture", + -11.628966331481934 + ], + [ + "▁Sar", + -11.629011154174805 + ], + [ + "green", + -11.629014015197754 + ], + [ + "lining", + -11.62910270690918 + ], + [ + "▁tremendous", + -11.629128456115723 + ], + [ + "▁Wine", + -11.629164695739746 + ], + [ + "gir", + -11.629290580749512 + ], + [ + "▁Nothing", + -11.629562377929688 + ], + [ + "▁Miller", + -11.62957763671875 + ], + [ + "▁Schwe", + -11.629712104797363 + ], + [ + "zone", + -11.629942893981934 + ], + [ + "▁cunoscut", + -11.629964828491211 + ], + [ + "rupt", + -11.630166053771973 + ], + [ + "kle", + -11.630187034606934 + ], + [ + "▁Bucuresti", + -11.630510330200195 + ], + [ + "▁Abend", + -11.630574226379395 + ], + [ + "▁aura", + -11.630583763122559 + ], + [ + "▁Dance", + -11.63073444366455 + ], + [ + "▁Wilson", + -11.63086986541748 + ], + [ + "icide", + -11.630901336669922 + ], + [ + "bai", + -11.630910873413086 + ], + [ + "oriented", + -11.63103199005127 + ], + [ + "▁celebrated", + -11.631421089172363 + ], + [ + "schlag", + -11.631531715393066 + ], + [ + "▁10-", + -11.631600379943848 + ], + [ + "Unsere", + -11.63167667388916 + ], + [ + "énergie", + -11.632009506225586 + ], + [ + "▁qualify", + -11.63205623626709 + ], + [ + "▁contenu", + -11.632177352905273 + ], + [ + "▁Lauf", + -11.63220500946045 + ], + [ + "▁einzelne", + -11.632360458374023 + ], + [ + "▁Youth", + -11.632415771484375 + ], + [ + "explains", + -11.632601737976074 + ], + [ + "grat", + -11.632782936096191 + ], + [ + "▁72", + -11.632804870605469 + ], + [ + "labor", + -11.632885932922363 + ], + [ + "2018", + -11.632940292358398 + ], + [ + "▁Dank", + -11.633149147033691 + ], + [ + "▁Hey", + -11.633523941040039 + ], + [ + "▁refuse", + -11.633536338806152 + ], + [ + "▁graduated", + -11.633599281311035 + ], + [ + "▁României", + -11.633627891540527 + ], + [ + "punkt", + -11.633807182312012 + ], + [ + "▁regulation", + -11.633834838867188 + ], + [ + "Bru", + -11.633842468261719 + ], + [ + "▁Side", + -11.633891105651855 + ], + [ + "▁sol", + -11.633970260620117 + ], + [ + "▁extraordinary", + -11.634182929992676 + ], + [ + "▁ging", + -11.634247779846191 + ], + [ + "▁Creative", + -11.634299278259277 + ], + [ + "▁expanding", + -11.634349822998047 + ], + [ + "▁problème", + -11.63444995880127 + ], + [ + "▁Reserve", + -11.63459300994873 + ], + [ + "auteur", + -11.634642601013184 + ], + [ + "sphere", + -11.634657859802246 + ], + [ + "season", + -11.634716987609863 + ], + [ + "frei", + -11.634756088256836 + ], + [ + "▁8,", + -11.634765625 + ], + [ + "▁filing", + -11.634810447692871 + ], + [ + "▁Complete", + -11.635017395019531 + ], + [ + "▁revolution", + -11.635035514831543 + ], + [ + "▁unele", + -11.63520622253418 + ], + [ + "/8", + -11.635272979736328 + ], + [ + "istes", + -11.635310173034668 + ], + [ + "backed", + -11.635400772094727 + ], + [ + "shirt", + -11.635554313659668 + ], + [ + "▁Details", + -11.635673522949219 + ], + [ + "rod", + -11.635695457458496 + ], + [ + "▁pod", + -11.63582992553711 + ], + [ + "▁operators", + -11.635921478271484 + ], + [ + "was", + -11.635930061340332 + ], + [ + "hou", + -11.63594913482666 + ], + [ + "▁Coach", + -11.636075019836426 + ], + [ + "irii", + -11.636138916015625 + ], + [ + "▁ordinary", + -11.636186599731445 + ], + [ + "Institut", + -11.63620662689209 + ], + [ + "▁Flash", + -11.63633918762207 + ], + [ + "0-", + -11.636537551879883 + ], + [ + "▁flavour", + -11.6367769241333 + ], + [ + "specific", + -11.636906623840332 + ], + [ + "▁landing", + -11.636930465698242 + ], + [ + "▁geo", + -11.636935234069824 + ], + [ + "▁legend", + -11.636983871459961 + ], + [ + "vari", + -11.63703441619873 + ], + [ + "rop", + -11.637084007263184 + ], + [ + "▁Excel", + -11.6370849609375 + ], + [ + "▁Flu", + -11.637203216552734 + ], + [ + "▁intent", + -11.637582778930664 + ], + [ + "▁Deep", + -11.637594223022461 + ], + [ + "▁Kor", + -11.63763427734375 + ], + [ + "▁Philadelphia", + -11.637914657592773 + ], + [ + "▁rând", + -11.63800048828125 + ], + [ + "▁USD", + -11.638033866882324 + ], + [ + "laden", + -11.63803482055664 + ], + [ + "▁Hin", + -11.638047218322754 + ], + [ + "hap", + -11.638197898864746 + ], + [ + "▁thorough", + -11.638227462768555 + ], + [ + "▁oferit", + -11.63826847076416 + ], + [ + "kind", + -11.63831615447998 + ], + [ + "▁Cancer", + -11.638428688049316 + ], + [ + "apo", + -11.638596534729004 + ], + [ + "▁valve", + -11.638650894165039 + ], + [ + "▁encouraging", + -11.63884449005127 + ], + [ + "▁sûr", + -11.638904571533203 + ], + [ + "shing", + -11.638981819152832 + ], + [ + "▁49", + -11.639132499694824 + ], + [ + "gov", + -11.639142990112305 + ], + [ + "▁Five", + -11.63933277130127 + ], + [ + "▁stroke", + -11.639344215393066 + ], + [ + "▁apă", + -11.639398574829102 + ], + [ + "▁gambling", + -11.639543533325195 + ], + [ + "▁nord", + -11.63963508605957 + ], + [ + "onal", + -11.639691352844238 + ], + [ + "▁captured", + -11.63979721069336 + ], + [ + "▁lucruri", + -11.640068054199219 + ], + [ + "serait", + -11.640192985534668 + ], + [ + "▁Members", + -11.640265464782715 + ], + [ + "ital", + -11.640275955200195 + ], + [ + "▁mounted", + -11.640475273132324 + ], + [ + "▁opens", + -11.640792846679688 + ], + [ + "▁Marie", + -11.640861511230469 + ], + [ + "Tech", + -11.640902519226074 + ], + [ + "▁wishes", + -11.641016006469727 + ], + [ + "▁regards", + -11.641073226928711 + ], + [ + "going", + -11.641156196594238 + ], + [ + "Opti", + -11.641250610351562 + ], + [ + "▁femei", + -11.641331672668457 + ], + [ + "▁Fish", + -11.64142894744873 + ], + [ + "▁mount", + -11.641800880432129 + ], + [ + "▁Hunt", + -11.641887664794922 + ], + [ + "▁probabil", + -11.64205265045166 + ], + [ + "▁assured", + -11.642191886901855 + ], + [ + "pho", + -11.642230033874512 + ], + [ + "▁manufactured", + -11.642313003540039 + ], + [ + "▁realistic", + -11.642437934875488 + ], + [ + "ații", + -11.642580032348633 + ], + [ + "▁Planning", + -11.642598152160645 + ], + [ + "▁român", + -11.642645835876465 + ], + [ + "ggy", + -11.642669677734375 + ], + [ + "▁produces", + -11.642696380615234 + ], + [ + "▁reminder", + -11.64284896850586 + ], + [ + "TION", + -11.642868041992188 + ], + [ + "▁brake", + -11.642909049987793 + ], + [ + "▁pla", + -11.643172264099121 + ], + [ + "▁Premium", + -11.643270492553711 + ], + [ + "▁carb", + -11.643310546875 + ], + [ + "▁shine", + -11.643390655517578 + ], + [ + "▁carrier", + -11.643492698669434 + ], + [ + "▁poverty", + -11.64350414276123 + ], + [ + "▁effectiveness", + -11.6436128616333 + ], + [ + "administr", + -11.643655776977539 + ], + [ + "▁Chamber", + -11.643658638000488 + ], + [ + "▁suntem", + -11.64376163482666 + ], + [ + "▁noastră", + -11.643855094909668 + ], + [ + "▁sofort", + -11.643877983093262 + ], + [ + "▁moisture", + -11.644058227539062 + ], + [ + "limb", + -11.6441011428833 + ], + [ + "entre", + -11.644328117370605 + ], + [ + "▁SD", + -11.644330978393555 + ], + [ + "▁BC", + -11.644539833068848 + ], + [ + "▁selecting", + -11.6445951461792 + ], + [ + "achieving", + -11.644673347473145 + ], + [ + "info", + -11.644735336303711 + ], + [ + "▁membres", + -11.644983291625977 + ], + [ + "▁shoe", + -11.645014762878418 + ], + [ + "▁locate", + -11.645065307617188 + ], + [ + "▁assignment", + -11.645085334777832 + ], + [ + "lern", + -11.645283699035645 + ], + [ + "▁defeat", + -11.645406723022461 + ], + [ + "▁endless", + -11.645458221435547 + ], + [ + "▁Stunden", + -11.645523071289062 + ], + [ + "то", + -11.645561218261719 + ], + [ + "▁mur", + -11.645586013793945 + ], + [ + "▁wissen", + -11.645844459533691 + ], + [ + "aime", + -11.645915031433105 + ], + [ + "1-2", + -11.646056175231934 + ], + [ + "▁femme", + -11.646212577819824 + ], + [ + "robe", + -11.646468162536621 + ], + [ + "▁embrace", + -11.64647102355957 + ], + [ + "▁baseball", + -11.646614074707031 + ], + [ + "▁hunting", + -11.64663314819336 + ], + [ + "betrieb", + -11.646790504455566 + ], + [ + "▁gardens", + -11.647045135498047 + ], + [ + "▁risc", + -11.647096633911133 + ], + [ + "▁Cri", + -11.647263526916504 + ], + [ + "best", + -11.647506713867188 + ], + [ + "▁Audio", + -11.647621154785156 + ], + [ + "▁intens", + -11.647659301757812 + ], + [ + "▁Round", + -11.647744178771973 + ], + [ + "▁fireplace", + -11.6478271484375 + ], + [ + "▁dozen", + -11.647912979125977 + ], + [ + "▁hospitals", + -11.64802360534668 + ], + [ + "▁profits", + -11.648076057434082 + ], + [ + "▁Mail", + -11.64811897277832 + ], + [ + "obtenir", + -11.648191452026367 + ], + [ + "▁Ross", + -11.648241996765137 + ], + [ + "bun", + -11.648573875427246 + ], + [ + "polar", + -11.648688316345215 + ], + [ + "▁reflection", + -11.648873329162598 + ], + [ + "▁fut", + -11.648992538452148 + ], + [ + "phon", + -11.649017333984375 + ], + [ + "deck", + -11.649094581604004 + ], + [ + "renowned", + -11.649188041687012 + ], + [ + "▁cate", + -11.649308204650879 + ], + [ + "▁decorative", + -11.6494722366333 + ], + [ + "ieri", + -11.64957332611084 + ], + [ + "▁Tap", + -11.64958381652832 + ], + [ + "▁Dallas", + -11.649600982666016 + ], + [ + "rik", + -11.649665832519531 + ], + [ + "▁pied", + -11.649727821350098 + ], + [ + "rés", + -11.649821281433105 + ], + [ + "ppy", + -11.650137901306152 + ], + [ + "▁bitte", + -11.650188446044922 + ], + [ + "▁cave", + -11.650257110595703 + ], + [ + "▁rescue", + -11.650559425354004 + ], + [ + "▁Hilfe", + -11.650714874267578 + ], + [ + "▁Jason", + -11.650786399841309 + ], + [ + "▁Nations", + -11.650838851928711 + ], + [ + "▁profil", + -11.650938987731934 + ], + [ + "▁Atlantic", + -11.651105880737305 + ], + [ + "▁rub", + -11.651126861572266 + ], + [ + "▁collaborative", + -11.65113353729248 + ], + [ + "étude", + -11.651150703430176 + ], + [ + "▁Workshop", + -11.651389122009277 + ], + [ + "nez", + -11.651628494262695 + ], + [ + "▁chacun", + -11.651714324951172 + ], + [ + "▁Too", + -11.65211296081543 + ], + [ + "App", + -11.652313232421875 + ], + [ + "▁conseil", + -11.652399063110352 + ], + [ + "▁signals", + -11.652474403381348 + ], + [ + "▁Dead", + -11.652497291564941 + ], + [ + "▁Austria", + -11.652522087097168 + ], + [ + "▁slots", + -11.652579307556152 + ], + [ + "▁Dies", + -11.652623176574707 + ], + [ + "raj", + -11.652629852294922 + ], + [ + "stick", + -11.652833938598633 + ], + [ + "▁jaw", + -11.653030395507812 + ], + [ + "▁lounge", + -11.653059005737305 + ], + [ + "curi", + -11.653359413146973 + ], + [ + "nem", + -11.653456687927246 + ], + [ + "▁Cluj", + -11.653512954711914 + ], + [ + "▁rapide", + -11.653584480285645 + ], + [ + "▁companion", + -11.653716087341309 + ], + [ + "▁WE", + -11.653879165649414 + ], + [ + "▁bord", + -11.65389347076416 + ], + [ + "ody", + -11.654045104980469 + ], + [ + "gru", + -11.654057502746582 + ], + [ + "▁46", + -11.654410362243652 + ], + [ + "kra", + -11.654717445373535 + ], + [ + "eller", + -11.65477180480957 + ], + [ + "naire", + -11.65511703491211 + ], + [ + "hose", + -11.655253410339355 + ], + [ + "▁Atlanta", + -11.655254364013672 + ], + [ + "▁violent", + -11.65530776977539 + ], + [ + "▁imagination", + -11.655352592468262 + ], + [ + "▁reward", + -11.655389785766602 + ], + [ + "▁Korean", + -11.655441284179688 + ], + [ + "▁branches", + -11.655501365661621 + ], + [ + "▁GPS", + -11.655625343322754 + ], + [ + "glo", + -11.655633926391602 + ], + [ + "▁condo", + -11.655705451965332 + ], + [ + "▁Investment", + -11.655765533447266 + ], + [ + "▁involvement", + -11.655813217163086 + ], + [ + "▁trap", + -11.655829429626465 + ], + [ + "▁schön", + -11.655872344970703 + ], + [ + "▁ofera", + -11.655933380126953 + ], + [ + "▁unterschiedlich", + -11.65596866607666 + ], + [ + "Net", + -11.655987739562988 + ], + [ + "▁predict", + -11.656113624572754 + ], + [ + "identifying", + -11.656309127807617 + ], + [ + "▁noir", + -11.6566162109375 + ], + [ + "kos", + -11.656816482543945 + ], + [ + "poz", + -11.656816482543945 + ], + [ + "▁11,", + -11.65698528289795 + ], + [ + "▁fitted", + -11.657384872436523 + ], + [ + "MU", + -11.657469749450684 + ], + [ + "TT", + -11.657645225524902 + ], + [ + "▁vrea", + -11.657846450805664 + ], + [ + "▁wound", + -11.657864570617676 + ], + [ + "lac", + -11.657971382141113 + ], + [ + "▁purchases", + -11.658409118652344 + ], + [ + "▁Cape", + -11.65843677520752 + ], + [ + "▁Foto", + -11.658537864685059 + ], + [ + "▁acres", + -11.65865707397461 + ], + [ + "▁nec", + -11.658677101135254 + ], + [ + "▁burning", + -11.659050941467285 + ], + [ + "conf", + -11.659457206726074 + ], + [ + "▁browse", + -11.659486770629883 + ], + [ + "ural", + -11.659762382507324 + ], + [ + "▁Ah", + -11.659841537475586 + ], + [ + "▁stellt", + -11.65992259979248 + ], + [ + "▁ratings", + -11.660012245178223 + ], + [ + "▁Bowl", + -11.660027503967285 + ], + [ + "▁grav", + -11.660289764404297 + ], + [ + "titi", + -11.66048526763916 + ], + [ + "▁prêt", + -11.66075325012207 + ], + [ + "▁fallen", + -11.660818099975586 + ], + [ + "▁nombreuses", + -11.660940170288086 + ], + [ + "train", + -11.660953521728516 + ], + [ + "ène", + -11.661009788513184 + ], + [ + "Aceasta", + -11.661091804504395 + ], + [ + "▁drill", + -11.661421775817871 + ], + [ + "▁Exam", + -11.661477088928223 + ], + [ + "▁Furniture", + -11.661651611328125 + ], + [ + "eanu", + -11.661919593811035 + ], + [ + "étant", + -11.66230297088623 + ], + [ + "sville", + -11.662391662597656 + ], + [ + "▁swim", + -11.662796020507812 + ], + [ + "▁routes", + -11.662826538085938 + ], + [ + "INE", + -11.662860870361328 + ], + [ + "▁Por", + -11.662976264953613 + ], + [ + "ither", + -11.663168907165527 + ], + [ + "▁optim", + -11.663180351257324 + ], + [ + "▁lua", + -11.66331958770752 + ], + [ + "▁myth", + -11.663491249084473 + ], + [ + "▁Bett", + -11.6635103225708 + ], + [ + "chim", + -11.66355037689209 + ], + [ + "▁cyber", + -11.663553237915039 + ], + [ + "▁engineer", + -11.663825035095215 + ], + [ + "▁exploration", + -11.663918495178223 + ], + [ + "arranged", + -11.663973808288574 + ], + [ + "▁aged", + -11.663993835449219 + ], + [ + "▁beau", + -11.664024353027344 + ], + [ + "OUT", + -11.66402530670166 + ], + [ + "▁Minnesota", + -11.664031982421875 + ], + [ + "tress", + -11.664407730102539 + ], + [ + "▁Commercial", + -11.664509773254395 + ], + [ + "▁inspiring", + -11.66462516784668 + ], + [ + "▁Mare", + -11.664725303649902 + ], + [ + "apa", + -11.665140151977539 + ], + [ + "▁ignore", + -11.6651611328125 + ], + [ + "▁gros", + -11.665186882019043 + ], + [ + "▁measurement", + -11.66531753540039 + ], + [ + "ager", + -11.665395736694336 + ], + [ + "intele", + -11.665966987609863 + ], + [ + "▁suspension", + -11.666180610656738 + ], + [ + "▁cultures", + -11.666211128234863 + ], + [ + "▁Wow", + -11.666231155395508 + ], + [ + "▁pushing", + -11.666363716125488 + ], + [ + "▁bands", + -11.666438102722168 + ], + [ + "nage", + -11.666450500488281 + ], + [ + "▁Math", + -11.666515350341797 + ], + [ + "comb", + -11.66658878326416 + ], + [ + "▁créer", + -11.66658878326416 + ], + [ + "▁Lewis", + -11.666685104370117 + ], + [ + "▁VI", + -11.66678524017334 + ], + [ + "emploi", + -11.666791915893555 + ], + [ + "▁elections", + -11.666890144348145 + ], + [ + "▁logic", + -11.666982650756836 + ], + [ + "▁unlike", + -11.667122840881348 + ], + [ + "▁Matthew", + -11.66743278503418 + ], + [ + "▁pă", + -11.667486190795898 + ], + [ + "oxy", + -11.667620658874512 + ], + [ + "équipe", + -11.667717933654785 + ], + [ + "▁worden", + -11.668088912963867 + ], + [ + "dev", + -11.668258666992188 + ], + [ + "▁Massachusetts", + -11.668691635131836 + ], + [ + "▁Return", + -11.668695449829102 + ], + [ + "▁Friends", + -11.66891098022461 + ], + [ + "▁movements", + -11.66894245147705 + ], + [ + "chie", + -11.668964385986328 + ], + [ + "rak", + -11.669017791748047 + ], + [ + "▁Fit", + -11.66904354095459 + ], + [ + "▁copil", + -11.669113159179688 + ], + [ + "iunii", + -11.669188499450684 + ], + [ + "▁intensive", + -11.669234275817871 + ], + [ + "▁rug", + -11.669452667236328 + ], + [ + "lichkeit", + -11.669686317443848 + ], + [ + "kov", + -11.669724464416504 + ], + [ + "▁pense", + -11.66978645324707 + ], + [ + "pop", + -11.66978931427002 + ], + [ + "▁closet", + -11.669865608215332 + ], + [ + "▁prevention", + -11.669920921325684 + ], + [ + "▁Deb", + -11.670256614685059 + ], + [ + "▁devant", + -11.670430183410645 + ], + [ + "▁construit", + -11.670440673828125 + ], + [ + "▁breaks", + -11.67082405090332 + ], + [ + "otic", + -11.670886993408203 + ], + [ + "▁dig", + -11.67088794708252 + ], + [ + "▁près", + -11.670930862426758 + ], + [ + "chte", + -11.671029090881348 + ], + [ + "▁Chat", + -11.671029090881348 + ], + [ + "wel", + -11.671219825744629 + ], + [ + "▁edges", + -11.671272277832031 + ], + [ + "▁keen", + -11.671419143676758 + ], + [ + "▁infant", + -11.671716690063477 + ], + [ + "▁Hills", + -11.6719388961792 + ], + [ + "▁grounds", + -11.671969413757324 + ], + [ + "▁hab", + -11.672039031982422 + ], + [ + "▁Mun", + -11.67215347290039 + ], + [ + "▁references", + -11.672215461730957 + ], + [ + "▁hearts", + -11.672446250915527 + ], + [ + "exprim", + -11.672487258911133 + ], + [ + "▁tratament", + -11.672553062438965 + ], + [ + "LD", + -11.67258358001709 + ], + [ + "ssel", + -11.67275333404541 + ], + [ + "cover", + -11.672782897949219 + ], + [ + "bridge", + -11.672837257385254 + ], + [ + "▁Wein", + -11.672924995422363 + ], + [ + "▁voiture", + -11.673035621643066 + ], + [ + "▁Gemeinde", + -11.67313289642334 + ], + [ + "AI", + -11.673169136047363 + ], + [ + "▁renovation", + -11.673264503479004 + ], + [ + "bid", + -11.673285484313965 + ], + [ + "▁Reading", + -11.673481941223145 + ], + [ + "▁Gor", + -11.673490524291992 + ], + [ + "fur", + -11.673527717590332 + ], + [ + "▁Yoga", + -11.673544883728027 + ], + [ + "▁exclusively", + -11.673630714416504 + ], + [ + "▁emissions", + -11.67385482788086 + ], + [ + "ète", + -11.673905372619629 + ], + [ + "▁glasses", + -11.674055099487305 + ], + [ + "▁organizat", + -11.674135208129883 + ], + [ + "▁washing", + -11.67415714263916 + ], + [ + "▁Audi", + -11.674173355102539 + ], + [ + "▁Labor", + -11.674331665039062 + ], + [ + "▁legacy", + -11.674381256103516 + ], + [ + "▁abstract", + -11.674519538879395 + ], + [ + "▁knowledgeable", + -11.674601554870605 + ], + [ + "▁Glo", + -11.674795150756836 + ], + [ + "▁pregnant", + -11.67481803894043 + ], + [ + "liter", + -11.674851417541504 + ], + [ + "▁paintings", + -11.67522144317627 + ], + [ + "▁tête", + -11.675244331359863 + ], + [ + "voy", + -11.675626754760742 + ], + [ + "▁Jacob", + -11.675667762756348 + ], + [ + "▁dressing", + -11.675679206848145 + ], + [ + "▁provisions", + -11.675768852233887 + ], + [ + "bahn", + -11.675870895385742 + ], + [ + "▁depict", + -11.675875663757324 + ], + [ + "AW", + -11.676068305969238 + ], + [ + "▁bleibt", + -11.676163673400879 + ], + [ + "AND", + -11.676292419433594 + ], + [ + "▁fünf", + -11.676386833190918 + ], + [ + "▁hosts", + -11.676426887512207 + ], + [ + "vas", + -11.676708221435547 + ], + [ + "DO", + -11.67674732208252 + ], + [ + "▁max", + -11.676753997802734 + ], + [ + "▁contributed", + -11.676774978637695 + ], + [ + "roz", + -11.676796913146973 + ], + [ + "▁deschis", + -11.676800727844238 + ], + [ + "itaire", + -11.676809310913086 + ], + [ + "tube", + -11.676959991455078 + ], + [ + "▁Beck", + -11.676959991455078 + ], + [ + "▁curious", + -11.677130699157715 + ], + [ + "▁waves", + -11.677178382873535 + ], + [ + "▁regret", + -11.677248001098633 + ], + [ + "FO", + -11.677326202392578 + ], + [ + "droit", + -11.67734146118164 + ], + [ + "rö", + -11.677565574645996 + ], + [ + "▁Panel", + -11.677624702453613 + ], + [ + "▁pile", + -11.677660942077637 + ], + [ + "▁installing", + -11.677674293518066 + ], + [ + "▁Intr", + -11.677797317504883 + ], + [ + "nung", + -11.677823066711426 + ], + [ + "▁Outdoor", + -11.677855491638184 + ], + [ + "▁generator", + -11.67786693572998 + ], + [ + "▁zahlreiche", + -11.677868843078613 + ], + [ + "▁Third", + -11.67813491821289 + ], + [ + "frac", + -11.678180694580078 + ], + [ + "ovi", + -11.678236961364746 + ], + [ + "▁Casa", + -11.678374290466309 + ], + [ + "▁stomach", + -11.678393363952637 + ], + [ + "▁Lincoln", + -11.67844009399414 + ], + [ + "▁Electronic", + -11.678584098815918 + ], + [ + "coding", + -11.67895221710205 + ], + [ + "2017", + -11.67900276184082 + ], + [ + "▁friendship", + -11.679238319396973 + ], + [ + "ried", + -11.679250717163086 + ], + [ + "но", + -11.679265022277832 + ], + [ + "▁tail", + -11.679267883300781 + ], + [ + "▁petits", + -11.679308891296387 + ], + [ + "▁réseau", + -11.679696083068848 + ], + [ + "▁churches", + -11.679999351501465 + ], + [ + "▁marketplace", + -11.680062294006348 + ], + [ + "▁Pool", + -11.680318832397461 + ], + [ + "▁popularity", + -11.680455207824707 + ], + [ + "▁sprijin", + -11.680496215820312 + ], + [ + "▁Od", + -11.680527687072754 + ], + [ + "▁Transfer", + -11.680562973022461 + ], + [ + "▁fake", + -11.680791854858398 + ], + [ + "▁9,", + -11.681007385253906 + ], + [ + "▁weit", + -11.681264877319336 + ], + [ + "▁relaxed", + -11.681415557861328 + ], + [ + "pig", + -11.68161678314209 + ], + [ + "▁Lauren", + -11.68166732788086 + ], + [ + "gesetzt", + -11.681669235229492 + ], + [ + "▁Clar", + -11.681694984436035 + ], + [ + "▁unlikely", + -11.681731224060059 + ], + [ + "color", + -11.681832313537598 + ], + [ + "▁spouse", + -11.681843757629395 + ], + [ + "▁facile", + -11.681859970092773 + ], + [ + "▁Speed", + -11.681872367858887 + ], + [ + "KE", + -11.682230949401855 + ], + [ + "▁PO", + -11.68231201171875 + ], + [ + "▁Channel", + -11.682321548461914 + ], + [ + "argent", + -11.682356834411621 + ], + [ + "▁Making", + -11.682430267333984 + ], + [ + "▁Coll", + -11.682585716247559 + ], + [ + "cci", + -11.682721138000488 + ], + [ + "corresponding", + -11.68300724029541 + ], + [ + "▁heaven", + -11.683160781860352 + ], + [ + "ţă", + -11.68319320678711 + ], + [ + "▁darüber", + -11.683236122131348 + ], + [ + "acted", + -11.683420181274414 + ], + [ + "only", + -11.683460235595703 + ], + [ + "▁slight", + -11.683465003967285 + ], + [ + "lian", + -11.68348503112793 + ], + [ + "flă", + -11.683510780334473 + ], + [ + "▁vulnerable", + -11.683530807495117 + ], + [ + "▁creator", + -11.68356704711914 + ], + [ + "▁protecting", + -11.68360424041748 + ], + [ + "writing", + -11.68360710144043 + ], + [ + "▁Ter", + -11.68387222290039 + ], + [ + "▁barb", + -11.683987617492676 + ], + [ + "▁dată", + -11.683995246887207 + ], + [ + "▁Screen", + -11.684052467346191 + ], + [ + "▁BBC", + -11.684082984924316 + ], + [ + "Col", + -11.684206008911133 + ], + [ + "fung", + -11.684453964233398 + ], + [ + "▁dreptul", + -11.684494972229004 + ], + [ + "derived", + -11.684538841247559 + ], + [ + "▁designated", + -11.684553146362305 + ], + [ + "▁interactions", + -11.684617042541504 + ], + [ + "SG", + -11.684621810913086 + ], + [ + "▁häufig", + -11.684625625610352 + ], + [ + "▁Mega", + -11.684638023376465 + ], + [ + "▁jazz", + -11.684660911560059 + ], + [ + "lbs", + -11.684797286987305 + ], + [ + "▁Manual", + -11.68484115600586 + ], + [ + "pushed", + -11.685017585754395 + ], + [ + "▁analytics", + -11.685234069824219 + ], + [ + "▁lawsuit", + -11.68533706665039 + ], + [ + "▁gray", + -11.685364723205566 + ], + [ + "shirts", + -11.685401916503906 + ], + [ + "▁hill", + -11.685508728027344 + ], + [ + "▁1991", + -11.68550968170166 + ], + [ + "▁obligations", + -11.685568809509277 + ], + [ + "▁Dubai", + -11.68580436706543 + ], + [ + "()", + -11.685808181762695 + ], + [ + "▁acceptable", + -11.685810089111328 + ], + [ + "therapist", + -11.685877799987793 + ], + [ + "inger", + -11.6860990524292 + ], + [ + "▁territory", + -11.686208724975586 + ], + [ + "▁sang", + -11.6862211227417 + ], + [ + "ät", + -11.686224937438965 + ], + [ + "▁Zukunft", + -11.686238288879395 + ], + [ + "TU", + -11.68657398223877 + ], + [ + "▁horizontal", + -11.68665599822998 + ], + [ + "▁entrepreneurs", + -11.686710357666016 + ], + [ + "▁Eltern", + -11.687017440795898 + ], + [ + "▁presentations", + -11.687129974365234 + ], + [ + "▁confirmation", + -11.687173843383789 + ], + [ + "▁technological", + -11.687432289123535 + ], + [ + "▁1989", + -11.687530517578125 + ], + [ + "EF", + -11.687640190124512 + ], + [ + "ponent", + -11.687663078308105 + ], + [ + "NET", + -11.687699317932129 + ], + [ + "750", + -11.687772750854492 + ], + [ + "▁desert", + -11.687891960144043 + ], + [ + "▁contribu", + -11.687932968139648 + ], + [ + "▁Gun", + -11.687944412231445 + ], + [ + "▁Juli", + -11.688091278076172 + ], + [ + "ERS", + -11.688261985778809 + ], + [ + "▁inceput", + -11.688261985778809 + ], + [ + "▁answered", + -11.688369750976562 + ], + [ + "▁basement", + -11.688410758972168 + ], + [ + "film", + -11.688434600830078 + ], + [ + "▁taille", + -11.688593864440918 + ], + [ + "▁survival", + -11.688655853271484 + ], + [ + "ihnen", + -11.68869400024414 + ], + [ + "▁Bird", + -11.688840866088867 + ], + [ + "speed", + -11.689336776733398 + ], + [ + "▁journalist", + -11.68941879272461 + ], + [ + "▁Indonesia", + -11.689626693725586 + ], + [ + "▁15.", + -11.689973831176758 + ], + [ + "▁19.", + -11.690025329589844 + ], + [ + "étaient", + -11.690114974975586 + ], + [ + "▁tennis", + -11.69024658203125 + ], + [ + "▁aproximativ", + -11.69039249420166 + ], + [ + "▁Hans", + -11.690650939941406 + ], + [ + "▁Remove", + -11.69067096710205 + ], + [ + "▁cats", + -11.691022872924805 + ], + [ + "▁calories", + -11.691052436828613 + ], + [ + "▁limitations", + -11.69119644165039 + ], + [ + "▁subscribe", + -11.691198348999023 + ], + [ + "▁Dem", + -11.691339492797852 + ], + [ + "lust", + -11.691370010375977 + ], + [ + "▁adresa", + -11.691394805908203 + ], + [ + "▁sais", + -11.69140911102295 + ], + [ + "...\"", + -11.691473960876465 + ], + [ + "▁Luft", + -11.691485404968262 + ], + [ + "DL", + -11.691597938537598 + ], + [ + "▁estimates", + -11.691600799560547 + ], + [ + "▁protocol", + -11.691603660583496 + ], + [ + "▁Namen", + -11.691776275634766 + ], + [ + "▁grands", + -11.691901206970215 + ], + [ + "▁voter", + -11.691970825195312 + ], + [ + "▁vacuum", + -11.692075729370117 + ], + [ + "▁versch", + -11.692103385925293 + ], + [ + "▁Democratic", + -11.692107200622559 + ], + [ + "▁Books", + -11.692170143127441 + ], + [ + "▁frames", + -11.692727088928223 + ], + [ + "▁Bee", + -11.692864418029785 + ], + [ + "▁helfen", + -11.692934036254883 + ], + [ + "▁dive", + -11.692963600158691 + ], + [ + "▁physician", + -11.693037033081055 + ], + [ + "▁powered", + -11.693131446838379 + ], + [ + "▁zones", + -11.693337440490723 + ], + [ + "▁regime", + -11.69345474243164 + ], + [ + "check", + -11.693578720092773 + ], + [ + "11.", + -11.693793296813965 + ], + [ + "▁plaisir", + -11.693793296813965 + ], + [ + "▁physically", + -11.693811416625977 + ], + [ + "▁Pul", + -11.694245338439941 + ], + [ + "▁jardin", + -11.694294929504395 + ], + [ + "▁Nur", + -11.694417953491211 + ], + [ + "WC", + -11.694425582885742 + ], + [ + "▁Lock", + -11.694506645202637 + ], + [ + "▁économique", + -11.694530487060547 + ], + [ + "user", + -11.694536209106445 + ], + [ + "▁commit", + -11.694731712341309 + ], + [ + "▁oldest", + -11.694764137268066 + ], + [ + "▁fulfill", + -11.694780349731445 + ], + [ + "▁nervous", + -11.69482135772705 + ], + [ + "▁SH", + -11.695014953613281 + ], + [ + "SK", + -11.695150375366211 + ], + [ + "▁plein", + -11.695291519165039 + ], + [ + "show", + -11.695354461669922 + ], + [ + "▁disability", + -11.695356369018555 + ], + [ + "papier", + -11.69544506072998 + ], + [ + "▁Corp", + -11.695611000061035 + ], + [ + "ători", + -11.695676803588867 + ], + [ + "nţă", + -11.695813179016113 + ], + [ + "▁overseas", + -11.696009635925293 + ], + [ + "▁struck", + -11.69603157043457 + ], + [ + "astic", + -11.69607162475586 + ], + [ + "▁advised", + -11.696088790893555 + ], + [ + "BE", + -11.696161270141602 + ], + [ + "▁UV", + -11.696218490600586 + ], + [ + "patient", + -11.69626235961914 + ], + [ + "▁texte", + -11.696344375610352 + ], + [ + "▁timely", + -11.696444511413574 + ], + [ + "used", + -11.696471214294434 + ], + [ + "▁occasionally", + -11.696524620056152 + ], + [ + "▁entries", + -11.696550369262695 + ], + [ + "underlying", + -11.6967191696167 + ], + [ + "01.", + -11.696748733520508 + ], + [ + "▁automated", + -11.696791648864746 + ], + [ + "yes", + -11.696828842163086 + ], + [ + "▁Staff", + -11.697057723999023 + ], + [ + "▁Einzel", + -11.697546005249023 + ], + [ + "quit", + -11.697687149047852 + ], + [ + "▁Cela", + -11.697951316833496 + ], + [ + "▁snap", + -11.698298454284668 + ], + [ + "▁followers", + -11.698330879211426 + ], + [ + "CN", + -11.698709487915039 + ], + [ + "▁Cooper", + -11.698892593383789 + ], + [ + "ô", + -11.698921203613281 + ], + [ + "▁memorable", + -11.698965072631836 + ], + [ + "▁jur", + -11.698996543884277 + ], + [ + "▁ajutorul", + -11.69905948638916 + ], + [ + "▁Enter", + -11.6991548538208 + ], + [ + "Often", + -11.699294090270996 + ], + [ + "▁dintr", + -11.699341773986816 + ], + [ + "-30", + -11.699419975280762 + ], + [ + "ESS", + -11.699454307556152 + ], + [ + "▁weird", + -11.699462890625 + ], + [ + "▁Animal", + -11.699706077575684 + ], + [ + "▁complement", + -11.699719429016113 + ], + [ + "▁Bot", + -11.699756622314453 + ], + [ + "▁darf", + -11.699764251708984 + ], + [ + "yed", + -11.699808120727539 + ], + [ + "▁Mul", + -11.699872016906738 + ], + [ + "lick", + -11.700080871582031 + ], + [ + "▁Cambridge", + -11.700216293334961 + ], + [ + "adore", + -11.700407981872559 + ], + [ + "▁Dutch", + -11.700420379638672 + ], + [ + "▁Castle", + -11.700431823730469 + ], + [ + "igi", + -11.700563430786133 + ], + [ + "▁enemy", + -11.70071029663086 + ], + [ + "accompanied", + -11.700725555419922 + ], + [ + "▁teren", + -11.701102256774902 + ], + [ + "▁ET", + -11.701498985290527 + ], + [ + "ffle", + -11.701557159423828 + ], + [ + "-15", + -11.701651573181152 + ], + [ + "▁Geo", + -11.701680183410645 + ], + [ + "▁attractions", + -11.701730728149414 + ], + [ + "iker", + -11.70185661315918 + ], + [ + "▁bă", + -11.701990127563477 + ], + [ + "▁heal", + -11.701995849609375 + ], + [ + "weisen", + -11.702144622802734 + ], + [ + "▁spectrum", + -11.702186584472656 + ], + [ + "meld", + -11.702394485473633 + ], + [ + "▁eveniment", + -11.70247745513916 + ], + [ + "arra", + -11.702478408813477 + ], + [ + "rete", + -11.70250129699707 + ], + [ + "▁Had", + -11.70250415802002 + ], + [ + "looking", + -11.702692031860352 + ], + [ + "isierung", + -11.702805519104004 + ], + [ + "▁moyen", + -11.703129768371582 + ], + [ + "▁gesamte", + -11.703202247619629 + ], + [ + "▁destroy", + -11.703407287597656 + ], + [ + "125", + -11.703518867492676 + ], + [ + "▁suivant", + -11.703913688659668 + ], + [ + "▁declared", + -11.703925132751465 + ], + [ + "▁Urban", + -11.704131126403809 + ], + [ + "▁16.", + -11.704168319702148 + ], + [ + "▁Beg", + -11.704168319702148 + ], + [ + "▁canal", + -11.704225540161133 + ], + [ + "▁Pres", + -11.70431137084961 + ], + [ + "▁geeignet", + -11.704339981079102 + ], + [ + "▁strat", + -11.704365730285645 + ], + [ + "UB", + -11.704395294189453 + ], + [ + "▁Alexander", + -11.704424858093262 + ], + [ + "cycle", + -11.704666137695312 + ], + [ + "▁Var", + -11.704802513122559 + ], + [ + "▁domin", + -11.704805374145508 + ], + [ + "▁lasting", + -11.704939842224121 + ], + [ + "terio", + -11.705262184143066 + ], + [ + "▁Battle", + -11.705339431762695 + ], + [ + "▁publications", + -11.705647468566895 + ], + [ + "▁implica", + -11.705886840820312 + ], + [ + "▁NA", + -11.705963134765625 + ], + [ + "▁stocks", + -11.706036567687988 + ], + [ + "Plat", + -11.70611572265625 + ], + [ + "▁excitement", + -11.706149101257324 + ], + [ + "▁Muslim", + -11.706524848937988 + ], + [ + "▁Mari", + -11.706530570983887 + ], + [ + "▁Ul", + -11.706647872924805 + ], + [ + "nächst", + -11.706757545471191 + ], + [ + "▁trait", + -11.706833839416504 + ], + [ + "▁(3)", + -11.706852912902832 + ], + [ + "▁Attorney", + -11.706894874572754 + ], + [ + "▁Malaysia", + -11.70689582824707 + ], + [ + "▁slab", + -11.706960678100586 + ], + [ + "▁dam", + -11.707113265991211 + ], + [ + "▁Bir", + -11.707226753234863 + ], + [ + "▁sing", + -11.70738410949707 + ], + [ + "▁Culture", + -11.7073974609375 + ], + [ + "UD", + -11.707417488098145 + ], + [ + "▁Mes", + -11.707443237304688 + ], + [ + "ități", + -11.707615852355957 + ], + [ + "▁possess", + -11.708173751831055 + ], + [ + "enabling", + -11.70820426940918 + ], + [ + "▁settled", + -11.708335876464844 + ], + [ + "▁sagen", + -11.708492279052734 + ], + [ + "▁erfolgt", + -11.708564758300781 + ], + [ + "dog", + -11.708600997924805 + ], + [ + "ndu", + -11.708732604980469 + ], + [ + "ității", + -11.708745002746582 + ], + [ + "▁Islam", + -11.708930015563965 + ], + [ + "▁catalog", + -11.708931922912598 + ], + [ + "▁simt", + -11.709102630615234 + ], + [ + "tische", + -11.709150314331055 + ], + [ + "▁Mach", + -11.709334373474121 + ], + [ + "▁EP", + -11.709359169006348 + ], + [ + "▁Certified", + -11.709386825561523 + ], + [ + "▁Resources", + -11.70945930480957 + ], + [ + "▁Past", + -11.709607124328613 + ], + [ + "▁Termin", + -11.709755897521973 + ], + [ + "▁lightweight", + -11.709755897521973 + ], + [ + "▁championship", + -11.70994758605957 + ], + [ + "gebiet", + -11.710122108459473 + ], + [ + "▁jurisdiction", + -11.710135459899902 + ], + [ + "▁euros", + -11.710169792175293 + ], + [ + "▁Familien", + -11.710554122924805 + ], + [ + "▁GT", + -11.710677146911621 + ], + [ + "▁dvs", + -11.71081256866455 + ], + [ + "▁nouveaux", + -11.710838317871094 + ], + [ + "▁chill", + -11.710916519165039 + ], + [ + "▁ridicat", + -11.710920333862305 + ], + [ + "his", + -11.711079597473145 + ], + [ + "▁Indi", + -11.711159706115723 + ], + [ + "▁arrested", + -11.71116828918457 + ], + [ + "ităţii", + -11.711170196533203 + ], + [ + "onul", + -11.711274147033691 + ], + [ + "appar", + -11.711296081542969 + ], + [ + "▁Bachelor", + -11.711297988891602 + ], + [ + "▁erfolgreich", + -11.711426734924316 + ], + [ + "▁versatile", + -11.71163558959961 + ], + [ + "▁nécessaire", + -11.711761474609375 + ], + [ + "▁facial", + -11.712160110473633 + ], + [ + "▁Bull", + -11.712226867675781 + ], + [ + "Comm", + -11.712237358093262 + ], + [ + "atte", + -11.712307929992676 + ], + [ + "hom", + -11.7123384475708 + ], + [ + "start", + -11.712576866149902 + ], + [ + "▁roughly", + -11.712936401367188 + ], + [ + "▁bay", + -11.712984085083008 + ], + [ + "▁american", + -11.712986946105957 + ], + [ + "▁Wisconsin", + -11.713135719299316 + ], + [ + "▁Clinton", + -11.713142395019531 + ], + [ + "appareil", + -11.713153839111328 + ], + [ + "▁liberal", + -11.713455200195312 + ], + [ + "▁dau", + -11.713519096374512 + ], + [ + "ech", + -11.713521957397461 + ], + [ + "2014", + -11.713624000549316 + ], + [ + "▁lip", + -11.713645935058594 + ], + [ + "▁maintenant", + -11.713762283325195 + ], + [ + "▁Sil", + -11.713805198669434 + ], + [ + "rben", + -11.713891983032227 + ], + [ + "▁contents", + -11.713980674743652 + ], + [ + "▁magnetic", + -11.714111328125 + ], + [ + "▁terre", + -11.714151382446289 + ], + [ + "▁Rights", + -11.714475631713867 + ], + [ + "lose", + -11.714570045471191 + ], + [ + "▁crown", + -11.71468448638916 + ], + [ + "▁oils", + -11.7147216796875 + ], + [ + "▁entertaining", + -11.714841842651367 + ], + [ + "▁Option", + -11.714848518371582 + ], + [ + "▁Previous", + -11.714916229248047 + ], + [ + "▁vrai", + -11.714930534362793 + ], + [ + "▁Auswahl", + -11.715056419372559 + ], + [ + "▁horses", + -11.715106010437012 + ], + [ + "▁Author", + -11.71533489227295 + ], + [ + "▁Writing", + -11.715461730957031 + ], + [ + "▁travelling", + -11.715522766113281 + ], + [ + "▁350", + -11.715567588806152 + ], + [ + "daten", + -11.71560287475586 + ], + [ + "zan", + -11.715765953063965 + ], + [ + "▁sweat", + -11.715924263000488 + ], + [ + "▁Junior", + -11.715970993041992 + ], + [ + "markt", + -11.71609878540039 + ], + [ + "after", + -11.716105461120605 + ], + [ + "▁admitted", + -11.716262817382812 + ], + [ + "▁1950", + -11.716347694396973 + ], + [ + "▁Sche", + -11.71648120880127 + ], + [ + "▁dorit", + -11.716818809509277 + ], + [ + "▁transferred", + -11.716958045959473 + ], + [ + "utilise", + -11.717194557189941 + ], + [ + "sitz", + -11.717301368713379 + ], + [ + "gio", + -11.717320442199707 + ], + [ + "▁bisher", + -11.717473983764648 + ], + [ + "RD", + -11.717491149902344 + ], + [ + "▁Wales", + -11.717747688293457 + ], + [ + "▁smoking", + -11.717904090881348 + ], + [ + "dire", + -11.717939376831055 + ], + [ + "▁seating", + -11.717979431152344 + ], + [ + "▁constat", + -11.718056678771973 + ], + [ + "▁Hub", + -11.718324661254883 + ], + [ + "▁sieht", + -11.718345642089844 + ], + [ + "▁prospect", + -11.718378067016602 + ], + [ + "▁RO", + -11.718413352966309 + ], + [ + "▁Wars", + -11.718423843383789 + ], + [ + "eek", + -11.718496322631836 + ], + [ + "▁Bring", + -11.718646049499512 + ], + [ + "▁bleiben", + -11.718696594238281 + ], + [ + "arri", + -11.718826293945312 + ], + [ + "inal", + -11.718904495239258 + ], + [ + "▁Maryland", + -11.718932151794434 + ], + [ + "▁Process", + -11.719145774841309 + ], + [ + "They", + -11.719154357910156 + ], + [ + "▁Oxford", + -11.719176292419434 + ], + [ + "▁neat", + -11.719330787658691 + ], + [ + "▁cinema", + -11.719597816467285 + ], + [ + "▁Ist", + -11.719620704650879 + ], + [ + "▁vegan", + -11.719682693481445 + ], + [ + "wall", + -11.719708442687988 + ], + [ + "▁motive", + -11.72010612487793 + ], + [ + "▁mature", + -11.720544815063477 + ], + [ + "▁Dragon", + -11.720653533935547 + ], + [ + "▁google", + -11.720677375793457 + ], + [ + "blick", + -11.72110652923584 + ], + [ + "▁Cod", + -11.721220970153809 + ], + [ + "▁suffi", + -11.721319198608398 + ], + [ + "▁terrorist", + -11.721478462219238 + ], + [ + "Posted", + -11.721484184265137 + ], + [ + "▁Schi", + -11.72157096862793 + ], + [ + "▁Marc", + -11.721597671508789 + ], + [ + "▁operates", + -11.721661567687988 + ], + [ + "gress", + -11.721805572509766 + ], + [ + "has", + -11.721899032592773 + ], + [ + "sole", + -11.722108840942383 + ], + [ + "▁Buck", + -11.722122192382812 + ], + [ + "impl", + -11.722160339355469 + ], + [ + "▁Ron", + -11.722172737121582 + ], + [ + "▁handled", + -11.722346305847168 + ], + [ + "▁Apr", + -11.722347259521484 + ], + [ + "▁Storage", + -11.722467422485352 + ], + [ + "▁temp", + -11.722512245178223 + ], + [ + "▁differently", + -11.722614288330078 + ], + [ + "▁wherever", + -11.722670555114746 + ], + [ + "matched", + -11.722695350646973 + ], + [ + "rios", + -11.72276496887207 + ], + [ + "▁surprising", + -11.722846031188965 + ], + [ + "teilen", + -11.722867965698242 + ], + [ + "▁difficulties", + -11.72294807434082 + ], + [ + "tab", + -11.723064422607422 + ], + [ + "▁Leader", + -11.723128318786621 + ], + [ + "implementing", + -11.723372459411621 + ], + [ + "▁workforce", + -11.723384857177734 + ], + [ + "▁bereit", + -11.723503112792969 + ], + [ + "vig", + -11.72352123260498 + ], + [ + "▁LOVE", + -11.723580360412598 + ], + [ + "▁instances", + -11.723954200744629 + ], + [ + "▁frumos", + -11.723960876464844 + ], + [ + "▁Java", + -11.723974227905273 + ], + [ + "▁arrest", + -11.723977088928223 + ], + [ + "▁apparent", + -11.724152565002441 + ], + [ + "▁hence", + -11.724200248718262 + ], + [ + "▁entwickelt", + -11.72437572479248 + ], + [ + "▁Fra", + -11.724471092224121 + ], + [ + "▁prend", + -11.724486351013184 + ], + [ + "ließ", + -11.724522590637207 + ], + [ + "▁drawer", + -11.724671363830566 + ], + [ + "ARD", + -11.724926948547363 + ], + [ + "▁caring", + -11.72499942779541 + ], + [ + "▁wollte", + -11.725024223327637 + ], + [ + "▁vielleicht", + -11.72511100769043 + ], + [ + "▁iconic", + -11.725324630737305 + ], + [ + "äch", + -11.72552490234375 + ], + [ + "abel", + -11.725639343261719 + ], + [ + "▁génér", + -11.72570514678955 + ], + [ + "ault", + -11.725727081298828 + ], + [ + "▁alternatives", + -11.725909233093262 + ], + [ + "think", + -11.726025581359863 + ], + [ + "ро", + -11.726055145263672 + ], + [ + "whereas", + -11.726058006286621 + ], + [ + "erei", + -11.726366996765137 + ], + [ + "▁Eagle", + -11.726766586303711 + ], + [ + "situé", + -11.72704792022705 + ], + [ + "▁laboratory", + -11.727157592773438 + ], + [ + "▁Nutzung", + -11.727256774902344 + ], + [ + "▁Bathroom", + -11.72728157043457 + ], + [ + "▁loaded", + -11.727293968200684 + ], + [ + "niste", + -11.727408409118652 + ], + [ + "som", + -11.727429389953613 + ], + [ + "▁aucun", + -11.727666854858398 + ], + [ + "gebracht", + -11.727676391601562 + ], + [ + "▁tomb", + -11.727771759033203 + ], + [ + "▁Ty", + -11.727785110473633 + ], + [ + "▁afaceri", + -11.727971076965332 + ], + [ + "tex", + -11.72803783416748 + ], + [ + "ality", + -11.728147506713867 + ], + [ + "▁identification", + -11.728150367736816 + ], + [ + "▁cultiv", + -11.728255271911621 + ], + [ + "Not", + -11.728326797485352 + ], + [ + "▁acestor", + -11.72846508026123 + ], + [ + "▁PhD", + -11.728466033935547 + ], + [ + "nell", + -11.728470802307129 + ], + [ + "▁dial", + -11.728594779968262 + ], + [ + "chro", + -11.728673934936523 + ], + [ + "▁specifications", + -11.728682518005371 + ], + [ + "anii", + -11.72877025604248 + ], + [ + "▁cloth", + -11.728836059570312 + ], + [ + "▁highway", + -11.728914260864258 + ], + [ + "▁Vitamin", + -11.729118347167969 + ], + [ + "▁indication", + -11.729349136352539 + ], + [ + "80%", + -11.72959041595459 + ], + [ + "▁Lion", + -11.729681015014648 + ], + [ + "▁10,", + -11.729693412780762 + ], + [ + "▁Werk", + -11.72974967956543 + ], + [ + "▁combin", + -11.729803085327148 + ], + [ + "▁releases", + -11.7298583984375 + ], + [ + "LL", + -11.730006217956543 + ], + [ + "ktor", + -11.730186462402344 + ], + [ + "ufgrund", + -11.73018741607666 + ], + [ + "calc", + -11.73034381866455 + ], + [ + "▁accomplished", + -11.730606079101562 + ], + [ + "▁los", + -11.730619430541992 + ], + [ + "▁distant", + -11.730688095092773 + ], + [ + "▁secteur", + -11.73068904876709 + ], + [ + "logue", + -11.730781555175781 + ], + [ + "▁betting", + -11.730792999267578 + ], + [ + "elf", + -11.731180191040039 + ], + [ + "puteti", + -11.73123550415039 + ], + [ + "▁Moment", + -11.731236457824707 + ], + [ + "▁scoring", + -11.731548309326172 + ], + [ + "▁freuen", + -11.731572151184082 + ], + [ + "▁fastest", + -11.731873512268066 + ], + [ + "▁directors", + -11.732080459594727 + ], + [ + "▁fame", + -11.732234954833984 + ], + [ + "▁complaint", + -11.732239723205566 + ], + [ + "▁Ep", + -11.732314109802246 + ], + [ + "▁delicate", + -11.732329368591309 + ], + [ + "annonce", + -11.73240852355957 + ], + [ + "ext", + -11.732454299926758 + ], + [ + "▁quit", + -11.732473373413086 + ], + [ + "▁Cop", + -11.73253345489502 + ], + [ + "prop", + -11.732565879821777 + ], + [ + "365", + -11.732742309570312 + ], + [ + "▁Say", + -11.732879638671875 + ], + [ + "▁internationale", + -11.733064651489258 + ], + [ + "cott", + -11.733213424682617 + ], + [ + "▁Whatever", + -11.733261108398438 + ], + [ + "▁admir", + -11.733261108398438 + ], + [ + "▁bucur", + -11.733549118041992 + ], + [ + "▁entity", + -11.733779907226562 + ], + [ + "▁dancing", + -11.733837127685547 + ], + [ + "▁printre", + -11.733892440795898 + ], + [ + "▁meditation", + -11.734396934509277 + ], + [ + "▁avis", + -11.734416961669922 + ], + [ + "▁1988", + -11.73447036743164 + ], + [ + "10.", + -11.734506607055664 + ], + [ + "▁worker", + -11.734638214111328 + ], + [ + "▁$100", + -11.734784126281738 + ], + [ + "▁contrôle", + -11.7349853515625 + ], + [ + "▁insist", + -11.734997749328613 + ], + [ + "ements", + -11.73505973815918 + ], + [ + "izate", + -11.735163688659668 + ], + [ + "▁tied", + -11.735332489013672 + ], + [ + "▁correspond", + -11.735396385192871 + ], + [ + "▁apartments", + -11.735547065734863 + ], + [ + "▁2009.", + -11.735599517822266 + ], + [ + "▁tiles", + -11.735624313354492 + ], + [ + "▁boots", + -11.735639572143555 + ], + [ + "▁laundry", + -11.735673904418945 + ], + [ + "▁Coffee", + -11.735674858093262 + ], + [ + "▁CV", + -11.735727310180664 + ], + [ + "▁composed", + -11.736035346984863 + ], + [ + "atom", + -11.73622989654541 + ], + [ + "▁shore", + -11.736270904541016 + ], + [ + "▁marijuana", + -11.736312866210938 + ], + [ + "plic", + -11.73648452758789 + ], + [ + "▁Zahl", + -11.736649513244629 + ], + [ + "depth", + -11.73682689666748 + ], + [ + "▁Egypt", + -11.736854553222656 + ], + [ + "▁NFL", + -11.736906051635742 + ], + [ + "▁12,", + -11.736922264099121 + ], + [ + "▁pollution", + -11.736964225769043 + ], + [ + "▁Vergleich", + -11.73704719543457 + ], + [ + "û", + -11.737109184265137 + ], + [ + "▁nurse", + -11.737153053283691 + ], + [ + "▁Susan", + -11.737173080444336 + ], + [ + "▁verify", + -11.737393379211426 + ], + [ + "▁kon", + -11.737504959106445 + ], + [ + "▁ulei", + -11.7376127243042 + ], + [ + "▁Sept", + -11.737699508666992 + ], + [ + "▁Location", + -11.737908363342285 + ], + [ + "▁frozen", + -11.737991333007812 + ], + [ + "good", + -11.73802661895752 + ], + [ + "▁cine", + -11.738066673278809 + ], + [ + "forming", + -11.738181114196777 + ], + [ + "▁Near", + -11.738391876220703 + ], + [ + "▁Tab", + -11.738545417785645 + ], + [ + "▁Alexandr", + -11.738600730895996 + ], + [ + "ст", + -11.73863697052002 + ], + [ + "CK", + -11.738656044006348 + ], + [ + "▁loads", + -11.738948822021484 + ], + [ + "▁disorders", + -11.738957405090332 + ], + [ + "hip", + -11.739596366882324 + ], + [ + "▁blessing", + -11.73987102508545 + ], + [ + "▁vechi", + -11.73997688293457 + ], + [ + "▁Bookmark", + -11.740296363830566 + ], + [ + "SON", + -11.74036979675293 + ], + [ + "books", + -11.740428924560547 + ], + [ + "▁tropical", + -11.740438461303711 + ], + [ + "▁Garten", + -11.740447044372559 + ], + [ + "ôt", + -11.740760803222656 + ], + [ + "tures", + -11.740827560424805 + ], + [ + "▁obligation", + -11.741010665893555 + ], + [ + "▁admin", + -11.741011619567871 + ], + [ + "▁sélection", + -11.741106986999512 + ], + [ + "disp", + -11.741172790527344 + ], + [ + "▁Anyone", + -11.741225242614746 + ], + [ + "keeper", + -11.74138355255127 + ], + [ + "▁konnten", + -11.741521835327148 + ], + [ + "▁existe", + -11.741615295410156 + ], + [ + "▁Rund", + -11.741798400878906 + ], + [ + "▁retailers", + -11.74184799194336 + ], + [ + "folg", + -11.741948127746582 + ], + [ + "▁urmare", + -11.742019653320312 + ], + [ + "▁Liebe", + -11.742321014404297 + ], + [ + "▁actors", + -11.742422103881836 + ], + [ + "▁Druck", + -11.742618560791016 + ], + [ + "lien", + -11.742752075195312 + ], + [ + "sian", + -11.742847442626953 + ], + [ + "▁partid", + -11.74304485321045 + ], + [ + "▁loin", + -11.743114471435547 + ], + [ + "AZ", + -11.743119239807129 + ], + [ + "oasă", + -11.743501663208008 + ], + [ + "▁inclusiv", + -11.743656158447266 + ], + [ + "TD", + -11.743680953979492 + ], + [ + "▁anului", + -11.743766784667969 + ], + [ + "poc", + -11.743844985961914 + ], + [ + "▁musique", + -11.743972778320312 + ], + [ + "▁Hart", + -11.743997573852539 + ], + [ + "Sh", + -11.744283676147461 + ], + [ + "html", + -11.744290351867676 + ], + [ + "▁serial", + -11.744318008422852 + ], + [ + "țele", + -11.744369506835938 + ], + [ + "inning", + -11.744544982910156 + ], + [ + "▁Bureau", + -11.744555473327637 + ], + [ + "▁rush", + -11.744626998901367 + ], + [ + "▁deosebit", + -11.744637489318848 + ], + [ + "▁Wort", + -11.744648933410645 + ], + [ + "▁Thailand", + -11.744688987731934 + ], + [ + "▁Language", + -11.745193481445312 + ], + [ + "▁Governor", + -11.745213508605957 + ], + [ + "▁Later", + -11.74525260925293 + ], + [ + "rilor", + -11.745282173156738 + ], + [ + "▁activités", + -11.745372772216797 + ], + [ + "schaffen", + -11.745598793029785 + ], + [ + "▁harvest", + -11.74567985534668 + ], + [ + "▁municipal", + -11.745783805847168 + ], + [ + "einander", + -11.74600601196289 + ], + [ + "▁fingers", + -11.746383666992188 + ], + [ + "▁sculpture", + -11.74638843536377 + ], + [ + "▁Bien", + -11.746390342712402 + ], + [ + "▁departments", + -11.746562957763672 + ], + [ + "▁période", + -11.746746063232422 + ], + [ + "▁jeune", + -11.746960639953613 + ], + [ + "▁governments", + -11.74710750579834 + ], + [ + "uter", + -11.747179985046387 + ], + [ + "Aceste", + -11.747220039367676 + ], + [ + "▁Deal", + -11.747243881225586 + ], + [ + "▁Equipment", + -11.74726390838623 + ], + [ + "nous", + -11.747300148010254 + ], + [ + "▁gate", + -11.747315406799316 + ], + [ + "▁meta", + -11.747447967529297 + ], + [ + "▁stiu", + -11.747474670410156 + ], + [ + "fold", + -11.747486114501953 + ], + [ + "▁seule", + -11.747523307800293 + ], + [ + "▁varied", + -11.747541427612305 + ], + [ + "hit", + -11.747635841369629 + ], + [ + "▁DIY", + -11.74768352508545 + ], + [ + "▁lemn", + -11.747685432434082 + ], + [ + "OB", + -11.747865676879883 + ], + [ + "▁colorful", + -11.748095512390137 + ], + [ + "▁câ", + -11.74826431274414 + ], + [ + "▁semester", + -11.74830150604248 + ], + [ + "▁dealer", + -11.748575210571289 + ], + [ + "nett", + -11.748788833618164 + ], + [ + "▁shortly", + -11.748932838439941 + ], + [ + "▁Driver", + -11.748983383178711 + ], + [ + "culture", + -11.749052047729492 + ], + [ + "▁permitted", + -11.749072074890137 + ], + [ + "▁sorts", + -11.749432563781738 + ], + [ + "▁crop", + -11.74999713897705 + ], + [ + "▁valoare", + -11.75046157836914 + ], + [ + "▁analog", + -11.750576972961426 + ], + [ + "▁excuse", + -11.750588417053223 + ], + [ + "▁modèle", + -11.750657081604004 + ], + [ + "When", + -11.75068473815918 + ], + [ + "▁march", + -11.750744819641113 + ], + [ + "haz", + -11.750978469848633 + ], + [ + "▁minimize", + -11.750992774963379 + ], + [ + "traction", + -11.751028060913086 + ], + [ + "▁caracter", + -11.752382278442383 + ], + [ + "▁modules", + -11.7523832321167 + ], + [ + "clu", + -11.75244426727295 + ], + [ + "ţional", + -11.752482414245605 + ], + [ + "▁breach", + -11.752562522888184 + ], + [ + "▁priced", + -11.752614974975586 + ], + [ + "▁attorneys", + -11.752644538879395 + ], + [ + "▁implant", + -11.752645492553711 + ], + [ + "▁ANY", + -11.752655029296875 + ], + [ + "dition", + -11.752707481384277 + ], + [ + "▁trials", + -11.752838134765625 + ], + [ + "▁Nas", + -11.75293254852295 + ], + [ + "Pre", + -11.752970695495605 + ], + [ + "lorsque", + -11.752979278564453 + ], + [ + "plin", + -11.753050804138184 + ], + [ + "Er", + -11.753056526184082 + ], + [ + "▁Dom", + -11.753067970275879 + ], + [ + "▁tire", + -11.753190040588379 + ], + [ + "sili", + -11.753233909606934 + ], + [ + "▁coins", + -11.753350257873535 + ], + [ + "▁rend", + -11.753470420837402 + ], + [ + "▁reliability", + -11.753503799438477 + ], + [ + "▁Analysis", + -11.753508567810059 + ], + [ + "▁trails", + -11.753692626953125 + ], + [ + "trägt", + -11.753762245178223 + ], + [ + "▁Kansas", + -11.753908157348633 + ], + [ + "▁responsive", + -11.75390911102295 + ], + [ + "▁disappear", + -11.753988265991211 + ], + [ + "▁stakeholders", + -11.754022598266602 + ], + [ + "▁aplica", + -11.754164695739746 + ], + [ + "▁imi", + -11.754180908203125 + ], + [ + "▁Laura", + -11.754369735717773 + ], + [ + "▁Terms", + -11.75440788269043 + ], + [ + "450", + -11.754460334777832 + ], + [ + "▁voltage", + -11.754483222961426 + ], + [ + "▁Gel", + -11.754544258117676 + ], + [ + "▁qualities", + -11.754549026489258 + ], + [ + "▁qualifi", + -11.754603385925293 + ], + [ + "▁Mé", + -11.754735946655273 + ], + [ + "bereit", + -11.754829406738281 + ], + [ + "gleich", + -11.754875183105469 + ], + [ + "▁voting", + -11.754961013793945 + ], + [ + "▁trademark", + -11.755128860473633 + ], + [ + "▁2.5", + -11.75515079498291 + ], + [ + "ND", + -11.755438804626465 + ], + [ + "▁Kelly", + -11.755470275878906 + ], + [ + "▁weiteren", + -11.755559921264648 + ], + [ + "▁filters", + -11.75562572479248 + ], + [ + "▁coût", + -11.75562858581543 + ], + [ + "jur", + -11.755765914916992 + ], + [ + "acre", + -11.755804061889648 + ], + [ + "▁retired", + -11.756022453308105 + ], + [ + "▁Engine", + -11.756205558776855 + ], + [ + "▁président", + -11.756264686584473 + ], + [ + "ajul", + -11.756307601928711 + ], + [ + "▁GA", + -11.756425857543945 + ], + [ + "rät", + -11.75666332244873 + ], + [ + "▁instructor", + -11.756669998168945 + ], + [ + "▁Allen", + -11.75668716430664 + ], + [ + "▁Delhi", + -11.756771087646484 + ], + [ + "▁cure", + -11.756844520568848 + ], + [ + "seite", + -11.756898880004883 + ], + [ + "coming", + -11.756914138793945 + ], + [ + "▁mixing", + -11.756963729858398 + ], + [ + "▁Kno", + -11.757041931152344 + ], + [ + "▁Sure", + -11.757079124450684 + ], + [ + "▁hired", + -11.757102012634277 + ], + [ + "▁participated", + -11.757196426391602 + ], + [ + "Count", + -11.757320404052734 + ], + [ + "treffen", + -11.757355690002441 + ], + [ + "▁54", + -11.75735855102539 + ], + [ + "▁rings", + -11.75735855102539 + ], + [ + "▁Thor", + -11.757359504699707 + ], + [ + "éro", + -11.75744915008545 + ], + [ + "▁buttons", + -11.757488250732422 + ], + [ + "▁47", + -11.757539749145508 + ], + [ + "▁Tel", + -11.757694244384766 + ], + [ + "▁suport", + -11.757776260375977 + ], + [ + "▁rhythm", + -11.75782585144043 + ], + [ + "▁Theater", + -11.758113861083984 + ], + [ + "▁informatii", + -11.758121490478516 + ], + [ + "hält", + -11.758201599121094 + ], + [ + "▁ouvert", + -11.758238792419434 + ], + [ + "fewer", + -11.75828742980957 + ], + [ + "▁alumni", + -11.758466720581055 + ], + [ + "▁valley", + -11.758508682250977 + ], + [ + "tial", + -11.75860595703125 + ], + [ + "***", + -11.758782386779785 + ], + [ + "kri", + -11.75905704498291 + ], + [ + "▁accidents", + -11.759113311767578 + ], + [ + "▁barrel", + -11.759170532226562 + ], + [ + "mobil", + -11.759310722351074 + ], + [ + "etti", + -11.759437561035156 + ], + [ + "▁immigration", + -11.759515762329102 + ], + [ + "▁poveste", + -11.759528160095215 + ], + [ + "hren", + -11.759669303894043 + ], + [ + "hydr", + -11.759719848632812 + ], + [ + "▁tweet", + -11.759744644165039 + ], + [ + "▁zip", + -11.759872436523438 + ], + [ + "▁Bonus", + -11.760189056396484 + ], + [ + "ordnung", + -11.760287284851074 + ], + [ + "liber", + -11.76046085357666 + ], + [ + "▁Navy", + -11.760591506958008 + ], + [ + "▁agreements", + -11.760612487792969 + ], + [ + "▁detection", + -11.7607421875 + ], + [ + "DF", + -11.760762214660645 + ], + [ + "hur", + -11.760774612426758 + ], + [ + "0.00", + -11.760798454284668 + ], + [ + "▁07", + -11.760866165161133 + ], + [ + "etta", + -11.760884284973145 + ], + [ + "▁13,", + -11.760887145996094 + ], + [ + "rolled", + -11.760970115661621 + ], + [ + "▁injection", + -11.761002540588379 + ], + [ + "mig", + -11.761017799377441 + ], + [ + "wach", + -11.761107444763184 + ], + [ + "▁choisir", + -11.761515617370605 + ], + [ + "▁professionnels", + -11.76159954071045 + ], + [ + "▁Tower", + -11.76169490814209 + ], + [ + "▁neighbor", + -11.76170539855957 + ], + [ + "deutschen", + -11.76187801361084 + ], + [ + "▁luxurious", + -11.76201057434082 + ], + [ + "▁walks", + -11.762033462524414 + ], + [ + "reti", + -11.762046813964844 + ], + [ + "▁Pad", + -11.762085914611816 + ], + [ + "wise", + -11.762297630310059 + ], + [ + "▁exhaust", + -11.762307167053223 + ], + [ + "▁demonstration", + -11.762582778930664 + ], + [ + "▁agricultural", + -11.762667655944824 + ], + [ + "Upon", + -11.762885093688965 + ], + [ + "▁Blu", + -11.76292610168457 + ], + [ + "atorul", + -11.762967109680176 + ], + [ + "amour", + -11.762984275817871 + ], + [ + "issant", + -11.763004302978516 + ], + [ + "▁delighted", + -11.763031959533691 + ], + [ + "rita", + -11.763113021850586 + ], + [ + "requiring", + -11.763195037841797 + ], + [ + "ivity", + -11.763216972351074 + ], + [ + "▁Unser", + -11.763306617736816 + ], + [ + "FP", + -11.763379096984863 + ], + [ + "fait", + -11.763533592224121 + ], + [ + "dite", + -11.763562202453613 + ], + [ + "kul", + -11.763716697692871 + ], + [ + "arth", + -11.76376724243164 + ], + [ + "▁Ker", + -11.763815879821777 + ], + [ + "torilor", + -11.763816833496094 + ], + [ + "stage", + -11.763866424560547 + ], + [ + "▁HTML", + -11.76398754119873 + ], + [ + "▁Wheel", + -11.764005661010742 + ], + [ + "▁quelque", + -11.76414680480957 + ], + [ + "▁Ou", + -11.764196395874023 + ], + [ + "▁considerable", + -11.764277458190918 + ], + [ + "▁Sco", + -11.76458740234375 + ], + [ + "▁donations", + -11.76481819152832 + ], + [ + "dessen", + -11.765002250671387 + ], + [ + "▁pourquoi", + -11.765039443969727 + ], + [ + "▁Bow", + -11.765189170837402 + ], + [ + "▁Dupa", + -11.76522445678711 + ], + [ + "ska", + -11.765707015991211 + ], + [ + "hot", + -11.765732765197754 + ], + [ + "▁drove", + -11.765849113464355 + ], + [ + "▁oppos", + -11.766018867492676 + ], + [ + "▁hiking", + -11.766035079956055 + ], + [ + "▁Boot", + -11.766081809997559 + ], + [ + "One", + -11.766087532043457 + ], + [ + "▁guvern", + -11.766094207763672 + ], + [ + "▁15,", + -11.766400337219238 + ], + [ + "scheid", + -11.766437530517578 + ], + [ + "▁Miet", + -11.766458511352539 + ], + [ + "▁Technical", + -11.766767501831055 + ], + [ + "▁Dal", + -11.7669038772583 + ], + [ + "▁Metro", + -11.766966819763184 + ], + [ + "▁Baker", + -11.767215728759766 + ], + [ + "▁trece", + -11.767252922058105 + ], + [ + "tained", + -11.767302513122559 + ], + [ + "block", + -11.76738452911377 + ], + [ + "▁wander", + -11.767401695251465 + ], + [ + "▁penalty", + -11.76742172241211 + ], + [ + "▁shipped", + -11.767509460449219 + ], + [ + "▁30%", + -11.767518043518066 + ], + [ + "group", + -11.767541885375977 + ], + [ + "▁brothers", + -11.767701148986816 + ], + [ + "▁comanda", + -11.767777442932129 + ], + [ + "▁retreat", + -11.767789840698242 + ], + [ + "▁Movie", + -11.767802238464355 + ], + [ + "PU", + -11.76787281036377 + ], + [ + "▁Jun", + -11.767885208129883 + ], + [ + "▁$6", + -11.767969131469727 + ], + [ + "▁Fal", + -11.768054962158203 + ], + [ + "▁Palestinian", + -11.768075942993164 + ], + [ + "▁soccer", + -11.768217086791992 + ], + [ + "▁Autor", + -11.768254280090332 + ], + [ + "▁chamber", + -11.768266677856445 + ], + [ + "nement", + -11.768463134765625 + ], + [ + "▁offense", + -11.768610954284668 + ], + [ + "▁gig", + -11.768631935119629 + ], + [ + "▁abandon", + -11.768691062927246 + ], + [ + "▁Kraft", + -11.768783569335938 + ], + [ + "▁Medicare", + -11.768784523010254 + ], + [ + "▁soap", + -11.768835067749023 + ], + [ + "▁Fur", + -11.768990516662598 + ], + [ + "▁conditioning", + -11.769103050231934 + ], + [ + "rained", + -11.769132614135742 + ], + [ + "▁puts", + -11.769134521484375 + ], + [ + "▁cod", + -11.76930046081543 + ], + [ + "lassen", + -11.76941967010498 + ], + [ + "FL", + -11.769600868225098 + ], + [ + "▁komplett", + -11.769664764404297 + ], + [ + "▁entscheiden", + -11.769665718078613 + ], + [ + "▁Hour", + -11.769691467285156 + ], + [ + "?!", + -11.770040512084961 + ], + [ + "Stream", + -11.770145416259766 + ], + [ + "▁Grad", + -11.770209312438965 + ], + [ + "▁gently", + -11.770231246948242 + ], + [ + "▁poetry", + -11.770429611206055 + ], + [ + "▁secured", + -11.770438194274902 + ], + [ + "oph", + -11.770466804504395 + ], + [ + "hop", + -11.770561218261719 + ], + [ + "handel", + -11.770634651184082 + ], + [ + "▁besoins", + -11.770658493041992 + ], + [ + "got", + -11.770824432373047 + ], + [ + "▁Chrome", + -11.77088737487793 + ], + [ + "ILL", + -11.770930290222168 + ], + [ + "▁Schritt", + -11.771014213562012 + ], + [ + "▁spell", + -11.771063804626465 + ], + [ + "▁grinding", + -11.771334648132324 + ], + [ + "▁ramp", + -11.77144718170166 + ], + [ + "▁mama", + -11.7716064453125 + ], + [ + "▁bottles", + -11.77180290222168 + ], + [ + "▁canvas", + -11.771906852722168 + ], + [ + "▁ecosystem", + -11.77194595336914 + ], + [ + "aţii", + -11.771967887878418 + ], + [ + "cellular", + -11.772085189819336 + ], + [ + "▁Spin", + -11.772164344787598 + ], + [ + "▁Discover", + -11.772217750549316 + ], + [ + "-17", + -11.772322654724121 + ], + [ + "▁feeding", + -11.77246379852295 + ], + [ + "▁stops", + -11.7725191116333 + ], + [ + "▁haute", + -11.772552490234375 + ], + [ + "▁Entscheidung", + -11.7725830078125 + ], + [ + "▁semble", + -11.772590637207031 + ], + [ + "▁acele", + -11.772857666015625 + ], + [ + "▁Walk", + -11.773154258728027 + ], + [ + "▁joke", + -11.773180961608887 + ], + [ + "▁Fed", + -11.773294448852539 + ], + [ + "climat", + -11.773306846618652 + ], + [ + "▁Lot", + -11.773460388183594 + ], + [ + "runner", + -11.773551940917969 + ], + [ + "▁flip", + -11.773786544799805 + ], + [ + "▁werde", + -11.773818016052246 + ], + [ + "▁Deck", + -11.77417278289795 + ], + [ + "bala", + -11.774296760559082 + ], + [ + "▁sacrifice", + -11.774375915527344 + ], + [ + "cid", + -11.774388313293457 + ], + [ + "him", + -11.774569511413574 + ], + [ + "zahlen", + -11.774587631225586 + ], + [ + "▁heater", + -11.774596214294434 + ], + [ + "formed", + -11.774619102478027 + ], + [ + "plus", + -11.774711608886719 + ], + [ + "▁util", + -11.774742126464844 + ], + [ + "rama", + -11.775019645690918 + ], + [ + "(4)", + -11.7750244140625 + ], + [ + "▁knife", + -11.775111198425293 + ], + [ + "▁traditions", + -11.77520751953125 + ], + [ + "▁dip", + -11.775357246398926 + ], + [ + "kill", + -11.775405883789062 + ], + [ + "▁Rich", + -11.775418281555176 + ], + [ + "▁DI", + -11.775555610656738 + ], + [ + "▁containers", + -11.775677680969238 + ], + [ + "▁locuri", + -11.775728225708008 + ], + [ + "▁continent", + -11.775797843933105 + ], + [ + "teilung", + -11.776005744934082 + ], + [ + "▁vreme", + -11.776028633117676 + ], + [ + "organisation", + -11.776126861572266 + ], + [ + "serie", + -11.776135444641113 + ], + [ + "▁Diamond", + -11.776204109191895 + ], + [ + "magazin", + -11.77627944946289 + ], + [ + "▁poster", + -11.776455879211426 + ], + [ + "▁passenger", + -11.7765474319458 + ], + [ + "▁soldiers", + -11.776552200317383 + ], + [ + "▁urgent", + -11.776616096496582 + ], + [ + "▁Lip", + -11.77680778503418 + ], + [ + "▁aşa", + -11.776972770690918 + ], + [ + "▁BO", + -11.777024269104004 + ], + [ + "▁somebody", + -11.777076721191406 + ], + [ + "▁silence", + -11.777132034301758 + ], + [ + "cop", + -11.777359962463379 + ], + [ + "▁Burn", + -11.77749252319336 + ], + [ + "▁stopping", + -11.777544021606445 + ], + [ + "▁essence", + -11.777568817138672 + ], + [ + "▁hitting", + -11.777762413024902 + ], + [ + "▁producers", + -11.777801513671875 + ], + [ + "▁fibre", + -11.777894020080566 + ], + [ + "▁seasonal", + -11.777960777282715 + ], + [ + "▁tara", + -11.778096199035645 + ], + [ + "▁Jose", + -11.778099060058594 + ], + [ + "▁Better", + -11.77825927734375 + ], + [ + "▁steep", + -11.778295516967773 + ], + [ + "Alors", + -11.778353691101074 + ], + [ + "▁collecting", + -11.778507232666016 + ], + [ + "vre", + -11.778635025024414 + ], + [ + "▁disabled", + -11.77863883972168 + ], + [ + "▁voters", + -11.778679847717285 + ], + [ + "consuming", + -11.779092788696289 + ], + [ + "deemed", + -11.779115676879883 + ], + [ + "éra", + -11.779227256774902 + ], + [ + "opération", + -11.779273986816406 + ], + [ + "▁roller", + -11.779305458068848 + ], + [ + "Rather", + -11.779321670532227 + ], + [ + "▁leider", + -11.779370307922363 + ], + [ + "▁IV", + -11.779434204101562 + ], + [ + "▁erreichen", + -11.779473304748535 + ], + [ + "▁charging", + -11.779657363891602 + ], + [ + "tions", + -11.77973747253418 + ], + [ + "tiques", + -11.779861450195312 + ], + [ + "▁formats", + -11.779876708984375 + ], + [ + "▁painful", + -11.78000545501709 + ], + [ + "▁eager", + -11.780061721801758 + ], + [ + "generation", + -11.780137062072754 + ], + [ + "anna", + -11.780235290527344 + ], + [ + "▁races", + -11.780323028564453 + ], + [ + "force", + -11.780357360839844 + ], + [ + "▁ferm", + -11.780522346496582 + ], + [ + "▁breathing", + -11.780618667602539 + ], + [ + "▁offen", + -11.780648231506348 + ], + [ + "▁minds", + -11.780805587768555 + ], + [ + "▁musste", + -11.780832290649414 + ], + [ + "▁Vision", + -11.780888557434082 + ], + [ + "▁Installation", + -11.780988693237305 + ], + [ + "▁hesitate", + -11.781002044677734 + ], + [ + "▁somit", + -11.781023979187012 + ], + [ + "hôtel", + -11.781044006347656 + ], + [ + "cab", + -11.781235694885254 + ], + [ + "-16", + -11.781312942504883 + ], + [ + "▁Visual", + -11.781418800354004 + ], + [ + "intérêt", + -11.781524658203125 + ], + [ + "▁apel", + -11.781831741333008 + ], + [ + "therapy", + -11.782089233398438 + ], + [ + "volt", + -11.78225040435791 + ], + [ + "▁Rou", + -11.782439231872559 + ], + [ + "▁efficace", + -11.782464027404785 + ], + [ + "▁architectural", + -11.782605171203613 + ], + [ + "▁privilege", + -11.782670974731445 + ], + [ + "▁treating", + -11.782711029052734 + ], + [ + "▁Tam", + -11.782722473144531 + ], + [ + "tsch", + -11.782744407653809 + ], + [ + "building", + -11.782750129699707 + ], + [ + "▁associations", + -11.782929420471191 + ], + [ + "▁Consumer", + -11.783424377441406 + ], + [ + "▁Lim", + -11.783496856689453 + ], + [ + "newest", + -11.7835054397583 + ], + [ + "▁față", + -11.783675193786621 + ], + [ + "▁ships", + -11.783732414245605 + ], + [ + "lev", + -11.78373908996582 + ], + [ + "raft", + -11.783817291259766 + ], + [ + "▁variations", + -11.783845901489258 + ], + [ + "▁noua", + -11.78386402130127 + ], + [ + "▁Cab", + -11.784063339233398 + ], + [ + "1.2", + -11.78409481048584 + ], + [ + "▁ocazi", + -11.784347534179688 + ], + [ + "▁recommendation", + -11.784449577331543 + ], + [ + "titled", + -11.78445053100586 + ], + [ + "▁invoice", + -11.78459644317627 + ], + [ + "▁noastra", + -11.784647941589355 + ], + [ + "kur", + -11.784700393676758 + ], + [ + "issent", + -11.784758567810059 + ], + [ + "base", + -11.784778594970703 + ], + [ + "hä", + -11.7848482131958 + ], + [ + "888", + -11.784914016723633 + ], + [ + "▁declar", + -11.784941673278809 + ], + [ + "▁Football", + -11.7850341796875 + ], + [ + "▁Indeed", + -11.785293579101562 + ], + [ + "▁weapon", + -11.785333633422852 + ], + [ + "▁destroyed", + -11.785457611083984 + ], + [ + "▁enormous", + -11.785594940185547 + ], + [ + "▁blanket", + -11.7857084274292 + ], + [ + "▁aktiv", + -11.785759925842285 + ], + [ + "raw", + -11.785791397094727 + ], + [ + "▁computing", + -11.785823822021484 + ], + [ + "6)", + -11.785955429077148 + ], + [ + "▁Dam", + -11.786152839660645 + ], + [ + "▁confort", + -11.786174774169922 + ], + [ + "▁Gla", + -11.786198616027832 + ], + [ + "hardly", + -11.786242485046387 + ], + [ + "▁annually", + -11.786269187927246 + ], + [ + "▁destinations", + -11.786401748657227 + ], + [ + "▁guilty", + -11.786404609680176 + ], + [ + "▁scholarship", + -11.786439895629883 + ], + [ + "▁harmful", + -11.786453247070312 + ], + [ + "▁2-3", + -11.786616325378418 + ], + [ + "▁Race", + -11.786638259887695 + ], + [ + "▁hypo", + -11.78671646118164 + ], + [ + "▁shorter", + -11.786733627319336 + ], + [ + "quest", + -11.78675651550293 + ], + [ + "uze", + -11.786812782287598 + ], + [ + "izi", + -11.787005424499512 + ], + [ + "OO", + -11.787095069885254 + ], + [ + "▁Schutz", + -11.787097930908203 + ], + [ + "▁Teilnehmer", + -11.787185668945312 + ], + [ + "▁profiles", + -11.787199020385742 + ], + [ + "▁sustainability", + -11.78747272491455 + ], + [ + "▁emb", + -11.787489891052246 + ], + [ + "▁Augen", + -11.787516593933105 + ], + [ + "▁outdoors", + -11.787542343139648 + ], + [ + "▁Individual", + -11.787548065185547 + ], + [ + "▁pou", + -11.78757095336914 + ], + [ + "▁Together", + -11.787575721740723 + ], + [ + "HT", + -11.787674903869629 + ], + [ + "suited", + -11.787755012512207 + ], + [ + "▁tro", + -11.787782669067383 + ], + [ + "▁Strom", + -11.787805557250977 + ], + [ + "▁achievement", + -11.78799819946289 + ], + [ + "▁Range", + -11.78815746307373 + ], + [ + "tory", + -11.78817081451416 + ], + [ + "▁distribute", + -11.788250923156738 + ], + [ + "▁letzte", + -11.788276672363281 + ], + [ + "incorporated", + -11.788287162780762 + ], + [ + "▁Kir", + -11.788325309753418 + ], + [ + "ruf", + -11.78839111328125 + ], + [ + "▁disappointed", + -11.788543701171875 + ], + [ + "▁referral", + -11.788602828979492 + ], + [ + "flam", + -11.788687705993652 + ], + [ + "▁excessive", + -11.7886962890625 + ], + [ + "▁rapidement", + -11.788743019104004 + ], + [ + "▁Rio", + -11.78875732421875 + ], + [ + "aţia", + -11.788951873779297 + ], + [ + "▁meuble", + -11.78912353515625 + ], + [ + "▁2008.", + -11.789135932922363 + ], + [ + "▁Gall", + -11.78915023803711 + ], + [ + "▁française", + -11.789369583129883 + ], + [ + "▁ladies", + -11.789695739746094 + ], + [ + "ailed", + -11.789746284484863 + ], + [ + "El", + -11.789834976196289 + ], + [ + "▁wines", + -11.789868354797363 + ], + [ + "▁beispielsweise", + -11.789876937866211 + ], + [ + "▁gamme", + -11.790193557739258 + ], + [ + "▁guided", + -11.79028034210205 + ], + [ + "▁plin", + -11.790339469909668 + ], + [ + "Î", + -11.790390968322754 + ], + [ + "▁True", + -11.790498733520508 + ], + [ + "▁Temple", + -11.790507316589355 + ], + [ + "▁Pic", + -11.790520668029785 + ], + [ + "permalink", + -11.790547370910645 + ], + [ + "▁vedea", + -11.790656089782715 + ], + [ + "▁rank", + -11.790922164916992 + ], + [ + "▁Grill", + -11.791025161743164 + ], + [ + "clin", + -11.791070938110352 + ], + [ + "▁Hab", + -11.791089057922363 + ], + [ + "▁odds", + -11.791125297546387 + ], + [ + "▁anytime", + -11.791146278381348 + ], + [ + "▁Thanksgiving", + -11.791265487670898 + ], + [ + "guard", + -11.791300773620605 + ], + [ + "▁essays", + -11.791389465332031 + ], + [ + "▁PE", + -11.79139518737793 + ], + [ + "▁Rechts", + -11.791494369506836 + ], + [ + "mals", + -11.791751861572266 + ], + [ + "achi", + -11.791762351989746 + ], + [ + "▁Anthony", + -11.791765213012695 + ], + [ + "▁réponse", + -11.792036056518555 + ], + [ + "standing", + -11.79227352142334 + ], + [ + "▁Mol", + -11.792427062988281 + ], + [ + "▁Canon", + -11.792474746704102 + ], + [ + "▁silk", + -11.792515754699707 + ], + [ + "▁pourrait", + -11.79278564453125 + ], + [ + "▁raport", + -11.79280948638916 + ], + [ + "▁Woche", + -11.792889595031738 + ], + [ + "fallen", + -11.79293155670166 + ], + [ + "sting", + -11.79310131072998 + ], + [ + "▁circulation", + -11.793102264404297 + ], + [ + "▁skirt", + -11.7931547164917 + ], + [ + "▁Title", + -11.793187141418457 + ], + [ + "▁17.", + -11.79331111907959 + ], + [ + "▁Touch", + -11.793486595153809 + ], + [ + "▁utilizat", + -11.79352855682373 + ], + [ + "▁Organisation", + -11.793569564819336 + ], + [ + "▁mereu", + -11.793848991394043 + ], + [ + "▁oxygen", + -11.793953895568848 + ], + [ + "lique", + -11.793985366821289 + ], + [ + "▁consume", + -11.794100761413574 + ], + [ + "▁Barb", + -11.794102668762207 + ], + [ + "1.1", + -11.794105529785156 + ], + [ + "▁nicely", + -11.79419231414795 + ], + [ + "▁psychological", + -11.794227600097656 + ], + [ + "▁refrigerator", + -11.794478416442871 + ], + [ + "▁fantasy", + -11.79481029510498 + ], + [ + "▁dispute", + -11.79494571685791 + ], + [ + "▁IBM", + -11.794954299926758 + ], + [ + "▁Nation", + -11.794971466064453 + ], + [ + "▁mobil", + -11.795063972473145 + ], + [ + "▁density", + -11.795201301574707 + ], + [ + "ske", + -11.795230865478516 + ], + [ + "▁intimate", + -11.795313835144043 + ], + [ + "▁tailored", + -11.795319557189941 + ], + [ + "▁outline", + -11.795472145080566 + ], + [ + "TN", + -11.79554557800293 + ], + [ + "mur", + -11.795634269714355 + ], + [ + "GC", + -11.795662879943848 + ], + [ + "they", + -11.795992851257324 + ], + [ + "pag", + -11.796161651611328 + ], + [ + "▁Kultur", + -11.796246528625488 + ], + [ + "grün", + -11.796281814575195 + ], + [ + "voted", + -11.796529769897461 + ], + [ + "▁donné", + -11.796546936035156 + ], + [ + "▁Să", + -11.796629905700684 + ], + [ + "enberg", + -11.796648979187012 + ], + [ + "▁wi", + -11.79686450958252 + ], + [ + "▁Francis", + -11.797057151794434 + ], + [ + "▁Rick", + -11.797157287597656 + ], + [ + "accord", + -11.797403335571289 + ], + [ + "▁Zusammen", + -11.797415733337402 + ], + [ + "▁nonprofit", + -11.797456741333008 + ], + [ + "▁listings", + -11.797615051269531 + ], + [ + "6,", + -11.797908782958984 + ], + [ + "▁maximize", + -11.798253059387207 + ], + [ + "bud", + -11.798345565795898 + ], + [ + "▁promotional", + -11.798486709594727 + ], + [ + "cina", + -11.798646926879883 + ], + [ + "▁potatoes", + -11.79869556427002 + ], + [ + "▁mot", + -11.798871040344238 + ], + [ + "carries", + -11.799384117126465 + ], + [ + "▁stabilit", + -11.799458503723145 + ], + [ + "▁Door", + -11.799574851989746 + ], + [ + "▁downloaded", + -11.799574851989746 + ], + [ + "▁experimental", + -11.799724578857422 + ], + [ + "HD", + -11.7997407913208 + ], + [ + "▁parfois", + -11.79980182647705 + ], + [ + "▁zeigen", + -11.800092697143555 + ], + [ + "▁proposé", + -11.80030632019043 + ], + [ + "▁Verein", + -11.800636291503906 + ], + [ + "▁amestec", + -11.800676345825195 + ], + [ + "▁entreprise", + -11.800718307495117 + ], + [ + "▁PSD", + -11.800841331481934 + ], + [ + "▁bake", + -11.800897598266602 + ], + [ + "▁Rh", + -11.800904273986816 + ], + [ + "▁Mehr", + -11.800922393798828 + ], + [ + "▁purple", + -11.801074028015137 + ], + [ + "▁recipient", + -11.80109691619873 + ], + [ + "rare", + -11.801166534423828 + ], + [ + "egi", + -11.80117130279541 + ], + [ + "ancien", + -11.801176071166992 + ], + [ + "▁risque", + -11.80118465423584 + ], + [ + "▁mystery", + -11.80157470703125 + ], + [ + "mac", + -11.801697731018066 + ], + [ + "ibility", + -11.80182933807373 + ], + [ + "▁Moore", + -11.801881790161133 + ], + [ + "▁flavors", + -11.801911354064941 + ], + [ + "▁trauma", + -11.801966667175293 + ], + [ + "▁automotive", + -11.802112579345703 + ], + [ + "▁Anyway", + -11.802197456359863 + ], + [ + "▁simulation", + -11.802253723144531 + ], + [ + "▁crafts", + -11.802525520324707 + ], + [ + "▁measurements", + -11.80257511138916 + ], + [ + "▁cour", + -11.80257797241211 + ], + [ + "▁tard", + -11.802600860595703 + ], + [ + "nnie", + -11.802881240844727 + ], + [ + "▁Production", + -11.803388595581055 + ], + [ + "▁Cleaning", + -11.803567886352539 + ], + [ + "5,", + -11.803644180297852 + ], + [ + "▁Islamic", + -11.803766250610352 + ], + [ + "▁Gate", + -11.80378532409668 + ], + [ + "bay", + -11.803814888000488 + ], + [ + "HR", + -11.803990364074707 + ], + [ + "▁Offer", + -11.80399227142334 + ], + [ + "▁acceptance", + -11.804107666015625 + ], + [ + "▁Erfahrung", + -11.80412769317627 + ], + [ + "▁environ", + -11.804193496704102 + ], + [ + "▁fancy", + -11.804218292236328 + ], + [ + "▁bullet", + -11.80437183380127 + ], + [ + "organ", + -11.804466247558594 + ], + [ + "▁Peace", + -11.804520606994629 + ], + [ + "▁detalii", + -11.80461597442627 + ], + [ + "▁promised", + -11.804715156555176 + ], + [ + "▁wellness", + -11.804746627807617 + ], + [ + "▁satisfy", + -11.80481243133545 + ], + [ + "▁grants", + -11.805212020874023 + ], + [ + "accueil", + -11.80522346496582 + ], + [ + "▁oben", + -11.805412292480469 + ], + [ + "▁prospects", + -11.80543327331543 + ], + [ + "▁Events", + -11.805513381958008 + ], + [ + "2013", + -11.805569648742676 + ], + [ + "gesehen", + -11.805685997009277 + ], + [ + "▁£1", + -11.805727005004883 + ], + [ + "▁handelt", + -11.805798530578613 + ], + [ + "▁Spieler", + -11.805876731872559 + ], + [ + "▁Virtual", + -11.806145668029785 + ], + [ + "▁bubble", + -11.806239128112793 + ], + [ + "▁Trend", + -11.806254386901855 + ], + [ + "▁sistemul", + -11.806315422058105 + ], + [ + "▁Morgan", + -11.806320190429688 + ], + [ + "▁pole", + -11.806503295898438 + ], + [ + "▁spielen", + -11.806533813476562 + ], + [ + "tür", + -11.806571006774902 + ], + [ + "SCO", + -11.806572914123535 + ], + [ + "▁informative", + -11.806678771972656 + ], + [ + "▁affirm", + -11.806755065917969 + ], + [ + "▁Aqua", + -11.806818008422852 + ], + [ + "▁AR", + -11.806888580322266 + ], + [ + "richten", + -11.807071685791016 + ], + [ + "▁rewards", + -11.807122230529785 + ], + [ + "lub", + -11.807235717773438 + ], + [ + "shot", + -11.807236671447754 + ], + [ + "LM", + -11.807540893554688 + ], + [ + "Up", + -11.807586669921875 + ], + [ + "▁absolut", + -11.807737350463867 + ], + [ + "▁Mart", + -11.807806968688965 + ], + [ + "erweise", + -11.807812690734863 + ], + [ + "BP", + -11.807977676391602 + ], + [ + "▁difficile", + -11.808152198791504 + ], + [ + "▁Document", + -11.808159828186035 + ], + [ + "▁Sweet", + -11.8082914352417 + ], + [ + "▁indicator", + -11.808338165283203 + ], + [ + "▁Boden", + -11.808389663696289 + ], + [ + "mates", + -11.808477401733398 + ], + [ + "▁supporters", + -11.808504104614258 + ], + [ + "▁begun", + -11.808600425720215 + ], + [ + "▁blogging", + -11.808611869812012 + ], + [ + "▁CL", + -11.808663368225098 + ], + [ + "gres", + -11.808692932128906 + ], + [ + "▁preferences", + -11.808738708496094 + ], + [ + "▁screw", + -11.808756828308105 + ], + [ + "▁tutor", + -11.808858871459961 + ], + [ + "▁Additional", + -11.80891227722168 + ], + [ + "▁Bitte", + -11.808976173400879 + ], + [ + "utilizing", + -11.808998107910156 + ], + [ + "▁expérience", + -11.809073448181152 + ], + [ + "▁dur", + -11.809146881103516 + ], + [ + "▁precisely", + -11.809178352355957 + ], + [ + "▁janvier", + -11.809394836425781 + ], + [ + "AGE", + -11.80987548828125 + ], + [ + "moto", + -11.810007095336914 + ], + [ + "▁counsel", + -11.810195922851562 + ], + [ + "▁110", + -11.810226440429688 + ], + [ + "nick", + -11.810245513916016 + ], + [ + "licit", + -11.810540199279785 + ], + [ + "technik", + -11.810659408569336 + ], + [ + "▁collaborate", + -11.810736656188965 + ], + [ + "▁neighbors", + -11.810794830322266 + ], + [ + "tered", + -11.810922622680664 + ], + [ + "▁excel", + -11.811025619506836 + ], + [ + "▁Route", + -11.811059951782227 + ], + [ + "steuer", + -11.81109619140625 + ], + [ + "▁pioneer", + -11.811607360839844 + ], + [ + "nuit", + -11.81169319152832 + ], + [ + "▁skip", + -11.811963081359863 + ], + [ + "▁destruction", + -11.811997413635254 + ], + [ + "▁thesis", + -11.812249183654785 + ], + [ + "▁libre", + -11.812317848205566 + ], + [ + "▁petition", + -11.81234073638916 + ], + [ + "▁steady", + -11.812456130981445 + ], + [ + "▁medications", + -11.812458992004395 + ], + [ + "▁audiences", + -11.812623023986816 + ], + [ + "▁coaches", + -11.812689781188965 + ], + [ + "aller", + -11.812704086303711 + ], + [ + "3,000", + -11.812705993652344 + ], + [ + "▁anger", + -11.812785148620605 + ], + [ + "▁striking", + -11.812844276428223 + ], + [ + "▁shades", + -11.81291675567627 + ], + [ + "▁Sitz", + -11.812994956970215 + ], + [ + "▁gluten", + -11.813162803649902 + ], + [ + "▁egal", + -11.813222885131836 + ], + [ + "ania", + -11.813223838806152 + ], + [ + "▁defend", + -11.813241004943848 + ], + [ + "gut", + -11.81382942199707 + ], + [ + "▁reserves", + -11.813895225524902 + ], + [ + "▁advocate", + -11.814053535461426 + ], + [ + "▁Cit", + -11.814082145690918 + ], + [ + "▁technicians", + -11.814105033874512 + ], + [ + "▁cater", + -11.814138412475586 + ], + [ + "leitung", + -11.814190864562988 + ], + [ + "▁towns", + -11.814335823059082 + ], + [ + "▁Costa", + -11.814364433288574 + ], + [ + "▁confront", + -11.814567565917969 + ], + [ + "mount", + -11.814652442932129 + ], + [ + "▁nationale", + -11.814706802368164 + ], + [ + "▁adverse", + -11.814932823181152 + ], + [ + "▁couleur", + -11.815112113952637 + ], + [ + "▁delight", + -11.815169334411621 + ], + [ + "▁promises", + -11.815224647521973 + ], + [ + "▁silent", + -11.81550121307373 + ], + [ + "richtet", + -11.815556526184082 + ], + [ + "▁Companies", + -11.815614700317383 + ], + [ + "▁Charlotte", + -11.815620422363281 + ], + [ + "▁labels", + -11.815652847290039 + ], + [ + "▁Süd", + -11.815656661987305 + ], + [ + "▁Honor", + -11.81567096710205 + ], + [ + "▁complaints", + -11.815710067749023 + ], + [ + "▁siècle", + -11.815752029418945 + ], + [ + "▁suits", + -11.815792083740234 + ], + [ + "▁Bath", + -11.815827369689941 + ], + [ + "mise", + -11.815926551818848 + ], + [ + "▁acela", + -11.8159818649292 + ], + [ + "▁candidat", + -11.816011428833008 + ], + [ + "Flo", + -11.816207885742188 + ], + [ + "▁conservative", + -11.816215515136719 + ], + [ + "DD", + -11.816314697265625 + ], + [ + "▁changement", + -11.816414833068848 + ], + [ + "▁login", + -11.816492080688477 + ], + [ + "▁Fashion", + -11.816585540771484 + ], + [ + "reichen", + -11.816672325134277 + ], + [ + "through", + -11.816751480102539 + ], + [ + "aki", + -11.817240715026855 + ], + [ + "gna", + -11.817547798156738 + ], + [ + "▁verse", + -11.817551612854004 + ], + [ + "▁threats", + -11.817622184753418 + ], + [ + "▁Song", + -11.817770004272461 + ], + [ + "▁funded", + -11.81792163848877 + ], + [ + "langen", + -11.818023681640625 + ], + [ + "▁distribu", + -11.818195343017578 + ], + [ + "édition", + -11.818316459655762 + ], + [ + "▁royal", + -11.818562507629395 + ], + [ + "▁bevor", + -11.818829536437988 + ], + [ + "▁02", + -11.818854331970215 + ], + [ + "straße", + -11.818938255310059 + ], + [ + "edit", + -11.81904125213623 + ], + [ + "▁energetic", + -11.81922721862793 + ], + [ + "▁Carr", + -11.819757461547852 + ], + [ + "viol", + -11.819937705993652 + ], + [ + "▁niche", + -11.820054054260254 + ], + [ + "avais", + -11.820099830627441 + ], + [ + "▁backyard", + -11.82010269165039 + ], + [ + "▁Saudi", + -11.820158958435059 + ], + [ + "▁Zwei", + -11.820207595825195 + ], + [ + "▁Legal", + -11.82027530670166 + ], + [ + "accessed", + -11.820277214050293 + ], + [ + "▁choisi", + -11.820340156555176 + ], + [ + "▁GDP", + -11.820343971252441 + ], + [ + "oferă", + -11.820352554321289 + ], + [ + "hlen", + -11.820490837097168 + ], + [ + "▁Wor", + -11.820520401000977 + ], + [ + "▁cheer", + -11.820586204528809 + ], + [ + "▁barely", + -11.820625305175781 + ], + [ + "cost", + -11.820646286010742 + ], + [ + "▁Really", + -11.820661544799805 + ], + [ + "kol", + -11.820721626281738 + ], + [ + "▁binding", + -11.821045875549316 + ], + [ + "euer", + -11.821136474609375 + ], + [ + "▁optimization", + -11.821158409118652 + ], + [ + "▁Designer", + -11.8211669921875 + ], + [ + "▁measuring", + -11.82117748260498 + ], + [ + "ncy", + -11.821516036987305 + ], + [ + "weise", + -11.821520805358887 + ], + [ + "DER", + -11.821850776672363 + ], + [ + "▁$7", + -11.821949005126953 + ], + [ + "▁Anfang", + -11.821954727172852 + ], + [ + "material", + -11.821967124938965 + ], + [ + "▁antique", + -11.822281837463379 + ], + [ + "▁Certificate", + -11.822294235229492 + ], + [ + "▁modest", + -11.822370529174805 + ], + [ + "ției", + -11.822427749633789 + ], + [ + "▁praise", + -11.82245922088623 + ], + [ + "▁Springs", + -11.822660446166992 + ], + [ + "▁organiza", + -11.823041915893555 + ], + [ + "jurul", + -11.823047637939453 + ], + [ + "▁plumbing", + -11.82341194152832 + ], + [ + "▁foster", + -11.823490142822266 + ], + [ + "▁Wy", + -11.823491096496582 + ], + [ + "▁Sab", + -11.823503494262695 + ], + [ + "▁overwhelming", + -11.823677062988281 + ], + [ + "▁matin", + -11.823812484741211 + ], + [ + "▁responded", + -11.82408332824707 + ], + [ + "▁confused", + -11.824150085449219 + ], + [ + "▁blessed", + -11.824280738830566 + ], + [ + "▁160", + -11.824295997619629 + ], + [ + "▁ingredient", + -11.824360847473145 + ], + [ + "▁confer", + -11.82448673248291 + ], + [ + "▁Gesundheit", + -11.824530601501465 + ], + [ + "▁bucket", + -11.824555397033691 + ], + [ + "kraft", + -11.824565887451172 + ], + [ + "lange", + -11.824630737304688 + ], + [ + "▁Kopf", + -11.824678421020508 + ], + [ + "▁Prize", + -11.824678421020508 + ], + [ + "▁authorized", + -11.824779510498047 + ], + [ + "▁tick", + -11.824803352355957 + ], + [ + "▁steal", + -11.824910163879395 + ], + [ + "Depending", + -11.824918746948242 + ], + [ + "Depuis", + -11.824952125549316 + ], + [ + "▁functie", + -11.82499885559082 + ], + [ + "▁developments", + -11.825053215026855 + ], + [ + "▁Christians", + -11.825311660766602 + ], + [ + "▁calculated", + -11.8256254196167 + ], + [ + "▁Leave", + -11.825672149658203 + ], + [ + "▁Jam", + -11.82573413848877 + ], + [ + "▁habitat", + -11.825760841369629 + ], + [ + "▁Sorry", + -11.825801849365234 + ], + [ + "▁oficial", + -11.825944900512695 + ], + [ + "▁allein", + -11.826079368591309 + ], + [ + "▁concentrate", + -11.82608413696289 + ], + [ + "dica", + -11.826302528381348 + ], + [ + "▁Convention", + -11.826476097106934 + ], + [ + "illes", + -11.826550483703613 + ], + [ + "▁fum", + -11.82664680480957 + ], + [ + "▁Tal", + -11.826651573181152 + ], + [ + "Europe", + -11.826899528503418 + ], + [ + "▁attachment", + -11.826949119567871 + ], + [ + "▁sensibil", + -11.826995849609375 + ], + [ + "▁clue", + -11.82715892791748 + ], + [ + "▁specialty", + -11.827203750610352 + ], + [ + "▁Cou", + -11.827229499816895 + ], + [ + "▁liste", + -11.827278137207031 + ], + [ + "▁Penn", + -11.827465057373047 + ], + [ + "TRA", + -11.827559471130371 + ], + [ + "▁Themen", + -11.827561378479004 + ], + [ + "▁motivated", + -11.827906608581543 + ], + [ + "▁camere", + -11.828017234802246 + ], + [ + "▁14,", + -11.828393936157227 + ], + [ + "▁attendance", + -11.828557968139648 + ], + [ + "atorii", + -11.828581809997559 + ], + [ + "chemistry", + -11.82873821258545 + ], + [ + "▁roofing", + -11.828959465026855 + ], + [ + "▁Links", + -11.829048156738281 + ], + [ + "▁trou", + -11.829103469848633 + ], + [ + "▁trucks", + -11.829136848449707 + ], + [ + "hilfe", + -11.829557418823242 + ], + [ + "▁(6", + -11.829599380493164 + ], + [ + "vapor", + -11.82964038848877 + ], + [ + "mad", + -11.829668045043945 + ], + [ + "▁Albert", + -11.829877853393555 + ], + [ + "▁FIG", + -11.830073356628418 + ], + [ + "▁Rand", + -11.830187797546387 + ], + [ + "▁Constitution", + -11.830219268798828 + ], + [ + "ambi", + -11.830294609069824 + ], + [ + "▁Syria", + -11.830307006835938 + ], + [ + "▁Fond", + -11.830477714538574 + ], + [ + "▁gouvernement", + -11.830594062805176 + ], + [ + "▁Active", + -11.830705642700195 + ], + [ + "▁prints", + -11.830801963806152 + ], + [ + "▁weigh", + -11.8308687210083 + ], + [ + "▁Craft", + -11.831069946289062 + ], + [ + "▁projets", + -11.831247329711914 + ], + [ + "▁paste", + -11.831377029418945 + ], + [ + "anci", + -11.83139705657959 + ], + [ + "kie", + -11.831411361694336 + ], + [ + "▁gains", + -11.83165168762207 + ], + [ + "▁Record", + -11.831942558288574 + ], + [ + "▁beliefs", + -11.831954956054688 + ], + [ + "countless", + -11.831957817077637 + ], + [ + "▁tomatoes", + -11.831997871398926 + ], + [ + "arie", + -11.832082748413086 + ], + [ + "▁140", + -11.83211612701416 + ], + [ + "▁ethical", + -11.832229614257812 + ], + [ + "objectif", + -11.832279205322266 + ], + [ + "▁acestuia", + -11.832283973693848 + ], + [ + "▁Bluetooth", + -11.832398414611816 + ], + [ + "▁agriculture", + -11.832746505737305 + ], + [ + "uré", + -11.833027839660645 + ], + [ + "▁cale", + -11.833072662353516 + ], + [ + "▁articol", + -11.833073616027832 + ], + [ + "▁gum", + -11.833319664001465 + ], + [ + "▁vendor", + -11.833490371704102 + ], + [ + "ifié", + -11.833527565002441 + ], + [ + "▁peer", + -11.833662033081055 + ], + [ + "pod", + -11.834036827087402 + ], + [ + "▁utilized", + -11.834113121032715 + ], + [ + "▁Mü", + -11.834207534790039 + ], + [ + "owohl", + -11.834208488464355 + ], + [ + "hilst", + -11.834233283996582 + ], + [ + "frame", + -11.834260940551758 + ], + [ + "▁fridge", + -11.834822654724121 + ], + [ + "▁query", + -11.835108757019043 + ], + [ + "▁Survey", + -11.835227012634277 + ], + [ + "▁Hell", + -11.835247993469238 + ], + [ + "▁notification", + -11.83530044555664 + ], + [ + "TR", + -11.83538818359375 + ], + [ + "▁ultima", + -11.835505485534668 + ], + [ + "▁radiation", + -11.835631370544434 + ], + [ + "▁musicians", + -11.835821151733398 + ], + [ + "CAN", + -11.83595085144043 + ], + [ + "▁grocery", + -11.83607292175293 + ], + [ + "▁Sicherheit", + -11.83611011505127 + ], + [ + "▁Highway", + -11.836276054382324 + ], + [ + "▁Break", + -11.836285591125488 + ], + [ + "TED", + -11.836345672607422 + ], + [ + "ön", + -11.836352348327637 + ], + [ + "▁biological", + -11.836352348327637 + ], + [ + "qual", + -11.836397171020508 + ], + [ + "250", + -11.83641242980957 + ], + [ + "▁modify", + -11.836651802062988 + ], + [ + "▁Hit", + -11.836698532104492 + ], + [ + "▁Iar", + -11.836838722229004 + ], + [ + "aged", + -11.836884498596191 + ], + [ + "...)", + -11.83688735961914 + ], + [ + "▁contrat", + -11.836928367614746 + ], + [ + "▁centres", + -11.836956977844238 + ], + [ + "griff", + -11.836987495422363 + ], + [ + "Our", + -11.837233543395996 + ], + [ + "▁determination", + -11.837300300598145 + ], + [ + "▁variables", + -11.83742904663086 + ], + [ + "▁nuts", + -11.837472915649414 + ], + [ + "échange", + -11.837577819824219 + ], + [ + "extérieur", + -11.837631225585938 + ], + [ + "▁suflet", + -11.83764362335205 + ], + [ + "▁Scha", + -11.837752342224121 + ], + [ + "stück", + -11.837774276733398 + ], + [ + "▁Tau", + -11.837821960449219 + ], + [ + "▁participa", + -11.838008880615234 + ], + [ + "▁mad", + -11.838034629821777 + ], + [ + "▁relie", + -11.838051795959473 + ], + [ + "▁Fine", + -11.83808422088623 + ], + [ + "▁grape", + -11.838118553161621 + ], + [ + "▁wage", + -11.838141441345215 + ], + [ + "▁startup", + -11.838193893432617 + ], + [ + "▁blank", + -11.838194847106934 + ], + [ + "▁physique", + -11.838199615478516 + ], + [ + "▁punch", + -11.838233947753906 + ], + [ + "▁contacts", + -11.838321685791016 + ], + [ + "▁dezvolt", + -11.83835220336914 + ], + [ + "cross", + -11.838639259338379 + ], + [ + "▁TR", + -11.838652610778809 + ], + [ + "▁gener", + -11.838754653930664 + ], + [ + "▁indem", + -11.838823318481445 + ], + [ + "▁Stan", + -11.838839530944824 + ], + [ + "▁azi", + -11.838930130004883 + ], + [ + "▁Sel", + -11.838958740234375 + ], + [ + "▁Tot", + -11.83924674987793 + ], + [ + "vra", + -11.839341163635254 + ], + [ + "▁recruit", + -11.839482307434082 + ], + [ + "▁Yeah", + -11.839494705200195 + ], + [ + "/10", + -11.839507102966309 + ], + [ + "▁nail", + -11.83956241607666 + ], + [ + "▁Ky", + -11.839611053466797 + ], + [ + "▁beloved", + -11.839760780334473 + ], + [ + "operative", + -11.839823722839355 + ], + [ + "▁Tickets", + -11.83983325958252 + ], + [ + "▁tear", + -11.840229988098145 + ], + [ + "▁amp", + -11.840352058410645 + ], + [ + "▁04", + -11.840361595153809 + ], + [ + "▁illustrate", + -11.840361595153809 + ], + [ + "▁mac", + -11.840400695800781 + ], + [ + "▁receiver", + -11.840482711791992 + ], + [ + "atrice", + -11.840508460998535 + ], + [ + "▁souhait", + -11.840572357177734 + ], + [ + "▁Gewinn", + -11.840619087219238 + ], + [ + "▁Vit", + -11.840808868408203 + ], + [ + "roch", + -11.841202735900879 + ], + [ + "▁arata", + -11.841262817382812 + ], + [ + "▁Indiana", + -11.841364860534668 + ], + [ + "child", + -11.841516494750977 + ], + [ + "▁invested", + -11.84157657623291 + ], + [ + "▁Excellent", + -11.841625213623047 + ], + [ + "gori", + -11.841769218444824 + ], + [ + "▁thermal", + -11.841813087463379 + ], + [ + "Str", + -11.841973304748535 + ], + [ + "▁liver", + -11.84201717376709 + ], + [ + "miss", + -11.842035293579102 + ], + [ + "▁utiliser", + -11.842120170593262 + ], + [ + "▁prest", + -11.842445373535156 + ], + [ + "2016", + -11.842506408691406 + ], + [ + "isée", + -11.842508316040039 + ], + [ + "▁Index", + -11.842559814453125 + ], + [ + "▁arch", + -11.842639923095703 + ], + [ + "▁Toyota", + -11.842748641967773 + ], + [ + "▁YOUR", + -11.842782020568848 + ], + [ + "▁Mexican", + -11.842891693115234 + ], + [ + "▁gegenüber", + -11.842940330505371 + ], + [ + "▁cannabis", + -11.843033790588379 + ], + [ + "bis", + -11.843077659606934 + ], + [ + "vage", + -11.843083381652832 + ], + [ + "hall", + -11.843091011047363 + ], + [ + "fax", + -11.843137741088867 + ], + [ + "▁spoken", + -11.843232154846191 + ], + [ + "▁Zimmer", + -11.843544960021973 + ], + [ + "kauf", + -11.8436279296875 + ], + [ + "▁couleurs", + -11.843705177307129 + ], + [ + "▁NJ", + -11.844026565551758 + ], + [ + "▁Heritage", + -11.844318389892578 + ], + [ + "▁Pflege", + -11.844321250915527 + ], + [ + "luc", + -11.844361305236816 + ], + [ + "▁56", + -11.844489097595215 + ], + [ + "VP", + -11.844542503356934 + ], + [ + "▁cuvinte", + -11.844594955444336 + ], + [ + "▁Alliance", + -11.844614028930664 + ], + [ + "▁coco", + -11.844615936279297 + ], + [ + "▁leverage", + -11.844762802124023 + ], + [ + "auch", + -11.844844818115234 + ], + [ + "▁Cart", + -11.84506607055664 + ], + [ + "taux", + -11.84532642364502 + ], + [ + "east", + -11.84560775756836 + ], + [ + "▁decorating", + -11.84565258026123 + ], + [ + "tip", + -11.84565544128418 + ], + [ + "▁Communications", + -11.845780372619629 + ], + [ + "ACE", + -11.84580135345459 + ], + [ + "▁Consul", + -11.845993041992188 + ], + [ + "▁Swiss", + -11.846197128295898 + ], + [ + "inci", + -11.846230506896973 + ], + [ + "▁Fact", + -11.846312522888184 + ], + [ + "▁ajung", + -11.846321105957031 + ], + [ + "▁airline", + -11.846325874328613 + ], + [ + "▁kidney", + -11.846379280090332 + ], + [ + "▁Records", + -11.84642505645752 + ], + [ + "▁Olympic", + -11.846747398376465 + ], + [ + "▁dried", + -11.84719467163086 + ], + [ + "oivent", + -11.847333908081055 + ], + [ + "▁Adobe", + -11.847467422485352 + ], + [ + "▁powers", + -11.847748756408691 + ], + [ + "lande", + -11.847834587097168 + ], + [ + "▁relieve", + -11.847858428955078 + ], + [ + "ţine", + -11.847898483276367 + ], + [ + "▁gradually", + -11.847945213317871 + ], + [ + "mud", + -11.84811019897461 + ], + [ + "▁30,", + -11.848116874694824 + ], + [ + "▁plante", + -11.848133087158203 + ], + [ + "▁Hug", + -11.848225593566895 + ], + [ + "▁Focus", + -11.84853458404541 + ], + [ + "▁distinctive", + -11.848594665527344 + ], + [ + "▁Bab", + -11.848662376403809 + ], + [ + "tata", + -11.848679542541504 + ], + [ + "▁Nun", + -11.848797798156738 + ], + [ + "▁Eve", + -11.848811149597168 + ], + [ + "▁déc", + -11.848881721496582 + ], + [ + "▁Beitrag", + -11.84900951385498 + ], + [ + "▁devenit", + -11.849042892456055 + ], + [ + "driven", + -11.849250793457031 + ], + [ + "▁offerings", + -11.84933853149414 + ], + [ + "▁exc", + -11.84941577911377 + ], + [ + "encies", + -11.849576950073242 + ], + [ + "▁Neuro", + -11.849588394165039 + ], + [ + "scher", + -11.849604606628418 + ], + [ + "map", + -11.849703788757324 + ], + [ + "pending", + -11.849783897399902 + ], + [ + "▁courage", + -11.849799156188965 + ], + [ + "axe", + -11.849894523620605 + ], + [ + "▁Gesellschaft", + -11.849900245666504 + ], + [ + "▁ears", + -11.85000991821289 + ], + [ + "▁aider", + -11.850403785705566 + ], + [ + "▁Cast", + -11.85042667388916 + ], + [ + "fast", + -11.850442886352539 + ], + [ + "▁departe", + -11.850502014160156 + ], + [ + "▁oak", + -11.850507736206055 + ], + [ + "▁batch", + -11.850730895996094 + ], + [ + "▁Corporate", + -11.850762367248535 + ], + [ + "▁Ost", + -11.850895881652832 + ], + [ + "-14", + -11.850897789001465 + ], + [ + "▁Pie", + -11.85115909576416 + ], + [ + "▁ranking", + -11.851273536682129 + ], + [ + "clusion", + -11.851316452026367 + ], + [ + "▁costume", + -11.851347923278809 + ], + [ + "▁Knight", + -11.851449966430664 + ], + [ + "▁privat", + -11.851577758789062 + ], + [ + "▁Engineer", + -11.851593971252441 + ], + [ + "▁gens", + -11.8517427444458 + ], + [ + "physics", + -11.85176944732666 + ], + [ + "generating", + -11.851773262023926 + ], + [ + "directement", + -11.851786613464355 + ], + [ + "▁confidential", + -11.851810455322266 + ], + [ + "▁poet", + -11.851937294006348 + ], + [ + "▁monster", + -11.851944923400879 + ], + [ + "▁suppose", + -11.851984977722168 + ], + [ + "său", + -11.851996421813965 + ], + [ + "▁balls", + -11.852103233337402 + ], + [ + "▁substitute", + -11.852137565612793 + ], + [ + "▁simultaneously", + -11.852238655090332 + ], + [ + "▁specify", + -11.852272033691406 + ], + [ + "wald", + -11.852287292480469 + ], + [ + "▁collapse", + -11.852352142333984 + ], + [ + "dessus", + -11.852458953857422 + ], + [ + "▁vitr", + -11.852516174316406 + ], + [ + "▁recruitment", + -11.852607727050781 + ], + [ + "denken", + -11.852632522583008 + ], + [ + "▁candy", + -11.852691650390625 + ], + [ + "▁tourists", + -11.852721214294434 + ], + [ + "dimensional", + -11.852782249450684 + ], + [ + "conce", + -11.852814674377441 + ], + [ + "wechsel", + -11.852822303771973 + ], + [ + "▁passende", + -11.852971076965332 + ], + [ + "industrie", + -11.85299301147461 + ], + [ + "agne", + -11.853127479553223 + ], + [ + "▁warehouse", + -11.853233337402344 + ], + [ + "▁Jugend", + -11.853277206420898 + ], + [ + "▁Weise", + -11.853357315063477 + ], + [ + "▁Zone", + -11.853528022766113 + ], + [ + "▁licence", + -11.853550910949707 + ], + [ + "▁broker", + -11.853630065917969 + ], + [ + "▁Rolle", + -11.85365104675293 + ], + [ + "pton", + -11.853789329528809 + ], + [ + "▁preference", + -11.853846549987793 + ], + [ + "▁homeowners", + -11.853861808776855 + ], + [ + "▁Lum", + -11.85387134552002 + ], + [ + "▁Chairman", + -11.853879928588867 + ], + [ + "▁Pages", + -11.853998184204102 + ], + [ + "▁beam", + -11.854005813598633 + ], + [ + "▁coordinate", + -11.854158401489258 + ], + [ + "▁Tool", + -11.854212760925293 + ], + [ + "▁complexity", + -11.854272842407227 + ], + [ + "▁checks", + -11.854339599609375 + ], + [ + "▁Bedroom", + -11.854405403137207 + ], + [ + "minded", + -11.854538917541504 + ], + [ + "▁copiii", + -11.854694366455078 + ], + [ + "▁celebrating", + -11.85470199584961 + ], + [ + "zimmer", + -11.854759216308594 + ], + [ + "▁Imagine", + -11.854759216308594 + ], + [ + "▁decoration", + -11.854830741882324 + ], + [ + "team", + -11.855354309082031 + ], + [ + "▁împreună", + -11.855369567871094 + ], + [ + "▁publicly", + -11.855391502380371 + ], + [ + "▁centuries", + -11.855514526367188 + ], + [ + "▁Islands", + -11.855644226074219 + ], + [ + "▁ethnic", + -11.855663299560547 + ], + [ + "still", + -11.85576057434082 + ], + [ + "stieg", + -11.855823516845703 + ], + [ + "emia", + -11.855904579162598 + ], + [ + "tags", + -11.856026649475098 + ], + [ + "▁marche", + -11.856062889099121 + ], + [ + "▁migration", + -11.856096267700195 + ], + [ + "▁banner", + -11.85616683959961 + ], + [ + "▁macro", + -11.856378555297852 + ], + [ + "▁Edit", + -11.856379508972168 + ], + [ + "tran", + -11.85656452178955 + ], + [ + "ça", + -11.856597900390625 + ], + [ + "▁recycling", + -11.856670379638672 + ], + [ + "▁1,000", + -11.856673240661621 + ], + [ + "▁Quelle", + -11.856891632080078 + ], + [ + "▁Vel", + -11.85700511932373 + ], + [ + "▁Rit", + -11.857025146484375 + ], + [ + "▁Spaß", + -11.857046127319336 + ], + [ + "▁Corn", + -11.857074737548828 + ], + [ + "tracted", + -11.857177734375 + ], + [ + "cited", + -11.857185363769531 + ], + [ + "▁tablets", + -11.857202529907227 + ], + [ + "▁Display", + -11.857337951660156 + ], + [ + "▁persoana", + -11.857392311096191 + ], + [ + "Term", + -11.857410430908203 + ], + [ + "▁Vancouver", + -11.857537269592285 + ], + [ + "▁Gäste", + -11.857550621032715 + ], + [ + "determining", + -11.857608795166016 + ], + [ + "▁populations", + -11.85778522491455 + ], + [ + "aison", + -11.857873916625977 + ], + [ + "▁surgical", + -11.858072280883789 + ], + [ + "tale", + -11.858160018920898 + ], + [ + "ivi", + -11.858283042907715 + ], + [ + "▁Zur", + -11.858388900756836 + ], + [ + "esprit", + -11.858574867248535 + ], + [ + "▁Edge", + -11.858665466308594 + ], + [ + "dach", + -11.858760833740234 + ], + [ + "phi", + -11.858773231506348 + ], + [ + "▁suc", + -11.858841896057129 + ], + [ + "▁scrie", + -11.858848571777344 + ], + [ + "▁Ausbildung", + -11.858885765075684 + ], + [ + "▁51", + -11.85892391204834 + ], + [ + "ologi", + -11.858938217163086 + ], + [ + "▁correction", + -11.859049797058105 + ], + [ + "▁Wald", + -11.859078407287598 + ], + [ + "▁additionally", + -11.859131813049316 + ], + [ + "▁proche", + -11.859353065490723 + ], + [ + "▁classical", + -11.859477996826172 + ], + [ + "▁bringen", + -11.859490394592285 + ], + [ + "▁(10", + -11.859611511230469 + ], + [ + "▁Mile", + -11.859809875488281 + ], + [ + "lace", + -11.859885215759277 + ], + [ + "▁premi", + -11.85988712310791 + ], + [ + "▁constitute", + -11.860029220581055 + ], + [ + "▁bitter", + -11.860078811645508 + ], + [ + "▁Inform", + -11.860295295715332 + ], + [ + "▁corporations", + -11.860334396362305 + ], + [ + "▁Lisa", + -11.860494613647461 + ], + [ + "▁obligat", + -11.860685348510742 + ], + [ + "Throughout", + -11.860738754272461 + ], + [ + "▁Rs", + -11.860769271850586 + ], + [ + "▁Hair", + -11.860916137695312 + ], + [ + "▁supplements", + -11.86099624633789 + ], + [ + "▁motorcycle", + -11.861054420471191 + ], + [ + "escent", + -11.861132621765137 + ], + [ + "▁investi", + -11.861222267150879 + ], + [ + "▁continuously", + -11.861265182495117 + ], + [ + "▁Essen", + -11.861334800720215 + ], + [ + "▁precision", + -11.8613862991333 + ], + [ + "▁deficit", + -11.861461639404297 + ], + [ + "▁wallet", + -11.861481666564941 + ], + [ + "▁Bürger", + -11.861531257629395 + ], + [ + "chir", + -11.861574172973633 + ], + [ + "9)", + -11.86161994934082 + ], + [ + "▁Programme", + -11.861716270446777 + ], + [ + "▁simplement", + -11.86193561553955 + ], + [ + "MD", + -11.862093925476074 + ], + [ + "▁rouge", + -11.862096786499023 + ], + [ + "usion", + -11.862133979797363 + ], + [ + "▁stove", + -11.862208366394043 + ], + [ + "▁prospective", + -11.862224578857422 + ], + [ + "▁corp", + -11.86234188079834 + ], + [ + "▁impacts", + -11.862401008605957 + ], + [ + "▁bride", + -11.86266803741455 + ], + [ + "0.0", + -11.862788200378418 + ], + [ + "hid", + -11.862833976745605 + ], + [ + "▁warrant", + -11.862930297851562 + ], + [ + "▁Ice", + -11.8631010055542 + ], + [ + "▁sensible", + -11.863151550292969 + ], + [ + "▁vreo", + -11.863166809082031 + ], + [ + "spekt", + -11.863249778747559 + ], + [ + "▁appreciation", + -11.8633394241333 + ], + [ + "▁automation", + -11.863377571105957 + ], + [ + "Luc", + -11.86341381072998 + ], + [ + "teaches", + -11.863471031188965 + ], + [ + "▁fold", + -11.863506317138672 + ], + [ + "deutsche", + -11.863523483276367 + ], + [ + "▁assisted", + -11.86380386352539 + ], + [ + "▁straightforward", + -11.863932609558105 + ], + [ + "▁mechanic", + -11.864068031311035 + ], + [ + "observ", + -11.864169120788574 + ], + [ + "▁Schau", + -11.864195823669434 + ], + [ + "▁Recently", + -11.864301681518555 + ], + [ + "kers", + -11.86435604095459 + ], + [ + "▁Soft", + -11.864455223083496 + ], + [ + "muni", + -11.864537239074707 + ], + [ + "▁lie", + -11.864617347717285 + ], + [ + "▁Fat", + -11.864728927612305 + ], + [ + "cream", + -11.86476993560791 + ], + [ + "▁snack", + -11.864909172058105 + ], + [ + "▁juin", + -11.865068435668945 + ], + [ + "▁competent", + -11.865134239196777 + ], + [ + "▁Drug", + -11.865141868591309 + ], + [ + "▁Row", + -11.865302085876465 + ], + [ + "▁needle", + -11.865852355957031 + ], + [ + "▁convey", + -11.865900039672852 + ], + [ + "▁voie", + -11.86600399017334 + ], + [ + "▁Hon", + -11.866190910339355 + ], + [ + "▁ebook", + -11.866194725036621 + ], + [ + "▁veteran", + -11.866209030151367 + ], + [ + "▁statistical", + -11.866217613220215 + ], + [ + "190", + -11.866312980651855 + ], + [ + "▁munca", + -11.866402626037598 + ], + [ + "▁venues", + -11.866438865661621 + ], + [ + "▁Viel", + -11.866604804992676 + ], + [ + "▁décor", + -11.866799354553223 + ], + [ + "▁répond", + -11.8670015335083 + ], + [ + "▁produsele", + -11.86700439453125 + ], + [ + "ruc", + -11.867009162902832 + ], + [ + "▁drops", + -11.867011070251465 + ], + [ + "▁autant", + -11.867311477661133 + ], + [ + "▁Fahrzeug", + -11.867313385009766 + ], + [ + "▁hills", + -11.86735725402832 + ], + [ + "ference", + -11.867414474487305 + ], + [ + "▁Glück", + -11.86742115020752 + ], + [ + "▁Pac", + -11.867480278015137 + ], + [ + "▁permettr", + -11.867568969726562 + ], + [ + "▁mouvement", + -11.867713928222656 + ], + [ + "établissement", + -11.867859840393066 + ], + [ + "▁Parc", + -11.867874145507812 + ], + [ + "▁solving", + -11.867900848388672 + ], + [ + "▁jail", + -11.867972373962402 + ], + [ + "▁junk", + -11.867980003356934 + ], + [ + "▁jeux", + -11.868091583251953 + ], + [ + "▁rôle", + -11.868107795715332 + ], + [ + "▁cache", + -11.868124961853027 + ], + [ + "▁Answer", + -11.86832046508789 + ], + [ + "wir", + -11.868706703186035 + ], + [ + "option", + -11.868732452392578 + ], + [ + "▁Tiger", + -11.868739128112793 + ], + [ + "▁Ble", + -11.868793487548828 + ], + [ + "Mitglied", + -11.868797302246094 + ], + [ + "▁partial", + -11.868819236755371 + ], + [ + "▁Mercedes", + -11.86888313293457 + ], + [ + "tire", + -11.869001388549805 + ], + [ + "MENT", + -11.869091987609863 + ], + [ + "▁transit", + -11.869230270385742 + ], + [ + "▁cineva", + -11.869285583496094 + ], + [ + "▁Andrea", + -11.869294166564941 + ], + [ + "▁boundaries", + -11.869497299194336 + ], + [ + "script", + -11.870061874389648 + ], + [ + "▁Medi", + -11.870123863220215 + ], + [ + "schreiben", + -11.870203018188477 + ], + [ + "▁lobby", + -11.87035846710205 + ], + [ + "▁defendant", + -11.870406150817871 + ], + [ + "▁sq", + -11.870467185974121 + ], + [ + "▁forgotten", + -11.870569229125977 + ], + [ + "stimmung", + -11.870651245117188 + ], + [ + "hus", + -11.870665550231934 + ], + [ + "RY", + -11.870728492736816 + ], + [ + "▁Anderson", + -11.870748519897461 + ], + [ + "▁Dental", + -11.870828628540039 + ], + [ + "ject", + -11.87110710144043 + ], + [ + "▁Nutzer", + -11.871377944946289 + ], + [ + "▁Portland", + -11.871540069580078 + ], + [ + "scription", + -11.871636390686035 + ], + [ + "▁angel", + -11.871695518493652 + ], + [ + "▁monument", + -11.871748924255371 + ], + [ + "▁număr", + -11.871784210205078 + ], + [ + "▁Lane", + -11.871800422668457 + ], + [ + "▁Bai", + -11.871894836425781 + ], + [ + "But", + -11.871909141540527 + ], + [ + "▁calculate", + -11.872315406799316 + ], + [ + "▁provoca", + -11.87247371673584 + ], + [ + "▁votes", + -11.872493743896484 + ], + [ + "RNA", + -11.872503280639648 + ], + [ + "though", + -11.87259292602539 + ], + [ + "spor", + -11.872631072998047 + ], + [ + "▁connaissance", + -11.872695922851562 + ], + [ + "▁Anwendung", + -11.872932434082031 + ], + [ + "▁Kate", + -11.873123168945312 + ], + [ + "lob", + -11.87315845489502 + ], + [ + "▁Conf", + -11.873180389404297 + ], + [ + "bung", + -11.873212814331055 + ], + [ + "ander", + -11.873282432556152 + ], + [ + "▁functioning", + -11.873297691345215 + ], + [ + "▁sponsored", + -11.873324394226074 + ], + [ + "rav", + -11.873734474182129 + ], + [ + "▁resistant", + -11.873797416687012 + ], + [ + "tră", + -11.873916625976562 + ], + [ + "▁costly", + -11.873923301696777 + ], + [ + "▁Mars", + -11.873991012573242 + ], + [ + "▁tir", + -11.874075889587402 + ], + [ + "▁writes", + -11.874134063720703 + ], + [ + "▁Greg", + -11.874267578125 + ], + [ + "▁Question", + -11.874714851379395 + ], + [ + "▁corporation", + -11.87485408782959 + ], + [ + "▁lire", + -11.874991416931152 + ], + [ + "locked", + -11.875048637390137 + ], + [ + "8,", + -11.875092506408691 + ], + [ + "▁sagt", + -11.875301361083984 + ], + [ + "gaining", + -11.87536907196045 + ], + [ + "▁Pierre", + -11.875688552856445 + ], + [ + "verb", + -11.875725746154785 + ], + [ + "▁Barcelona", + -11.87578296661377 + ], + [ + "werte", + -11.876474380493164 + ], + [ + "▁disponible", + -11.87651538848877 + ], + [ + "▁urge", + -11.876521110534668 + ], + [ + "▁expecting", + -11.876572608947754 + ], + [ + "▁Girl", + -11.87662124633789 + ], + [ + "▁unlimited", + -11.876761436462402 + ], + [ + "watt", + -11.876788139343262 + ], + [ + "▁Möglichkeiten", + -11.876813888549805 + ], + [ + "▁schöne", + -11.876847267150879 + ], + [ + "rium", + -11.877076148986816 + ], + [ + "That", + -11.877272605895996 + ], + [ + "▁socio", + -11.877296447753906 + ], + [ + "▁Democrats", + -11.877351760864258 + ], + [ + "guten", + -11.877422332763672 + ], + [ + "▁Lou", + -11.877425193786621 + ], + [ + "ităţi", + -11.877559661865234 + ], + [ + "▁possibilité", + -11.877717018127441 + ], + [ + "▁adjustable", + -11.877938270568848 + ], + [ + "▁Salt", + -11.877967834472656 + ], + [ + "Thr", + -11.878021240234375 + ], + [ + "▁biseric", + -11.878056526184082 + ], + [ + "ieux", + -11.87808895111084 + ], + [ + "▁procur", + -11.8782377243042 + ], + [ + "▁credits", + -11.878250122070312 + ], + [ + "▁Netflix", + -11.878585815429688 + ], + [ + "doi", + -11.878605842590332 + ], + [ + "▁Jews", + -11.878663063049316 + ], + [ + "▁Ukraine", + -11.87873363494873 + ], + [ + "▁adevărat", + -11.878785133361816 + ], + [ + "▁Apply", + -11.878813743591309 + ], + [ + "▁coupons", + -11.878859519958496 + ], + [ + "▁Detroit", + -11.878881454467773 + ], + [ + "▁rue", + -11.878889083862305 + ], + [ + "anumite", + -11.878926277160645 + ], + [ + "ished", + -11.878973960876465 + ], + [ + "▁withdrawal", + -11.87915325164795 + ], + [ + "▁replacing", + -11.87917709350586 + ], + [ + "catching", + -11.879385948181152 + ], + [ + "▁climbing", + -11.879612922668457 + ], + [ + "▁Basic", + -11.879770278930664 + ], + [ + "▁inclus", + -11.879783630371094 + ], + [ + "scope", + -11.879887580871582 + ], + [ + "▁facem", + -11.879892349243164 + ], + [ + "▁plec", + -11.879904747009277 + ], + [ + "mäßig", + -11.879980087280273 + ], + [ + "▁tasty", + -11.880064010620117 + ], + [ + "▁tunnel", + -11.880074501037598 + ], + [ + "figured", + -11.88032341003418 + ], + [ + "gged", + -11.880390167236328 + ], + [ + "▁conditii", + -11.880599975585938 + ], + [ + "▁homework", + -11.880631446838379 + ], + [ + "volle", + -11.88063907623291 + ], + [ + "▁Gott", + -11.880807876586914 + ], + [ + "▁95", + -11.880969047546387 + ], + [ + "▁elect", + -11.881020545959473 + ], + [ + "▁blast", + -11.881043434143066 + ], + [ + "▁easiest", + -11.881248474121094 + ], + [ + "USE", + -11.881462097167969 + ], + [ + "concentr", + -11.881475448608398 + ], + [ + "orial", + -11.881596565246582 + ], + [ + "▁scroll", + -11.881638526916504 + ], + [ + "stead", + -11.881691932678223 + ], + [ + "▁hormone", + -11.881710052490234 + ], + [ + "▁starter", + -11.88179874420166 + ], + [ + "▁cald", + -11.881878852844238 + ], + [ + "▁wax", + -11.881895065307617 + ], + [ + "▁ridic", + -11.881900787353516 + ], + [ + "ously", + -11.881982803344727 + ], + [ + "maschine", + -11.882101058959961 + ], + [ + "licher", + -11.882399559020996 + ], + [ + "▁16,", + -11.882452964782715 + ], + [ + "▁hassle", + -11.882469177246094 + ], + [ + "semnat", + -11.882535934448242 + ], + [ + "▁pub", + -11.88260555267334 + ], + [ + "240", + -11.882800102233887 + ], + [ + "▁kits", + -11.882871627807617 + ], + [ + "▁Generation", + -11.88293743133545 + ], + [ + "▁merchant", + -11.883052825927734 + ], + [ + "▁Erd", + -11.883068084716797 + ], + [ + "▁café", + -11.883077621459961 + ], + [ + "hoff", + -11.88314151763916 + ], + [ + "▁WITH", + -11.883376121520996 + ], + [ + "▁gesch", + -11.883515357971191 + ], + [ + "▁Editor", + -11.883557319641113 + ], + [ + "▁treats", + -11.883609771728516 + ], + [ + "▁harsh", + -11.883711814880371 + ], + [ + "rome", + -11.883729934692383 + ], + [ + "▁Foreign", + -11.883928298950195 + ], + [ + "▁denied", + -11.883968353271484 + ], + [ + "▁Valentine", + -11.884014129638672 + ], + [ + "▁healthier", + -11.88408088684082 + ], + [ + "▁readily", + -11.884138107299805 + ], + [ + "nac", + -11.884190559387207 + ], + [ + "▁intake", + -11.884191513061523 + ], + [ + "▁puncte", + -11.884230613708496 + ], + [ + "erne", + -11.884431838989258 + ], + [ + "file", + -11.884668350219727 + ], + [ + "▁continually", + -11.884688377380371 + ], + [ + "door", + -11.884699821472168 + ], + [ + "▁imediat", + -11.884822845458984 + ], + [ + "▁accused", + -11.884833335876465 + ], + [ + "chy", + -11.884854316711426 + ], + [ + "▁wrapped", + -11.884861946105957 + ], + [ + "IES", + -11.884878158569336 + ], + [ + "▁terrace", + -11.884883880615234 + ], + [ + "mouth", + -11.884897232055664 + ], + [ + "▁defensive", + -11.884991645812988 + ], + [ + "▁Luci", + -11.88508129119873 + ], + [ + "▁significance", + -11.885107040405273 + ], + [ + "▁2007,", + -11.885213851928711 + ], + [ + "▁inclusion", + -11.885221481323242 + ], + [ + "▁rotation", + -11.885248184204102 + ], + [ + "hos", + -11.885283470153809 + ], + [ + "▁crea", + -11.885357856750488 + ], + [ + "üß", + -11.885903358459473 + ], + [ + "▁Install", + -11.885988235473633 + ], + [ + "▁dump", + -11.885998725891113 + ], + [ + "▁informations", + -11.886114120483398 + ], + [ + "▁Thi", + -11.886117935180664 + ], + [ + "▁85", + -11.886252403259277 + ], + [ + "dox", + -11.886283874511719 + ], + [ + "track", + -11.886436462402344 + ], + [ + "▁couples", + -11.886571884155273 + ], + [ + "▁Assembly", + -11.886594772338867 + ], + [ + "wagen", + -11.88672161102295 + ], + [ + "▁Hil", + -11.886723518371582 + ], + [ + "ières", + -11.886833190917969 + ], + [ + "▁Gabriel", + -11.886903762817383 + ], + [ + "▁patience", + -11.887053489685059 + ], + [ + "▁colored", + -11.887147903442383 + ], + [ + "▁separately", + -11.88715934753418 + ], + [ + "▁deployment", + -11.887166023254395 + ], + [ + "scape", + -11.887306213378906 + ], + [ + "▁Acum", + -11.8875150680542 + ], + [ + "▁länger", + -11.887518882751465 + ], + [ + "▁screens", + -11.887598991394043 + ], + [ + "▁prezenta", + -11.887630462646484 + ], + [ + "▁obicei", + -11.887638092041016 + ], + [ + "▁crisp", + -11.887758255004883 + ], + [ + "▁mechanisms", + -11.887771606445312 + ], + [ + "▁thirty", + -11.887786865234375 + ], + [ + "▁individually", + -11.887989044189453 + ], + [ + "▁internationally", + -11.887991905212402 + ], + [ + "lling", + -11.888050079345703 + ], + [ + "▁bureau", + -11.88843059539795 + ], + [ + "▁erfahren", + -11.88844108581543 + ], + [ + "TY", + -11.888553619384766 + ], + [ + "PF", + -11.888607025146484 + ], + [ + "wid", + -11.888752937316895 + ], + [ + "sell", + -11.888835906982422 + ], + [ + "▁Luke", + -11.888879776000977 + ], + [ + "▁Must", + -11.888916969299316 + ], + [ + "▁identical", + -11.888927459716797 + ], + [ + "▁Netherlands", + -11.888980865478516 + ], + [ + "▁investor", + -11.88905143737793 + ], + [ + "▁squad", + -11.889073371887207 + ], + [ + "▁21,", + -11.889143943786621 + ], + [ + "iko", + -11.889230728149414 + ], + [ + "▁departure", + -11.88937759399414 + ], + [ + "ega", + -11.889384269714355 + ], + [ + "uzi", + -11.889408111572266 + ], + [ + "▁lasa", + -11.889458656311035 + ], + [ + "bian", + -11.889525413513184 + ], + [ + "▁Madrid", + -11.889623641967773 + ], + [ + "▁Iowa", + -11.889806747436523 + ], + [ + "▁Yellow", + -11.890026092529297 + ], + [ + "conom", + -11.89004898071289 + ], + [ + "▁hint", + -11.890098571777344 + ], + [ + "NOW", + -11.890111923217773 + ], + [ + "dress", + -11.890204429626465 + ], + [ + "▁Stück", + -11.890267372131348 + ], + [ + "echt", + -11.890424728393555 + ], + [ + "rial", + -11.89045238494873 + ], + [ + "▁Initiative", + -11.890474319458008 + ], + [ + "▁magnificent", + -11.890474319458008 + ], + [ + "▁pipeline", + -11.890543937683105 + ], + [ + "▁08", + -11.890806198120117 + ], + [ + "▁écrit", + -11.890889167785645 + ], + [ + "KA", + -11.891085624694824 + ], + [ + "arile", + -11.891151428222656 + ], + [ + "▁unfortunately", + -11.891352653503418 + ], + [ + "dose", + -11.891355514526367 + ], + [ + "▁counts", + -11.891427993774414 + ], + [ + "deciding", + -11.891549110412598 + ], + [ + "WA", + -11.89167308807373 + ], + [ + "▁doresc", + -11.891685485839844 + ], + [ + "NY", + -11.892008781433105 + ], + [ + "olin", + -11.892112731933594 + ], + [ + "▁Urlaub", + -11.892133712768555 + ], + [ + "▁alătur", + -11.892317771911621 + ], + [ + "▁Vic", + -11.892515182495117 + ], + [ + "▁fier", + -11.89269733428955 + ], + [ + "EU", + -11.892772674560547 + ], + [ + "▁triple", + -11.892871856689453 + ], + [ + "▁compliment", + -11.89310359954834 + ], + [ + "▁vegetable", + -11.89334487915039 + ], + [ + "member", + -11.893743515014648 + ], + [ + "atiei", + -11.893793106079102 + ], + [ + "▁toxic", + -11.893835067749023 + ], + [ + "▁converted", + -11.893888473510742 + ], + [ + "▁Pink", + -11.893999099731445 + ], + [ + "▁fragment", + -11.894020080566406 + ], + [ + "presenting", + -11.894027709960938 + ], + [ + "▁garantie", + -11.894031524658203 + ], + [ + "▁31,", + -11.894052505493164 + ], + [ + "▁puisqu", + -11.894105911254883 + ], + [ + "aching", + -11.894107818603516 + ], + [ + "▁Shan", + -11.894119262695312 + ], + [ + "▁Affairs", + -11.894368171691895 + ], + [ + "üsse", + -11.894405364990234 + ], + [ + "▁CBD", + -11.894428253173828 + ], + [ + "▁quatre", + -11.894588470458984 + ], + [ + "▁horror", + -11.894651412963867 + ], + [ + "▁culoare", + -11.894661903381348 + ], + [ + "▁welcoming", + -11.894673347473145 + ], + [ + "▁headache", + -11.894808769226074 + ], + [ + "▁septembre", + -11.894820213317871 + ], + [ + "▁Tür", + -11.894862174987793 + ], + [ + "lateral", + -11.89507007598877 + ], + [ + "▁termin", + -11.895228385925293 + ], + [ + "▁Aid", + -11.895291328430176 + ], + [ + "second", + -11.895308494567871 + ], + [ + "▁Philip", + -11.895310401916504 + ], + [ + "berries", + -11.895347595214844 + ], + [ + "▁Slot", + -11.895431518554688 + ], + [ + "ка", + -11.895442962646484 + ], + [ + "▁consecutive", + -11.895590782165527 + ], + [ + "value", + -11.895705223083496 + ], + [ + "▁islands", + -11.8958101272583 + ], + [ + "▁posibilitatea", + -11.895928382873535 + ], + [ + "0.5", + -11.896341323852539 + ], + [ + "▁Dumpster", + -11.896471977233887 + ], + [ + "▁Gran", + -11.89647388458252 + ], + [ + "▁restricted", + -11.8967924118042 + ], + [ + "▁discussing", + -11.896921157836914 + ], + [ + "cock", + -11.896966934204102 + ], + [ + "Serie", + -11.896989822387695 + ], + [ + "▁crushing", + -11.896998405456543 + ], + [ + "RB", + -11.897034645080566 + ], + [ + "▁Gy", + -11.897068977355957 + ], + [ + "normal", + -11.897098541259766 + ], + [ + "DT", + -11.897180557250977 + ], + [ + "▁concurs", + -11.897181510925293 + ], + [ + "▁Beratung", + -11.897231101989746 + ], + [ + "▁handful", + -11.897235870361328 + ], + [ + "▁loading", + -11.897237777709961 + ], + [ + "▁WI", + -11.897269248962402 + ], + [ + "▁Fitness", + -11.897283554077148 + ], + [ + "▁RAM", + -11.897302627563477 + ], + [ + "▁Twi", + -11.89730453491211 + ], + [ + "adurch", + -11.897345542907715 + ], + [ + "▁obiectiv", + -11.897366523742676 + ], + [ + "BM", + -11.897635459899902 + ], + [ + "▁amendment", + -11.8976469039917 + ], + [ + "whi", + -11.897652626037598 + ], + [ + "▁Besonder", + -11.897871017456055 + ], + [ + "ALL", + -11.898003578186035 + ], + [ + "▁earning", + -11.898090362548828 + ], + [ + "▁nutrients", + -11.898580551147461 + ], + [ + "pru", + -11.898633003234863 + ], + [ + "▁offensive", + -11.898696899414062 + ], + [ + "▁shelves", + -11.898711204528809 + ], + [ + "▁încâ", + -11.898726463317871 + ], + [ + "▁execute", + -11.898923873901367 + ], + [ + "▁cauz", + -11.898966789245605 + ], + [ + "exist", + -11.899179458618164 + ], + [ + "▁Meter", + -11.899191856384277 + ], + [ + "there", + -11.899201393127441 + ], + [ + "▁réaliser", + -11.899249076843262 + ], + [ + "blog", + -11.899362564086914 + ], + [ + "▁résultats", + -11.89937973022461 + ], + [ + "baren", + -11.899391174316406 + ], + [ + "▁lang", + -11.899425506591797 + ], + [ + "▁mere", + -11.899870872497559 + ], + [ + "▁toti", + -11.900079727172852 + ], + [ + "DN", + -11.90017032623291 + ], + [ + "Hi", + -11.900310516357422 + ], + [ + "▁merg", + -11.900359153747559 + ], + [ + "▁Camera", + -11.90054988861084 + ], + [ + "▁parfum", + -11.900697708129883 + ], + [ + "CG", + -11.900701522827148 + ], + [ + "posed", + -11.900713920593262 + ], + [ + "▁proposals", + -11.900732040405273 + ], + [ + "▁incorrect", + -11.900811195373535 + ], + [ + "▁Denver", + -11.901168823242188 + ], + [ + "▁noapte", + -11.901397705078125 + ], + [ + "▁VPN", + -11.901436805725098 + ], + [ + "▁Oklahoma", + -11.90159797668457 + ], + [ + "horizon", + -11.901647567749023 + ], + [ + "▁villa", + -11.901668548583984 + ], + [ + "duce", + -11.901812553405762 + ], + [ + "Dienst", + -11.902042388916016 + ], + [ + "▁oversee", + -11.902511596679688 + ], + [ + "astr", + -11.902548789978027 + ], + [ + "brand", + -11.902713775634766 + ], + [ + "▁Safe", + -11.902746200561523 + ], + [ + "▁competing", + -11.902812004089355 + ], + [ + "▁subiect", + -11.902812004089355 + ], + [ + "▁équipe", + -11.903091430664062 + ], + [ + "▁Dress", + -11.903095245361328 + ], + [ + "▁Juni", + -11.903139114379883 + ], + [ + "▁repeated", + -11.90317153930664 + ], + [ + "2012", + -11.903226852416992 + ], + [ + "▁départ", + -11.903234481811523 + ], + [ + "immer", + -11.903335571289062 + ], + [ + "▁mondial", + -11.903374671936035 + ], + [ + "▁datelor", + -11.903703689575195 + ], + [ + "▁surgeon", + -11.903782844543457 + ], + [ + "▁demanding", + -11.903812408447266 + ], + [ + "▁concluded", + -11.903878211975098 + ], + [ + "țiile", + -11.903950691223145 + ], + [ + "marin", + -11.903999328613281 + ], + [ + "▁estim", + -11.904206275939941 + ], + [ + "▁Loan", + -11.904361724853516 + ], + [ + "sculpt", + -11.904373168945312 + ], + [ + "▁99", + -11.904391288757324 + ], + [ + "void", + -11.904400825500488 + ], + [ + "▁Empire", + -11.904499053955078 + ], + [ + "▁Brit", + -11.90450382232666 + ], + [ + "▁véhicule", + -11.904777526855469 + ], + [ + "▁dividend", + -11.905069351196289 + ], + [ + "▁refused", + -11.905077934265137 + ], + [ + "▁speaks", + -11.905156135559082 + ], + [ + "▁Morris", + -11.905282020568848 + ], + [ + "dict", + -11.905349731445312 + ], + [ + "▁funeral", + -11.905556678771973 + ], + [ + "▁Behandlung", + -11.905763626098633 + ], + [ + "▁Revolution", + -11.905905723571777 + ], + [ + "▁Sum", + -11.905935287475586 + ], + [ + "einigen", + -11.906030654907227 + ], + [ + "RES", + -11.906070709228516 + ], + [ + "▁vite", + -11.906071662902832 + ], + [ + "▁Captain", + -11.906190872192383 + ], + [ + "▁assurance", + -11.9061918258667 + ], + [ + "uga", + -11.906500816345215 + ], + [ + "▁conserv", + -11.906583786010742 + ], + [ + "▁therapeutic", + -11.906641006469727 + ], + [ + "▁Sweden", + -11.906753540039062 + ], + [ + "▁Lead", + -11.906888961791992 + ], + [ + "ément", + -11.907071113586426 + ], + [ + "▁53", + -11.90709114074707 + ], + [ + "▁fraction", + -11.9071683883667 + ], + [ + "▁magnet", + -11.907170295715332 + ], + [ + "assurer", + -11.907184600830078 + ], + [ + "▁Steuer", + -11.90733814239502 + ], + [ + "▁flori", + -11.90735149383545 + ], + [ + "▁charming", + -11.907588958740234 + ], + [ + "▁athletic", + -11.907621383666992 + ], + [ + "▁membri", + -11.907706260681152 + ], + [ + "▁Sep", + -11.907726287841797 + ], + [ + "ogue", + -11.907800674438477 + ], + [ + "▁familie", + -11.907800674438477 + ], + [ + "▁SW", + -11.90796947479248 + ], + [ + "▁diagnosed", + -11.908023834228516 + ], + [ + "RR", + -11.908143997192383 + ], + [ + "▁Fern", + -11.908233642578125 + ], + [ + "▁rational", + -11.908281326293945 + ], + [ + "▁talents", + -11.90828800201416 + ], + [ + "ziert", + -11.908317565917969 + ], + [ + "▁chemin", + -11.908459663391113 + ], + [ + "sheet", + -11.908562660217285 + ], + [ + "▁outer", + -11.908565521240234 + ], + [ + "▁Kap", + -11.908591270446777 + ], + [ + "▁HERE", + -11.908656120300293 + ], + [ + "▁uman", + -11.908824920654297 + ], + [ + "▁accompany", + -11.908880233764648 + ], + [ + "▁varieties", + -11.908881187438965 + ], + [ + "▁sensors", + -11.908957481384277 + ], + [ + "▁25%", + -11.90919017791748 + ], + [ + "▁tray", + -11.909354209899902 + ], + [ + "▁critique", + -11.909459114074707 + ], + [ + "▁puţin", + -11.909515380859375 + ], + [ + "▁Schüler", + -11.90953540802002 + ], + [ + "▁repar", + -11.909744262695312 + ], + [ + "▁overlook", + -11.909931182861328 + ], + [ + "▁surf", + -11.910048484802246 + ], + [ + "▁tasting", + -11.910118103027344 + ], + [ + "bog", + -11.91027545928955 + ], + [ + "▁Payment", + -11.910289764404297 + ], + [ + "▁Helen", + -11.91049575805664 + ], + [ + "▁Refer", + -11.910694122314453 + ], + [ + "application", + -11.910698890686035 + ], + [ + "lection", + -11.910856246948242 + ], + [ + "▁avril", + -11.911042213439941 + ], + [ + "▁Grace", + -11.911109924316406 + ], + [ + "▁kau", + -11.911274909973145 + ], + [ + "▁libraries", + -11.911319732666016 + ], + [ + "▁closest", + -11.911347389221191 + ], + [ + "▁coating", + -11.911351203918457 + ], + [ + "▁suicide", + -11.911364555358887 + ], + [ + "▁undergraduate", + -11.911449432373047 + ], + [ + "▁stitch", + -11.91149616241455 + ], + [ + "▁reset", + -11.911593437194824 + ], + [ + "▁Greece", + -11.911626815795898 + ], + [ + "▁Fred", + -11.91197681427002 + ], + [ + "▁18.", + -11.912047386169434 + ], + [ + "▁nuit", + -11.912087440490723 + ], + [ + "▁lying", + -11.912199974060059 + ], + [ + "▁cottage", + -11.91232681274414 + ], + [ + "bone", + -11.912477493286133 + ], + [ + "▁milieu", + -11.912480354309082 + ], + [ + "management", + -11.912623405456543 + ], + [ + "▁Freund", + -11.912724494934082 + ], + [ + "▁specially", + -11.912841796875 + ], + [ + "veut", + -11.912961959838867 + ], + [ + "▁necesare", + -11.912999153137207 + ], + [ + "▁cert", + -11.913081169128418 + ], + [ + "articul", + -11.913151741027832 + ], + [ + "150", + -11.913174629211426 + ], + [ + "rounded", + -11.913180351257324 + ], + [ + "▁longue", + -11.913193702697754 + ], + [ + "▁Quel", + -11.913240432739258 + ], + [ + "Until", + -11.913322448730469 + ], + [ + "▁700", + -11.913398742675781 + ], + [ + "▁installations", + -11.913423538208008 + ], + [ + "▁boats", + -11.913467407226562 + ], + [ + "Fig", + -11.913609504699707 + ], + [ + "▁cocktail", + -11.913613319396973 + ], + [ + "▁rocks", + -11.91366958618164 + ], + [ + "meinen", + -11.91374683380127 + ], + [ + "entrepreneur", + -11.913780212402344 + ], + [ + "schwarz", + -11.913924217224121 + ], + [ + "▁diesel", + -11.91392993927002 + ], + [ + "▁villages", + -11.913969039916992 + ], + [ + "▁cups", + -11.914076805114746 + ], + [ + "▁stairs", + -11.914241790771484 + ], + [ + "▁Match", + -11.914350509643555 + ], + [ + "Taking", + -11.914437294006348 + ], + [ + "prin", + -11.914469718933105 + ], + [ + "▁penal", + -11.91472053527832 + ], + [ + "partner", + -11.914867401123047 + ], + [ + "wave", + -11.91497802734375 + ], + [ + "▁baie", + -11.91515064239502 + ], + [ + "LAN", + -11.915151596069336 + ], + [ + "fix", + -11.915202140808105 + ], + [ + "▁surveillance", + -11.915295600891113 + ], + [ + "▁Register", + -11.915343284606934 + ], + [ + "oara", + -11.915536880493164 + ], + [ + "▁Phoenix", + -11.915602684020996 + ], + [ + "aktuellen", + -11.915613174438477 + ], + [ + "▁livres", + -11.915618896484375 + ], + [ + "▁entities", + -11.916102409362793 + ], + [ + "▁Regard", + -11.916112899780273 + ], + [ + "▁Jazz", + -11.91614055633545 + ], + [ + "▁flame", + -11.91616153717041 + ], + [ + "▁independence", + -11.916215896606445 + ], + [ + "▁Adventure", + -11.916341781616211 + ], + [ + "▁assign", + -11.916399955749512 + ], + [ + "▁Adult", + -11.916579246520996 + ], + [ + "kehr", + -11.916666984558105 + ], + [ + "▁ordering", + -11.916850090026855 + ], + [ + "▁charts", + -11.91687297821045 + ], + [ + "▁Român", + -11.916936874389648 + ], + [ + "bauen", + -11.916982650756836 + ], + [ + "▁Floor", + -11.917065620422363 + ], + [ + "▁Meet", + -11.917101860046387 + ], + [ + "▁compromise", + -11.917158126831055 + ], + [ + "regarded", + -11.917171478271484 + ], + [ + "02.", + -11.917215347290039 + ], + [ + "▁granite", + -11.917299270629883 + ], + [ + "▁Judge", + -11.917314529418945 + ], + [ + "opti", + -11.917373657226562 + ], + [ + "liste", + -11.917379379272461 + ], + [ + "▁capacité", + -11.917427062988281 + ], + [ + "▁criticism", + -11.917450904846191 + ], + [ + "LES", + -11.918198585510254 + ], + [ + "▁Century", + -11.918211936950684 + ], + [ + "▁mobility", + -11.918252944946289 + ], + [ + "▁variation", + -11.918622016906738 + ], + [ + "▁Utah", + -11.91867446899414 + ], + [ + "▁seminar", + -11.918678283691406 + ], + [ + "▁experiments", + -11.918803215026855 + ], + [ + "midst", + -11.918943405151367 + ], + [ + "▁Psycho", + -11.919002532958984 + ], + [ + "▁choses", + -11.919121742248535 + ], + [ + "▁Karl", + -11.919175148010254 + ], + [ + "▁ruling", + -11.919286727905273 + ], + [ + "▁Voice", + -11.919404983520508 + ], + [ + "▁împotriv", + -11.919442176818848 + ], + [ + "▁mesaj", + -11.919500350952148 + ], + [ + "▁vrei", + -11.919594764709473 + ], + [ + "fan", + -11.919601440429688 + ], + [ + "parent", + -11.919648170471191 + ], + [ + "▁oraș", + -11.919770240783691 + ], + [ + "▁printable", + -11.919777870178223 + ], + [ + "▁diver", + -11.919859886169434 + ], + [ + "▁ochi", + -11.919949531555176 + ], + [ + "▁teenager", + -11.920125961303711 + ], + [ + "▁Death", + -11.920150756835938 + ], + [ + "▁manque", + -11.920289993286133 + ], + [ + "ască", + -11.920345306396484 + ], + [ + "▁prob", + -11.9203519821167 + ], + [ + "▁télé", + -11.920354843139648 + ], + [ + "cursul", + -11.920378684997559 + ], + [ + "pion", + -11.92052173614502 + ], + [ + "▁dedication", + -11.920644760131836 + ], + [ + "▁opr", + -11.920687675476074 + ], + [ + "führung", + -11.920761108398438 + ], + [ + "▁cognitive", + -11.920827865600586 + ], + [ + "soft", + -11.920868873596191 + ], + [ + "▁19,", + -11.9209623336792 + ], + [ + "▁24-", + -11.921197891235352 + ], + [ + "▁legitimate", + -11.921220779418945 + ], + [ + "▁comedy", + -11.921277046203613 + ], + [ + "▁violation", + -11.921327590942383 + ], + [ + "▁disposal", + -11.921472549438477 + ], + [ + "▁liegen", + -11.921605110168457 + ], + [ + "ко", + -11.921878814697266 + ], + [ + "▁martie", + -11.921931266784668 + ], + [ + "▁Vas", + -11.92212200164795 + ], + [ + "rash", + -11.922134399414062 + ], + [ + "▁hadn", + -11.922174453735352 + ], + [ + "▁connu", + -11.922204971313477 + ], + [ + "▁regelmäßig", + -11.922216415405273 + ], + [ + "▁Webseite", + -11.922224998474121 + ], + [ + "▁failing", + -11.922273635864258 + ], + [ + "explique", + -11.922449111938477 + ], + [ + "▁Player", + -11.922513961791992 + ], + [ + "vul", + -11.922560691833496 + ], + [ + "camp", + -11.922992706298828 + ], + [ + "▁erreicht", + -11.922996520996094 + ], + [ + "▁tags", + -11.922998428344727 + ], + [ + "▁headline", + -11.923210144042969 + ], + [ + "▁banc", + -11.923253059387207 + ], + [ + "▁Mayor", + -11.923309326171875 + ], + [ + "trop", + -11.923395156860352 + ], + [ + "AK", + -11.9235258102417 + ], + [ + "▁lighter", + -11.923602104187012 + ], + [ + "▁syndrome", + -11.923604965209961 + ], + [ + "▁Adrian", + -11.92365550994873 + ], + [ + "▁EUR", + -11.923759460449219 + ], + [ + "▁Missouri", + -11.923916816711426 + ], + [ + "▁Chan", + -11.924108505249023 + ], + [ + "topped", + -11.924233436584473 + ], + [ + "▁nationwide", + -11.924276351928711 + ], + [ + "▁6-", + -11.924302101135254 + ], + [ + "final", + -11.924408912658691 + ], + [ + "ttes", + -11.924485206604004 + ], + [ + "▁FO", + -11.924537658691406 + ], + [ + "▁legi", + -11.924556732177734 + ], + [ + "▁Hum", + -11.924575805664062 + ], + [ + "vita", + -11.924662590026855 + ], + [ + "▁Regen", + -11.924695014953613 + ], + [ + "▁confusion", + -11.92498779296875 + ], + [ + "▁valori", + -11.925142288208008 + ], + [ + "mill", + -11.92516803741455 + ], + [ + "did", + -11.925237655639648 + ], + [ + "pid", + -11.925253868103027 + ], + [ + "▁implications", + -11.925284385681152 + ], + [ + "▁Value", + -11.92552375793457 + ], + [ + "lângă", + -11.925666809082031 + ], + [ + "▁véritable", + -11.92577075958252 + ], + [ + "▁Stick", + -11.925814628601074 + ], + [ + "zol", + -11.925835609436035 + ], + [ + "▁ebenso", + -11.925863265991211 + ], + [ + "west", + -11.925895690917969 + ], + [ + "▁auszu", + -11.92600154876709 + ], + [ + "▁adorable", + -11.926016807556152 + ], + [ + "▁clarity", + -11.92605209350586 + ], + [ + "▁Wash", + -11.926335334777832 + ], + [ + "▁alien", + -11.926423072814941 + ], + [ + "usement", + -11.926626205444336 + ], + [ + "▁bones", + -11.9266357421875 + ], + [ + "▁Beau", + -11.926726341247559 + ], + [ + "▁Jet", + -11.926727294921875 + ], + [ + "▁visibility", + -11.927034378051758 + ], + [ + "impose", + -11.927063941955566 + ], + [ + "food", + -11.927133560180664 + ], + [ + "▁duce", + -11.927361488342285 + ], + [ + "▁Format", + -11.927386283874512 + ], + [ + "▁durability", + -11.927424430847168 + ], + [ + "▁Prim", + -11.927614212036133 + ], + [ + "▁mele", + -11.927629470825195 + ], + [ + "▁dürfen", + -11.927631378173828 + ], + [ + "▁Angebote", + -11.92765998840332 + ], + [ + "▁discharge", + -11.927745819091797 + ], + [ + "▁Justin", + -11.928055763244629 + ], + [ + "▁shame", + -11.928228378295898 + ], + [ + "▁heated", + -11.928282737731934 + ], + [ + "ères", + -11.92856216430664 + ], + [ + "human", + -11.928810119628906 + ], + [ + "4.5", + -11.928831100463867 + ], + [ + "▁lien", + -11.928955078125 + ], + [ + "▁Alan", + -11.92896556854248 + ], + [ + "▁transmis", + -11.929130554199219 + ], + [ + "▁Bul", + -11.929137229919434 + ], + [ + "plu", + -11.929169654846191 + ], + [ + "acul", + -11.929337501525879 + ], + [ + "merk", + -11.929434776306152 + ], + [ + "▁altfel", + -11.929566383361816 + ], + [ + "deli", + -11.929689407348633 + ], + [ + "▁Cru", + -11.930001258850098 + ], + [ + "▁hommes", + -11.930127143859863 + ], + [ + "aurait", + -11.930137634277344 + ], + [ + "cca", + -11.930187225341797 + ], + [ + "▁Path", + -11.930208206176758 + ], + [ + "astronom", + -11.930241584777832 + ], + [ + "▁détail", + -11.930276870727539 + ], + [ + "▁blocked", + -11.930394172668457 + ], + [ + "iding", + -11.93044376373291 + ], + [ + "schä", + -11.930500030517578 + ], + [ + "▁30-", + -11.930624008178711 + ], + [ + "diction", + -11.930813789367676 + ], + [ + "▁pulling", + -11.930868148803711 + ], + [ + "▁Sample", + -11.930924415588379 + ], + [ + "▁renewable", + -11.930997848510742 + ], + [ + "▁Pinterest", + -11.93106746673584 + ], + [ + "▁Tages", + -11.93106746673584 + ], + [ + "▁shed", + -11.931171417236328 + ], + [ + "▁hart", + -11.931188583374023 + ], + [ + "▁serie", + -11.931200981140137 + ], + [ + "▁documentary", + -11.931208610534668 + ], + [ + "gebaut", + -11.931220054626465 + ], + [ + "▁Hause", + -11.931272506713867 + ], + [ + "share", + -11.931303977966309 + ], + [ + "▁inflation", + -11.93138599395752 + ], + [ + "▁gall", + -11.931504249572754 + ], + [ + "▁adjacent", + -11.931673049926758 + ], + [ + "jer", + -11.93173885345459 + ], + [ + "▁Universal", + -11.931946754455566 + ], + [ + "▁disabilities", + -11.931984901428223 + ], + [ + "▁proposition", + -11.93204116821289 + ], + [ + "Work", + -11.932293891906738 + ], + [ + "▁closure", + -11.932306289672852 + ], + [ + "▁separated", + -11.932496070861816 + ], + [ + "▁soda", + -11.932549476623535 + ], + [ + "▁elite", + -11.93263053894043 + ], + [ + "appro", + -11.93265438079834 + ], + [ + "▁acute", + -11.93266487121582 + ], + [ + "utton", + -11.932938575744629 + ], + [ + "▁facă", + -11.933053016662598 + ], + [ + "▁collector", + -11.933121681213379 + ], + [ + "▁unlock", + -11.933249473571777 + ], + [ + "▁Alpha", + -11.933267593383789 + ], + [ + "▁Used", + -11.933267593383789 + ], + [ + "▁applicants", + -11.933302879333496 + ], + [ + "▁înseamn", + -11.933387756347656 + ], + [ + "▁inclu", + -11.933414459228516 + ], + [ + "▁disclosure", + -11.933544158935547 + ], + [ + "▁Fahr", + -11.933995246887207 + ], + [ + "AST", + -11.934061050415039 + ], + [ + "▁vivre", + -11.934069633483887 + ], + [ + "»,", + -11.934167861938477 + ], + [ + "laud", + -11.93430233001709 + ], + [ + "▁soir", + -11.934365272521973 + ], + [ + "▁barrier", + -11.934405326843262 + ], + [ + "înd", + -11.934470176696777 + ], + [ + "▁ambition", + -11.93451976776123 + ], + [ + "asta", + -11.934550285339355 + ], + [ + "occupied", + -11.934747695922852 + ], + [ + "▁Gau", + -11.934774398803711 + ], + [ + "four", + -11.93481159210205 + ], + [ + "▁nap", + -11.934887886047363 + ], + [ + "iez", + -11.934922218322754 + ], + [ + "endra", + -11.935242652893066 + ], + [ + "gaben", + -11.935464859008789 + ], + [ + "▁Carol", + -11.935481071472168 + ], + [ + "▁Switzerland", + -11.935575485229492 + ], + [ + "▁Bond", + -11.935617446899414 + ], + [ + "▁crossing", + -11.935630798339844 + ], + [ + "▁Palace", + -11.9359769821167 + ], + [ + "NG", + -11.935986518859863 + ], + [ + "▁Budget", + -11.93622875213623 + ], + [ + "▁lid", + -11.936372756958008 + ], + [ + "bab", + -11.936393737792969 + ], + [ + "▁polish", + -11.936416625976562 + ], + [ + "▁herbs", + -11.93673038482666 + ], + [ + "▁dear", + -11.936747550964355 + ], + [ + "▁devrai", + -11.936846733093262 + ], + [ + "walk", + -11.936864852905273 + ], + [ + "▁humanity", + -11.936897277832031 + ], + [ + "▁tires", + -11.936978340148926 + ], + [ + "égal", + -11.936994552612305 + ], + [ + "▁bow", + -11.937032699584961 + ], + [ + "▁debris", + -11.937201499938965 + ], + [ + "▁keywords", + -11.937273025512695 + ], + [ + "irk", + -11.937345504760742 + ], + [ + "▁suspend", + -11.937360763549805 + ], + [ + "▁pourra", + -11.93738079071045 + ], + [ + "migran", + -11.937454223632812 + ], + [ + "thereby", + -11.937570571899414 + ], + [ + "▁Harris", + -11.937943458557129 + ], + [ + "ateurs", + -11.937956809997559 + ], + [ + "▁fal", + -11.938271522521973 + ], + [ + "alleged", + -11.938355445861816 + ], + [ + "noch", + -11.938494682312012 + ], + [ + "▁observation", + -11.938506126403809 + ], + [ + "▁București", + -11.93855094909668 + ], + [ + "▁SQL", + -11.938624382019043 + ], + [ + "▁Phase", + -11.938760757446289 + ], + [ + "▁adventures", + -11.93881607055664 + ], + [ + "▁Kol", + -11.938885688781738 + ], + [ + "▁professionnel", + -11.938916206359863 + ], + [ + "crit", + -11.939026832580566 + ], + [ + "LR", + -11.939313888549805 + ], + [ + "▁preview", + -11.939464569091797 + ], + [ + "▁highlighted", + -11.939942359924316 + ], + [ + "▁Stud", + -11.939949035644531 + ], + [ + "▁labour", + -11.939956665039062 + ], + [ + "MV", + -11.9399995803833 + ], + [ + "click", + -11.940049171447754 + ], + [ + "approche", + -11.94016170501709 + ], + [ + "tian", + -11.940183639526367 + ], + [ + "cité", + -11.940192222595215 + ], + [ + "▁Rain", + -11.94028377532959 + ], + [ + "typ", + -11.94032096862793 + ], + [ + "Usually", + -11.940435409545898 + ], + [ + "▁outlet", + -11.940513610839844 + ], + [ + "logging", + -11.940814018249512 + ], + [ + "▁Temperatur", + -11.940906524658203 + ], + [ + "▁Scottish", + -11.94090747833252 + ], + [ + "iga", + -11.940942764282227 + ], + [ + "▁glory", + -11.941086769104004 + ], + [ + "▁Rom", + -11.941242218017578 + ], + [ + "zeug", + -11.941337585449219 + ], + [ + "establishing", + -11.941339492797852 + ], + [ + "▁imaging", + -11.941926002502441 + ], + [ + "▁Beauty", + -11.942015647888184 + ], + [ + "igan", + -11.942042350769043 + ], + [ + "après", + -11.94224739074707 + ], + [ + "Adresse", + -11.942267417907715 + ], + [ + "cliff", + -11.942349433898926 + ], + [ + "▁unnecessary", + -11.943267822265625 + ], + [ + "▁slim", + -11.943324089050293 + ], + [ + "dir", + -11.943490982055664 + ], + [ + "▁leisure", + -11.943660736083984 + ], + [ + "▁principale", + -11.94368839263916 + ], + [ + "▁Viele", + -11.943770408630371 + ], + [ + "▁2007.", + -11.943802833557129 + ], + [ + "Hopefully", + -11.943829536437988 + ], + [ + "cola", + -11.943851470947266 + ], + [ + "▁Planet", + -11.943927764892578 + ], + [ + "▁orientation", + -11.943933486938477 + ], + [ + "▁angry", + -11.94419002532959 + ], + [ + "MIT", + -11.944234848022461 + ], + [ + "▁Kenya", + -11.944265365600586 + ], + [ + "▁bless", + -11.94435977935791 + ], + [ + "▁Fill", + -11.944524765014648 + ], + [ + "▁compar", + -11.944664001464844 + ], + [ + "▁curtain", + -11.94473934173584 + ], + [ + "ţei", + -11.944754600524902 + ], + [ + "▁Az", + -11.94482421875 + ], + [ + "▁Rang", + -11.944908142089844 + ], + [ + "▁dominant", + -11.944974899291992 + ], + [ + "race", + -11.944985389709473 + ], + [ + "▁Target", + -11.944987297058105 + ], + [ + "▁manually", + -11.944987297058105 + ], + [ + "objet", + -11.945024490356445 + ], + [ + "thrown", + -11.945131301879883 + ], + [ + "NF", + -11.945149421691895 + ], + [ + "durant", + -11.945185661315918 + ], + [ + "rect", + -11.945302963256836 + ], + [ + "▁Größe", + -11.945320129394531 + ], + [ + "VM", + -11.9453763961792 + ], + [ + "▁aprilie", + -11.945476531982422 + ], + [ + "▁Welche", + -11.945639610290527 + ], + [ + "▁verde", + -11.946157455444336 + ], + [ + "▁Portugal", + -11.946266174316406 + ], + [ + "▁algorithm", + -11.94627571105957 + ], + [ + "ăț", + -11.946328163146973 + ], + [ + "▁Grey", + -11.946371078491211 + ], + [ + "▁cleaned", + -11.94644832611084 + ], + [ + "▁modes", + -11.946463584899902 + ], + [ + "▁relaxation", + -11.946599006652832 + ], + [ + "mbr", + -11.946786880493164 + ], + [ + "étique", + -11.946821212768555 + ], + [ + "Her", + -11.946904182434082 + ], + [ + "▁beta", + -11.946952819824219 + ], + [ + "▁nobody", + -11.94699764251709 + ], + [ + "▁aplic", + -11.947060585021973 + ], + [ + "present", + -11.947080612182617 + ], + [ + "emis", + -11.947197914123535 + ], + [ + "éléments", + -11.947257995605469 + ], + [ + "▁lately", + -11.947303771972656 + ], + [ + "fab", + -11.94732666015625 + ], + [ + "▁aluminiu", + -11.947373390197754 + ], + [ + "▁vest", + -11.947524070739746 + ], + [ + "▁statue", + -11.947558403015137 + ], + [ + "▁publice", + -11.947586059570312 + ], + [ + "▁merchandise", + -11.9476900100708 + ], + [ + "▁relat", + -11.947810173034668 + ], + [ + "git", + -11.94796371459961 + ], + [ + "▁interne", + -11.948281288146973 + ], + [ + "▁Tokyo", + -11.948325157165527 + ], + [ + "chal", + -11.948348045349121 + ], + [ + "contacted", + -11.948430061340332 + ], + [ + "▁tras", + -11.948455810546875 + ], + [ + "▁Clinic", + -11.948626518249512 + ], + [ + "▁unbe", + -11.948633193969727 + ], + [ + "▁dumneavoastra", + -11.948798179626465 + ], + [ + "float", + -11.949078559875488 + ], + [ + "isson", + -11.94909381866455 + ], + [ + "▁vessel", + -11.949126243591309 + ], + [ + "attempting", + -11.949161529541016 + ], + [ + "▁doute", + -11.94918441772461 + ], + [ + "▁Leadership", + -11.949322700500488 + ], + [ + "▁sustain", + -11.94947338104248 + ], + [ + "▁textile", + -11.949666023254395 + ], + [ + "auer", + -11.949702262878418 + ], + [ + "▁90%", + -11.949899673461914 + ], + [ + "garten", + -11.949911117553711 + ], + [ + "▁adauga", + -11.949991226196289 + ], + [ + "▁Kil", + -11.950061798095703 + ], + [ + "▁troops", + -11.950420379638672 + ], + [ + "▁pale", + -11.950568199157715 + ], + [ + "host", + -11.950743675231934 + ], + [ + "▁cry", + -11.950757026672363 + ], + [ + "▁Alb", + -11.950793266296387 + ], + [ + "▁Brad", + -11.95089340209961 + ], + [ + "▁bicycle", + -11.951054573059082 + ], + [ + "▁24/7", + -11.951217651367188 + ], + [ + "▁с", + -11.951228141784668 + ], + [ + "▁stimul", + -11.951401710510254 + ], + [ + "gler", + -11.951445579528809 + ], + [ + "▁notwendig", + -11.951496124267578 + ], + [ + "▁cousin", + -11.95158863067627 + ], + [ + "cheie", + -11.951600074768066 + ], + [ + "hay", + -11.951751708984375 + ], + [ + "▁rezolv", + -11.952134132385254 + ], + [ + "▁THIS", + -11.952143669128418 + ], + [ + "ordre", + -11.952157974243164 + ], + [ + "iști", + -11.952173233032227 + ], + [ + "▁conclude", + -11.952310562133789 + ], + [ + "▁Lage", + -11.952327728271484 + ], + [ + "▁Entertainment", + -11.952454566955566 + ], + [ + "▁valued", + -11.952478408813477 + ], + [ + "ktion", + -11.95253849029541 + ], + [ + "▁priorities", + -11.95268440246582 + ], + [ + "▁1986", + -11.952770233154297 + ], + [ + "▁fatal", + -11.952934265136719 + ], + [ + "▁accurately", + -11.952988624572754 + ], + [ + "▁1987", + -11.953022956848145 + ], + [ + "▁folk", + -11.953073501586914 + ], + [ + "7)", + -11.953163146972656 + ], + [ + "führer", + -11.95360279083252 + ], + [ + "▁knot", + -11.953612327575684 + ], + [ + "haltung", + -11.953720092773438 + ], + [ + "▁Charlie", + -11.953733444213867 + ], + [ + "âge", + -11.95376205444336 + ], + [ + "▁threshold", + -11.954041481018066 + ], + [ + "▁assault", + -11.954130172729492 + ], + [ + "▁meist", + -11.954141616821289 + ], + [ + "bine", + -11.954155921936035 + ], + [ + "surprisingly", + -11.954171180725098 + ], + [ + "▁Protect", + -11.954180717468262 + ], + [ + "▁Hack", + -11.954258918762207 + ], + [ + "▁Quant", + -11.954537391662598 + ], + [ + "▁Cet", + -11.954782485961914 + ], + [ + "▁convinced", + -11.95481014251709 + ], + [ + "▁muncă", + -11.955033302307129 + ], + [ + "dging", + -11.955066680908203 + ], + [ + "▁Millionen", + -11.955129623413086 + ], + [ + "zahlung", + -11.955148696899414 + ], + [ + "▁anticipated", + -11.955192565917969 + ], + [ + "▁brass", + -11.9552001953125 + ], + [ + "KO", + -11.955244064331055 + ], + [ + "▁culori", + -11.955286979675293 + ], + [ + "▁Aero", + -11.955326080322266 + ], + [ + "▁intermediu", + -11.955373764038086 + ], + [ + "▁Philippines", + -11.955381393432617 + ], + [ + "▁jury", + -11.955387115478516 + ], + [ + "▁Funktion", + -11.95569896697998 + ], + [ + "▁probe", + -11.955704689025879 + ], + [ + "TL", + -11.955748558044434 + ], + [ + "1.0", + -11.955804824829102 + ], + [ + "ELL", + -11.95581340789795 + ], + [ + "She", + -11.956001281738281 + ], + [ + "▁Blood", + -11.956073760986328 + ], + [ + "▁Dean", + -11.956111907958984 + ], + [ + "▁scène", + -11.9561185836792 + ], + [ + "volu", + -11.95621395111084 + ], + [ + "▁Epi", + -11.95621395111084 + ], + [ + "▁séjour", + -11.95627498626709 + ], + [ + "▁Smartphone", + -11.956306457519531 + ], + [ + "▁fired", + -11.956357955932617 + ], + [ + "beat", + -11.95650577545166 + ], + [ + "▁pockets", + -11.956506729125977 + ], + [ + "▁serviciu", + -11.956624031066895 + ], + [ + "▁affairs", + -11.95678424835205 + ], + [ + "▁Ry", + -11.956842422485352 + ], + [ + "▁Stadium", + -11.956954956054688 + ], + [ + "▁snacks", + -11.957182884216309 + ], + [ + "▁efectu", + -11.957221031188965 + ], + [ + "▁Richtung", + -11.957273483276367 + ], + [ + "▁dresses", + -11.957352638244629 + ], + [ + "▁Medien", + -11.95744800567627 + ], + [ + "writer", + -11.95759105682373 + ], + [ + "changing", + -11.957655906677246 + ], + [ + "▁supportive", + -11.957849502563477 + ], + [ + "▁beneath", + -11.957873344421387 + ], + [ + "paid", + -11.958078384399414 + ], + [ + "▁customize", + -11.958155632019043 + ], + [ + "▁Ferr", + -11.958187103271484 + ], + [ + "reaches", + -11.958338737487793 + ], + [ + "arma", + -11.958401679992676 + ], + [ + "ción", + -11.958598136901855 + ], + [ + "▁elderly", + -11.959243774414062 + ], + [ + "▁modification", + -11.95934009552002 + ], + [ + "▁perfection", + -11.959381103515625 + ], + [ + "▁Allow", + -11.959492683410645 + ], + [ + "▁belonging", + -11.959542274475098 + ], + [ + "▁compound", + -11.959589004516602 + ], + [ + "▁Results", + -11.959681510925293 + ], + [ + "▁astăzi", + -11.959793090820312 + ], + [ + "▁Liber", + -11.959818840026855 + ], + [ + "jor", + -11.959850311279297 + ], + [ + "▁Nin", + -11.959980964660645 + ], + [ + "▁lumina", + -11.959992408752441 + ], + [ + "▁130", + -11.960073471069336 + ], + [ + "▁Platform", + -11.960121154785156 + ], + [ + "▁SMS", + -11.960221290588379 + ], + [ + "▁medic", + -11.96024227142334 + ], + [ + "hör", + -11.960315704345703 + ], + [ + "▁Kas", + -11.96038818359375 + ], + [ + "▁tomato", + -11.960403442382812 + ], + [ + "▁logiciel", + -11.960505485534668 + ], + [ + "php", + -11.960654258728027 + ], + [ + "▁premises", + -11.96071720123291 + ], + [ + "▁Communication", + -11.96072769165039 + ], + [ + "▁reprezintă", + -11.960762023925781 + ], + [ + "▁Partners", + -11.960866928100586 + ], + [ + "▁RV", + -11.961090087890625 + ], + [ + "▁pants", + -11.961197853088379 + ], + [ + "▁envie", + -11.961256980895996 + ], + [ + "▁commerce", + -11.961263656616211 + ], + [ + "▁tears", + -11.961298942565918 + ], + [ + "▁cooler", + -11.961494445800781 + ], + [ + "strand", + -11.961556434631348 + ], + [ + "▁Gil", + -11.961588859558105 + ], + [ + "▁référence", + -11.961641311645508 + ], + [ + "▁electronics", + -11.961681365966797 + ], + [ + "exposition", + -11.961700439453125 + ], + [ + "▁Caribbean", + -11.96171760559082 + ], + [ + "▁compelling", + -11.96171760559082 + ], + [ + "luci", + -11.961723327636719 + ], + [ + "▁Brooklyn", + -11.961892127990723 + ], + [ + "▁Thai", + -11.961950302124023 + ], + [ + "dler", + -11.96198844909668 + ], + [ + "▁supra", + -11.962016105651855 + ], + [ + "centered", + -11.962026596069336 + ], + [ + "▁metro", + -11.962081909179688 + ], + [ + "▁03", + -11.962299346923828 + ], + [ + "▁enrich", + -11.962437629699707 + ], + [ + "▁adevarat", + -11.962594985961914 + ], + [ + "5000", + -11.962961196899414 + ], + [ + "▁bell", + -11.96297550201416 + ], + [ + "▁sine", + -11.962996482849121 + ], + [ + "▁appealing", + -11.963088989257812 + ], + [ + "clam", + -11.963116645812988 + ], + [ + "▁vorhanden", + -11.963165283203125 + ], + [ + "▁pickup", + -11.963268280029297 + ], + [ + "▁Alaska", + -11.963269233703613 + ], + [ + "▁Nacht", + -11.963300704956055 + ], + [ + "borough", + -11.9633207321167 + ], + [ + "▁Blanc", + -11.96340274810791 + ], + [ + "▁apare", + -11.963616371154785 + ], + [ + "▁Works", + -11.963798522949219 + ], + [ + "mettent", + -11.963801383972168 + ], + [ + "atter", + -11.96389389038086 + ], + [ + "terra", + -11.963946342468262 + ], + [ + "▁Bit", + -11.964105606079102 + ], + [ + "RL", + -11.964131355285645 + ], + [ + "▁Wander", + -11.964262962341309 + ], + [ + "▁Hawk", + -11.964595794677734 + ], + [ + "▁Probleme", + -11.964665412902832 + ], + [ + "regel", + -11.964729309082031 + ], + [ + "hne", + -11.964739799499512 + ], + [ + "fass", + -11.96486759185791 + ], + [ + "▁Andy", + -11.965014457702637 + ], + [ + "▁befinde", + -11.965179443359375 + ], + [ + "boo", + -11.965265274047852 + ], + [ + "▁connectivity", + -11.965304374694824 + ], + [ + "▁spielt", + -11.965418815612793 + ], + [ + "zweiten", + -11.96547794342041 + ], + [ + "ţilor", + -11.965526580810547 + ], + [ + "▁confi", + -11.96561336517334 + ], + [ + "▁schlecht", + -11.965773582458496 + ], + [ + "▁Beginn", + -11.96581745147705 + ], + [ + "▁floating", + -11.965903282165527 + ], + [ + "nimmt", + -11.966071128845215 + ], + [ + "▁arbeiten", + -11.96611213684082 + ], + [ + "pillar", + -11.966131210327148 + ], + [ + "sterreich", + -11.966347694396973 + ], + [ + "▁Schule", + -11.966446876525879 + ], + [ + "▁durée", + -11.966521263122559 + ], + [ + "▁honestly", + -11.96653938293457 + ], + [ + "▁acel", + -11.9666166305542 + ], + [ + "▁Prozess", + -11.96662425994873 + ], + [ + "Min", + -11.966629028320312 + ], + [ + "enii", + -11.966632843017578 + ], + [ + "DAY", + -11.966758728027344 + ], + [ + "▁Blo", + -11.966806411743164 + ], + [ + "▁bolt", + -11.966946601867676 + ], + [ + "sicher", + -11.967070579528809 + ], + [ + "▁17,", + -11.967122077941895 + ], + [ + "▁anchor", + -11.967215538024902 + ], + [ + "▁consistency", + -11.967241287231445 + ], + [ + "▁relatives", + -11.967263221740723 + ], + [ + "▁lac", + -11.967385292053223 + ], + [ + "105", + -11.967432975769043 + ], + [ + "▁Craig", + -11.967534065246582 + ], + [ + "▁mandate", + -11.967598915100098 + ], + [ + "▁bedeutet", + -11.967674255371094 + ], + [ + "▁Soviet", + -11.967680931091309 + ], + [ + "▁arguments", + -11.967938423156738 + ], + [ + "▁Gebäude", + -11.967997550964355 + ], + [ + "▁Parliament", + -11.968005180358887 + ], + [ + "▁Kha", + -11.968087196350098 + ], + [ + "nica", + -11.968130111694336 + ], + [ + "▁Amazing", + -11.968162536621094 + ], + [ + "gründe", + -11.968179702758789 + ], + [ + "▁Ott", + -11.968269348144531 + ], + [ + "Exp", + -11.968314170837402 + ], + [ + "▁ianuarie", + -11.96848201751709 + ], + [ + "riot", + -11.968571662902832 + ], + [ + "▁futur", + -11.968626976013184 + ], + [ + "▁Honda", + -11.968647956848145 + ], + [ + "!!!!", + -11.96865177154541 + ], + [ + "▁citit", + -11.968689918518066 + ], + [ + "▁22,", + -11.968708992004395 + ], + [ + "țional", + -11.968711853027344 + ], + [ + "▁lovers", + -11.968732833862305 + ], + [ + "▁Current", + -11.968835830688477 + ], + [ + "▁drone", + -11.96927261352539 + ], + [ + "▁promising", + -11.969335556030273 + ], + [ + "devoted", + -11.969443321228027 + ], + [ + "▁Born", + -11.969520568847656 + ], + [ + "▁viitor", + -11.969589233398438 + ], + [ + "▁ritual", + -11.969614028930664 + ], + [ + "▁Guard", + -11.969681739807129 + ], + [ + "09.", + -11.969828605651855 + ], + [ + "▁Py", + -11.970260620117188 + ], + [ + "▁finds", + -11.970380783081055 + ], + [ + "▁boli", + -11.970394134521484 + ], + [ + "▁Mitglieder", + -11.970697402954102 + ], + [ + "ogni", + -11.97107982635498 + ], + [ + "▁stones", + -11.97118854522705 + ], + [ + "rox", + -11.971210479736328 + ], + [ + "▁dock", + -11.971390724182129 + ], + [ + "▁onion", + -11.97144889831543 + ], + [ + "▁classified", + -11.971538543701172 + ], + [ + "big", + -11.971833229064941 + ], + [ + "RG", + -11.971857070922852 + ], + [ + "influenced", + -11.971955299377441 + ], + [ + "▁sudden", + -11.971988677978516 + ], + [ + "▁ample", + -11.97204303741455 + ], + [ + "án", + -11.972095489501953 + ], + [ + "▁ornament", + -11.972122192382812 + ], + [ + "datele", + -11.972227096557617 + ], + [ + "▁Dad", + -11.97225284576416 + ], + [ + "BER", + -11.972278594970703 + ], + [ + "gerecht", + -11.972380638122559 + ], + [ + "kett", + -11.972536087036133 + ], + [ + "▁Antonio", + -11.972572326660156 + ], + [ + "Nu", + -11.972834587097168 + ], + [ + "dium", + -11.97284984588623 + ], + [ + "CAD", + -11.972850799560547 + ], + [ + "▁bundle", + -11.972916603088379 + ], + [ + "▁Vari", + -11.97301197052002 + ], + [ + "▁thrive", + -11.973020553588867 + ], + [ + "▁Seminar", + -11.973071098327637 + ], + [ + "wire", + -11.973084449768066 + ], + [ + "▁contributing", + -11.973114967346191 + ], + [ + "▁Bour", + -11.97320556640625 + ], + [ + "▁dori", + -11.973206520080566 + ], + [ + "▁packing", + -11.97343921661377 + ], + [ + "▁colleges", + -11.973459243774414 + ], + [ + "▁garbage", + -11.97366714477539 + ], + [ + "▁vector", + -11.973837852478027 + ], + [ + "▁suggestion", + -11.973897933959961 + ], + [ + "borne", + -11.973904609680176 + ], + [ + "▁Listen", + -11.973938941955566 + ], + [ + "▁Prix", + -11.973957061767578 + ], + [ + "viennent", + -11.974162101745605 + ], + [ + "insbesondere", + -11.97426700592041 + ], + [ + "▁fonctionne", + -11.974435806274414 + ], + [ + "▁mainstream", + -11.974485397338867 + ], + [ + "▁merci", + -11.974574089050293 + ], + [ + "oko", + -11.97460651397705 + ], + [ + "▁Commerce", + -11.97493839263916 + ], + [ + "▁droits", + -11.975115776062012 + ], + [ + "▁muzica", + -11.975141525268555 + ], + [ + "▁profesor", + -11.9751558303833 + ], + [ + "▁epic", + -11.97518253326416 + ], + [ + "▁intuitive", + -11.975186347961426 + ], + [ + "▁aggregate", + -11.975223541259766 + ], + [ + "▁vaccine", + -11.97529411315918 + ], + [ + "▁dank", + -11.975459098815918 + ], + [ + "▁situ", + -11.975578308105469 + ], + [ + "▁Cand", + -11.975593566894531 + ], + [ + "▁Ganz", + -11.97562313079834 + ], + [ + "▁Crystal", + -11.97578239440918 + ], + [ + "▁discretion", + -11.975825309753418 + ], + [ + "mug", + -11.975997924804688 + ], + [ + "▁anzu", + -11.976144790649414 + ], + [ + "▁cement", + -11.97616958618164 + ], + [ + "▁priest", + -11.97625732421875 + ], + [ + "▁rejected", + -11.976298332214355 + ], + [ + "▁Summit", + -11.976325988769531 + ], + [ + "▁Sara", + -11.976424217224121 + ], + [ + "▁palette", + -11.976527214050293 + ], + [ + "▁continuare", + -11.976569175720215 + ], + [ + "uge", + -11.976676940917969 + ], + [ + "ryl", + -11.976844787597656 + ], + [ + "▁Solid", + -11.977142333984375 + ], + [ + "▁meilleure", + -11.977177619934082 + ], + [ + "▁Tennessee", + -11.977248191833496 + ], + [ + "rail", + -11.977326393127441 + ], + [ + "▁attributes", + -11.9773530960083 + ], + [ + "▁vessels", + -11.977840423583984 + ], + [ + "cylinder", + -11.977900505065918 + ], + [ + "▁parfait", + -11.977916717529297 + ], + [ + "abb", + -11.97801399230957 + ], + [ + "▁Julie", + -11.97806167602539 + ], + [ + "▁pièces", + -11.978120803833008 + ], + [ + "▁proiecte", + -11.978142738342285 + ], + [ + "médi", + -11.978273391723633 + ], + [ + "▁décembre", + -11.9783935546875 + ], + [ + "Per", + -11.97841739654541 + ], + [ + "1/", + -11.978520393371582 + ], + [ + "regulated", + -11.978601455688477 + ], + [ + "▁Dy", + -11.978633880615234 + ], + [ + "▁23,", + -11.978694915771484 + ], + [ + "beck", + -11.978763580322266 + ], + [ + "tură", + -11.97885513305664 + ], + [ + "▁Chiar", + -11.978931427001953 + ], + [ + "▁isolated", + -11.979012489318848 + ], + [ + "▁kennen", + -11.979259490966797 + ], + [ + "Du", + -11.979260444641113 + ], + [ + "reflected", + -11.979482650756836 + ], + [ + "▁belong", + -11.979571342468262 + ], + [ + "▁welcomed", + -11.97969913482666 + ], + [ + "▁Rate", + -11.979776382446289 + ], + [ + "prestigious", + -11.979859352111816 + ], + [ + "▁1/4", + -11.979930877685547 + ], + [ + "▁distinction", + -11.979966163635254 + ], + [ + "▁boring", + -11.980001449584961 + ], + [ + "▁booked", + -11.980369567871094 + ], + [ + "▁citizen", + -11.980441093444824 + ], + [ + "▁comprises", + -11.980498313903809 + ], + [ + "▁aufge", + -11.98051929473877 + ], + [ + "GL", + -11.980566024780273 + ], + [ + "▁nearest", + -11.980616569519043 + ], + [ + "▁printr", + -11.980692863464355 + ], + [ + "▁département", + -11.981318473815918 + ], + [ + "▁planner", + -11.981510162353516 + ], + [ + "▁Rai", + -11.981817245483398 + ], + [ + "▁Broad", + -11.981934547424316 + ], + [ + "▁pastor", + -11.981947898864746 + ], + [ + "▁reservation", + -11.982243537902832 + ], + [ + "▁decembrie", + -11.982315063476562 + ], + [ + "▁suficient", + -11.982501983642578 + ], + [ + "geld", + -11.982560157775879 + ], + [ + "training", + -11.982620239257812 + ], + [ + "deshalb", + -11.982634544372559 + ], + [ + "▁chaud", + -11.982651710510254 + ], + [ + "Cor", + -11.982662200927734 + ], + [ + "▁Grade", + -11.982769966125488 + ], + [ + "▁faţă", + -11.982809066772461 + ], + [ + "story", + -11.982839584350586 + ], + [ + "gericht", + -11.98286247253418 + ], + [ + "▁Got", + -11.982954025268555 + ], + [ + "particulièrement", + -11.982976913452148 + ], + [ + "▁bump", + -11.983051300048828 + ], + [ + "▁fatigue", + -11.983160018920898 + ], + [ + "Activ", + -11.983250617980957 + ], + [ + "▁numéro", + -11.983302116394043 + ], + [ + "▁stranger", + -11.983312606811523 + ], + [ + "▁Skin", + -11.983327865600586 + ], + [ + "add", + -11.98344898223877 + ], + [ + "Ainsi", + -11.98357105255127 + ], + [ + "▁assists", + -11.983684539794922 + ], + [ + "▁zusätzlich", + -11.983943939208984 + ], + [ + "▁vede", + -11.983979225158691 + ], + [ + "RON", + -11.984108924865723 + ], + [ + "▁seemingly", + -11.984126091003418 + ], + [ + "▁NU", + -11.98417854309082 + ], + [ + "geb", + -11.984273910522461 + ], + [ + "▁Release", + -11.984353065490723 + ], + [ + "▁throwing", + -11.984427452087402 + ], + [ + "▁Alabama", + -11.984447479248047 + ], + [ + "▁Something", + -11.984590530395508 + ], + [ + "▁Cuba", + -11.98464584350586 + ], + [ + "▁Verbindung", + -11.984649658203125 + ], + [ + "▁Cir", + -11.984654426574707 + ], + [ + "your", + -11.984713554382324 + ], + [ + "-13", + -11.984748840332031 + ], + [ + "▁Delta", + -11.984801292419434 + ], + [ + "▁Twin", + -11.98504638671875 + ], + [ + "▁governance", + -11.985156059265137 + ], + [ + "▁groom", + -11.985310554504395 + ], + [ + "▁conception", + -11.98533821105957 + ], + [ + "▁governor", + -11.985383033752441 + ], + [ + "▁Spar", + -11.985416412353516 + ], + [ + "▁coastal", + -11.985652923583984 + ], + [ + "▁Seven", + -11.985856056213379 + ], + [ + "▁inclusive", + -11.986002922058105 + ], + [ + "cili", + -11.986035346984863 + ], + [ + "▁Ridge", + -11.986100196838379 + ], + [ + "teller", + -11.986224174499512 + ], + [ + "▁Kin", + -11.986247062683105 + ], + [ + "leiter", + -11.986279487609863 + ], + [ + "stern", + -11.986364364624023 + ], + [ + "change", + -11.986404418945312 + ], + [ + "▁presidential", + -11.986433982849121 + ], + [ + "▁composer", + -11.986544609069824 + ], + [ + "Stu", + -11.986560821533203 + ], + [ + "▁Frankfurt", + -11.986584663391113 + ], + [ + "prä", + -11.986639976501465 + ], + [ + "▁Ideal", + -11.986644744873047 + ], + [ + "▁linear", + -11.986857414245605 + ], + [ + "▁bloom", + -11.986879348754883 + ], + [ + "▁grades", + -11.986881256103516 + ], + [ + "mettant", + -11.98692512512207 + ], + [ + "▁finishes", + -11.986952781677246 + ], + [ + "holz", + -11.987086296081543 + ], + [ + "▁dirty", + -11.987317085266113 + ], + [ + "▁Roh", + -11.987386703491211 + ], + [ + "▁Praxis", + -11.987408638000488 + ], + [ + "tempo", + -11.987433433532715 + ], + [ + "▁attempted", + -11.987433433532715 + ], + [ + "▁primar", + -11.987434387207031 + ], + [ + "▁pomp", + -11.987528800964355 + ], + [ + "▁tolle", + -11.987614631652832 + ], + [ + "▁adres", + -11.988011360168457 + ], + [ + "▁Between", + -11.988066673278809 + ], + [ + "▁ruin", + -11.988432884216309 + ], + [ + "▁matériel", + -11.988561630249023 + ], + [ + "MER", + -11.988913536071777 + ], + [ + "Nevertheless", + -11.989055633544922 + ], + [ + "▁corruption", + -11.989119529724121 + ], + [ + "spire", + -11.989180564880371 + ], + [ + "▁mou", + -11.989208221435547 + ], + [ + "ROM", + -11.989278793334961 + ], + [ + "▁underground", + -11.98935604095459 + ], + [ + "▁relativ", + -11.989389419555664 + ], + [ + "waited", + -11.989462852478027 + ], + [ + "▁speeds", + -11.989468574523926 + ], + [ + "▁adjusted", + -11.989486694335938 + ], + [ + "▁Flat", + -11.989514350891113 + ], + [ + "UND", + -11.98965835571289 + ], + [ + "▁individuelle", + -11.989744186401367 + ], + [ + "▁anybody", + -11.98978042602539 + ], + [ + "EO", + -11.989790916442871 + ], + [ + "->", + -11.989791870117188 + ], + [ + "▁Spend", + -11.989876747131348 + ], + [ + "aktion", + -11.990011215209961 + ], + [ + "édit", + -11.99006462097168 + ], + [ + "▁quest", + -11.990078926086426 + ], + [ + "rind", + -11.990541458129883 + ], + [ + "▁mediu", + -11.99057388305664 + ], + [ + "▁barriers", + -11.99062442779541 + ], + [ + "▁répondre", + -11.990633010864258 + ], + [ + "▁novembre", + -11.990708351135254 + ], + [ + "▁champ", + -11.990736961364746 + ], + [ + "saw", + -11.990757942199707 + ], + [ + "▁fed", + -11.990804672241211 + ], + [ + "▁favorites", + -11.990939140319824 + ], + [ + "▁shield", + -11.991055488586426 + ], + [ + "▁Wide", + -11.991146087646484 + ], + [ + "▁problema", + -11.991445541381836 + ], + [ + "▁Asta", + -11.991525650024414 + ], + [ + "▁refreshing", + -11.99168872833252 + ], + [ + "hey", + -11.991692543029785 + ], + [ + "obtaining", + -11.991788864135742 + ], + [ + "▁parler", + -11.992072105407715 + ], + [ + "▁Cele", + -11.992134094238281 + ], + [ + "frage", + -11.992136001586914 + ], + [ + "écran", + -11.992324829101562 + ], + [ + "▁cleared", + -11.992448806762695 + ], + [ + "zehn", + -11.992594718933105 + ], + [ + "parmi", + -11.992647171020508 + ], + [ + "änder", + -11.992691993713379 + ], + [ + "▁Defense", + -11.992693901062012 + ], + [ + "tatea", + -11.992696762084961 + ], + [ + "▁reasonably", + -11.992939949035645 + ], + [ + "▁Idee", + -11.992985725402832 + ], + [ + "nehm", + -11.993000030517578 + ], + [ + "technologie", + -11.993020057678223 + ], + [ + "atura", + -11.993048667907715 + ], + [ + "▁slope", + -11.993332862854004 + ], + [ + "Hence", + -11.993351936340332 + ], + [ + "▁40%", + -11.993391990661621 + ], + [ + "▁jewe", + -11.993448257446289 + ], + [ + "▁queries", + -11.993470191955566 + ], + [ + "▁$8", + -11.994096755981445 + ], + [ + "▁Parker", + -11.994107246398926 + ], + [ + "▁publique", + -11.994488716125488 + ], + [ + "quant", + -11.994529724121094 + ], + [ + "issue", + -11.994690895080566 + ], + [ + "▁Cleveland", + -11.994847297668457 + ], + [ + "4,000", + -11.995071411132812 + ], + [ + "IDE", + -11.995145797729492 + ], + [ + "▁Barbara", + -11.995233535766602 + ], + [ + "udge", + -11.995477676391602 + ], + [ + "corn", + -11.99554443359375 + ], + [ + "veți", + -11.995588302612305 + ], + [ + "▁proteins", + -11.995707511901855 + ], + [ + "▁trăi", + -11.995793342590332 + ], + [ + "▁mijloc", + -11.995842933654785 + ], + [ + "logie", + -11.995884895324707 + ], + [ + "▁Walter", + -11.995884895324707 + ], + [ + "heißt", + -11.99593448638916 + ], + [ + "search", + -11.995946884155273 + ], + [ + "▁hochwertige", + -11.996010780334473 + ], + [ + "▁încerc", + -11.996014595031738 + ], + [ + "▁administrator", + -11.99608039855957 + ], + [ + "tension", + -11.996133804321289 + ], + [ + "▁homemade", + -11.996438026428223 + ], + [ + "▁$20", + -11.99651050567627 + ], + [ + "▁leben", + -11.996662139892578 + ], + [ + "netz", + -11.996665954589844 + ], + [ + "▁intensity", + -11.996882438659668 + ], + [ + "▁clever", + -11.996891975402832 + ], + [ + "▁installer", + -11.996999740600586 + ], + [ + "▁Wand", + -11.997087478637695 + ], + [ + "meister", + -11.997130393981934 + ], + [ + "ziel", + -11.99744701385498 + ], + [ + "▁architect", + -11.99748706817627 + ], + [ + "▁crede", + -11.997512817382812 + ], + [ + "▁Sleep", + -11.997675895690918 + ], + [ + "▁demonstr", + -11.997745513916016 + ], + [ + "cake", + -11.997781753540039 + ], + [ + "▁Cheap", + -11.997783660888672 + ], + [ + "pool", + -11.9979829788208 + ], + [ + "▁gadget", + -11.998004913330078 + ], + [ + "▁Anbieter", + -11.998005867004395 + ], + [ + "▁Jonathan", + -11.998170852661133 + ], + [ + "ül", + -11.998492240905762 + ], + [ + "▁Harvard", + -11.998503684997559 + ], + [ + "▁1985", + -11.998773574829102 + ], + [ + "HP", + -11.998839378356934 + ], + [ + "▁afara", + -11.99893569946289 + ], + [ + "▁halten", + -11.999008178710938 + ], + [ + "▁Technik", + -11.999042510986328 + ], + [ + "▁dressed", + -11.999149322509766 + ], + [ + "weis", + -11.999165534973145 + ], + [ + "▁donated", + -11.9993314743042 + ], + [ + "also", + -11.99938678741455 + ], + [ + "▁EN", + -11.999405860900879 + ], + [ + "▁imprim", + -11.99942398071289 + ], + [ + "▁onions", + -11.999458312988281 + ], + [ + "Par", + -11.99950122833252 + ], + [ + "▁donate", + -11.99958324432373 + ], + [ + "▁mice", + -11.999610900878906 + ], + [ + "referring", + -11.999897956848145 + ], + [ + "▁restored", + -12.00003433227539 + ], + [ + "▁amateur", + -12.0000581741333 + ], + [ + "▁Switch", + -12.000075340270996 + ], + [ + "appel", + -12.00013542175293 + ], + [ + "▁idéal", + -12.0001859664917 + ], + [ + "▁wheat", + -12.000199317932129 + ], + [ + "▁lime", + -12.000240325927734 + ], + [ + "REA", + -12.00027084350586 + ], + [ + "riti", + -12.000357627868652 + ], + [ + "ţiile", + -12.00058364868164 + ], + [ + "▁machinery", + -12.00064754486084 + ], + [ + "UNE", + -12.00089168548584 + ], + [ + "▁Cont", + -12.000971794128418 + ], + [ + "▁attendees", + -12.001014709472656 + ], + [ + "▁aparat", + -12.001080513000488 + ], + [ + "freundlich", + -12.00117301940918 + ], + [ + "▁zilnic", + -12.001175880432129 + ], + [ + "▁spark", + -12.001421928405762 + ], + [ + "▁Gast", + -12.001459121704102 + ], + [ + "▁Issue", + -12.00147533416748 + ], + [ + "▁scam", + -12.001566886901855 + ], + [ + "▁bonds", + -12.001618385314941 + ], + [ + "owner", + -12.001641273498535 + ], + [ + "▁empfehlen", + -12.001673698425293 + ], + [ + "elia", + -12.001749992370605 + ], + [ + "cic", + -12.001757621765137 + ], + [ + "▁honored", + -12.001800537109375 + ], + [ + "▁castle", + -12.001846313476562 + ], + [ + "avand", + -12.002058982849121 + ], + [ + "rough", + -12.002108573913574 + ], + [ + "▁Address", + -12.002116203308105 + ], + [ + "angle", + -12.00217342376709 + ], + [ + "leton", + -12.002259254455566 + ], + [ + "▁locked", + -12.002392768859863 + ], + [ + "▁consolid", + -12.00248908996582 + ], + [ + "▁voucher", + -12.003011703491211 + ], + [ + "ației", + -12.003201484680176 + ], + [ + "wachsen", + -12.003211975097656 + ], + [ + "▁magazines", + -12.003287315368652 + ], + [ + "▁Schools", + -12.003318786621094 + ], + [ + "▁voices", + -12.003362655639648 + ], + [ + "▁Dry", + -12.003479957580566 + ], + [ + "▁tricks", + -12.00349235534668 + ], + [ + "schließlich", + -12.003546714782715 + ], + [ + "▁loyalty", + -12.003687858581543 + ], + [ + "risk", + -12.003764152526855 + ], + [ + "▁Vers", + -12.003786087036133 + ], + [ + "chester", + -12.003802299499512 + ], + [ + "▁decorated", + -12.003830909729004 + ], + [ + "▁copiilor", + -12.003969192504883 + ], + [ + "riz", + -12.003994941711426 + ], + [ + "03.", + -12.004013061523438 + ], + [ + "▁Hur", + -12.004016876220703 + ], + [ + "▁archive", + -12.004021644592285 + ], + [ + "▁Continue", + -12.004042625427246 + ], + [ + "▁Nähe", + -12.004043579101562 + ], + [ + "jit", + -12.004090309143066 + ], + [ + "gekommen", + -12.004301071166992 + ], + [ + "▁conjunction", + -12.004349708557129 + ], + [ + "combining", + -12.004404067993164 + ], + [ + "▁Unterstützung", + -12.004517555236816 + ], + [ + "oza", + -12.004593849182129 + ], + [ + "▁sketch", + -12.004720687866211 + ], + [ + "▁arată", + -12.004731178283691 + ], + [ + "▁Mining", + -12.004765510559082 + ], + [ + "uous", + -12.004791259765625 + ], + [ + "▁devis", + -12.004834175109863 + ], + [ + "Almost", + -12.004862785339355 + ], + [ + "Hu", + -12.005037307739258 + ], + [ + "▁Om", + -12.005366325378418 + ], + [ + "MF", + -12.00544548034668 + ], + [ + "liz", + -12.005451202392578 + ], + [ + "▁fails", + -12.005456924438477 + ], + [ + "▁comparable", + -12.005459785461426 + ], + [ + "▁vein", + -12.005547523498535 + ], + [ + "▁Vis", + -12.00561809539795 + ], + [ + "▁viagra", + -12.005654335021973 + ], + [ + "▁farming", + -12.005678176879883 + ], + [ + "▁Late", + -12.005765914916992 + ], + [ + "geschrieben", + -12.006033897399902 + ], + [ + "hrew", + -12.006103515625 + ], + [ + "▁melt", + -12.006120681762695 + ], + [ + "lager", + -12.006168365478516 + ], + [ + "halte", + -12.006240844726562 + ], + [ + "▁Hotels", + -12.006266593933105 + ], + [ + "▁facebook", + -12.0064058303833 + ], + [ + "▁défi", + -12.006550788879395 + ], + [ + "shore", + -12.006802558898926 + ], + [ + "▁membrane", + -12.006866455078125 + ], + [ + "▁sixth", + -12.006903648376465 + ], + [ + "api", + -12.007003784179688 + ], + [ + "▁Owner", + -12.007222175598145 + ], + [ + "▁(\"", + -12.007234573364258 + ], + [ + "▁$50", + -12.007280349731445 + ], + [ + "▁protective", + -12.007420539855957 + ], + [ + "/2", + -12.007548332214355 + ], + [ + "▁Girls", + -12.007562637329102 + ], + [ + "Gri", + -12.00769329071045 + ], + [ + "▁nouă", + -12.007708549499512 + ], + [ + "▁infections", + -12.007813453674316 + ], + [ + "rân", + -12.007868766784668 + ], + [ + "▁Geb", + -12.0078763961792 + ], + [ + "▁Conseil", + -12.007905006408691 + ], + [ + "▁imagini", + -12.007909774780273 + ], + [ + "▁promotions", + -12.00794792175293 + ], + [ + "▁enforce", + -12.00795841217041 + ], + [ + "▁applicant", + -12.007965087890625 + ], + [ + "▁Apart", + -12.008087158203125 + ], + [ + "▁progression", + -12.008151054382324 + ], + [ + "▁careers", + -12.008511543273926 + ], + [ + "▁litigation", + -12.008533477783203 + ], + [ + "▁Menge", + -12.00866413116455 + ], + [ + "▁Contract", + -12.00871753692627 + ], + [ + "▁Kel", + -12.0087308883667 + ], + [ + "▁réserve", + -12.008769035339355 + ], + [ + "▁Cold", + -12.008870124816895 + ], + [ + "▁larg", + -12.009040832519531 + ], + [ + "▁microwave", + -12.009090423583984 + ], + [ + "▁Whit", + -12.009212493896484 + ], + [ + "▁Technologies", + -12.009381294250488 + ], + [ + "OU", + -12.00949478149414 + ], + [ + "itudine", + -12.00959587097168 + ], + [ + "▁handles", + -12.009895324707031 + ], + [ + "▁proceedings", + -12.009982109069824 + ], + [ + "▁prizes", + -12.010043144226074 + ], + [ + "▁unterstützen", + -12.010062217712402 + ], + [ + "▁piele", + -12.010090827941895 + ], + [ + "▁profound", + -12.010153770446777 + ], + [ + "schließen", + -12.0101957321167 + ], + [ + "▁trafic", + -12.01025104522705 + ], + [ + "▁Nar", + -12.010441780090332 + ], + [ + "▁Gesamt", + -12.0106201171875 + ], + [ + "▁bugs", + -12.010720252990723 + ], + [ + "▁Amy", + -12.010764122009277 + ], + [ + "▁eastern", + -12.010775566101074 + ], + [ + "nice", + -12.010784149169922 + ], + [ + "▁Besuch", + -12.010835647583008 + ], + [ + "▁synth", + -12.010892868041992 + ], + [ + "▁clasa", + -12.011194229125977 + ], + [ + "Book", + -12.01134204864502 + ], + [ + "▁ribbon", + -12.011415481567383 + ], + [ + "▁neues", + -12.011431694030762 + ], + [ + "ZE", + -12.011504173278809 + ], + [ + "▁peers", + -12.011613845825195 + ], + [ + "leistung", + -12.011730194091797 + ], + [ + "▁internship", + -12.011808395385742 + ], + [ + "count", + -12.011850357055664 + ], + [ + "nam", + -12.01193618774414 + ], + [ + "▁12-", + -12.012072563171387 + ], + [ + "acked", + -12.012146949768066 + ], + [ + "gonna", + -12.012146949768066 + ], + [ + "▁Dinge", + -12.01215648651123 + ], + [ + "Time", + -12.012299537658691 + ], + [ + "▁twelve", + -12.01242446899414 + ], + [ + "eye", + -12.012432098388672 + ], + [ + "▁avantaj", + -12.01253604888916 + ], + [ + "▁Glas", + -12.012731552124023 + ], + [ + "aucune", + -12.0127534866333 + ], + [ + "▁boil", + -12.012763977050781 + ], + [ + "▁Gray", + -12.012773513793945 + ], + [ + "adapt", + -12.01288890838623 + ], + [ + "occ", + -12.012895584106445 + ], + [ + "▁prieten", + -12.012897491455078 + ], + [ + "▁trai", + -12.01296615600586 + ], + [ + "▁Scal", + -12.013009071350098 + ], + [ + "▁conscious", + -12.013057708740234 + ], + [ + "▁charter", + -12.013093948364258 + ], + [ + "KS", + -12.013242721557617 + ], + [ + "▁Barr", + -12.013404846191406 + ], + [ + "▁summit", + -12.013411521911621 + ], + [ + "▁inflammation", + -12.013439178466797 + ], + [ + "tungs", + -12.013440132141113 + ], + [ + "ovic", + -12.013449668884277 + ], + [ + "▁conduit", + -12.013465881347656 + ], + [ + "▁Alice", + -12.013702392578125 + ], + [ + "▁veterans", + -12.013850212097168 + ], + [ + "Während", + -12.013944625854492 + ], + [ + "▁maximal", + -12.014013290405273 + ], + [ + "▁Hawaii", + -12.014037132263184 + ], + [ + "▁Pine", + -12.01432991027832 + ], + [ + "acelasi", + -12.014391899108887 + ], + [ + "hyp", + -12.014424324035645 + ], + [ + "sensitivity", + -12.01445198059082 + ], + [ + "pour", + -12.014481544494629 + ], + [ + "ре", + -12.014493942260742 + ], + [ + "▁Kentucky", + -12.015129089355469 + ], + [ + "▁badge", + -12.015276908874512 + ], + [ + "affecting", + -12.015310287475586 + ], + [ + "▁chairman", + -12.015311241149902 + ], + [ + "▁München", + -12.015467643737793 + ], + [ + "▁Hersteller", + -12.015469551086426 + ], + [ + "▁urmat", + -12.015615463256836 + ], + [ + "tels", + -12.015654563903809 + ], + [ + "▁FM", + -12.015701293945312 + ], + [ + "▁Basis", + -12.015732765197754 + ], + [ + "▁erklärt", + -12.015809059143066 + ], + [ + "▁changer", + -12.015859603881836 + ], + [ + "tischen", + -12.0159330368042 + ], + [ + "▁brave", + -12.015960693359375 + ], + [ + "▁siguranta", + -12.015986442565918 + ], + [ + "▁partnerships", + -12.015989303588867 + ], + [ + "ților", + -12.015999794006348 + ], + [ + "▁breathe", + -12.016141891479492 + ], + [ + "rink", + -12.016551971435547 + ], + [ + "▁footage", + -12.016654014587402 + ], + [ + "▁transformed", + -12.016658782958984 + ], + [ + "▁prep", + -12.016866683959961 + ], + [ + "▁upset", + -12.016901969909668 + ], + [ + "▁Native", + -12.017059326171875 + ], + [ + "▁Prima", + -12.017154693603516 + ], + [ + "▁jersey", + -12.017163276672363 + ], + [ + "230", + -12.017182350158691 + ], + [ + "▁lucrurile", + -12.017393112182617 + ], + [ + "▁divine", + -12.017502784729004 + ], + [ + "▁Pit", + -12.017593383789062 + ], + [ + "RIS", + -12.01765251159668 + ], + [ + "▁Cultural", + -12.017672538757324 + ], + [ + "▁exotic", + -12.017786979675293 + ], + [ + "▁tastes", + -12.017881393432617 + ], + [ + "▁bargain", + -12.017913818359375 + ], + [ + "▁optimize", + -12.017985343933105 + ], + [ + "▁électrique", + -12.018012046813965 + ], + [ + "deuxième", + -12.018030166625977 + ], + [ + "▁Gary", + -12.018085479736328 + ], + [ + "▁projection", + -12.018122673034668 + ], + [ + "▁sliding", + -12.018195152282715 + ], + [ + "club", + -12.018216133117676 + ], + [ + "association", + -12.01823902130127 + ], + [ + "▁LG", + -12.018259048461914 + ], + [ + "▁capsule", + -12.018291473388672 + ], + [ + "▁politicians", + -12.018397331237793 + ], + [ + "▁thumb", + -12.018423080444336 + ], + [ + "▁globally", + -12.018743515014648 + ], + [ + "positioned", + -12.018796920776367 + ], + [ + "▁Hamilton", + -12.018861770629883 + ], + [ + "arme", + -12.018881797790527 + ], + [ + "▁efectuat", + -12.018881797790527 + ], + [ + "zip", + -12.019111633300781 + ], + [ + "▁welfare", + -12.019201278686523 + ], + [ + "Leistung", + -12.019230842590332 + ], + [ + "▁Bac", + -12.019316673278809 + ], + [ + "▁fizic", + -12.019338607788086 + ], + [ + "OK", + -12.019454002380371 + ], + [ + "▁limba", + -12.019545555114746 + ], + [ + "▁wardrobe", + -12.019549369812012 + ], + [ + "▁offline", + -12.019627571105957 + ], + [ + "▁fortune", + -12.019665718078613 + ], + [ + "▁dialog", + -12.019681930541992 + ], + [ + "▁dramatically", + -12.01997184753418 + ], + [ + "▁NYC", + -12.020045280456543 + ], + [ + "▁Rem", + -12.02017593383789 + ], + [ + "▁bronze", + -12.020455360412598 + ], + [ + "▁pulse", + -12.02053451538086 + ], + [ + "Fortunately", + -12.020562171936035 + ], + [ + "▁glue", + -12.020596504211426 + ], + [ + "▁Expo", + -12.020720481872559 + ], + [ + "▁profitable", + -12.020776748657227 + ], + [ + "▁distributor", + -12.020845413208008 + ], + [ + "abilité", + -12.020869255065918 + ], + [ + "▁lyrics", + -12.020913124084473 + ], + [ + "▁mesh", + -12.02114486694336 + ], + [ + "▁organizational", + -12.021157264709473 + ], + [ + "▁vanilla", + -12.021249771118164 + ], + [ + "▁foc", + -12.021355628967285 + ], + [ + "▁1984", + -12.02147388458252 + ], + [ + "▁créé", + -12.02172565460205 + ], + [ + "▁servi", + -12.022027969360352 + ], + [ + "▁underneath", + -12.022095680236816 + ], + [ + "▁surveys", + -12.022143363952637 + ], + [ + "▁genes", + -12.022238731384277 + ], + [ + "▁limite", + -12.02224349975586 + ], + [ + "oder", + -12.022247314453125 + ], + [ + "▁mandatory", + -12.022269248962402 + ], + [ + "▁hospitality", + -12.022303581237793 + ], + [ + "▁bikes", + -12.022309303283691 + ], + [ + "▁Quote", + -12.022358894348145 + ], + [ + "glu", + -12.02241039276123 + ], + [ + "▁activitatea", + -12.022513389587402 + ], + [ + "preventing", + -12.022584915161133 + ], + [ + "▁Kh", + -12.02259635925293 + ], + [ + "économie", + -12.022616386413574 + ], + [ + "▁visite", + -12.022757530212402 + ], + [ + "▁spectacle", + -12.022778511047363 + ], + [ + "▁tract", + -12.022860527038574 + ], + [ + "▁quant", + -12.022862434387207 + ], + [ + "▁evolu", + -12.022866249084473 + ], + [ + "▁invata", + -12.023070335388184 + ], + [ + "▁homo", + -12.02311897277832 + ], + [ + "▁Users", + -12.02344799041748 + ], + [ + "introducing", + -12.023632049560547 + ], + [ + "hibi", + -12.023661613464355 + ], + [ + "▁Instrument", + -12.023805618286133 + ], + [ + "▁ép", + -12.023839950561523 + ], + [ + "▁Raj", + -12.023869514465332 + ], + [ + "▁executives", + -12.023881912231445 + ], + [ + "atoire", + -12.023885726928711 + ], + [ + "▁erforderlich", + -12.02397346496582 + ], + [ + "male", + -12.024211883544922 + ], + [ + "umble", + -12.024271011352539 + ], + [ + "erson", + -12.024277687072754 + ], + [ + "▁Treatment", + -12.024286270141602 + ], + [ + "▁Representative", + -12.024314880371094 + ], + [ + "▁corners", + -12.024409294128418 + ], + [ + "▁Petit", + -12.024599075317383 + ], + [ + "8)", + -12.02464771270752 + ], + [ + "▁Walker", + -12.024714469909668 + ], + [ + "▁Stir", + -12.02476692199707 + ], + [ + "/19", + -12.024767875671387 + ], + [ + "▁Stelle", + -12.024979591369629 + ], + [ + "ără", + -12.025009155273438 + ], + [ + "osse", + -12.025166511535645 + ], + [ + "2000", + -12.025189399719238 + ], + [ + "▁McG", + -12.025580406188965 + ], + [ + "DV", + -12.025773048400879 + ], + [ + "▁Firm", + -12.025862693786621 + ], + [ + "▁packet", + -12.025904655456543 + ], + [ + "Toate", + -12.02640438079834 + ], + [ + "▁institutional", + -12.026479721069336 + ], + [ + "rug", + -12.026663780212402 + ], + [ + "DG", + -12.026837348937988 + ], + [ + "fine", + -12.026837348937988 + ], + [ + "bringen", + -12.026856422424316 + ], + [ + "▁Horse", + -12.026921272277832 + ], + [ + "▁premiere", + -12.026937484741211 + ], + [ + "▁Că", + -12.027026176452637 + ], + [ + "acheter", + -12.02703857421875 + ], + [ + "▁Afghanistan", + -12.027053833007812 + ], + [ + "▁Prop", + -12.027085304260254 + ], + [ + "ühr", + -12.02715015411377 + ], + [ + "▁braucht", + -12.027398109436035 + ], + [ + "▁sunny", + -12.027424812316895 + ], + [ + "▁Sach", + -12.027461051940918 + ], + [ + "▁volumes", + -12.02753734588623 + ], + [ + "tinut", + -12.02759838104248 + ], + [ + "▁Sho", + -12.027722358703613 + ], + [ + "▁winds", + -12.027735710144043 + ], + [ + "▁Mall", + -12.027873992919922 + ], + [ + "ledge", + -12.027937889099121 + ], + [ + "▁sciences", + -12.027997016906738 + ], + [ + "plication", + -12.028024673461914 + ], + [ + "VR", + -12.028068542480469 + ], + [ + "destin", + -12.028234481811523 + ], + [ + "▁früh", + -12.02833366394043 + ], + [ + "▁tongue", + -12.028359413146973 + ], + [ + "▁Jennifer", + -12.028425216674805 + ], + [ + "▁bracket", + -12.028427124023438 + ], + [ + "▁episodes", + -12.02845287322998 + ], + [ + "breite", + -12.028461456298828 + ], + [ + "▁stoc", + -12.028635025024414 + ], + [ + "ilia", + -12.028728485107422 + ], + [ + "▁Gulf", + -12.02874755859375 + ], + [ + "▁transparency", + -12.028768539428711 + ], + [ + "Industrie", + -12.028853416442871 + ], + [ + "▁viewers", + -12.028916358947754 + ], + [ + "AIN", + -12.029129981994629 + ], + [ + "▁Registration", + -12.029149055480957 + ], + [ + "/4", + -12.029309272766113 + ], + [ + "▁fera", + -12.029337882995605 + ], + [ + "▁06", + -12.029351234436035 + ], + [ + "▁einzu", + -12.029391288757324 + ], + [ + "enburg", + -12.02944278717041 + ], + [ + "▁eff", + -12.029449462890625 + ], + [ + "▁Stage", + -12.029558181762695 + ], + [ + "▁Cour", + -12.029685020446777 + ], + [ + "indu", + -12.029836654663086 + ], + [ + "▁Tools", + -12.029909133911133 + ], + [ + "IST", + -12.029921531677246 + ], + [ + "grund", + -12.030105590820312 + ], + [ + "seitig", + -12.030153274536133 + ], + [ + "pai", + -12.030250549316406 + ], + [ + "▁waist", + -12.030350685119629 + ], + [ + "▁Therapy", + -12.03049373626709 + ], + [ + "▁nomination", + -12.030599594116211 + ], + [ + "▁seama", + -12.030790328979492 + ], + [ + "▁analyse", + -12.030975341796875 + ], + [ + "▁emerge", + -12.031044006347656 + ], + [ + "▁adjustment", + -12.031106948852539 + ], + [ + "▁stroll", + -12.031106948852539 + ], + [ + "▁Beyond", + -12.031174659729004 + ], + [ + "▁legally", + -12.03122615814209 + ], + [ + "▁gauge", + -12.03123664855957 + ], + [ + "▁26,", + -12.031360626220703 + ], + [ + "Tex", + -12.031390190124512 + ], + [ + "economic", + -12.031488418579102 + ], + [ + "stoffe", + -12.031532287597656 + ], + [ + "Wir", + -12.031559944152832 + ], + [ + "ffen", + -12.031601905822754 + ], + [ + "▁acoperi", + -12.031609535217285 + ], + [ + "▁finale", + -12.031792640686035 + ], + [ + "▁theoretical", + -12.031864166259766 + ], + [ + "1.3", + -12.031875610351562 + ], + [ + "anim", + -12.031888008117676 + ], + [ + "▁separation", + -12.031928062438965 + ], + [ + "agence", + -12.031937599182129 + ], + [ + "▁réalisé", + -12.032069206237793 + ], + [ + "sprech", + -12.03215503692627 + ], + [ + "▁embedded", + -12.032208442687988 + ], + [ + "▁defence", + -12.032242774963379 + ], + [ + "éni", + -12.032569885253906 + ], + [ + "▁Norman", + -12.032613754272461 + ], + [ + "▁insgesamt", + -12.032621383666992 + ], + [ + "▁reminde", + -12.032631874084473 + ], + [ + "▁timeline", + -12.032703399658203 + ], + [ + "▁symbols", + -12.032770156860352 + ], + [ + "▁booth", + -12.032783508300781 + ], + [ + "▁Window", + -12.032788276672363 + ], + [ + "▁Titan", + -12.032910346984863 + ], + [ + "înt", + -12.033021926879883 + ], + [ + "▁langa", + -12.033021926879883 + ], + [ + "isant", + -12.03303337097168 + ], + [ + "hart", + -12.033113479614258 + ], + [ + "broader", + -12.033266067504883 + ], + [ + "▁stays", + -12.033288955688477 + ], + [ + "dur", + -12.033488273620605 + ], + [ + "▁Actually", + -12.033514022827148 + ], + [ + "works", + -12.03351879119873 + ], + [ + "▁réussi", + -12.03357219696045 + ], + [ + "▁performant", + -12.033658981323242 + ], + [ + "▁banana", + -12.033788681030273 + ], + [ + "▁baked", + -12.033870697021484 + ], + [ + "▁Parlament", + -12.033931732177734 + ], + [ + "▁Legend", + -12.033967018127441 + ], + [ + "toata", + -12.034172058105469 + ], + [ + "platte", + -12.03419017791748 + ], + [ + "▁Mou", + -12.034192085266113 + ], + [ + "HL", + -12.034235000610352 + ], + [ + "▁(8", + -12.034290313720703 + ], + [ + "▁accepting", + -12.034313201904297 + ], + [ + "▁Senator", + -12.034340858459473 + ], + [ + "▁consciousness", + -12.034396171569824 + ], + [ + "▁conducting", + -12.0344820022583 + ], + [ + "▁panic", + -12.034833908081055 + ], + [ + "▁FDA", + -12.035112380981445 + ], + [ + "▁(7", + -12.035163879394531 + ], + [ + "tool", + -12.035300254821777 + ], + [ + "▁Shipping", + -12.03538703918457 + ], + [ + "▁hop", + -12.035545349121094 + ], + [ + "▁conferences", + -12.03564167022705 + ], + [ + "▁pork", + -12.035661697387695 + ], + [ + "▁spam", + -12.035730361938477 + ], + [ + "▁interesant", + -12.035815238952637 + ], + [ + "▁Tagen", + -12.03581714630127 + ], + [ + "sig", + -12.035886764526367 + ], + [ + "étro", + -12.036044120788574 + ], + [ + "▁legendary", + -12.036449432373047 + ], + [ + "▁Alternative", + -12.036643981933594 + ], + [ + "iana", + -12.036704063415527 + ], + [ + "▁responsable", + -12.036888122558594 + ], + [ + "▁Mihai", + -12.037237167358398 + ], + [ + "▁decreased", + -12.037345886230469 + ], + [ + "▁organised", + -12.037485122680664 + ], + [ + "▁Lamp", + -12.037589073181152 + ], + [ + "litz", + -12.037622451782227 + ], + [ + "ohn", + -12.037622451782227 + ], + [ + "▁moteur", + -12.0376615524292 + ], + [ + "III", + -12.03768539428711 + ], + [ + "▁Montag", + -12.037755012512207 + ], + [ + "▁naturel", + -12.037814140319824 + ], + [ + "▁Hus", + -12.037842750549316 + ], + [ + "▁Schl", + -12.037884712219238 + ], + [ + "ains", + -12.037968635559082 + ], + [ + "▁dying", + -12.0380859375 + ], + [ + "▁HIV", + -12.038115501403809 + ], + [ + "],", + -12.038164138793945 + ], + [ + "alität", + -12.03818416595459 + ], + [ + "▁institute", + -12.038249015808105 + ], + [ + "mix", + -12.038433074951172 + ], + [ + "▁Regulation", + -12.038453102111816 + ], + [ + "▁pagina", + -12.03857707977295 + ], + [ + "▁Awesome", + -12.03860092163086 + ], + [ + "▁Official", + -12.03860092163086 + ], + [ + "▁Minute", + -12.038601875305176 + ], + [ + "▁dairy", + -12.038787841796875 + ], + [ + "▁carti", + -12.038881301879883 + ], + [ + "isk", + -12.039091110229492 + ], + [ + "▁thrilled", + -12.039138793945312 + ], + [ + "▁german", + -12.039172172546387 + ], + [ + "▁frustration", + -12.039228439331055 + ], + [ + "▁forums", + -12.03927230834961 + ], + [ + "command", + -12.039361000061035 + ], + [ + "▁router", + -12.039399147033691 + ], + [ + "▁Lösung", + -12.039423942565918 + ], + [ + "white", + -12.039470672607422 + ], + [ + "▁synthetic", + -12.039487838745117 + ], + [ + "▁retrouver", + -12.039554595947266 + ], + [ + "alle", + -12.039621353149414 + ], + [ + "daran", + -12.039653778076172 + ], + [ + "▁wahr", + -12.039697647094727 + ], + [ + "▁paths", + -12.039875984191895 + ], + [ + "▁unver", + -12.039962768554688 + ], + [ + "▁Environment", + -12.0400972366333 + ], + [ + "▁médecin", + -12.040510177612305 + ], + [ + "crypt", + -12.040572166442871 + ], + [ + "▁pursuit", + -12.040595054626465 + ], + [ + "flat", + -12.040611267089844 + ], + [ + "bron", + -12.040698051452637 + ], + [ + "▁Specialist", + -12.040852546691895 + ], + [ + "▁Vent", + -12.041157722473145 + ], + [ + "Gen", + -12.04132080078125 + ], + [ + "▁attraction", + -12.04132080078125 + ], + [ + "▁piese", + -12.041372299194336 + ], + [ + "CHE", + -12.041665077209473 + ], + [ + "fähig", + -12.04172420501709 + ], + [ + "▁28,", + -12.041773796081543 + ], + [ + "defender", + -12.041810989379883 + ], + [ + "▁stupid", + -12.04181957244873 + ], + [ + "enfin", + -12.04185962677002 + ], + [ + "▁composite", + -12.04207706451416 + ], + [ + "fragen", + -12.042202949523926 + ], + [ + "Part", + -12.042232513427734 + ], + [ + "may", + -12.042238235473633 + ], + [ + "▁Bucureşti", + -12.042248725891113 + ], + [ + "▁février", + -12.042248725891113 + ], + [ + "RED", + -12.042417526245117 + ], + [ + "▁makers", + -12.042462348937988 + ], + [ + "▁guns", + -12.042594909667969 + ], + [ + "▁pasta", + -12.042706489562988 + ], + [ + "STR", + -12.04271125793457 + ], + [ + "▁worthy", + -12.042760848999023 + ], + [ + "Poate", + -12.042783737182617 + ], + [ + "▁101", + -12.04286003112793 + ], + [ + "▁souhaitez", + -12.04299545288086 + ], + [ + "GN", + -12.043449401855469 + ], + [ + "drive", + -12.043499946594238 + ], + [ + "▁aveti", + -12.043582916259766 + ], + [ + "▁eventual", + -12.043591499328613 + ], + [ + "▁américain", + -12.043642044067383 + ], + [ + "▁Mine", + -12.043678283691406 + ], + [ + "▁sunset", + -12.043729782104492 + ], + [ + "▁Choice", + -12.043844223022461 + ], + [ + "▁offset", + -12.043944358825684 + ], + [ + "APP", + -12.04410457611084 + ], + [ + "▁suchen", + -12.044130325317383 + ], + [ + "▁aduc", + -12.044228553771973 + ], + [ + "▁Unternehmens", + -12.044342041015625 + ], + [ + "▁//", + -12.044651985168457 + ], + [ + "▁astept", + -12.044678688049316 + ], + [ + "▁Birthday", + -12.045061111450195 + ], + [ + "▁barn", + -12.045083999633789 + ], + [ + "apport", + -12.045105934143066 + ], + [ + "▁collar", + -12.045212745666504 + ], + [ + "▁gefunden", + -12.045294761657715 + ], + [ + "▁Hai", + -12.045429229736328 + ], + [ + "▁Soul", + -12.045441627502441 + ], + [ + "ismus", + -12.045654296875 + ], + [ + "letzt", + -12.045754432678223 + ], + [ + "▁maker", + -12.045841217041016 + ], + [ + "▁executed", + -12.045857429504395 + ], + [ + "▁Forschung", + -12.045915603637695 + ], + [ + "▁täglich", + -12.045958518981934 + ], + [ + "▁tailor", + -12.045960426330566 + ], + [ + "▁headquarters", + -12.0460844039917 + ], + [ + "▁physicians", + -12.046112060546875 + ], + [ + "▁Scout", + -12.046126365661621 + ], + [ + "folgen", + -12.046175003051758 + ], + [ + "▁cycling", + -12.046184539794922 + ], + [ + "mindestens", + -12.04620361328125 + ], + [ + "▁joli", + -12.046216011047363 + ], + [ + "▁classification", + -12.046225547790527 + ], + [ + "▁Führung", + -12.046258926391602 + ], + [ + "▁peau", + -12.04629135131836 + ], + [ + "INT", + -12.046502113342285 + ], + [ + "▁Garage", + -12.046664237976074 + ], + [ + "teile", + -12.046714782714844 + ], + [ + "util", + -12.046716690063477 + ], + [ + "▁petrec", + -12.046751022338867 + ], + [ + "▁Nevada", + -12.046826362609863 + ], + [ + "▁laisser", + -12.04706859588623 + ], + [ + "▁territoire", + -12.047131538391113 + ], + [ + "▁fichier", + -12.047154426574707 + ], + [ + "▁Formula", + -12.047343254089355 + ], + [ + "scopul", + -12.047379493713379 + ], + [ + "▁Tee", + -12.047486305236816 + ], + [ + "▁Monte", + -12.047529220581055 + ], + [ + "▁pumpkin", + -12.04757022857666 + ], + [ + "▁picnic", + -12.047589302062988 + ], + [ + "▁occupation", + -12.047652244567871 + ], + [ + "▁numérique", + -12.047831535339355 + ], + [ + "linie", + -12.04786491394043 + ], + [ + "▁masina", + -12.048117637634277 + ], + [ + "▁Prä", + -12.048173904418945 + ], + [ + "▁dezvoltare", + -12.048177719116211 + ], + [ + "▁vient", + -12.048291206359863 + ], + [ + "▁ranks", + -12.048295021057129 + ], + [ + "▁Bruce", + -12.048420906066895 + ], + [ + "▁seara", + -12.048433303833008 + ], + [ + "▁hungry", + -12.048563003540039 + ], + [ + "▁resolved", + -12.048650741577148 + ], + [ + "paired", + -12.048735618591309 + ], + [ + "▁Congratulations", + -12.048881530761719 + ], + [ + "▁religi", + -12.048918724060059 + ], + [ + "sätze", + -12.04897689819336 + ], + [ + "▁Eat", + -12.049172401428223 + ], + [ + "▁dense", + -12.049442291259766 + ], + [ + "▁slice", + -12.049447059631348 + ], + [ + "▁mulți", + -12.049463272094727 + ], + [ + "▁vorbe", + -12.049517631530762 + ], + [ + "▁terminate", + -12.049779891967773 + ], + [ + "worm", + -12.049880981445312 + ], + [ + "ignon", + -12.0499267578125 + ], + [ + "▁Howard", + -12.049992561340332 + ], + [ + "▁toddler", + -12.050017356872559 + ], + [ + "▁waters", + -12.050033569335938 + ], + [ + "▁graduates", + -12.0501708984375 + ], + [ + "▁fundraising", + -12.050298690795898 + ], + [ + "06.", + -12.05031967163086 + ], + [ + "▁scent", + -12.050346374511719 + ], + [ + "▁CPU", + -12.050406455993652 + ], + [ + "▁Kid", + -12.05045223236084 + ], + [ + "▁Years", + -12.050460815429688 + ], + [ + "▁Oktober", + -12.05063533782959 + ], + [ + "filled", + -12.050726890563965 + ], + [ + "▁Laser", + -12.05079460144043 + ], + [ + "▁tut", + -12.051032066345215 + ], + [ + "ively", + -12.051101684570312 + ], + [ + "▁WiFi", + -12.051161766052246 + ], + [ + "standen", + -12.051176071166992 + ], + [ + "▁publié", + -12.051243782043457 + ], + [ + "▁explaining", + -12.051279067993164 + ], + [ + "trieb", + -12.051288604736328 + ], + [ + "▁Rapid", + -12.0513334274292 + ], + [ + "▁unterstützt", + -12.051352500915527 + ], + [ + "▁Sonnen", + -12.051401138305664 + ], + [ + "▁lenses", + -12.05141544342041 + ], + [ + "▁pressing", + -12.051477432250977 + ], + [ + "▁respected", + -12.051657676696777 + ], + [ + "adapted", + -12.051706314086914 + ], + [ + "Don", + -12.051726341247559 + ], + [ + "▁mun", + -12.051733016967773 + ], + [ + "MAR", + -12.05180835723877 + ], + [ + "▁seam", + -12.051852226257324 + ], + [ + "chev", + -12.052140235900879 + ], + [ + "▁Sozial", + -12.052424430847168 + ], + [ + "▁Arabia", + -12.052485466003418 + ], + [ + "▁equation", + -12.05257511138916 + ], + [ + "▁elevi", + -12.052780151367188 + ], + [ + "▁piata", + -12.052868843078613 + ], + [ + "JA", + -12.052873611450195 + ], + [ + "▁wholesale", + -12.052887916564941 + ], + [ + "▁faithful", + -12.05296516418457 + ], + [ + "legal", + -12.053092002868652 + ], + [ + "▁Brexit", + -12.053095817565918 + ], + [ + "vention", + -12.053120613098145 + ], + [ + "▁adhere", + -12.053221702575684 + ], + [ + "▁Associate", + -12.053257942199707 + ], + [ + "▁decorations", + -12.053272247314453 + ], + [ + "▁crois", + -12.053359985351562 + ], + [ + "buck", + -12.053370475769043 + ], + [ + "▁smartphones", + -12.053421020507812 + ], + [ + "Regardless", + -12.053427696228027 + ], + [ + "center", + -12.053434371948242 + ], + [ + "eiß", + -12.053481101989746 + ], + [ + "▁emotion", + -12.053584098815918 + ], + [ + "▁Gespräch", + -12.053797721862793 + ], + [ + "▁Avi", + -12.053963661193848 + ], + [ + "▁loft", + -12.054059982299805 + ], + [ + "▁Wissen", + -12.054391860961914 + ], + [ + "▁orchestra", + -12.05439567565918 + ], + [ + "▁gehören", + -12.054421424865723 + ], + [ + "▁Reich", + -12.054532051086426 + ], + [ + "▁abandoned", + -12.054548263549805 + ], + [ + "▁Lanka", + -12.054586410522461 + ], + [ + "pala", + -12.054832458496094 + ], + [ + "▁Stell", + -12.054838180541992 + ], + [ + "logged", + -12.054924964904785 + ], + [ + "terie", + -12.054935455322266 + ], + [ + "▁educa", + -12.054954528808594 + ], + [ + "1).", + -12.055097579956055 + ], + [ + "▁disponibil", + -12.055119514465332 + ], + [ + "IND", + -12.055197715759277 + ], + [ + "▁Pont", + -12.055288314819336 + ], + [ + "▁téléphone", + -12.055398941040039 + ], + [ + "▁rope", + -12.055595397949219 + ], + [ + "ève", + -12.055622100830078 + ], + [ + "▁Trainer", + -12.056062698364258 + ], + [ + "▁présence", + -12.0560941696167 + ], + [ + "▁Oscar", + -12.056121826171875 + ], + [ + "▁VR", + -12.056342124938965 + ], + [ + "▁Besucher", + -12.056357383728027 + ], + [ + "▁disponibles", + -12.056447982788086 + ], + [ + "▁gelten", + -12.056604385375977 + ], + [ + "▁ports", + -12.056645393371582 + ], + [ + "Invest", + -12.056693077087402 + ], + [ + "ésormais", + -12.056795120239258 + ], + [ + "schauen", + -12.056880950927734 + ], + [ + "▁Command", + -12.056958198547363 + ], + [ + "▁alternate", + -12.05709171295166 + ], + [ + "citation", + -12.05713939666748 + ], + [ + "évolution", + -12.05714225769043 + ], + [ + "▁Maine", + -12.057145118713379 + ], + [ + "pflege", + -12.057174682617188 + ], + [ + "2011", + -12.057343482971191 + ], + [ + "▁Ground", + -12.057364463806152 + ], + [ + "▁ghost", + -12.057418823242188 + ], + [ + "lebt", + -12.057530403137207 + ], + [ + "▁scenarios", + -12.057595252990723 + ], + [ + "▁mall", + -12.057634353637695 + ], + [ + "▁Kings", + -12.057653427124023 + ], + [ + "▁15%", + -12.057848930358887 + ], + [ + "▁Paint", + -12.057848930358887 + ], + [ + "FD", + -12.057849884033203 + ], + [ + "ugg", + -12.058011054992676 + ], + [ + "▁Leon", + -12.058023452758789 + ], + [ + "▁grows", + -12.058135032653809 + ], + [ + "▁pharmacy", + -12.058384895324707 + ], + [ + "▁situat", + -12.0584135055542 + ], + [ + "20,000", + -12.05855941772461 + ], + [ + "▁10,000", + -12.058760643005371 + ], + [ + "▁membre", + -12.058771133422852 + ], + [ + "▁facilement", + -12.058806419372559 + ], + [ + "▁Analytics", + -12.058915138244629 + ], + [ + "▁Marvel", + -12.058930397033691 + ], + [ + "▁survived", + -12.059097290039062 + ], + [ + "▁conviction", + -12.059124946594238 + ], + [ + "▁Produktion", + -12.059260368347168 + ], + [ + "▁professionally", + -12.059293746948242 + ], + [ + "▁contributor", + -12.059486389160156 + ], + [ + "▁Kurs", + -12.059503555297852 + ], + [ + "▁humor", + -12.059549331665039 + ], + [ + "▁cinci", + -12.059609413146973 + ], + [ + "▁Different", + -12.059670448303223 + ], + [ + "▁Verarbeitung", + -12.059800148010254 + ], + [ + "▁inexpensive", + -12.059800148010254 + ], + [ + "▁sortie", + -12.05980110168457 + ], + [ + "▁thankful", + -12.059951782226562 + ], + [ + "▁vacances", + -12.059978485107422 + ], + [ + "▁vergangen", + -12.059979438781738 + ], + [ + "▁wings", + -12.05998420715332 + ], + [ + "▁nano", + -12.06003475189209 + ], + [ + "▁touches", + -12.060088157653809 + ], + [ + "▁Notice", + -12.060348510742188 + ], + [ + "▁reprezinta", + -12.060466766357422 + ], + [ + "▁rewarding", + -12.060555458068848 + ], + [ + "▁Kurz", + -12.060580253601074 + ], + [ + "▁mega", + -12.060611724853516 + ], + [ + "▁secrets", + -12.060646057128906 + ], + [ + "▁vorher", + -12.060667037963867 + ], + [ + "▁crescut", + -12.06074333190918 + ], + [ + "▁coordination", + -12.060754776000977 + ], + [ + "▁dissertation", + -12.060863494873047 + ], + [ + "▁header", + -12.060873985290527 + ], + [ + "existent", + -12.061070442199707 + ], + [ + "thal", + -12.061185836791992 + ], + [ + "▁translate", + -12.061214447021484 + ], + [ + "vertrag", + -12.06124210357666 + ], + [ + "GU", + -12.06126594543457 + ], + [ + "▁Arthur", + -12.061315536499023 + ], + [ + "wahl", + -12.061534881591797 + ], + [ + "▁octobre", + -12.061573028564453 + ], + [ + "▁bother", + -12.06157398223877 + ], + [ + "▁pencil", + -12.061580657958984 + ], + [ + "▁Dyna", + -12.061604499816895 + ], + [ + "▁complimentary", + -12.061651229858398 + ], + [ + "écoute", + -12.061676979064941 + ], + [ + "PB", + -12.061722755432129 + ], + [ + "▁independently", + -12.061759948730469 + ], + [ + "▁targeting", + -12.061840057373047 + ], + [ + "fought", + -12.061944961547852 + ], + [ + "mental", + -12.062112808227539 + ], + [ + "▁Veranstaltung", + -12.062300682067871 + ], + [ + "▁tatsächlich", + -12.062314987182617 + ], + [ + "▁Features", + -12.0625 + ], + [ + "▁1920", + -12.062554359436035 + ], + [ + "▁Domain", + -12.062885284423828 + ], + [ + "▁rally", + -12.062901496887207 + ], + [ + "▁iunie", + -12.063036918640137 + ], + [ + "▁fabrics", + -12.063070297241211 + ], + [ + "▁mint", + -12.063331604003906 + ], + [ + "▁antioxidant", + -12.063347816467285 + ], + [ + "hut", + -12.063432693481445 + ], + [ + "EPA", + -12.063496589660645 + ], + [ + "▁rigid", + -12.063498497009277 + ], + [ + "▁evit", + -12.063549995422363 + ], + [ + "▁personnage", + -12.063977241516113 + ], + [ + "▁garanti", + -12.0640287399292 + ], + [ + "▁Hä", + -12.064042091369629 + ], + [ + "▁Days", + -12.064048767089844 + ], + [ + "boarding", + -12.064050674438477 + ], + [ + "jemand", + -12.064166069030762 + ], + [ + "▁Pos", + -12.064262390136719 + ], + [ + "▁wool", + -12.064288139343262 + ], + [ + "▁boom", + -12.064349174499512 + ], + [ + "▁wichtige", + -12.06447982788086 + ], + [ + "▁emerged", + -12.064517974853516 + ], + [ + "▁smoothly", + -12.064802169799805 + ], + [ + "▁Interview", + -12.064942359924316 + ], + [ + "gemäß", + -12.06505012512207 + ], + [ + "▁suivi", + -12.065064430236816 + ], + [ + "▁missions", + -12.065129280090332 + ], + [ + "▁Kreis", + -12.065328598022461 + ], + [ + "century", + -12.065348625183105 + ], + [ + "▁tuned", + -12.065370559692383 + ], + [ + "isieren", + -12.065407752990723 + ], + [ + "▁Branch", + -12.065427780151367 + ], + [ + "▁Russell", + -12.065483093261719 + ], + [ + "▁**", + -12.065519332885742 + ], + [ + "▁Lehr", + -12.065617561340332 + ], + [ + "▁perspectives", + -12.065690040588379 + ], + [ + "▁handed", + -12.06570816040039 + ], + [ + "▁apporte", + -12.065743446350098 + ], + [ + "unta", + -12.065959930419922 + ], + [ + "▁contemplat", + -12.066255569458008 + ], + [ + "riel", + -12.06633472442627 + ], + [ + "▁freely", + -12.066341400146484 + ], + [ + "▁loyal", + -12.066451072692871 + ], + [ + "▁evolved", + -12.066518783569336 + ], + [ + "▁Cafe", + -12.066548347473145 + ], + [ + "▁assignments", + -12.066598892211914 + ], + [ + "▁Cream", + -12.066718101501465 + ], + [ + "▁Build", + -12.066731452941895 + ], + [ + "▁exams", + -12.066746711730957 + ], + [ + "▁graduation", + -12.066765785217285 + ], + [ + "▁Dining", + -12.066773414611816 + ], + [ + "inne", + -12.06684398651123 + ], + [ + "▁propriu", + -12.067055702209473 + ], + [ + "▁accordingly", + -12.067241668701172 + ], + [ + "▁seniors", + -12.067484855651855 + ], + [ + "▁sisters", + -12.067505836486816 + ], + [ + "formerly", + -12.067658424377441 + ], + [ + "▁fleur", + -12.067702293395996 + ], + [ + "▁alten", + -12.067802429199219 + ], + [ + "▁Gefühl", + -12.06797981262207 + ], + [ + "▁freeze", + -12.068222045898438 + ], + [ + "▁structured", + -12.068312644958496 + ], + [ + "▁reserved", + -12.068367004394531 + ], + [ + "stellt", + -12.068638801574707 + ], + [ + "▁foto", + -12.068668365478516 + ], + [ + "linger", + -12.06871223449707 + ], + [ + "▁profiter", + -12.068737030029297 + ], + [ + "▁trup", + -12.068862915039062 + ], + [ + "▁Hunter", + -12.068974494934082 + ], + [ + "▁widespread", + -12.069050788879395 + ], + [ + "entretien", + -12.069242477416992 + ], + [ + "▁Truck", + -12.06958293914795 + ], + [ + "Can", + -12.069656372070312 + ], + [ + "péri", + -12.06976318359375 + ], + [ + "▁>>", + -12.069926261901855 + ], + [ + "▁trains", + -12.070141792297363 + ], + [ + "▁faca", + -12.070149421691895 + ], + [ + "▁Patienten", + -12.070170402526855 + ], + [ + "▁scor", + -12.070361137390137 + ], + [ + "▁perceived", + -12.070384979248047 + ], + [ + "setzung", + -12.070393562316895 + ], + [ + "▁Robin", + -12.070558547973633 + ], + [ + "▁geboren", + -12.07060718536377 + ], + [ + "lons", + -12.070687294006348 + ], + [ + "inţa", + -12.070836067199707 + ], + [ + "glob", + -12.070887565612793 + ], + [ + "subsequently", + -12.07111930847168 + ], + [ + "▁vet", + -12.071170806884766 + ], + [ + "▁Holland", + -12.071328163146973 + ], + [ + "▁Clinical", + -12.071370124816895 + ], + [ + "▁uncertainty", + -12.071381568908691 + ], + [ + "hohen", + -12.071386337280273 + ], + [ + "uza", + -12.071431159973145 + ], + [ + "▁kleiner", + -12.071518898010254 + ], + [ + "▁substances", + -12.07155704498291 + ], + [ + "ados", + -12.071627616882324 + ], + [ + "wheel", + -12.07178020477295 + ], + [ + "▁cone", + -12.071990966796875 + ], + [ + "▁castig", + -12.072218894958496 + ], + [ + "▁Conditions", + -12.072242736816406 + ], + [ + "minus", + -12.072643280029297 + ], + [ + "▁permits", + -12.07265853881836 + ], + [ + "fond", + -12.072784423828125 + ], + [ + "▁reactions", + -12.07278823852539 + ], + [ + "▁Mario", + -12.072819709777832 + ], + [ + "▁materiale", + -12.07291030883789 + ], + [ + "AH", + -12.072924613952637 + ], + [ + "▁juillet", + -12.073172569274902 + ], + [ + "▁juridic", + -12.073182106018066 + ], + [ + "▁dropping", + -12.073200225830078 + ], + [ + "expérience", + -12.073225021362305 + ], + [ + "▁depot", + -12.073345184326172 + ], + [ + "▁plea", + -12.073490142822266 + ], + [ + "dezvoltarea", + -12.073512077331543 + ], + [ + "▁Independent", + -12.07363224029541 + ], + [ + "▁Homes", + -12.073674201965332 + ], + [ + "▁crust", + -12.073808670043945 + ], + [ + "▁pillow", + -12.073899269104004 + ], + [ + "kreis", + -12.073920249938965 + ], + [ + "▁boiler", + -12.073928833007812 + ], + [ + "latin", + -12.073978424072266 + ], + [ + "▁stet", + -12.074131965637207 + ], + [ + "GH", + -12.074143409729004 + ], + [ + "▁absent", + -12.074334144592285 + ], + [ + "▁Directors", + -12.074501037597656 + ], + [ + "zwischen", + -12.07462215423584 + ], + [ + "▁comprendre", + -12.07465648651123 + ], + [ + "▁25,", + -12.074832916259766 + ], + [ + "▁pharmaceutical", + -12.075145721435547 + ], + [ + "▁placeholder", + -12.075174331665039 + ], + [ + "KI", + -12.075176239013672 + ], + [ + "▁români", + -12.07540225982666 + ], + [ + "▁Dollar", + -12.075509071350098 + ], + [ + "▁Operations", + -12.075525283813477 + ], + [ + "▁Dublin", + -12.075550079345703 + ], + [ + "▁drawings", + -12.0756196975708 + ], + [ + "▁respir", + -12.075769424438477 + ], + [ + "▁haul", + -12.0758056640625 + ], + [ + "Obviously", + -12.075864791870117 + ], + [ + "▁Beat", + -12.075864791870117 + ], + [ + "▁jeans", + -12.07590103149414 + ], + [ + "▁Masters", + -12.075927734375 + ], + [ + "▁bits", + -12.076213836669922 + ], + [ + "poți", + -12.076226234436035 + ], + [ + "▁asigur", + -12.076228141784668 + ], + [ + "▁intampla", + -12.076228141784668 + ], + [ + "▁marc", + -12.076282501220703 + ], + [ + "......", + -12.076404571533203 + ], + [ + "▁districts", + -12.076437950134277 + ], + [ + "cru", + -12.076457023620605 + ], + [ + "nav", + -12.076608657836914 + ], + [ + "huile", + -12.076644897460938 + ], + [ + "▁limitation", + -12.076647758483887 + ], + [ + "boat", + -12.076712608337402 + ], + [ + "IRE", + -12.076720237731934 + ], + [ + "Unis", + -12.07675838470459 + ], + [ + "dated", + -12.0769624710083 + ], + [ + "▁consultants", + -12.07699203491211 + ], + [ + "▁Josh", + -12.077007293701172 + ], + [ + "tanz", + -12.077184677124023 + ], + [ + "launching", + -12.0772066116333 + ], + [ + "▁browsing", + -12.077310562133789 + ], + [ + "▁incerc", + -12.077314376831055 + ], + [ + "▁27,", + -12.077375411987305 + ], + [ + "не", + -12.077398300170898 + ], + [ + "wig", + -12.077415466308594 + ], + [ + "▁spar", + -12.077458381652832 + ], + [ + "▁token", + -12.077547073364258 + ], + [ + "▁09", + -12.077548027038574 + ], + [ + "spa", + -12.07766056060791 + ], + [ + "ometer", + -12.07772159576416 + ], + [ + "▁riders", + -12.077869415283203 + ], + [ + "▁Drop", + -12.077898979187012 + ], + [ + "RN", + -12.078103065490723 + ], + [ + "▁pairs", + -12.07815933227539 + ], + [ + "▁psychology", + -12.078420639038086 + ], + [ + "▁Douglas", + -12.078437805175781 + ], + [ + "▁verwenden", + -12.078516960144043 + ], + [ + "▁(9", + -12.07857894897461 + ], + [ + "▁Rental", + -12.078728675842285 + ], + [ + "▁délai", + -12.078847885131836 + ], + [ + "▁sooner", + -12.078882217407227 + ], + [ + "▁bankruptcy", + -12.079109191894531 + ], + [ + "04.", + -12.079110145568848 + ], + [ + "abend", + -12.079194068908691 + ], + [ + "çon", + -12.079237937927246 + ], + [ + "▁Ple", + -12.079243659973145 + ], + [ + "fug", + -12.079337120056152 + ], + [ + "▁Wohnung", + -12.079410552978516 + ], + [ + "▁Preise", + -12.079424858093262 + ], + [ + "▁Kay", + -12.079427719116211 + ], + [ + "▁notify", + -12.079474449157715 + ], + [ + "▁Brain", + -12.079534530639648 + ], + [ + "▁optical", + -12.079580307006836 + ], + [ + "▁modifications", + -12.079727172851562 + ], + [ + "▁repos", + -12.07999324798584 + ], + [ + "▁worksheet", + -12.0800142288208 + ], + [ + "continu", + -12.08005428314209 + ], + [ + "▁assumed", + -12.08059024810791 + ], + [ + "varying", + -12.080626487731934 + ], + [ + "feier", + -12.080643653869629 + ], + [ + "▁Freedom", + -12.080717086791992 + ], + [ + "▁Inhalte", + -12.080740928649902 + ], + [ + "▁observations", + -12.080755233764648 + ], + [ + "▁Gruppe", + -12.080791473388672 + ], + [ + "▁Cyber", + -12.080883979797363 + ], + [ + "hort", + -12.080889701843262 + ], + [ + "▁langue", + -12.080915451049805 + ], + [ + "führen", + -12.08110523223877 + ], + [ + "ganze", + -12.081254005432129 + ], + [ + "▁forte", + -12.081327438354492 + ], + [ + "▁Stefan", + -12.081376075744629 + ], + [ + "▁Jetzt", + -12.081463813781738 + ], + [ + "mehr", + -12.081489562988281 + ], + [ + "trip", + -12.081549644470215 + ], + [ + "▁poem", + -12.081583976745605 + ], + [ + "▁practitioners", + -12.081720352172852 + ], + [ + "▁connector", + -12.08177661895752 + ], + [ + "ECT", + -12.081794738769531 + ], + [ + "▁inseamna", + -12.081820487976074 + ], + [ + "addressing", + -12.081867218017578 + ], + [ + "▁beliebt", + -12.081908226013184 + ], + [ + "▁Mama", + -12.082002639770508 + ], + [ + "▁fade", + -12.08204460144043 + ], + [ + "messen", + -12.08205509185791 + ], + [ + "▁Visa", + -12.082080841064453 + ], + [ + "▁Meta", + -12.082154273986816 + ], + [ + "lene", + -12.082188606262207 + ], + [ + "▁remembered", + -12.082334518432617 + ], + [ + "/3", + -12.082337379455566 + ], + [ + "apte", + -12.082347869873047 + ], + [ + "▁uncomfortable", + -12.082364082336426 + ], + [ + "▁romance", + -12.08253002166748 + ], + [ + "▁réalis", + -12.082601547241211 + ], + [ + "▁Vincent", + -12.082706451416016 + ], + [ + "▁ABC", + -12.08275318145752 + ], + [ + "▁handicap", + -12.082756042480469 + ], + [ + "▁Shin", + -12.082801818847656 + ], + [ + "▁Hunde", + -12.082847595214844 + ], + [ + "▁Ach", + -12.083131790161133 + ], + [ + "▁Questions", + -12.083136558532715 + ], + [ + "▁particles", + -12.083226203918457 + ], + [ + "usch", + -12.083230018615723 + ], + [ + "▁SUV", + -12.083279609680176 + ], + [ + "▁Tous", + -12.083301544189453 + ], + [ + "▁empower", + -12.08336067199707 + ], + [ + "▁Yi", + -12.083446502685547 + ], + [ + "▁LinkedIn", + -12.083453178405762 + ], + [ + "▁Profile", + -12.083507537841797 + ], + [ + "▁surround", + -12.083553314208984 + ], + [ + "▁wh", + -12.083560943603516 + ], + [ + "▁Weiter", + -12.083577156066895 + ], + [ + "▁Weight", + -12.083672523498535 + ], + [ + "▁creatures", + -12.083807945251465 + ], + [ + "Especially", + -12.08381462097168 + ], + [ + "▁repede", + -12.08383560180664 + ], + [ + "▁albums", + -12.083885192871094 + ], + [ + "▁compatibil", + -12.0839204788208 + ], + [ + "▁Interesse", + -12.083929061889648 + ], + [ + "abili", + -12.084062576293945 + ], + [ + "▁roast", + -12.084310531616211 + ], + [ + "▁unii", + -12.084310531616211 + ], + [ + "▁Glad", + -12.084421157836914 + ], + [ + "▁enthusiasm", + -12.084539413452148 + ], + [ + "▁whisk", + -12.084547996520996 + ], + [ + "▁freezer", + -12.084712982177734 + ], + [ + "▁stolen", + -12.084715843200684 + ], + [ + "▁neighbour", + -12.084883689880371 + ], + [ + "▁sake", + -12.084967613220215 + ], + [ + "▁Effect", + -12.0850191116333 + ], + [ + "▁fighter", + -12.085044860839844 + ], + [ + "▁tranquil", + -12.085084915161133 + ], + [ + "▁organizer", + -12.085199356079102 + ], + [ + "pixel", + -12.085306167602539 + ], + [ + "▁Guest", + -12.085338592529297 + ], + [ + "▁Philipp", + -12.085369110107422 + ], + [ + "kunft", + -12.085382461547852 + ], + [ + "▁Meer", + -12.085409164428711 + ], + [ + "▁inviting", + -12.085432052612305 + ], + [ + "gänge", + -12.085450172424316 + ], + [ + "▁Position", + -12.085627555847168 + ], + [ + "giving", + -12.085693359375 + ], + [ + "▁marble", + -12.085807800292969 + ], + [ + "▁neg", + -12.085813522338867 + ], + [ + "▁Haar", + -12.085914611816406 + ], + [ + "Ein", + -12.086039543151855 + ], + [ + "▁buses", + -12.086187362670898 + ], + [ + "▁Lodge", + -12.086188316345215 + ], + [ + "soare", + -12.086319923400879 + ], + [ + "▁Barn", + -12.086409568786621 + ], + [ + "▁captain", + -12.086527824401855 + ], + [ + "▁Fix", + -12.08657169342041 + ], + [ + "ulate", + -12.086629867553711 + ], + [ + "ență", + -12.086709022521973 + ], + [ + "▁finances", + -12.086770057678223 + ], + [ + "▁VIP", + -12.086800575256348 + ], + [ + "▁Adams", + -12.086801528930664 + ], + [ + "▁spécialisé", + -12.086960792541504 + ], + [ + "▁fortunate", + -12.087236404418945 + ], + [ + "ility", + -12.087345123291016 + ], + [ + "▁democracy", + -12.08749771118164 + ], + [ + "shu", + -12.087580680847168 + ], + [ + "▁consiste", + -12.087624549865723 + ], + [ + "▁tort", + -12.087692260742188 + ], + [ + "▁branding", + -12.087793350219727 + ], + [ + "▁porch", + -12.08780288696289 + ], + [ + "UNI", + -12.087867736816406 + ], + [ + "▁placut", + -12.087915420532227 + ], + [ + "▁coupled", + -12.088058471679688 + ], + [ + "▁ministre", + -12.088187217712402 + ], + [ + "▁minerals", + -12.088335037231445 + ], + [ + "▁safer", + -12.088335990905762 + ], + [ + "▁outlets", + -12.088438034057617 + ], + [ + "▁caution", + -12.08864688873291 + ], + [ + "▁lightly", + -12.0886869430542 + ], + [ + "▁utilizator", + -12.088700294494629 + ], + [ + "▁Pala", + -12.088959693908691 + ], + [ + "▁doll", + -12.088961601257324 + ], + [ + "(1)", + -12.089065551757812 + ], + [ + "chol", + -12.089120864868164 + ], + [ + "▁Left", + -12.08919620513916 + ], + [ + "▁roulant", + -12.089277267456055 + ], + [ + "▁propune", + -12.089301109313965 + ], + [ + "▁Cred", + -12.089339256286621 + ], + [ + "▁negotiations", + -12.089362144470215 + ], + [ + "amba", + -12.089393615722656 + ], + [ + "▁grasp", + -12.089420318603516 + ], + [ + "▁Amsterdam", + -12.089451789855957 + ], + [ + "▁Zweck", + -12.08945369720459 + ], + [ + "▁conven", + -12.089563369750977 + ], + [ + "▁organizing", + -12.089574813842773 + ], + [ + "section", + -12.089618682861328 + ], + [ + "▁endeavor", + -12.089634895324707 + ], + [ + "▁basics", + -12.089722633361816 + ], + [ + "jud", + -12.089874267578125 + ], + [ + "▁yarn", + -12.090049743652344 + ], + [ + "▁shout", + -12.09009075164795 + ], + [ + "fällt", + -12.090285301208496 + ], + [ + "▁dragoste", + -12.09054946899414 + ], + [ + "▁Rein", + -12.090594291687012 + ], + [ + "Cal", + -12.090688705444336 + ], + [ + "▁deaths", + -12.090729713439941 + ], + [ + "▁24,", + -12.0907564163208 + ], + [ + "▁măr", + -12.090773582458496 + ], + [ + "server", + -12.090825080871582 + ], + [ + "▁explic", + -12.09085464477539 + ], + [ + "▁sufer", + -12.090903282165527 + ], + [ + "▁lucrări", + -12.091097831726074 + ], + [ + "▁Disease", + -12.091126441955566 + ], + [ + "▁prescribed", + -12.091194152832031 + ], + [ + "prozess", + -12.091285705566406 + ], + [ + "▁dessin", + -12.091343879699707 + ], + [ + "▁refuge", + -12.091473579406738 + ], + [ + "▁cope", + -12.091631889343262 + ], + [ + "pole", + -12.09196949005127 + ], + [ + "▁vacant", + -12.091984748840332 + ], + [ + "▁sezon", + -12.092035293579102 + ], + [ + "▁Carbon", + -12.092227935791016 + ], + [ + "▁goût", + -12.092233657836914 + ], + [ + "Ste", + -12.092320442199707 + ], + [ + "▁surroundings", + -12.092754364013672 + ], + [ + "definite", + -12.09284496307373 + ], + [ + "▁adaptation", + -12.093358993530273 + ], + [ + "cteur", + -12.0933837890625 + ], + [ + "System", + -12.093442916870117 + ], + [ + "▁Burg", + -12.093550682067871 + ], + [ + "▁retention", + -12.093579292297363 + ], + [ + "examen", + -12.093618392944336 + ], + [ + "▁adjustments", + -12.093668937683105 + ], + [ + "nies", + -12.094213485717773 + ], + [ + "▁RSS", + -12.094215393066406 + ], + [ + "▁Umwelt", + -12.094259262084961 + ], + [ + "▁strengths", + -12.094326972961426 + ], + [ + "loom", + -12.094401359558105 + ], + [ + "▁pics", + -12.094404220581055 + ], + [ + "phase", + -12.09443187713623 + ], + [ + "▁Poland", + -12.094472885131836 + ], + [ + "▁practicing", + -12.094558715820312 + ], + [ + "monetary", + -12.094756126403809 + ], + [ + "▁embodiment", + -12.094756126403809 + ], + [ + "▁jocuri", + -12.094846725463867 + ], + [ + "▁impreuna", + -12.094939231872559 + ], + [ + "▁Lyon", + -12.094985961914062 + ], + [ + "keeping", + -12.095157623291016 + ], + [ + "▁Starting", + -12.095202445983887 + ], + [ + "▁începe", + -12.095357894897461 + ], + [ + "▁clay", + -12.095440864562988 + ], + [ + "bildung", + -12.095444679260254 + ], + [ + "Technologie", + -12.095513343811035 + ], + [ + "toxic", + -12.095624923706055 + ], + [ + "▁gasit", + -12.095819473266602 + ], + [ + "rott", + -12.095870018005371 + ], + [ + "brook", + -12.095935821533203 + ], + [ + "▁wann", + -12.096029281616211 + ], + [ + "▁lined", + -12.09610366821289 + ], + [ + "▁Chelsea", + -12.096223831176758 + ], + [ + "▁Orlando", + -12.096224784851074 + ], + [ + "▁Otherwise", + -12.096267700195312 + ], + [ + "▁debit", + -12.096273422241211 + ], + [ + "▁entsprechend", + -12.09648323059082 + ], + [ + "nism", + -12.09654426574707 + ], + [ + "issen", + -12.09664535522461 + ], + [ + "▁rendez", + -12.096646308898926 + ], + [ + "▁processus", + -12.096745491027832 + ], + [ + "mbi", + -12.096890449523926 + ], + [ + "▁Graduate", + -12.096960067749023 + ], + [ + "▁cozy", + -12.097119331359863 + ], + [ + "▁Freunde", + -12.097320556640625 + ], + [ + "▁teme", + -12.097389221191406 + ], + [ + "▁bias", + -12.097548484802246 + ], + [ + "102", + -12.09756851196289 + ], + [ + "terrorism", + -12.09770679473877 + ], + [ + "threatening", + -12.097756385803223 + ], + [ + "ни", + -12.097776412963867 + ], + [ + "▁Sonntag", + -12.098062515258789 + ], + [ + "▁efect", + -12.098116874694824 + ], + [ + "▁prayers", + -12.098134994506836 + ], + [ + "▁backpack", + -12.09841537475586 + ], + [ + "?)", + -12.098489761352539 + ], + [ + "▁searches", + -12.098788261413574 + ], + [ + "ouverture", + -12.09880256652832 + ], + [ + "▁sustained", + -12.098865509033203 + ], + [ + "hawk", + -12.098869323730469 + ], + [ + "messe", + -12.098958969116211 + ], + [ + "▁prototype", + -12.098989486694336 + ], + [ + "▁stră", + -12.09903335571289 + ], + [ + "▁Neo", + -12.099040985107422 + ], + [ + "▁29,", + -12.099109649658203 + ], + [ + "izo", + -12.099306106567383 + ], + [ + "▁Anton", + -12.099333763122559 + ], + [ + "SIS", + -12.099564552307129 + ], + [ + "pendant", + -12.099617958068848 + ], + [ + "▁passive", + -12.099813461303711 + ], + [ + "▁Aaron", + -12.099824905395508 + ], + [ + "▁Karen", + -12.099831581115723 + ], + [ + "▁Bildung", + -12.09994888305664 + ], + [ + "ario", + -12.099949836730957 + ], + [ + "▁regulator", + -12.100006103515625 + ], + [ + "gruppe", + -12.100032806396484 + ], + [ + "stepped", + -12.100053787231445 + ], + [ + "▁interventions", + -12.10014533996582 + ], + [ + "▁rounds", + -12.100149154663086 + ], + [ + "▁Khan", + -12.10020637512207 + ], + [ + "▁railway", + -12.10028076171875 + ], + [ + "▁souvenir", + -12.100296974182129 + ], + [ + "▁Plans", + -12.100336074829102 + ], + [ + "aille", + -12.100372314453125 + ], + [ + "▁billing", + -12.100473403930664 + ], + [ + "▁Spiele", + -12.100541114807129 + ], + [ + "▁supermarket", + -12.100556373596191 + ], + [ + "▁flows", + -12.100625991821289 + ], + [ + "▁PayPal", + -12.100641250610352 + ], + [ + "▁tribe", + -12.10067081451416 + ], + [ + "anni", + -12.100780487060547 + ], + [ + "▁rides", + -12.100934982299805 + ], + [ + "▁Orleans", + -12.101009368896484 + ], + [ + "▁evaluated", + -12.101021766662598 + ], + [ + "founder", + -12.10106372833252 + ], + [ + "▁Feld", + -12.101212501525879 + ], + [ + "▁altele", + -12.10122299194336 + ], + [ + "▁thermo", + -12.101290702819824 + ], + [ + "ugh", + -12.101330757141113 + ], + [ + "▁adus", + -12.101375579833984 + ], + [ + "▁Taiwan", + -12.101396560668945 + ], + [ + "▁clause", + -12.101409912109375 + ], + [ + "oxi", + -12.101465225219727 + ], + [ + "alcool", + -12.101495742797852 + ], + [ + "▁Noi", + -12.101531982421875 + ], + [ + "rub", + -12.101540565490723 + ], + [ + "▁dosar", + -12.101582527160645 + ], + [ + "▁Nelson", + -12.101751327514648 + ], + [ + "fassung", + -12.102316856384277 + ], + [ + "▁Kill", + -12.102489471435547 + ], + [ + "▁Standards", + -12.102490425109863 + ], + [ + "▁upward", + -12.102653503417969 + ], + [ + "▁Coloring", + -12.102664947509766 + ], + [ + "Designed", + -12.102754592895508 + ], + [ + "▁Nou", + -12.10281753540039 + ], + [ + "▁borrow", + -12.102940559387207 + ], + [ + "▁Poll", + -12.10321044921875 + ], + [ + "▁antibiotic", + -12.103277206420898 + ], + [ + "▁fabrication", + -12.103388786315918 + ], + [ + "quo", + -12.103432655334473 + ], + [ + "▁crimes", + -12.103464126586914 + ], + [ + "▁nahe", + -12.103484153747559 + ], + [ + "▁aplicat", + -12.103565216064453 + ], + [ + "OST", + -12.1035737991333 + ], + [ + "▁Beijing", + -12.103599548339844 + ], + [ + "fight", + -12.103612899780273 + ], + [ + "▁lodge", + -12.103612899780273 + ], + [ + "dreh", + -12.103922843933105 + ], + [ + "▁harness", + -12.104036331176758 + ], + [ + "▁noiembrie", + -12.104151725769043 + ], + [ + "ounded", + -12.104161262512207 + ], + [ + "▁Imp", + -12.1041841506958 + ], + [ + "▁nächste", + -12.104275703430176 + ], + [ + "funktion", + -12.104476928710938 + ], + [ + "exploitation", + -12.104569435119629 + ], + [ + "▁Ready", + -12.10457706451416 + ], + [ + "▁Plate", + -12.104598999023438 + ], + [ + "▁octombrie", + -12.104706764221191 + ], + [ + "▁considerat", + -12.104982376098633 + ], + [ + "▁Xbox", + -12.105067253112793 + ], + [ + "mind", + -12.105107307434082 + ], + [ + "▁Lind", + -12.105111122131348 + ], + [ + "runde", + -12.105352401733398 + ], + [ + "mination", + -12.105374336242676 + ], + [ + "▁memori", + -12.105377197265625 + ], + [ + "▁cere", + -12.105389595031738 + ], + [ + "barkeit", + -12.105517387390137 + ], + [ + "▁găsi", + -12.105761528015137 + ], + [ + "2.1", + -12.105863571166992 + ], + [ + "▁Finding", + -12.105891227722168 + ], + [ + "▁static", + -12.106405258178711 + ], + [ + "court", + -12.106439590454102 + ], + [ + "▁Gem", + -12.106489181518555 + ], + [ + "▁pièce", + -12.106494903564453 + ], + [ + "▁reel", + -12.10651969909668 + ], + [ + "▁manuscript", + -12.106560707092285 + ], + [ + "▁complications", + -12.106578826904297 + ], + [ + "▁controlling", + -12.106585502624512 + ], + [ + "▁favour", + -12.106738090515137 + ], + [ + "▁advancement", + -12.106739044189453 + ], + [ + "▁Radi", + -12.106870651245117 + ], + [ + "▁faites", + -12.107076644897461 + ], + [ + "▁ordin", + -12.107131958007812 + ], + [ + "sorted", + -12.107152938842773 + ], + [ + "▁1982", + -12.10715389251709 + ], + [ + "▁brutal", + -12.107154846191406 + ], + [ + "▁Guy", + -12.107226371765137 + ], + [ + "▁accomplishment", + -12.107248306274414 + ], + [ + "▁wer", + -12.107329368591309 + ], + [ + "▁withdraw", + -12.107460975646973 + ], + [ + "abilitate", + -12.1075439453125 + ], + [ + "▁NBA", + -12.107625961303711 + ], + [ + "▁Benefit", + -12.107675552368164 + ], + [ + "▁divide", + -12.107824325561523 + ], + [ + "induced", + -12.107913970947266 + ], + [ + "▁văzut", + -12.108049392700195 + ], + [ + "▁peel", + -12.10807991027832 + ], + [ + "▁joints", + -12.108160972595215 + ], + [ + "▁enthalten", + -12.108301162719727 + ], + [ + "▁spy", + -12.108397483825684 + ], + [ + "▁occasional", + -12.108437538146973 + ], + [ + "warm", + -12.108514785766602 + ], + [ + "ême", + -12.108542442321777 + ], + [ + "▁Betriebs", + -12.108551979064941 + ], + [ + "▁Ioan", + -12.1087064743042 + ], + [ + "▁balloon", + -12.108809471130371 + ], + [ + "▁leap", + -12.108869552612305 + ], + [ + "pelled", + -12.109000205993652 + ], + [ + "▁realise", + -12.109073638916016 + ], + [ + "▁Retail", + -12.109118461608887 + ], + [ + "▁Farben", + -12.109151840209961 + ], + [ + "▁Kennedy", + -12.10916519165039 + ], + [ + "▁Firma", + -12.109196662902832 + ], + [ + "▁tineri", + -12.10934066772461 + ], + [ + "tub", + -12.109354019165039 + ], + [ + "PORT", + -12.109381675720215 + ], + [ + "▁stiff", + -12.109416007995605 + ], + [ + "▁notable", + -12.109476089477539 + ], + [ + "tler", + -12.109498023986816 + ], + [ + "▁utile", + -12.10958480834961 + ], + [ + "▁jouer", + -12.109674453735352 + ], + [ + "▁Primary", + -12.109735488891602 + ], + [ + "▁retailer", + -12.109764099121094 + ], + [ + "▁jederzeit", + -12.109808921813965 + ], + [ + "▁amend", + -12.109817504882812 + ], + [ + "▁sagte", + -12.109845161437988 + ], + [ + "atch", + -12.10995864868164 + ], + [ + "ution", + -12.110008239746094 + ], + [ + "once", + -12.110018730163574 + ], + [ + "ended", + -12.1100435256958 + ], + [ + "▁literary", + -12.11013126373291 + ], + [ + "▁wrist", + -12.110281944274902 + ], + [ + "vii", + -12.11036205291748 + ], + [ + "scriere", + -12.110367774963379 + ], + [ + "▁compassion", + -12.110443115234375 + ], + [ + "▁Milan", + -12.110474586486816 + ], + [ + "▁Dach", + -12.110490798950195 + ], + [ + "▁problèmes", + -12.110630989074707 + ], + [ + "▁Pré", + -12.110687255859375 + ], + [ + "▁Feder", + -12.110759735107422 + ], + [ + "Dr", + -12.110814094543457 + ], + [ + "Spr", + -12.110908508300781 + ], + [ + "▁né", + -12.110969543457031 + ], + [ + "François", + -12.111023902893066 + ], + [ + "▁Shu", + -12.111115455627441 + ], + [ + "▁poison", + -12.111154556274414 + ], + [ + "zier", + -12.111176490783691 + ], + [ + "▁attain", + -12.11124038696289 + ], + [ + "▁switching", + -12.111310958862305 + ], + [ + "▁vibration", + -12.111348152160645 + ], + [ + "▁Tablet", + -12.11136531829834 + ], + [ + "▁Lern", + -12.11148452758789 + ], + [ + "offrir", + -12.111660957336426 + ], + [ + "123", + -12.11168098449707 + ], + [ + "cheapest", + -12.11173152923584 + ], + [ + "▁numărul", + -12.111764907836914 + ], + [ + "break", + -12.11180305480957 + ], + [ + "cyto", + -12.111836433410645 + ], + [ + "▁Mississippi", + -12.111955642700195 + ], + [ + "▁dragon", + -12.11207389831543 + ], + [ + "fir", + -12.112176895141602 + ], + [ + "▁fête", + -12.112180709838867 + ], + [ + "▁Wait", + -12.112350463867188 + ], + [ + "buy", + -12.112359046936035 + ], + [ + "având", + -12.112391471862793 + ], + [ + "▁Scar", + -12.112517356872559 + ], + [ + "▁Hund", + -12.112586975097656 + ], + [ + "bug", + -12.112807273864746 + ], + [ + "▁classique", + -12.112811088562012 + ], + [ + "▁tenant", + -12.112860679626465 + ], + [ + "▁Walt", + -12.11296272277832 + ], + [ + "▁timber", + -12.11296272277832 + ], + [ + "inscription", + -12.11300277709961 + ], + [ + "BD", + -12.113016128540039 + ], + [ + "▁Commissioner", + -12.113018989562988 + ], + [ + "▁casinos", + -12.11306095123291 + ], + [ + "▁prochain", + -12.113168716430664 + ], + [ + "▁rustic", + -12.11349868774414 + ], + [ + "▁Kent", + -12.113607406616211 + ], + [ + "▁Deci", + -12.113761901855469 + ], + [ + "ли", + -12.113855361938477 + ], + [ + "▁crossed", + -12.113861083984375 + ], + [ + "▁delightful", + -12.113869667053223 + ], + [ + "▁metres", + -12.113872528076172 + ], + [ + "▁scandal", + -12.113906860351562 + ], + [ + "▁activitate", + -12.113986015319824 + ], + [ + "▁nimeni", + -12.114009857177734 + ], + [ + "ease", + -12.11402416229248 + ], + [ + "▁revenues", + -12.1140775680542 + ], + [ + "▁partially", + -12.114187240600586 + ], + [ + "AE", + -12.114263534545898 + ], + [ + "nique", + -12.114410400390625 + ], + [ + "▁fixtures", + -12.114426612854004 + ], + [ + "▁pupils", + -12.114694595336914 + ], + [ + "Lib", + -12.11471176147461 + ], + [ + "analyse", + -12.114739418029785 + ], + [ + "▁Oracle", + -12.114767074584961 + ], + [ + "troph", + -12.114859580993652 + ], + [ + "▁detected", + -12.114879608154297 + ], + [ + "▁servant", + -12.11507797241211 + ], + [ + "▁badly", + -12.115121841430664 + ], + [ + "comparing", + -12.115150451660156 + ], + [ + "abs", + -12.115238189697266 + ], + [ + "▁fotografi", + -12.115443229675293 + ], + [ + "▁Million", + -12.115541458129883 + ], + [ + "▁Gordon", + -12.11557388305664 + ], + [ + "▁Smok", + -12.115592002868652 + ], + [ + "▁Essay", + -12.11565113067627 + ], + [ + "eptic", + -12.115665435791016 + ], + [ + "▁Transportation", + -12.115728378295898 + ], + [ + "/2019", + -12.115767478942871 + ], + [ + "▁alignment", + -12.115778923034668 + ], + [ + "▁laut", + -12.11578369140625 + ], + [ + "stände", + -12.115791320800781 + ], + [ + "▁concerts", + -12.115811347961426 + ], + [ + "▁weekends", + -12.11589241027832 + ], + [ + "▁obstacles", + -12.115941047668457 + ], + [ + "wür", + -12.115964889526367 + ], + [ + "▁Fisher", + -12.116219520568848 + ], + [ + "▁supervisor", + -12.116242408752441 + ], + [ + "▁traders", + -12.116262435913086 + ], + [ + "▁scary", + -12.116484642028809 + ], + [ + "▁Grove", + -12.116538047790527 + ], + [ + "▁expose", + -12.116583824157715 + ], + [ + "▁enemies", + -12.116630554199219 + ], + [ + "▁Lux", + -12.11667537689209 + ], + [ + "▁Berufs", + -12.11672306060791 + ], + [ + "▁Sheet", + -12.116780281066895 + ], + [ + "▁Natürlich", + -12.116819381713867 + ], + [ + "▁examined", + -12.116886138916016 + ], + [ + "pursuing", + -12.116920471191406 + ], + [ + "▁pools", + -12.116923332214355 + ], + [ + "▁Thompson", + -12.117005348205566 + ], + [ + "▁SAP", + -12.117010116577148 + ], + [ + "claiming", + -12.117053985595703 + ], + [ + "buried", + -12.117055892944336 + ], + [ + "assurance", + -12.117138862609863 + ], + [ + "▁sandwich", + -12.117195129394531 + ], + [ + "uber", + -12.117310523986816 + ], + [ + "▁laisse", + -12.117321968078613 + ], + [ + "peak", + -12.117348670959473 + ], + [ + "spring", + -12.1173677444458 + ], + [ + "▁august", + -12.117369651794434 + ], + [ + "▁benötigt", + -12.11738109588623 + ], + [ + "▁achievements", + -12.117470741271973 + ], + [ + "coala", + -12.117478370666504 + ], + [ + "▁scr", + -12.117842674255371 + ], + [ + "gesagt", + -12.118122100830078 + ], + [ + "▁envelope", + -12.118141174316406 + ], + [ + "▁mapping", + -12.118169784545898 + ], + [ + "▁Suche", + -12.118298530578613 + ], + [ + "first", + -12.118329048156738 + ], + [ + "▁Quin", + -12.118447303771973 + ], + [ + "räu", + -12.118561744689941 + ], + [ + "▁răs", + -12.118583679199219 + ], + [ + "chemical", + -12.118597984313965 + ], + [ + "dad", + -12.118927955627441 + ], + [ + "formation", + -12.118983268737793 + ], + [ + "▁cushion", + -12.119026184082031 + ], + [ + "▁Maß", + -12.119046211242676 + ], + [ + "07.", + -12.119184494018555 + ], + [ + "▁perioadă", + -12.119257926940918 + ], + [ + "▁Wunsch", + -12.11925983428955 + ], + [ + "▁joi", + -12.119423866271973 + ], + [ + "▁$25", + -12.119482040405273 + ], + [ + "▁uploaded", + -12.11952018737793 + ], + [ + "▁hobby", + -12.119633674621582 + ], + [ + "▁septembrie", + -12.119633674621582 + ], + [ + "▁Dimension", + -12.119634628295898 + ], + [ + "▁domeniu", + -12.119661331176758 + ], + [ + "▁Tourism", + -12.119747161865234 + ], + [ + "▁fais", + -12.119800567626953 + ], + [ + "aches", + -12.119919776916504 + ], + [ + "neck", + -12.119969367980957 + ], + [ + "▁Chip", + -12.119982719421387 + ], + [ + "▁Tisch", + -12.1199951171875 + ], + [ + "▁Pai", + -12.120006561279297 + ], + [ + "▁Butter", + -12.120083808898926 + ], + [ + "▁altor", + -12.120133399963379 + ], + [ + "cultural", + -12.120182991027832 + ], + [ + "▁bases", + -12.12028980255127 + ], + [ + "▁Christopher", + -12.120396614074707 + ], + [ + "Kindle", + -12.120401382446289 + ], + [ + "▁bathrooms", + -12.12049388885498 + ], + [ + "▁civilian", + -12.12052059173584 + ], + [ + "▁Architecture", + -12.12058162689209 + ], + [ + "heiten", + -12.120641708374023 + ], + [ + "otte", + -12.120763778686523 + ], + [ + "ри", + -12.120784759521484 + ], + [ + "wash", + -12.120792388916016 + ], + [ + "▁evenimente", + -12.12086296081543 + ], + [ + "lade", + -12.121132850646973 + ], + [ + "▁ermöglicht", + -12.121140480041504 + ], + [ + "Port", + -12.121149063110352 + ], + [ + "▁Horn", + -12.12119197845459 + ], + [ + "▁Housing", + -12.121232032775879 + ], + [ + "▁Profit", + -12.121304512023926 + ], + [ + "▁stressed", + -12.12136459350586 + ], + [ + "▁70%", + -12.121431350708008 + ], + [ + "laying", + -12.121458053588867 + ], + [ + "▁specialize", + -12.121490478515625 + ], + [ + "▁Published", + -12.121519088745117 + ], + [ + "corp", + -12.121554374694824 + ], + [ + "▁revision", + -12.121611595153809 + ], + [ + "▁sail", + -12.121804237365723 + ], + [ + "courtesy", + -12.121909141540527 + ], + [ + "tax", + -12.1219482421875 + ], + [ + "▁perfekt", + -12.122018814086914 + ], + [ + "▁Risk", + -12.122088432312012 + ], + [ + "▁chaleur", + -12.122129440307617 + ], + [ + "ych", + -12.122132301330566 + ], + [ + "▁spine", + -12.12218189239502 + ], + [ + "▁holders", + -12.122264862060547 + ], + [ + "▁Speaking", + -12.122271537780762 + ], + [ + "▁Bernard", + -12.122400283813477 + ], + [ + "incarc", + -12.122532844543457 + ], + [ + "shalb", + -12.122639656066895 + ], + [ + "Potrivit", + -12.12264633178711 + ], + [ + "arising", + -12.122654914855957 + ], + [ + "▁kingdom", + -12.122665405273438 + ], + [ + "▁potato", + -12.122766494750977 + ], + [ + "▁promoted", + -12.122814178466797 + ], + [ + "▁judges", + -12.1228609085083 + ], + [ + "▁naturelle", + -12.122992515563965 + ], + [ + "▁Kindern", + -12.123022079467773 + ], + [ + "schicht", + -12.123047828674316 + ], + [ + "▁Drag", + -12.123066902160645 + ], + [ + "atta", + -12.123132705688477 + ], + [ + "soient", + -12.123249053955078 + ], + [ + "INS", + -12.12336540222168 + ], + [ + "▁legislative", + -12.123642921447754 + ], + [ + "▁teens", + -12.123785018920898 + ], + [ + "▁Fotos", + -12.123842239379883 + ], + [ + "▁illustrations", + -12.12392520904541 + ], + [ + "möglichkeiten", + -12.12415599822998 + ], + [ + "Votre", + -12.124194145202637 + ], + [ + "▁tarif", + -12.124195098876953 + ], + [ + "cli", + -12.124488830566406 + ], + [ + "▁landlord", + -12.12473201751709 + ], + [ + "cine", + -12.124743461608887 + ], + [ + "▁bot", + -12.124798774719238 + ], + [ + "enhancing", + -12.12491226196289 + ], + [ + "▁März", + -12.12491226196289 + ], + [ + "▁succès", + -12.125106811523438 + ], + [ + "▁disclose", + -12.125120162963867 + ], + [ + "▁Geräte", + -12.125321388244629 + ], + [ + "▁Magn", + -12.125422477722168 + ], + [ + "dessous", + -12.12580680847168 + ], + [ + "▁miracle", + -12.125862121582031 + ], + [ + "▁travailler", + -12.125933647155762 + ], + [ + "▁herb", + -12.125945091247559 + ], + [ + "-01", + -12.126049041748047 + ], + [ + "litre", + -12.126104354858398 + ], + [ + "▁tău", + -12.126120567321777 + ], + [ + "ACC", + -12.126190185546875 + ], + [ + "▁diminu", + -12.126275062561035 + ], + [ + "itzer", + -12.126317024230957 + ], + [ + "▁personenbezogen", + -12.126395225524902 + ], + [ + "▁Pure", + -12.126436233520508 + ], + [ + "▁influences", + -12.12668228149414 + ], + [ + "ană", + -12.126765251159668 + ], + [ + "▁proposer", + -12.126856803894043 + ], + [ + "▁longest", + -12.12692642211914 + ], + [ + "euses", + -12.127080917358398 + ], + [ + "/1", + -12.127487182617188 + ], + [ + "hafte", + -12.127716064453125 + ], + [ + "▁Dich", + -12.127761840820312 + ], + [ + "▁candle", + -12.128026962280273 + ], + [ + "ouche", + -12.128191947937012 + ], + [ + "installation", + -12.128241539001465 + ], + [ + "▁Includes", + -12.128280639648438 + ], + [ + "▁entfernt", + -12.12831974029541 + ], + [ + "traf", + -12.128499031066895 + ], + [ + "▁None", + -12.128508567810059 + ], + [ + "▁produc", + -12.128510475158691 + ], + [ + "held", + -12.128519058227539 + ], + [ + "graphic", + -12.128531455993652 + ], + [ + "▁demographic", + -12.128584861755371 + ], + [ + "ingham", + -12.1287841796875 + ], + [ + "schul", + -12.128812789916992 + ], + [ + "▁sneak", + -12.128843307495117 + ], + [ + "laub", + -12.128889083862305 + ], + [ + "▁thickness", + -12.12911605834961 + ], + [ + "▁killer", + -12.129297256469727 + ], + [ + "▁entsprechende", + -12.129344940185547 + ], + [ + "▁theft", + -12.129396438598633 + ], + [ + "▁Jerusalem", + -12.129457473754883 + ], + [ + "Adapt", + -12.129495620727539 + ], + [ + "▁updating", + -12.129497528076172 + ], + [ + "tete", + -12.12954330444336 + ], + [ + "▁warming", + -12.129701614379883 + ], + [ + "anlage", + -12.129739761352539 + ], + [ + "▁lenders", + -12.129814147949219 + ], + [ + "mobile", + -12.130008697509766 + ], + [ + "▁Package", + -12.130080223083496 + ], + [ + "▁Volume", + -12.130152702331543 + ], + [ + "---", + -12.130167007446289 + ], + [ + "▁Others", + -12.130173683166504 + ], + [ + "content", + -12.130188941955566 + ], + [ + "tement", + -12.130253791809082 + ], + [ + "bildet", + -12.13027572631836 + ], + [ + "▁washer", + -12.13053035736084 + ], + [ + "▁freelance", + -12.130623817443848 + ], + [ + "▁fein", + -12.130753517150879 + ], + [ + "▁catering", + -12.130851745605469 + ], + [ + "▁warmth", + -12.130911827087402 + ], + [ + "▁Month", + -12.131103515625 + ], + [ + "▁Federation", + -12.131134033203125 + ], + [ + "▁editorial", + -12.13121223449707 + ], + [ + "▁Shopping", + -12.131241798400879 + ], + [ + "▁efort", + -12.131296157836914 + ], + [ + "▁damp", + -12.131314277648926 + ], + [ + "▁declined", + -12.131332397460938 + ], + [ + "▁1978", + -12.13135051727295 + ], + [ + "6,000", + -12.131355285644531 + ], + [ + "location", + -12.131551742553711 + ], + [ + "▁blogger", + -12.131572723388672 + ], + [ + "▁goodness", + -12.131826400756836 + ], + [ + "▁Purchase", + -12.132119178771973 + ], + [ + "▁suspended", + -12.132159233093262 + ], + [ + "▁assessed", + -12.132201194763184 + ], + [ + "rada", + -12.132286071777344 + ], + [ + "▁Lac", + -12.132291793823242 + ], + [ + "▁angeboten", + -12.13235092163086 + ], + [ + "▁Wetter", + -12.132370948791504 + ], + [ + "ores", + -12.13243579864502 + ], + [ + "▁fourni", + -12.132476806640625 + ], + [ + "▁retire", + -12.13269329071045 + ], + [ + "▁Baptist", + -12.132741928100586 + ], + [ + "▁Saison", + -12.13277530670166 + ], + [ + "Bar", + -12.132794380187988 + ], + [ + "▁dossier", + -12.132979393005371 + ], + [ + "brow", + -12.133044242858887 + ], + [ + "▁Kaffee", + -12.133071899414062 + ], + [ + "-25", + -12.133463859558105 + ], + [ + "▁festivals", + -12.133599281311035 + ], + [ + "▁sellers", + -12.133716583251953 + ], + [ + "Ü", + -12.13393783569336 + ], + [ + "▁publisher", + -12.133960723876953 + ], + [ + "▁Designs", + -12.133970260620117 + ], + [ + "▁putut", + -12.13400936126709 + ], + [ + "▁Built", + -12.134417533874512 + ], + [ + "▁recreational", + -12.134476661682129 + ], + [ + "▁european", + -12.134514808654785 + ], + [ + "▁binary", + -12.134631156921387 + ], + [ + "▁Nieder", + -12.134764671325684 + ], + [ + "taking", + -12.1348237991333 + ], + [ + "▁Lots", + -12.13494873046875 + ], + [ + "▁recognised", + -12.135031700134277 + ], + [ + "ssant", + -12.135063171386719 + ], + [ + "ITE", + -12.135271072387695 + ], + [ + "oom", + -12.135298728942871 + ], + [ + "▁Kre", + -12.135310173034668 + ], + [ + "▁pipes", + -12.135631561279297 + ], + [ + "▁hinge", + -12.135653495788574 + ], + [ + "▁enterprises", + -12.135664939880371 + ], + [ + "▁texts", + -12.13583755493164 + ], + [ + "Organiz", + -12.136080741882324 + ], + [ + "▁suivre", + -12.136124610900879 + ], + [ + "noc", + -12.136157989501953 + ], + [ + "fair", + -12.136194229125977 + ], + [ + "▁darkness", + -12.136305809020996 + ], + [ + "▁Whi", + -12.13631534576416 + ], + [ + "natural", + -12.136321067810059 + ], + [ + "Bas", + -12.136422157287598 + ], + [ + "▁tribute", + -12.136443138122559 + ], + [ + "▁Naţional", + -12.136573791503906 + ], + [ + "hara", + -12.136622428894043 + ], + [ + "▁catégorie", + -12.136697769165039 + ], + [ + "▁Schedule", + -12.136698722839355 + ], + [ + "▁lernen", + -12.13671875 + ], + [ + "▁Plastic", + -12.136725425720215 + ], + [ + "▁giveaway", + -12.13675594329834 + ], + [ + "▁Ideen", + -12.136906623840332 + ], + [ + "▁circa", + -12.13718032836914 + ], + [ + "▁lice", + -12.137242317199707 + ], + [ + "▁Meinung", + -12.137264251708984 + ], + [ + "▁beside", + -12.137566566467285 + ], + [ + "▁vazut", + -12.137673377990723 + ], + [ + "strom", + -12.137749671936035 + ], + [ + "boro", + -12.137775421142578 + ], + [ + "▁Soon", + -12.137796401977539 + ], + [ + "dozens", + -12.137896537780762 + ], + [ + "▁Arena", + -12.137943267822266 + ], + [ + "▁viața", + -12.137989044189453 + ], + [ + "▁Impact", + -12.138082504272461 + ], + [ + "current", + -12.138106346130371 + ], + [ + "FM", + -12.138117790222168 + ], + [ + "▁coil", + -12.138657569885254 + ], + [ + "gold", + -12.138679504394531 + ], + [ + "▁spate", + -12.138679504394531 + ], + [ + "1.4", + -12.13875675201416 + ], + [ + "solution", + -12.138769149780273 + ], + [ + "▁Wayne", + -12.138835906982422 + ], + [ + "▁queen", + -12.138898849487305 + ], + [ + "illion", + -12.139022827148438 + ], + [ + "greifen", + -12.139127731323242 + ], + [ + "▁Bil", + -12.139174461364746 + ], + [ + "rote", + -12.139185905456543 + ], + [ + "END", + -12.13918685913086 + ], + [ + "äl", + -12.139206886291504 + ], + [ + "▁reçu", + -12.139378547668457 + ], + [ + "flower", + -12.139495849609375 + ], + [ + "▁draws", + -12.139519691467285 + ], + [ + "plant", + -12.139605522155762 + ], + [ + "2010", + -12.139702796936035 + ], + [ + "▁oper", + -12.139762878417969 + ], + [ + "▁conserve", + -12.139777183532715 + ], + [ + "▁sprinkle", + -12.13984203338623 + ], + [ + "mode", + -12.139924049377441 + ], + [ + "▁lifting", + -12.139941215515137 + ], + [ + "▁Institution", + -12.139951705932617 + ], + [ + "Când", + -12.14001750946045 + ], + [ + "Aus", + -12.140048027038574 + ], + [ + "▁fears", + -12.140054702758789 + ], + [ + "▁appointments", + -12.140079498291016 + ], + [ + "oarele", + -12.140162467956543 + ], + [ + "▁duck", + -12.140193939208984 + ], + [ + "▁stadium", + -12.140213012695312 + ], + [ + "▁vezi", + -12.140227317810059 + ], + [ + "▁lap", + -12.140315055847168 + ], + [ + "▁proceeds", + -12.140382766723633 + ], + [ + "geschlossen", + -12.140412330627441 + ], + [ + "▁tren", + -12.140478134155273 + ], + [ + "VS", + -12.140536308288574 + ], + [ + "▁vais", + -12.140800476074219 + ], + [ + "ținut", + -12.140859603881836 + ], + [ + "▁Concert", + -12.140928268432617 + ], + [ + "▁planting", + -12.141008377075195 + ], + [ + "▁honour", + -12.141069412231445 + ], + [ + "▁gras", + -12.141071319580078 + ], + [ + "woo", + -12.141092300415039 + ], + [ + "▁Hero", + -12.141282081604004 + ], + [ + "▁stimulate", + -12.14134407043457 + ], + [ + "▁überhaupt", + -12.141426086425781 + ], + [ + "▁bounce", + -12.14148235321045 + ], + [ + "oodle", + -12.14151382446289 + ], + [ + "▁packs", + -12.141576766967773 + ], + [ + "▁Poker", + -12.14158821105957 + ], + [ + "▁acea", + -12.141684532165527 + ], + [ + "▁parish", + -12.141754150390625 + ], + [ + "-24", + -12.141766548156738 + ], + [ + "▁iTunes", + -12.141874313354492 + ], + [ + "▁lumière", + -12.141948699951172 + ], + [ + "third", + -12.142024993896484 + ], + [ + "▁dynamics", + -12.142038345336914 + ], + [ + "Unless", + -12.142162322998047 + ], + [ + "▁immense", + -12.142416000366211 + ], + [ + "▁Sec", + -12.142781257629395 + ], + [ + "lois", + -12.143009185791016 + ], + [ + "époque", + -12.14302921295166 + ], + [ + "NB", + -12.143139839172363 + ], + [ + "written", + -12.143210411071777 + ], + [ + "▁logement", + -12.143226623535156 + ], + [ + "submitting", + -12.143295288085938 + ], + [ + "▁Quand", + -12.14331340789795 + ], + [ + "▁foi", + -12.143322944641113 + ], + [ + "▁catalogue", + -12.143351554870605 + ], + [ + "nova", + -12.14343547821045 + ], + [ + "▁prezentat", + -12.143527030944824 + ], + [ + "▁tart", + -12.143877983093262 + ], + [ + "те", + -12.143912315368652 + ], + [ + "hack", + -12.143916130065918 + ], + [ + "▁Politic", + -12.144003868103027 + ], + [ + "▁18,", + -12.144048690795898 + ], + [ + "▁ignored", + -12.144145965576172 + ], + [ + "▁spoon", + -12.144245147705078 + ], + [ + "▁Joy", + -12.144280433654785 + ], + [ + "▁reside", + -12.144482612609863 + ], + [ + ".99", + -12.144488334655762 + ], + [ + "lytic", + -12.144625663757324 + ], + [ + "▁bogat", + -12.144643783569336 + ], + [ + "▁nurses", + -12.144845008850098 + ], + [ + "▁funcţi", + -12.145029067993164 + ], + [ + "▁produselor", + -12.145038604736328 + ], + [ + "▁Associates", + -12.145069122314453 + ], + [ + "Est", + -12.14511489868164 + ], + [ + "▁peanut", + -12.145187377929688 + ], + [ + "▁résultat", + -12.145257949829102 + ], + [ + "08.", + -12.145424842834473 + ], + [ + "▁Astro", + -12.145439147949219 + ], + [ + "▁personnelle", + -12.145527839660645 + ], + [ + "320", + -12.145668983459473 + ], + [ + "▁Grab", + -12.145748138427734 + ], + [ + "éco", + -12.145801544189453 + ], + [ + "▁clasic", + -12.145857810974121 + ], + [ + "offre", + -12.14588451385498 + ], + [ + "▁idee", + -12.14589786529541 + ], + [ + "▁cheat", + -12.146259307861328 + ], + [ + "▁Flug", + -12.146286964416504 + ], + [ + "▁1500", + -12.146413803100586 + ], + [ + "▁kurze", + -12.14643383026123 + ], + [ + "With", + -12.146512985229492 + ], + [ + "▁Half", + -12.146575927734375 + ], + [ + "▁disciplines", + -12.146642684936523 + ], + [ + "sorption", + -12.14669132232666 + ], + [ + "▁greutate", + -12.146927833557129 + ], + [ + "mä", + -12.146940231323242 + ], + [ + "▁Literatur", + -12.146956443786621 + ], + [ + "3/", + -12.147016525268555 + ], + [ + "4.0", + -12.147095680236816 + ], + [ + "▁déco", + -12.147119522094727 + ], + [ + "▁Fuß", + -12.147233963012695 + ], + [ + "▁Deutsche", + -12.147289276123047 + ], + [ + "▁abundance", + -12.14746379852295 + ], + [ + "▁Luther", + -12.14750862121582 + ], + [ + "▁nutritional", + -12.147562980651855 + ], + [ + "▁Jude", + -12.147687911987305 + ], + [ + "AY", + -12.14786148071289 + ], + [ + "▁chore", + -12.147916793823242 + ], + [ + "▁Kro", + -12.148006439208984 + ], + [ + "▁alin", + -12.14801025390625 + ], + [ + "lösung", + -12.148030281066895 + ], + [ + "▁geworden", + -12.148238182067871 + ], + [ + "▁sociaux", + -12.148255348205566 + ], + [ + "▁Spark", + -12.1486177444458 + ], + [ + "▁phenomenon", + -12.148624420166016 + ], + [ + "ICA", + -12.148805618286133 + ], + [ + "▁Ran", + -12.148836135864258 + ], + [ + "▁Schwarz", + -12.148959159851074 + ], + [ + "▁1983", + -12.148985862731934 + ], + [ + "ет", + -12.148990631103516 + ], + [ + "möglich", + -12.149084091186523 + ], + [ + "vocation", + -12.149087905883789 + ], + [ + "▁Organic", + -12.14926815032959 + ], + [ + "Oh", + -12.149408340454102 + ], + [ + "▁blockchain", + -12.149422645568848 + ], + [ + "▁Bă", + -12.149515151977539 + ], + [ + "▁Bass", + -12.14953899383545 + ], + [ + "enie", + -12.149687767028809 + ], + [ + "▁rêve", + -12.149807929992676 + ], + [ + "▁Rap", + -12.149986267089844 + ], + [ + "▁democratic", + -12.150044441223145 + ], + [ + "▁Chart", + -12.150167465209961 + ], + [ + "▁Voi", + -12.150189399719238 + ], + [ + "process", + -12.150263786315918 + ], + [ + "▁preach", + -12.150389671325684 + ], + [ + "tient", + -12.150456428527832 + ], + [ + "▁Train", + -12.150468826293945 + ], + [ + "▁Reihe", + -12.150472640991211 + ], + [ + "help", + -12.150514602661133 + ], + [ + "1.6", + -12.150547981262207 + ], + [ + "▁cazuri", + -12.150547981262207 + ], + [ + "▁chap", + -12.150559425354004 + ], + [ + "aktiv", + -12.150632858276367 + ], + [ + "▁2006.", + -12.15079116821289 + ], + [ + "iene", + -12.150849342346191 + ], + [ + "▁BBQ", + -12.150969505310059 + ], + [ + "dauer", + -12.151028633117676 + ], + [ + "2).", + -12.151226997375488 + ], + [ + "▁Monat", + -12.151277542114258 + ], + [ + "Generally", + -12.151285171508789 + ], + [ + "▁bracelet", + -12.151336669921875 + ], + [ + "▁cartoon", + -12.151349067687988 + ], + [ + "▁pui", + -12.151488304138184 + ], + [ + "temp", + -12.151506423950195 + ], + [ + "▁Particip", + -12.151555061340332 + ], + [ + "▁dumneavoastră", + -12.151725769042969 + ], + [ + "▁Gin", + -12.151824951171875 + ], + [ + "iunile", + -12.151829719543457 + ], + [ + "reise", + -12.151849746704102 + ], + [ + "▁einzige", + -12.15189266204834 + ], + [ + "ANCE", + -12.15192985534668 + ], + [ + "▁humble", + -12.151951789855957 + ], + [ + "claim", + -12.152093887329102 + ], + [ + "LV", + -12.152143478393555 + ], + [ + "▁confiance", + -12.152270317077637 + ], + [ + "▁Trading", + -12.152535438537598 + ], + [ + "▁Fabric", + -12.152770042419434 + ], + [ + "▁Duke", + -12.152851104736328 + ], + [ + "spieler", + -12.152937889099121 + ], + [ + "▁reject", + -12.152987480163574 + ], + [ + "▁crise", + -12.153170585632324 + ], + [ + "▁borders", + -12.153196334838867 + ], + [ + "▁Vehicle", + -12.153279304504395 + ], + [ + "zeiten", + -12.153481483459473 + ], + [ + "enrolled", + -12.153514862060547 + ], + [ + "venue", + -12.153555870056152 + ], + [ + "▁forests", + -12.153564453125 + ], + [ + "vascular", + -12.15358829498291 + ], + [ + "▁phrases", + -12.153661727905273 + ], + [ + "▁receptor", + -12.15368366241455 + ], + [ + "schied", + -12.153687477111816 + ], + [ + "▁soirée", + -12.153785705566406 + ], + [ + "▁partener", + -12.153987884521484 + ], + [ + "▁Jobs", + -12.15417194366455 + ], + [ + "▁segments", + -12.154216766357422 + ], + [ + "▁violate", + -12.154438972473145 + ], + [ + "▁viable", + -12.154500007629395 + ], + [ + "▁encountered", + -12.154533386230469 + ], + [ + "▁travelers", + -12.154552459716797 + ], + [ + "▁împ", + -12.154679298400879 + ], + [ + "▁convince", + -12.154693603515625 + ], + [ + "▁mailing", + -12.154693603515625 + ], + [ + "▁Zahn", + -12.154698371887207 + ], + [ + "attend", + -12.15477466583252 + ], + [ + "▁eBay", + -12.154836654663086 + ], + [ + "▁Emergency", + -12.154844284057617 + ], + [ + "wirtschaft", + -12.154882431030273 + ], + [ + "▁scholars", + -12.154947280883789 + ], + [ + "▁considerably", + -12.155118942260742 + ], + [ + "▁combo", + -12.1551513671875 + ], + [ + "hiver", + -12.155198097229004 + ], + [ + "▁mysterious", + -12.15522575378418 + ], + [ + "▁Degree", + -12.155234336853027 + ], + [ + "▁fate", + -12.155242919921875 + ], + [ + "▁transplant", + -12.155281066894531 + ], + [ + "▁samedi", + -12.155400276184082 + ], + [ + "unit", + -12.155519485473633 + ], + [ + "▁moyenne", + -12.155611991882324 + ], + [ + "▁Liverpool", + -12.155614852905273 + ], + [ + "▁Champions", + -12.155728340148926 + ], + [ + "zzle", + -12.155824661254883 + ], + [ + "▁arena", + -12.156228065490723 + ], + [ + "▁Pipe", + -12.15633487701416 + ], + [ + "▁waterproof", + -12.156356811523438 + ], + [ + "▁eternal", + -12.156463623046875 + ], + [ + "Whenever", + -12.156503677368164 + ], + [ + "▁Hop", + -12.156535148620605 + ], + [ + "▁Betrieb", + -12.156816482543945 + ], + [ + "gne", + -12.15692138671875 + ], + [ + "▁spe", + -12.156975746154785 + ], + [ + "▁Corner", + -12.157078742980957 + ], + [ + "▁devenir", + -12.157118797302246 + ], + [ + "ambiance", + -12.157144546508789 + ], + [ + "▁Graham", + -12.157200813293457 + ], + [ + "▁desires", + -12.157289505004883 + ], + [ + "▁Applications", + -12.157291412353516 + ], + [ + "▁genutzt", + -12.157477378845215 + ], + [ + "tek", + -12.157612800598145 + ], + [ + "▁Career", + -12.157641410827637 + ], + [ + "▁staple", + -12.157695770263672 + ], + [ + "▁Dodge", + -12.157817840576172 + ], + [ + "▁strictly", + -12.157889366149902 + ], + [ + "▁Gruppen", + -12.157952308654785 + ], + [ + "▁Finanz", + -12.157981872558594 + ], + [ + "▁sporting", + -12.15809440612793 + ], + [ + "▁Wieder", + -12.158127784729004 + ], + [ + "anny", + -12.158208847045898 + ], + [ + "▁bucura", + -12.158233642578125 + ], + [ + "▁Pest", + -12.15824031829834 + ], + [ + "▁circles", + -12.158246994018555 + ], + [ + "▁richtige", + -12.158309936523438 + ], + [ + "▁cycles", + -12.158379554748535 + ], + [ + "static", + -12.15845012664795 + ], + [ + "lasting", + -12.15847396850586 + ], + [ + "▁calcium", + -12.158549308776855 + ], + [ + "▁digest", + -12.158697128295898 + ], + [ + "Enfin", + -12.158865928649902 + ], + [ + "▁stressful", + -12.158951759338379 + ], + [ + "▁schemes", + -12.158981323242188 + ], + [ + "▁décision", + -12.158987045288086 + ], + [ + "▁comercial", + -12.15907096862793 + ], + [ + "işti", + -12.159098625183105 + ], + [ + "▁Comic", + -12.15910816192627 + ], + [ + "▁extensions", + -12.159140586853027 + ], + [ + "▁Sieg", + -12.159168243408203 + ], + [ + "▁pine", + -12.15919017791748 + ], + [ + "ieß", + -12.159272193908691 + ], + [ + "▁Images", + -12.159427642822266 + ], + [ + "▁Mensch", + -12.159668922424316 + ], + [ + "Pap", + -12.159773826599121 + ], + [ + "▁crops", + -12.15994930267334 + ], + [ + "▁sheep", + -12.159996032714844 + ], + [ + "▁istoric", + -12.160001754760742 + ], + [ + "▁Assessment", + -12.160035133361816 + ], + [ + "▁mounting", + -12.16035270690918 + ], + [ + "wirken", + -12.160469055175781 + ], + [ + "▁augment", + -12.160469055175781 + ], + [ + "▁picioare", + -12.160542488098145 + ], + [ + "organisme", + -12.160590171813965 + ], + [ + "▁Monitor", + -12.16060733795166 + ], + [ + "▁celles", + -12.160642623901367 + ], + [ + "▁Maison", + -12.160709381103516 + ], + [ + "notified", + -12.160783767700195 + ], + [ + "▁chew", + -12.160831451416016 + ], + [ + "▁bleu", + -12.16083812713623 + ], + [ + "dow", + -12.160844802856445 + ], + [ + "▁Grav", + -12.16097354888916 + ], + [ + "▁curtains", + -12.160975456237793 + ], + [ + "▁Campus", + -12.161076545715332 + ], + [ + "▁controversial", + -12.161087036132812 + ], + [ + "▁soutien", + -12.161189079284668 + ], + [ + "▁Dell", + -12.1613187789917 + ], + [ + "▁instrumental", + -12.161431312561035 + ], + [ + "▁Nan", + -12.161514282226562 + ], + [ + "▁prom", + -12.161520957946777 + ], + [ + "▁spatial", + -12.161523818969727 + ], + [ + "Similarly", + -12.161558151245117 + ], + [ + "▁Gala", + -12.161601066589355 + ], + [ + "ultimul", + -12.16162109375 + ], + [ + "▁Vom", + -12.161761283874512 + ], + [ + "▁Foot", + -12.161784172058105 + ], + [ + "bike", + -12.1618013381958 + ], + [ + "▁acids", + -12.161979675292969 + ], + [ + "entend", + -12.162002563476562 + ], + [ + "ivă", + -12.162040710449219 + ], + [ + "▁Weitere", + -12.162124633789062 + ], + [ + "▁vitamins", + -12.162131309509277 + ], + [ + "▁enhancement", + -12.16234016418457 + ], + [ + "▁Cruise", + -12.162367820739746 + ], + [ + "assemble", + -12.162385940551758 + ], + [ + "▁spécifique", + -12.162459373474121 + ], + [ + "affaires", + -12.16261100769043 + ], + [ + "▁indispensable", + -12.1626558303833 + ], + [ + "▁logistics", + -12.16283130645752 + ], + [ + "▁manche", + -12.162919044494629 + ], + [ + "▁dealt", + -12.16297435760498 + ], + [ + "▁favorable", + -12.163036346435547 + ], + [ + "▁unwanted", + -12.163047790527344 + ], + [ + "▁handmade", + -12.163065910339355 + ], + [ + "▁Regi", + -12.163102149963379 + ], + [ + "safe", + -12.163134574890137 + ], + [ + "persoanele", + -12.163202285766602 + ], + [ + "▁destinat", + -12.163252830505371 + ], + [ + "▁Maxi", + -12.163299560546875 + ], + [ + "▁salmon", + -12.163454055786133 + ], + [ + "wag", + -12.163578033447266 + ], + [ + "210", + -12.163769721984863 + ], + [ + "▁warned", + -12.163865089416504 + ], + [ + "läuft", + -12.16386604309082 + ], + [ + "agging", + -12.163931846618652 + ], + [ + "▁responsabil", + -12.16398811340332 + ], + [ + "▁presse", + -12.164271354675293 + ], + [ + "▁amis", + -12.164305686950684 + ], + [ + "▁rolls", + -12.164377212524414 + ], + [ + "control", + -12.164405822753906 + ], + [ + "▁Manufacturer", + -12.164422988891602 + ], + [ + "hnen", + -12.164449691772461 + ], + [ + "▁buget", + -12.164546012878418 + ], + [ + "OW", + -12.16467571258545 + ], + [ + "etro", + -12.164745330810547 + ], + [ + "▁communauté", + -12.164837837219238 + ], + [ + "unci", + -12.164944648742676 + ], + [ + "▁Chine", + -12.164952278137207 + ], + [ + "combines", + -12.16501235961914 + ], + [ + "▁learners", + -12.165046691894531 + ], + [ + "STE", + -12.165055274963379 + ], + [ + "ckel", + -12.16511344909668 + ], + [ + "Service", + -12.165169715881348 + ], + [ + "▁veröffentlicht", + -12.165209770202637 + ], + [ + "besides", + -12.165266036987305 + ], + [ + "getragen", + -12.165349960327148 + ], + [ + "▁opponent", + -12.165521621704102 + ], + [ + "▁volum", + -12.165533065795898 + ], + [ + "▁confusing", + -12.165802001953125 + ], + [ + "invasive", + -12.165813446044922 + ], + [ + "▁conseils", + -12.165881156921387 + ], + [ + "▁vibe", + -12.165928840637207 + ], + [ + "View", + -12.166062355041504 + ], + [ + "oară", + -12.166086196899414 + ], + [ + "Link", + -12.166261672973633 + ], + [ + "▁holy", + -12.166261672973633 + ], + [ + "▁crema", + -12.16629409790039 + ], + [ + "▁Michelle", + -12.166303634643555 + ], + [ + "▁Wien", + -12.166383743286133 + ], + [ + "▁undertake", + -12.166404724121094 + ], + [ + "▁Photograph", + -12.166421890258789 + ], + [ + "humain", + -12.16645336151123 + ], + [ + "▁Hang", + -12.166545867919922 + ], + [ + "designed", + -12.16657829284668 + ], + [ + "▁analyses", + -12.166614532470703 + ], + [ + "▁compose", + -12.166653633117676 + ], + [ + "▁substantially", + -12.166765213012695 + ], + [ + "▁marking", + -12.166772842407227 + ], + [ + "▁campagne", + -12.166826248168945 + ], + [ + "▁$15", + -12.166828155517578 + ], + [ + "pharma", + -12.166972160339355 + ], + [ + "▁playoff", + -12.1669921875 + ], + [ + "▁momentum", + -12.167091369628906 + ], + [ + "Temp", + -12.16714096069336 + ], + [ + "▁vinegar", + -12.167143821716309 + ], + [ + "▁descriptions", + -12.167581558227539 + ], + [ + "christ", + -12.167656898498535 + ], + [ + "wore", + -12.16773509979248 + ], + [ + "ITY", + -12.167768478393555 + ], + [ + "stehen", + -12.167771339416504 + ], + [ + "▁insulation", + -12.1677827835083 + ], + [ + "grav", + -12.167842864990234 + ], + [ + "2.2", + -12.167887687683105 + ], + [ + "▁Explore", + -12.168028831481934 + ], + [ + "▁dye", + -12.168127059936523 + ], + [ + "stair", + -12.168155670166016 + ], + [ + "artisan", + -12.168207168579102 + ], + [ + "▁zoom", + -12.168285369873047 + ], + [ + "▁turkey", + -12.168573379516602 + ], + [ + "▁locksmith", + -12.168577194213867 + ], + [ + "▁sewing", + -12.168610572814941 + ], + [ + "▁modeling", + -12.168627738952637 + ], + [ + "lied", + -12.16870403289795 + ], + [ + "adel", + -12.168773651123047 + ], + [ + "▁Going", + -12.168785095214844 + ], + [ + "WH", + -12.168798446655273 + ], + [ + "▁deserves", + -12.168919563293457 + ], + [ + "▁arriving", + -12.168960571289062 + ], + [ + "OFF", + -12.169039726257324 + ], + [ + "torului", + -12.169109344482422 + ], + [ + "ucked", + -12.16921615600586 + ], + [ + "▁approached", + -12.169351577758789 + ], + [ + "▁élevé", + -12.169354438781738 + ], + [ + "▁quotidien", + -12.169416427612305 + ], + [ + "▁derzeit", + -12.16942024230957 + ], + [ + "nutzt", + -12.169656753540039 + ], + [ + "science", + -12.169729232788086 + ], + [ + "▁Emma", + -12.169841766357422 + ], + [ + "▁builds", + -12.169879913330078 + ], + [ + "▁Logo", + -12.169949531555176 + ], + [ + "▁clouds", + -12.170061111450195 + ], + [ + "inflammatory", + -12.170141220092773 + ], + [ + "țiuni", + -12.170199394226074 + ], + [ + "▁Cisco", + -12.17025089263916 + ], + [ + "▁würden", + -12.170254707336426 + ], + [ + "▁Shaw", + -12.170256614685059 + ], + [ + "▁Ell", + -12.170266151428223 + ], + [ + "avance", + -12.1703519821167 + ], + [ + "anglais", + -12.170365333557129 + ], + [ + "weil", + -12.170368194580078 + ], + [ + "▁singura", + -12.170464515686035 + ], + [ + "ACK", + -12.170489311218262 + ], + [ + "likewise", + -12.170522689819336 + ], + [ + "ographie", + -12.170646667480469 + ], + [ + "liegen", + -12.17088508605957 + ], + [ + "▁Crow", + -12.170964241027832 + ], + [ + "▁unic", + -12.171187400817871 + ], + [ + "▁Ale", + -12.171241760253906 + ], + [ + "▁păstr", + -12.17125129699707 + ], + [ + "▁informal", + -12.171337127685547 + ], + [ + "650", + -12.17136287689209 + ], + [ + "Benz", + -12.171489715576172 + ], + [ + "▁antenna", + -12.171540260314941 + ], + [ + "▁pagini", + -12.171552658081055 + ], + [ + "▁lansat", + -12.171561241149902 + ], + [ + "▁Fans", + -12.171576499938965 + ], + [ + "taine", + -12.171822547912598 + ], + [ + "JO", + -12.171853065490723 + ], + [ + "▁Tips", + -12.172091484069824 + ], + [ + "cir", + -12.172130584716797 + ], + [ + "nou", + -12.172384262084961 + ], + [ + "▁planted", + -12.17241382598877 + ], + [ + "▁steering", + -12.172423362731934 + ], + [ + "▁Waren", + -12.172475814819336 + ], + [ + "▁clearance", + -12.172515869140625 + ], + [ + "▁Moscow", + -12.172516822814941 + ], + [ + "▁Faith", + -12.172534942626953 + ], + [ + "▁Pizza", + -12.172572135925293 + ], + [ + "▁Tank", + -12.17273998260498 + ], + [ + "QUE", + -12.172783851623535 + ], + [ + "▁studii", + -12.172804832458496 + ], + [ + "éné", + -12.172829627990723 + ], + [ + "▁guerre", + -12.1728515625 + ], + [ + "▁celebr", + -12.173083305358887 + ], + [ + "▁Factory", + -12.173111915588379 + ], + [ + "▁Browse", + -12.173198699951172 + ], + [ + "▁Request", + -12.17323112487793 + ], + [ + "▁taxpayer", + -12.173311233520508 + ], + [ + "▁assert", + -12.173562049865723 + ], + [ + "unternehmen", + -12.173588752746582 + ], + [ + "▁Ergebnis", + -12.173687934875488 + ], + [ + "▁Antwort", + -12.173727035522461 + ], + [ + "▁Photography", + -12.173808097839355 + ], + [ + "▁plă", + -12.173866271972656 + ], + [ + "IME", + -12.173982620239258 + ], + [ + "▁prochaine", + -12.174074172973633 + ], + [ + "ajouter", + -12.174103736877441 + ], + [ + "▁buffet", + -12.174227714538574 + ], + [ + "▁pixels", + -12.174239158630371 + ], + [ + "▁pledge", + -12.174250602722168 + ], + [ + "▁Inhalt", + -12.17435359954834 + ], + [ + "▁chase", + -12.174384117126465 + ], + [ + "Flow", + -12.174493789672852 + ], + [ + "▁melodi", + -12.174872398376465 + ], + [ + "▁Abu", + -12.174991607666016 + ], + [ + "▁1979", + -12.175042152404785 + ], + [ + "▁Photos", + -12.175042152404785 + ], + [ + "▁qualifications", + -12.175148963928223 + ], + [ + "▁zis", + -12.175213813781738 + ], + [ + "IAL", + -12.175354957580566 + ], + [ + "▁lender", + -12.175390243530273 + ], + [ + "▁indiferent", + -12.175494194030762 + ], + [ + "▁behaviors", + -12.175506591796875 + ], + [ + "▁flowing", + -12.175531387329102 + ], + [ + "▁zweite", + -12.1756010055542 + ], + [ + "abl", + -12.175765037536621 + ], + [ + "Schw", + -12.176004409790039 + ], + [ + "opi", + -12.176030158996582 + ], + [ + "ggi", + -12.176164627075195 + ], + [ + "▁depart", + -12.176314353942871 + ], + [ + "▁garde", + -12.17640209197998 + ], + [ + "▁tuition", + -12.176490783691406 + ], + [ + "fälle", + -12.17650032043457 + ], + [ + "▁determina", + -12.17652702331543 + ], + [ + "▁spice", + -12.176627159118652 + ], + [ + "▁petites", + -12.176777839660645 + ], + [ + "kot", + -12.176973342895508 + ], + [ + "▁intersection", + -12.177242279052734 + ], + [ + "hak", + -12.177248001098633 + ], + [ + "▁autumn", + -12.177284240722656 + ], + [ + "▁verbunden", + -12.177284240722656 + ], + [ + "▁ferme", + -12.177287101745605 + ], + [ + "PN", + -12.17733097076416 + ], + [ + "▁insurer", + -12.177390098571777 + ], + [ + "arten", + -12.177401542663574 + ], + [ + "▁Turkish", + -12.177715301513672 + ], + [ + "▁shoulders", + -12.177732467651367 + ], + [ + "=>", + -12.177742004394531 + ], + [ + "▁Nike", + -12.177760124206543 + ], + [ + "uire", + -12.177763938903809 + ], + [ + "▁Chile", + -12.177811622619629 + ], + [ + "jon", + -12.177842140197754 + ], + [ + "▁fragrance", + -12.177884101867676 + ], + [ + "▁bean", + -12.177908897399902 + ], + [ + "ips", + -12.178108215332031 + ], + [ + "assuming", + -12.178191184997559 + ], + [ + "liens", + -12.178215026855469 + ], + [ + "tocmai", + -12.178267478942871 + ], + [ + "▁60%", + -12.178301811218262 + ], + [ + "ipped", + -12.178384780883789 + ], + [ + "DIS", + -12.178473472595215 + ], + [ + "▁predicted", + -12.178537368774414 + ], + [ + "▁Picture", + -12.178555488586426 + ], + [ + "Bahn", + -12.178796768188477 + ], + [ + "104", + -12.178854942321777 + ], + [ + "tended", + -12.178958892822266 + ], + [ + "▁approve", + -12.179031372070312 + ], + [ + "▁magasin", + -12.17908000946045 + ], + [ + "▁mindset", + -12.179208755493164 + ], + [ + "rase", + -12.179363250732422 + ], + [ + "grand", + -12.179469108581543 + ], + [ + "▁Principal", + -12.17947769165039 + ], + [ + "▁informații", + -12.17959976196289 + ], + [ + "▁legătur", + -12.179628372192383 + ], + [ + "▁Farb", + -12.179692268371582 + ], + [ + "▁Dieu", + -12.179710388183594 + ], + [ + "▁alliance", + -12.180378913879395 + ], + [ + "weiligen", + -12.180397987365723 + ], + [ + "▁Câ", + -12.18048095703125 + ], + [ + "▁counseling", + -12.180521011352539 + ], + [ + "▁traveled", + -12.180533409118652 + ], + [ + "▁translated", + -12.180558204650879 + ], + [ + "▁carne", + -12.180679321289062 + ], + [ + "aked", + -12.180707931518555 + ], + [ + "▁LCD", + -12.180868148803711 + ], + [ + "▁Folge", + -12.180909156799316 + ], + [ + "▁Erfahrungen", + -12.18093204498291 + ], + [ + "▁1981", + -12.18106460571289 + ], + [ + "▁răspuns", + -12.181075096130371 + ], + [ + "itori", + -12.18117618560791 + ], + [ + "▁elementary", + -12.181200981140137 + ], + [ + "▁vorbei", + -12.18127727508545 + ], + [ + "▁cargo", + -12.181361198425293 + ], + [ + "disciplinary", + -12.18140983581543 + ], + [ + "WR", + -12.181492805480957 + ], + [ + "▁counterpart", + -12.18162727355957 + ], + [ + "family", + -12.181641578674316 + ], + [ + "▁viață", + -12.181644439697266 + ], + [ + "▁Definition", + -12.18167495727539 + ], + [ + "▁Cow", + -12.18171501159668 + ], + [ + "fällig", + -12.182003021240234 + ], + [ + "▁Sicht", + -12.182025909423828 + ], + [ + "▁mum", + -12.182145118713379 + ], + [ + "▁Mediterranean", + -12.182275772094727 + ], + [ + "nev", + -12.182278633117676 + ], + [ + "bü", + -12.182293891906738 + ], + [ + "▁slave", + -12.182293891906738 + ], + [ + "schnitt", + -12.18233871459961 + ], + [ + "▁firme", + -12.182430267333984 + ], + [ + "▁spill", + -12.182454109191895 + ], + [ + "▁wages", + -12.182592391967773 + ], + [ + "▁refine", + -12.182615280151367 + ], + [ + "▁upgraded", + -12.182632446289062 + ], + [ + "▁gospel", + -12.182698249816895 + ], + [ + "▁quartier", + -12.182744979858398 + ], + [ + "▁#2", + -12.182772636413574 + ], + [ + "▁Situation", + -12.18298625946045 + ], + [ + "▁suggesting", + -12.183075904846191 + ], + [ + "▁acne", + -12.183113098144531 + ], + [ + "▁Murray", + -12.183337211608887 + ], + [ + "▁Ian", + -12.183469772338867 + ], + [ + "hören", + -12.183489799499512 + ], + [ + "bia", + -12.183603286743164 + ], + [ + "▁Bewegung", + -12.183684349060059 + ], + [ + "▁abzu", + -12.18379020690918 + ], + [ + "reveals", + -12.183795928955078 + ], + [ + "friend", + -12.184025764465332 + ], + [ + "▁Connecticut", + -12.18407917022705 + ], + [ + "▁Testament", + -12.184151649475098 + ], + [ + "▁Lit", + -12.184199333190918 + ], + [ + "▁Ship", + -12.184209823608398 + ], + [ + "▁minunat", + -12.184344291687012 + ], + [ + "▁Moving", + -12.184346199035645 + ], + [ + "▁Device", + -12.184486389160156 + ], + [ + "▁Bake", + -12.18453598022461 + ], + [ + "▁qualification", + -12.184633255004883 + ], + [ + "▁challenged", + -12.184640884399414 + ], + [ + "▁Hinweis", + -12.184721946716309 + ], + [ + "▁sechs", + -12.184769630432129 + ], + [ + "та", + -12.184903144836426 + ], + [ + "120", + -12.184904098510742 + ], + [ + "licht", + -12.184940338134766 + ], + [ + "▁supervision", + -12.185022354125977 + ], + [ + "▁milestone", + -12.18503189086914 + ], + [ + "zeig", + -12.185050964355469 + ], + [ + "▁emphasize", + -12.185224533081055 + ], + [ + "▁complain", + -12.185232162475586 + ], + [ + "sack", + -12.185341835021973 + ], + [ + "▁rebuild", + -12.185445785522461 + ], + [ + "projekt", + -12.18548583984375 + ], + [ + "▁saint", + -12.185644149780273 + ], + [ + "lette", + -12.185752868652344 + ], + [ + "rade", + -12.18580150604248 + ], + [ + "▁pacient", + -12.185893058776855 + ], + [ + "signed", + -12.186169624328613 + ], + [ + "▁mil", + -12.186261177062988 + ], + [ + "cali", + -12.186266899108887 + ], + [ + "▁brochure", + -12.186487197875977 + ], + [ + "▁Bulgaria", + -12.186488151550293 + ], + [ + "Har", + -12.186623573303223 + ], + [ + "DH", + -12.186697006225586 + ], + [ + "▁jumping", + -12.186712265014648 + ], + [ + "ären", + -12.186732292175293 + ], + [ + "▁tactics", + -12.186911582946777 + ], + [ + "▁soleil", + -12.187030792236328 + ], + [ + "lessness", + -12.18705940246582 + ], + [ + "steigen", + -12.187085151672363 + ], + [ + "▁Brief", + -12.187117576599121 + ], + [ + "▁Oz", + -12.18718433380127 + ], + [ + "credit", + -12.187239646911621 + ], + [ + "glass", + -12.187241554260254 + ], + [ + "▁Baltimore", + -12.187292098999023 + ], + [ + "varies", + -12.187445640563965 + ], + [ + "sourced", + -12.187575340270996 + ], + [ + "▁documented", + -12.187604904174805 + ], + [ + "▁devine", + -12.187664985656738 + ], + [ + "möglichst", + -12.187732696533203 + ], + [ + "▁früher", + -12.187756538391113 + ], + [ + "outefois", + -12.18790054321289 + ], + [ + "▁Engagement", + -12.187934875488281 + ], + [ + "▁anumit", + -12.18806266784668 + ], + [ + "▁1930", + -12.188186645507812 + ], + [ + "▁Aufgaben", + -12.188214302062988 + ], + [ + "▁lineup", + -12.188227653503418 + ], + [ + "▁Cad", + -12.188349723815918 + ], + [ + "améliorer", + -12.188437461853027 + ], + [ + "▁februarie", + -12.188499450683594 + ], + [ + "▁cancellation", + -12.188529968261719 + ], + [ + "▁locks", + -12.188577651977539 + ], + [ + "▁modèles", + -12.188711166381836 + ], + [ + "▁breakdown", + -12.188748359680176 + ], + [ + "Ticket", + -12.188810348510742 + ], + [ + "▁Chen", + -12.188855171203613 + ], + [ + "▁Competition", + -12.188910484313965 + ], + [ + "▁median", + -12.18896770477295 + ], + [ + "rische", + -12.189159393310547 + ], + [ + "▁multipli", + -12.189269065856934 + ], + [ + "▁Belgium", + -12.189305305480957 + ], + [ + "▁Physical", + -12.189308166503906 + ], + [ + "▁parameter", + -12.189432144165039 + ], + [ + "▁carrot", + -12.189435005187988 + ], + [ + "▁mandat", + -12.189617156982422 + ], + [ + "▁towel", + -12.189697265625 + ], + [ + "▁insured", + -12.189825057983398 + ], + [ + "PRI", + -12.189868927001953 + ], + [ + "etter", + -12.189915657043457 + ], + [ + "▁Oder", + -12.190083503723145 + ], + [ + "argued", + -12.190171241760254 + ], + [ + "FB", + -12.190196990966797 + ], + [ + "versicherung", + -12.190197944641113 + ], + [ + "abila", + -12.190251350402832 + ], + [ + "▁Coin", + -12.190324783325195 + ], + [ + "around", + -12.19050121307373 + ], + [ + "▁Lorsqu", + -12.190773963928223 + ], + [ + "valent", + -12.190918922424316 + ], + [ + "▁weltweit", + -12.19092082977295 + ], + [ + "Mod", + -12.191039085388184 + ], + [ + "▁defect", + -12.191044807434082 + ], + [ + "ibly", + -12.191136360168457 + ], + [ + "▁Juan", + -12.191153526306152 + ], + [ + "▁Jur", + -12.191171646118164 + ], + [ + "large", + -12.191307067871094 + ], + [ + "▁indicators", + -12.191461563110352 + ], + [ + "invest", + -12.19168472290039 + ], + [ + "▁rehabilitation", + -12.191705703735352 + ], + [ + "nag", + -12.191823959350586 + ], + [ + "▁Grundlage", + -12.191829681396484 + ], + [ + "▁Strategy", + -12.192131042480469 + ], + [ + "▁supérieur", + -12.192173957824707 + ], + [ + "▁orbit", + -12.192281723022461 + ], + [ + "▁Auftrag", + -12.192360877990723 + ], + [ + "▁Verb", + -12.192441940307617 + ], + [ + "ANA", + -12.19256591796875 + ], + [ + "▁trimis", + -12.192611694335938 + ], + [ + "▁Rub", + -12.192704200744629 + ], + [ + "institu", + -12.192732810974121 + ], + [ + "▁inspect", + -12.1927490234375 + ], + [ + "▁Princess", + -12.192757606506348 + ], + [ + "especially", + -12.192777633666992 + ], + [ + "▁combinations", + -12.192793846130371 + ], + [ + "▁gaze", + -12.192842483520508 + ], + [ + "elemente", + -12.192970275878906 + ], + [ + "deal", + -12.192980766296387 + ], + [ + "polis", + -12.193157196044922 + ], + [ + "shaw", + -12.193168640136719 + ], + [ + "▁Republicans", + -12.193203926086426 + ], + [ + "aded", + -12.193244934082031 + ], + [ + "▁Louisiana", + -12.193364143371582 + ], + [ + "▁Ville", + -12.193368911743164 + ], + [ + "▁afterwards", + -12.193389892578125 + ], + [ + "ONG", + -12.193608283996582 + ], + [ + "▁dryer", + -12.193636894226074 + ], + [ + "▁Manhattan", + -12.19374942779541 + ], + [ + "▁recomanda", + -12.19412612915039 + ], + [ + "▁juca", + -12.194253921508789 + ], + [ + "▁Crown", + -12.194260597229004 + ], + [ + "▁flesh", + -12.194347381591797 + ], + [ + "sichtig", + -12.194358825683594 + ], + [ + "▁rempli", + -12.19437026977539 + ], + [ + "▁deposits", + -12.19438362121582 + ], + [ + "▁Voll", + -12.194599151611328 + ], + [ + "▁analysts", + -12.194672584533691 + ], + [ + "▁Krieg", + -12.19484806060791 + ], + [ + "▁Rosa", + -12.19495964050293 + ], + [ + "▁Supply", + -12.194964408874512 + ], + [ + "GF", + -12.19497013092041 + ], + [ + "idad", + -12.195098876953125 + ], + [ + "▁flush", + -12.195103645324707 + ], + [ + "▁circular", + -12.195355415344238 + ], + [ + "▁național", + -12.195379257202148 + ], + [ + "▁lorsqu", + -12.195441246032715 + ], + [ + "▁analyst", + -12.195459365844727 + ], + [ + "▁Jahrhundert", + -12.195586204528809 + ], + [ + "▁biology", + -12.195713996887207 + ], + [ + "copy", + -12.195733070373535 + ], + [ + "▁bringt", + -12.195765495300293 + ], + [ + "▁Gospel", + -12.195780754089355 + ], + [ + "▁sorgen", + -12.195842742919922 + ], + [ + "zeichnung", + -12.196181297302246 + ], + [ + "chair", + -12.196197509765625 + ], + [ + "EB", + -12.19636344909668 + ], + [ + "▁Beth", + -12.1964111328125 + ], + [ + "115", + -12.196416854858398 + ], + [ + "▁Neue", + -12.196479797363281 + ], + [ + "▁faible", + -12.196599960327148 + ], + [ + "▁methodology", + -12.196603775024414 + ], + [ + "spiele", + -12.196647644042969 + ], + [ + "▁cherry", + -12.196727752685547 + ], + [ + "▁Mak", + -12.196802139282227 + ], + [ + "▁volet", + -12.196982383728027 + ], + [ + "funk", + -12.197196006774902 + ], + [ + "▁aktuelle", + -12.197372436523438 + ], + [ + "▁Yahoo", + -12.197408676147461 + ], + [ + "▁Zusammenarbeit", + -12.197669982910156 + ], + [ + "▁Serve", + -12.197754859924316 + ], + [ + "▁simpler", + -12.197978019714355 + ], + [ + "intégr", + -12.197990417480469 + ], + [ + "ndlich", + -12.198083877563477 + ], + [ + "▁actress", + -12.198320388793945 + ], + [ + "▁reuse", + -12.198332786560059 + ], + [ + "▁reviewing", + -12.198405265808105 + ], + [ + "statt", + -12.198457717895508 + ], + [ + "▁diving", + -12.198469161987305 + ], + [ + "▁Național", + -12.198677062988281 + ], + [ + "voi", + -12.19873332977295 + ], + [ + "Disc", + -12.198812484741211 + ], + [ + "▁Mineral", + -12.19886302947998 + ], + [ + "▁emit", + -12.199007034301758 + ], + [ + "witz", + -12.199078559875488 + ], + [ + "▁forgot", + -12.19909954071045 + ], + [ + "▁dim", + -12.199115753173828 + ], + [ + "upper", + -12.19947624206543 + ], + [ + "sichtlich", + -12.19949722290039 + ], + [ + "▁parcours", + -12.199670791625977 + ], + [ + "8:00", + -12.199697494506836 + ], + [ + "▁keyword", + -12.199701309204102 + ], + [ + "▁upgrades", + -12.199763298034668 + ], + [ + "kunden", + -12.200177192687988 + ], + [ + "▁Seg", + -12.200257301330566 + ], + [ + "▁Circle", + -12.200289726257324 + ], + [ + "▁ginger", + -12.200336456298828 + ], + [ + "mment", + -12.200516700744629 + ], + [ + "▁expenditure", + -12.200655937194824 + ], + [ + "▁parle", + -12.200693130493164 + ], + [ + "▁Counsel", + -12.200722694396973 + ], + [ + "▁Gui", + -12.200722694396973 + ], + [ + "resident", + -12.20103645324707 + ], + [ + "▁benchmark", + -12.20103931427002 + ], + [ + "▁Elektro", + -12.201064109802246 + ], + [ + "▁réalité", + -12.201064109802246 + ], + [ + "▁ridiculous", + -12.201067924499512 + ], + [ + "▁necklace", + -12.20108699798584 + ], + [ + "nian", + -12.201117515563965 + ], + [ + "▁Move", + -12.20113468170166 + ], + [ + "▁elevated", + -12.201204299926758 + ], + [ + "WE", + -12.201281547546387 + ], + [ + "▁Drum", + -12.20132064819336 + ], + [ + "▁Delivery", + -12.201350212097168 + ], + [ + "indicating", + -12.201452255249023 + ], + [ + "▁Benjamin", + -12.201472282409668 + ], + [ + "▁Samuel", + -12.2014741897583 + ], + [ + "bene", + -12.201666831970215 + ], + [ + "▁experienta", + -12.201676368713379 + ], + [ + "▁rocket", + -12.201839447021484 + ], + [ + "▁fossil", + -12.201883316040039 + ], + [ + "▁festive", + -12.20193099975586 + ], + [ + "▁conscience", + -12.201964378356934 + ], + [ + "▁bacon", + -12.202136993408203 + ], + [ + "▁aero", + -12.202159881591797 + ], + [ + "public", + -12.202187538146973 + ], + [ + "▁zic", + -12.202218055725098 + ], + [ + "ombre", + -12.202356338500977 + ], + [ + "▁Drain", + -12.202550888061523 + ], + [ + "7.5", + -12.202672004699707 + ], + [ + "▁Deutschen", + -12.202703475952148 + ], + [ + "reportedly", + -12.202754974365234 + ], + [ + "▁Français", + -12.203105926513672 + ], + [ + "▁enzyme", + -12.203106880187988 + ], + [ + "▁inquiry", + -12.203117370605469 + ], + [ + "▁presque", + -12.203193664550781 + ], + [ + "▁Airlines", + -12.203228950500488 + ], + [ + "▁Salon", + -12.203237533569336 + ], + [ + "▁Volunteer", + -12.203310012817383 + ], + [ + "▁modular", + -12.203349113464355 + ], + [ + "ón", + -12.203364372253418 + ], + [ + "NH", + -12.203449249267578 + ], + [ + "▁souhaite", + -12.203516960144043 + ], + [ + "social", + -12.203659057617188 + ], + [ + "▁Include", + -12.203729629516602 + ], + [ + "▁Decor", + -12.2037992477417 + ], + [ + "dded", + -12.203965187072754 + ], + [ + "▁Außen", + -12.203969955444336 + ], + [ + "rendu", + -12.20412540435791 + ], + [ + "▁MBA", + -12.204150199890137 + ], + [ + "▁columns", + -12.204155921936035 + ], + [ + "▁Wing", + -12.204436302185059 + ], + [ + "▁landmark", + -12.204442977905273 + ], + [ + "schritt", + -12.204594612121582 + ], + [ + "▁désir", + -12.204630851745605 + ], + [ + "(5)", + -12.204680442810059 + ], + [ + "▁réseaux", + -12.204693794250488 + ], + [ + "income", + -12.204710960388184 + ], + [ + "▁revised", + -12.204819679260254 + ], + [ + "HY", + -12.204863548278809 + ], + [ + "▁Explorer", + -12.204873085021973 + ], + [ + "▁Lam", + -12.204877853393555 + ], + [ + "▁almond", + -12.204910278320312 + ], + [ + "▁faux", + -12.204910278320312 + ], + [ + "opt", + -12.204923629760742 + ], + [ + "Out", + -12.204939842224121 + ], + [ + "▁virtue", + -12.205025672912598 + ], + [ + "▁Chocolate", + -12.205151557922363 + ], + [ + "▁spannend", + -12.205305099487305 + ], + [ + "▁spices", + -12.205327033996582 + ], + [ + "▁Climate", + -12.205560684204102 + ], + [ + "▁Residential", + -12.205560684204102 + ], + [ + "gung", + -12.205700874328613 + ], + [ + "▁filtr", + -12.20606803894043 + ], + [ + "circ", + -12.206123352050781 + ], + [ + "sisted", + -12.206172943115234 + ], + [ + "▁dedicat", + -12.206243515014648 + ], + [ + "▁foil", + -12.206387519836426 + ], + [ + "▁uita", + -12.206392288208008 + ], + [ + "▁lié", + -12.206402778625488 + ], + [ + "▁Demo", + -12.206409454345703 + ], + [ + "▁spoil", + -12.2064208984375 + ], + [ + "Cu", + -12.206448554992676 + ], + [ + "naut", + -12.206525802612305 + ], + [ + "▁configured", + -12.206535339355469 + ], + [ + "UK", + -12.206543922424316 + ], + [ + "▁disagree", + -12.20656967163086 + ], + [ + "Medic", + -12.206767082214355 + ], + [ + "cosm", + -12.207074165344238 + ], + [ + "Toute", + -12.207109451293945 + ], + [ + "▁beneficia", + -12.207170486450195 + ], + [ + "fassen", + -12.207327842712402 + ], + [ + "▁bail", + -12.207337379455566 + ], + [ + "igue", + -12.207439422607422 + ], + [ + "▁Mă", + -12.20744800567627 + ], + [ + "▁strips", + -12.20748519897461 + ], + [ + "▁Dritte", + -12.207537651062012 + ], + [ + "▁putere", + -12.207597732543945 + ], + [ + "Play", + -12.20763111114502 + ], + [ + "▁Samstag", + -12.207632064819336 + ], + [ + "▁households", + -12.207791328430176 + ], + [ + "▁persistent", + -12.207914352416992 + ], + [ + "uben", + -12.207942962646484 + ], + [ + "Web", + -12.20809555053711 + ], + [ + "▁scenery", + -12.20820140838623 + ], + [ + "▁défini", + -12.208257675170898 + ], + [ + "news", + -12.208337783813477 + ], + [ + "eira", + -12.208428382873535 + ], + [ + "▁Mumbai", + -12.208438873291016 + ], + [ + "▁Ward", + -12.208558082580566 + ], + [ + "▁ladder", + -12.2086181640625 + ], + [ + "▁plaque", + -12.208623886108398 + ], + [ + "nés", + -12.208639144897461 + ], + [ + "▁condamn", + -12.20864486694336 + ], + [ + "▁attribute", + -12.208687782287598 + ], + [ + "atti", + -12.20873737335205 + ], + [ + "▁Emily", + -12.208953857421875 + ], + [ + "▁pleine", + -12.20896053314209 + ], + [ + "▁automatisch", + -12.209004402160645 + ], + [ + "ifies", + -12.209052085876465 + ], + [ + "onna", + -12.209104537963867 + ], + [ + "▁inject", + -12.209157943725586 + ], + [ + "▁evolve", + -12.209297180175781 + ], + [ + "▁breeze", + -12.209299087524414 + ], + [ + "▁montre", + -12.209415435791016 + ], + [ + "▁memorial", + -12.209425926208496 + ], + [ + "ämlich", + -12.209465026855469 + ], + [ + "NBC", + -12.209589958190918 + ], + [ + "▁1940", + -12.209836959838867 + ], + [ + "▁trouvé", + -12.209892272949219 + ], + [ + "when", + -12.209914207458496 + ], + [ + "▁Büro", + -12.209959983825684 + ], + [ + "▁probability", + -12.209978103637695 + ], + [ + "cute", + -12.21006965637207 + ], + [ + "▁sturdy", + -12.210078239440918 + ], + [ + "AMP", + -12.210165023803711 + ], + [ + "▁Constantin", + -12.210283279418945 + ], + [ + "▁batter", + -12.21037483215332 + ], + [ + "▁bist", + -12.210470199584961 + ], + [ + "▁streams", + -12.210528373718262 + ], + [ + "rushing", + -12.21057415008545 + ], + [ + "▁shaft", + -12.21065902709961 + ], + [ + "▁proprii", + -12.210722923278809 + ], + [ + "émi", + -12.21074390411377 + ], + [ + "online", + -12.210817337036133 + ], + [ + "▁vanity", + -12.210870742797852 + ], + [ + "▁mural", + -12.210878372192383 + ], + [ + "▁distinguish", + -12.210905075073242 + ], + [ + "▁niciun", + -12.211191177368164 + ], + [ + "▁européenne", + -12.211252212524414 + ], + [ + "▁secretary", + -12.211289405822754 + ], + [ + "▁gaps", + -12.211492538452148 + ], + [ + "▁realm", + -12.211499214172363 + ], + [ + "▁elastic", + -12.211504936218262 + ], + [ + "▁Avoid", + -12.211519241333008 + ], + [ + "▁mauvais", + -12.211931228637695 + ], + [ + "▁innovations", + -12.212663650512695 + ], + [ + "▁suprem", + -12.212776184082031 + ], + [ + "▁vederea", + -12.212817192077637 + ], + [ + "wenden", + -12.212892532348633 + ], + [ + "-40", + -12.213075637817383 + ], + [ + "prenant", + -12.213155746459961 + ], + [ + "utilisateur", + -12.213210105895996 + ], + [ + "▁Oliver", + -12.213228225708008 + ], + [ + "111", + -12.21326732635498 + ], + [ + "▁manifestation", + -12.213382720947266 + ], + [ + "▁Rachel", + -12.213458061218262 + ], + [ + "agog", + -12.21348762512207 + ], + [ + "▁seamless", + -12.213534355163574 + ], + [ + "▁Employee", + -12.213576316833496 + ], + [ + "▁dimanche", + -12.213582038879395 + ], + [ + "▁banii", + -12.213631629943848 + ], + [ + "▁Ruth", + -12.213781356811523 + ], + [ + "▁Roy", + -12.21385383605957 + ], + [ + "▁homeless", + -12.2139253616333 + ], + [ + "▁Lower", + -12.213932037353516 + ], + [ + "health", + -12.21393871307373 + ], + [ + "▁atenti", + -12.2140474319458 + ], + [ + "▁touched", + -12.214183807373047 + ], + [ + "May", + -12.214195251464844 + ], + [ + "▁Buc", + -12.214225769042969 + ], + [ + "▁explored", + -12.214393615722656 + ], + [ + "▁declare", + -12.214461326599121 + ], + [ + "▁garment", + -12.214469909667969 + ], + [ + "▁buzz", + -12.214483261108398 + ], + [ + "▁rappel", + -12.214662551879883 + ], + [ + "▁uscat", + -12.214903831481934 + ], + [ + "▁Hyper", + -12.214914321899414 + ], + [ + "Etat", + -12.215007781982422 + ], + [ + "▁Titel", + -12.215035438537598 + ], + [ + "product", + -12.215191841125488 + ], + [ + "woman", + -12.215280532836914 + ], + [ + "▁Gab", + -12.215450286865234 + ], + [ + "▁advances", + -12.215615272521973 + ], + [ + "2/", + -12.215753555297852 + ], + [ + "prone", + -12.215770721435547 + ], + [ + "kö", + -12.215986251831055 + ], + [ + "▁counting", + -12.21599292755127 + ], + [ + "Sollte", + -12.216043472290039 + ], + [ + "▁Konzept", + -12.216063499450684 + ], + [ + "▁backgrounds", + -12.216153144836426 + ], + [ + "jährige", + -12.216154098510742 + ], + [ + "▁Alltag", + -12.216187477111816 + ], + [ + "▁metrics", + -12.21619701385498 + ], + [ + "▁illustrated", + -12.216222763061523 + ], + [ + "▁Charge", + -12.21631908416748 + ], + [ + "▁thoughtful", + -12.216423034667969 + ], + [ + "gesetz", + -12.216527938842773 + ], + [ + "pfen", + -12.216611862182617 + ], + [ + "▁déroul", + -12.216713905334473 + ], + [ + "▁checkout", + -12.216876029968262 + ], + [ + "quette", + -12.216936111450195 + ], + [ + "▁pierdut", + -12.2170991897583 + ], + [ + "▁Seat", + -12.217140197753906 + ], + [ + "▁linen", + -12.217193603515625 + ], + [ + "archiv", + -12.217245101928711 + ], + [ + "arna", + -12.217254638671875 + ], + [ + "importe", + -12.21742057800293 + ], + [ + "▁PHP", + -12.217496871948242 + ], + [ + "▁Parents", + -12.217503547668457 + ], + [ + "▁Birmingham", + -12.217513084411621 + ], + [ + "▁Integr", + -12.217588424682617 + ], + [ + "▁Mason", + -12.217607498168945 + ], + [ + "zieht", + -12.217781066894531 + ], + [ + "▁camps", + -12.217803001403809 + ], + [ + "OG", + -12.21786117553711 + ], + [ + "▁syrup", + -12.217927932739258 + ], + [ + "▁Cookies", + -12.217928886413574 + ], + [ + "▁Comfort", + -12.217955589294434 + ], + [ + "ută", + -12.217976570129395 + ], + [ + "abia", + -12.217979431152344 + ], + [ + "zeci", + -12.218003273010254 + ], + [ + "▁Gardens", + -12.218009948730469 + ], + [ + "▁incidents", + -12.218149185180664 + ], + [ + "▁participat", + -12.218235969543457 + ], + [ + "▁glimpse", + -12.218342781066895 + ], + [ + "5.5", + -12.218437194824219 + ], + [ + "▁dealers", + -12.218469619750977 + ], + [ + "▁Grande", + -12.218565940856934 + ], + [ + "▁raid", + -12.218944549560547 + ], + [ + "owing", + -12.21903133392334 + ], + [ + "▁contrary", + -12.219109535217285 + ], + [ + "Earlier", + -12.219138145446777 + ], + [ + "tien", + -12.21916389465332 + ], + [ + "drop", + -12.219169616699219 + ], + [ + "▁angajat", + -12.219359397888184 + ], + [ + "▁procesul", + -12.219515800476074 + ], + [ + "▁focal", + -12.219564437866211 + ], + [ + "▁impart", + -12.219703674316406 + ], + [ + "▁Abschluss", + -12.219749450683594 + ], + [ + "carui", + -12.219830513000488 + ], + [ + "insul", + -12.220277786254883 + ], + [ + "▁creamy", + -12.220283508300781 + ], + [ + "eille", + -12.22032356262207 + ], + [ + "suppl", + -12.220335960388184 + ], + [ + "▁Heaven", + -12.220471382141113 + ], + [ + "éna", + -12.220667839050293 + ], + [ + "▁swap", + -12.220739364624023 + ], + [ + "▁vreau", + -12.220762252807617 + ], + [ + "▁Bryan", + -12.220809936523438 + ], + [ + "▁Zug", + -12.220815658569336 + ], + [ + "▁glance", + -12.220848083496094 + ], + [ + "▁elimin", + -12.220900535583496 + ], + [ + "▁yeux", + -12.221084594726562 + ], + [ + "wehr", + -12.221238136291504 + ], + [ + "2.5", + -12.221287727355957 + ], + [ + "▁poses", + -12.221364974975586 + ], + [ + "▁parcel", + -12.221585273742676 + ], + [ + "▁Apartment", + -12.221749305725098 + ], + [ + "▁NASA", + -12.221768379211426 + ], + [ + "▁bénéfici", + -12.22187614440918 + ], + [ + "▁Umgebung", + -12.221890449523926 + ], + [ + "asia", + -12.221946716308594 + ], + [ + "abi", + -12.221967697143555 + ], + [ + "coup", + -12.222002983093262 + ], + [ + "synchron", + -12.222017288208008 + ], + [ + "▁Sicherheits", + -12.222029685974121 + ], + [ + "bic", + -12.222076416015625 + ], + [ + "▁distract", + -12.222148895263672 + ], + [ + "▁rentals", + -12.222163200378418 + ], + [ + "constru", + -12.222290992736816 + ], + [ + "curs", + -12.222345352172852 + ], + [ + "genannten", + -12.222386360168457 + ], + [ + "▁Shanghai", + -12.222501754760742 + ], + [ + "▁vague", + -12.222504615783691 + ], + [ + "▁Leather", + -12.22250747680664 + ], + [ + "▁Vintage", + -12.222532272338867 + ], + [ + "pointing", + -12.22259521484375 + ], + [ + "avant", + -12.22268295288086 + ], + [ + "gues", + -12.222949028015137 + ], + [ + "sweise", + -12.22302532196045 + ], + [ + "▁Greater", + -12.223065376281738 + ], + [ + "fig", + -12.22310733795166 + ], + [ + "▁Blut", + -12.223217964172363 + ], + [ + "▁Stellen", + -12.22326946258545 + ], + [ + "▁isolation", + -12.22337818145752 + ], + [ + "▁overhead", + -12.22338581085205 + ], + [ + "▁wondered", + -12.223508834838867 + ], + [ + "essai", + -12.223609924316406 + ], + [ + "aves", + -12.2236328125 + ], + [ + "▁Shore", + -12.223637580871582 + ], + [ + "▁INC", + -12.223709106445312 + ], + [ + "rufen", + -12.223980903625488 + ], + [ + "▁magnifique", + -12.224069595336914 + ], + [ + "▁intéressant", + -12.224072456359863 + ], + [ + "▁tanks", + -12.224075317382812 + ], + [ + "▁Tun", + -12.224367141723633 + ], + [ + "▁approaching", + -12.224390029907227 + ], + [ + "▁relay", + -12.224479675292969 + ], + [ + "▁Küche", + -12.224529266357422 + ], + [ + "describing", + -12.224587440490723 + ], + [ + "▁Certification", + -12.224588394165039 + ], + [ + "▁Breakfast", + -12.224597930908203 + ], + [ + "▁Frame", + -12.224891662597656 + ], + [ + "▁Stoff", + -12.224909782409668 + ], + [ + "▁victime", + -12.224924087524414 + ], + [ + "Observ", + -12.224943161010742 + ], + [ + "▁gutter", + -12.224989891052246 + ], + [ + "standard", + -12.225220680236816 + ], + [ + "▁Sci", + -12.225244522094727 + ], + [ + "▁sept", + -12.225377082824707 + ], + [ + "▁Potter", + -12.225423812866211 + ], + [ + "letter", + -12.22577953338623 + ], + [ + "▁tobacco", + -12.225852012634277 + ], + [ + "▁threatened", + -12.22591781616211 + ], + [ + "MW", + -12.225936889648438 + ], + [ + "▁Cher", + -12.225944519042969 + ], + [ + "0.1", + -12.225957870483398 + ], + [ + "mitted", + -12.22596263885498 + ], + [ + "zustellen", + -12.225967407226562 + ], + [ + "dominated", + -12.226165771484375 + ], + [ + "/16", + -12.22623348236084 + ], + [ + "POS", + -12.226317405700684 + ], + [ + "▁Zin", + -12.226373672485352 + ], + [ + "▁Okay", + -12.226381301879883 + ], + [ + "▁projected", + -12.226405143737793 + ], + [ + "▁selber", + -12.226548194885254 + ], + [ + "▁proiectului", + -12.2266206741333 + ], + [ + "▁Shell", + -12.226683616638184 + ], + [ + "▁cartridge", + -12.226706504821777 + ], + [ + "Message", + -12.2267484664917 + ], + [ + "haben", + -12.226799964904785 + ], + [ + "▁slides", + -12.226829528808594 + ], + [ + "▁gleichzeitig", + -12.226886749267578 + ], + [ + "▁Racing", + -12.227051734924316 + ], + [ + "▁20,", + -12.227070808410645 + ], + [ + "▁separat", + -12.227094650268555 + ], + [ + "▁repeatedly", + -12.227110862731934 + ], + [ + "▁casting", + -12.22728157043457 + ], + [ + "▁sacred", + -12.227283477783203 + ], + [ + "verfahren", + -12.227387428283691 + ], + [ + "▁echilibr", + -12.227514266967773 + ], + [ + "▁rebel", + -12.2277250289917 + ], + [ + "säu", + -12.227794647216797 + ], + [ + "ummy", + -12.227815628051758 + ], + [ + "▁backing", + -12.227889060974121 + ], + [ + "▁sponsors", + -12.227912902832031 + ], + [ + "▁Stress", + -12.22802448272705 + ], + [ + "▁Rules", + -12.228083610534668 + ], + [ + "▁render", + -12.228241920471191 + ], + [ + "▁funktioniert", + -12.228384971618652 + ], + [ + "▁Pearl", + -12.228472709655762 + ], + [ + "▁Scho", + -12.228527069091797 + ], + [ + "schwer", + -12.228595733642578 + ], + [ + "▁descoperit", + -12.228702545166016 + ], + [ + "holen", + -12.228720664978027 + ], + [ + "imposed", + -12.228960990905762 + ], + [ + "▁appearing", + -12.228968620300293 + ], + [ + "▁höher", + -12.229082107543945 + ], + [ + "▁Victorian", + -12.229111671447754 + ], + [ + "▁founding", + -12.229155540466309 + ], + [ + "▁Polish", + -12.229239463806152 + ], + [ + "▁anume", + -12.229248046875 + ], + [ + "Box", + -12.229488372802734 + ], + [ + "▁intrat", + -12.229598999023438 + ], + [ + "▁Inspiration", + -12.229610443115234 + ], + [ + "▁Canyon", + -12.229625701904297 + ], + [ + "▁Franklin", + -12.22974681854248 + ], + [ + "▁susceptible", + -12.22982120513916 + ], + [ + "trap", + -12.229839324951172 + ], + [ + "▁Roma", + -12.23000717163086 + ], + [ + "▁ethics", + -12.230009078979492 + ], + [ + "▁Privat", + -12.230027198791504 + ], + [ + "▁journalists", + -12.230090141296387 + ], + [ + "▁Universität", + -12.230246543884277 + ], + [ + "▁conditioner", + -12.230308532714844 + ], + [ + "folge", + -12.230327606201172 + ], + [ + "kirche", + -12.230416297912598 + ], + [ + "gehalten", + -12.230530738830566 + ], + [ + "midi", + -12.230570793151855 + ], + [ + "▁radar", + -12.230619430541992 + ], + [ + "▁Yard", + -12.230775833129883 + ], + [ + "▁professionnelle", + -12.230863571166992 + ], + [ + "▁Orchestra", + -12.230870246887207 + ], + [ + "▁immigrants", + -12.230870246887207 + ], + [ + "▁refined", + -12.230929374694824 + ], + [ + "▁Bishop", + -12.231036186218262 + ], + [ + "string", + -12.231095314025879 + ], + [ + "▁majoritatea", + -12.231231689453125 + ], + [ + "▁workflow", + -12.23123836517334 + ], + [ + "▁întreg", + -12.231306076049805 + ], + [ + "went", + -12.231563568115234 + ], + [ + "▁trat", + -12.231689453125 + ], + [ + "felul", + -12.23176383972168 + ], + [ + "▁hardwood", + -12.231821060180664 + ], + [ + "▁Task", + -12.231867790222168 + ], + [ + "branded", + -12.231921195983887 + ], + [ + "▁cinq", + -12.231966018676758 + ], + [ + "▁curb", + -12.232041358947754 + ], + [ + "▁Discount", + -12.232043266296387 + ], + [ + "▁Episode", + -12.232131958007812 + ], + [ + "▁Knowledge", + -12.232144355773926 + ], + [ + "▁tricky", + -12.232173919677734 + ], + [ + "▁characteristic", + -12.232233047485352 + ], + [ + "▁plata", + -12.23226261138916 + ], + [ + "▁Labour", + -12.23232650756836 + ], + [ + "▁Tha", + -12.232372283935547 + ], + [ + "▁Liefer", + -12.232430458068848 + ], + [ + "▁Reader", + -12.232471466064453 + ], + [ + "▁Linda", + -12.232521057128906 + ], + [ + "ittlerweile", + -12.232552528381348 + ], + [ + "defining", + -12.232564926147461 + ], + [ + "▁delayed", + -12.232635498046875 + ], + [ + "▁Bewertung", + -12.232674598693848 + ], + [ + "▁Unique", + -12.232791900634766 + ], + [ + "▁Champion", + -12.232866287231445 + ], + [ + "2008", + -12.232897758483887 + ], + [ + "▁conclu", + -12.232934951782227 + ], + [ + "▁câștig", + -12.2329740524292 + ], + [ + "▁scheduling", + -12.2329740524292 + ], + [ + "▁sailing", + -12.233116149902344 + ], + [ + "▁Storm", + -12.23318862915039 + ], + [ + "▁Stil", + -12.23320198059082 + ], + [ + "▁Album", + -12.233211517333984 + ], + [ + "▁ultime", + -12.233343124389648 + ], + [ + "url", + -12.233369827270508 + ], + [ + "▁terrific", + -12.23339557647705 + ], + [ + "▁remedy", + -12.233396530151367 + ], + [ + "▁Around", + -12.233592987060547 + ], + [ + "▁Kni", + -12.233756065368652 + ], + [ + "etty", + -12.23376750946045 + ], + [ + "Managing", + -12.233809471130371 + ], + [ + "▁Bedeutung", + -12.233816146850586 + ], + [ + "▁earthquake", + -12.233817100524902 + ], + [ + "▁Telefon", + -12.233818054199219 + ], + [ + "▁Upper", + -12.233869552612305 + ], + [ + "▁validation", + -12.233892440795898 + ], + [ + "-22", + -12.233997344970703 + ], + [ + "▁queue", + -12.23401165008545 + ], + [ + "tinde", + -12.234025001525879 + ], + [ + "built", + -12.234047889709473 + ], + [ + "▁voix", + -12.234125137329102 + ], + [ + "▁Resource", + -12.234126091003418 + ], + [ + "ţiuni", + -12.234143257141113 + ], + [ + "▁satisfying", + -12.234299659729004 + ], + [ + "▁Kohl", + -12.234441757202148 + ], + [ + "▁Materials", + -12.234618186950684 + ], + [ + "▁esp", + -12.234732627868652 + ], + [ + "enseignement", + -12.234773635864258 + ], + [ + "danach", + -12.234883308410645 + ], + [ + "peux", + -12.234932899475098 + ], + [ + "▁deployed", + -12.235113143920898 + ], + [ + "▁1976", + -12.235126495361328 + ], + [ + "ușor", + -12.235334396362305 + ], + [ + "élection", + -12.235380172729492 + ], + [ + "ettes", + -12.235437393188477 + ], + [ + "▁Madison", + -12.235506057739258 + ], + [ + "108", + -12.235685348510742 + ], + [ + "berger", + -12.235696792602539 + ], + [ + "▁pedal", + -12.235702514648438 + ], + [ + "▁quasi", + -12.235820770263672 + ], + [ + "▁lend", + -12.235843658447266 + ], + [ + "VER", + -12.235940933227539 + ], + [ + "▁chapters", + -12.236002922058105 + ], + [ + "▁idei", + -12.23600959777832 + ], + [ + "Deine", + -12.236034393310547 + ], + [ + "▁endure", + -12.236092567443848 + ], + [ + "▁Studios", + -12.236259460449219 + ], + [ + "structure", + -12.236274719238281 + ], + [ + "▁puiss", + -12.236370086669922 + ], + [ + "▁Morning", + -12.236443519592285 + ], + [ + "guide", + -12.236462593078613 + ], + [ + "▁Wave", + -12.236617088317871 + ], + [ + "▁banque", + -12.236879348754883 + ], + [ + "änd", + -12.236912727355957 + ], + [ + "oubli", + -12.237070083618164 + ], + [ + "▁mixer", + -12.237125396728516 + ], + [ + "▁remedi", + -12.237210273742676 + ], + [ + "▁scop", + -12.237421989440918 + ], + [ + "▁Rosen", + -12.237561225891113 + ], + [ + "▁spital", + -12.23773193359375 + ], + [ + "blau", + -12.237811088562012 + ], + [ + "▁financiar", + -12.237865447998047 + ], + [ + "avour", + -12.237871170043945 + ], + [ + "Def", + -12.238025665283203 + ], + [ + "▁socket", + -12.238076210021973 + ], + [ + "▁occurring", + -12.238360404968262 + ], + [ + "▁munci", + -12.238368034362793 + ], + [ + "▁realiza", + -12.238426208496094 + ], + [ + "▁beating", + -12.2384614944458 + ], + [ + "▁Phillip", + -12.238490104675293 + ], + [ + "▁courant", + -12.238509178161621 + ], + [ + "Auto", + -12.238608360290527 + ], + [ + "▁Lager", + -12.238685607910156 + ], + [ + "▁folos", + -12.238696098327637 + ], + [ + "▁moyens", + -12.238770484924316 + ], + [ + "▁Ec", + -12.238780975341797 + ], + [ + "▁Strip", + -12.238788604736328 + ], + [ + "sparen", + -12.238848686218262 + ], + [ + "▁Nintendo", + -12.238886833190918 + ], + [ + "▁Murphy", + -12.238912582397461 + ], + [ + "▁flux", + -12.239034652709961 + ], + [ + "▁mots", + -12.239034652709961 + ], + [ + "▁rechts", + -12.239045143127441 + ], + [ + "▁cardio", + -12.239142417907715 + ], + [ + "avoiding", + -12.239343643188477 + ], + [ + "érer", + -12.239453315734863 + ], + [ + "hiel", + -12.239461898803711 + ], + [ + "▁rezistent", + -12.239521980285645 + ], + [ + "close", + -12.23954963684082 + ], + [ + "hésitez", + -12.239596366882324 + ], + [ + "Hz", + -12.239631652832031 + ], + [ + "▁elaborate", + -12.239689826965332 + ], + [ + "▁permanently", + -12.239709854125977 + ], + [ + "▁Pittsburgh", + -12.239734649658203 + ], + [ + "▁counties", + -12.239819526672363 + ], + [ + "▁bookmark", + -12.239919662475586 + ], + [ + "▁Label", + -12.239965438842773 + ], + [ + "▁Freude", + -12.239974021911621 + ], + [ + "▁preferat", + -12.239986419677734 + ], + [ + "▁Mein", + -12.239995002746582 + ], + [ + "▁Crew", + -12.240218162536621 + ], + [ + "▁clips", + -12.240253448486328 + ], + [ + "8,000", + -12.240263938903809 + ], + [ + "▁recognise", + -12.240311622619629 + ], + [ + "ință", + -12.240365028381348 + ], + [ + "▁prieteni", + -12.240447044372559 + ], + [ + "Heute", + -12.240522384643555 + ], + [ + "ancienne", + -12.240534782409668 + ], + [ + "▁annoying", + -12.240583419799805 + ], + [ + "▁awful", + -12.240704536437988 + ], + [ + "▁Comments", + -12.240774154663086 + ], + [ + "▁musician", + -12.240830421447754 + ], + [ + "▁Elite", + -12.241023063659668 + ], + [ + "▁patri", + -12.241024017333984 + ], + [ + "▁Coupon", + -12.241037368774414 + ], + [ + "▁Farbe", + -12.241097450256348 + ], + [ + "▁contribui", + -12.241110801696777 + ], + [ + "hari", + -12.241294860839844 + ], + [ + "▁activitati", + -12.24161148071289 + ], + [ + "▁Traum", + -12.2416410446167 + ], + [ + "1.8", + -12.24170207977295 + ], + [ + "▁Healthcare", + -12.24172306060791 + ], + [ + "▁refresh", + -12.241943359375 + ], + [ + "▁Maha", + -12.242060661315918 + ], + [ + "▁dép", + -12.242082595825195 + ], + [ + "▁Studien", + -12.242314338684082 + ], + [ + "▁spectacol", + -12.242378234863281 + ], + [ + "impro", + -12.24254035949707 + ], + [ + "▁commentaire", + -12.242544174194336 + ], + [ + "ported", + -12.242570877075195 + ], + [ + "▁reclam", + -12.242612838745117 + ], + [ + "▁Verkauf", + -12.242634773254395 + ], + [ + "▁newspapers", + -12.242661476135254 + ], + [ + "▁iubit", + -12.242838859558105 + ], + [ + "▁Kenne", + -12.242844581604004 + ], + [ + "▁Consultant", + -12.242958068847656 + ], + [ + "▁stau", + -12.242986679077148 + ], + [ + "TON", + -12.243057250976562 + ], + [ + "▁Fehler", + -12.243070602416992 + ], + [ + "▁lettre", + -12.243167877197266 + ], + [ + "▁investigator", + -12.243172645568848 + ], + [ + "▁quantities", + -12.243184089660645 + ], + [ + "ogram", + -12.243208885192871 + ], + [ + "avaient", + -12.24323844909668 + ], + [ + "▁reducere", + -12.243265151977539 + ], + [ + "Lite", + -12.243402481079102 + ], + [ + "kurs", + -12.243443489074707 + ], + [ + "pré", + -12.24383544921875 + ], + [ + "pap", + -12.243898391723633 + ], + [ + "▁Männer", + -12.243983268737793 + ], + [ + "▁gauche", + -12.244022369384766 + ], + [ + "▁ähnlich", + -12.244027137756348 + ], + [ + "▁sunlight", + -12.244063377380371 + ], + [ + "▁rester", + -12.24422550201416 + ], + [ + "jumped", + -12.244586944580078 + ], + [ + "▁exclusiv", + -12.24463176727295 + ], + [ + "▁electoral", + -12.244640350341797 + ], + [ + "▁Portal", + -12.244650840759277 + ], + [ + "ulent", + -12.244688987731934 + ], + [ + "▁sonst", + -12.24474048614502 + ], + [ + "entraîne", + -12.24483585357666 + ], + [ + "▁repas", + -12.244837760925293 + ], + [ + "▁redus", + -12.244858741760254 + ], + [ + "aku", + -12.244866371154785 + ], + [ + "▁Graphic", + -12.245251655578613 + ], + [ + "▁geringe", + -12.24539566040039 + ], + [ + "plätze", + -12.245474815368652 + ], + [ + "Trebuie", + -12.245479583740234 + ], + [ + "▁rezultate", + -12.245479583740234 + ], + [ + "▁configure", + -12.245683670043945 + ], + [ + "▁PV", + -12.245834350585938 + ], + [ + "▁insect", + -12.246109962463379 + ], + [ + "▁Reviews", + -12.246129035949707 + ], + [ + "releasing", + -12.246186256408691 + ], + [ + "▁appliance", + -12.246246337890625 + ], + [ + "▁oferte", + -12.246482849121094 + ], + [ + "▁WILL", + -12.246484756469727 + ], + [ + "rion", + -12.246499061584473 + ], + [ + "▁Cole", + -12.246582984924316 + ], + [ + "▁1975", + -12.246650695800781 + ], + [ + "Admin", + -12.24677848815918 + ], + [ + "▁parade", + -12.246800422668457 + ], + [ + "▁mélange", + -12.24692153930664 + ], + [ + "▁shortage", + -12.247007369995117 + ], + [ + "▁Measure", + -12.247400283813477 + ], + [ + "anchmal", + -12.24742603302002 + ], + [ + "▁transfers", + -12.247432708740234 + ], + [ + "▁sistemului", + -12.247573852539062 + ], + [ + "▁deschide", + -12.247819900512695 + ], + [ + "▁Künstler", + -12.247821807861328 + ], + [ + "▁Plain", + -12.247848510742188 + ], + [ + "▁messaging", + -12.247855186462402 + ], + [ + "▁metabolism", + -12.247879981994629 + ], + [ + "fill", + -12.248031616210938 + ], + [ + "▁Bomb", + -12.24814224243164 + ], + [ + "usine", + -12.248208045959473 + ], + [ + "▁restart", + -12.248233795166016 + ], + [ + "▁Discussion", + -12.248336791992188 + ], + [ + "smith", + -12.248472213745117 + ], + [ + "▁Bh", + -12.248607635498047 + ], + [ + "▁sap", + -12.248689651489258 + ], + [ + "Moo", + -12.248714447021484 + ], + [ + "▁indirect", + -12.248785972595215 + ], + [ + "▁eingesetzt", + -12.248863220214844 + ], + [ + "▁Hip", + -12.248870849609375 + ], + [ + "▁iulie", + -12.249113082885742 + ], + [ + "▁atac", + -12.249201774597168 + ], + [ + "▁passport", + -12.2492036819458 + ], + [ + "▁Egyptian", + -12.249290466308594 + ], + [ + "▁soluți", + -12.249349594116211 + ], + [ + "▁cakes", + -12.249356269836426 + ], + [ + "▁Fellow", + -12.24949836730957 + ], + [ + "▁collision", + -12.249533653259277 + ], + [ + "▁abundant", + -12.249961853027344 + ], + [ + "▁Wonder", + -12.24997329711914 + ], + [ + "▁theories", + -12.249991416931152 + ], + [ + "landed", + -12.250046730041504 + ], + [ + "▁meantime", + -12.2500638961792 + ], + [ + "schlüsse", + -12.25022029876709 + ], + [ + "▁helicopter", + -12.25039005279541 + ], + [ + "Voici", + -12.250479698181152 + ], + [ + "▁Honey", + -12.25049877166748 + ], + [ + "▁deleted", + -12.250511169433594 + ], + [ + "▁Projekte", + -12.250523567199707 + ], + [ + "▁gasi", + -12.2506742477417 + ], + [ + "applique", + -12.25068473815918 + ], + [ + "TAL", + -12.250699043273926 + ], + [ + "notch", + -12.250699996948242 + ], + [ + "▁Response", + -12.250818252563477 + ], + [ + "▁deveni", + -12.250818252563477 + ], + [ + "▁regulate", + -12.250829696655273 + ], + [ + "▁vegetarian", + -12.25083065032959 + ], + [ + "▁Pastor", + -12.250880241394043 + ], + [ + "▁Strong", + -12.250940322875977 + ], + [ + "▁élèves", + -12.251055717468262 + ], + [ + "▁alimente", + -12.25113582611084 + ], + [ + "graphy", + -12.251181602478027 + ], + [ + "▁spirits", + -12.251266479492188 + ], + [ + "▁Cau", + -12.251282691955566 + ], + [ + "determin", + -12.251304626464844 + ], + [ + "arilor", + -12.251382827758789 + ], + [ + "▁masura", + -12.251470565795898 + ], + [ + "RAN", + -12.251500129699707 + ], + [ + "marked", + -12.251564979553223 + ], + [ + "cuba", + -12.251602172851562 + ], + [ + "omni", + -12.251609802246094 + ], + [ + "▁detox", + -12.251662254333496 + ], + [ + "▁quartz", + -12.251741409301758 + ], + [ + "▁Bug", + -12.25177001953125 + ], + [ + "▁Sugar", + -12.25185775756836 + ], + [ + "▁opponents", + -12.25197982788086 + ], + [ + "▁solved", + -12.25207805633545 + ], + [ + "semn", + -12.252257347106934 + ], + [ + "▁Prepare", + -12.252558708190918 + ], + [ + "ffel", + -12.252586364746094 + ], + [ + "▁Highlight", + -12.252608299255371 + ], + [ + "▁curent", + -12.252618789672852 + ], + [ + "▁praktisch", + -12.252626419067383 + ], + [ + "▁lending", + -12.252676963806152 + ], + [ + "▁minority", + -12.252752304077148 + ], + [ + "Free", + -12.252970695495605 + ], + [ + "business", + -12.252997398376465 + ], + [ + "▁outlook", + -12.253097534179688 + ], + [ + "▁assessments", + -12.253168106079102 + ], + [ + "▁Brother", + -12.253266334533691 + ], + [ + "▁partager", + -12.25326919555664 + ], + [ + "▁Brun", + -12.25329303741455 + ], + [ + "▁pedestrian", + -12.25339412689209 + ], + [ + "anța", + -12.253413200378418 + ], + [ + "▁recycled", + -12.253457069396973 + ], + [ + "▁quicker", + -12.253626823425293 + ], + [ + "▁lamps", + -12.253683090209961 + ], + [ + "▁nationally", + -12.253813743591309 + ], + [ + "▁Supplier", + -12.253823280334473 + ], + [ + "ograph", + -12.253936767578125 + ], + [ + "engage", + -12.253981590270996 + ], + [ + "▁Marg", + -12.254131317138672 + ], + [ + "▁aplicare", + -12.254181861877441 + ], + [ + "▁scared", + -12.254194259643555 + ], + [ + "▁accredited", + -12.254255294799805 + ], + [ + "▁outils", + -12.25436019897461 + ], + [ + "▁bâtiment", + -12.254446029663086 + ], + [ + "▁existed", + -12.254586219787598 + ], + [ + "gegangen", + -12.254619598388672 + ], + [ + "▁elevation", + -12.25463581085205 + ], + [ + "▁Tradition", + -12.254670143127441 + ], + [ + "▁Gericht", + -12.254677772521973 + ], + [ + "hub", + -12.254680633544922 + ], + [ + "strahl", + -12.25473690032959 + ], + [ + "build", + -12.254796981811523 + ], + [ + "▁Customers", + -12.25487232208252 + ], + [ + "klasse", + -12.254890441894531 + ], + [ + "▁pierre", + -12.254895210266113 + ], + [ + "(2)", + -12.255006790161133 + ], + [ + "Life", + -12.255125999450684 + ], + [ + "▁bachelor", + -12.25513744354248 + ], + [ + "▁quad", + -12.255195617675781 + ], + [ + "▁dispozitiv", + -12.25523567199707 + ], + [ + "106", + -12.255266189575195 + ], + [ + "▁suburb", + -12.255495071411133 + ], + [ + "▁1977", + -12.255586624145508 + ], + [ + "▁Alzheimer", + -12.255973815917969 + ], + [ + "▁spicy", + -12.255988121032715 + ], + [ + "▁spreading", + -12.256002426147461 + ], + [ + "nötigen", + -12.256078720092773 + ], + [ + "▁novels", + -12.256104469299316 + ], + [ + "▁responsabilité", + -12.256141662597656 + ], + [ + "▁Bud", + -12.256332397460938 + ], + [ + "▁desirable", + -12.256407737731934 + ], + [ + "TOR", + -12.256444931030273 + ], + [ + "five", + -12.256547927856445 + ], + [ + "▁Firmen", + -12.256860733032227 + ], + [ + "oeuvre", + -12.257075309753418 + ], + [ + "grass", + -12.257233619689941 + ], + [ + "▁practically", + -12.257277488708496 + ], + [ + "▁runners", + -12.257281303405762 + ], + [ + "▁mothers", + -12.257341384887695 + ], + [ + "Shop", + -12.257345199584961 + ], + [ + "▁Chicken", + -12.257408142089844 + ], + [ + "▁License", + -12.257593154907227 + ], + [ + "▁Bach", + -12.25765323638916 + ], + [ + "earliest", + -12.257729530334473 + ], + [ + "▁replica", + -12.25774097442627 + ], + [ + "▁haunt", + -12.257833480834961 + ], + [ + "▁materi", + -12.257854461669922 + ], + [ + "▁Finland", + -12.257893562316895 + ], + [ + "▁europene", + -12.257919311523438 + ], + [ + "abilă", + -12.257944107055664 + ], + [ + "cati", + -12.258007049560547 + ], + [ + "▁cholesterol", + -12.258132934570312 + ], + [ + "...).", + -12.258151054382324 + ], + [ + "cardi", + -12.25838565826416 + ], + [ + "▁(12", + -12.258387565612793 + ], + [ + "analyzed", + -12.258506774902344 + ], + [ + "▁respondents", + -12.258591651916504 + ], + [ + "▁höchste", + -12.258646011352539 + ], + [ + "▁Kern", + -12.258647918701172 + ], + [ + "▁knapp", + -12.258781433105469 + ], + [ + "▁Someone", + -12.258955001831055 + ], + [ + "▁équipé", + -12.258997917175293 + ], + [ + "credited", + -12.259106636047363 + ], + [ + "▁numar", + -12.259163856506348 + ], + [ + "▁Ace", + -12.259185791015625 + ], + [ + "zentrum", + -12.2592191696167 + ], + [ + "nehmer", + -12.259270668029785 + ], + [ + "arrivée", + -12.259282112121582 + ], + [ + "ELE", + -12.259291648864746 + ], + [ + "clean", + -12.259418487548828 + ], + [ + "Boost", + -12.259538650512695 + ], + [ + "call", + -12.259575843811035 + ], + [ + "▁Polizei", + -12.259659767150879 + ], + [ + "▁Januar", + -12.259663581848145 + ], + [ + "▁Tile", + -12.259681701660156 + ], + [ + "▁traduc", + -12.259744644165039 + ], + [ + "▁promptly", + -12.259773254394531 + ], + [ + "limit", + -12.259809494018555 + ], + [ + "▁recharge", + -12.2598237991333 + ], + [ + "▁wipe", + -12.259862899780273 + ], + [ + "▁Norway", + -12.26001262664795 + ], + [ + "▁Municipal", + -12.260077476501465 + ], + [ + "▁medieval", + -12.260117530822754 + ], + [ + "▁Treat", + -12.26021671295166 + ], + [ + "Orient", + -12.260283470153809 + ], + [ + "▁Stewart", + -12.260294914245605 + ], + [ + "▁lol", + -12.26039981842041 + ], + [ + "appartement", + -12.260522842407227 + ], + [ + "▁payer", + -12.260655403137207 + ], + [ + "▁splash", + -12.260723114013672 + ], + [ + "doubtedly", + -12.260726928710938 + ], + [ + "dry", + -12.260846138000488 + ], + [ + "▁Forex", + -12.260939598083496 + ], + [ + "▁Edinburgh", + -12.260943412780762 + ], + [ + "▁Traditional", + -12.261032104492188 + ], + [ + "▁1968", + -12.261134147644043 + ], + [ + "▁glow", + -12.261248588562012 + ], + [ + "Alternatively", + -12.261265754699707 + ], + [ + "▁partly", + -12.261354446411133 + ], + [ + "égi", + -12.261401176452637 + ], + [ + "▁Prices", + -12.261640548706055 + ], + [ + "haupt", + -12.261651992797852 + ], + [ + "▁sentences", + -12.261711120605469 + ], + [ + "ouvre", + -12.261735916137695 + ], + [ + "▁Liter", + -12.261746406555176 + ], + [ + "▁Important", + -12.2620267868042 + ], + [ + "▁Collins", + -12.262077331542969 + ], + [ + "▁reproduce", + -12.262106895446777 + ], + [ + "▁selten", + -12.262124061584473 + ], + [ + "▁Mitte", + -12.262170791625977 + ], + [ + "OA", + -12.262174606323242 + ], + [ + "▁Sister", + -12.262358665466309 + ], + [ + "▁responding", + -12.262385368347168 + ], + [ + "▁ballot", + -12.262455940246582 + ], + [ + "▁Nutrition", + -12.262460708618164 + ], + [ + "occurrence", + -12.26246452331543 + ], + [ + "Atunci", + -12.262604713439941 + ], + [ + "▁hockey", + -12.262680053710938 + ], + [ + "▁undertaking", + -12.262697219848633 + ], + [ + "▁educators", + -12.262885093688965 + ], + [ + "▁Swedish", + -12.262893676757812 + ], + [ + "▁Recovery", + -12.262894630432129 + ], + [ + "▁circum", + -12.262910842895508 + ], + [ + "▁chains", + -12.263084411621094 + ], + [ + "▁genug", + -12.263113021850586 + ], + [ + "▁Pil", + -12.263227462768555 + ], + [ + "▁farms", + -12.263265609741211 + ], + [ + "▁simplicity", + -12.263336181640625 + ], + [ + "-21", + -12.263399124145508 + ], + [ + "▁partition", + -12.263493537902832 + ], + [ + "▁Relations", + -12.26360034942627 + ], + [ + "zentrale", + -12.263794898986816 + ], + [ + "lapse", + -12.263855934143066 + ], + [ + "▁toast", + -12.263862609863281 + ], + [ + "▁citi", + -12.263946533203125 + ], + [ + "▁longtemps", + -12.263984680175781 + ], + [ + "maj", + -12.264448165893555 + ], + [ + "▁Cin", + -12.264483451843262 + ], + [ + "zeichen", + -12.264504432678223 + ], + [ + "▁Zoo", + -12.264567375183105 + ], + [ + "▁frisch", + -12.264570236206055 + ], + [ + "▁permettra", + -12.264595031738281 + ], + [ + "▁Liberty", + -12.264642715454102 + ], + [ + "▁playground", + -12.264873504638672 + ], + [ + "▁Mate", + -12.265031814575195 + ], + [ + "▁evolving", + -12.265066146850586 + ], + [ + "national", + -12.265207290649414 + ], + [ + "▁signifie", + -12.265279769897461 + ], + [ + "▁Related", + -12.265292167663574 + ], + [ + "NES", + -12.265337944030762 + ], + [ + "euil", + -12.265473365783691 + ], + [ + "▁struggles", + -12.265542030334473 + ], + [ + "▁instinct", + -12.265628814697266 + ], + [ + "arbre", + -12.26608943939209 + ], + [ + "▁commands", + -12.266222953796387 + ], + [ + "▁frumoase", + -12.26637077331543 + ], + [ + "▁watches", + -12.266779899597168 + ], + [ + "NM", + -12.266804695129395 + ], + [ + "▁influential", + -12.266807556152344 + ], + [ + "▁gewesen", + -12.266901969909668 + ], + [ + "▁Pictures", + -12.267224311828613 + ], + [ + "▁HVAC", + -12.267242431640625 + ], + [ + "▁skate", + -12.26732063293457 + ], + [ + "▁Robot", + -12.267327308654785 + ], + [ + "▁Boys", + -12.267404556274414 + ], + [ + "▁Mutter", + -12.267425537109375 + ], + [ + "▁marques", + -12.267539024353027 + ], + [ + "utiliser", + -12.267793655395508 + ], + [ + "▁amazed", + -12.267799377441406 + ], + [ + "ächtig", + -12.26783275604248 + ], + [ + "▁Success", + -12.267870903015137 + ], + [ + "gramm", + -12.267956733703613 + ], + [ + "▁1972", + -12.267956733703613 + ], + [ + "▁marina", + -12.268269538879395 + ], + [ + "▁lou", + -12.268321990966797 + ], + [ + "▁précis", + -12.268380165100098 + ], + [ + "ographic", + -12.268482208251953 + ], + [ + "people", + -12.26848316192627 + ], + [ + "fahr", + -12.268547058105469 + ], + [ + "▁Contemporary", + -12.268550872802734 + ], + [ + "▁frustrating", + -12.26858139038086 + ], + [ + "chide", + -12.268704414367676 + ], + [ + "1.5", + -12.268807411193848 + ], + [ + "▁ankle", + -12.268850326538086 + ], + [ + "▁proximity", + -12.268986701965332 + ], + [ + "▁Leute", + -12.269006729125977 + ], + [ + "UA", + -12.269031524658203 + ], + [ + "union", + -12.269131660461426 + ], + [ + "▁recovered", + -12.269133567810059 + ], + [ + "▁sword", + -12.269216537475586 + ], + [ + "▁Mut", + -12.26923942565918 + ], + [ + "▁Rin", + -12.269360542297363 + ], + [ + "▁lectures", + -12.26942253112793 + ], + [ + "▁licensing", + -12.269423484802246 + ], + [ + "MAC", + -12.269498825073242 + ], + [ + "▁commute", + -12.269776344299316 + ], + [ + "Acesta", + -12.269858360290527 + ], + [ + "▁Koch", + -12.270088195800781 + ], + [ + "▁depozit", + -12.270119667053223 + ], + [ + "▁erstmal", + -12.270163536071777 + ], + [ + "arhi", + -12.270271301269531 + ], + [ + "▁Normal", + -12.270462036132812 + ], + [ + "EZ", + -12.270464897155762 + ], + [ + "ărilor", + -12.270986557006836 + ], + [ + "▁favoris", + -12.271041870117188 + ], + [ + "▁$9", + -12.271050453186035 + ], + [ + "▁Lawrence", + -12.271172523498535 + ], + [ + "▁fixing", + -12.271200180053711 + ], + [ + "▁researching", + -12.271288871765137 + ], + [ + "▁Pant", + -12.271467208862305 + ], + [ + "▁candid", + -12.271490097045898 + ], + [ + "▁Arkansas", + -12.27160930633545 + ], + [ + "▁bitcoin", + -12.271612167358398 + ], + [ + "ва", + -12.271645545959473 + ], + [ + "▁Finger", + -12.271692276000977 + ], + [ + "▁SRL", + -12.271718978881836 + ], + [ + "Arg", + -12.271797180175781 + ], + [ + "trade", + -12.271903991699219 + ], + [ + "▁extraction", + -12.271941184997559 + ], + [ + "▁footprint", + -12.2720308303833 + ], + [ + "▁folosite", + -12.272085189819336 + ], + [ + "▁Flex", + -12.272184371948242 + ], + [ + "▁dys", + -12.272294998168945 + ], + [ + "▁Wright", + -12.272343635559082 + ], + [ + "▁multitude", + -12.272378921508789 + ], + [ + "▁Chu", + -12.272494316101074 + ], + [ + "▁Jerry", + -12.27249526977539 + ], + [ + "▁notebook", + -12.272722244262695 + ], + [ + "▁SIM", + -12.272932052612305 + ], + [ + "dietary", + -12.272963523864746 + ], + [ + "▁polished", + -12.272984504699707 + ], + [ + "▁carriers", + -12.272993087768555 + ], + [ + "▁cardiac", + -12.27299976348877 + ], + [ + "▁burned", + -12.273038864135742 + ], + [ + "▁sealed", + -12.273062705993652 + ], + [ + "▁pumps", + -12.273224830627441 + ], + [ + "▁consumed", + -12.273233413696289 + ], + [ + "▁Teaching", + -12.273446083068848 + ], + [ + "▁daughters", + -12.27348518371582 + ], + [ + "serviciile", + -12.273600578308105 + ], + [ + "▁Teams", + -12.273690223693848 + ], + [ + "▁avoided", + -12.273903846740723 + ], + [ + "▁compagnie", + -12.274019241333008 + ], + [ + "▁mașin", + -12.274024963378906 + ], + [ + "▁Sean", + -12.27418041229248 + ], + [ + "▁arunc", + -12.274208068847656 + ], + [ + "kräfte", + -12.274238586425781 + ], + [ + "vani", + -12.274255752563477 + ], + [ + "Metall", + -12.27437973022461 + ], + [ + "2009", + -12.274449348449707 + ], + [ + "moi", + -12.274688720703125 + ], + [ + "▁THAT", + -12.274700164794922 + ], + [ + "▁Ny", + -12.274809837341309 + ], + [ + "▁countertops", + -12.274860382080078 + ], + [ + "Pod", + -12.274938583374023 + ], + [ + "amente", + -12.274943351745605 + ], + [ + "▁offshore", + -12.275001525878906 + ], + [ + "luti", + -12.275087356567383 + ], + [ + "parked", + -12.275160789489746 + ], + [ + "ajout", + -12.275247573852539 + ], + [ + "Shirt", + -12.275328636169434 + ], + [ + "▁3/4", + -12.275389671325684 + ], + [ + "▁gratuite", + -12.27543830871582 + ], + [ + "mètres", + -12.27557373046875 + ], + [ + "▁Wish", + -12.2755765914917 + ], + [ + "▁holistic", + -12.27558422088623 + ], + [ + "gren", + -12.275607109069824 + ], + [ + "compiled", + -12.275660514831543 + ], + [ + "▁innocent", + -12.275779724121094 + ], + [ + "▁sorte", + -12.275787353515625 + ], + [ + "▁insulin", + -12.275792121887207 + ], + [ + "▁Academic", + -12.275996208190918 + ], + [ + "▁acrylic", + -12.27600383758545 + ], + [ + "▁hinzu", + -12.27616024017334 + ], + [ + "▁compression", + -12.27619457244873 + ], + [ + "▁viral", + -12.276220321655273 + ], + [ + "▁stereo", + -12.2764892578125 + ], + [ + "▁Concept", + -12.276542663574219 + ], + [ + "▁Margaret", + -12.276659965515137 + ], + [ + "▁consolidation", + -12.276875495910645 + ], + [ + "Figure", + -12.277058601379395 + ], + [ + "zzo", + -12.277061462402344 + ], + [ + "▁Egg", + -12.277098655700684 + ], + [ + "weiterhin", + -12.277213096618652 + ], + [ + "▁Vista", + -12.277252197265625 + ], + [ + "▁necessity", + -12.277316093444824 + ], + [ + "▁kayak", + -12.277490615844727 + ], + [ + "▁consensus", + -12.277535438537598 + ], + [ + "▁Katz", + -12.277602195739746 + ], + [ + "▁Warren", + -12.277640342712402 + ], + [ + "▁custody", + -12.277755737304688 + ], + [ + "++", + -12.277759552001953 + ], + [ + "▁paiement", + -12.277782440185547 + ], + [ + "▁foul", + -12.277878761291504 + ], + [ + "Chaque", + -12.277934074401855 + ], + [ + "▁Syrian", + -12.277998924255371 + ], + [ + "▁photographers", + -12.278056144714355 + ], + [ + "▁dismiss", + -12.278270721435547 + ], + [ + "▁Gaz", + -12.278526306152344 + ], + [ + "▁développer", + -12.278529167175293 + ], + [ + "▁Dakota", + -12.27863883972168 + ], + [ + "▁cardiovascular", + -12.278642654418945 + ], + [ + "▁tattoo", + -12.278858184814453 + ], + [ + "▁Lighting", + -12.278918266296387 + ], + [ + "▁nowhere", + -12.278940200805664 + ], + [ + "vada", + -12.27895450592041 + ], + [ + "▁Favor", + -12.279084205627441 + ], + [ + "ruled", + -12.2791748046875 + ], + [ + "▁Dating", + -12.2793550491333 + ], + [ + "gain", + -12.279963493347168 + ], + [ + "rism", + -12.28016471862793 + ], + [ + "coloured", + -12.280169486999512 + ], + [ + "▁refugees", + -12.280184745788574 + ], + [ + "▁Schm", + -12.2803955078125 + ], + [ + "▁happily", + -12.280402183532715 + ], + [ + "▁specification", + -12.280607223510742 + ], + [ + "WM", + -12.280736923217773 + ], + [ + "▁intro", + -12.280823707580566 + ], + [ + "rack", + -12.28097915649414 + ], + [ + "characterized", + -12.28107738494873 + ], + [ + "▁externe", + -12.281136512756348 + ], + [ + "▁arrives", + -12.28114128112793 + ], + [ + "WO", + -12.281181335449219 + ], + [ + "bericht", + -12.281233787536621 + ], + [ + "▁delays", + -12.281242370605469 + ], + [ + "▁Flight", + -12.281256675720215 + ], + [ + "1-3", + -12.281524658203125 + ], + [ + "▁Singh", + -12.281548500061035 + ], + [ + "▁shifting", + -12.281651496887207 + ], + [ + "▁dashboard", + -12.281729698181152 + ], + [ + "▁lieux", + -12.281781196594238 + ], + [ + "▁validate", + -12.281901359558105 + ], + [ + "▁uniquement", + -12.281963348388672 + ], + [ + "clip", + -12.28199291229248 + ], + [ + "cov", + -12.282132148742676 + ], + [ + "▁tendance", + -12.282215118408203 + ], + [ + "èle", + -12.282258033752441 + ], + [ + "▁incepe", + -12.282261848449707 + ], + [ + "▁chunk", + -12.282585144042969 + ], + [ + "▁Nr", + -12.28266716003418 + ], + [ + "▁Montana", + -12.282674789428711 + ], + [ + "▁sticks", + -12.28277587890625 + ], + [ + "▁caps", + -12.28309154510498 + ], + [ + "▁Jimmy", + -12.283167839050293 + ], + [ + "▁Levi", + -12.283285140991211 + ], + [ + "▁cables", + -12.28345012664795 + ], + [ + "▁SB", + -12.283550262451172 + ], + [ + "▁thème", + -12.2836275100708 + ], + [ + "ADA", + -12.283672332763672 + ], + [ + "▁garant", + -12.283686637878418 + ], + [ + "▁Joint", + -12.283820152282715 + ], + [ + "▁partage", + -12.28398323059082 + ], + [ + "schreib", + -12.284119606018066 + ], + [ + "ether", + -12.28420352935791 + ], + [ + "▁Klima", + -12.284303665161133 + ], + [ + "▁medicines", + -12.284317016601562 + ], + [ + "▁pH", + -12.284320831298828 + ], + [ + "Architect", + -12.284378051757812 + ], + [ + "știi", + -12.284396171569824 + ], + [ + "▁retrouve", + -12.284700393676758 + ], + [ + "▁posture", + -12.284753799438477 + ], + [ + "Feature", + -12.284773826599121 + ], + [ + "▁drying", + -12.284884452819824 + ], + [ + "trifft", + -12.28488826751709 + ], + [ + "ibi", + -12.285079002380371 + ], + [ + "▁rezerv", + -12.285116195678711 + ], + [ + "▁Vă", + -12.28518009185791 + ], + [ + "▁Speaker", + -12.285282135009766 + ], + [ + "▁illustration", + -12.285319328308105 + ], + [ + "oooo", + -12.285419464111328 + ], + [ + "▁initiated", + -12.285518646240234 + ], + [ + "PK", + -12.285545349121094 + ], + [ + "▁algorithms", + -12.285630226135254 + ], + [ + "▁zice", + -12.285757064819336 + ], + [ + "WI", + -12.28581428527832 + ], + [ + "urgence", + -12.285823822021484 + ], + [ + "▁bloggers", + -12.285887718200684 + ], + [ + "▁realitate", + -12.285894393920898 + ], + [ + "eks", + -12.28598690032959 + ], + [ + "▁cushions", + -12.286149024963379 + ], + [ + "▁Kri", + -12.286224365234375 + ], + [ + "▁réalisation", + -12.286396026611328 + ], + [ + "▁Photoshop", + -12.286407470703125 + ], + [ + "cret", + -12.286462783813477 + ], + [ + "faire", + -12.286613464355469 + ], + [ + "▁Cei", + -12.286782264709473 + ], + [ + "ICO", + -12.286789894104004 + ], + [ + "Contin", + -12.28681755065918 + ], + [ + "▁Builder", + -12.286916732788086 + ], + [ + "look", + -12.28698444366455 + ], + [ + "▁tenants", + -12.287023544311523 + ], + [ + "▁gloves", + -12.287113189697266 + ], + [ + "Day", + -12.287169456481934 + ], + [ + "firmly", + -12.28725814819336 + ], + [ + "CIA", + -12.287352561950684 + ], + [ + "▁TVA", + -12.28741455078125 + ], + [ + "▁notifications", + -12.287446975708008 + ], + [ + "▁Higher", + -12.287459373474121 + ], + [ + "▁Weihnachts", + -12.287491798400879 + ], + [ + "▁blur", + -12.287755012512207 + ], + [ + "ов", + -12.288087844848633 + ], + [ + "feder", + -12.288159370422363 + ], + [ + "▁explosion", + -12.288171768188477 + ], + [ + "▁Fenster", + -12.288189888000488 + ], + [ + "▁junge", + -12.288225173950195 + ], + [ + "▁Highland", + -12.288230895996094 + ], + [ + "▁Lü", + -12.288290023803711 + ], + [ + "▁Alba", + -12.28832721710205 + ], + [ + "▁Dort", + -12.288338661193848 + ], + [ + "▁recruiting", + -12.28835391998291 + ], + [ + "▁Multiple", + -12.288549423217773 + ], + [ + "▁animated", + -12.288604736328125 + ], + [ + "▁Virgin", + -12.288637161254883 + ], + [ + "1000", + -12.288676261901855 + ], + [ + "▁resin", + -12.288700103759766 + ], + [ + "▁matrix", + -12.288826942443848 + ], + [ + "irri", + -12.289011001586914 + ], + [ + "▁chiffre", + -12.28904914855957 + ], + [ + "▁Corps", + -12.289252281188965 + ], + [ + "▁advocacy", + -12.28927230834961 + ], + [ + "▁pozitiv", + -12.289274215698242 + ], + [ + "▁pouss", + -12.289451599121094 + ], + [ + "événement", + -12.28950309753418 + ], + [ + "▁pielii", + -12.289717674255371 + ], + [ + "onnais", + -12.289750099182129 + ], + [ + "▁Statement", + -12.289754867553711 + ], + [ + "crimin", + -12.289868354797363 + ], + [ + "hidrat", + -12.289942741394043 + ], + [ + "▁Jugendliche", + -12.290057182312012 + ], + [ + "TRI", + -12.290223121643066 + ], + [ + "erra", + -12.290240287780762 + ], + [ + "chat", + -12.290321350097656 + ], + [ + "▁traits", + -12.290359497070312 + ], + [ + "▁incentives", + -12.29038143157959 + ], + [ + "▁accelerate", + -12.290568351745605 + ], + [ + "woven", + -12.290633201599121 + ], + [ + "UST", + -12.290688514709473 + ], + [ + "▁premiers", + -12.290717124938965 + ], + [ + "▁Ferien", + -12.290755271911621 + ], + [ + "▁mariage", + -12.290796279907227 + ], + [ + "▁financially", + -12.290801048278809 + ], + [ + "gesellschaft", + -12.290863037109375 + ], + [ + "▁situaţi", + -12.290865898132324 + ], + [ + "▁quoted", + -12.291373252868652 + ], + [ + "▁periodic", + -12.291421890258789 + ], + [ + "▁chaos", + -12.291543960571289 + ], + [ + "▁remodel", + -12.29159927368164 + ], + [ + "▁Contractor", + -12.291641235351562 + ], + [ + "▁recuper", + -12.291729927062988 + ], + [ + "▁driveway", + -12.291755676269531 + ], + [ + "▁entertain", + -12.291765213012695 + ], + [ + "▁condus", + -12.291769027709961 + ], + [ + "▁chefs", + -12.29184341430664 + ], + [ + "pak", + -12.291866302490234 + ], + [ + "▁possède", + -12.291948318481445 + ], + [ + "▁outreach", + -12.291984558105469 + ], + [ + "▁navig", + -12.292036056518555 + ], + [ + "▁renewal", + -12.292071342468262 + ], + [ + "▁Rice", + -12.292309761047363 + ], + [ + "▁Czech", + -12.292398452758789 + ], + [ + "▁entstehen", + -12.292445182800293 + ], + [ + "▁droite", + -12.292448997497559 + ], + [ + "▁Investor", + -12.292497634887695 + ], + [ + "▁Soci", + -12.29250431060791 + ], + [ + "▁scalp", + -12.292622566223145 + ], + [ + "▁politiques", + -12.292815208435059 + ], + [ + "▁plaintiff", + -12.292841911315918 + ], + [ + "extending", + -12.29287052154541 + ], + [ + "▁paperwork", + -12.29300594329834 + ], + [ + "vizi", + -12.293142318725586 + ], + [ + "assisting", + -12.29317569732666 + ], + [ + "local", + -12.293272972106934 + ], + [ + "▁Wear", + -12.293323516845703 + ], + [ + "▁descend", + -12.293340682983398 + ], + [ + "▁Wikipedia", + -12.293513298034668 + ], + [ + "▁Consiliului", + -12.293516159057617 + ], + [ + "▁Nokia", + -12.293540000915527 + ], + [ + "▁facult", + -12.293560028076172 + ], + [ + "▁altogether", + -12.293851852416992 + ], + [ + "▁rankings", + -12.29391860961914 + ], + [ + "▁downloading", + -12.293953895568848 + ], + [ + "QU", + -12.294007301330566 + ], + [ + "▁Olive", + -12.294041633605957 + ], + [ + "▁backdrop", + -12.294110298156738 + ], + [ + "▁recomandat", + -12.294116020202637 + ], + [ + "▁Faculty", + -12.294184684753418 + ], + [ + "ANS", + -12.294220924377441 + ], + [ + "▁fracture", + -12.294225692749023 + ], + [ + "job", + -12.29448127746582 + ], + [ + "▁anticipate", + -12.294525146484375 + ], + [ + "▁drift", + -12.294543266296387 + ], + [ + "▁Marco", + -12.294632911682129 + ], + [ + "▁witnessed", + -12.294700622558594 + ], + [ + "▁comprend", + -12.294974327087402 + ], + [ + "▁bulb", + -12.29504680633545 + ], + [ + "▁shallow", + -12.295059204101562 + ], + [ + "stärke", + -12.295063972473145 + ], + [ + "▁Jessica", + -12.295080184936523 + ], + [ + "▁démarche", + -12.29508113861084 + ], + [ + "▁traditionally", + -12.29508113861084 + ], + [ + "Deputy", + -12.295093536376953 + ], + [ + "▁rivers", + -12.295260429382324 + ], + [ + "▁livraison", + -12.29531192779541 + ], + [ + "▁lacking", + -12.295421600341797 + ], + [ + "▁remodeling", + -12.295426368713379 + ], + [ + "▁acesteia", + -12.295514106750488 + ], + [ + "▁grosse", + -12.295669555664062 + ], + [ + "▁propus", + -12.295833587646484 + ], + [ + "lessly", + -12.29587459564209 + ], + [ + "▁Kredit", + -12.295931816101074 + ], + [ + "reputable", + -12.295981407165527 + ], + [ + "▁Sell", + -12.2960205078125 + ], + [ + "▁Crime", + -12.296111106872559 + ], + [ + "Ent", + -12.296310424804688 + ], + [ + "finity", + -12.296422004699707 + ], + [ + "▁Complex", + -12.296500205993652 + ], + [ + "easing", + -12.296638488769531 + ], + [ + "dynamic", + -12.296670913696289 + ], + [ + "▁eaten", + -12.296727180480957 + ], + [ + "gezogen", + -12.296734809875488 + ], + [ + "▁2004,", + -12.296774864196777 + ], + [ + "▁Muslims", + -12.296822547912598 + ], + [ + "▁Sprache", + -12.296883583068848 + ], + [ + "▁Truth", + -12.296927452087402 + ], + [ + "▁guarantees", + -12.296928405761719 + ], + [ + "/5", + -12.29712963104248 + ], + [ + "”).", + -12.297135353088379 + ], + [ + "▁Medium", + -12.2972993850708 + ], + [ + "▁décidé", + -12.297445297241211 + ], + [ + "▁balcony", + -12.29747200012207 + ], + [ + "leuchte", + -12.297502517700195 + ], + [ + "hik", + -12.297849655151367 + ], + [ + "▁Agriculture", + -12.298221588134766 + ], + [ + "▁securities", + -12.298221588134766 + ], + [ + "Probably", + -12.298224449157715 + ], + [ + "▁macar", + -12.29824161529541 + ], + [ + "▁Signal", + -12.298399925231934 + ], + [ + "lake", + -12.298677444458008 + ], + [ + "▁compétences", + -12.298726081848145 + ], + [ + "▁proprietary", + -12.298812866210938 + ], + [ + "allons", + -12.298850059509277 + ], + [ + "▁belongs", + -12.298916816711426 + ], + [ + "▁missile", + -12.298958778381348 + ], + [ + "țiune", + -12.298999786376953 + ], + [ + "▁Integration", + -12.299116134643555 + ], + [ + "▁testimony", + -12.299120903015137 + ], + [ + "▁wesentlich", + -12.299142837524414 + ], + [ + "▁donors", + -12.299152374267578 + ], + [ + "▁pivot", + -12.299202919006348 + ], + [ + "▁Uber", + -12.299219131469727 + ], + [ + "▁databases", + -12.299281120300293 + ], + [ + "▁studi", + -12.299317359924316 + ], + [ + "totdeauna", + -12.299351692199707 + ], + [ + "▁briefly", + -12.299449920654297 + ], + [ + "▁livr", + -12.29952335357666 + ], + [ + "▁CRM", + -12.299581527709961 + ], + [ + "gone", + -12.299697875976562 + ], + [ + "10)", + -12.299761772155762 + ], + [ + "▁zilele", + -12.299920082092285 + ], + [ + "Basically", + -12.300008773803711 + ], + [ + "▁medie", + -12.300041198730469 + ], + [ + "spotted", + -12.30006217956543 + ], + [ + "▁troubles", + -12.30009937286377 + ], + [ + "▁acknowledged", + -12.300176620483398 + ], + [ + "350", + -12.300185203552246 + ], + [ + "LB", + -12.300273895263672 + ], + [ + "Phy", + -12.30038833618164 + ], + [ + "natal", + -12.300397872924805 + ], + [ + "illé", + -12.300445556640625 + ], + [ + "bilder", + -12.300625801086426 + ], + [ + "▁apples", + -12.300636291503906 + ], + [ + "graphical", + -12.300889015197754 + ], + [ + "organiser", + -12.301024436950684 + ], + [ + "▁ochii", + -12.301040649414062 + ], + [ + "glas", + -12.301178932189941 + ], + [ + "CAP", + -12.301180839538574 + ], + [ + "▁Doors", + -12.301331520080566 + ], + [ + "▁Eis", + -12.30156135559082 + ], + [ + "tipuri", + -12.301590919494629 + ], + [ + "▁Worth", + -12.301684379577637 + ], + [ + "izează", + -12.301719665527344 + ], + [ + "nunț", + -12.30180549621582 + ], + [ + "▁Trip", + -12.30186653137207 + ], + [ + "ISS", + -12.301976203918457 + ], + [ + "efficient", + -12.30201530456543 + ], + [ + "Luckily", + -12.302099227905273 + ], + [ + "▁vase", + -12.302133560180664 + ], + [ + "▁gay", + -12.302343368530273 + ], + [ + "▁certificates", + -12.302434921264648 + ], + [ + "riad", + -12.302549362182617 + ], + [ + "stab", + -12.302570343017578 + ], + [ + "affiche", + -12.302604675292969 + ], + [ + "▁iPod", + -12.302645683288574 + ], + [ + "▁aștept", + -12.302726745605469 + ], + [ + "▁$500", + -12.302751541137695 + ], + [ + "▁Catherine", + -12.302952766418457 + ], + [ + "▁Circuit", + -12.302957534790039 + ], + [ + "▁ranch", + -12.303045272827148 + ], + [ + "▁consequence", + -12.303118705749512 + ], + [ + "listened", + -12.303131103515625 + ], + [ + "▁Options", + -12.303187370300293 + ], + [ + "feed", + -12.30318832397461 + ], + [ + "▁adviser", + -12.303248405456543 + ], + [ + "▁présenter", + -12.30333423614502 + ], + [ + "substant", + -12.30337905883789 + ], + [ + "▁Flag", + -12.303604125976562 + ], + [ + "▁Keith", + -12.30366325378418 + ], + [ + "▁inima", + -12.303709983825684 + ], + [ + "▁substrate", + -12.30373764038086 + ], + [ + "▁charger", + -12.303803443908691 + ], + [ + "▁reporter", + -12.303844451904297 + ], + [ + "ütz", + -12.304068565368652 + ], + [ + "▁unten", + -12.30417537689209 + ], + [ + "▁sympa", + -12.304542541503906 + ], + [ + "▁defeated", + -12.304600715637207 + ], + [ + "ändig", + -12.304644584655762 + ], + [ + "individu", + -12.304747581481934 + ], + [ + "▁Straßen", + -12.304774284362793 + ], + [ + "▁Nepal", + -12.304791450500488 + ], + [ + "million", + -12.304803848266602 + ], + [ + "▁Cake", + -12.30499267578125 + ], + [ + "▁investigations", + -12.30526065826416 + ], + [ + "▁inspector", + -12.3054780960083 + ], + [ + "▁Campbell", + -12.305486679077148 + ], + [ + "▁consommation", + -12.305489540100098 + ], + [ + "▁Ministerul", + -12.305628776550293 + ], + [ + "Advisory", + -12.305749893188477 + ], + [ + "▁Leistungs", + -12.305939674377441 + ], + [ + "▁Pull", + -12.306157112121582 + ], + [ + "▁lover", + -12.306194305419922 + ], + [ + "▁trunk", + -12.306380271911621 + ], + [ + "▁folosesc", + -12.30639934539795 + ], + [ + "pom", + -12.306558609008789 + ], + [ + "wunder", + -12.306794166564941 + ], + [ + "▁happier", + -12.306801795959473 + ], + [ + "▁embark", + -12.30689525604248 + ], + [ + "▁mediul", + -12.3069486618042 + ], + [ + "riff", + -12.306973457336426 + ], + [ + "▁copilul", + -12.307039260864258 + ], + [ + "ommage", + -12.307126998901367 + ], + [ + "rechnung", + -12.307218551635742 + ], + [ + "NU", + -12.307220458984375 + ], + [ + "▁fellowship", + -12.307395935058594 + ], + [ + "▁Mental", + -12.307403564453125 + ], + [ + "▁fever", + -12.3074312210083 + ], + [ + "▁silly", + -12.307547569274902 + ], + [ + "Object", + -12.30756664276123 + ], + [ + "NV", + -12.307591438293457 + ], + [ + "от", + -12.30774974822998 + ], + [ + "▁Strand", + -12.307762145996094 + ], + [ + "▁Exist", + -12.30777359008789 + ], + [ + "warum", + -12.307832717895508 + ], + [ + "CY", + -12.307848930358887 + ], + [ + "kä", + -12.307856559753418 + ], + [ + "!!!!!", + -12.307869911193848 + ], + [ + "▁moarte", + -12.30793571472168 + ], + [ + "▁waterfall", + -12.308024406433105 + ], + [ + "left", + -12.30815601348877 + ], + [ + "▁Nursing", + -12.308225631713867 + ], + [ + "▁invalid", + -12.30826187133789 + ], + [ + "struktur", + -12.308385848999023 + ], + [ + "Allerdings", + -12.30838680267334 + ], + [ + "étranger", + -12.30838680267334 + ], + [ + "▁prost", + -12.308517456054688 + ], + [ + "▁Parent", + -12.308562278747559 + ], + [ + "▁întreag", + -12.308611869812012 + ], + [ + "▁compensate", + -12.308871269226074 + ], + [ + "▁sometime", + -12.308955192565918 + ], + [ + "graduate", + -12.308968544006348 + ], + [ + "▁Carter", + -12.30898380279541 + ], + [ + "▁crap", + -12.308998107910156 + ], + [ + "▁mathematics", + -12.309067726135254 + ], + [ + "resemble", + -12.309069633483887 + ], + [ + "Dame", + -12.309152603149414 + ], + [ + "▁Swa", + -12.309198379516602 + ], + [ + "▁celebrity", + -12.309239387512207 + ], + [ + "▁verified", + -12.309338569641113 + ], + [ + "▁Behind", + -12.309349060058594 + ], + [ + "carbon", + -12.309432983398438 + ], + [ + "▁gateway", + -12.309490203857422 + ], + [ + "▁ambitious", + -12.30952262878418 + ], + [ + "▁Wellness", + -12.30966567993164 + ], + [ + "30,000", + -12.30968189239502 + ], + [ + "defined", + -12.309929847717285 + ], + [ + "specializes", + -12.310121536254883 + ], + [ + "▁Chase", + -12.310199737548828 + ], + [ + "HF", + -12.310233116149902 + ], + [ + "ABLE", + -12.310348510742188 + ], + [ + "▁Ehr", + -12.310467720031738 + ], + [ + "▁régime", + -12.310480117797852 + ], + [ + "▁awake", + -12.310487747192383 + ], + [ + "▁seafood", + -12.310487747192383 + ], + [ + "leading", + -12.310554504394531 + ], + [ + "▁Rule", + -12.310602188110352 + ], + [ + "verkehr", + -12.310726165771484 + ], + [ + "erem", + -12.310737609863281 + ], + [ + "▁1973", + -12.310795783996582 + ], + [ + "personal", + -12.311171531677246 + ], + [ + "ența", + -12.311330795288086 + ], + [ + "apprend", + -12.311396598815918 + ], + [ + "faisant", + -12.311420440673828 + ], + [ + "▁Sounds", + -12.31151008605957 + ], + [ + "▁Launch", + -12.31151294708252 + ], + [ + "half", + -12.311636924743652 + ], + [ + "▁verre", + -12.311859130859375 + ], + [ + "▁Regular", + -12.31207275390625 + ], + [ + "▁Nancy", + -12.312142372131348 + ], + [ + "quelles", + -12.312161445617676 + ], + [ + "▁erhält", + -12.312169075012207 + ], + [ + "▁socks", + -12.3121919631958 + ], + [ + "lamp", + -12.312387466430664 + ], + [ + "▁durchgeführt", + -12.312472343444824 + ], + [ + "▁advertise", + -12.31260871887207 + ], + [ + "powered", + -12.312653541564941 + ], + [ + "▁concur", + -12.312699317932129 + ], + [ + "▁ressources", + -12.31293773651123 + ], + [ + "▁allocation", + -12.312986373901367 + ], + [ + "chon", + -12.313041687011719 + ], + [ + "▁Larry", + -12.313177108764648 + ], + [ + "lässig", + -12.313254356384277 + ], + [ + "OLD", + -12.313493728637695 + ], + [ + "itty", + -12.313599586486816 + ], + [ + "▁immuno", + -12.313645362854004 + ], + [ + "▁(+", + -12.313651084899902 + ], + [ + "▁Essential", + -12.313674926757812 + ], + [ + "▁semaines", + -12.313719749450684 + ], + [ + "Ru", + -12.31375503540039 + ], + [ + "▁Gear", + -12.313764572143555 + ], + [ + "völlig", + -12.313850402832031 + ], + [ + "liga", + -12.31391716003418 + ], + [ + "▁Neg", + -12.314082145690918 + ], + [ + "▁gratitude", + -12.31408977508545 + ], + [ + "aventure", + -12.314108848571777 + ], + [ + "▁frustrated", + -12.314115524291992 + ], + [ + "▁retrait", + -12.31422233581543 + ], + [ + "▁statut", + -12.314231872558594 + ], + [ + "550", + -12.31434440612793 + ], + [ + "ла", + -12.314428329467773 + ], + [ + "risto", + -12.314448356628418 + ], + [ + "WAY", + -12.314607620239258 + ], + [ + "▁pigment", + -12.314652442932129 + ], + [ + "Selon", + -12.314715385437012 + ], + [ + "stil", + -12.3148775100708 + ], + [ + "▁Marin", + -12.315055847167969 + ], + [ + "ashi", + -12.315085411071777 + ], + [ + "▁contine", + -12.31519889831543 + ], + [ + "▁Economics", + -12.315200805664062 + ], + [ + "both", + -12.3152437210083 + ], + [ + "▁Dou", + -12.31527328491211 + ], + [ + "Fel", + -12.315373420715332 + ], + [ + "UNT", + -12.315434455871582 + ], + [ + "▁grandmother", + -12.31548023223877 + ], + [ + "▁domicile", + -12.315678596496582 + ], + [ + "▁buffer", + -12.31574535369873 + ], + [ + "▁fuse", + -12.315815925598145 + ], + [ + "▁dosage", + -12.315821647644043 + ], + [ + "▁Nici", + -12.315839767456055 + ], + [ + "▁worries", + -12.315908432006836 + ], + [ + "▁Rail", + -12.3159818649292 + ], + [ + "uneori", + -12.315990447998047 + ], + [ + "▁Sierra", + -12.316030502319336 + ], + [ + "▁porni", + -12.316032409667969 + ], + [ + "▁NOTE", + -12.316056251525879 + ], + [ + "▁tendency", + -12.316065788269043 + ], + [ + "Set", + -12.316256523132324 + ], + [ + "▁Hof", + -12.31629753112793 + ], + [ + "▁Ruhe", + -12.316300392150879 + ], + [ + "harm", + -12.316360473632812 + ], + [ + "▁Developer", + -12.316367149353027 + ], + [ + "suing", + -12.316400527954102 + ], + [ + "persönlichen", + -12.31658935546875 + ], + [ + "▁agréable", + -12.316596031188965 + ], + [ + "commissioned", + -12.316696166992188 + ], + [ + "▁1974", + -12.31672191619873 + ], + [ + "▁1969", + -12.316758155822754 + ], + [ + "▁regl", + -12.316996574401855 + ], + [ + "▁terror", + -12.317042350769043 + ], + [ + "▁température", + -12.317051887512207 + ], + [ + "▁Archiv", + -12.31706714630127 + ], + [ + "▁Military", + -12.317140579223633 + ], + [ + "▁König", + -12.317290306091309 + ], + [ + "▁forex", + -12.31737232208252 + ], + [ + "wiki", + -12.31745719909668 + ], + [ + "thetic", + -12.317506790161133 + ], + [ + "alaturi", + -12.317974090576172 + ], + [ + "▁montant", + -12.3179931640625 + ], + [ + "▁maladie", + -12.318044662475586 + ], + [ + "gust", + -12.318151473999023 + ], + [ + "▁demander", + -12.318164825439453 + ], + [ + "avocat", + -12.318191528320312 + ], + [ + "▁sci", + -12.318192481994629 + ], + [ + "▁Wireless", + -12.318214416503906 + ], + [ + "▁Dein", + -12.318220138549805 + ], + [ + "▁trio", + -12.3183012008667 + ], + [ + "▁Same", + -12.318395614624023 + ], + [ + "Datei", + -12.318464279174805 + ], + [ + "▁alerg", + -12.318578720092773 + ], + [ + "crowded", + -12.318657875061035 + ], + [ + "▁Punkt", + -12.318853378295898 + ], + [ + "▁sanctions", + -12.318864822387695 + ], + [ + "stating", + -12.318922996520996 + ], + [ + "▁discusse", + -12.318949699401855 + ], + [ + "▁Eigen", + -12.319068908691406 + ], + [ + "▁sănătate", + -12.31911563873291 + ], + [ + "▁correspondence", + -12.319211959838867 + ], + [ + "cred", + -12.319331169128418 + ], + [ + "VG", + -12.319347381591797 + ], + [ + "▁différence", + -12.319347381591797 + ], + [ + "▁Montreal", + -12.319391250610352 + ], + [ + "▁masini", + -12.319398880004883 + ], + [ + "iata", + -12.319487571716309 + ], + [ + "▁sampling", + -12.319574356079102 + ], + [ + "▁Gib", + -12.319831848144531 + ], + [ + "▁sheer", + -12.319944381713867 + ], + [ + "330", + -12.319947242736816 + ], + [ + "CHI", + -12.319990158081055 + ], + [ + "▁damn", + -12.320030212402344 + ], + [ + "▁Advisor", + -12.320201873779297 + ], + [ + "Typically", + -12.320302963256836 + ], + [ + "ssé", + -12.320352554321289 + ], + [ + "quart", + -12.320361137390137 + ], + [ + "chete", + -12.320385932922363 + ], + [ + "▁Puerto", + -12.32049560546875 + ], + [ + "2-1", + -12.32050609588623 + ], + [ + "NN", + -12.320674896240234 + ], + [ + "▁styling", + -12.320707321166992 + ], + [ + "rud", + -12.320777893066406 + ], + [ + "од", + -12.320856094360352 + ], + [ + "▁Hydro", + -12.320941925048828 + ], + [ + "▁Cable", + -12.320961952209473 + ], + [ + "video", + -12.320974349975586 + ], + [ + "▁Wirkung", + -12.321194648742676 + ], + [ + "▁noble", + -12.321270942687988 + ], + [ + "▁Sonder", + -12.32129192352295 + ], + [ + "mati", + -12.321317672729492 + ], + [ + "850", + -12.321395874023438 + ], + [ + "▁Richmond", + -12.32143497467041 + ], + [ + "▁niciodată", + -12.321442604064941 + ], + [ + "AO", + -12.321527481079102 + ], + [ + "▁altered", + -12.321648597717285 + ], + [ + "▁(15", + -12.32168960571289 + ], + [ + "▁Motiv", + -12.322052001953125 + ], + [ + "AKE", + -12.322089195251465 + ], + [ + "▁bestimmte", + -12.322172164916992 + ], + [ + "6.5", + -12.322176933288574 + ], + [ + "hectare", + -12.322333335876465 + ], + [ + "atorită", + -12.322335243225098 + ], + [ + "▁phases", + -12.322447776794434 + ], + [ + "▁Nova", + -12.322566032409668 + ], + [ + "ordinateur", + -12.322579383850098 + ], + [ + "▁corrupt", + -12.322813034057617 + ], + [ + "error", + -12.322895050048828 + ], + [ + "▁attacked", + -12.323005676269531 + ], + [ + "▁Kirche", + -12.323019981384277 + ], + [ + "heir", + -12.323040962219238 + ], + [ + "Das", + -12.323254585266113 + ], + [ + "▁anxious", + -12.323258399963379 + ], + [ + "▁Doc", + -12.323386192321777 + ], + [ + "▁Roth", + -12.323415756225586 + ], + [ + "▁Cine", + -12.32388687133789 + ], + [ + "▁auditor", + -12.324418067932129 + ], + [ + "▁beverage", + -12.324586868286133 + ], + [ + "▁précédent", + -12.324637413024902 + ], + [ + "▁deploy", + -12.324837684631348 + ], + [ + "▁accessibility", + -12.324843406677246 + ], + [ + "▁cage", + -12.324885368347168 + ], + [ + "▁Contra", + -12.324934005737305 + ], + [ + "Best", + -12.324952125549316 + ], + [ + "iji", + -12.324972152709961 + ], + [ + "▁père", + -12.325060844421387 + ], + [ + "▁scenic", + -12.32511043548584 + ], + [ + "synthesis", + -12.325165748596191 + ], + [ + "ßen", + -12.32534408569336 + ], + [ + "▁Videos", + -12.325482368469238 + ], + [ + "▁refus", + -12.325484275817871 + ], + [ + "stimmen", + -12.3255615234375 + ], + [ + "▁sleek", + -12.325577735900879 + ], + [ + "artige", + -12.32563591003418 + ], + [ + "mari", + -12.32568359375 + ], + [ + "▁excelent", + -12.325740814208984 + ], + [ + "▁negativ", + -12.325806617736816 + ], + [ + "▁blocking", + -12.32590103149414 + ], + [ + "spricht", + -12.326001167297363 + ], + [ + "▁discomfort", + -12.32602310180664 + ], + [ + "▁stratégie", + -12.32602310180664 + ], + [ + "▁Datenschutz", + -12.326078414916992 + ], + [ + "curg", + -12.326128005981445 + ], + [ + "▁lapte", + -12.326432228088379 + ], + [ + "▁acasă", + -12.326491355895996 + ], + [ + "▁ausschließlich", + -12.32653522491455 + ], + [ + "▁unbedingt", + -12.326802253723145 + ], + [ + "▁Linie", + -12.32689380645752 + ], + [ + "▁subscribers", + -12.327019691467285 + ], + [ + "109", + -12.32702350616455 + ], + [ + "▁Waste", + -12.32712173461914 + ], + [ + "▁Planung", + -12.327231407165527 + ], + [ + "▁visually", + -12.32734489440918 + ], + [ + "utilizarea", + -12.327370643615723 + ], + [ + "uba", + -12.327381134033203 + ], + [ + "▁fifteen", + -12.327411651611328 + ], + [ + "▁légère", + -12.327411651611328 + ], + [ + "ința", + -12.327446937561035 + ], + [ + "▁tolerance", + -12.327460289001465 + ], + [ + "▁piscine", + -12.327536582946777 + ], + [ + "▁nails", + -12.327569007873535 + ], + [ + "▁accus", + -12.327693939208984 + ], + [ + "▁coeur", + -12.327773094177246 + ], + [ + "freie", + -12.327849388122559 + ], + [ + "enţă", + -12.32812213897705 + ], + [ + "▁glucose", + -12.328336715698242 + ], + [ + "▁Jar", + -12.32838249206543 + ], + [ + "▁commencer", + -12.328387260437012 + ], + [ + "▁eliminating", + -12.328414916992188 + ], + [ + "▁mutation", + -12.32844352722168 + ], + [ + "▁afirma", + -12.328444480895996 + ], + [ + "▁Consulting", + -12.328454971313477 + ], + [ + "adia", + -12.328543663024902 + ], + [ + "zog", + -12.328604698181152 + ], + [ + "▁pielea", + -12.328658103942871 + ], + [ + "rton", + -12.328706741333008 + ], + [ + "exercice", + -12.3287935256958 + ], + [ + "namely", + -12.328847885131836 + ], + [ + "▁ajutor", + -12.3289155960083 + ], + [ + "▁markers", + -12.328917503356934 + ], + [ + "▁gardening", + -12.328932762145996 + ], + [ + "Karte", + -12.329038619995117 + ], + [ + "▁Pump", + -12.329142570495605 + ], + [ + "▁Dual", + -12.329169273376465 + ], + [ + "▁pratiques", + -12.329349517822266 + ], + [ + "▁behavioral", + -12.329358100891113 + ], + [ + "▁construire", + -12.329511642456055 + ], + [ + "▁Leonard", + -12.329596519470215 + ], + [ + "ediglich", + -12.329630851745605 + ], + [ + "ubbed", + -12.3297758102417 + ], + [ + "NK", + -12.329792022705078 + ], + [ + "shell", + -12.329912185668945 + ], + [ + "▁persönliche", + -12.329996109008789 + ], + [ + "ecuring", + -12.329998970031738 + ], + [ + "beaten", + -12.33000373840332 + ], + [ + "ALE", + -12.330053329467773 + ], + [ + "▁puppy", + -12.33023452758789 + ], + [ + "▁capac", + -12.33027458190918 + ], + [ + "▁seventh", + -12.330394744873047 + ], + [ + "▁nursery", + -12.330400466918945 + ], + [ + "▁Rum", + -12.330419540405273 + ], + [ + "▁exquisite", + -12.330423355102539 + ], + [ + "▁Legi", + -12.330483436584473 + ], + [ + "▁persist", + -12.330497741699219 + ], + [ + "bacterial", + -12.330548286437988 + ], + [ + "▁cereal", + -12.330572128295898 + ], + [ + "▁principe", + -12.330693244934082 + ], + [ + "chip", + -12.330766677856445 + ], + [ + "rush", + -12.330832481384277 + ], + [ + "▁funnel", + -12.330904006958008 + ], + [ + "▁calitatea", + -12.331024169921875 + ], + [ + "ibă", + -12.33104419708252 + ], + [ + "▁reign", + -12.331086158752441 + ], + [ + "▁congregation", + -12.331120491027832 + ], + [ + "▁obtine", + -12.331270217895508 + ], + [ + "▁découverte", + -12.331286430358887 + ], + [ + "▁gama", + -12.331315040588379 + ], + [ + "▁judec", + -12.33132553100586 + ], + [ + "Plan", + -12.331351280212402 + ], + [ + "▁gesture", + -12.331539154052734 + ], + [ + "öffentlichen", + -12.331644058227539 + ], + [ + "▁imported", + -12.331693649291992 + ], + [ + "▁rotate", + -12.331747055053711 + ], + [ + "blown", + -12.331756591796875 + ], + [ + "▁Protein", + -12.331827163696289 + ], + [ + "parfaitement", + -12.331832885742188 + ], + [ + "ondo", + -12.331868171691895 + ], + [ + "ologists", + -12.331890106201172 + ], + [ + "▁neighborhoods", + -12.331989288330078 + ], + [ + "▁Pope", + -12.33202075958252 + ], + [ + "▁museums", + -12.332194328308105 + ], + [ + "▁porter", + -12.332330703735352 + ], + [ + "▁kiss", + -12.332335472106934 + ], + [ + "pdf", + -12.332354545593262 + ], + [ + "sided", + -12.332359313964844 + ], + [ + "▁gern", + -12.332395553588867 + ], + [ + "bedingungen", + -12.332496643066406 + ], + [ + "▁Ride", + -12.332582473754883 + ], + [ + "Apoi", + -12.332584381103516 + ], + [ + "▁bestehen", + -12.332603454589844 + ], + [ + "5\"", + -12.33285903930664 + ], + [ + "bob", + -12.332862854003906 + ], + [ + "ficient", + -12.33303165435791 + ], + [ + "premise", + -12.333086967468262 + ], + [ + "▁Clip", + -12.333112716674805 + ], + [ + "▁concours", + -12.333213806152344 + ], + [ + "olar", + -12.333281517028809 + ], + [ + "▁Centr", + -12.333356857299805 + ], + [ + "outlined", + -12.333429336547852 + ], + [ + "▁observa", + -12.333511352539062 + ], + [ + "▁negotiate", + -12.333537101745605 + ], + [ + "▁Partnership", + -12.33358383178711 + ], + [ + "clock", + -12.333662033081055 + ], + [ + "roasted", + -12.333755493164062 + ], + [ + "Pourquoi", + -12.33391284942627 + ], + [ + "▁Marshall", + -12.334005355834961 + ], + [ + "▁Gerade", + -12.334052085876465 + ], + [ + "▁pachet", + -12.334160804748535 + ], + [ + "▁preliminary", + -12.334162712097168 + ], + [ + "▁tragic", + -12.334200859069824 + ], + [ + "author", + -12.334268569946289 + ], + [ + "▁Gov", + -12.334309577941895 + ], + [ + "▁comunic", + -12.334403991699219 + ], + [ + "▁coordinator", + -12.334410667419434 + ], + [ + "YA", + -12.33445930480957 + ], + [ + "▁Steam", + -12.33476734161377 + ], + [ + "▁Nag", + -12.334796905517578 + ], + [ + "▁Kara", + -12.334851264953613 + ], + [ + "▁Gang", + -12.334858894348145 + ], + [ + "aurez", + -12.334868431091309 + ], + [ + "▁horrible", + -12.334869384765625 + ], + [ + "▁Luxury", + -12.335076332092285 + ], + [ + "▁encouragement", + -12.335169792175293 + ], + [ + "▁conceptual", + -12.335250854492188 + ], + [ + "▁constituent", + -12.335431098937988 + ], + [ + "nvelop", + -12.335494041442871 + ], + [ + "ucc", + -12.335500717163086 + ], + [ + "▁conçu", + -12.335542678833008 + ], + [ + "pfel", + -12.33559513092041 + ], + [ + "special", + -12.335700988769531 + ], + [ + "▁Growth", + -12.335834503173828 + ], + [ + "cada", + -12.335916519165039 + ], + [ + "▁oamenilor", + -12.335976600646973 + ], + [ + "▁vendredi", + -12.336021423339844 + ], + [ + "▁coupe", + -12.336055755615234 + ], + [ + "▁Danke", + -12.336134910583496 + ], + [ + "reflects", + -12.336181640625 + ], + [ + "▁girlfriend", + -12.336273193359375 + ], + [ + "▁diffuse", + -12.336325645446777 + ], + [ + "HER", + -12.336328506469727 + ], + [ + "storing", + -12.336464881896973 + ], + [ + "ailing", + -12.336591720581055 + ], + [ + "▁Desi", + -12.336601257324219 + ], + [ + "stitution", + -12.336832046508789 + ], + [ + "▁adun", + -12.336844444274902 + ], + [ + "▁Partie", + -12.336869239807129 + ], + [ + "▁tissues", + -12.336958885192871 + ], + [ + "▁discovering", + -12.337154388427734 + ], + [ + "Jacques", + -12.337178230285645 + ], + [ + "lungs", + -12.33724594116211 + ], + [ + "▁Handy", + -12.337261199951172 + ], + [ + "centric", + -12.337285995483398 + ], + [ + "slav", + -12.337442398071289 + ], + [ + "▁sights", + -12.337560653686523 + ], + [ + "▁Category", + -12.337644577026367 + ], + [ + "▁Einrichtung", + -12.337957382202148 + ], + [ + "▁Robinson", + -12.33804702758789 + ], + [ + "▁Terra", + -12.338150978088379 + ], + [ + "▁creep", + -12.338167190551758 + ], + [ + "▁Lob", + -12.338184356689453 + ], + [ + "001", + -12.33820629119873 + ], + [ + "kop", + -12.338208198547363 + ], + [ + "Emb", + -12.338292121887207 + ], + [ + "▁forgive", + -12.338391304016113 + ], + [ + "▁icons", + -12.33847427368164 + ], + [ + "electric", + -12.3385009765625 + ], + [ + "▁faucet", + -12.338516235351562 + ], + [ + "▁invisible", + -12.3386812210083 + ], + [ + "sprach", + -12.338801383972168 + ], + [ + "▁beachten", + -12.33881664276123 + ], + [ + "rahm", + -12.338833808898926 + ], + [ + "▁Teacher", + -12.338919639587402 + ], + [ + "Fab", + -12.339070320129395 + ], + [ + "▁joue", + -12.339101791381836 + ], + [ + "▁Popular", + -12.339120864868164 + ], + [ + "▁Februar", + -12.339171409606934 + ], + [ + "sound", + -12.339251518249512 + ], + [ + "▁(0", + -12.339317321777344 + ], + [ + "▁Compare", + -12.33938980102539 + ], + [ + "▁pads", + -12.339455604553223 + ], + [ + "270", + -12.339498519897461 + ], + [ + "ousse", + -12.339548110961914 + ], + [ + "▁UAE", + -12.339786529541016 + ], + [ + "izări", + -12.339787483215332 + ], + [ + "▁bonuses", + -12.33993911743164 + ], + [ + "▁switches", + -12.3400239944458 + ], + [ + "▁Brothers", + -12.340166091918945 + ], + [ + "▁environmentally", + -12.340171813964844 + ], + [ + "vista", + -12.340264320373535 + ], + [ + "▁intentions", + -12.3402738571167 + ], + [ + "▁Terri", + -12.340301513671875 + ], + [ + "▁diabet", + -12.34030532836914 + ], + [ + "▁prese", + -12.340333938598633 + ], + [ + "▁parcurs", + -12.340389251708984 + ], + [ + "Warum", + -12.340449333190918 + ], + [ + "▁credentials", + -12.340455055236816 + ], + [ + "▁PLA", + -12.34046459197998 + ], + [ + "▁instruct", + -12.340470314025879 + ], + [ + "▁benefic", + -12.340633392333984 + ], + [ + "write", + -12.340675354003906 + ], + [ + "▁poids", + -12.340773582458496 + ], + [ + "▁Anspruch", + -12.340923309326172 + ], + [ + "▁avocado", + -12.340923309326172 + ], + [ + "▁inevitable", + -12.340923309326172 + ], + [ + "▁poorly", + -12.340950965881348 + ], + [ + "karte", + -12.340994834899902 + ], + [ + "▁Publishing", + -12.340999603271484 + ], + [ + "odată", + -12.341140747070312 + ], + [ + "▁scientifique", + -12.341157913208008 + ], + [ + "▁lăsa", + -12.341262817382812 + ], + [ + "▁secol", + -12.34131908416748 + ], + [ + "▁nevertheless", + -12.341392517089844 + ], + [ + "SAT", + -12.341597557067871 + ], + [ + "280", + -12.341651916503906 + ], + [ + "▁prevederi", + -12.341670989990234 + ], + [ + "▁chrome", + -12.342002868652344 + ], + [ + "institut", + -12.342267036437988 + ], + [ + "richtigen", + -12.34228515625 + ], + [ + "▁grief", + -12.342338562011719 + ], + [ + "▁penalties", + -12.342373847961426 + ], + [ + "▁Bayern", + -12.34238052368164 + ], + [ + "▁caramel", + -12.342473983764648 + ], + [ + "Now", + -12.342495918273926 + ], + [ + "Stiftung", + -12.342576026916504 + ], + [ + "country", + -12.342737197875977 + ], + [ + "dication", + -12.34278678894043 + ], + [ + "▁Chor", + -12.342801094055176 + ], + [ + "▁rămâne", + -12.342936515808105 + ], + [ + "▁TOP", + -12.34300708770752 + ], + [ + "▁complète", + -12.34301471710205 + ], + [ + "▁Marian", + -12.34302806854248 + ], + [ + "▁Avant", + -12.343121528625488 + ], + [ + "▁Shower", + -12.343156814575195 + ], + [ + "treu", + -12.34316349029541 + ], + [ + "▁chop", + -12.34321403503418 + ], + [ + "▁comfortably", + -12.343220710754395 + ], + [ + "▁autism", + -12.34323787689209 + ], + [ + "▁Sind", + -12.34328556060791 + ], + [ + "▁(20", + -12.343340873718262 + ], + [ + "▁Cinema", + -12.343414306640625 + ], + [ + "compania", + -12.343606948852539 + ], + [ + "▁Lex", + -12.343622207641602 + ], + [ + "▁Sofa", + -12.343716621398926 + ], + [ + "dru", + -12.343753814697266 + ], + [ + "▁verification", + -12.343770027160645 + ], + [ + "▁Immer", + -12.343825340270996 + ], + [ + "lomb", + -12.343829154968262 + ], + [ + "meric", + -12.34385871887207 + ], + [ + "▁slower", + -12.34398365020752 + ], + [ + "▁propag", + -12.344090461730957 + ], + [ + "Inter", + -12.344097137451172 + ], + [ + "selling", + -12.34418773651123 + ], + [ + "▁Bright", + -12.344269752502441 + ], + [ + "condition", + -12.344280242919922 + ], + [ + "PDF", + -12.344291687011719 + ], + [ + "oyez", + -12.344391822814941 + ], + [ + "▁Fried", + -12.344420433044434 + ], + [ + "▁Nazi", + -12.34443187713623 + ], + [ + "▁Buffalo", + -12.344447135925293 + ], + [ + "▁Sue", + -12.344449043273926 + ], + [ + "▁Rhein", + -12.34468936920166 + ], + [ + "▁Klaus", + -12.344889640808105 + ], + [ + "▁indiqu", + -12.344963073730469 + ], + [ + "echte", + -12.344996452331543 + ], + [ + "▁frecvent", + -12.345165252685547 + ], + [ + "▁conveniently", + -12.345187187194824 + ], + [ + "▁Moi", + -12.345197677612305 + ], + [ + "▁greenhouse", + -12.345220565795898 + ], + [ + "▁rédui", + -12.34524154663086 + ], + [ + "▁lengthy", + -12.34542179107666 + ], + [ + "verband", + -12.345534324645996 + ], + [ + "inţă", + -12.345622062683105 + ], + [ + "▁rigorous", + -12.345625877380371 + ], + [ + "▁Finish", + -12.34580135345459 + ], + [ + "▁FBI", + -12.346052169799805 + ], + [ + "cultura", + -12.346083641052246 + ], + [ + "▁compartment", + -12.346110343933105 + ], + [ + "▁pretend", + -12.346117973327637 + ], + [ + "▁assembled", + -12.346212387084961 + ], + [ + "▁Nie", + -12.34639835357666 + ], + [ + "fession", + -12.34640884399414 + ], + [ + "▁£2", + -12.34642219543457 + ], + [ + "algré", + -12.3468017578125 + ], + [ + "▁anterior", + -12.346817970275879 + ], + [ + "▁Wissenschaft", + -12.34683609008789 + ], + [ + "▁Harbor", + -12.346923828125 + ], + [ + "lix", + -12.346985816955566 + ], + [ + "=\"", + -12.347049713134766 + ], + [ + "▁breathtaking", + -12.34705638885498 + ], + [ + "▁Stern", + -12.34708309173584 + ], + [ + "▁Internetseite", + -12.347132682800293 + ], + [ + "▁locker", + -12.347216606140137 + ], + [ + "▁feather", + -12.34726619720459 + ], + [ + "Serv", + -12.347297668457031 + ], + [ + "▁snake", + -12.347332000732422 + ], + [ + "▁Border", + -12.347396850585938 + ], + [ + "▁undergo", + -12.347518920898438 + ], + [ + "▁petrol", + -12.347558975219727 + ], + [ + "▁dealership", + -12.3475923538208 + ], + [ + "▁commander", + -12.347596168518066 + ], + [ + "▁Monate", + -12.347599983215332 + ], + [ + "▁Guardian", + -12.347665786743164 + ], + [ + "▁Todd", + -12.347774505615234 + ], + [ + "Ann", + -12.347825050354004 + ], + [ + "ibilité", + -12.347918510437012 + ], + [ + "▁Quarter", + -12.347987174987793 + ], + [ + "▁portray", + -12.348097801208496 + ], + [ + "▁Tai", + -12.34813404083252 + ], + [ + "▁strikes", + -12.348224639892578 + ], + [ + "illage", + -12.348381042480469 + ], + [ + "▁IRS", + -12.348417282104492 + ], + [ + "▁lupta", + -12.348455429077148 + ], + [ + "▁Sper", + -12.348493576049805 + ], + [ + "PRO", + -12.348530769348145 + ], + [ + "▁Export", + -12.348549842834473 + ], + [ + "▁crypto", + -12.348587989807129 + ], + [ + "▁barbecue", + -12.348692893981934 + ], + [ + "▁portions", + -12.348787307739258 + ], + [ + "▁explicit", + -12.348793983459473 + ], + [ + "▁angenehm", + -12.348834037780762 + ], + [ + "▁marathon", + -12.348946571350098 + ], + [ + "▁apartament", + -12.348982810974121 + ], + [ + "▁Eva", + -12.349079132080078 + ], + [ + "plate", + -12.349181175231934 + ], + [ + "viel", + -12.34925365447998 + ], + [ + "FIN", + -12.34926986694336 + ], + [ + "dependent", + -12.34935188293457 + ], + [ + "▁cercet", + -12.34942626953125 + ], + [ + "▁midnight", + -12.349499702453613 + ], + [ + "copie", + -12.349563598632812 + ], + [ + "▁companii", + -12.349621772766113 + ], + [ + "▁tenu", + -12.349660873413086 + ], + [ + "1/2", + -12.349662780761719 + ], + [ + "2.4", + -12.349693298339844 + ], + [ + "abri", + -12.349699974060059 + ], + [ + "▁warn", + -12.34980297088623 + ], + [ + "▁luggage", + -12.349875450134277 + ], + [ + "numarul", + -12.349968910217285 + ], + [ + "▁contour", + -12.350014686584473 + ], + [ + "▁Ghost", + -12.350016593933105 + ], + [ + "Angaben", + -12.35012435913086 + ], + [ + "▁unemployment", + -12.350296020507812 + ], + [ + "▁rău", + -12.350380897521973 + ], + [ + "▁dispatch", + -12.350445747375488 + ], + [ + "investissement", + -12.350547790527344 + ], + [ + "▁passt", + -12.35057258605957 + ], + [ + "▁Germania", + -12.350578308105469 + ], + [ + "▁webpage", + -12.350651741027832 + ], + [ + "▁reservations", + -12.350688934326172 + ], + [ + "▁Kai", + -12.350743293762207 + ], + [ + "▁Cav", + -12.350890159606934 + ], + [ + "▁Patient", + -12.351109504699707 + ], + [ + "ер", + -12.351213455200195 + ], + [ + "▁Belle", + -12.351236343383789 + ], + [ + "▁Nashville", + -12.351296424865723 + ], + [ + "▁Talent", + -12.351332664489746 + ], + [ + "ouvrage", + -12.351364135742188 + ], + [ + "▁bekommt", + -12.351365089416504 + ], + [ + "USA", + -12.351430892944336 + ], + [ + "CES", + -12.351432800292969 + ], + [ + "▁Peru", + -12.351499557495117 + ], + [ + "▁erkennen", + -12.35153579711914 + ], + [ + "prinde", + -12.351569175720215 + ], + [ + "▁constitution", + -12.351922035217285 + ], + [ + "itatile", + -12.351998329162598 + ], + [ + "bah", + -12.352147102355957 + ], + [ + "▁avail", + -12.352148056030273 + ], + [ + "▁disponibile", + -12.352149963378906 + ], + [ + "hér", + -12.352258682250977 + ], + [ + "ол", + -12.352411270141602 + ], + [ + "▁startups", + -12.352435111999512 + ], + [ + "▁carton", + -12.352485656738281 + ], + [ + "▁Newsletter", + -12.35251235961914 + ], + [ + "éti", + -12.352560997009277 + ], + [ + "▁investigating", + -12.352779388427734 + ], + [ + "itul", + -12.352925300598145 + ], + [ + "touch", + -12.352962493896484 + ], + [ + "Sport", + -12.353137016296387 + ], + [ + "AME", + -12.353203773498535 + ], + [ + "MIN", + -12.353222846984863 + ], + [ + "metry", + -12.353371620178223 + ], + [ + "icy", + -12.353492736816406 + ], + [ + "▁Luna", + -12.35351848602295 + ], + [ + "▁asthma", + -12.353614807128906 + ], + [ + "▁conduc", + -12.35365104675293 + ], + [ + "▁Ari", + -12.35369873046875 + ], + [ + "trust", + -12.353832244873047 + ], + [ + "▁defines", + -12.353894233703613 + ], + [ + "▁Blend", + -12.353927612304688 + ], + [ + "azo", + -12.353989601135254 + ], + [ + "▁sweep", + -12.354169845581055 + ], + [ + "lope", + -12.354331016540527 + ], + [ + "ţinut", + -12.35439682006836 + ], + [ + "WD", + -12.354503631591797 + ], + [ + "▁appetite", + -12.354619979858398 + ], + [ + "▁Seed", + -12.354753494262695 + ], + [ + "Friend", + -12.354854583740234 + ], + [ + "▁repet", + -12.354876518249512 + ], + [ + "▁throat", + -12.354936599731445 + ], + [ + "philosoph", + -12.355141639709473 + ], + [ + "▁connaître", + -12.355156898498535 + ], + [ + "▁Counter", + -12.355299949645996 + ], + [ + "▁Anforderungen", + -12.35533332824707 + ], + [ + "▁Polit", + -12.355363845825195 + ], + [ + "▁Weather", + -12.3554048538208 + ], + [ + "bow", + -12.355423927307129 + ], + [ + "▁recreation", + -12.355484008789062 + ], + [ + "▁culinary", + -12.355571746826172 + ], + [ + "▁plage", + -12.355609893798828 + ], + [ + "▁Cruz", + -12.355659484863281 + ], + [ + "▁equip", + -12.355668067932129 + ], + [ + "▁Recent", + -12.355697631835938 + ], + [ + "LED", + -12.355767250061035 + ], + [ + "▁steak", + -12.355772972106934 + ], + [ + "▁belly", + -12.355880737304688 + ], + [ + "photo", + -12.356130599975586 + ], + [ + "▁lakes", + -12.35623836517334 + ], + [ + "▁intact", + -12.356287956237793 + ], + [ + "▁spiral", + -12.356386184692383 + ], + [ + "▁Billy", + -12.356468200683594 + ], + [ + "▁Understanding", + -12.356534957885742 + ], + [ + "▁Lay", + -12.356558799743652 + ], + [ + "▁roster", + -12.356632232666016 + ], + [ + "▁admire", + -12.356647491455078 + ], + [ + "▁android", + -12.356732368469238 + ], + [ + "▁technician", + -12.356734275817871 + ], + [ + "gène", + -12.356818199157715 + ], + [ + "motiv", + -12.356954574584961 + ], + [ + "▁Boat", + -12.356988906860352 + ], + [ + "▁genießen", + -12.357000350952148 + ], + [ + "▁Geschmack", + -12.357001304626465 + ], + [ + "▁heroes", + -12.3570556640625 + ], + [ + "▁1800", + -12.357137680053711 + ], + [ + "numeroase", + -12.35776138305664 + ], + [ + "▁anschließend", + -12.357802391052246 + ], + [ + "▁Spur", + -12.357813835144043 + ], + [ + "▁clarify", + -12.35784912109375 + ], + [ + "▁warmer", + -12.357889175415039 + ], + [ + "▁Ranch", + -12.357955932617188 + ], + [ + "▁simti", + -12.358024597167969 + ], + [ + "Thank", + -12.35838508605957 + ], + [ + "▁freight", + -12.358434677124023 + ], + [ + "▁administrators", + -12.358453750610352 + ], + [ + "Reg", + -12.358588218688965 + ], + [ + "Această", + -12.358670234680176 + ], + [ + "▁legume", + -12.358741760253906 + ], + [ + "▁utilizare", + -12.358786582946777 + ], + [ + "CON", + -12.358904838562012 + ], + [ + "urgi", + -12.358917236328125 + ], + [ + "▁Gesicht", + -12.358920097351074 + ], + [ + "▁counselor", + -12.358954429626465 + ], + [ + "▁mondiale", + -12.359009742736816 + ], + [ + "helm", + -12.359137535095215 + ], + [ + "▁Promo", + -12.359156608581543 + ], + [ + "▁Schweiz", + -12.35917854309082 + ], + [ + "Ich", + -12.35929012298584 + ], + [ + "▁intalni", + -12.359295845031738 + ], + [ + "▁Bloom", + -12.359318733215332 + ], + [ + "▁Score", + -12.359362602233887 + ], + [ + "▁Fruit", + -12.35944652557373 + ], + [ + "▁constraints", + -12.359447479248047 + ], + [ + "▁farmer", + -12.359745979309082 + ], + [ + "▁précise", + -12.359807014465332 + ], + [ + "evaluating", + -12.359868049621582 + ], + [ + "▁Period", + -12.359891891479492 + ], + [ + "byte", + -12.359893798828125 + ], + [ + "wah", + -12.360025405883789 + ], + [ + "Mac", + -12.360123634338379 + ], + [ + "iron", + -12.360197067260742 + ], + [ + "′", + -12.360337257385254 + ], + [ + "▁tehnic", + -12.360539436340332 + ], + [ + "▁legat", + -12.36054515838623 + ], + [ + "▁Pilot", + -12.360574722290039 + ], + [ + "▁Carpet", + -12.36064624786377 + ], + [ + "TEN", + -12.360812187194824 + ], + [ + "▁shareholders", + -12.36082649230957 + ], + [ + "vină", + -12.360880851745605 + ], + [ + "▁parole", + -12.360939979553223 + ], + [ + "ătă", + -12.360984802246094 + ], + [ + "bbing", + -12.361000061035156 + ], + [ + "▁switched", + -12.361002922058105 + ], + [ + "▁Petro", + -12.361010551452637 + ], + [ + "▁Vertrags", + -12.36111831665039 + ], + [ + "cham", + -12.361178398132324 + ], + [ + "wang", + -12.361284255981445 + ], + [ + "▁Bean", + -12.36139965057373 + ], + [ + "minister", + -12.361442565917969 + ], + [ + "▁Wu", + -12.361522674560547 + ], + [ + "▁Olympics", + -12.361539840698242 + ], + [ + "tipul", + -12.361542701721191 + ], + [ + "▁Citi", + -12.36166763305664 + ], + [ + "▁Fold", + -12.361873626708984 + ], + [ + "▁Partei", + -12.361940383911133 + ], + [ + "▁centrale", + -12.361984252929688 + ], + [ + "île", + -12.362032890319824 + ], + [ + "pflicht", + -12.362175941467285 + ], + [ + "heli", + -12.362398147583008 + ], + [ + "▁erwartet", + -12.362414360046387 + ], + [ + "▁oferta", + -12.362458229064941 + ], + [ + "▁NHS", + -12.36246395111084 + ], + [ + "annon", + -12.362570762634277 + ], + [ + "▁Rud", + -12.362701416015625 + ], + [ + "▁Stuttgart", + -12.362737655639648 + ], + [ + "▁rămas", + -12.362746238708496 + ], + [ + "▁eliminated", + -12.36275577545166 + ], + [ + "▁hiding", + -12.362797737121582 + ], + [ + "▁cadeau", + -12.362832069396973 + ], + [ + "▁mock", + -12.363115310668945 + ], + [ + "▁elder", + -12.363333702087402 + ], + [ + "▁Liz", + -12.363364219665527 + ], + [ + "aji", + -12.363544464111328 + ], + [ + "▁endlich", + -12.363653182983398 + ], + [ + "sufficient", + -12.363668441772461 + ], + [ + "▁zusätzliche", + -12.363712310791016 + ], + [ + "scient", + -12.363757133483887 + ], + [ + "▁Adjust", + -12.363883972167969 + ], + [ + "▁incentive", + -12.363945007324219 + ], + [ + "▁Papa", + -12.364012718200684 + ], + [ + "▁Pharma", + -12.364041328430176 + ], + [ + "▁conflicts", + -12.364107131958008 + ], + [ + "zählen", + -12.364113807678223 + ], + [ + "▁chien", + -12.364118576049805 + ], + [ + "KB", + -12.36413288116455 + ], + [ + "ultimi", + -12.364188194274902 + ], + [ + "▁Jul", + -12.36421012878418 + ], + [ + "▁Male", + -12.36422061920166 + ], + [ + "▁viewer", + -12.36427116394043 + ], + [ + "▁Sector", + -12.364328384399414 + ], + [ + "▁REAL", + -12.364344596862793 + ], + [ + "▁arbitr", + -12.36436939239502 + ], + [ + "resistant", + -12.364399909973145 + ], + [ + "▁Bristol", + -12.364423751831055 + ], + [ + "▁shy", + -12.364540100097656 + ], + [ + "SW", + -12.364593505859375 + ], + [ + "▁Kirk", + -12.36460018157959 + ], + [ + "centrul", + -12.364653587341309 + ], + [ + "▁Venezuela", + -12.364657402038574 + ], + [ + "▁communicating", + -12.364657402038574 + ], + [ + "▁Chemical", + -12.364663124084473 + ], + [ + "▁surprises", + -12.364843368530273 + ], + [ + "▁Jamie", + -12.364933967590332 + ], + [ + "▁Heavy", + -12.364965438842773 + ], + [ + "▁turnover", + -12.36498737335205 + ], + [ + "▁étudiants", + -12.365114212036133 + ], + [ + "welcher", + -12.365124702453613 + ], + [ + "▁preturi", + -12.365200996398926 + ], + [ + "▁Mono", + -12.365283966064453 + ], + [ + "▁paddle", + -12.365309715270996 + ], + [ + "▁accountability", + -12.365364074707031 + ], + [ + "OUS", + -12.365592956542969 + ], + [ + "▁marketers", + -12.365762710571289 + ], + [ + "fection", + -12.365900993347168 + ], + [ + "▁Outside", + -12.365921020507812 + ], + [ + "▁Jefferson", + -12.366114616394043 + ], + [ + "oaie", + -12.36617660522461 + ], + [ + "tenue", + -12.366275787353516 + ], + [ + "HU", + -12.366329193115234 + ], + [ + "Très", + -12.36639404296875 + ], + [ + "valoarea", + -12.36642837524414 + ], + [ + "103", + -12.366482734680176 + ], + [ + "▁Privacy", + -12.366580963134766 + ], + [ + "▁Leistungen", + -12.366598129272461 + ], + [ + "(3)", + -12.36662483215332 + ], + [ + "▁études", + -12.366734504699707 + ], + [ + "sko", + -12.366750717163086 + ], + [ + "drum", + -12.366822242736816 + ], + [ + "▁lamb", + -12.366842269897461 + ], + [ + "▁nicio", + -12.367094993591309 + ], + [ + "▁NATO", + -12.367104530334473 + ], + [ + "▁Freitag", + -12.367178916931152 + ], + [ + "▁precedent", + -12.367178916931152 + ], + [ + "▁partenaires", + -12.367202758789062 + ], + [ + "▁companiei", + -12.367234230041504 + ], + [ + "▁Plaza", + -12.367249488830566 + ], + [ + "▁disruption", + -12.367274284362793 + ], + [ + "▁violations", + -12.367338180541992 + ], + [ + "▁Reference", + -12.367446899414062 + ], + [ + "▁habitants", + -12.36770248413086 + ], + [ + "▁compost", + -12.36776351928711 + ], + [ + "▁citoyen", + -12.367785453796387 + ], + [ + "▁Historical", + -12.367857933044434 + ], + [ + "vollen", + -12.36793327331543 + ], + [ + "▁Eck", + -12.36815357208252 + ], + [ + "▁lumii", + -12.368180274963379 + ], + [ + "▁reusit", + -12.368278503417969 + ], + [ + "genic", + -12.368307113647461 + ], + [ + "Why", + -12.368436813354492 + ], + [ + "ASE", + -12.368474006652832 + ], + [ + "▁athlete", + -12.36854076385498 + ], + [ + "▁Spitze", + -12.368559837341309 + ], + [ + "▁schimbat", + -12.368566513061523 + ], + [ + "▁anonymous", + -12.368850708007812 + ], + [ + "jedes", + -12.368856430053711 + ], + [ + "exclu", + -12.368874549865723 + ], + [ + "factor", + -12.369199752807617 + ], + [ + "▁Dezember", + -12.369231224060059 + ], + [ + "▁scientist", + -12.369373321533203 + ], + [ + "▁likelihood", + -12.36947250366211 + ], + [ + "▁Rhode", + -12.369488716125488 + ], + [ + "▁Balance", + -12.369521141052246 + ], + [ + "istoria", + -12.36959457397461 + ], + [ + "▁Neil", + -12.369780540466309 + ], + [ + "▁bush", + -12.369919776916504 + ], + [ + "▁Ergebnisse", + -12.369935989379883 + ], + [ + "▁Sinn", + -12.369956016540527 + ], + [ + "▁spezielle", + -12.370128631591797 + ], + [ + "▁jucat", + -12.37015438079834 + ], + [ + "▁spite", + -12.370179176330566 + ], + [ + "▁Ultimate", + -12.370365142822266 + ], + [ + "▁fructe", + -12.370401382446289 + ], + [ + "▁asleep", + -12.370441436767578 + ], + [ + "▁Goal", + -12.370539665222168 + ], + [ + "▁PAR", + -12.370631217956543 + ], + [ + "▁rows", + -12.370705604553223 + ], + [ + "▁Fol", + -12.3709135055542 + ], + [ + "▁durata", + -12.370945930480957 + ], + [ + "▁traditionnel", + -12.37100887298584 + ], + [ + "▁tema", + -12.37122917175293 + ], + [ + "▁crédit", + -12.371232986450195 + ], + [ + "smallest", + -12.371358871459961 + ], + [ + "▁amino", + -12.371358871459961 + ], + [ + "▁elephant", + -12.371405601501465 + ], + [ + "▁tubes", + -12.371685028076172 + ], + [ + "▁Verwendung", + -12.371719360351562 + ], + [ + "▁Excellence", + -12.371889114379883 + ], + [ + "▁utilities", + -12.371962547302246 + ], + [ + "frau", + -12.372111320495605 + ], + [ + "▁poze", + -12.3721342086792 + ], + [ + "août", + -12.372307777404785 + ], + [ + "ango", + -12.372514724731445 + ], + [ + "give", + -12.372532844543457 + ], + [ + "▁appelé", + -12.372576713562012 + ], + [ + "▁yeast", + -12.372671127319336 + ], + [ + "▁enrollment", + -12.372676849365234 + ], + [ + "organiz", + -12.3727445602417 + ], + [ + "▁asociat", + -12.372753143310547 + ], + [ + "▁cattle", + -12.372772216796875 + ], + [ + "▁Solution", + -12.372798919677734 + ], + [ + "evoke", + -12.372807502746582 + ], + [ + "▁Hampshire", + -12.372857093811035 + ], + [ + "▁yeah", + -12.372878074645996 + ], + [ + "▁Argentina", + -12.372928619384766 + ], + [ + "▁abnormal", + -12.373022079467773 + ], + [ + "▁Heights", + -12.373082160949707 + ], + [ + "▁Mitchell", + -12.373099327087402 + ], + [ + "▁Quad", + -12.373350143432617 + ], + [ + "▁textures", + -12.373382568359375 + ], + [ + "▁coalition", + -12.373384475708008 + ], + [ + "▁dataset", + -12.37338924407959 + ], + [ + "World", + -12.373438835144043 + ], + [ + "ständ", + -12.373456001281738 + ], + [ + "▁groove", + -12.373476028442383 + ], + [ + "▁emotionally", + -12.373562812805176 + ], + [ + "▁preciz", + -12.373636245727539 + ], + [ + "kte", + -12.373741149902344 + ], + [ + "berechtigt", + -12.373828887939453 + ], + [ + "▁1971", + -12.373888969421387 + ], + [ + "grandes", + -12.373907089233398 + ], + [ + "▁Broadway", + -12.37391185760498 + ], + [ + "▁comunicat", + -12.373994827270508 + ], + [ + "nui", + -12.37402629852295 + ], + [ + "GER", + -12.374079704284668 + ], + [ + "pick", + -12.374125480651855 + ], + [ + "inscrit", + -12.37414264678955 + ], + [ + "▁Gross", + -12.374258995056152 + ], + [ + "▁McDonald", + -12.374310493469238 + ], + [ + "▁Zero", + -12.374330520629883 + ], + [ + "▁Halb", + -12.374341011047363 + ], + [ + "▁caractère", + -12.374553680419922 + ], + [ + "▁doctrine", + -12.374553680419922 + ], + [ + "▁Sinne", + -12.37458610534668 + ], + [ + "MLS", + -12.374594688415527 + ], + [ + "▁réel", + -12.374759674072266 + ], + [ + "▁Ful", + -12.37476921081543 + ], + [ + "limiting", + -12.37483024597168 + ], + [ + "▁Gan", + -12.374870300292969 + ], + [ + "▁exclude", + -12.37490463256836 + ], + [ + "imba", + -12.374974250793457 + ], + [ + "rolul", + -12.374991416931152 + ], + [ + "▁veggies", + -12.375059127807617 + ], + [ + "▁fasci", + -12.375092506408691 + ], + [ + "▁oval", + -12.375173568725586 + ], + [ + "▁contacter", + -12.375221252441406 + ], + [ + "▁linking", + -12.375279426574707 + ], + [ + "▁knit", + -12.375308990478516 + ], + [ + "▁enroll", + -12.375504493713379 + ], + [ + "▁dédié", + -12.375533103942871 + ], + [ + "▁renting", + -12.375541687011719 + ], + [ + "▁genera", + -12.37567138671875 + ], + [ + "citing", + -12.375691413879395 + ], + [ + "▁bend", + -12.375700950622559 + ], + [ + "guin", + -12.375752449035645 + ], + [ + "▁caregiver", + -12.375768661499023 + ], + [ + "▁könnt", + -12.375791549682617 + ], + [ + "▁Scripture", + -12.375795364379883 + ], + [ + "▁Mic", + -12.375899314880371 + ], + [ + "▁Denmark", + -12.37590217590332 + ], + [ + "▁qualifying", + -12.375917434692383 + ], + [ + "▁costumes", + -12.375958442687988 + ], + [ + "▁dwelling", + -12.37601375579834 + ], + [ + "▁recrut", + -12.376099586486816 + ], + [ + "▁bedding", + -12.37618637084961 + ], + [ + "gesprochen", + -12.376253128051758 + ], + [ + "▁editors", + -12.376386642456055 + ], + [ + "/12", + -12.37657642364502 + ], + [ + "▁cumparat", + -12.376583099365234 + ], + [ + "fiction", + -12.376730918884277 + ], + [ + "▁spinal", + -12.376740455627441 + ], + [ + "▁pathway", + -12.376799583435059 + ], + [ + "▁vârst", + -12.37683391571045 + ], + [ + "mba", + -12.376874923706055 + ], + [ + "▁enthusiastic", + -12.37692642211914 + ], + [ + "▁Watt", + -12.37697982788086 + ], + [ + "symptom", + -12.376992225646973 + ], + [ + "▁pup", + -12.37712287902832 + ], + [ + "▁glorious", + -12.377225875854492 + ], + [ + "▁fața", + -12.377228736877441 + ], + [ + "▁prohibited", + -12.377256393432617 + ], + [ + "vergleich", + -12.377286911010742 + ], + [ + "▁suspected", + -12.377334594726562 + ], + [ + "▁Railway", + -12.377381324768066 + ], + [ + "▁Aujourd", + -12.377469062805176 + ], + [ + "▁Patients", + -12.377476692199707 + ], + [ + "▁séance", + -12.377501487731934 + ], + [ + "▁contraire", + -12.377503395080566 + ], + [ + "▁cuvânt", + -12.37771224975586 + ], + [ + "▁trotzdem", + -12.37773609161377 + ], + [ + "émission", + -12.377795219421387 + ], + [ + "▁bore", + -12.37782096862793 + ], + [ + "▁safeguard", + -12.377851486206055 + ], + [ + "▁galleries", + -12.37820053100586 + ], + [ + "cron", + -12.378268241882324 + ], + [ + "▁Rica", + -12.378335952758789 + ], + [ + "fläche", + -12.37839126586914 + ], + [ + "▁Slow", + -12.37842082977295 + ], + [ + "▁vara", + -12.378549575805664 + ], + [ + "▁Swan", + -12.378564834594727 + ], + [ + "▁compounds", + -12.378564834594727 + ], + [ + "▁Slo", + -12.378621101379395 + ], + [ + "▁accommodations", + -12.378621101379395 + ], + [ + "▁Putin", + -12.378708839416504 + ], + [ + "▁undertaken", + -12.378767967224121 + ], + [ + "▁prépar", + -12.37879467010498 + ], + [ + "▁gandi", + -12.37881088256836 + ], + [ + "sediul", + -12.378924369812012 + ], + [ + "▁Nathan", + -12.379143714904785 + ], + [ + "▁fountain", + -12.379173278808594 + ], + [ + "▁mère", + -12.379194259643555 + ], + [ + "fatty", + -12.379201889038086 + ], + [ + "▁concentrated", + -12.379241943359375 + ], + [ + "richtung", + -12.379300117492676 + ], + [ + "▁appropriately", + -12.37955379486084 + ], + [ + "107", + -12.379631996154785 + ], + [ + "▁shark", + -12.379735946655273 + ], + [ + "▁Topic", + -12.379867553710938 + ], + [ + "▁Ausstellung", + -12.379880905151367 + ], + [ + "▁SUA", + -12.380267143249512 + ], + [ + "SER", + -12.380359649658203 + ], + [ + "▁Nicole", + -12.38039779663086 + ], + [ + "▁utilisateurs", + -12.380620956420898 + ], + [ + "▁Brazilian", + -12.380753517150879 + ], + [ + "▁continut", + -12.380865097045898 + ], + [ + "▁sanatate", + -12.380881309509277 + ], + [ + "faudra", + -12.380882263183594 + ], + [ + "nahm", + -12.380938529968262 + ], + [ + "▁Specific", + -12.381153106689453 + ], + [ + "aiba", + -12.381199836730957 + ], + [ + "cepând", + -12.381296157836914 + ], + [ + "▁Beer", + -12.381366729736328 + ], + [ + "roni", + -12.381616592407227 + ], + [ + "kay", + -12.381636619567871 + ], + [ + "▁gravity", + -12.381844520568848 + ], + [ + "▁verfügt", + -12.381856918334961 + ], + [ + "7:30", + -12.381878852844238 + ], + [ + "▁Players", + -12.381945610046387 + ], + [ + "▁Industries", + -12.38198184967041 + ], + [ + "punkte", + -12.382119178771973 + ], + [ + "▁yacht", + -12.382135391235352 + ], + [ + "-04", + -12.382149696350098 + ], + [ + "onné", + -12.382192611694336 + ], + [ + "▁Cards", + -12.382221221923828 + ], + [ + "▁fete", + -12.382420539855957 + ], + [ + "breaking", + -12.38257884979248 + ], + [ + "baum", + -12.382621765136719 + ], + [ + "nada", + -12.382651329040527 + ], + [ + "▁geplant", + -12.382750511169434 + ], + [ + "genuinely", + -12.382766723632812 + ], + [ + "talk", + -12.382871627807617 + ], + [ + "▁disadvantage", + -12.382920265197754 + ], + [ + "▁shutter", + -12.383003234863281 + ], + [ + "virus", + -12.38302230834961 + ], + [ + "▁cricket", + -12.38308048248291 + ], + [ + "▁comenzi", + -12.383102416992188 + ], + [ + "hier", + -12.383170127868652 + ], + [ + "▁aufzu", + -12.383198738098145 + ], + [ + "▁Rez", + -12.38321304321289 + ], + [ + "▁conclusions", + -12.383329391479492 + ], + [ + "▁Wang", + -12.383509635925293 + ], + [ + "Darüber", + -12.383524894714355 + ], + [ + "▁CSS", + -12.383573532104492 + ], + [ + "CW", + -12.383780479431152 + ], + [ + "▁Chr", + -12.383790969848633 + ], + [ + "▁traded", + -12.383843421936035 + ], + [ + "▁Schon", + -12.384265899658203 + ], + [ + "mped", + -12.38429069519043 + ], + [ + "▁alloy", + -12.384385108947754 + ], + [ + "AVE", + -12.38451099395752 + ], + [ + "▁imagery", + -12.384542465209961 + ], + [ + "▁resurse", + -12.38479995727539 + ], + [ + "▁Thunder", + -12.384834289550781 + ], + [ + "▁schimbare", + -12.384860038757324 + ], + [ + "▁Youtube", + -12.38499927520752 + ], + [ + "▁Monster", + -12.385189056396484 + ], + [ + "phil", + -12.385234832763672 + ], + [ + "▁bébé", + -12.385284423828125 + ], + [ + "Creating", + -12.385428428649902 + ], + [ + "ănă", + -12.385466575622559 + ], + [ + "▁Staat", + -12.385504722595215 + ], + [ + "adică", + -12.385531425476074 + ], + [ + "▁boyfriend", + -12.385552406311035 + ], + [ + "▁Winner", + -12.385594367980957 + ], + [ + "▁disputes", + -12.385653495788574 + ], + [ + "▁lush", + -12.3856840133667 + ], + [ + "▁CMS", + -12.385719299316406 + ], + [ + "▁locaux", + -12.385725021362305 + ], + [ + "▁Verfahren", + -12.38576889038086 + ], + [ + "▁Café", + -12.385786056518555 + ], + [ + "▁Vorstand", + -12.385870933532715 + ], + [ + "▁lucrat", + -12.385960578918457 + ], + [ + "▁Root", + -12.38602352142334 + ], + [ + "▁decis", + -12.386059761047363 + ], + [ + "▁Shadow", + -12.386062622070312 + ], + [ + "▁countryside", + -12.386067390441895 + ], + [ + "▁analiza", + -12.386114120483398 + ], + [ + "obos", + -12.38616943359375 + ], + [ + "opera", + -12.386175155639648 + ], + [ + "actu", + -12.386207580566406 + ], + [ + "▁Songs", + -12.3864164352417 + ], + [ + "reifen", + -12.38648509979248 + ], + [ + "▁hilft", + -12.386650085449219 + ], + [ + "region", + -12.386727333068848 + ], + [ + "▁categoria", + -12.387001991271973 + ], + [ + "capturing", + -12.38701343536377 + ], + [ + "▁1967", + -12.387025833129883 + ], + [ + "▁optimized", + -12.387032508850098 + ], + [ + "▁Dim", + -12.387353897094727 + ], + [ + "▁adapté", + -12.387447357177734 + ], + [ + "zeichnet", + -12.387524604797363 + ], + [ + "▁strada", + -12.387625694274902 + ], + [ + "fulness", + -12.38774585723877 + ], + [ + "▁technically", + -12.38774585723877 + ], + [ + "▁marker", + -12.387757301330566 + ], + [ + "▁vizita", + -12.387808799743652 + ], + [ + "▁imperative", + -12.387986183166504 + ], + [ + "▁pensé", + -12.38802719116211 + ], + [ + "▁drilling", + -12.388030052185059 + ], + [ + "ISA", + -12.38818073272705 + ], + [ + "▁Massage", + -12.388201713562012 + ], + [ + "▁Terry", + -12.388238906860352 + ], + [ + "▁pourtant", + -12.38835334777832 + ], + [ + "▁declaration", + -12.388440132141113 + ], + [ + "▁instructors", + -12.388453483581543 + ], + [ + "Eventually", + -12.38847827911377 + ], + [ + "▁banned", + -12.38847827911377 + ], + [ + "MAT", + -12.388520240783691 + ], + [ + "▁medici", + -12.38856315612793 + ], + [ + "▁Warm", + -12.388615608215332 + ], + [ + "▁trec", + -12.388731002807617 + ], + [ + "▁ecran", + -12.388763427734375 + ], + [ + "▁goat", + -12.388838768005371 + ], + [ + "▁manipulation", + -12.388850212097168 + ], + [ + "▁mayor", + -12.388898849487305 + ], + [ + "▁unterwegs", + -12.388975143432617 + ], + [ + "▁journals", + -12.3890380859375 + ], + [ + "▁hedge", + -12.389239311218262 + ], + [ + "Merc", + -12.389300346374512 + ], + [ + "▁joueurs", + -12.389411926269531 + ], + [ + "▁Religion", + -12.3894624710083 + ], + [ + "▁Mountains", + -12.389477729797363 + ], + [ + "▁renewed", + -12.389497756958008 + ], + [ + "▁Limit", + -12.389543533325195 + ], + [ + "ikea", + -12.389771461486816 + ], + [ + "▁utiliza", + -12.38977336883545 + ], + [ + "sogenannte", + -12.389808654785156 + ], + [ + "0.2", + -12.389836311340332 + ], + [ + "▁Organ", + -12.38987922668457 + ], + [ + "▁Shakespeare", + -12.389952659606934 + ], + [ + "▁Maintenance", + -12.38995361328125 + ], + [ + "▁Wärme", + -12.389954566955566 + ], + [ + "▁Northwest", + -12.390060424804688 + ], + [ + "▁numit", + -12.390106201171875 + ], + [ + "▁mica", + -12.390165328979492 + ], + [ + "turm", + -12.390168190002441 + ], + [ + "▁motivate", + -12.390250205993652 + ], + [ + "▁Staats", + -12.390355110168457 + ], + [ + "optimum", + -12.390487670898438 + ], + [ + "▁sortir", + -12.390546798706055 + ], + [ + "▁Asset", + -12.390555381774902 + ], + [ + "▁hervorragend", + -12.390692710876465 + ], + [ + "▁commentary", + -12.39071273803711 + ], + [ + "▁actuellement", + -12.390732765197754 + ], + [ + "NER", + -12.390765190124512 + ], + [ + "NL", + -12.390789985656738 + ], + [ + "ritt", + -12.390803337097168 + ], + [ + "▁Wirtschafts", + -12.390813827514648 + ], + [ + "träger", + -12.390840530395508 + ], + [ + "▁Versand", + -12.390870094299316 + ], + [ + "▁nostri", + -12.390953063964844 + ], + [ + "▁enorm", + -12.391227722167969 + ], + [ + "▁whale", + -12.391260147094727 + ], + [ + "▁Aufgabe", + -12.391277313232422 + ], + [ + "▁unfair", + -12.391291618347168 + ], + [ + "▁Cord", + -12.391315460205078 + ], + [ + "incorporating", + -12.39134693145752 + ], + [ + "luck", + -12.39157772064209 + ], + [ + "Afrique", + -12.39168643951416 + ], + [ + "▁coated", + -12.391857147216797 + ], + [ + "▁india", + -12.391908645629883 + ], + [ + "▁temporarily", + -12.39193058013916 + ], + [ + "▁ciuda", + -12.392097473144531 + ], + [ + "▁coral", + -12.392184257507324 + ], + [ + "▁wirkt", + -12.392203330993652 + ], + [ + "▁folding", + -12.392309188842773 + ], + [ + "wichtigsten", + -12.392398834228516 + ], + [ + "impacted", + -12.392422676086426 + ], + [ + "▁wählen", + -12.392423629760742 + ], + [ + "▁differentiate", + -12.392492294311523 + ], + [ + "▁froid", + -12.392544746398926 + ], + [ + "▁hug", + -12.39255142211914 + ], + [ + "▁construi", + -12.39255428314209 + ], + [ + "▁membru", + -12.392603874206543 + ], + [ + "▁masculin", + -12.392667770385742 + ], + [ + "partisan", + -12.392711639404297 + ], + [ + "▁schimba", + -12.392725944519043 + ], + [ + "▁economies", + -12.392827987670898 + ], + [ + "▁Abraham", + -12.392914772033691 + ], + [ + "wesen", + -12.393013954162598 + ], + [ + "enia", + -12.393026351928711 + ], + [ + "▁answering", + -12.393080711364746 + ], + [ + "▁activități", + -12.39309024810791 + ], + [ + "▁mémoire", + -12.393160820007324 + ], + [ + "▁versucht", + -12.393305778503418 + ], + [ + "ember", + -12.39333438873291 + ], + [ + "▁instala", + -12.39334774017334 + ], + [ + "▁eligibility", + -12.393407821655273 + ], + [ + "▁enjoyment", + -12.393409729003906 + ], + [ + "▁Arme", + -12.39350414276123 + ], + [ + "although", + -12.393534660339355 + ], + [ + "▁encompass", + -12.393596649169922 + ], + [ + "▁zufrieden", + -12.393658638000488 + ], + [ + "Script", + -12.393691062927246 + ], + [ + "KG", + -12.39385986328125 + ], + [ + "▁adhesive", + -12.393902778625488 + ], + [ + "▁Verkehrs", + -12.393908500671387 + ], + [ + "▁monitored", + -12.394103050231934 + ], + [ + "▁Conservation", + -12.394148826599121 + ], + [ + "hav", + -12.394156455993652 + ], + [ + "▁Above", + -12.394174575805664 + ], + [ + "▁Former", + -12.394241333007812 + ], + [ + "▁Certain", + -12.394250869750977 + ], + [ + "saving", + -12.394311904907227 + ], + [ + "▁Pun", + -12.394390106201172 + ], + [ + "▁awkward", + -12.394397735595703 + ], + [ + "▁Pretty", + -12.394410133361816 + ], + [ + "▁scanning", + -12.394417762756348 + ], + [ + "layer", + -12.394527435302734 + ], + [ + "motor", + -12.39453125 + ], + [ + "▁beginnt", + -12.39455795288086 + ], + [ + "▁affiliated", + -12.394681930541992 + ], + [ + "▁archives", + -12.394686698913574 + ], + [ + "▁sunshine", + -12.394892692565918 + ], + [ + "kha", + -12.394988059997559 + ], + [ + "▁investigated", + -12.395149230957031 + ], + [ + "▁fantas", + -12.395277976989746 + ], + [ + "▁united", + -12.395355224609375 + ], + [ + "allegedly", + -12.395373344421387 + ], + [ + "▁Eugen", + -12.3955078125 + ], + [ + "▁proprie", + -12.395843505859375 + ], + [ + "uca", + -12.396183013916016 + ], + [ + "DES", + -12.396187782287598 + ], + [ + "ştii", + -12.396190643310547 + ], + [ + "▁Running", + -12.39620590209961 + ], + [ + "lbstverständlich", + -12.396248817443848 + ], + [ + "index", + -12.396300315856934 + ], + [ + "▁studiu", + -12.396512031555176 + ], + [ + "URE", + -12.396553039550781 + ], + [ + "gültig", + -12.396627426147461 + ], + [ + "▁lundi", + -12.396649360656738 + ], + [ + "▁Zucker", + -12.396650314331055 + ], + [ + "▁positively", + -12.396721839904785 + ], + [ + "folgenden", + -12.396758079528809 + ], + [ + "anță", + -12.396800994873047 + ], + [ + "▁clan", + -12.396866798400879 + ], + [ + "▁literacy", + -12.396879196166992 + ], + [ + "▁ober", + -12.39699935913086 + ], + [ + "John", + -12.397003173828125 + ], + [ + "greg", + -12.39700984954834 + ], + [ + "▁titlu", + -12.397049903869629 + ], + [ + "▁ţări", + -12.39707088470459 + ], + [ + "Bra", + -12.397100448608398 + ], + [ + "▁Evans", + -12.397164344787598 + ], + [ + "modern", + -12.397172927856445 + ], + [ + "▁hauteur", + -12.397353172302246 + ], + [ + "refers", + -12.397416114807129 + ], + [ + "▁plasma", + -12.397575378417969 + ], + [ + "▁optic", + -12.397595405578613 + ], + [ + "▁shampoo", + -12.397619247436523 + ], + [ + "▁cheek", + -12.397727966308594 + ], + [ + "opted", + -12.397741317749023 + ], + [ + "▁persönlich", + -12.397832870483398 + ], + [ + "▁1945", + -12.398118019104004 + ], + [ + "ICI", + -12.398193359375 + ], + [ + "biotic", + -12.398222923278809 + ], + [ + "▁Beruf", + -12.398372650146484 + ], + [ + "▁trez", + -12.398383140563965 + ], + [ + "▁diploma", + -12.398388862609863 + ], + [ + "nahmen", + -12.398421287536621 + ], + [ + "▁curl", + -12.398625373840332 + ], + [ + "▁agricole", + -12.398824691772461 + ], + [ + "▁recomand", + -12.398844718933105 + ], + [ + "▁pediatric", + -12.398862838745117 + ], + [ + "Fiecare", + -12.39887523651123 + ], + [ + "Anlage", + -12.398906707763672 + ], + [ + "weiß", + -12.398974418640137 + ], + [ + "elecommunication", + -12.39898681640625 + ], + [ + "hog", + -12.399184226989746 + ], + [ + "▁Stamp", + -12.399364471435547 + ], + [ + "▁Tipp", + -12.399369239807129 + ], + [ + "▁kindness", + -12.399415969848633 + ], + [ + "▁Marina", + -12.399577140808105 + ], + [ + "▁Gleich", + -12.39963436126709 + ], + [ + "▁grij", + -12.39970588684082 + ], + [ + "▁desperate", + -12.39974594116211 + ], + [ + "▁recordings", + -12.399842262268066 + ], + [ + "▁neglect", + -12.399861335754395 + ], + [ + "▁inherent", + -12.400035858154297 + ], + [ + "▁Rezept", + -12.400138854980469 + ], + [ + "▁soins", + -12.400164604187012 + ], + [ + "▁brut", + -12.400250434875488 + ], + [ + "▁revolutionary", + -12.400495529174805 + ], + [ + "▁liberté", + -12.400530815124512 + ], + [ + "cours", + -12.400945663452148 + ], + [ + "▁Similar", + -12.401247024536133 + ], + [ + "▁cheveux", + -12.40136432647705 + ], + [ + "▁ieftin", + -12.401599884033203 + ], + [ + "▁promovare", + -12.40160846710205 + ], + [ + "▁grains", + -12.401729583740234 + ], + [ + "ти", + -12.401749610900879 + ], + [ + "▁fonctionnement", + -12.401789665222168 + ], + [ + "▁Coming", + -12.401832580566406 + ], + [ + "▁analytical", + -12.401847839355469 + ], + [ + "▁simplify", + -12.401856422424316 + ], + [ + "▁chambres", + -12.401893615722656 + ], + [ + "▁fifty", + -12.401930809020996 + ], + [ + "jour", + -12.402070999145508 + ], + [ + "▁(17", + -12.402194023132324 + ], + [ + "cărui", + -12.402292251586914 + ], + [ + "▁harmony", + -12.402352333068848 + ], + [ + "grin", + -12.402355194091797 + ], + [ + "▁drunk", + -12.402359962463379 + ], + [ + "260", + -12.402374267578125 + ], + [ + "3-5", + -12.40243148803711 + ], + [ + "▁articole", + -12.402442932128906 + ], + [ + "▁flooding", + -12.402482986450195 + ], + [ + "halle", + -12.402580261230469 + ], + [ + "▁defects", + -12.40276050567627 + ], + [ + "▁rifle", + -12.402839660644531 + ], + [ + "▁Boc", + -12.402843475341797 + ], + [ + "▁Athletic", + -12.40284538269043 + ], + [ + "▁acordat", + -12.40292739868164 + ], + [ + "AIR", + -12.402969360351562 + ], + [ + "▁entwickeln", + -12.403104782104492 + ], + [ + "▁Advance", + -12.403188705444336 + ], + [ + "▁Heil", + -12.403216361999512 + ], + [ + "Stainless", + -12.403345108032227 + ], + [ + "▁Psychology", + -12.40337085723877 + ], + [ + "▁omul", + -12.403435707092285 + ], + [ + "▁Arbeiten", + -12.403494834899902 + ], + [ + "▁rabbit", + -12.403495788574219 + ], + [ + "▁méta", + -12.40351390838623 + ], + [ + "ismul", + -12.403534889221191 + ], + [ + "▁Herausforderung", + -12.403594970703125 + ], + [ + "▁Euch", + -12.403654098510742 + ], + [ + "geschichte", + -12.40390682220459 + ], + [ + "▁Milk", + -12.404057502746582 + ], + [ + "▁pregăt", + -12.404065132141113 + ], + [ + "▁Standort", + -12.404141426086426 + ], + [ + "Val", + -12.404180526733398 + ], + [ + "▁Ronald", + -12.404350280761719 + ], + [ + "▁Werbe", + -12.404558181762695 + ], + [ + "▁restrict", + -12.404658317565918 + ], + [ + "▁tablespoon", + -12.404844284057617 + ], + [ + "▁Amendment", + -12.404845237731934 + ], + [ + "▁Johnny", + -12.404914855957031 + ], + [ + "▁lively", + -12.404938697814941 + ], + [ + "ORD", + -12.405147552490234 + ], + [ + "▁mulţi", + -12.40523624420166 + ], + [ + "èrent", + -12.405241012573242 + ], + [ + "Every", + -12.405277252197266 + ], + [ + "eignet", + -12.405296325683594 + ], + [ + "GD", + -12.40546989440918 + ], + [ + "▁Ghana", + -12.405628204345703 + ], + [ + "▁wealthy", + -12.40576171875 + ], + [ + "▁advocates", + -12.405818939208984 + ], + [ + "▁Campaign", + -12.40584659576416 + ], + [ + "▁posters", + -12.405964851379395 + ], + [ + "flug", + -12.406011581420898 + ], + [ + "▁métier", + -12.406139373779297 + ], + [ + "kir", + -12.406148910522461 + ], + [ + "bond", + -12.406176567077637 + ], + [ + "datorita", + -12.406188011169434 + ], + [ + "▁Hochzeit", + -12.406230926513672 + ], + [ + "▁effectué", + -12.406271934509277 + ], + [ + "▁angles", + -12.40654182434082 + ], + [ + "▁Electrical", + -12.406705856323242 + ], + [ + "▁Administrator", + -12.40674114227295 + ], + [ + "▁spur", + -12.407389640808105 + ], + [ + "▁größere", + -12.407444953918457 + ], + [ + "woke", + -12.407515525817871 + ], + [ + "▁gewinnen", + -12.407689094543457 + ], + [ + "▁ajută", + -12.407712936401367 + ], + [ + "▁ventilation", + -12.407853126525879 + ], + [ + "▁viaţa", + -12.407853126525879 + ], + [ + "▁Dinner", + -12.408079147338867 + ], + [ + "respond", + -12.408095359802246 + ], + [ + "▁OEM", + -12.408120155334473 + ], + [ + "▁affair", + -12.4081392288208 + ], + [ + "▁öffentlich", + -12.408143043518066 + ], + [ + "ENS", + -12.408209800720215 + ], + [ + "▁Cent", + -12.408224105834961 + ], + [ + "▁făc", + -12.408267974853516 + ], + [ + "▁Doppel", + -12.408285140991211 + ], + [ + "▁fericit", + -12.408363342285156 + ], + [ + "▁coordon", + -12.40845775604248 + ], + [ + "geht", + -12.408547401428223 + ], + [ + "▁perfekte", + -12.408610343933105 + ], + [ + "▁sportive", + -12.408700942993164 + ], + [ + "▁proiectul", + -12.40870189666748 + ], + [ + "▁deadly", + -12.408804893493652 + ], + [ + "Geschäft", + -12.408822059631348 + ], + [ + "▁inspirational", + -12.408854484558105 + ], + [ + "+1", + -12.409013748168945 + ], + [ + "▁pearl", + -12.409022331237793 + ], + [ + "▁scrub", + -12.409036636352539 + ], + [ + "▁scheint", + -12.409079551696777 + ], + [ + "poo", + -12.409147262573242 + ], + [ + "▁Pier", + -12.409220695495605 + ], + [ + "▁commented", + -12.409285545349121 + ], + [ + "lute", + -12.409302711486816 + ], + [ + "▁cancelled", + -12.409488677978516 + ], + [ + "Win", + -12.409605979919434 + ], + [ + "▁payroll", + -12.409781455993652 + ], + [ + "▁varsta", + -12.409881591796875 + ], + [ + "stuffed", + -12.410097122192383 + ], + [ + "▁beads", + -12.410138130187988 + ], + [ + "▁poems", + -12.410356521606445 + ], + [ + "pokesman", + -12.410399436950684 + ], + [ + "▁checklist", + -12.410523414611816 + ], + [ + "▁Mich", + -12.410636901855469 + ], + [ + "GEN", + -12.410676002502441 + ], + [ + "▁Lau", + -12.410783767700195 + ], + [ + "▁stie", + -12.410965919494629 + ], + [ + "▁Lovely", + -12.4110107421875 + ], + [ + "▁Anschluss", + -12.411062240600586 + ], + [ + "▁personaj", + -12.41108226776123 + ], + [ + "▁ausgestattet", + -12.411121368408203 + ], + [ + "▁beginners", + -12.411163330078125 + ], + [ + "▁noon", + -12.411189079284668 + ], + [ + "▁celule", + -12.41128921508789 + ], + [ + "Trans", + -12.411324501037598 + ], + [ + "boot", + -12.411331176757812 + ], + [ + "▁drumul", + -12.41136646270752 + ], + [ + "gruppen", + -12.41140079498291 + ], + [ + "étend", + -12.41140365600586 + ], + [ + "▁risques", + -12.411405563354492 + ], + [ + "acclaimed", + -12.411447525024414 + ], + [ + "▁celelalte", + -12.411617279052734 + ], + [ + "▁condiţii", + -12.411620140075684 + ], + [ + "▁skiing", + -12.411685943603516 + ], + [ + "▁optimale", + -12.411689758300781 + ], + [ + "technology", + -12.411773681640625 + ], + [ + "▁renew", + -12.411784172058105 + ], + [ + "Cloud", + -12.41179084777832 + ], + [ + "▁damaging", + -12.411905288696289 + ], + [ + "GT", + -12.412219047546387 + ], + [ + "▁Reform", + -12.41230583190918 + ], + [ + "vedem", + -12.412349700927734 + ], + [ + "▁indicat", + -12.412461280822754 + ], + [ + "▁Maker", + -12.412467002868652 + ], + [ + "▁lichid", + -12.412582397460938 + ], + [ + "3.1", + -12.412614822387695 + ], + [ + "păt", + -12.412620544433594 + ], + [ + "lumina", + -12.41264820098877 + ], + [ + "▁Situ", + -12.412806510925293 + ], + [ + "▁Archives", + -12.412857055664062 + ], + [ + "▁allergies", + -12.41287899017334 + ], + [ + "▁Cameron", + -12.412883758544922 + ], + [ + "▁Immun", + -12.412899017333984 + ], + [ + "wissenschaftlich", + -12.41301441192627 + ], + [ + "▁supplémentaire", + -12.413128852844238 + ], + [ + "▁puterea", + -12.413261413574219 + ], + [ + "Lab", + -12.413331985473633 + ], + [ + "inspired", + -12.413384437561035 + ], + [ + "▁shrink", + -12.413403511047363 + ], + [ + "▁voit", + -12.413426399230957 + ], + [ + "▁chopped", + -12.413467407226562 + ], + [ + "▁Franz", + -12.413537979125977 + ], + [ + "oku", + -12.413652420043945 + ], + [ + "▁suppress", + -12.413673400878906 + ], + [ + "▁impress", + -12.413751602172852 + ], + [ + "▁Liga", + -12.413755416870117 + ], + [ + "▁Eight", + -12.41378402709961 + ], + [ + "720", + -12.413795471191406 + ], + [ + "▁securely", + -12.413870811462402 + ], + [ + "KU", + -12.413934707641602 + ], + [ + "modell", + -12.413992881774902 + ], + [ + "Ensure", + -12.414154052734375 + ], + [ + "größte", + -12.414204597473145 + ], + [ + "▁réuni", + -12.414215087890625 + ], + [ + "▁Internal", + -12.41423225402832 + ], + [ + "▁Punkte", + -12.414320945739746 + ], + [ + "▁replicate", + -12.414412498474121 + ], + [ + "▁spreadsheet", + -12.414434432983398 + ], + [ + "▁Hindu", + -12.414549827575684 + ], + [ + "▁Cham", + -12.414578437805176 + ], + [ + "nati", + -12.414670944213867 + ], + [ + "imply", + -12.414679527282715 + ], + [ + "funded", + -12.414894104003906 + ], + [ + "▁charitable", + -12.414896011352539 + ], + [ + "▁imagined", + -12.415014266967773 + ], + [ + "hausen", + -12.41517448425293 + ], + [ + "Keeping", + -12.415239334106445 + ], + [ + "▁attitudes", + -12.415287971496582 + ], + [ + "esque", + -12.415365219116211 + ], + [ + "▁Tennis", + -12.415409088134766 + ], + [ + "Jeremy", + -12.415410041809082 + ], + [ + "▁majeur", + -12.415475845336914 + ], + [ + "▁stii", + -12.4155912399292 + ], + [ + "▁herbal", + -12.415790557861328 + ], + [ + "▁cauta", + -12.41580867767334 + ], + [ + "▁voluntary", + -12.415828704833984 + ], + [ + "wohl", + -12.415877342224121 + ], + [ + "▁ideea", + -12.41588306427002 + ], + [ + "▁WW", + -12.415899276733398 + ], + [ + "▁erneut", + -12.416010856628418 + ], + [ + "größten", + -12.416094779968262 + ], + [ + "Grâce", + -12.416159629821777 + ], + [ + "▁Köln", + -12.416193008422852 + ], + [ + "▁mobilier", + -12.416199684143066 + ], + [ + "▁fool", + -12.416254043579102 + ], + [ + "▁Calcul", + -12.416295051574707 + ], + [ + "attaque", + -12.41637897491455 + ], + [ + "▁digestive", + -12.41656494140625 + ], + [ + "performance", + -12.416647911071777 + ], + [ + "▁homeowner", + -12.41675853729248 + ], + [ + "▁hunger", + -12.4169282913208 + ], + [ + "2.3", + -12.41696834564209 + ], + [ + "▁Sort", + -12.417085647583008 + ], + [ + "▁Dennis", + -12.41723918914795 + ], + [ + "▁certificat", + -12.417250633239746 + ], + [ + "▁Canal", + -12.417337417602539 + ], + [ + "▁Yesterday", + -12.417424201965332 + ], + [ + "▁sausage", + -12.417499542236328 + ], + [ + "▁perdu", + -12.417736053466797 + ], + [ + "ösen", + -12.417741775512695 + ], + [ + "▁preserved", + -12.417750358581543 + ], + [ + "▁trendy", + -12.4177885055542 + ], + [ + "▁iubire", + -12.417935371398926 + ], + [ + "▁grandfather", + -12.417961120605469 + ], + [ + "▁shoppers", + -12.41820240020752 + ], + [ + "▁verschieden", + -12.418252944946289 + ], + [ + "▁gagner", + -12.41826343536377 + ], + [ + "▁lucra", + -12.418437004089355 + ], + [ + "metru", + -12.418464660644531 + ], + [ + "buz", + -12.418469429016113 + ], + [ + "▁flourish", + -12.418484687805176 + ], + [ + "affin", + -12.418523788452148 + ], + [ + "▁Pflanzen", + -12.41858196258545 + ], + [ + "agh", + -12.418588638305664 + ], + [ + "▁Gill", + -12.418660163879395 + ], + [ + "▁Kä", + -12.418671607971191 + ], + [ + "▁Wege", + -12.41876220703125 + ], + [ + "▁Liberal", + -12.418929100036621 + ], + [ + "▁Glasgow", + -12.418944358825684 + ], + [ + "Objekt", + -12.4189453125 + ], + [ + "▁Huawei", + -12.4189453125 + ], + [ + "appropri", + -12.418986320495605 + ], + [ + "▁genius", + -12.419037818908691 + ], + [ + "▁brokers", + -12.419068336486816 + ], + [ + "▁themed", + -12.41918659210205 + ], + [ + "▁barre", + -12.419210433959961 + ], + [ + "1.7", + -12.419219017028809 + ], + [ + "▁Electro", + -12.419303894042969 + ], + [ + "▁umbrella", + -12.419333457946777 + ], + [ + "▁advisory", + -12.419417381286621 + ], + [ + "▁comport", + -12.419421195983887 + ], + [ + "▁neuer", + -12.419452667236328 + ], + [ + "▁Wick", + -12.419568061828613 + ], + [ + "wak", + -12.419618606567383 + ], + [ + "▁Woman", + -12.419695854187012 + ], + [ + "▁lesser", + -12.419843673706055 + ], + [ + "▁replied", + -12.419987678527832 + ], + [ + "▁représente", + -12.420050621032715 + ], + [ + "▁thé", + -12.420135498046875 + ], + [ + "Deutsch", + -12.420428276062012 + ], + [ + "Cat", + -12.420483589172363 + ], + [ + "▁équipes", + -12.420534133911133 + ], + [ + "▁spider", + -12.420578956604004 + ], + [ + "▁Gaming", + -12.420589447021484 + ], + [ + "▁Liste", + -12.420592308044434 + ], + [ + "▁affection", + -12.420639038085938 + ], + [ + "lipsa", + -12.420982360839844 + ], + [ + "▁Spider", + -12.420987129211426 + ], + [ + "▁Julia", + -12.421034812927246 + ], + [ + "anlagen", + -12.421159744262695 + ], + [ + "Kon", + -12.421363830566406 + ], + [ + "nței", + -12.421368598937988 + ], + [ + "▁Verwaltung", + -12.421483993530273 + ], + [ + "▁raspuns", + -12.421489715576172 + ], + [ + "samt", + -12.421491622924805 + ], + [ + "▁creștere", + -12.421512603759766 + ], + [ + "▁decorate", + -12.421701431274414 + ], + [ + "▁Chain", + -12.422021865844727 + ], + [ + "ów", + -12.422050476074219 + ], + [ + "0-0", + -12.422104835510254 + ], + [ + "▁Cran", + -12.422407150268555 + ], + [ + "▁streak", + -12.42242431640625 + ], + [ + "ор", + -12.422517776489258 + ], + [ + "▁căuta", + -12.422754287719727 + ], + [ + "wende", + -12.422801971435547 + ], + [ + "▁haine", + -12.42280387878418 + ], + [ + "▁landscaping", + -12.423009872436523 + ], + [ + "▁historian", + -12.423016548156738 + ], + [ + "▁grandchildren", + -12.423033714294434 + ], + [ + "▁crawl", + -12.423056602478027 + ], + [ + "▁Cub", + -12.423239707946777 + ], + [ + "▁nécessaires", + -12.423515319824219 + ], + [ + "▁swift", + -12.42352294921875 + ], + [ + "▁calculation", + -12.423656463623047 + ], + [ + "▁acteurs", + -12.423715591430664 + ], + [ + "VT", + -12.423752784729004 + ], + [ + "▁Hristos", + -12.423778533935547 + ], + [ + "▁slices", + -12.423850059509277 + ], + [ + "See", + -12.424203872680664 + ], + [ + "▁Bran", + -12.424233436584473 + ], + [ + "Symbol", + -12.424449920654297 + ], + [ + "▁allowance", + -12.424492835998535 + ], + [ + "▁Effective", + -12.424537658691406 + ], + [ + "▁Wünsche", + -12.424539566040039 + ], + [ + "▁shiny", + -12.424569129943848 + ], + [ + "▁professionalism", + -12.424715995788574 + ], + [ + "/6", + -12.424970626831055 + ], + [ + "▁terrasse", + -12.425087928771973 + ], + [ + "▁researcher", + -12.425156593322754 + ], + [ + "▁fragile", + -12.425203323364258 + ], + [ + "▁greeting", + -12.425274848937988 + ], + [ + "freien", + -12.4253511428833 + ], + [ + "▁valuation", + -12.425372123718262 + ], + [ + "▁incur", + -12.425386428833008 + ], + [ + "▁Zwischen", + -12.425559997558594 + ], + [ + "▁comfy", + -12.425569534301758 + ], + [ + "▁méthode", + -12.42569351196289 + ], + [ + "▁Pirate", + -12.425816535949707 + ], + [ + "▁Moto", + -12.425822257995605 + ], + [ + "(6)", + -12.425823211669922 + ], + [ + "▁devin", + -12.42582893371582 + ], + [ + "▁civic", + -12.425837516784668 + ], + [ + "usage", + -12.425889015197754 + ], + [ + "▁istorie", + -12.425945281982422 + ], + [ + "▁piste", + -12.425955772399902 + ], + [ + "▁Rug", + -12.426091194152832 + ], + [ + "pä", + -12.426129341125488 + ], + [ + "▁matur", + -12.426148414611816 + ], + [ + "CAS", + -12.426155090332031 + ], + [ + "TIC", + -12.42618465423584 + ], + [ + "▁Reduce", + -12.426234245300293 + ], + [ + "▁commemorat", + -12.426321983337402 + ], + [ + "▁cease", + -12.42653751373291 + ], + [ + "unterschiedliche", + -12.42656421661377 + ], + [ + "▁cinnamon", + -12.426581382751465 + ], + [ + "▁Font", + -12.426583290100098 + ], + [ + "▁justify", + -12.426751136779785 + ], + [ + "deteriorat", + -12.426797866821289 + ], + [ + "▁Schön", + -12.42684555053711 + ], + [ + "plain", + -12.426993370056152 + ], + [ + "frist", + -12.427002906799316 + ], + [ + "▁helmet", + -12.42712116241455 + ], + [ + "▁statute", + -12.42721939086914 + ], + [ + "accept", + -12.427236557006836 + ], + [ + "▁1,5", + -12.42724323272705 + ], + [ + "▁recon", + -12.42724323272705 + ], + [ + "▁Möbel", + -12.427348136901855 + ], + [ + "▁idées", + -12.427367210388184 + ], + [ + "automat", + -12.427552223205566 + ], + [ + "Team", + -12.42758846282959 + ], + [ + "▁performers", + -12.427688598632812 + ], + [ + "▁microphone", + -12.427722930908203 + ], + [ + "impotriva", + -12.427775382995605 + ], + [ + "▁pillows", + -12.42780876159668 + ], + [ + "▁accountable", + -12.427812576293945 + ], + [ + "▁strings", + -12.42782974243164 + ], + [ + "hydrate", + -12.427835464477539 + ], + [ + "▁Yan", + -12.427865028381348 + ], + [ + "starea", + -12.427918434143066 + ], + [ + "▁présenté", + -12.42793083190918 + ], + [ + "▁extensively", + -12.428048133850098 + ], + [ + "äst", + -12.428114891052246 + ], + [ + "▁correlation", + -12.428115844726562 + ], + [ + "bespoke", + -12.428119659423828 + ], + [ + "▁creste", + -12.428196907043457 + ], + [ + "▁Armenia", + -12.428248405456543 + ], + [ + "nose", + -12.428426742553711 + ], + [ + "▁strengthening", + -12.428604125976562 + ], + [ + "▁Horizon", + -12.428627014160156 + ], + [ + "▁obesity", + -12.428627967834473 + ], + [ + "seasoned", + -12.428686141967773 + ], + [ + "▁screenshot", + -12.428736686706543 + ], + [ + "girl", + -12.42875862121582 + ], + [ + "▁hardest", + -12.428826332092285 + ], + [ + "▁weakness", + -12.428855895996094 + ], + [ + "effectuer", + -12.429012298583984 + ], + [ + "▁Florence", + -12.429034233093262 + ], + [ + "▁Europene", + -12.429062843322754 + ], + [ + "triggered", + -12.429333686828613 + ], + [ + "Apparently", + -12.42939567565918 + ], + [ + "▁diagnose", + -12.42943286895752 + ], + [ + "rushed", + -12.429494857788086 + ], + [ + "▁trotz", + -12.429516792297363 + ], + [ + "▁spécial", + -12.429680824279785 + ], + [ + "▁lumi", + -12.429783821105957 + ], + [ + "7:00", + -12.429877281188965 + ], + [ + "▁publicat", + -12.429903984069824 + ], + [ + "ос", + -12.430086135864258 + ], + [ + "▁hue", + -12.430136680603027 + ], + [ + "▁termination", + -12.430139541625977 + ], + [ + "▁Nam", + -12.430240631103516 + ], + [ + "Well", + -12.430376052856445 + ], + [ + "▁Extract", + -12.430441856384277 + ], + [ + "atiile", + -12.43062686920166 + ], + [ + "▁vivid", + -12.43076229095459 + ], + [ + "hrs", + -12.430858612060547 + ], + [ + "▁povesti", + -12.430984497070312 + ], + [ + "stehenden", + -12.430988311767578 + ], + [ + "▁informieren", + -12.431070327758789 + ], + [ + "employed", + -12.431133270263672 + ], + [ + "▁armor", + -12.431180953979492 + ], + [ + "▁Columbus", + -12.431191444396973 + ], + [ + "Registr", + -12.431200981140137 + ], + [ + "▁Kamera", + -12.431203842163086 + ], + [ + "▁ugly", + -12.431203842163086 + ], + [ + "outil", + -12.431234359741211 + ], + [ + "▁evenly", + -12.43134593963623 + ], + [ + "lungul", + -12.431349754333496 + ], + [ + "koch", + -12.431439399719238 + ], + [ + "▁Dig", + -12.431450843811035 + ], + [ + "purely", + -12.431489944458008 + ], + [ + "▁Surf", + -12.431560516357422 + ], + [ + "rilla", + -12.431628227233887 + ], + [ + "▁Watson", + -12.43171215057373 + ], + [ + "trug", + -12.431719779968262 + ], + [ + "figuring", + -12.431784629821777 + ], + [ + "▁competitor", + -12.431807518005371 + ], + [ + "▁humid", + -12.431889533996582 + ], + [ + "▁Lawyer", + -12.43189811706543 + ], + [ + "Added", + -12.43205451965332 + ], + [ + "▁salva", + -12.432056427001953 + ], + [ + "▁drainage", + -12.4321870803833 + ], + [ + "Featuring", + -12.432220458984375 + ], + [ + "▁Pel", + -12.43234634399414 + ], + [ + "▁acasa", + -12.432611465454102 + ], + [ + "▁expectation", + -12.43265438079834 + ], + [ + "gibt", + -12.432663917541504 + ], + [ + "▁marginal", + -12.432831764221191 + ], + [ + "ceni", + -12.433028221130371 + ], + [ + "▁européen", + -12.433065414428711 + ], + [ + "clav", + -12.433090209960938 + ], + [ + "▁Shot", + -12.433167457580566 + ], + [ + "commun", + -12.43322467803955 + ], + [ + "▁Calendar", + -12.433247566223145 + ], + [ + "▁trek", + -12.433348655700684 + ], + [ + "rechtliche", + -12.433406829833984 + ], + [ + "▁Perry", + -12.43342399597168 + ], + [ + "▁surge", + -12.433484077453613 + ], + [ + "geschäft", + -12.433504104614258 + ], + [ + "paced", + -12.433793067932129 + ], + [ + "depend", + -12.433871269226074 + ], + [ + "▁Sache", + -12.433947563171387 + ], + [ + "▁Example", + -12.433998107910156 + ], + [ + "▁lider", + -12.434118270874023 + ], + [ + "▁nochmal", + -12.434240341186523 + ], + [ + "▁Present", + -12.434243202209473 + ], + [ + "KW", + -12.434335708618164 + ], + [ + "prompted", + -12.434350967407227 + ], + [ + "logique", + -12.434444427490234 + ], + [ + "Université", + -12.434466361999512 + ], + [ + "lith", + -12.434489250183105 + ], + [ + "▁Gefahr", + -12.434579849243164 + ], + [ + "▁Acid", + -12.434625625610352 + ], + [ + "objets", + -12.434791564941406 + ], + [ + "▁societies", + -12.434791564941406 + ], + [ + "▁distraction", + -12.434816360473633 + ], + [ + "▁puissance", + -12.434934616088867 + ], + [ + "▁alleviat", + -12.435026168823242 + ], + [ + "▁Capitol", + -12.435050010681152 + ], + [ + "▁Heim", + -12.435129165649414 + ], + [ + "judicial", + -12.435230255126953 + ], + [ + "▁nowadays", + -12.435309410095215 + ], + [ + "▁Hammer", + -12.435317039489746 + ], + [ + "▁metallic", + -12.435327529907227 + ], + [ + "▁distr", + -12.435388565063477 + ], + [ + "▁dispos", + -12.435397148132324 + ], + [ + "profile", + -12.435408592224121 + ], + [ + "▁Nicolas", + -12.435602188110352 + ], + [ + "▁presa", + -12.435760498046875 + ], + [ + "augh", + -12.43578052520752 + ], + [ + "schuss", + -12.435787200927734 + ], + [ + "▁Diana", + -12.436062812805176 + ], + [ + "4-5", + -12.436097145080566 + ], + [ + "▁Chapel", + -12.43612003326416 + ], + [ + "▁zahar", + -12.436150550842285 + ], + [ + "âmb", + -12.4362154006958 + ], + [ + "▁Tarif", + -12.436264991760254 + ], + [ + "▁devastating", + -12.436339378356934 + ], + [ + "6:00", + -12.4364013671875 + ], + [ + "▁100,000", + -12.43645191192627 + ], + [ + "NIC", + -12.436580657958984 + ], + [ + "▁Lucas", + -12.436612129211426 + ], + [ + "▁bequem", + -12.436662673950195 + ], + [ + "▁Motion", + -12.436698913574219 + ], + [ + "7,000", + -12.436701774597168 + ], + [ + "▁malware", + -12.436708450317383 + ], + [ + "▁avenue", + -12.436723709106445 + ], + [ + "▁manger", + -12.436747550964355 + ], + [ + "▁Queensland", + -12.436857223510742 + ], + [ + "▁Papier", + -12.436861991882324 + ], + [ + "▁Increase", + -12.436880111694336 + ], + [ + "▁implies", + -12.436954498291016 + ], + [ + "▁äußer", + -12.43697452545166 + ], + [ + "▁Meine", + -12.436980247497559 + ], + [ + "Reuters", + -12.437155723571777 + ], + [ + "▁Belt", + -12.437232971191406 + ], + [ + "Educat", + -12.437251091003418 + ], + [ + "▁Aktion", + -12.437355041503906 + ], + [ + "schläge", + -12.437372207641602 + ], + [ + "▁înregistrat", + -12.437426567077637 + ], + [ + "▁Ortho", + -12.43756103515625 + ], + [ + "▁bulbs", + -12.437761306762695 + ], + [ + "kap", + -12.437793731689453 + ], + [ + "▁peinture", + -12.437901496887207 + ], + [ + "▁Lounge", + -12.437907218933105 + ], + [ + "▁Tampa", + -12.438008308410645 + ], + [ + "ifiziert", + -12.438100814819336 + ], + [ + "kinder", + -12.438172340393066 + ], + [ + "▁comparativ", + -12.438281059265137 + ], + [ + "häuser", + -12.438323974609375 + ], + [ + "incarn", + -12.438363075256348 + ], + [ + "▁amazon", + -12.438464164733887 + ], + [ + "▁Southeast", + -12.438505172729492 + ], + [ + "▁economical", + -12.438667297363281 + ], + [ + "▁broth", + -12.438697814941406 + ], + [ + "▁Secure", + -12.438750267028809 + ], + [ + "damals", + -12.438875198364258 + ], + [ + "▁Elementary", + -12.438921928405762 + ], + [ + "▁Wildlife", + -12.438995361328125 + ], + [ + "▁Jewel", + -12.439001083374023 + ], + [ + "▁protocols", + -12.439297676086426 + ], + [ + "▁zbor", + -12.4393892288208 + ], + [ + "▁enthusiasts", + -12.439398765563965 + ], + [ + "▁Mirror", + -12.439444541931152 + ], + [ + "▁soak", + -12.439537048339844 + ], + [ + "▁Sad", + -12.439574241638184 + ], + [ + "▁dishwasher", + -12.439957618713379 + ], + [ + "▁vollständig", + -12.440186500549316 + ], + [ + "▁Vermont", + -12.440407752990723 + ], + [ + "▁caut", + -12.440449714660645 + ], + [ + "▁fournisseur", + -12.440475463867188 + ], + [ + "▁Concrete", + -12.44047737121582 + ], + [ + "▁Instant", + -12.440595626831055 + ], + [ + "▁reveni", + -12.440597534179688 + ], + [ + "▁Surface", + -12.44059944152832 + ], + [ + "zumindest", + -12.440713882446289 + ], + [ + "▁feast", + -12.440725326538086 + ], + [ + "▁stretching", + -12.440803527832031 + ], + [ + "ERA", + -12.440997123718262 + ], + [ + "▁Scholarship", + -12.441020965576172 + ], + [ + "▁vineyard", + -12.4410400390625 + ], + [ + "▁régulièrement", + -12.441083908081055 + ], + [ + "▁patches", + -12.441093444824219 + ], + [ + "▁Gamb", + -12.44113540649414 + ], + [ + "▁Vereins", + -12.441152572631836 + ], + [ + "ège", + -12.441372871398926 + ], + [ + "▁constitutional", + -12.441411018371582 + ], + [ + "erreur", + -12.441413879394531 + ], + [ + "▁Colombia", + -12.441514015197754 + ], + [ + "UF", + -12.441618919372559 + ], + [ + "aider", + -12.441665649414062 + ], + [ + "cision", + -12.44180965423584 + ], + [ + "▁publishers", + -12.441913604736328 + ], + [ + "▁prelua", + -12.441967964172363 + ], + [ + "▁keiner", + -12.441990852355957 + ], + [ + "▁amid", + -12.442020416259766 + ], + [ + "▁quantitative", + -12.442031860351562 + ], + [ + "▁decay", + -12.442058563232422 + ], + [ + "▁distinguished", + -12.4420747756958 + ], + [ + "▁Gründe", + -12.442209243774414 + ], + [ + "▁statului", + -12.442362785339355 + ], + [ + "CAT", + -12.442436218261719 + ], + [ + "allow", + -12.442481994628906 + ], + [ + "▁mathematical", + -12.442550659179688 + ], + [ + "▁tragedy", + -12.44255542755127 + ], + [ + "▁heels", + -12.442609786987305 + ], + [ + "opia", + -12.44265365600586 + ], + [ + "▁merger", + -12.4428071975708 + ], + [ + "dispositif", + -12.442813873291016 + ], + [ + "▁pneu", + -12.44283390045166 + ], + [ + "elte", + -12.443058013916016 + ], + [ + "▁Introduction", + -12.443070411682129 + ], + [ + "▁biscuit", + -12.443134307861328 + ], + [ + "▁leftover", + -12.443275451660156 + ], + [ + "▁tester", + -12.443314552307129 + ], + [ + "▁Terre", + -12.443380355834961 + ], + [ + "▁Oui", + -12.44338321685791 + ], + [ + "▁rar", + -12.443520545959473 + ], + [ + "▁beverages", + -12.443666458129883 + ], + [ + "▁parenting", + -12.443892478942871 + ], + [ + "1-0", + -12.444053649902344 + ], + [ + "▁Barry", + -12.44417667388916 + ], + [ + "▁Lynn", + -12.444209098815918 + ], + [ + "▁Tyler", + -12.444262504577637 + ], + [ + "▁fotbal", + -12.44437026977539 + ], + [ + "dron", + -12.444475173950195 + ], + [ + "▁donor", + -12.44455623626709 + ], + [ + "▁drape", + -12.444558143615723 + ], + [ + "▁positioning", + -12.444963455200195 + ], + [ + "▁Tang", + -12.445006370544434 + ], + [ + "▁overwhelmed", + -12.445161819458008 + ], + [ + "▁perte", + -12.445192337036133 + ], + [ + "▁blender", + -12.445302963256836 + ], + [ + "TG", + -12.445467948913574 + ], + [ + "GHz", + -12.445490837097168 + ], + [ + "▁administrat", + -12.445719718933105 + ], + [ + "▁glaube", + -12.445771217346191 + ], + [ + "Char", + -12.445947647094727 + ], + [ + "impression", + -12.44627571105957 + ], + [ + "proving", + -12.446297645568848 + ], + [ + "▁Inner", + -12.446434020996094 + ], + [ + "root", + -12.446501731872559 + ], + [ + "▁Gedanken", + -12.446508407592773 + ], + [ + "▁underway", + -12.446596145629883 + ], + [ + "coat", + -12.44660758972168 + ], + [ + "▁thereof", + -12.446663856506348 + ], + [ + "rius", + -12.446700096130371 + ], + [ + "▁intermediate", + -12.446751594543457 + ], + [ + "gmail", + -12.446869850158691 + ], + [ + "114", + -12.446893692016602 + ], + [ + "▁interfere", + -12.446908950805664 + ], + [ + "▁Found", + -12.446930885314941 + ], + [ + "LF", + -12.447071075439453 + ], + [ + "▁equality", + -12.447099685668945 + ], + [ + "▁concurrent", + -12.44710636138916 + ], + [ + "akh", + -12.447107315063477 + ], + [ + "▁touching", + -12.44715690612793 + ], + [ + "▁curiosity", + -12.447235107421875 + ], + [ + "▁rendering", + -12.447263717651367 + ], + [ + "▁1964", + -12.447442054748535 + ], + [ + "sorge", + -12.447468757629395 + ], + [ + "ARC", + -12.447505950927734 + ], + [ + "▁Desktop", + -12.44752311706543 + ], + [ + "▁Tak", + -12.44760799407959 + ], + [ + "filtration", + -12.447651863098145 + ], + [ + "▁gates", + -12.4478759765625 + ], + [ + "Sehr", + -12.44791316986084 + ], + [ + "▁spatiu", + -12.44798755645752 + ], + [ + "▁Leg", + -12.448103904724121 + ], + [ + "▁aviation", + -12.448277473449707 + ], + [ + "wandel", + -12.44827938079834 + ], + [ + "▁Shar", + -12.448323249816895 + ], + [ + "▁Volks", + -12.448409080505371 + ], + [ + "maz", + -12.448698997497559 + ], + [ + "governmental", + -12.44874095916748 + ], + [ + "euros", + -12.448819160461426 + ], + [ + "avantage", + -12.448823928833008 + ], + [ + "sitzt", + -12.448856353759766 + ], + [ + "IER", + -12.448920249938965 + ], + [ + "▁Theory", + -12.44894027709961 + ], + [ + "Cependant", + -12.44907283782959 + ], + [ + "▁Teachers", + -12.449080467224121 + ], + [ + "anspruch", + -12.449095726013184 + ], + [ + "▁afecta", + -12.449139595031738 + ], + [ + "enko", + -12.449193000793457 + ], + [ + "▁breeding", + -12.449198722839355 + ], + [ + "▁Peak", + -12.449457168579102 + ], + [ + "▁găsit", + -12.449516296386719 + ], + [ + "▁măsuri", + -12.4495267868042 + ], + [ + "edia", + -12.449625968933105 + ], + [ + "biz", + -12.449640274047852 + ], + [ + "zum", + -12.449776649475098 + ], + [ + "▁schwierig", + -12.449847221374512 + ], + [ + "Sense", + -12.450050354003906 + ], + [ + "▁Jump", + -12.450081825256348 + ], + [ + "▁cocktails", + -12.450108528137207 + ], + [ + "abhängig", + -12.45012378692627 + ], + [ + "realised", + -12.450140953063965 + ], + [ + "▁programul", + -12.450214385986328 + ], + [ + "▁prévu", + -12.450238227844238 + ], + [ + "▁twitter", + -12.450372695922852 + ], + [ + "Union", + -12.450400352478027 + ], + [ + "▁Marathon", + -12.45040225982666 + ], + [ + "▁Christianity", + -12.450432777404785 + ], + [ + "▁Alberta", + -12.450811386108398 + ], + [ + "einheit", + -12.45097827911377 + ], + [ + "▁wellbeing", + -12.450982093811035 + ], + [ + "phen", + -12.451166152954102 + ], + [ + "▁Charleston", + -12.451180458068848 + ], + [ + "▁uncover", + -12.451323509216309 + ], + [ + "▁humaine", + -12.451464653015137 + ], + [ + "▁bleeding", + -12.451531410217285 + ], + [ + "▁manipul", + -12.451532363891602 + ], + [ + "▁humidity", + -12.451570510864258 + ], + [ + "▁Puis", + -12.451748847961426 + ], + [ + "▁aktuell", + -12.451922416687012 + ], + [ + "▁Nissan", + -12.451943397521973 + ], + [ + "▁Eisen", + -12.45202922821045 + ], + [ + "treiben", + -12.452059745788574 + ], + [ + "cios", + -12.452073097229004 + ], + [ + "ikh", + -12.452381134033203 + ], + [ + "acquiring", + -12.452466011047363 + ], + [ + "▁Wallpaper", + -12.452488899230957 + ], + [ + "▁rond", + -12.452558517456055 + ], + [ + "▁Doug", + -12.45267391204834 + ], + [ + "sourcing", + -12.452696800231934 + ], + [ + "▁1900", + -12.452825546264648 + ], + [ + "▁buni", + -12.452913284301758 + ], + [ + "vest", + -12.452916145324707 + ], + [ + "▁Bangladesh", + -12.452990531921387 + ], + [ + "Home", + -12.453160285949707 + ], + [ + "▁wrinkle", + -12.453252792358398 + ], + [ + "rado", + -12.453290939331055 + ], + [ + "▁Pain", + -12.45334243774414 + ], + [ + "▁herzlich", + -12.453354835510254 + ], + [ + "MRI", + -12.453426361083984 + ], + [ + "UG", + -12.453631401062012 + ], + [ + "▁Desk", + -12.453679084777832 + ], + [ + "▁remarc", + -12.453718185424805 + ], + [ + "▁sodium", + -12.453857421875 + ], + [ + "▁Jede", + -12.453892707824707 + ], + [ + "▁réelle", + -12.453959465026855 + ], + [ + "▁Polar", + -12.454068183898926 + ], + [ + "▁activists", + -12.454273223876953 + ], + [ + "lasted", + -12.454300880432129 + ], + [ + "Some", + -12.45432186126709 + ], + [ + "ISE", + -12.454338073730469 + ], + [ + "▁peine", + -12.454671859741211 + ], + [ + "▁crude", + -12.454852104187012 + ], + [ + "Maur", + -12.454916954040527 + ], + [ + "▁forcing", + -12.454933166503906 + ], + [ + "▁politici", + -12.454970359802246 + ], + [ + "▁condiții", + -12.454988479614258 + ], + [ + "▁Saving", + -12.454999923706055 + ], + [ + "▁descoperi", + -12.455020904541016 + ], + [ + "avenir", + -12.455055236816406 + ], + [ + "Akt", + -12.455069541931152 + ], + [ + "▁vocabulary", + -12.45509147644043 + ], + [ + "▁pont", + -12.455168724060059 + ], + [ + "West", + -12.45518970489502 + ], + [ + "lenk", + -12.455278396606445 + ], + [ + "▁Verbraucher", + -12.455367088317871 + ], + [ + "affects", + -12.455448150634766 + ], + [ + "▁Flower", + -12.455543518066406 + ], + [ + "▁Nebraska", + -12.455617904663086 + ], + [ + "▁assortment", + -12.455618858337402 + ], + [ + "hock", + -12.455619812011719 + ], + [ + "▁discounted", + -12.455803871154785 + ], + [ + "▁Sensor", + -12.455840110778809 + ], + [ + "Lie", + -12.45588207244873 + ], + [ + "▁Volkswagen", + -12.455887794494629 + ], + [ + "isseur", + -12.455888748168945 + ], + [ + "indice", + -12.455936431884766 + ], + [ + "▁scanner", + -12.455986022949219 + ], + [ + "fashioned", + -12.456040382385254 + ], + [ + "▁postal", + -12.456141471862793 + ], + [ + "ouvrir", + -12.45615291595459 + ], + [ + "▁seminars", + -12.45622444152832 + ], + [ + "ioase", + -12.456232070922852 + ], + [ + "▁Stanley", + -12.456260681152344 + ], + [ + "Various", + -12.456335067749023 + ], + [ + "essentiel", + -12.45650577545166 + ], + [ + "▁administered", + -12.456693649291992 + ], + [ + "▁concession", + -12.456748008728027 + ], + [ + "▁mould", + -12.456789016723633 + ], + [ + "▁strongest", + -12.456826210021973 + ], + [ + "Erlebnis", + -12.456933975219727 + ], + [ + "▁ehemalige", + -12.456933975219727 + ], + [ + "▁Tale", + -12.457234382629395 + ], + [ + "▁Buyer", + -12.457353591918945 + ], + [ + "ück", + -12.457578659057617 + ], + [ + "▁Kommentar", + -12.457720756530762 + ], + [ + "▁Schrift", + -12.457756996154785 + ], + [ + "Design", + -12.457792282104492 + ], + [ + "▁stirring", + -12.457937240600586 + ], + [ + "▁towels", + -12.457987785339355 + ], + [ + "▁$30", + -12.458101272583008 + ], + [ + "sprache", + -12.458279609680176 + ], + [ + "▁Regierung", + -12.458346366882324 + ], + [ + "▁nachhaltig", + -12.458406448364258 + ], + [ + "▁électronique", + -12.458515167236328 + ], + [ + "▁Andrei", + -12.458587646484375 + ], + [ + "because", + -12.458647727966309 + ], + [ + "informatique", + -12.458650588989258 + ], + [ + "IGHT", + -12.4586820602417 + ], + [ + "stepping", + -12.4586820602417 + ], + [ + "▁gris", + -12.458748817443848 + ], + [ + "vious", + -12.458773612976074 + ], + [ + "▁upside", + -12.4591064453125 + ], + [ + "▁Examples", + -12.459108352661133 + ], + [ + "IU", + -12.459110260009766 + ], + [ + "▁princess", + -12.459111213684082 + ], + [ + "spielen", + -12.45921516418457 + ], + [ + "legung", + -12.45950984954834 + ], + [ + "▁reflecting", + -12.4597806930542 + ], + [ + "▁Processing", + -12.459939002990723 + ], + [ + "▁jungle", + -12.460033416748047 + ], + [ + "▁insects", + -12.46006965637207 + ], + [ + "▁Sibiu", + -12.460220336914062 + ], + [ + "160", + -12.460259437561035 + ], + [ + "▁interessante", + -12.460267066955566 + ], + [ + "▁multimedia", + -12.460455894470215 + ], + [ + "essel", + -12.46049690246582 + ], + [ + "/18", + -12.460647583007812 + ], + [ + "nière", + -12.460683822631836 + ], + [ + "ministru", + -12.46072006225586 + ], + [ + "▁implants", + -12.460826873779297 + ], + [ + "▁Settings", + -12.461360931396484 + ], + [ + "▁invaluable", + -12.461432456970215 + ], + [ + "stains", + -12.461448669433594 + ], + [ + "onym", + -12.461518287658691 + ], + [ + "▁searched", + -12.461570739746094 + ], + [ + "▁disappointment", + -12.461628913879395 + ], + [ + "▁Iranian", + -12.461630821228027 + ], + [ + "▁questionnaire", + -12.461630821228027 + ], + [ + "Founder", + -12.46178913116455 + ], + [ + "▁Bericht", + -12.461792945861816 + ], + [ + "▁youngest", + -12.461896896362305 + ], + [ + "▁Automatic", + -12.461956024169922 + ], + [ + "▁plecat", + -12.46203327178955 + ], + [ + "geber", + -12.462119102478027 + ], + [ + "soweit", + -12.462124824523926 + ], + [ + "▁unfold", + -12.462236404418945 + ], + [ + "▁befinden", + -12.462274551391602 + ], + [ + "▁susţin", + -12.462637901306152 + ], + [ + "▁Mack", + -12.462675094604492 + ], + [ + "▁dificil", + -12.462757110595703 + ], + [ + "enseigne", + -12.463038444519043 + ], + [ + "▁vitamine", + -12.463047981262207 + ], + [ + "▁Memory", + -12.463092803955078 + ], + [ + "ripping", + -12.463129043579102 + ], + [ + "drin", + -12.463146209716797 + ], + [ + "3.2", + -12.463278770446777 + ], + [ + "▁verstehen", + -12.463287353515625 + ], + [ + "▁scaun", + -12.46341323852539 + ], + [ + "▁procédure", + -12.46380615234375 + ], + [ + "▁molecules", + -12.463911056518555 + ], + [ + "▁Anzahl", + -12.46391487121582 + ], + [ + "▁yogurt", + -12.464071273803711 + ], + [ + "▁Dominic", + -12.464113235473633 + ], + [ + "▁shocked", + -12.464156150817871 + ], + [ + "▁zilei", + -12.464269638061523 + ], + [ + "▁Heiz", + -12.464412689208984 + ], + [ + "▁Educational", + -12.464571952819824 + ], + [ + "BN", + -12.464577674865723 + ], + [ + "analyzing", + -12.464601516723633 + ], + [ + "hair", + -12.464676856994629 + ], + [ + "spiegel", + -12.464871406555176 + ], + [ + "▁illusion", + -12.464889526367188 + ], + [ + "BG", + -12.46505355834961 + ], + [ + "deductible", + -12.46513557434082 + ], + [ + "▁adj", + -12.4651460647583 + ], + [ + "▁accessory", + -12.465166091918945 + ], + [ + "▁Draw", + -12.465167999267578 + ], + [ + "▁airlines", + -12.46518611907959 + ], + [ + "▁satisfai", + -12.46536636352539 + ], + [ + "▁architects", + -12.465447425842285 + ], + [ + "istische", + -12.465508460998535 + ], + [ + "▁Healthy", + -12.465539932250977 + ], + [ + "großer", + -12.465669631958008 + ], + [ + "▁comunicare", + -12.465764999389648 + ], + [ + "▁Meyer", + -12.46577262878418 + ], + [ + "▁reproduction", + -12.465882301330566 + ], + [ + "▁Manufacturing", + -12.465929985046387 + ], + [ + "immobilier", + -12.465930938720703 + ], + [ + "▁Unterschied", + -12.465958595275879 + ], + [ + "▁cumpara", + -12.466029167175293 + ], + [ + "▁duplicate", + -12.466094017028809 + ], + [ + "▁(16", + -12.466096878051758 + ], + [ + "▁detector", + -12.466279983520508 + ], + [ + "▁observat", + -12.466387748718262 + ], + [ + "▁1965", + -12.466682434082031 + ], + [ + "▁Fantasy", + -12.466728210449219 + ], + [ + "▁brauchen", + -12.466728210449219 + ], + [ + "▁Participants", + -12.466780662536621 + ], + [ + "▁décide", + -12.466817855834961 + ], + [ + "▁kicke", + -12.466819763183594 + ], + [ + "▁SSL", + -12.466885566711426 + ], + [ + "360", + -12.466989517211914 + ], + [ + "Anim", + -12.467019081115723 + ], + [ + "▁cupcake", + -12.467031478881836 + ], + [ + "▁Lamb", + -12.467107772827148 + ], + [ + "▁Sä", + -12.467155456542969 + ], + [ + "ntă", + -12.46738052368164 + ], + [ + "▁Pig", + -12.467421531677246 + ], + [ + "1,000", + -12.467677116394043 + ], + [ + "nhof", + -12.467782020568848 + ], + [ + "▁discret", + -12.467947959899902 + ], + [ + "▁deloc", + -12.467991828918457 + ], + [ + "▁Bücher", + -12.467999458312988 + ], + [ + "chor", + -12.468042373657227 + ], + [ + "course", + -12.468070030212402 + ], + [ + "▁cough", + -12.468076705932617 + ], + [ + "▁erstellt", + -12.468087196350098 + ], + [ + "▁Than", + -12.468097686767578 + ], + [ + "stätte", + -12.46812915802002 + ], + [ + "▁exceptionally", + -12.468162536621094 + ], + [ + "▁semnal", + -12.468186378479004 + ], + [ + "▁Interessen", + -12.468329429626465 + ], + [ + "ле", + -12.468356132507324 + ], + [ + "xx", + -12.468402862548828 + ], + [ + "▁Veterans", + -12.468422889709473 + ], + [ + "▁Kreuz", + -12.468683242797852 + ], + [ + "▁Nachricht", + -12.468701362609863 + ], + [ + "treated", + -12.468894004821777 + ], + [ + "▁tide", + -12.469230651855469 + ], + [ + "▁nonetheless", + -12.469390869140625 + ], + [ + "▁Subject", + -12.469439506530762 + ], + [ + "▁Stau", + -12.469440460205078 + ], + [ + "▁stickers", + -12.469463348388672 + ], + [ + "Alp", + -12.46950912475586 + ], + [ + "▁flagship", + -12.469541549682617 + ], + [ + "▁trimite", + -12.469619750976562 + ], + [ + "▁polyester", + -12.469664573669434 + ], + [ + "▁locui", + -12.469671249389648 + ], + [ + "▁chili", + -12.46968936920166 + ], + [ + "▁Browser", + -12.469808578491211 + ], + [ + "sieg", + -12.469809532165527 + ], + [ + "▁Arabic", + -12.469876289367676 + ], + [ + "blich", + -12.47001838684082 + ], + [ + "▁wunderbar", + -12.470090866088867 + ], + [ + "▁furnishings", + -12.470210075378418 + ], + [ + "rtie", + -12.470243453979492 + ], + [ + "8.5", + -12.470742225646973 + ], + [ + "▁Sponsor", + -12.471016883850098 + ], + [ + "▁glitter", + -12.471280097961426 + ], + [ + "▁piaț", + -12.471402168273926 + ], + [ + "▁interviewed", + -12.471519470214844 + ], + [ + "▁Statistics", + -12.471529006958008 + ], + [ + "▁cerc", + -12.47154712677002 + ], + [ + "augmentation", + -12.47155475616455 + ], + [ + "▁Navi", + -12.471558570861816 + ], + [ + "▁Begriff", + -12.47156047821045 + ], + [ + "▁știu", + -12.471596717834473 + ], + [ + "▁unabhängig", + -12.471778869628906 + ], + [ + "▁könnten", + -12.471978187561035 + ], + [ + "▁travaille", + -12.472000122070312 + ], + [ + "▁companie", + -12.472027778625488 + ], + [ + "▁Scientific", + -12.472061157226562 + ], + [ + "▁Outlook", + -12.472091674804688 + ], + [ + "▁fairy", + -12.472158432006836 + ], + [ + "zam", + -12.472282409667969 + ], + [ + "bak", + -12.472448348999023 + ], + [ + "▁Traffic", + -12.472596168518066 + ], + [ + "gerät", + -12.472671508789062 + ], + [ + "▁freezing", + -12.472701072692871 + ], + [ + "▁broadband", + -12.4727201461792 + ], + [ + "110", + -12.47279167175293 + ], + [ + "▁revenu", + -12.472887992858887 + ], + [ + "listed", + -12.472900390625 + ], + [ + "▁Rico", + -12.472941398620605 + ], + [ + "Laure", + -12.472990036010742 + ], + [ + "ATA", + -12.473112106323242 + ], + [ + "▁participer", + -12.47313117980957 + ], + [ + "▁sponsorship", + -12.473235130310059 + ], + [ + "▁distress", + -12.473286628723145 + ], + [ + "▁Brisbane", + -12.47339916229248 + ], + [ + "schönen", + -12.473437309265137 + ], + [ + "▁fizice", + -12.473465919494629 + ], + [ + "▁Political", + -12.47362232208252 + ], + [ + "uhr", + -12.473657608032227 + ], + [ + "▁procedura", + -12.473713874816895 + ], + [ + "▁hervor", + -12.473770141601562 + ], + [ + "melted", + -12.473776817321777 + ], + [ + "▁Emp", + -12.47384262084961 + ], + [ + "▁Ernährung", + -12.4739351272583 + ], + [ + "▁Pendant", + -12.473944664001465 + ], + [ + "▁recipients", + -12.474047660827637 + ], + [ + "Claude", + -12.474133491516113 + ], + [ + "▁regimen", + -12.47415828704834 + ], + [ + "expo", + -12.474346160888672 + ], + [ + "adevăr", + -12.47437858581543 + ], + [ + "▁critically", + -12.474440574645996 + ], + [ + "▁grabbe", + -12.474468231201172 + ], + [ + "▁Kann", + -12.474474906921387 + ], + [ + "▁directeur", + -12.474613189697266 + ], + [ + "gator", + -12.474908828735352 + ], + [ + "problem", + -12.474910736083984 + ], + [ + "scribe", + -12.474913597106934 + ], + [ + "▁exig", + -12.474920272827148 + ], + [ + "Tri", + -12.474969863891602 + ], + [ + "▁aqua", + -12.475631713867188 + ], + [ + "appréci", + -12.47569465637207 + ], + [ + "▁viaţă", + -12.47571849822998 + ], + [ + "▁dominate", + -12.475865364074707 + ], + [ + "disc", + -12.475889205932617 + ], + [ + "▁conseiller", + -12.47603988647461 + ], + [ + "▁shuttle", + -12.476180076599121 + ], + [ + "▁Status", + -12.47623062133789 + ], + [ + "▁ausreichend", + -12.476371765136719 + ], + [ + "▁spät", + -12.476411819458008 + ], + [ + "▁remainder", + -12.476417541503906 + ], + [ + "wett", + -12.476430892944336 + ], + [ + "schlossen", + -12.476491928100586 + ], + [ + "PAC", + -12.476505279541016 + ], + [ + "▁suprafata", + -12.476617813110352 + ], + [ + "5.000", + -12.476673126220703 + ], + [ + "supplying", + -12.47673225402832 + ], + [ + "▁uniquely", + -12.476905822753906 + ], + [ + "▁retard", + -12.476929664611816 + ], + [ + "▁Bang", + -12.477006912231445 + ], + [ + "ieuse", + -12.477087020874023 + ], + [ + "▁Ted", + -12.477248191833496 + ], + [ + "▁ermöglichen", + -12.47732925415039 + ], + [ + "▁builders", + -12.477380752563477 + ], + [ + "▁proximité", + -12.477423667907715 + ], + [ + "▁unforgettable", + -12.477423667907715 + ], + [ + "256", + -12.477446556091309 + ], + [ + "fähigkeit", + -12.477550506591797 + ], + [ + "▁procurement", + -12.477561950683594 + ], + [ + "▁Gewicht", + -12.477693557739258 + ], + [ + "▁potentiel", + -12.47778606414795 + ], + [ + "▁topping", + -12.478300094604492 + ], + [ + "▁canada", + -12.478304862976074 + ], + [ + "▁Destin", + -12.478355407714844 + ], + [ + "▁Knowing", + -12.478411674499512 + ], + [ + "▁retained", + -12.478426933288574 + ], + [ + "▁zinc", + -12.478470802307129 + ], + [ + "▁worrying", + -12.478655815124512 + ], + [ + "faţa", + -12.478676795959473 + ], + [ + "▁initi", + -12.478837966918945 + ], + [ + "ORI", + -12.4788818359375 + ], + [ + "▁refuz", + -12.478921890258789 + ], + [ + "bruch", + -12.479202270507812 + ], + [ + "▁impun", + -12.479233741760254 + ], + [ + "▁persoană", + -12.479308128356934 + ], + [ + "EAR", + -12.479347229003906 + ], + [ + "bedarf", + -12.479368209838867 + ], + [ + "▁Gebiet", + -12.47940731048584 + ], + [ + "▁Roof", + -12.479436874389648 + ], + [ + "▁negligence", + -12.47957706451416 + ], + [ + "security", + -12.479618072509766 + ], + [ + "▁accesorii", + -12.479641914367676 + ], + [ + "▁unclear", + -12.479667663574219 + ], + [ + "▁securitate", + -12.479848861694336 + ], + [ + "▁spotlight", + -12.479896545410156 + ], + [ + "▁speziell", + -12.479923248291016 + ], + [ + "▁mentally", + -12.479942321777344 + ], + [ + "▁preservation", + -12.48011589050293 + ], + [ + "▁Promotion", + -12.480156898498535 + ], + [ + "partnered", + -12.480274200439453 + ], + [ + "▁Hinter", + -12.48031997680664 + ], + [ + "▁punishment", + -12.480359077453613 + ], + [ + "▁grease", + -12.480713844299316 + ], + [ + "▁NW", + -12.480714797973633 + ], + [ + "▁curse", + -12.480897903442383 + ], + [ + "ckle", + -12.48101806640625 + ], + [ + "▁Hire", + -12.481043815612793 + ], + [ + "▁Whole", + -12.481088638305664 + ], + [ + "▁basse", + -12.481289863586426 + ], + [ + "▁DNS", + -12.481427192687988 + ], + [ + "flamm", + -12.481560707092285 + ], + [ + "▁scoop", + -12.481574058532715 + ], + [ + "Norm", + -12.481663703918457 + ], + [ + "▁Surgery", + -12.481735229492188 + ], + [ + "▁widget", + -12.481741905212402 + ], + [ + "connected", + -12.481863021850586 + ], + [ + "autorité", + -12.481961250305176 + ], + [ + "▁utilis", + -12.482096672058105 + ], + [ + "▁formă", + -12.482185363769531 + ], + [ + "▁clearing", + -12.482307434082031 + ], + [ + "▁jumătate", + -12.482815742492676 + ], + [ + "größe", + -12.482831954956055 + ], + [ + "▁Tief", + -12.482852935791016 + ], + [ + "épi", + -12.482939720153809 + ], + [ + "zunehmen", + -12.483174324035645 + ], + [ + "▁touchdown", + -12.48318099975586 + ], + [ + "▁scholarships", + -12.483236312866211 + ], + [ + "▁dementia", + -12.483319282531738 + ], + [ + "▁Jeder", + -12.48333740234375 + ], + [ + "▁nightmare", + -12.483379364013672 + ], + [ + "▁Raw", + -12.48342514038086 + ], + [ + "absorbed", + -12.483468055725098 + ], + [ + "lohnt", + -12.483484268188477 + ], + [ + "quent", + -12.483580589294434 + ], + [ + "interest", + -12.483626365661621 + ], + [ + "OSS", + -12.483649253845215 + ], + [ + "▁Leaf", + -12.483667373657227 + ], + [ + "▁timeless", + -12.48381519317627 + ], + [ + "DY", + -12.483865737915039 + ], + [ + "▁Remote", + -12.483907699584961 + ], + [ + "chner", + -12.483938217163086 + ], + [ + "▁Pam", + -12.484014511108398 + ], + [ + "urban", + -12.484060287475586 + ], + [ + "во", + -12.484146118164062 + ], + [ + "▁Kunde", + -12.484166145324707 + ], + [ + "▁Laptop", + -12.484169006347656 + ], + [ + "finder", + -12.484336853027344 + ], + [ + "▁Pole", + -12.484567642211914 + ], + [ + "2.8", + -12.484588623046875 + ], + [ + "finished", + -12.484670639038086 + ], + [ + "▁prophet", + -12.484697341918945 + ], + [ + "mailed", + -12.484758377075195 + ], + [ + "2-0", + -12.4849214553833 + ], + [ + "▁disciples", + -12.484949111938477 + ], + [ + "▁intriguing", + -12.484980583190918 + ], + [ + "IRA", + -12.485033988952637 + ], + [ + "petit", + -12.485077857971191 + ], + [ + "▁Membership", + -12.485097885131836 + ], + [ + "▁provincial", + -12.485177040100098 + ], + [ + "▁Prüfung", + -12.485292434692383 + ], + [ + "-50", + -12.485450744628906 + ], + [ + "▁cryptocurrency", + -12.485522270202637 + ], + [ + "▁journalism", + -12.485536575317383 + ], + [ + "▁Downtown", + -12.485593795776367 + ], + [ + "inserted", + -12.485655784606934 + ], + [ + "▁Direction", + -12.485718727111816 + ], + [ + "lipid", + -12.485732078552246 + ], + [ + "▁Sebastian", + -12.485793113708496 + ], + [ + "fordert", + -12.48591136932373 + ], + [ + "Originally", + -12.485989570617676 + ], + [ + "tipp", + -12.486048698425293 + ], + [ + "verantwortlich", + -12.486064910888672 + ], + [ + "▁wheelchair", + -12.486085891723633 + ], + [ + "▁structura", + -12.48609733581543 + ], + [ + "▁Danny", + -12.486138343811035 + ], + [ + "999", + -12.486284255981445 + ], + [ + "▁Schiff", + -12.486380577087402 + ], + [ + "formally", + -12.486408233642578 + ], + [ + "focused", + -12.486428260803223 + ], + [ + "▁Vater", + -12.486478805541992 + ], + [ + "▁Dear", + -12.486599922180176 + ], + [ + "▁reinforce", + -12.486794471740723 + ], + [ + "proprietar", + -12.48690414428711 + ], + [ + "▁Kyle", + -12.487004280090332 + ], + [ + "În", + -12.487015724182129 + ], + [ + "▁servir", + -12.487268447875977 + ], + [ + "length", + -12.48730754852295 + ], + [ + "▁showroom", + -12.48735237121582 + ], + [ + "reli", + -12.487473487854004 + ], + [ + "▁Brü", + -12.487529754638672 + ], + [ + "▁Schle", + -12.487634658813477 + ], + [ + "▁profond", + -12.487773895263672 + ], + [ + "▁Superior", + -12.487826347351074 + ], + [ + "▁lifted", + -12.487844467163086 + ], + [ + "highlighting", + -12.487850189208984 + ], + [ + "▁Connection", + -12.48793888092041 + ], + [ + "▁similarly", + -12.487998962402344 + ], + [ + "▁diferit", + -12.488005638122559 + ], + [ + "▁sweater", + -12.488014221191406 + ], + [ + "État", + -12.48803997039795 + ], + [ + "rooted", + -12.488069534301758 + ], + [ + "▁sleeves", + -12.488236427307129 + ], + [ + "де", + -12.488264083862305 + ], + [ + "▁Laboratory", + -12.488265991210938 + ], + [ + "ündig", + -12.488719940185547 + ], + [ + "▁Viking", + -12.488741874694824 + ], + [ + "▁Origin", + -12.48878002166748 + ], + [ + "▁vibr", + -12.488812446594238 + ], + [ + "199", + -12.488974571228027 + ], + [ + "▁yummy", + -12.489001274108887 + ], + [ + "STAR", + -12.489140510559082 + ], + [ + "▁repro", + -12.489152908325195 + ], + [ + "▁Kirchen", + -12.489229202270508 + ], + [ + "hopper", + -12.48925495147705 + ], + [ + "zza", + -12.489335060119629 + ], + [ + "▁vitesse", + -12.48934555053711 + ], + [ + "▁minimalist", + -12.489412307739258 + ], + [ + "▁Election", + -12.489420890808105 + ], + [ + "draw", + -12.489501953125 + ], + [ + "▁candles", + -12.48959732055664 + ], + [ + "▁Mund", + -12.489615440368652 + ], + [ + "urged", + -12.489901542663574 + ], + [ + "▁cânt", + -12.489917755126953 + ], + [ + "Ultimately", + -12.49002742767334 + ], + [ + "▁Lift", + -12.490124702453613 + ], + [ + "loaded", + -12.490334510803223 + ], + [ + "demand", + -12.490508079528809 + ], + [ + "▁aleg", + -12.490621566772461 + ], + [ + "▁Discovery", + -12.490755081176758 + ], + [ + "▁Vienna", + -12.490960121154785 + ], + [ + "▁Kategorie", + -12.490961074829102 + ], + [ + "▁Cotton", + -12.490962028503418 + ], + [ + "▁$200", + -12.491043090820312 + ], + [ + "▁Drei", + -12.491052627563477 + ], + [ + "▁reicht", + -12.491168975830078 + ], + [ + "speicher", + -12.491231918334961 + ], + [ + "▁Immobilien", + -12.491483688354492 + ], + [ + "gefühl", + -12.491509437561035 + ], + [ + "make", + -12.491525650024414 + ], + [ + "pell", + -12.49155044555664 + ], + [ + "▁dull", + -12.491598129272461 + ], + [ + "▁arbeitet", + -12.491681098937988 + ], + [ + "retaining", + -12.491700172424316 + ], + [ + "losen", + -12.491707801818848 + ], + [ + "match", + -12.491876602172852 + ], + [ + "-60", + -12.491880416870117 + ], + [ + "▁ecological", + -12.492000579833984 + ], + [ + "▁vend", + -12.492051124572754 + ], + [ + "▁grammar", + -12.492061614990234 + ], + [ + "▁1:1", + -12.492225646972656 + ], + [ + "grilled", + -12.492279052734375 + ], + [ + "geordnet", + -12.492321014404297 + ], + [ + "▁Pav", + -12.49236011505127 + ], + [ + "▁Depot", + -12.492368698120117 + ], + [ + "▁Walking", + -12.492372512817383 + ], + [ + "teamed", + -12.492402076721191 + ], + [ + "▁torque", + -12.492537498474121 + ], + [ + "▁Venture", + -12.492659568786621 + ], + [ + "▁beginner", + -12.49269962310791 + ], + [ + "▁Monaten", + -12.492712020874023 + ], + [ + "▁Pune", + -12.493054389953613 + ], + [ + "connect", + -12.493075370788574 + ], + [ + "▁textbook", + -12.493132591247559 + ], + [ + "▁unprecedented", + -12.49314022064209 + ], + [ + "▁implied", + -12.493168830871582 + ], + [ + "▁cubic", + -12.493668556213379 + ], + [ + "enthält", + -12.493696212768555 + ], + [ + "▁Brenn", + -12.49388313293457 + ], + [ + "▁Expect", + -12.49394416809082 + ], + [ + "▁lever", + -12.4939603805542 + ], + [ + "veux", + -12.49399185180664 + ], + [ + "▁Claire", + -12.494112968444824 + ], + [ + "Acc", + -12.49432373046875 + ], + [ + "▁Typ", + -12.494478225708008 + ], + [ + "▁smoothie", + -12.494501113891602 + ], + [ + "▁Idaho", + -12.494780540466309 + ], + [ + "▁spati", + -12.494802474975586 + ], + [ + "▁bénéficier", + -12.49488353729248 + ], + [ + "▁Kle", + -12.495161056518555 + ], + [ + "▁serviciilor", + -12.495169639587402 + ], + [ + "▁prohibit", + -12.495267868041992 + ], + [ + "EAD", + -12.495417594909668 + ], + [ + "▁Turner", + -12.495418548583984 + ], + [ + "▁elibera", + -12.49543571472168 + ], + [ + "▁payday", + -12.495464324951172 + ], + [ + "▁prolong", + -12.495466232299805 + ], + [ + "▁sued", + -12.495481491088867 + ], + [ + "▁Devil", + -12.495536804199219 + ], + [ + "▁Skills", + -12.495552062988281 + ], + [ + "▁Marcel", + -12.495553970336914 + ], + [ + "▁silhouette", + -12.495601654052734 + ], + [ + "▁preț", + -12.495742797851562 + ], + [ + "▁Gö", + -12.495747566223145 + ], + [ + "▁Creator", + -12.495774269104004 + ], + [ + "fed", + -12.4959077835083 + ], + [ + "Cap", + -12.495997428894043 + ], + [ + "▁dedicate", + -12.496042251586914 + ], + [ + "0000", + -12.496124267578125 + ], + [ + "▁VAT", + -12.496259689331055 + ], + [ + "▁Firefox", + -12.496443748474121 + ], + [ + "▁therapies", + -12.496477127075195 + ], + [ + "▁screws", + -12.496662139892578 + ], + [ + "▁Province", + -12.496697425842285 + ], + [ + "▁problematic", + -12.496871948242188 + ], + [ + "▁Vid", + -12.496915817260742 + ], + [ + "▁Lost", + -12.496950149536133 + ], + [ + "▁elegance", + -12.497520446777344 + ], + [ + "▁Elegant", + -12.497525215148926 + ], + [ + "ignant", + -12.497573852539062 + ], + [ + "▁darin", + -12.497649192810059 + ], + [ + "▁anonym", + -12.497669219970703 + ], + [ + "▁vegeta", + -12.49767780303955 + ], + [ + "incoming", + -12.497762680053711 + ], + [ + "▁pills", + -12.497846603393555 + ], + [ + "governing", + -12.497893333435059 + ], + [ + "▁Haven", + -12.497920989990234 + ], + [ + "paper", + -12.497947692871094 + ], + [ + "räume", + -12.497979164123535 + ], + [ + "paw", + -12.498099327087402 + ], + [ + "▁spelling", + -12.498283386230469 + ], + [ + "ambele", + -12.498318672180176 + ], + [ + "▁reprezentat", + -12.498371124267578 + ], + [ + "▁mâ", + -12.49853515625 + ], + [ + "wirtschaftliche", + -12.498558044433594 + ], + [ + "▁valabil", + -12.498579025268555 + ], + [ + "▁konkret", + -12.498618125915527 + ], + [ + "▁financier", + -12.498619079589844 + ], + [ + "▁irre", + -12.499135971069336 + ], + [ + "▁Silicon", + -12.499171257019043 + ], + [ + "Viv", + -12.499181747436523 + ], + [ + "▁viruses", + -12.49927043914795 + ], + [ + "▁CNN", + -12.499324798583984 + ], + [ + "▁erleben", + -12.499482154846191 + ], + [ + "gina", + -12.499492645263672 + ], + [ + "punctul", + -12.49951457977295 + ], + [ + "▁Sfânt", + -12.499753952026367 + ], + [ + "▁Manage", + -12.499811172485352 + ], + [ + "▁payable", + -12.499984741210938 + ], + [ + "▁practitioner", + -12.500143051147461 + ], + [ + "▁conférence", + -12.50026798248291 + ], + [ + "▁drought", + -12.50027084350586 + ], + [ + "▁devote", + -12.500361442565918 + ], + [ + "wertung", + -12.500420570373535 + ], + [ + "stabil", + -12.5004301071167 + ], + [ + "▁balcon", + -12.500553131103516 + ], + [ + "▁Lebensmittel", + -12.500603675842285 + ], + [ + "COL", + -12.500950813293457 + ], + [ + "▁Domnul", + -12.501093864440918 + ], + [ + "carved", + -12.501359939575195 + ], + [ + "▁preparat", + -12.5014009475708 + ], + [ + "101", + -12.501537322998047 + ], + [ + "▁specimen", + -12.501580238342285 + ], + [ + "urgeon", + -12.501596450805664 + ], + [ + "LIC", + -12.50163459777832 + ], + [ + "Plattform", + -12.501643180847168 + ], + [ + "▁ramas", + -12.501739501953125 + ], + [ + "▁copilului", + -12.501791954040527 + ], + [ + "bacter", + -12.501812934875488 + ], + [ + "körper", + -12.501940727233887 + ], + [ + "▁Kru", + -12.501981735229492 + ], + [ + "▁Employ", + -12.502055168151855 + ], + [ + "office", + -12.502080917358398 + ], + [ + "▁simmer", + -12.502120018005371 + ], + [ + "qualität", + -12.502137184143066 + ], + [ + "▁freshly", + -12.502215385437012 + ], + [ + "▁Nine", + -12.50223159790039 + ], + [ + "▁tonnes", + -12.50223445892334 + ], + [ + "boden", + -12.502236366271973 + ], + [ + "enquête", + -12.50240707397461 + ], + [ + "▁Colour", + -12.502481460571289 + ], + [ + "▁Diagram", + -12.502495765686035 + ], + [ + "▁gewählt", + -12.502516746520996 + ], + [ + "▁viitoare", + -12.502538681030273 + ], + [ + "▁reporters", + -12.502913475036621 + ], + [ + "guer", + -12.502991676330566 + ], + [ + "▁Kombination", + -12.503021240234375 + ], + [ + "▁qualitative", + -12.50302505493164 + ], + [ + "Centrul", + -12.503131866455078 + ], + [ + "avy", + -12.503170013427734 + ], + [ + "▁Eng", + -12.503175735473633 + ], + [ + "▁sufletul", + -12.50327205657959 + ], + [ + "▁germ", + -12.503412246704102 + ], + [ + "▁prevented", + -12.503448486328125 + ], + [ + "appelle", + -12.503533363342285 + ], + [ + "gins", + -12.503556251525879 + ], + [ + "▁Skype", + -12.503585815429688 + ], + [ + "conditioned", + -12.503617286682129 + ], + [ + "▁clutch", + -12.503641128540039 + ], + [ + "environ", + -12.503694534301758 + ], + [ + "3.3", + -12.503774642944336 + ], + [ + "▁webinar", + -12.503866195678711 + ], + [ + "▁forty", + -12.504104614257812 + ], + [ + "▁Medicaid", + -12.504127502441406 + ], + [ + "▁dismissed", + -12.504167556762695 + ], + [ + "▁siblings", + -12.504168510437012 + ], + [ + "▁Jaw", + -12.504196166992188 + ], + [ + "guiding", + -12.504220962524414 + ], + [ + "cigarette", + -12.504374504089355 + ], + [ + "▁Shah", + -12.504681587219238 + ], + [ + "▁Lehrer", + -12.504684448242188 + ], + [ + "▁muscular", + -12.504694938659668 + ], + [ + "spatele", + -12.504796981811523 + ], + [ + "▁réduction", + -12.504836082458496 + ], + [ + "▁fixes", + -12.504851341247559 + ], + [ + "Span", + -12.50511646270752 + ], + [ + "▁Hudson", + -12.505231857299805 + ], + [ + "development", + -12.505250930786133 + ], + [ + "▁excluded", + -12.50525951385498 + ], + [ + "Democrat", + -12.505260467529297 + ], + [ + "▁nominal", + -12.505317687988281 + ], + [ + "purpose", + -12.50540828704834 + ], + [ + "▁bored", + -12.505500793457031 + ], + [ + "espèce", + -12.50550651550293 + ], + [ + "▁(30", + -12.5055570602417 + ], + [ + "Neither", + -12.505608558654785 + ], + [ + "hänge", + -12.505610466003418 + ], + [ + "square", + -12.505728721618652 + ], + [ + "voller", + -12.505736351013184 + ], + [ + "▁pertinent", + -12.505783081054688 + ], + [ + "▁Wool", + -12.50595474243164 + ], + [ + "settling", + -12.50607681274414 + ], + [ + "fangen", + -12.506148338317871 + ], + [ + "▁Testing", + -12.506152153015137 + ], + [ + "distin", + -12.506196022033691 + ], + [ + "▁Marken", + -12.506227493286133 + ], + [ + "▁Beta", + -12.506300926208496 + ], + [ + "▁fulfilling", + -12.506339073181152 + ], + [ + "Leider", + -12.506357192993164 + ], + [ + "black", + -12.506389617919922 + ], + [ + "occupe", + -12.50658893585205 + ], + [ + "itățile", + -12.506688117980957 + ], + [ + "Pay", + -12.506887435913086 + ], + [ + "▁bandwidth", + -12.506890296936035 + ], + [ + "▁neighbourhood", + -12.506918907165527 + ], + [ + "▁Gutschein", + -12.506922721862793 + ], + [ + "degree", + -12.507055282592773 + ], + [ + "ivité", + -12.507116317749023 + ], + [ + "4.1", + -12.507169723510742 + ], + [ + "▁tätig", + -12.507170677185059 + ], + [ + "topic", + -12.507242202758789 + ], + [ + "ätz", + -12.507243156433105 + ], + [ + "these", + -12.50733470916748 + ], + [ + "▁propriété", + -12.507438659667969 + ], + [ + "▁innings", + -12.507458686828613 + ], + [ + "▁Prevention", + -12.50754165649414 + ], + [ + "▁Saw", + -12.507585525512695 + ], + [ + "▁opener", + -12.507752418518066 + ], + [ + "entwicklung", + -12.507824897766113 + ], + [ + "▁Johann", + -12.507865905761719 + ], + [ + "▁statistic", + -12.507881164550781 + ], + [ + "oids", + -12.507966995239258 + ], + [ + "▁Delaware", + -12.508000373840332 + ], + [ + "▁Isle", + -12.508001327514648 + ], + [ + "▁accompagn", + -12.508028984069824 + ], + [ + "▁Risiko", + -12.508079528808594 + ], + [ + "▁Conform", + -12.508268356323242 + ], + [ + "zeichnen", + -12.508395195007324 + ], + [ + "▁acuz", + -12.508479118347168 + ], + [ + "▁Mort", + -12.508524894714355 + ], + [ + "Fällen", + -12.50853157043457 + ], + [ + "▁blended", + -12.50871467590332 + ], + [ + "found", + -12.50872802734375 + ], + [ + "▁gestalten", + -12.50874137878418 + ], + [ + "▁Découvrez", + -12.508830070495605 + ], + [ + "▁Wett", + -12.508956909179688 + ], + [ + "▁débat", + -12.508990287780762 + ], + [ + "▁Tire", + -12.509007453918457 + ], + [ + "benz", + -12.509037017822266 + ], + [ + "Yes", + -12.509074211120605 + ], + [ + "▁pierde", + -12.509110450744629 + ], + [ + "▁niciodata", + -12.509121894836426 + ], + [ + "▁precipit", + -12.509145736694336 + ], + [ + "▁lazy", + -12.509334564208984 + ], + [ + "▁creature", + -12.509370803833008 + ], + [ + "Wettbewerb", + -12.509385108947754 + ], + [ + "▁Explo", + -12.509496688842773 + ], + [ + "wolf", + -12.509657859802246 + ], + [ + "▁conséquence", + -12.509662628173828 + ], + [ + "▁jewellery", + -12.509662628173828 + ], + [ + "▁Extension", + -12.509735107421875 + ], + [ + "▁transmitted", + -12.509872436523438 + ], + [ + "▁darker", + -12.509973526000977 + ], + [ + "▁simbol", + -12.510065078735352 + ], + [ + "kim", + -12.510069847106934 + ], + [ + "▁proteja", + -12.510098457336426 + ], + [ + "▁Copper", + -12.510189056396484 + ], + [ + "mitglied", + -12.510218620300293 + ], + [ + "▁explosive", + -12.510222434997559 + ], + [ + "▁Nicolae", + -12.510223388671875 + ], + [ + "▁intricate", + -12.510231971740723 + ], + [ + "lati", + -12.510313034057617 + ], + [ + "Mark", + -12.510334014892578 + ], + [ + "▁Porsche", + -12.510339736938477 + ], + [ + "▁Revenue", + -12.510479927062988 + ], + [ + "4.2", + -12.510613441467285 + ], + [ + "certain", + -12.510836601257324 + ], + [ + "▁Coaching", + -12.510879516601562 + ], + [ + "▁allocated", + -12.510879516601562 + ], + [ + "▁optimiz", + -12.511017799377441 + ], + [ + "▁heel", + -12.511205673217773 + ], + [ + "▁indigenous", + -12.511330604553223 + ], + [ + "▁vineri", + -12.511396408081055 + ], + [ + "▁Inspector", + -12.51145076751709 + ], + [ + "▁colleague", + -12.5115327835083 + ], + [ + "ANG", + -12.511649131774902 + ], + [ + "éducation", + -12.511887550354004 + ], + [ + "▁Geschenk", + -12.51188850402832 + ], + [ + "channel", + -12.511899948120117 + ], + [ + "▁trapped", + -12.511954307556152 + ], + [ + "BF", + -12.511974334716797 + ], + [ + "▁firing", + -12.512086868286133 + ], + [ + "▁chlor", + -12.512103080749512 + ], + [ + "▁Carlos", + -12.512115478515625 + ], + [ + "▁proxy", + -12.512128829956055 + ], + [ + "▁pinch", + -12.512167930603027 + ], + [ + "▁Pete", + -12.512201309204102 + ], + [ + "phospho", + -12.512458801269531 + ], + [ + "▁waiver", + -12.51246452331543 + ], + [ + "▁Croatia", + -12.512480735778809 + ], + [ + "▁behave", + -12.51258373260498 + ], + [ + "▁frig", + -12.512676239013672 + ], + [ + "▁Vorteil", + -12.51279067993164 + ], + [ + "▁wichtiger", + -12.512837409973145 + ], + [ + "........", + -12.512929916381836 + ], + [ + "▁flick", + -12.513007164001465 + ], + [ + "▁Stanford", + -12.51306438446045 + ], + [ + "öse", + -12.513096809387207 + ], + [ + "▁Fernseh", + -12.513099670410156 + ], + [ + "▁vélo", + -12.51322078704834 + ], + [ + "reisen", + -12.513304710388184 + ], + [ + "residing", + -12.513504981994629 + ], + [ + "▁Taste", + -12.513580322265625 + ], + [ + "▁disappeared", + -12.513630867004395 + ], + [ + "▁Hood", + -12.513776779174805 + ], + [ + "▁fabriqu", + -12.514046669006348 + ], + [ + "▁Jake", + -12.514470100402832 + ], + [ + "Lastly", + -12.51462173461914 + ], + [ + "▁furnace", + -12.514673233032227 + ], + [ + "▁Ottawa", + -12.51473331451416 + ], + [ + "▁dictate", + -12.514742851257324 + ], + [ + "zece", + -12.514817237854004 + ], + [ + "protect", + -12.514932632446289 + ], + [ + "FU", + -12.51495361328125 + ], + [ + "Stack", + -12.514954566955566 + ], + [ + "▁teilweise", + -12.515018463134766 + ], + [ + "▁Publisher", + -12.51506233215332 + ], + [ + "▁lutte", + -12.515159606933594 + ], + [ + "202", + -12.515178680419922 + ], + [ + "psy", + -12.515190124511719 + ], + [ + "▁wünschen", + -12.515238761901855 + ], + [ + "▁pathways", + -12.515356063842773 + ], + [ + "ivitate", + -12.515559196472168 + ], + [ + "▁continuă", + -12.515658378601074 + ], + [ + "ziemlich", + -12.515791893005371 + ], + [ + "verted", + -12.515812873840332 + ], + [ + "▁sequel", + -12.515839576721191 + ], + [ + "tinct", + -12.51599407196045 + ], + [ + "vette", + -12.516020774841309 + ], + [ + "▁exceeding", + -12.516032218933105 + ], + [ + "▁Yorkshire", + -12.51607608795166 + ], + [ + "▁cleanse", + -12.51613998413086 + ], + [ + "Sadly", + -12.516159057617188 + ], + [ + "▁präsentiert", + -12.516164779663086 + ], + [ + "angled", + -12.516311645507812 + ], + [ + "tude", + -12.516339302062988 + ], + [ + "chain", + -12.516371726989746 + ], + [ + "▁Oakland", + -12.51639175415039 + ], + [ + "xia", + -12.516514778137207 + ], + [ + "▁foremost", + -12.51653003692627 + ], + [ + "▁incomplete", + -12.516786575317383 + ], + [ + "▁restriction", + -12.516905784606934 + ], + [ + "▁whatsoever", + -12.516908645629883 + ], + [ + "▁shipment", + -12.517017364501953 + ], + [ + "**", + -12.517059326171875 + ], + [ + "Aici", + -12.517110824584961 + ], + [ + "PART", + -12.517247200012207 + ], + [ + "▁grams", + -12.517251014709473 + ], + [ + "▁Folk", + -12.517457008361816 + ], + [ + "▁encryption", + -12.517467498779297 + ], + [ + "▁Alfred", + -12.517748832702637 + ], + [ + "▁Veränderung", + -12.517749786376953 + ], + [ + "▁privately", + -12.517817497253418 + ], + [ + "£", + -12.517909049987793 + ], + [ + "▁Sonne", + -12.51799201965332 + ], + [ + "kow", + -12.518117904663086 + ], + [ + "▁CBS", + -12.518172264099121 + ], + [ + "▁Feuer", + -12.518198013305664 + ], + [ + "▁crushed", + -12.518230438232422 + ], + [ + "▁cazare", + -12.518270492553711 + ], + [ + "▁beraten", + -12.518401145935059 + ], + [ + "envoi", + -12.518423080444336 + ], + [ + "▁genannt", + -12.51843547821045 + ], + [ + "▁Lok", + -12.518472671508789 + ], + [ + "nox", + -12.518569946289062 + ], + [ + "wishing", + -12.518759727478027 + ], + [ + "▁freak", + -12.518759727478027 + ], + [ + "rasi", + -12.51879596710205 + ], + [ + "▁calculations", + -12.518888473510742 + ], + [ + "▁sprechen", + -12.51890754699707 + ], + [ + "5:00", + -12.519062042236328 + ], + [ + "▁Gam", + -12.519074440002441 + ], + [ + "▁invasion", + -12.519159317016602 + ], + [ + "ZA", + -12.519230842590332 + ], + [ + "aiming", + -12.519327163696289 + ], + [ + "▁näher", + -12.519404411315918 + ], + [ + "▁Maßnahmen", + -12.519433975219727 + ], + [ + "▁măsură", + -12.519490242004395 + ], + [ + "▁Bestellung", + -12.519610404968262 + ], + [ + "▁gown", + -12.519665718078613 + ], + [ + "▁oblige", + -12.519747734069824 + ], + [ + "länder", + -12.51977825164795 + ], + [ + "posi", + -12.519853591918945 + ], + [ + "▁Earn", + -12.51988410949707 + ], + [ + "▁dubl", + -12.51999282836914 + ], + [ + "▁sticky", + -12.520100593566895 + ], + [ + "▁litter", + -12.520181655883789 + ], + [ + "▁Salz", + -12.520257949829102 + ], + [ + "▁Matter", + -12.520272254943848 + ], + [ + "▁Driving", + -12.520275115966797 + ], + [ + "▁pursu", + -12.520285606384277 + ], + [ + "ographer", + -12.520390510559082 + ], + [ + "▁touring", + -12.520400047302246 + ], + [ + "opter", + -12.520444869995117 + ], + [ + "▁fierce", + -12.520475387573242 + ], + [ + "▁Audit", + -12.520480155944824 + ], + [ + "▁imperi", + -12.520755767822266 + ], + [ + "▁positiv", + -12.520780563354492 + ], + [ + "règles", + -12.520849227905273 + ], + [ + "▁bouton", + -12.520990371704102 + ], + [ + "▁victorie", + -12.520990371704102 + ], + [ + "▁manuel", + -12.521015167236328 + ], + [ + "▁await", + -12.52103042602539 + ], + [ + "▁transformer", + -12.521041870117188 + ], + [ + "▁cupboard", + -12.52108383178711 + ], + [ + "▁Hag", + -12.521117210388184 + ], + [ + "naj", + -12.521214485168457 + ], + [ + "▁annoncé", + -12.52139663696289 + ], + [ + "▁scolaire", + -12.521401405334473 + ], + [ + "▁étape", + -12.521482467651367 + ], + [ + "▁pirate", + -12.521761894226074 + ], + [ + "▁Rated", + -12.521794319152832 + ], + [ + "LOT", + -12.521846771240234 + ], + [ + "▁natura", + -12.521944046020508 + ], + [ + "oga", + -12.522336959838867 + ], + [ + "Read", + -12.522388458251953 + ], + [ + "idio", + -12.522444725036621 + ], + [ + "▁recession", + -12.522698402404785 + ], + [ + "veţi", + -12.522761344909668 + ], + [ + "▁blossom", + -12.523082733154297 + ], + [ + "▁lunar", + -12.523141860961914 + ], + [ + "▁inhibit", + -12.52316951751709 + ], + [ + "gemein", + -12.523219108581543 + ], + [ + "▁Historic", + -12.523262023925781 + ], + [ + "▁HTTP", + -12.523370742797852 + ], + [ + "misiune", + -12.5234956741333 + ], + [ + "▁Manda", + -12.523601531982422 + ], + [ + "▁Hurricane", + -12.523643493652344 + ], + [ + "Strat", + -12.523646354675293 + ], + [ + "▁populaire", + -12.523756980895996 + ], + [ + "▁useless", + -12.523762702941895 + ], + [ + "▁Leipzig", + -12.523924827575684 + ], + [ + "▁Krankheit", + -12.52392578125 + ], + [ + "▁Bonne", + -12.52397346496582 + ], + [ + "▁tissu", + -12.52399730682373 + ], + [ + "▁Baum", + -12.523998260498047 + ], + [ + "▁BUT", + -12.524152755737305 + ], + [ + "▁Mondial", + -12.52423095703125 + ], + [ + "▁triangle", + -12.524242401123047 + ], + [ + "▁Tesla", + -12.524250984191895 + ], + [ + "▁pământ", + -12.52430534362793 + ], + [ + "▁aminte", + -12.524726867675781 + ], + [ + "▁vehicul", + -12.524770736694336 + ], + [ + "▁cerut", + -12.52482795715332 + ], + [ + "▁respiratory", + -12.524836540222168 + ], + [ + "▁rayon", + -12.524993896484375 + ], + [ + "▁gestaltet", + -12.525067329406738 + ], + [ + "310", + -12.525139808654785 + ], + [ + "pfl", + -12.525239944458008 + ], + [ + "▁shrimp", + -12.525337219238281 + ], + [ + "▁reconnu", + -12.525409698486328 + ], + [ + "ologique", + -12.525476455688477 + ], + [ + "▁unity", + -12.525674819946289 + ], + [ + "Speicher", + -12.52569580078125 + ], + [ + "▁Movement", + -12.525794982910156 + ], + [ + "ddling", + -12.52581787109375 + ], + [ + "OE", + -12.525818824768066 + ], + [ + "▁Resolution", + -12.525863647460938 + ], + [ + "esteem", + -12.525898933410645 + ], + [ + "▁Teen", + -12.526288986206055 + ], + [ + "▁believing", + -12.526463508605957 + ], + [ + "▁Tipps", + -12.526481628417969 + ], + [ + "jpg", + -12.526494026184082 + ], + [ + "▁obs", + -12.526519775390625 + ], + [ + "SHA", + -12.526702880859375 + ], + [ + "▁quietly", + -12.526907920837402 + ], + [ + "setting", + -12.52712345123291 + ], + [ + "▁elevator", + -12.527185440063477 + ], + [ + "phor", + -12.527194023132324 + ], + [ + "Just", + -12.52725887298584 + ], + [ + "▁legatura", + -12.52739143371582 + ], + [ + "elected", + -12.527414321899414 + ], + [ + "▁disclosed", + -12.527419090270996 + ], + [ + "quarter", + -12.52743148803711 + ], + [ + "zzy", + -12.527461051940918 + ], + [ + "▁gata", + -12.527491569519043 + ], + [ + "SAN", + -12.527532577514648 + ], + [ + "▁Cathedral", + -12.527592658996582 + ], + [ + "192", + -12.527656555175781 + ], + [ + "▁RBI", + -12.527726173400879 + ], + [ + "▁Seller", + -12.527798652648926 + ], + [ + "▁urine", + -12.527807235717773 + ], + [ + "▁Hardware", + -12.527966499328613 + ], + [ + "▁steadi", + -12.527993202209473 + ], + [ + "percussion", + -12.528158187866211 + ], + [ + "▁francez", + -12.528172492980957 + ], + [ + "▁rude", + -12.528202056884766 + ], + [ + "bod", + -12.528223037719727 + ], + [ + "cession", + -12.528249740600586 + ], + [ + "▁HTC", + -12.528372764587402 + ], + [ + "HB", + -12.528576850891113 + ], + [ + "▁descent", + -12.528644561767578 + ], + [ + "▁Painting", + -12.528681755065918 + ], + [ + "119", + -12.528684616088867 + ], + [ + "sagen", + -12.52877426147461 + ], + [ + "▁salvation", + -12.52880573272705 + ], + [ + "arro", + -12.528814315795898 + ], + [ + "0.3", + -12.52886962890625 + ], + [ + "▁Duck", + -12.52890396118164 + ], + [ + "Mit", + -12.529052734375 + ], + [ + "да", + -12.52927017211914 + ], + [ + "▁Diesel", + -12.529322624206543 + ], + [ + "▁Medal", + -12.529413223266602 + ], + [ + "▁interim", + -12.529439926147461 + ], + [ + "▁montagne", + -12.529439926147461 + ], + [ + "▁Pixel", + -12.529631614685059 + ], + [ + "LINE", + -12.529806137084961 + ], + [ + "▁dureri", + -12.529938697814941 + ], + [ + "▁Bengal", + -12.529990196228027 + ], + [ + "Legea", + -12.530080795288086 + ], + [ + "▁Strecke", + -12.530094146728516 + ], + [ + "▁schneller", + -12.53012752532959 + ], + [ + "▁Karten", + -12.5301513671875 + ], + [ + "cion", + -12.530241966247559 + ], + [ + "▁Coco", + -12.53037166595459 + ], + [ + "troisième", + -12.53052806854248 + ], + [ + "401", + -12.530616760253906 + ], + [ + "▁sandwiches", + -12.530704498291016 + ], + [ + "▁folosind", + -12.530920028686523 + ], + [ + "▁Folgen", + -12.530953407287598 + ], + [ + "▁triumph", + -12.530991554260254 + ], + [ + "▁Hintergrund", + -12.530996322631836 + ], + [ + "▁revelation", + -12.531084060668945 + ], + [ + "ôme", + -12.531222343444824 + ], + [ + "▁Nex", + -12.531245231628418 + ], + [ + "jährigen", + -12.531295776367188 + ], + [ + "▁militant", + -12.531296730041504 + ], + [ + "▁fabricant", + -12.531671524047852 + ], + [ + "iano", + -12.531713485717773 + ], + [ + "▁formulation", + -12.53188705444336 + ], + [ + "integrating", + -12.532050132751465 + ], + [ + "▁Items", + -12.532142639160156 + ], + [ + "▁contractual", + -12.532320976257324 + ], + [ + "AIDS", + -12.532424926757812 + ], + [ + "▁pitcher", + -12.532610893249512 + ], + [ + "▁Snap", + -12.532623291015625 + ], + [ + "▁systematic", + -12.532663345336914 + ], + [ + "▁referendum", + -12.532694816589355 + ], + [ + "gau", + -12.53281021118164 + ], + [ + "administration", + -12.532917022705078 + ], + [ + "▁speci", + -12.532981872558594 + ], + [ + "ieni", + -12.532998085021973 + ], + [ + "prox", + -12.533186912536621 + ], + [ + "▁bouquet", + -12.533241271972656 + ], + [ + "▁sinnvoll", + -12.533270835876465 + ], + [ + "▁Fleisch", + -12.533309936523438 + ], + [ + "ktuell", + -12.533381462097168 + ], + [ + "▁mushrooms", + -12.533408164978027 + ], + [ + "▁Straf", + -12.533470153808594 + ], + [ + "▁cresc", + -12.533491134643555 + ], + [ + "TEM", + -12.533502578735352 + ], + [ + "▁vindec", + -12.53352165222168 + ], + [ + "▁Drama", + -12.533540725708008 + ], + [ + "chief", + -12.533550262451172 + ], + [ + "▁müsst", + -12.533614158630371 + ], + [ + "▁Warner", + -12.533662796020508 + ], + [ + "118", + -12.533761024475098 + ], + [ + "▁saptamana", + -12.533831596374512 + ], + [ + "▁animaux", + -12.53412914276123 + ], + [ + "▁Directory", + -12.534146308898926 + ], + [ + "▁entgegen", + -12.53415584564209 + ], + [ + "▁deduction", + -12.534156799316406 + ], + [ + "▁Strategic", + -12.53426456451416 + ], + [ + "▁rats", + -12.534419059753418 + ], + [ + "▁Moses", + -12.534448623657227 + ], + [ + "eko", + -12.534564971923828 + ], + [ + "strict", + -12.534590721130371 + ], + [ + "▁Ashley", + -12.534603118896484 + ], + [ + "mik", + -12.534622192382812 + ], + [ + "▁relocate", + -12.534668922424316 + ], + [ + "▁whip", + -12.534738540649414 + ], + [ + "central", + -12.534750938415527 + ], + [ + "mack", + -12.534892082214355 + ], + [ + "stufe", + -12.534961700439453 + ], + [ + "▁Metropolitan", + -12.5349702835083 + ], + [ + "▁croissance", + -12.534974098205566 + ], + [ + "▁celebrities", + -12.535021781921387 + ], + [ + "▁Geh", + -12.53507137298584 + ], + [ + "▁verifica", + -12.535196304321289 + ], + [ + "▁satisfac", + -12.535211563110352 + ], + [ + "▁Julian", + -12.535271644592285 + ], + [ + "▁remotely", + -12.535432815551758 + ], + [ + "▁Safari", + -12.535542488098145 + ], + [ + "▁Chic", + -12.53557014465332 + ], + [ + "▁clamp", + -12.535818099975586 + ], + [ + "▁Schnee", + -12.535918235778809 + ], + [ + "grown", + -12.536069869995117 + ], + [ + "▁Character", + -12.536110877990723 + ], + [ + "▁charities", + -12.536137580871582 + ], + [ + "Thankfully", + -12.536625862121582 + ], + [ + "▁țară", + -12.53681468963623 + ], + [ + "IZ", + -12.536816596984863 + ], + [ + "Vielleicht", + -12.536999702453613 + ], + [ + "▁Pon", + -12.537108421325684 + ], + [ + "gegen", + -12.53711986541748 + ], + [ + "chez", + -12.537185668945312 + ], + [ + "Black", + -12.537544250488281 + ], + [ + "▁alimentare", + -12.537555694580078 + ], + [ + "▁verloren", + -12.537562370300293 + ], + [ + "▁predictions", + -12.537657737731934 + ], + [ + "Founded", + -12.53795337677002 + ], + [ + "▁femeie", + -12.538022994995117 + ], + [ + "wahrscheinlich", + -12.538107872009277 + ], + [ + "▁squeeze", + -12.53819465637207 + ], + [ + "▁verfügbar", + -12.538259506225586 + ], + [ + "▁hygiene", + -12.538393020629883 + ], + [ + "voire", + -12.538667678833008 + ], + [ + "▁birou", + -12.538901329040527 + ], + [ + "▁initiate", + -12.538921356201172 + ], + [ + "▁Patriot", + -12.539009094238281 + ], + [ + "▁Income", + -12.539159774780273 + ], + [ + "▁marry", + -12.539310455322266 + ], + [ + "lokal", + -12.539336204528809 + ], + [ + "logic", + -12.53940486907959 + ], + [ + "▁Abstract", + -12.53966236114502 + ], + [ + "▁grundsätzlich", + -12.539822578430176 + ], + [ + "▁tariff", + -12.539886474609375 + ], + [ + "▁definitiv", + -12.539892196655273 + ], + [ + "paz", + -12.53989315032959 + ], + [ + "Result", + -12.539921760559082 + ], + [ + "1:30", + -12.54005241394043 + ], + [ + "▁Latest", + -12.540075302124023 + ], + [ + "▁Dauer", + -12.540155410766602 + ], + [ + "Med", + -12.540275573730469 + ], + [ + "gewicht", + -12.540348052978516 + ], + [ + "▁Gaza", + -12.540430068969727 + ], + [ + "▁Newton", + -12.540769577026367 + ], + [ + "Dokument", + -12.540897369384766 + ], + [ + "formular", + -12.540945053100586 + ], + [ + "ILE", + -12.540964126586914 + ], + [ + "▁surse", + -12.541040420532227 + ], + [ + "MH", + -12.54116153717041 + ], + [ + "▁Arctic", + -12.541255950927734 + ], + [ + "▁ISBN", + -12.541274070739746 + ], + [ + "▁quarterback", + -12.541315078735352 + ], + [ + "▁absurd", + -12.541555404663086 + ], + [ + "▁Zusammenhang", + -12.541561126708984 + ], + [ + "▁Module", + -12.54156494140625 + ], + [ + "mented", + -12.541667938232422 + ], + [ + "worthy", + -12.541797637939453 + ], + [ + "▁célèbre", + -12.541828155517578 + ], + [ + "▁maritime", + -12.541836738586426 + ], + [ + "▁Reed", + -12.541938781738281 + ], + [ + "▁threaten", + -12.542037010192871 + ], + [ + "▁Satz", + -12.542095184326172 + ], + [ + "▁sticking", + -12.542203903198242 + ], + [ + "▁transcript", + -12.542372703552246 + ], + [ + "▁Morgen", + -12.542425155639648 + ], + [ + "▁Förder", + -12.542435646057129 + ], + [ + "▁Gottes", + -12.542572021484375 + ], + [ + "▁Coordinator", + -12.542648315429688 + ], + [ + "LOG", + -12.54265022277832 + ], + [ + "EAN", + -12.542677879333496 + ], + [ + "▁préparation", + -12.54273509979248 + ], + [ + "▁Brass", + -12.542799949645996 + ], + [ + "Așa", + -12.542853355407715 + ], + [ + "▁Utiliz", + -12.54294490814209 + ], + [ + "framed", + -12.542973518371582 + ], + [ + "▁asphalt", + -12.543050765991211 + ], + [ + "116", + -12.543061256408691 + ], + [ + "▁historically", + -12.54310417175293 + ], + [ + "▁doamn", + -12.543176651000977 + ], + [ + "Air", + -12.543293952941895 + ], + [ + "▁economist", + -12.543838500976562 + ], + [ + "fresh", + -12.54384994506836 + ], + [ + "engine", + -12.543906211853027 + ], + [ + "▁Rücken", + -12.543919563293457 + ], + [ + "▁worthwhile", + -12.544124603271484 + ], + [ + "▁Therapie", + -12.544140815734863 + ], + [ + "▁Joshua", + -12.544151306152344 + ], + [ + "sicherheit", + -12.544175148010254 + ], + [ + "▁scena", + -12.544254302978516 + ], + [ + "ifiant", + -12.54433822631836 + ], + [ + "/20", + -12.54442024230957 + ], + [ + "fehl", + -12.544469833374023 + ], + [ + "karten", + -12.544515609741211 + ], + [ + "501", + -12.544656753540039 + ], + [ + "▁vide", + -12.544673919677734 + ], + [ + "▁miliarde", + -12.544699668884277 + ], + [ + "▁trillion", + -12.54470157623291 + ], + [ + "oudre", + -12.544761657714844 + ], + [ + "nderung", + -12.544803619384766 + ], + [ + "▁inquiries", + -12.544992446899414 + ], + [ + "▁echipe", + -12.545034408569336 + ], + [ + "▁investiga", + -12.545040130615234 + ], + [ + "▁detailing", + -12.545042991638184 + ], + [ + "VIS", + -12.545086860656738 + ], + [ + "▁geographical", + -12.545157432556152 + ], + [ + "▁authentication", + -12.54519271850586 + ], + [ + "▁Schwa", + -12.545201301574707 + ], + [ + "▁Scri", + -12.545230865478516 + ], + [ + "▁discourage", + -12.54527473449707 + ], + [ + "Pass", + -12.54529094696045 + ], + [ + "▁scattered", + -12.54529857635498 + ], + [ + "▁langsam", + -12.545300483703613 + ], + [ + "telles", + -12.545380592346191 + ], + [ + "▁ramane", + -12.5454740524292 + ], + [ + "▁inhibitor", + -12.545486450195312 + ], + [ + "▁Habit", + -12.54556941986084 + ], + [ + "▁10:00", + -12.545577049255371 + ], + [ + "▁rezultat", + -12.545595169067383 + ], + [ + "äck", + -12.545943260192871 + ], + [ + ",000.", + -12.545979499816895 + ], + [ + "▁remedies", + -12.546103477478027 + ], + [ + "▁comportament", + -12.546195983886719 + ], + [ + "namen", + -12.546229362487793 + ], + [ + "▁#3", + -12.546327590942383 + ], + [ + "enstein", + -12.546493530273438 + ], + [ + "▁relevance", + -12.546516418457031 + ], + [ + "▁présentation", + -12.54655933380127 + ], + [ + "MHz", + -12.546648979187012 + ], + [ + "EMA", + -12.546661376953125 + ], + [ + "▁palace", + -12.546709060668945 + ], + [ + "▁vizibil", + -12.546723365783691 + ], + [ + "▁griev", + -12.546820640563965 + ], + [ + "▁severely", + -12.54688549041748 + ], + [ + "expert", + -12.546942710876465 + ], + [ + "▁ravi", + -12.54696273803711 + ], + [ + "▁feasible", + -12.547002792358398 + ], + [ + "▁Wholesale", + -12.547009468078613 + ], + [ + "▁graduat", + -12.547077178955078 + ], + [ + "Kü", + -12.547094345092773 + ], + [ + "▁quotation", + -12.547157287597656 + ], + [ + "/11", + -12.54716968536377 + ], + [ + "lutter", + -12.547415733337402 + ], + [ + "▁dice", + -12.547467231750488 + ], + [ + "modal", + -12.547749519348145 + ], + [ + "ggling", + -12.547819137573242 + ], + [ + "▁considér", + -12.547986030578613 + ], + [ + "▁Insel", + -12.548097610473633 + ], + [ + "▁Database", + -12.5483980178833 + ], + [ + "icism", + -12.548508644104004 + ], + [ + "▁quarterly", + -12.54851245880127 + ], + [ + "▁formule", + -12.548558235168457 + ], + [ + "▁renouvel", + -12.54873275756836 + ], + [ + "▁Treasure", + -12.548737525939941 + ], + [ + "▁1962", + -12.548844337463379 + ], + [ + "▁republic", + -12.549111366271973 + ], + [ + "▁États", + -12.549254417419434 + ], + [ + "▁salut", + -12.549356460571289 + ], + [ + "HK", + -12.54941463470459 + ], + [ + "▁Bali", + -12.549427032470703 + ], + [ + "▁Rechnung", + -12.549447059631348 + ], + [ + "fruit", + -12.54945182800293 + ], + [ + "lays", + -12.549467086791992 + ], + [ + "LAS", + -12.54951000213623 + ], + [ + "inclin", + -12.549708366394043 + ], + [ + "▁Cré", + -12.549813270568848 + ], + [ + "▁compt", + -12.54985237121582 + ], + [ + "țiilor", + -12.550056457519531 + ], + [ + "heft", + -12.550111770629883 + ], + [ + "▁Comisi", + -12.55024242401123 + ], + [ + "▁Nurse", + -12.550516128540039 + ], + [ + "loid", + -12.550540924072266 + ], + [ + "grove", + -12.550761222839355 + ], + [ + "▁Copy", + -12.550867080688477 + ], + [ + "▁Kampf", + -12.550873756408691 + ], + [ + "izată", + -12.550945281982422 + ], + [ + "würdig", + -12.551244735717773 + ], + [ + "-2018", + -12.551305770874023 + ], + [ + "ozo", + -12.551350593566895 + ], + [ + "▁integriert", + -12.551397323608398 + ], + [ + "▁réunion", + -12.551448822021484 + ], + [ + "▁mică", + -12.551520347595215 + ], + [ + "▁Chau", + -12.551595687866211 + ], + [ + "▁allegations", + -12.551626205444336 + ], + [ + "▁shaping", + -12.551640510559082 + ], + [ + "▁transcription", + -12.551671981811523 + ], + [ + "▁Monica", + -12.551711082458496 + ], + [ + "▁torture", + -12.551795959472656 + ], + [ + "▁cooperative", + -12.551962852478027 + ], + [ + "▁invité", + -12.551987648010254 + ], + [ + "▁bamboo", + -12.552204132080078 + ], + [ + "▁Thinking", + -12.55232048034668 + ], + [ + "▁gratis", + -12.552392959594727 + ], + [ + "117", + -12.55267333984375 + ], + [ + "renz", + -12.55279541015625 + ], + [ + "▁Fußball", + -12.552823066711426 + ], + [ + "▁Gram", + -12.552873611450195 + ], + [ + "sprung", + -12.55290412902832 + ], + [ + "▁Schluss", + -12.55308723449707 + ], + [ + "▁Diploma", + -12.553345680236816 + ], + [ + "▁apparatus", + -12.553363800048828 + ], + [ + "notably", + -12.553483963012695 + ], + [ + "▁exercit", + -12.553532600402832 + ], + [ + "ământ", + -12.553536415100098 + ], + [ + "▁masses", + -12.553610801696777 + ], + [ + "▁preuve", + -12.553642272949219 + ], + [ + "great", + -12.553754806518555 + ], + [ + "▁Drink", + -12.553792953491211 + ], + [ + "islam", + -12.553828239440918 + ], + [ + "ARM", + -12.553914070129395 + ], + [ + "indre", + -12.554404258728027 + ], + [ + "DW", + -12.554410934448242 + ], + [ + "▁Flowers", + -12.554500579833984 + ], + [ + "▁pill", + -12.554574966430664 + ], + [ + "▁objectifs", + -12.554594039916992 + ], + [ + "▁Bezug", + -12.554659843444824 + ], + [ + "▁assumptions", + -12.55466365814209 + ], + [ + "▁vesti", + -12.554742813110352 + ], + [ + "route", + -12.554783821105957 + ], + [ + "▁Bangkok", + -12.554815292358398 + ], + [ + "▁seamlessly", + -12.55482006072998 + ], + [ + "config", + -12.554882049560547 + ], + [ + "▁username", + -12.554890632629395 + ], + [ + "unsure", + -12.555024147033691 + ], + [ + "▁poser", + -12.555129051208496 + ], + [ + "▁impozit", + -12.555246353149414 + ], + [ + "▁metode", + -12.555333137512207 + ], + [ + "defending", + -12.555347442626953 + ], + [ + "▁Nic", + -12.555431365966797 + ], + [ + "▁Vertrag", + -12.555508613586426 + ], + [ + "▁plăcut", + -12.55552864074707 + ], + [ + "▁Pou", + -12.555675506591797 + ], + [ + "UCH", + -12.555785179138184 + ], + [ + "▁Fein", + -12.555903434753418 + ], + [ + "reading", + -12.555994987487793 + ], + [ + "snip", + -12.55604076385498 + ], + [ + "▁Livre", + -12.556401252746582 + ], + [ + "lander", + -12.556509971618652 + ], + [ + "▁hydraulic", + -12.556559562683105 + ], + [ + "veiled", + -12.556563377380371 + ], + [ + "intr", + -12.556609153747559 + ], + [ + "▁Domnului", + -12.556641578674316 + ], + [ + "▁$0.", + -12.556713104248047 + ], + [ + "▁kilometers", + -12.556753158569336 + ], + [ + "spann", + -12.556870460510254 + ], + [ + "▁credibility", + -12.556892395019531 + ], + [ + "▁eBook", + -12.556953430175781 + ], + [ + "VERY", + -12.556994438171387 + ], + [ + "▁Charm", + -12.557122230529785 + ], + [ + "Evangeli", + -12.557193756103516 + ], + [ + "▁anderer", + -12.557193756103516 + ], + [ + "▁Entry", + -12.557195663452148 + ], + [ + "ffy", + -12.5573148727417 + ], + [ + "▁Exc", + -12.55737018585205 + ], + [ + "▁Omega", + -12.557446479797363 + ], + [ + "▁Funktionen", + -12.557455062866211 + ], + [ + "▁Gay", + -12.55752182006836 + ], + [ + "▁acht", + -12.557608604431152 + ], + [ + "colored", + -12.557615280151367 + ], + [ + "itude", + -12.557634353637695 + ], + [ + "▁accompagné", + -12.557645797729492 + ], + [ + "▁unfortunate", + -12.557981491088867 + ], + [ + "▁DIN", + -12.558091163635254 + ], + [ + "▁installment", + -12.558252334594727 + ], + [ + "▁indépendant", + -12.558307647705078 + ], + [ + "These", + -12.558364868164062 + ], + [ + "mitten", + -12.558394432067871 + ], + [ + "thank", + -12.558470726013184 + ], + [ + "▁Trek", + -12.558721542358398 + ], + [ + "üchte", + -12.55874252319336 + ], + [ + "▁cuir", + -12.55875015258789 + ], + [ + "▁turbo", + -12.558802604675293 + ], + [ + "Table", + -12.558847427368164 + ], + [ + "▁Extrem", + -12.558866500854492 + ], + [ + "▁advertisements", + -12.55915355682373 + ], + [ + "▁chaîne", + -12.559206008911133 + ], + [ + "▁corridor", + -12.559473991394043 + ], + [ + "▁râ", + -12.559651374816895 + ], + [ + "▁Opening", + -12.559718132019043 + ], + [ + "Get", + -12.559747695922852 + ], + [ + "▁storytelling", + -12.55976676940918 + ], + [ + "▁severity", + -12.559771537780762 + ], + [ + "4\"", + -12.559956550598145 + ], + [ + "▁parasit", + -12.559967994689941 + ], + [ + "angebot", + -12.56002426147461 + ], + [ + "Data", + -12.56005573272705 + ], + [ + "listen", + -12.560086250305176 + ], + [ + "▁vârstă", + -12.560094833374023 + ], + [ + "▁swallow", + -12.56025505065918 + ], + [ + "TRE", + -12.560321807861328 + ], + [ + "▁daunting", + -12.56035041809082 + ], + [ + "▁Oli", + -12.560481071472168 + ], + [ + "▁definitive", + -12.56066608428955 + ], + [ + "▁rezerva", + -12.560667037963867 + ], + [ + "/15", + -12.560807228088379 + ], + [ + "▁Landschaft", + -12.560887336730957 + ], + [ + "▁Automotive", + -12.560934066772461 + ], + [ + "▁convers", + -12.56113052368164 + ], + [ + "▁thru", + -12.561139106750488 + ], + [ + "▁Township", + -12.561140060424805 + ], + [ + "▁tilt", + -12.56119441986084 + ], + [ + "▁Criminal", + -12.561227798461914 + ], + [ + "riez", + -12.561407089233398 + ], + [ + "▁Parking", + -12.561440467834473 + ], + [ + "▁humanitarian", + -12.561518669128418 + ], + [ + "▁Kilometer", + -12.561529159545898 + ], + [ + "controlled", + -12.56189250946045 + ], + [ + "▁Klick", + -12.561910629272461 + ], + [ + "support", + -12.56199836730957 + ], + [ + "handed", + -12.562005996704102 + ], + [ + "ämtliche", + -12.562104225158691 + ], + [ + "access", + -12.562232971191406 + ], + [ + "▁eleven", + -12.562232971191406 + ], + [ + "▁ferry", + -12.56229305267334 + ], + [ + "zieren", + -12.562620162963867 + ], + [ + "▁Gebrauch", + -12.562688827514648 + ], + [ + "▁vigoare", + -12.562689781188965 + ], + [ + "MON", + -12.562756538391113 + ], + [ + "fox", + -12.562886238098145 + ], + [ + "bestimmten", + -12.562894821166992 + ], + [ + "▁Gur", + -12.563069343566895 + ], + [ + "▁Mannschaft", + -12.563146591186523 + ], + [ + "▁patrol", + -12.563173294067383 + ], + [ + "▁casă", + -12.563376426696777 + ], + [ + "▁Stories", + -12.563380241394043 + ], + [ + "▁robotic", + -12.563425064086914 + ], + [ + "tiri", + -12.563576698303223 + ], + [ + "gewiesen", + -12.5636568069458 + ], + [ + "CV", + -12.563722610473633 + ], + [ + "▁parinti", + -12.563899040222168 + ], + [ + "▁Owen", + -12.563931465148926 + ], + [ + "▁Katie", + -12.564116477966309 + ], + [ + "▁Combine", + -12.56422233581543 + ], + [ + "enfalls", + -12.56442928314209 + ], + [ + "▁financière", + -12.564447402954102 + ], + [ + "▁parliament", + -12.564549446105957 + ], + [ + "▁Weekend", + -12.564616203308105 + ], + [ + "▁Sonic", + -12.564757347106934 + ], + [ + "▁fixture", + -12.56479263305664 + ], + [ + "majorité", + -12.56497573852539 + ], + [ + "▁gravel", + -12.565028190612793 + ], + [ + "realizate", + -12.565109252929688 + ], + [ + "examining", + -12.565113067626953 + ], + [ + "▁grim", + -12.5653657913208 + ], + [ + "▁stabili", + -12.565458297729492 + ], + [ + "▁Wochenende", + -12.56551456451416 + ], + [ + "▁Hebrew", + -12.565597534179688 + ], + [ + "▁Harrison", + -12.565799713134766 + ], + [ + "▁boundary", + -12.565858840942383 + ], + [ + "40,000", + -12.565902709960938 + ], + [ + "▁Ambassador", + -12.566208839416504 + ], + [ + "▁scoate", + -12.566229820251465 + ], + [ + "ffin", + -12.56623363494873 + ], + [ + "▁crème", + -12.566269874572754 + ], + [ + "▁obiecte", + -12.566378593444824 + ], + [ + "enţa", + -12.566763877868652 + ], + [ + "▁subsidiary", + -12.566797256469727 + ], + [ + "▁Franco", + -12.56688404083252 + ], + [ + "▁visuel", + -12.567042350769043 + ], + [ + "▁uitat", + -12.56708812713623 + ], + [ + "▁revisit", + -12.567122459411621 + ], + [ + "▁Camping", + -12.567150115966797 + ], + [ + "▁Divine", + -12.567304611206055 + ], + [ + "4-6", + -12.567323684692383 + ], + [ + "▁Brandon", + -12.567378997802734 + ], + [ + "ма", + -12.567450523376465 + ], + [ + "sofern", + -12.56745433807373 + ], + [ + "ntweder", + -12.56748104095459 + ], + [ + "▁Shoot", + -12.567618370056152 + ], + [ + "étais", + -12.56771183013916 + ], + [ + "SPEC", + -12.567930221557617 + ], + [ + "▁dreapta", + -12.567973136901855 + ], + [ + "▁repaired", + -12.568055152893066 + ], + [ + "pyr", + -12.568136215209961 + ], + [ + "▁warranties", + -12.568175315856934 + ], + [ + "▁représent", + -12.568263053894043 + ], + [ + "ADE", + -12.568293571472168 + ], + [ + "▁selective", + -12.56836223602295 + ], + [ + "▁Banking", + -12.568441390991211 + ], + [ + "▁ergonomic", + -12.568562507629395 + ], + [ + "...”", + -12.568602561950684 + ], + [ + "▁willingness", + -12.56867790222168 + ], + [ + "isser", + -12.568784713745117 + ], + [ + "▁confection", + -12.568961143493652 + ], + [ + "admi", + -12.569009780883789 + ], + [ + "▁Freizeit", + -12.569023132324219 + ], + [ + "▁illuminate", + -12.569151878356934 + ], + [ + "▁Repeat", + -12.569170951843262 + ], + [ + "▁Zeitpunkt", + -12.56933879852295 + ], + [ + "claimed", + -12.569439888000488 + ], + [ + "▁erhältlich", + -12.569480895996094 + ], + [ + "▁paysage", + -12.569537162780762 + ], + [ + "▁Atom", + -12.569890022277832 + ], + [ + "▁Graf", + -12.570086479187012 + ], + [ + "▁firmware", + -12.570093154907227 + ], + [ + "▁Swift", + -12.570180892944336 + ], + [ + "▁cercetare", + -12.57018756866455 + ], + [ + "▁internațional", + -12.570330619812012 + ], + [ + "▁zombie", + -12.570330619812012 + ], + [ + "▁Spread", + -12.57050609588623 + ], + [ + "ECO", + -12.57056999206543 + ], + [ + "▁Gestaltung", + -12.570758819580078 + ], + [ + "rast", + -12.570858001708984 + ], + [ + "▁perfume", + -12.5709228515625 + ], + [ + "▁roulette", + -12.570924758911133 + ], + [ + "▁distill", + -12.57096004486084 + ], + [ + "▁Produkten", + -12.570992469787598 + ], + [ + "225", + -12.571310043334961 + ], + [ + "facing", + -12.571371078491211 + ], + [ + "▁paradigm", + -12.571514129638672 + ], + [ + "▁Rah", + -12.571532249450684 + ], + [ + "▁Renault", + -12.571846961975098 + ], + [ + "willig", + -12.571864128112793 + ], + [ + "▁Vet", + -12.571890830993652 + ], + [ + "▁reprezenta", + -12.572126388549805 + ], + [ + "stoß", + -12.572185516357422 + ], + [ + "▁Weiß", + -12.5722074508667 + ], + [ + "▁Solo", + -12.572210311889648 + ], + [ + "▁Jin", + -12.572646141052246 + ], + [ + "▁Brussels", + -12.572693824768066 + ], + [ + "▁Tournament", + -12.572693824768066 + ], + [ + "▁proced", + -12.572710037231445 + ], + [ + "▁Rabbi", + -12.572835922241211 + ], + [ + "▁gameplay", + -12.572851181030273 + ], + [ + "▁ATM", + -12.572901725769043 + ], + [ + "▁firearm", + -12.572906494140625 + ], + [ + "revealing", + -12.573003768920898 + ], + [ + "schütz", + -12.57310676574707 + ], + [ + "▁Absolutely", + -12.573288917541504 + ], + [ + "▁interference", + -12.573433876037598 + ], + [ + "▁Employment", + -12.573558807373047 + ], + [ + "▁chord", + -12.57356071472168 + ], + [ + "▁oportun", + -12.573585510253906 + ], + [ + "▁frontier", + -12.573770523071289 + ], + [ + "▁Lunch", + -12.573891639709473 + ], + [ + "bread", + -12.57397174835205 + ], + [ + "▁rendered", + -12.573976516723633 + ], + [ + "5.1", + -12.573984146118164 + ], + [ + "▁motif", + -12.574066162109375 + ], + [ + "▁Schlag", + -12.574227333068848 + ], + [ + "113", + -12.574264526367188 + ], + [ + "▁Deux", + -12.574288368225098 + ], + [ + "▁surplus", + -12.574309349060059 + ], + [ + "ALS", + -12.574417114257812 + ], + [ + "▁abortion", + -12.574472427368164 + ], + [ + "▁airplane", + -12.574475288391113 + ], + [ + "▁migrants", + -12.574501991271973 + ], + [ + "kli", + -12.574539184570312 + ], + [ + "▁crochet", + -12.57454776763916 + ], + [ + "fahrer", + -12.574671745300293 + ], + [ + "▁reconstruction", + -12.57471752166748 + ], + [ + "▁difer", + -12.574752807617188 + ], + [ + "▁Conserv", + -12.57478141784668 + ], + [ + "▁NSW", + -12.57479476928711 + ], + [ + "▁regim", + -12.574844360351562 + ], + [ + "▁Except", + -12.574904441833496 + ], + [ + "▁trage", + -12.574978828430176 + ], + [ + "▁Consiliul", + -12.575058937072754 + ], + [ + "▁Bedarf", + -12.575064659118652 + ], + [ + "▁additive", + -12.5750732421875 + ], + [ + "know", + -12.5751371383667 + ], + [ + "▁sauna", + -12.57517147064209 + ], + [ + "▁mortality", + -12.575201034545898 + ], + [ + "kräftig", + -12.575358390808105 + ], + [ + "▁Own", + -12.575445175170898 + ], + [ + "nzo", + -12.575519561767578 + ], + [ + "▁villes", + -12.575543403625488 + ], + [ + "▁recette", + -12.575749397277832 + ], + [ + "▁attacking", + -12.575799942016602 + ], + [ + "beruf", + -12.57608699798584 + ], + [ + "▁integrat", + -12.57612419128418 + ], + [ + "realizarea", + -12.576201438903809 + ], + [ + "▁exemption", + -12.57628345489502 + ], + [ + "GW", + -12.576285362243652 + ], + [ + "▁Nano", + -12.576395034790039 + ], + [ + "SCH", + -12.576440811157227 + ], + [ + "▁honesty", + -12.576457023620605 + ], + [ + "▁Arriv", + -12.576515197753906 + ], + [ + "▁gland", + -12.576542854309082 + ], + [ + "▁proactive", + -12.576746940612793 + ], + [ + "▁agile", + -12.576837539672852 + ], + [ + "▁kernel", + -12.576844215393066 + ], + [ + "▁nurture", + -12.576860427856445 + ], + [ + "▁Patent", + -12.576963424682617 + ], + [ + "▁excursi", + -12.577189445495605 + ], + [ + "pulsion", + -12.577326774597168 + ], + [ + "stellte", + -12.577351570129395 + ], + [ + "ständige", + -12.577421188354492 + ], + [ + "▁Rebecca", + -12.577436447143555 + ], + [ + "▁Securities", + -12.577436447143555 + ], + [ + "mètre", + -12.577446937561035 + ], + [ + "LOW", + -12.577469825744629 + ], + [ + "▁consilier", + -12.577537536621094 + ], + [ + "▁Architekt", + -12.577733993530273 + ], + [ + "▁china", + -12.57777214050293 + ], + [ + "älfte", + -12.577778816223145 + ], + [ + "▁Combin", + -12.577795028686523 + ], + [ + "480", + -12.577999114990234 + ], + [ + "liv", + -12.578021049499512 + ], + [ + "▁peur", + -12.578067779541016 + ], + [ + "keep", + -12.57822322845459 + ], + [ + "▁Verhalten", + -12.578324317932129 + ], + [ + "▁peek", + -12.578446388244629 + ], + [ + "▁dient", + -12.578550338745117 + ], + [ + "▁prevazut", + -12.578625679016113 + ], + [ + "Emmanuel", + -12.57862663269043 + ], + [ + "▁incidence", + -12.57862663269043 + ], + [ + "▁Framework", + -12.578715324401855 + ], + [ + "dass", + -12.578816413879395 + ], + [ + "artiste", + -12.578874588012695 + ], + [ + "▁Accept", + -12.578971862792969 + ], + [ + "▁plunge", + -12.579073905944824 + ], + [ + "chauff", + -12.579118728637695 + ], + [ + "▁guilt", + -12.579156875610352 + ], + [ + "▁senator", + -12.57945442199707 + ], + [ + "▁disable", + -12.579776763916016 + ], + [ + "▁partout", + -12.579901695251465 + ], + [ + "JC", + -12.580045700073242 + ], + [ + "▁Highly", + -12.580150604248047 + ], + [ + "▁beneficii", + -12.58021068572998 + ], + [ + "fibro", + -12.580347061157227 + ], + [ + "interpreted", + -12.580550193786621 + ], + [ + "▁genauso", + -12.58056354522705 + ], + [ + "▁basil", + -12.580601692199707 + ], + [ + "▁Angst", + -12.580697059631348 + ], + [ + "rzte", + -12.580933570861816 + ], + [ + "Master", + -12.58112907409668 + ], + [ + "▁french", + -12.581324577331543 + ], + [ + "▁Duration", + -12.581343650817871 + ], + [ + "HM", + -12.581402778625488 + ], + [ + "▁Bert", + -12.581518173217773 + ], + [ + "▁1963", + -12.581534385681152 + ], + [ + "▁warrior", + -12.581604957580566 + ], + [ + "2007", + -12.581696510314941 + ], + [ + "▁recycle", + -12.581722259521484 + ], + [ + "▁fertiliz", + -12.581808090209961 + ], + [ + "▁hatch", + -12.581809997558594 + ], + [ + "ISH", + -12.581811904907227 + ], + [ + "luft", + -12.582321166992188 + ], + [ + "▁crying", + -12.582452774047852 + ], + [ + "▁activist", + -12.5824613571167 + ], + [ + "schränkt", + -12.582500457763672 + ], + [ + "▁diff", + -12.582500457763672 + ], + [ + "▁Demand", + -12.58262825012207 + ], + [ + "▁transported", + -12.582669258117676 + ], + [ + "▁Remodel", + -12.582686424255371 + ], + [ + "▁Etats", + -12.582704544067383 + ], + [ + "ANI", + -12.582777976989746 + ], + [ + "▁spéciale", + -12.582804679870605 + ], + [ + "▁Konzert", + -12.582805633544922 + ], + [ + "▁Bedürfnisse", + -12.58281135559082 + ], + [ + "▁overlooked", + -12.582864761352539 + ], + [ + "▁cutter", + -12.582974433898926 + ], + [ + "klär", + -12.58311939239502 + ], + [ + "▁Materialien", + -12.583135604858398 + ], + [ + "▁gewisse", + -12.583388328552246 + ], + [ + "bull", + -12.583499908447266 + ], + [ + "Good", + -12.583513259887695 + ], + [ + "Gig", + -12.583616256713867 + ], + [ + "Logic", + -12.583736419677734 + ], + [ + "▁Schlaf", + -12.583970069885254 + ], + [ + "▁Yankee", + -12.583996772766113 + ], + [ + "▁Batman", + -12.584020614624023 + ], + [ + "▁funcție", + -12.584166526794434 + ], + [ + "▁partenariat", + -12.584294319152832 + ], + [ + "▁Antrag", + -12.584348678588867 + ], + [ + "▁Pill", + -12.584519386291504 + ], + [ + "▁tram", + -12.584637641906738 + ], + [ + "▁Minor", + -12.58465576171875 + ], + [ + "pertaining", + -12.584678649902344 + ], + [ + "▁apropiere", + -12.584843635559082 + ], + [ + "▁Barack", + -12.584965705871582 + ], + [ + "schön", + -12.585174560546875 + ], + [ + "▁Sandy", + -12.585182189941406 + ], + [ + "kilometre", + -12.585192680358887 + ], + [ + "▁diy", + -12.585234642028809 + ], + [ + "▁1966", + -12.585453987121582 + ], + [ + "gelassen", + -12.585485458374023 + ], + [ + "▁Trial", + -12.585592269897461 + ], + [ + "▁Bauer", + -12.585603713989258 + ], + [ + "▁assumption", + -12.585648536682129 + ], + [ + "birth", + -12.585668563842773 + ], + [ + "rechnen", + -12.585861206054688 + ], + [ + "▁meci", + -12.585867881774902 + ], + [ + "▁gloss", + -12.585906982421875 + ], + [ + "▁sewer", + -12.58593463897705 + ], + [ + "▁Stimme", + -12.585955619812012 + ], + [ + "▁Fortune", + -12.585967063903809 + ], + [ + "▁Lösungen", + -12.586007118225098 + ], + [ + "▁impresi", + -12.586074829101562 + ], + [ + "schlaf", + -12.586089134216309 + ], + [ + "prüfung", + -12.586097717285156 + ], + [ + "▁instalat", + -12.586198806762695 + ], + [ + "▁picturesque", + -12.586233139038086 + ], + [ + "vait", + -12.586240768432617 + ], + [ + "8.1", + -12.58629035949707 + ], + [ + "▁călători", + -12.586392402648926 + ], + [ + "▁dix", + -12.586400032043457 + ], + [ + "▁furnished", + -12.586411476135254 + ], + [ + "▁dolari", + -12.586445808410645 + ], + [ + "▁regener", + -12.586562156677246 + ], + [ + "▁astazi", + -12.586621284484863 + ], + [ + "▁Sprach", + -12.586750030517578 + ], + [ + "delà", + -12.586846351623535 + ], + [ + "avec", + -12.58694076538086 + ], + [ + "▁Buddhist", + -12.586990356445312 + ], + [ + "▁alphabet", + -12.586990356445312 + ], + [ + "▁berichtet", + -12.587201118469238 + ], + [ + "ideally", + -12.587209701538086 + ], + [ + "▁annuel", + -12.587421417236328 + ], + [ + "▁laughing", + -12.587532997131348 + ], + [ + "▁Zustand", + -12.587639808654785 + ], + [ + "cini", + -12.587692260742188 + ], + [ + "solid", + -12.587724685668945 + ], + [ + "▁Broker", + -12.587868690490723 + ], + [ + "▁developmental", + -12.5879545211792 + ], + [ + "▁Summary", + -12.588191032409668 + ], + [ + "▁Trinity", + -12.58819580078125 + ], + [ + "▁sucre", + -12.58821964263916 + ], + [ + "▁sandal", + -12.588231086730957 + ], + [ + "PEN", + -12.588274955749512 + ], + [ + "gewinn", + -12.588486671447754 + ], + [ + "olé", + -12.588555335998535 + ], + [ + "matric", + -12.58865737915039 + ], + [ + "xton", + -12.588695526123047 + ], + [ + "werten", + -12.588740348815918 + ], + [ + "▁Dust", + -12.588765144348145 + ], + [ + "▁Journey", + -12.588791847229004 + ], + [ + "▁Rush", + -12.588793754577637 + ], + [ + "▁NCAA", + -12.588839530944824 + ], + [ + "▁allgemeine", + -12.588926315307617 + ], + [ + "▁Universe", + -12.589007377624512 + ], + [ + "▁connais", + -12.589099884033203 + ], + [ + "▁quantité", + -12.58912467956543 + ], + [ + "▁Kab", + -12.589150428771973 + ], + [ + "▁purse", + -12.589150428771973 + ], + [ + "Health", + -12.589210510253906 + ], + [ + "▁apărut", + -12.589288711547852 + ], + [ + "▁bypass", + -12.589313507080078 + ], + [ + "pronounced", + -12.58936595916748 + ], + [ + "▁magnitude", + -12.589393615722656 + ], + [ + "▁Walmart", + -12.589394569396973 + ], + [ + "ède", + -12.589409828186035 + ], + [ + "▁serum", + -12.589590072631836 + ], + [ + "▁baseline", + -12.589765548706055 + ], + [ + "STER", + -12.589932441711426 + ], + [ + "▁ONLY", + -12.590052604675293 + ], + [ + "▁individuell", + -12.590086936950684 + ], + [ + "▁Ghi", + -12.590139389038086 + ], + [ + "▁Ruby", + -12.59020709991455 + ], + [ + "▁Chal", + -12.590241432189941 + ], + [ + "▁Vier", + -12.590261459350586 + ], + [ + "5.0", + -12.5903902053833 + ], + [ + "▁fog", + -12.590519905090332 + ], + [ + "esel", + -12.590557098388672 + ], + [ + "▁Python", + -12.590598106384277 + ], + [ + "▁urmează", + -12.590608596801758 + ], + [ + "▁trustworthy", + -12.590639114379883 + ], + [ + "hört", + -12.590729713439941 + ], + [ + "▁tâche", + -12.59078311920166 + ], + [ + "Patri", + -12.590799331665039 + ], + [ + "▁grind", + -12.590928077697754 + ], + [ + "▁Raven", + -12.590934753417969 + ], + [ + "▁poursuiv", + -12.590951919555664 + ], + [ + "▁simpli", + -12.591140747070312 + ], + [ + "▁echo", + -12.591165542602539 + ], + [ + "▁Attention", + -12.591313362121582 + ], + [ + "Against", + -12.591402053833008 + ], + [ + "GET", + -12.59148120880127 + ], + [ + "▁turistic", + -12.591535568237305 + ], + [ + "▁tenure", + -12.59158992767334 + ], + [ + "▁alimentaire", + -12.591651916503906 + ], + [ + "Who", + -12.59172248840332 + ], + [ + "▁ändern", + -12.591729164123535 + ], + [ + "▁rebound", + -12.591778755187988 + ], + [ + "grenze", + -12.591849327087402 + ], + [ + "▁Fame", + -12.592093467712402 + ], + [ + "▁Kick", + -12.592215538024902 + ], + [ + "▁Detail", + -12.59228801727295 + ], + [ + "▁Push", + -12.592308044433594 + ], + [ + "production", + -12.592430114746094 + ], + [ + "▁Candidates", + -12.59244441986084 + ], + [ + "▁reușit", + -12.592484474182129 + ], + [ + "istischen", + -12.592525482177734 + ], + [ + "lassung", + -12.592649459838867 + ], + [ + "▁Hann", + -12.592713356018066 + ], + [ + "espère", + -12.592965126037598 + ], + [ + "▁vergessen", + -12.593008041381836 + ], + [ + "▁smiling", + -12.593010902404785 + ], + [ + "▁devotion", + -12.593016624450684 + ], + [ + "▁pastry", + -12.593071937561035 + ], + [ + "Add", + -12.593390464782715 + ], + [ + "▁authorization", + -12.593494415283203 + ], + [ + "▁Suisse", + -12.593568801879883 + ], + [ + "▁Berkeley", + -12.593611717224121 + ], + [ + "▁Guild", + -12.593660354614258 + ], + [ + "▁choir", + -12.593748092651367 + ], + [ + "learning", + -12.593802452087402 + ], + [ + "▁Tanz", + -12.593894004821777 + ], + [ + "mardi", + -12.594076156616211 + ], + [ + "▁rezultatele", + -12.594191551208496 + ], + [ + "▁earrings", + -12.594218254089355 + ], + [ + "▁turbine", + -12.594223976135254 + ], + [ + "▁jeudi", + -12.594284057617188 + ], + [ + "terapie", + -12.594576835632324 + ], + [ + "regain", + -12.59461498260498 + ], + [ + "SET", + -12.594643592834473 + ], + [ + "▁Hände", + -12.594681739807129 + ], + [ + "▁Globe", + -12.594683647155762 + ], + [ + "frag", + -12.594775199890137 + ], + [ + "▁Treasury", + -12.594820976257324 + ], + [ + "▁hazardous", + -12.594820976257324 + ], + [ + "▁Fahrt", + -12.594928741455078 + ], + [ + "▁fulfilled", + -12.594966888427734 + ], + [ + "▁manga", + -12.594987869262695 + ], + [ + "▁composé", + -12.595067977905273 + ], + [ + "▁ABS", + -12.595132827758789 + ], + [ + "▁preced", + -12.595197677612305 + ], + [ + "▁beauté", + -12.595233917236328 + ], + [ + "▁interessant", + -12.59526252746582 + ], + [ + "▁lieber", + -12.595324516296387 + ], + [ + "▁Kö", + -12.595378875732422 + ], + [ + "EMS", + -12.595410346984863 + ], + [ + "FER", + -12.595413208007812 + ], + [ + "▁eure", + -12.595427513122559 + ], + [ + "▁plumber", + -12.595427513122559 + ], + [ + "Love", + -12.595463752746582 + ], + [ + "▁Marcus", + -12.595635414123535 + ], + [ + "▁registry", + -12.595637321472168 + ], + [ + "▁uncle", + -12.595696449279785 + ], + [ + "▁neuf", + -12.595728874206543 + ], + [ + "▁Fläche", + -12.59575080871582 + ], + [ + "▁restaur", + -12.595815658569336 + ], + [ + "▁noticeable", + -12.595833778381348 + ], + [ + "▁riches", + -12.595871925354004 + ], + [ + "occupy", + -12.596031188964844 + ], + [ + "▁hurricane", + -12.596031188964844 + ], + [ + "▁gespeichert", + -12.596033096313477 + ], + [ + "▁Bordeaux", + -12.596039772033691 + ], + [ + "▁Maj", + -12.59637451171875 + ], + [ + "Applied", + -12.596439361572266 + ], + [ + "▁compter", + -12.596575736999512 + ], + [ + "impact", + -12.59663200378418 + ], + [ + "▁Improve", + -12.596758842468262 + ], + [ + "▁Calif", + -12.596832275390625 + ], + [ + "▁desfășur", + -12.596939086914062 + ], + [ + "▁packaged", + -12.597001075744629 + ], + [ + "180", + -12.59703540802002 + ], + [ + "devenu", + -12.597042083740234 + ], + [ + "▁Battery", + -12.597243309020996 + ], + [ + "▁objection", + -12.597254753112793 + ], + [ + "▁anual", + -12.597305297851562 + ], + [ + "▁Landscape", + -12.59731674194336 + ], + [ + "IQ", + -12.597403526306152 + ], + [ + "grès", + -12.597586631774902 + ], + [ + "▁witnesses", + -12.597750663757324 + ], + [ + "enţial", + -12.597764015197754 + ], + [ + "▁plateau", + -12.597779273986816 + ], + [ + "▁bilete", + -12.59783935546875 + ], + [ + "▁Bronze", + -12.59786605834961 + ], + [ + "▁Kiss", + -12.597946166992188 + ], + [ + "▁Serge", + -12.598093032836914 + ], + [ + "atomic", + -12.598145484924316 + ], + [ + "▁renovated", + -12.59817886352539 + ], + [ + "player", + -12.598212242126465 + ], + [ + "▁dirig", + -12.598291397094727 + ], + [ + "▁Îm", + -12.598296165466309 + ], + [ + "▁plimb", + -12.59843635559082 + ], + [ + "▁ambassador", + -12.598455429077148 + ], + [ + "▁apropiat", + -12.598455429077148 + ], + [ + "▁adaug", + -12.598602294921875 + ], + [ + "ogenic", + -12.59872055053711 + ], + [ + "kämpfe", + -12.598779678344727 + ], + [ + "▁Hillary", + -12.598907470703125 + ], + [ + "yak", + -12.598942756652832 + ], + [ + "General", + -12.59925365447998 + ], + [ + "▁Zugang", + -12.599400520324707 + ], + [ + "▁fertil", + -12.599457740783691 + ], + [ + "incat", + -12.599536895751953 + ], + [ + "assessing", + -12.599587440490723 + ], + [ + "▁Cincinnati", + -12.59967041015625 + ], + [ + "▁convincing", + -12.599685668945312 + ], + [ + "sadly", + -12.59974479675293 + ], + [ + "kunde", + -12.599801063537598 + ], + [ + "ambul", + -12.599913597106934 + ], + [ + "▁familii", + -12.599974632263184 + ], + [ + "juri", + -12.60007095336914 + ], + [ + "ionen", + -12.600102424621582 + ], + [ + "▁Wirtschaft", + -12.600130081176758 + ], + [ + "contract", + -12.600135803222656 + ], + [ + "punem", + -12.600151062011719 + ], + [ + "handlung", + -12.600394248962402 + ], + [ + "▁fournir", + -12.600455284118652 + ], + [ + "▁Ambi", + -12.600663185119629 + ], + [ + "▁Isaac", + -12.600663185119629 + ], + [ + "▁praying", + -12.6007719039917 + ], + [ + "▁Italien", + -12.600848197937012 + ], + [ + "233", + -12.600850105285645 + ], + [ + "spawn", + -12.600913047790527 + ], + [ + "▁legii", + -12.60092544555664 + ], + [ + "▁zuvor", + -12.601018905639648 + ], + [ + "▁comune", + -12.601030349731445 + ], + [ + "official", + -12.601165771484375 + ], + [ + "144", + -12.601290702819824 + ], + [ + "izeaza", + -12.601329803466797 + ], + [ + "▁Keller", + -12.601372718811035 + ], + [ + "ORE", + -12.601378440856934 + ], + [ + "122", + -12.601485252380371 + ], + [ + "incurred", + -12.60150146484375 + ], + [ + "CHA", + -12.601579666137695 + ], + [ + "▁Herzen", + -12.601590156555176 + ], + [ + "▁reasoning", + -12.6016263961792 + ], + [ + "affaire", + -12.601849555969238 + ], + [ + "ooth", + -12.601890563964844 + ], + [ + "155", + -12.601998329162598 + ], + [ + "▁invented", + -12.602113723754883 + ], + [ + "▁Comun", + -12.602140426635742 + ], + [ + "zähl", + -12.602179527282715 + ], + [ + "geliefert", + -12.602212905883789 + ], + [ + "explorer", + -12.602213859558105 + ], + [ + "nect", + -12.602326393127441 + ], + [ + "▁mercredi", + -12.602408409118652 + ], + [ + "▁volonté", + -12.602408409118652 + ], + [ + "easy", + -12.602453231811523 + ], + [ + "▁feat", + -12.602490425109863 + ], + [ + "rented", + -12.602580070495605 + ], + [ + "▁converter", + -12.602592468261719 + ], + [ + "Verhältnis", + -12.602713584899902 + ], + [ + "▁Iceland", + -12.602792739868164 + ], + [ + "▁pretul", + -12.602933883666992 + ], + [ + "▁Vorstellung", + -12.602960586547852 + ], + [ + "▁hydrogen", + -12.603096008300781 + ], + [ + "▁pouvai", + -12.603097915649414 + ], + [ + "▁dawn", + -12.603153228759766 + ], + [ + "▁Georg", + -12.603269577026367 + ], + [ + "▁cautious", + -12.603367805480957 + ], + [ + "▁Pattern", + -12.603464126586914 + ], + [ + "▁Ox", + -12.603602409362793 + ], + [ + "▁decizie", + -12.603676795959473 + ], + [ + "REC", + -12.603889465332031 + ], + [ + "▁Mortgage", + -12.60393238067627 + ], + [ + "attributed", + -12.603973388671875 + ], + [ + "floor", + -12.603992462158203 + ], + [ + "▁Wichtig", + -12.604207992553711 + ], + [ + "enseignant", + -12.604265213012695 + ], + [ + "▁civilization", + -12.604302406311035 + ], + [ + "▁dispozitie", + -12.60450553894043 + ], + [ + "▁geographic", + -12.604543685913086 + ], + [ + "▁Kun", + -12.604607582092285 + ], + [ + "LIN", + -12.604679107666016 + ], + [ + "▁auzit", + -12.604707717895508 + ], + [ + "except", + -12.604761123657227 + ], + [ + "▁superbe", + -12.604904174804688 + ], + [ + "▁installé", + -12.605000495910645 + ], + [ + "▁Peninsula", + -12.605154037475586 + ], + [ + "▁norme", + -12.605164527893066 + ], + [ + "elul", + -12.60517406463623 + ], + [ + "▁Experten", + -12.605256080627441 + ], + [ + "expression", + -12.605295181274414 + ], + [ + "Christ", + -12.605320930480957 + ], + [ + "▁Fuel", + -12.605369567871094 + ], + [ + "▁muffin", + -12.605485916137695 + ], + [ + "▁lecteur", + -12.605521202087402 + ], + [ + "▁gifted", + -12.605589866638184 + ], + [ + "▁Japon", + -12.605602264404297 + ], + [ + "▁SSD", + -12.605644226074219 + ], + [ + "▁Calgary", + -12.605765342712402 + ], + [ + "▁hooked", + -12.605876922607422 + ], + [ + "▁Joan", + -12.605896949768066 + ], + [ + "▁tangible", + -12.606083869934082 + ], + [ + "FW", + -12.606225967407227 + ], + [ + "olli", + -12.6062593460083 + ], + [ + "▁Platinum", + -12.606376647949219 + ], + [ + "▁miniature", + -12.606392860412598 + ], + [ + "▁lump", + -12.606608390808105 + ], + [ + "ologische", + -12.60689926147461 + ], + [ + "▁Istanbul", + -12.606987953186035 + ], + [ + "▁Compar", + -12.607060432434082 + ], + [ + "tropic", + -12.607256889343262 + ], + [ + "KING", + -12.607279777526855 + ], + [ + "Präsident", + -12.607297897338867 + ], + [ + "▁fotografii", + -12.607303619384766 + ], + [ + "hoped", + -12.607451438903809 + ], + [ + "▁pâte", + -12.607601165771484 + ], + [ + "▁mercy", + -12.60760498046875 + ], + [ + "▁quiz", + -12.607619285583496 + ], + [ + "demonstrating", + -12.607678413391113 + ], + [ + "▁douce", + -12.607832908630371 + ], + [ + "▁Vest", + -12.607841491699219 + ], + [ + "▁Harvey", + -12.6082181930542 + ], + [ + "▁breit", + -12.608227729797363 + ], + [ + "▁Bereits", + -12.608291625976562 + ], + [ + "▁breakthrough", + -12.608316421508789 + ], + [ + "▁masterpiece", + -12.608320236206055 + ], + [ + "▁Chester", + -12.60838794708252 + ], + [ + "▁indiqué", + -12.608451843261719 + ], + [ + "hook", + -12.60857105255127 + ], + [ + "statutory", + -12.608596801757812 + ], + [ + "▁Direkt", + -12.608617782592773 + ], + [ + "▁specs", + -12.608708381652832 + ], + [ + "Drive", + -12.608725547790527 + ], + [ + "▁survivors", + -12.608826637268066 + ], + [ + "▁jackpot", + -12.608840942382812 + ], + [ + "▁garder", + -12.608872413635254 + ], + [ + "▁Geburtstag", + -12.60887336730957 + ], + [ + "145", + -12.608963966369629 + ], + [ + "▁Clay", + -12.609028816223145 + ], + [ + "▁WHO", + -12.60906982421875 + ], + [ + "▁Ellen", + -12.609393119812012 + ], + [ + "▁bonheur", + -12.609440803527832 + ], + [ + "▁hazards", + -12.609440803527832 + ], + [ + "▁Kaiser", + -12.609488487243652 + ], + [ + "▁tightly", + -12.609506607055664 + ], + [ + "Universitatea", + -12.609529495239258 + ], + [ + "▁rinse", + -12.609533309936523 + ], + [ + "▁passant", + -12.609640121459961 + ], + [ + "▁sânge", + -12.609832763671875 + ], + [ + "▁peuple", + -12.60983657836914 + ], + [ + "jungen", + -12.609975814819336 + ], + [ + "▁inappropriate", + -12.610054969787598 + ], + [ + "▁mitigate", + -12.610066413879395 + ], + [ + "MID", + -12.610221862792969 + ], + [ + "▁telecom", + -12.610297203063965 + ], + [ + "▁plaj", + -12.610316276550293 + ], + [ + "▁presupune", + -12.610361099243164 + ], + [ + "acco", + -12.61038875579834 + ], + [ + "expressing", + -12.610654830932617 + ], + [ + "▁Symphony", + -12.61066722869873 + ], + [ + "temperatur", + -12.610710144042969 + ], + [ + "▁activităţi", + -12.610800743103027 + ], + [ + "▁amended", + -12.610847473144531 + ], + [ + "▁rehab", + -12.610909461975098 + ], + [ + "▁sportiv", + -12.611004829406738 + ], + [ + "hotel", + -12.611031532287598 + ], + [ + "branche", + -12.61103630065918 + ], + [ + "▁Noch", + -12.611079216003418 + ], + [ + "▁1961", + -12.611238479614258 + ], + [ + "release", + -12.611359596252441 + ], + [ + "blaze", + -12.611381530761719 + ], + [ + "Adv", + -12.61139965057373 + ], + [ + "Line", + -12.611671447753906 + ], + [ + "▁financiare", + -12.61184310913086 + ], + [ + "▁chauffage", + -12.611919403076172 + ], + [ + "мо", + -12.61192512512207 + ], + [ + "schuhe", + -12.612035751342773 + ], + [ + "blé", + -12.612040519714355 + ], + [ + "▁Echo", + -12.612468719482422 + ], + [ + "▁remarks", + -12.61253547668457 + ], + [ + "scriu", + -12.612629890441895 + ], + [ + "Vir", + -12.612701416015625 + ], + [ + "War", + -12.61271858215332 + ], + [ + "atifs", + -12.613006591796875 + ], + [ + "RING", + -12.613082885742188 + ], + [ + "▁Instruction", + -12.613150596618652 + ], + [ + "▁verlassen", + -12.613155364990234 + ], + [ + "▁ergänz", + -12.613234519958496 + ], + [ + "▁Emil", + -12.613248825073242 + ], + [ + "▁empire", + -12.613263130187988 + ], + [ + "▁Einkauf", + -12.613306999206543 + ], + [ + "utigen", + -12.613329887390137 + ], + [ + "▁audition", + -12.613390922546387 + ], + [ + "travelled", + -12.61347484588623 + ], + [ + "ло", + -12.613579750061035 + ], + [ + "▁infinite", + -12.613720893859863 + ], + [ + "▁Lieblings", + -12.613749504089355 + ], + [ + "▁vân", + -12.613754272460938 + ], + [ + "▁spinning", + -12.613778114318848 + ], + [ + "converting", + -12.614031791687012 + ], + [ + "▁uncertain", + -12.61415958404541 + ], + [ + "restul", + -12.614168167114258 + ], + [ + "▁colourful", + -12.61420726776123 + ], + [ + "▁accountant", + -12.614338874816895 + ], + [ + "bourg", + -12.614532470703125 + ], + [ + "▁structuri", + -12.614538192749023 + ], + [ + "▁Booking", + -12.61465835571289 + ], + [ + "intéresse", + -12.614683151245117 + ], + [ + "▁coordinated", + -12.614753723144531 + ], + [ + "▁precaution", + -12.61497688293457 + ], + [ + "▁Cheese", + -12.615015983581543 + ], + [ + "▁surfing", + -12.615192413330078 + ], + [ + "▁souffr", + -12.61524486541748 + ], + [ + "▁Menu", + -12.615447998046875 + ], + [ + "▁arthritis", + -12.615593910217285 + ], + [ + "▁headphones", + -12.615601539611816 + ], + [ + "▁upgrading", + -12.615602493286133 + ], + [ + "▁apparel", + -12.615653038024902 + ], + [ + "▁Haushalt", + -12.61572551727295 + ], + [ + "▁Personally", + -12.615815162658691 + ], + [ + "▁insane", + -12.615950584411621 + ], + [ + "▁fonduri", + -12.616083145141602 + ], + [ + "▁entier", + -12.616239547729492 + ], + [ + "▁Herbst", + -12.616264343261719 + ], + [ + "▁cyclist", + -12.616331100463867 + ], + [ + "▁filmmaker", + -12.616741180419922 + ], + [ + "▁Portuguese", + -12.616829872131348 + ], + [ + "▁nominee", + -12.616851806640625 + ], + [ + "▁Yang", + -12.616857528686523 + ], + [ + "▁slate", + -12.616943359375 + ], + [ + "▁entièrement", + -12.616974830627441 + ], + [ + "▁Umgang", + -12.617049217224121 + ], + [ + "shifted", + -12.617135047912598 + ], + [ + "▁défaut", + -12.617138862609863 + ], + [ + "heiz", + -12.617246627807617 + ], + [ + "▁Seal", + -12.617379188537598 + ], + [ + "▁servicing", + -12.617451667785645 + ], + [ + "marketing", + -12.617562294006348 + ], + [ + "▁demandé", + -12.617755889892578 + ], + [ + "TING", + -12.617841720581055 + ], + [ + "▁modifier", + -12.617907524108887 + ], + [ + "lysis", + -12.617966651916504 + ], + [ + "▁suplimentare", + -12.618117332458496 + ], + [ + "OTHER", + -12.618359565734863 + ], + [ + "Graph", + -12.618379592895508 + ], + [ + "▁coincide", + -12.618448257446289 + ], + [ + "governed", + -12.618598937988281 + ], + [ + "▁locking", + -12.618638038635254 + ], + [ + "▁Properties", + -12.618685722351074 + ], + [ + "▁Panama", + -12.61876392364502 + ], + [ + "▁Coupe", + -12.618846893310547 + ], + [ + "songwriter", + -12.618978500366211 + ], + [ + "exhibited", + -12.618988990783691 + ], + [ + "▁semnificativ", + -12.618995666503906 + ], + [ + "▁purchaser", + -12.619004249572754 + ], + [ + "▁puff", + -12.619097709655762 + ], + [ + "Back", + -12.619105339050293 + ], + [ + "fragt", + -12.61919116973877 + ], + [ + "▁deputy", + -12.619362831115723 + ], + [ + "▁revien", + -12.619556427001953 + ], + [ + "▁Christine", + -12.619558334350586 + ], + [ + "▁Cities", + -12.619573593139648 + ], + [ + "▁Charakter", + -12.61961555480957 + ], + [ + "atteindre", + -12.619625091552734 + ], + [ + "▁fou", + -12.619635581970215 + ], + [ + "▁obligatoire", + -12.619643211364746 + ], + [ + "INA", + -12.619791030883789 + ], + [ + "etc", + -12.6198148727417 + ], + [ + "▁newborn", + -12.620091438293457 + ], + [ + "▁explicitly", + -12.620116233825684 + ], + [ + "simplest", + -12.620203018188477 + ], + [ + "▁plateforme", + -12.62023639678955 + ], + [ + "ordinate", + -12.620291709899902 + ], + [ + "displaying", + -12.620346069335938 + ], + [ + "▁messy", + -12.620464324951172 + ], + [ + "gespielt", + -12.620466232299805 + ], + [ + "▁electron", + -12.62061882019043 + ], + [ + "▁Dreh", + -12.620796203613281 + ], + [ + "▁ambient", + -12.620976448059082 + ], + [ + "340", + -12.620979309082031 + ], + [ + "▁directive", + -12.62109375 + ], + [ + "▁Vall", + -12.621152877807617 + ], + [ + "ookie", + -12.621206283569336 + ], + [ + "▁wasted", + -12.621304512023926 + ], + [ + "CIS", + -12.621367454528809 + ], + [ + "lude", + -12.621378898620605 + ], + [ + "rach", + -12.621472358703613 + ], + [ + "▁gasest", + -12.62150764465332 + ], + [ + "▁miros", + -12.62150764465332 + ], + [ + "transforming", + -12.621536254882812 + ], + [ + "▁Milwaukee", + -12.621787071228027 + ], + [ + "▁uncommon", + -12.621789932250977 + ], + [ + "▁tableau", + -12.621841430664062 + ], + [ + "geräte", + -12.621952056884766 + ], + [ + "ophil", + -12.622139930725098 + ], + [ + "▁Jeep", + -12.62220287322998 + ], + [ + "▁wreck", + -12.622422218322754 + ], + [ + "LAND", + -12.622434616088867 + ], + [ + "attach", + -12.622566223144531 + ], + [ + "▁Panther", + -12.622634887695312 + ], + [ + "9:30", + -12.622777938842773 + ], + [ + "▁induce", + -12.622974395751953 + ], + [ + "▁privest", + -12.623006820678711 + ], + [ + "Ident", + -12.623047828674316 + ], + [ + "▁illnesses", + -12.623076438903809 + ], + [ + "▁inhabitants", + -12.623138427734375 + ], + [ + "▁fehlen", + -12.623357772827148 + ], + [ + "obtenu", + -12.623391151428223 + ], + [ + "▁gegründet", + -12.623655319213867 + ], + [ + "ARA", + -12.623711585998535 + ], + [ + "3-2", + -12.623835563659668 + ], + [ + "▁milliards", + -12.623968124389648 + ], + [ + "▁Bü", + -12.624001502990723 + ], + [ + "▁angegeben", + -12.624102592468262 + ], + [ + "TUR", + -12.624143600463867 + ], + [ + "▁arab", + -12.624166488647461 + ], + [ + "▁Scientist", + -12.624275207519531 + ], + [ + "▁minut", + -12.624394416809082 + ], + [ + "▁beast", + -12.624481201171875 + ], + [ + "▁accidentally", + -12.624573707580566 + ], + [ + "WN", + -12.624579429626465 + ], + [ + "▁Ralph", + -12.624588966369629 + ], + [ + "hängt", + -12.62462329864502 + ], + [ + "▁Erik", + -12.624639511108398 + ], + [ + "▁différent", + -12.624711990356445 + ], + [ + "▁conformitate", + -12.624842643737793 + ], + [ + "thriving", + -12.624900817871094 + ], + [ + "▁Piece", + -12.625123023986816 + ], + [ + "plasm", + -12.625152587890625 + ], + [ + "▁erwarten", + -12.62520980834961 + ], + [ + "owski", + -12.62523365020752 + ], + [ + "prayed", + -12.625293731689453 + ], + [ + "three", + -12.625542640686035 + ], + [ + "▁soundtrack", + -12.625651359558105 + ], + [ + "guru", + -12.625709533691406 + ], + [ + "▁cracked", + -12.625710487365723 + ], + [ + "▁adh", + -12.625823020935059 + ], + [ + "▁maître", + -12.625834465026855 + ], + [ + "▁Oberfläche", + -12.62585735321045 + ], + [ + "▁crab", + -12.625886917114258 + ], + [ + "▁Foster", + -12.625944137573242 + ], + [ + "▁gemütlich", + -12.626145362854004 + ], + [ + "SIC", + -12.626226425170898 + ], + [ + "ième", + -12.626298904418945 + ], + [ + "▁Few", + -12.626330375671387 + ], + [ + "gérer", + -12.626360893249512 + ], + [ + "2006", + -12.626456260681152 + ], + [ + "cool", + -12.626498222351074 + ], + [ + "▁dispune", + -12.626523971557617 + ], + [ + "recevoir", + -12.626577377319336 + ], + [ + "▁Bak", + -12.626585960388184 + ], + [ + "▁steer", + -12.62659740447998 + ], + [ + "ICS", + -12.626733779907227 + ], + [ + "▁Brett", + -12.626733779907227 + ], + [ + "▁downside", + -12.626751899719238 + ], + [ + "▁residency", + -12.62678050994873 + ], + [ + "important", + -12.626991271972656 + ], + [ + "ubb", + -12.627073287963867 + ], + [ + "mony", + -12.627259254455566 + ], + [ + "▁leasing", + -12.627341270446777 + ], + [ + "▁Gir", + -12.62735366821289 + ], + [ + "▁Biology", + -12.627364158630371 + ], + [ + "▁Colin", + -12.627463340759277 + ], + [ + "▁complicat", + -12.627775192260742 + ], + [ + "▁regroup", + -12.627899169921875 + ], + [ + "SPA", + -12.627950668334961 + ], + [ + "▁Veranstaltungen", + -12.627986907958984 + ], + [ + "convicted", + -12.628019332885742 + ], + [ + "▁Wonderful", + -12.628636360168457 + ], + [ + "züge", + -12.628799438476562 + ], + [ + "yton", + -12.628813743591309 + ], + [ + "EMENT", + -12.628887176513672 + ], + [ + "▁bent", + -12.62893009185791 + ], + [ + "heben", + -12.629231452941895 + ], + [ + "▁Sustainable", + -12.62926959991455 + ], + [ + "▁Newcastle", + -12.629276275634766 + ], + [ + "mother", + -12.629507064819336 + ], + [ + "▁eighth", + -12.629572868347168 + ], + [ + "▁atmosfer", + -12.629582405090332 + ], + [ + "expériment", + -12.629584312438965 + ], + [ + "▁Interest", + -12.629608154296875 + ], + [ + "▁successes", + -12.62964153289795 + ], + [ + "▁preschool", + -12.629802703857422 + ], + [ + "▁Funeral", + -12.629900932312012 + ], + [ + "blast", + -12.630083084106445 + ], + [ + "▁dimensiuni", + -12.630125999450684 + ], + [ + "▁Dow", + -12.630167007446289 + ], + [ + "▁pulp", + -12.63022518157959 + ], + [ + "▁Heather", + -12.630356788635254 + ], + [ + "▁erstellen", + -12.63044261932373 + ], + [ + "locating", + -12.630470275878906 + ], + [ + "direct", + -12.630475997924805 + ], + [ + "▁tractor", + -12.630494117736816 + ], + [ + "growing", + -12.630576133728027 + ], + [ + "▁inventor", + -12.630587577819824 + ], + [ + "ASA", + -12.63060188293457 + ], + [ + "insta", + -12.630732536315918 + ], + [ + "yana", + -12.63082504272461 + ], + [ + "▁squash", + -12.630839347839355 + ], + [ + "▁Basketball", + -12.630853652954102 + ], + [ + "AMA", + -12.631041526794434 + ], + [ + "insel", + -12.631093978881836 + ], + [ + "▁Fisch", + -12.631138801574707 + ], + [ + "▁metaphor", + -12.631221771240234 + ], + [ + "TES", + -12.631304740905762 + ], + [ + "▁conduce", + -12.631308555603027 + ], + [ + "stehende", + -12.631370544433594 + ], + [ + "▁FAQ", + -12.631475448608398 + ], + [ + "▁bezeichnet", + -12.631658554077148 + ], + [ + "wendung", + -12.631706237792969 + ], + [ + "▁Commonwealth", + -12.631776809692383 + ], + [ + "▁bait", + -12.631793975830078 + ], + [ + "▁Umsetzung", + -12.631834030151367 + ], + [ + "▁Equi", + -12.632063865661621 + ], + [ + "▁validity", + -12.632109642028809 + ], + [ + "Off", + -12.63222599029541 + ], + [ + "▁produsul", + -12.632314682006836 + ], + [ + "▁sensory", + -12.632363319396973 + ], + [ + "▁Imperial", + -12.632501602172852 + ], + [ + "▁Dick", + -12.632542610168457 + ], + [ + "kampf", + -12.632596969604492 + ], + [ + "▁Arzt", + -12.63267993927002 + ], + [ + "▁Reason", + -12.63267993927002 + ], + [ + "ITS", + -12.63270092010498 + ], + [ + "URL", + -12.632720947265625 + ], + [ + "demonstrates", + -12.632725715637207 + ], + [ + "▁dépend", + -12.632753372192383 + ], + [ + "NAS", + -12.632970809936523 + ], + [ + "▁funcți", + -12.633031845092773 + ], + [ + "▁vulnerability", + -12.633085250854492 + ], + [ + "2.7", + -12.633143424987793 + ], + [ + "layered", + -12.633152961730957 + ], + [ + "escence", + -12.633206367492676 + ], + [ + "▁République", + -12.633346557617188 + ], + [ + "▁Lust", + -12.633377075195312 + ], + [ + "▁sute", + -12.633381843566895 + ], + [ + "▁autonomous", + -12.633661270141602 + ], + [ + "Biserica", + -12.633662223815918 + ], + [ + "▁Chuck", + -12.633749961853027 + ], + [ + "▁protéger", + -12.6339750289917 + ], + [ + "rrell", + -12.634061813354492 + ], + [ + "▁Schaden", + -12.634062767028809 + ], + [ + "prennent", + -12.634100914001465 + ], + [ + "maß", + -12.6343412399292 + ], + [ + "OV", + -12.634453773498535 + ], + [ + "▁Wake", + -12.63450813293457 + ], + [ + "produire", + -12.634635925292969 + ], + [ + "▁Elder", + -12.634749412536621 + ], + [ + "Max", + -12.634839057922363 + ], + [ + "▁Chemistry", + -12.634918212890625 + ], + [ + "▁gourmet", + -12.634918212890625 + ], + [ + "erri", + -12.634967803955078 + ], + [ + "ени", + -12.635085105895996 + ], + [ + "▁Gru", + -12.635147094726562 + ], + [ + "▁vorbit", + -12.635408401489258 + ], + [ + "▁precede", + -12.635455131530762 + ], + [ + "▁randomly", + -12.635489463806152 + ], + [ + "▁efecte", + -12.63563060760498 + ], + [ + "▁calatori", + -12.635668754577637 + ], + [ + "▁Poor", + -12.635765075683594 + ], + [ + "List", + -12.635781288146973 + ], + [ + "▁regula", + -12.635964393615723 + ], + [ + "▁organisé", + -12.636028289794922 + ], + [ + "Div", + -12.636076927185059 + ], + [ + "▁volunteering", + -12.636423110961914 + ], + [ + "▁horr", + -12.636449813842773 + ], + [ + "9.99", + -12.636487007141113 + ], + [ + "▁UPS", + -12.636513710021973 + ], + [ + "▁englez", + -12.63652229309082 + ], + [ + "▁Eden", + -12.636523246765137 + ], + [ + "GG", + -12.63659954071045 + ], + [ + "▁typing", + -12.63664722442627 + ], + [ + "Likewise", + -12.636700630187988 + ], + [ + "▁stabilize", + -12.636737823486328 + ], + [ + "physio", + -12.636747360229492 + ], + [ + "ми", + -12.636785507202148 + ], + [ + "▁protagonist", + -12.636808395385742 + ], + [ + "▁velvet", + -12.636812210083008 + ], + [ + "schrank", + -12.636861801147461 + ], + [ + "▁Allah", + -12.63693618774414 + ], + [ + "▁forefront", + -12.636968612670898 + ], + [ + "▁salaries", + -12.637001037597656 + ], + [ + "▁prediction", + -12.637041091918945 + ], + [ + "▁Advent", + -12.637182235717773 + ], + [ + "politik", + -12.637280464172363 + ], + [ + "▁Heimat", + -12.637350082397461 + ], + [ + "ducted", + -12.637380599975586 + ], + [ + "ASH", + -12.637386322021484 + ], + [ + "▁Mold", + -12.637773513793945 + ], + [ + "▁publi", + -12.63784122467041 + ], + [ + "▁Vil", + -12.637892723083496 + ], + [ + "▁stu", + -12.637925148010254 + ], + [ + "INTE", + -12.638032913208008 + ], + [ + "▁fave", + -12.638151168823242 + ], + [ + "▁grounded", + -12.638175010681152 + ], + [ + "▁Anything", + -12.638184547424316 + ], + [ + "vik", + -12.638481140136719 + ], + [ + "Bank", + -12.63853645324707 + ], + [ + "deserved", + -12.638550758361816 + ], + [ + "machen", + -12.63874626159668 + ], + [ + "▁rugged", + -12.638751029968262 + ], + [ + "▁Nest", + -12.638901710510254 + ], + [ + "▁profund", + -12.639043807983398 + ], + [ + "▁quantum", + -12.639067649841309 + ], + [ + "▁funcționa", + -12.639118194580078 + ], + [ + "klu", + -12.639158248901367 + ], + [ + "▁consulter", + -12.63917350769043 + ], + [ + "MED", + -12.639286994934082 + ], + [ + "▁câştig", + -12.639334678649902 + ], + [ + "▁săptămâni", + -12.639334678649902 + ], + [ + "questioned", + -12.639517784118652 + ], + [ + "▁Trop", + -12.639530181884766 + ], + [ + "▁convo", + -12.639533042907715 + ], + [ + "▁sparkling", + -12.639533996582031 + ], + [ + "▁specialise", + -12.639566421508789 + ], + [ + "▁pancake", + -12.639726638793945 + ], + [ + "habitude", + -12.639727592468262 + ], + [ + "phal", + -12.640009880065918 + ], + [ + "▁Roche", + -12.640158653259277 + ], + [ + "▁personalities", + -12.640250205993652 + ], + [ + "▁Venice", + -12.640308380126953 + ], + [ + "▁comerciale", + -12.640379905700684 + ], + [ + "▁wounded", + -12.64075756072998 + ], + [ + "▁oraş", + -12.640864372253418 + ], + [ + "▁Pepper", + -12.641044616699219 + ], + [ + "▁Tourist", + -12.641094207763672 + ], + [ + "▁Mull", + -12.64116382598877 + ], + [ + "▁dignity", + -12.641234397888184 + ], + [ + "▁Fixed", + -12.641291618347168 + ], + [ + "çant", + -12.64130687713623 + ], + [ + "▁spectator", + -12.641402244567871 + ], + [ + "▁somn", + -12.641685485839844 + ], + [ + "▁ständig", + -12.641820907592773 + ], + [ + "▁resilience", + -12.641866683959961 + ], + [ + "▁Malta", + -12.642251014709473 + ], + [ + "▁problemele", + -12.642253875732422 + ], + [ + "▁Martha", + -12.642254829406738 + ], + [ + "▁extern", + -12.642267227172852 + ], + [ + "embre", + -12.642379760742188 + ], + [ + "▁médical", + -12.642526626586914 + ], + [ + "fordern", + -12.64256477355957 + ], + [ + "nji", + -12.642592430114746 + ], + [ + "▁aboard", + -12.642740249633789 + ], + [ + "▁sidewalk", + -12.642759323120117 + ], + [ + "WIN", + -12.642775535583496 + ], + [ + "▁Bobby", + -12.642842292785645 + ], + [ + "▁umfangreiche", + -12.642876625061035 + ], + [ + "leid", + -12.64292049407959 + ], + [ + "▁compens", + -12.642967224121094 + ], + [ + "▁juge", + -12.64299488067627 + ], + [ + "gerufen", + -12.64311408996582 + ], + [ + "▁médicament", + -12.643135070800781 + ], + [ + "▁1918", + -12.643155097961426 + ], + [ + "▁blanche", + -12.643163681030273 + ], + [ + "▁pleasing", + -12.643220901489258 + ], + [ + "▁propria", + -12.643471717834473 + ], + [ + "ergebnisse", + -12.643503189086914 + ], + [ + "▁retrouv", + -12.643571853637695 + ], + [ + "urteil", + -12.643592834472656 + ], + [ + "▁Draft", + -12.64361572265625 + ], + [ + "▁concluzi", + -12.643671035766602 + ], + [ + "centralized", + -12.643789291381836 + ], + [ + "▁Hannah", + -12.64382266998291 + ], + [ + "grija", + -12.64392375946045 + ], + [ + "▁Exercise", + -12.643972396850586 + ], + [ + "RAL", + -12.644001960754395 + ], + [ + "creme", + -12.64408016204834 + ], + [ + "High", + -12.644126892089844 + ], + [ + "clude", + -12.644131660461426 + ], + [ + "Considering", + -12.644208908081055 + ], + [ + "▁Guarantee", + -12.644404411315918 + ], + [ + "▁cuptor", + -12.644436836242676 + ], + [ + "ivität", + -12.64468002319336 + ], + [ + "▁Southwest", + -12.644882202148438 + ], + [ + "▁vivant", + -12.644890785217285 + ], + [ + "Your", + -12.64498519897461 + ], + [ + "▁Stunde", + -12.645003318786621 + ], + [ + "▁Ethernet", + -12.645040512084961 + ], + [ + "angebote", + -12.645078659057617 + ], + [ + "▁Sage", + -12.645271301269531 + ], + [ + "▁Boeing", + -12.645295143127441 + ], + [ + "▁$300", + -12.645381927490234 + ], + [ + "2-4", + -12.64546012878418 + ], + [ + "▁nécessit", + -12.645516395568848 + ], + [ + "▁ferment", + -12.645599365234375 + ], + [ + "▁Anmeldung", + -12.64567756652832 + ], + [ + "▁exhausted", + -12.645758628845215 + ], + [ + "▁Schloss", + -12.645772933959961 + ], + [ + "▁Replacement", + -12.645859718322754 + ], + [ + "▁Aussi", + -12.645933151245117 + ], + [ + "jection", + -12.646127700805664 + ], + [ + "978", + -12.64615535736084 + ], + [ + "▁siège", + -12.646258354187012 + ], + [ + "crest", + -12.646310806274414 + ], + [ + "▁jumatate", + -12.646312713623047 + ], + [ + "effizient", + -12.646317481994629 + ], + [ + "▁colaborare", + -12.6464262008667 + ], + [ + "HQ", + -12.646615028381348 + ], + [ + "130", + -12.646695137023926 + ], + [ + "culaire", + -12.646907806396484 + ], + [ + "▁Jamaica", + -12.646952629089355 + ], + [ + "▁cardboard", + -12.64731216430664 + ], + [ + "▁technische", + -12.64731502532959 + ], + [ + "▁cereri", + -12.647507667541504 + ], + [ + "▁contradict", + -12.647570610046387 + ], + [ + "▁irrigation", + -12.647586822509766 + ], + [ + "Nume", + -12.64765739440918 + ], + [ + "▁Bier", + -12.647714614868164 + ], + [ + "▁livrare", + -12.647903442382812 + ], + [ + "▁reservoir", + -12.647906303405762 + ], + [ + "vâr", + -12.648130416870117 + ], + [ + "▁galben", + -12.648213386535645 + ], + [ + "▁Geneva", + -12.648303985595703 + ], + [ + "▁lightning", + -12.648418426513672 + ], + [ + "wished", + -12.64842414855957 + ], + [ + "▁Blind", + -12.648481369018555 + ], + [ + "Interested", + -12.648499488830566 + ], + [ + "▁Primări", + -12.648627281188965 + ], + [ + "anthropo", + -12.648954391479492 + ], + [ + "▁Transaction", + -12.648961067199707 + ], + [ + "▁marcat", + -12.648971557617188 + ], + [ + "▁gelegen", + -12.649077415466309 + ], + [ + "▁contemporain", + -12.649182319641113 + ], + [ + "▁politică", + -12.649182319641113 + ], + [ + "▁1948", + -12.64928150177002 + ], + [ + "▁Mik", + -12.649287223815918 + ], + [ + "▁preţ", + -12.649310111999512 + ], + [ + "moor", + -12.649312973022461 + ], + [ + "ANN", + -12.649432182312012 + ], + [ + "▁constructive", + -12.649454116821289 + ], + [ + "konzept", + -12.649502754211426 + ], + [ + "▁entendu", + -12.649511337280273 + ], + [ + "▁Genesis", + -12.649541854858398 + ], + [ + "arzt", + -12.649581909179688 + ], + [ + "▁Allgemein", + -12.64970874786377 + ], + [ + "▁Derby", + -12.649725914001465 + ], + [ + "Class", + -12.649762153625488 + ], + [ + "▁$12", + -12.649770736694336 + ], + [ + "▁Tube", + -12.6498441696167 + ], + [ + "▁Contribu", + -12.649847030639648 + ], + [ + "▁HAVE", + -12.649860382080078 + ], + [ + "▁oxide", + -12.64986515045166 + ], + [ + "▁producator", + -12.649941444396973 + ], + [ + "▁Bench", + -12.650132179260254 + ], + [ + "▁comprehend", + -12.650139808654785 + ], + [ + "▁Damen", + -12.650494575500488 + ], + [ + "▁Garant", + -12.65056037902832 + ], + [ + "▁disappointing", + -12.650614738464355 + ], + [ + "▁réalisée", + -12.650693893432617 + ], + [ + "▁comportement", + -12.65072250366211 + ], + [ + "▁clash", + -12.650753021240234 + ], + [ + "▁curry", + -12.65076732635498 + ], + [ + "▁Lebanon", + -12.65078067779541 + ], + [ + "▁Romaniei", + -12.650784492492676 + ], + [ + "▁reprise", + -12.650840759277344 + ], + [ + "▁perceive", + -12.65095329284668 + ], + [ + "▁weaknesses", + -12.65101146697998 + ], + [ + "▁aminti", + -12.651057243347168 + ], + [ + "▁Concern", + -12.651103973388672 + ], + [ + "shadow", + -12.651310920715332 + ], + [ + "▁basin", + -12.651311874389648 + ], + [ + "moral", + -12.652063369750977 + ], + [ + "▁Hughes", + -12.652101516723633 + ], + [ + "Psych", + -12.652266502380371 + ], + [ + "▁Lieferung", + -12.65227222442627 + ], + [ + "▁serrurier", + -12.652379035949707 + ], + [ + "ussi", + -12.652386665344238 + ], + [ + "▁timpului", + -12.6524658203125 + ], + [ + "üm", + -12.652629852294922 + ], + [ + "▁Vladimir", + -12.652701377868652 + ], + [ + "▁Jag", + -12.65279483795166 + ], + [ + "▁verific", + -12.652849197387695 + ], + [ + "▁Pru", + -12.652894020080566 + ], + [ + "▁Laut", + -12.653285026550293 + ], + [ + "ITA", + -12.653287887573242 + ], + [ + "usually", + -12.653294563293457 + ], + [ + "▁carrière", + -12.65341854095459 + ], + [ + "▁extracted", + -12.653663635253906 + ], + [ + "kultur", + -12.653679847717285 + ], + [ + "öpfe", + -12.653932571411133 + ], + [ + "▁rejection", + -12.654016494750977 + ], + [ + "▁Hydr", + -12.654062271118164 + ], + [ + "▁informaţii", + -12.654098510742188 + ], + [ + "▁tolerate", + -12.654122352600098 + ], + [ + "▁cinéma", + -12.654302597045898 + ], + [ + "traumatic", + -12.654305458068848 + ], + [ + "produkt", + -12.654450416564941 + ], + [ + "▁Contest", + -12.654560089111328 + ], + [ + "lotte", + -12.654570579528809 + ], + [ + "▁Pension", + -12.65461254119873 + ], + [ + "▁Advertising", + -12.654623985290527 + ], + [ + "▁payout", + -12.654772758483887 + ], + [ + "▁Amanda", + -12.65481185913086 + ], + [ + "Elect", + -12.65485668182373 + ], + [ + "▁interiorul", + -12.654996871948242 + ], + [ + "stay", + -12.655348777770996 + ], + [ + "▁feminine", + -12.655352592468262 + ], + [ + "▁întâmplă", + -12.655437469482422 + ], + [ + "▁insult", + -12.65562915802002 + ], + [ + "▁chocolat", + -12.65567398071289 + ], + [ + "▁noroc", + -12.655750274658203 + ], + [ + "▁centr", + -12.655781745910645 + ], + [ + "▁Bühne", + -12.655858039855957 + ], + [ + "mighty", + -12.6558837890625 + ], + [ + "▁Buddha", + -12.655908584594727 + ], + [ + "▁parental", + -12.655997276306152 + ], + [ + "storm", + -12.656451225280762 + ], + [ + "recurring", + -12.6565523147583 + ], + [ + "▁luxe", + -12.656588554382324 + ], + [ + "niște", + -12.656728744506836 + ], + [ + "cuit", + -12.656839370727539 + ], + [ + "▁ausgewählt", + -12.656880378723145 + ], + [ + "▁dumb", + -12.657047271728516 + ], + [ + "IPS", + -12.657127380371094 + ], + [ + "▁Thir", + -12.65717887878418 + ], + [ + "Definitely", + -12.657195091247559 + ], + [ + "▁hilarious", + -12.657195091247559 + ], + [ + "▁rainbow", + -12.657231330871582 + ], + [ + "▁Bravo", + -12.657251358032227 + ], + [ + "▁entstanden", + -12.657259941101074 + ], + [ + "itorul", + -12.657269477844238 + ], + [ + "▁prosperity", + -12.657299041748047 + ], + [ + "▁Bord", + -12.657336235046387 + ], + [ + "▁familiei", + -12.657363891601562 + ], + [ + "▁scade", + -12.657425880432129 + ], + [ + "wöhn", + -12.657426834106445 + ], + [ + "▁ingrediente", + -12.65743637084961 + ], + [ + "RAD", + -12.657441139221191 + ], + [ + "▁tăi", + -12.657472610473633 + ], + [ + "bours", + -12.65747356414795 + ], + [ + "ATI", + -12.657540321350098 + ], + [ + "▁Blake", + -12.65761661529541 + ], + [ + "▁Implement", + -12.657712936401367 + ], + [ + "▁Beziehung", + -12.657838821411133 + ], + [ + "finanz", + -12.657953262329102 + ], + [ + "intestin", + -12.658513069152832 + ], + [ + "ließen", + -12.658535957336426 + ], + [ + "▁récent", + -12.658594131469727 + ], + [ + "▁laminate", + -12.658692359924316 + ], + [ + "▁Hör", + -12.65876579284668 + ], + [ + "▁personnalisé", + -12.658804893493652 + ], + [ + "edel", + -12.65890121459961 + ], + [ + "▁advertisement", + -12.658902168273926 + ], + [ + "▁pinterest", + -12.658921241760254 + ], + [ + "185", + -12.659058570861816 + ], + [ + "identité", + -12.65938949584961 + ], + [ + "▁Brick", + -12.659408569335938 + ], + [ + "Glu", + -12.65941047668457 + ], + [ + "▁attendant", + -12.659571647644043 + ], + [ + "▁Flip", + -12.659614562988281 + ], + [ + "attracting", + -12.659662246704102 + ], + [ + "functional", + -12.659703254699707 + ], + [ + "conceived", + -12.659772872924805 + ], + [ + "▁summarize", + -12.659773826599121 + ], + [ + "adjusting", + -12.659809112548828 + ], + [ + "CAL", + -12.660041809082031 + ], + [ + "▁Operating", + -12.660076141357422 + ], + [ + "zzi", + -12.66008472442627 + ], + [ + "▁Rover", + -12.6603364944458 + ], + [ + "▁versuchen", + -12.6603364944458 + ], + [ + "▁articulate", + -12.660600662231445 + ], + [ + "▁privé", + -12.660614013671875 + ], + [ + "▁consequent", + -12.660663604736328 + ], + [ + "EAT", + -12.660690307617188 + ], + [ + "▁Marsh", + -12.660696983337402 + ], + [ + "▁teenage", + -12.660717964172363 + ], + [ + "▁Renaissance", + -12.660740852355957 + ], + [ + "▁furnizor", + -12.660883903503418 + ], + [ + "▁Desert", + -12.660894393920898 + ], + [ + "unicipiului", + -12.66104793548584 + ], + [ + "▁ulterior", + -12.661065101623535 + ], + [ + "▁Ebene", + -12.661280632019043 + ], + [ + "▁monkey", + -12.661351203918457 + ], + [ + "▁enclosed", + -12.661389350891113 + ], + [ + "▁profitability", + -12.66139030456543 + ], + [ + "▁Evolution", + -12.661628723144531 + ], + [ + "▁adica", + -12.661670684814453 + ], + [ + "▁Structure", + -12.661709785461426 + ], + [ + "▁primer", + -12.661761283874512 + ], + [ + "▁asigură", + -12.662001609802246 + ], + [ + "▁Manuel", + -12.662220001220703 + ], + [ + "polita", + -12.662267684936523 + ], + [ + "▁Portable", + -12.662286758422852 + ], + [ + "fecți", + -12.662413597106934 + ], + [ + "▁obscure", + -12.662424087524414 + ], + [ + "▁Atlas", + -12.662436485290527 + ], + [ + "fährt", + -12.662679672241211 + ], + [ + "▁clinician", + -12.662837982177734 + ], + [ + "fuhr", + -12.66310977935791 + ], + [ + "▁matériaux", + -12.663113594055176 + ], + [ + "écrire", + -12.663142204284668 + ], + [ + "▁suspicious", + -12.6632080078125 + ], + [ + "pore", + -12.663263320922852 + ], + [ + "▁outdated", + -12.663304328918457 + ], + [ + "▁Mädchen", + -12.663328170776367 + ], + [ + "rcis", + -12.663420677185059 + ], + [ + "nicht", + -12.663463592529297 + ], + [ + "holding", + -12.663561820983887 + ], + [ + "▁heavier", + -12.66366195678711 + ], + [ + "ezimal", + -12.663960456848145 + ], + [ + "▁silicone", + -12.66397476196289 + ], + [ + "punerea", + -12.664108276367188 + ], + [ + "▁begeistert", + -12.664237976074219 + ], + [ + "2004", + -12.664283752441406 + ], + [ + "▁predecessor", + -12.664299011230469 + ], + [ + "▁overlap", + -12.664369583129883 + ], + [ + "▁digging", + -12.664376258850098 + ], + [ + "▁Upgrade", + -12.664407730102539 + ], + [ + "▁interesat", + -12.664543151855469 + ], + [ + "▁spinach", + -12.66456127166748 + ], + [ + "▁politice", + -12.664626121520996 + ], + [ + "activity", + -12.664831161499023 + ], + [ + "▁Rating", + -12.66484546661377 + ], + [ + "▁serrure", + -12.664846420288086 + ], + [ + "▁tânăr", + -12.664959907531738 + ], + [ + "▁WHAT", + -12.664970397949219 + ], + [ + "▁railroad", + -12.664989471435547 + ], + [ + "▁avid", + -12.665081024169922 + ], + [ + "▁Sophie", + -12.665084838867188 + ], + [ + "preferably", + -12.665173530578613 + ], + [ + "▁Fourth", + -12.665431022644043 + ], + [ + "kommenden", + -12.665452003479004 + ], + [ + "QUI", + -12.665478706359863 + ], + [ + "lohn", + -12.665505409240723 + ], + [ + "▁promis", + -12.665611267089844 + ], + [ + "▁shrub", + -12.665621757507324 + ], + [ + "nummer", + -12.66579818725586 + ], + [ + "▁dinosaur", + -12.665922164916992 + ], + [ + "▁Lucky", + -12.665937423706055 + ], + [ + "relates", + -12.666038513183594 + ], + [ + "▁FROM", + -12.666049003601074 + ], + [ + "▁racism", + -12.66610336303711 + ], + [ + "physical", + -12.66611385345459 + ], + [ + "alcoholic", + -12.666119575500488 + ], + [ + "▁reef", + -12.666126251220703 + ], + [ + "▁centru", + -12.66618824005127 + ], + [ + "université", + -12.66622257232666 + ], + [ + "▁visage", + -12.666232109069824 + ], + [ + "ităţile", + -12.666253089904785 + ], + [ + "▁Gent", + -12.666345596313477 + ], + [ + "zugeben", + -12.66643238067627 + ], + [ + "▁paradise", + -12.66646957397461 + ], + [ + "fuel", + -12.666505813598633 + ], + [ + "ografie", + -12.666568756103516 + ], + [ + "▁TIP", + -12.666730880737305 + ], + [ + "schreibung", + -12.66683292388916 + ], + [ + "▁bark", + -12.666840553283691 + ], + [ + "accéder", + -12.666895866394043 + ], + [ + "▁contamination", + -12.666937828063965 + ], + [ + "▁swelling", + -12.666950225830078 + ], + [ + "▁optimistic", + -12.666974067687988 + ], + [ + "▁differential", + -12.667015075683594 + ], + [ + "▁Arad", + -12.667030334472656 + ], + [ + "toxins", + -12.667075157165527 + ], + [ + "▁übernehmen", + -12.667091369628906 + ], + [ + "▁anime", + -12.667143821716309 + ], + [ + "actuel", + -12.667462348937988 + ], + [ + "▁bientôt", + -12.667525291442871 + ], + [ + "▁Patio", + -12.66761302947998 + ], + [ + "▁baisse", + -12.667630195617676 + ], + [ + "▁sprint", + -12.66773796081543 + ], + [ + "▁bilden", + -12.66811466217041 + ], + [ + "VAL", + -12.668132781982422 + ], + [ + "▁réflexion", + -12.668220520019531 + ], + [ + "hopping", + -12.668242454528809 + ], + [ + "genesis", + -12.66834545135498 + ], + [ + "achtet", + -12.668435096740723 + ], + [ + "▁chinois", + -12.668525695800781 + ], + [ + "▁dezvoltat", + -12.668795585632324 + ], + [ + "arguably", + -12.66884708404541 + ], + [ + "▁Protocol", + -12.66884708404541 + ], + [ + "▁Sterling", + -12.668862342834473 + ], + [ + "▁Cave", + -12.668975830078125 + ], + [ + "▁Condo", + -12.66921615600586 + ], + [ + "▁erhöht", + -12.669235229492188 + ], + [ + "typische", + -12.669416427612305 + ], + [ + "merged", + -12.669439315795898 + ], + [ + "▁accumulation", + -12.669560432434082 + ], + [ + "sicherlich", + -12.669569969177246 + ], + [ + "kW", + -12.669620513916016 + ], + [ + "▁schriftlich", + -12.669757843017578 + ], + [ + "▁Vorteile", + -12.669918060302734 + ], + [ + "▁Northeast", + -12.669922828674316 + ], + [ + "frunt", + -12.669941902160645 + ], + [ + "istik", + -12.670003890991211 + ], + [ + "erster", + -12.670035362243652 + ], + [ + "▁Assistance", + -12.670150756835938 + ], + [ + "▁Fantastic", + -12.670150756835938 + ], + [ + "▁bărbat", + -12.670150756835938 + ], + [ + "▁Grinding", + -12.670151710510254 + ], + [ + "▁diffusion", + -12.670161247253418 + ], + [ + "▁vreun", + -12.670331954956055 + ], + [ + "▁Butler", + -12.670342445373535 + ], + [ + "▁Cherry", + -12.670352935791016 + ], + [ + "▁visualization", + -12.670540809631348 + ], + [ + "Paket", + -12.670572280883789 + ], + [ + "blin", + -12.670619010925293 + ], + [ + "▁cadou", + -12.670705795288086 + ], + [ + "▁Celtic", + -12.670754432678223 + ], + [ + "alegerea", + -12.670894622802734 + ], + [ + "▁Dorf", + -12.671035766601562 + ], + [ + "▁Noir", + -12.671185493469238 + ], + [ + "payment", + -12.67126750946045 + ], + [ + "▁Caroline", + -12.671334266662598 + ], + [ + "▁Berry", + -12.671359062194824 + ], + [ + "▁professeur", + -12.67147445678711 + ], + [ + "▁gratuitement", + -12.671503067016602 + ], + [ + "Suntem", + -12.671523094177246 + ], + [ + "IAN", + -12.671738624572754 + ], + [ + "▁fingerprint", + -12.671780586242676 + ], + [ + "▁controversy", + -12.671781539916992 + ], + [ + "▁fled", + -12.671875 + ], + [ + "▁Pokémon", + -12.67210865020752 + ], + [ + "excluding", + -12.67211627960205 + ], + [ + "▁friction", + -12.672161102294922 + ], + [ + "therapie", + -12.67225456237793 + ], + [ + "/7", + -12.672398567199707 + ], + [ + "▁designation", + -12.672442436218262 + ], + [ + "▁Belgia", + -12.672704696655273 + ], + [ + "▁cursuri", + -12.672836303710938 + ], + [ + "model", + -12.672840118408203 + ], + [ + "super", + -12.672987937927246 + ], + [ + "▁réduit", + -12.673028945922852 + ], + [ + "▁implicit", + -12.673177719116211 + ], + [ + "athlon", + -12.673227310180664 + ], + [ + "anniversaire", + -12.673416137695312 + ], + [ + "▁teaspoon", + -12.673416137695312 + ], + [ + "▁corrosion", + -12.673418998718262 + ], + [ + "▁überzeugt", + -12.673418998718262 + ], + [ + "▁flawless", + -12.673421859741211 + ], + [ + "▁vegetation", + -12.673477172851562 + ], + [ + "▁iarna", + -12.673507690429688 + ], + [ + "▁psychologist", + -12.673591613769531 + ], + [ + "hora", + -12.673625946044922 + ], + [ + "gab", + -12.67387580871582 + ], + [ + "▁soothing", + -12.674084663391113 + ], + [ + "▁stew", + -12.674141883850098 + ], + [ + "▁wager", + -12.674172401428223 + ], + [ + "▁tinere", + -12.674322128295898 + ], + [ + "▁baut", + -12.674323081970215 + ], + [ + "ecunoscut", + -12.674352645874023 + ], + [ + "gearbeitet", + -12.674422264099121 + ], + [ + "▁functi", + -12.674480438232422 + ], + [ + "▁dürfte", + -12.674724578857422 + ], + [ + "▁média", + -12.674724578857422 + ], + [ + "▁campanie", + -12.67475700378418 + ], + [ + "▁Distribu", + -12.674817085266113 + ], + [ + "▁mentoring", + -12.674959182739258 + ], + [ + "▁criz", + -12.675020217895508 + ], + [ + "findest", + -12.675056457519531 + ], + [ + "▁Vasile", + -12.675058364868164 + ], + [ + "▁compassionate", + -12.675115585327148 + ], + [ + "▁Tudor", + -12.675140380859375 + ], + [ + "▁flare", + -12.675260543823242 + ], + [ + "intreaga", + -12.675283432006836 + ], + [ + "gaz", + -12.6753511428833 + ], + [ + "▁porcelain", + -12.675379753112793 + ], + [ + "▁expedition", + -12.675520896911621 + ], + [ + "▁Azure", + -12.67553997039795 + ], + [ + "räumen", + -12.675549507141113 + ], + [ + "eiro", + -12.675567626953125 + ], + [ + "variante", + -12.675804138183594 + ], + [ + "▁Lucy", + -12.675825119018555 + ], + [ + "ôle", + -12.675909996032715 + ], + [ + "▁revenir", + -12.67602252960205 + ], + [ + "▁stained", + -12.676040649414062 + ], + [ + "▁falsch", + -12.676166534423828 + ], + [ + "▁incorpor", + -12.676166534423828 + ], + [ + "merkt", + -12.676187515258789 + ], + [ + "▁achten", + -12.6762056350708 + ], + [ + "▁hello", + -12.676290512084961 + ], + [ + "selben", + -12.676422119140625 + ], + [ + "ifty", + -12.676525115966797 + ], + [ + "▁Feier", + -12.67653751373291 + ], + [ + "1.000", + -12.676557540893555 + ], + [ + "▁Patch", + -12.676583290100098 + ], + [ + "peptid", + -12.676846504211426 + ], + [ + "▁recovering", + -12.676898956298828 + ], + [ + "Symptom", + -12.677020072937012 + ], + [ + "▁Auckland", + -12.677020072937012 + ], + [ + "▁retrieve", + -12.677328109741211 + ], + [ + "▁800-", + -12.67733097076416 + ], + [ + "schlagen", + -12.677473068237305 + ], + [ + "▁lourd", + -12.677562713623047 + ], + [ + "▁Purple", + -12.67760181427002 + ], + [ + "▁mittels", + -12.677776336669922 + ], + [ + "▁Düsseldorf", + -12.67800521850586 + ], + [ + "▁getaway", + -12.67803955078125 + ], + [ + "▁Cedar", + -12.678061485290527 + ], + [ + "▁Function", + -12.678241729736328 + ], + [ + "▁bizarre", + -12.67833423614502 + ], + [ + "4.3", + -12.67849063873291 + ], + [ + "▁fundraiser", + -12.67866325378418 + ], + [ + "geared", + -12.678780555725098 + ], + [ + "▁privée", + -12.678781509399414 + ], + [ + "▁Bonjour", + -12.67894458770752 + ], + [ + "Gar", + -12.67895793914795 + ], + [ + "▁Lloyd", + -12.678991317749023 + ], + [ + "▁Reinigung", + -12.6790132522583 + ], + [ + "▁Geno", + -12.679155349731445 + ], + [ + "▁Teilnahme", + -12.67919635772705 + ], + [ + "pian", + -12.679362297058105 + ], + [ + "sammelt", + -12.679368019104004 + ], + [ + "Pad", + -12.679755210876465 + ], + [ + "▁Troy", + -12.67976188659668 + ], + [ + "HG", + -12.679943084716797 + ], + [ + "▁klein", + -12.679962158203125 + ], + [ + "▁lettuce", + -12.679978370666504 + ], + [ + "▁patrimoine", + -12.679978370666504 + ], + [ + "▁cooker", + -12.680055618286133 + ], + [ + "▁accesibil", + -12.680137634277344 + ], + [ + "▁Spray", + -12.680201530456543 + ], + [ + "▁negotiation", + -12.68047046661377 + ], + [ + "▁jewel", + -12.680480003356934 + ], + [ + "▁dynamique", + -12.68063735961914 + ], + [ + "▁plastique", + -12.68067741394043 + ], + [ + "▁Limo", + -12.680682182312012 + ], + [ + "▁Funk", + -12.68069076538086 + ], + [ + "▁omului", + -12.680702209472656 + ], + [ + "title", + -12.680768013000488 + ], + [ + "curved", + -12.68082046508789 + ], + [ + "▁Lemon", + -12.680851936340332 + ], + [ + "förder", + -12.680891990661621 + ], + [ + "▁bewusst", + -12.681112289428711 + ], + [ + "inevitably", + -12.681296348571777 + ], + [ + "▁derivative", + -12.681297302246094 + ], + [ + "2:30", + -12.681300163269043 + ], + [ + "komfort", + -12.681305885314941 + ], + [ + "original", + -12.681480407714844 + ], + [ + "sanct", + -12.681540489196777 + ], + [ + "▁matte", + -12.6815767288208 + ], + [ + "empêche", + -12.681628227233887 + ], + [ + "▁jucător", + -12.681634902954102 + ], + [ + "▁attentive", + -12.681640625 + ], + [ + "▁recunoscut", + -12.681674003601074 + ], + [ + "▁Brush", + -12.68167495727539 + ], + [ + "▁consommateur", + -12.68183422088623 + ], + [ + "érence", + -12.682063102722168 + ], + [ + "typical", + -12.682084083557129 + ], + [ + "strategie", + -12.682205200195312 + ], + [ + "Effekt", + -12.682290077209473 + ], + [ + "▁Alcohol", + -12.682292938232422 + ], + [ + "oji", + -12.682333946228027 + ], + [ + "▁ruler", + -12.682357788085938 + ], + [ + "▁Norwegian", + -12.682615280151367 + ], + [ + "▁PlayStation", + -12.682615280151367 + ], + [ + "▁Hook", + -12.682747840881348 + ], + [ + "▁viewpoint", + -12.682759284973145 + ], + [ + "THER", + -12.682841300964355 + ], + [ + "420", + -12.682888984680176 + ], + [ + "Consequently", + -12.68294620513916 + ], + [ + "▁entschieden", + -12.68294620513916 + ], + [ + "▁Trag", + -12.68295669555664 + ], + [ + "▁Dawn", + -12.683003425598145 + ], + [ + "▁fuss", + -12.68301773071289 + ], + [ + "*****", + -12.683040618896484 + ], + [ + "▁Bullet", + -12.683140754699707 + ], + [ + "CAM", + -12.683155059814453 + ], + [ + "▁wonderfully", + -12.683201789855957 + ], + [ + "▁parlamentar", + -12.683263778686523 + ], + [ + "▁geometric", + -12.683307647705078 + ], + [ + "talement", + -12.683321952819824 + ], + [ + "/2018", + -12.683577537536621 + ], + [ + "▁oversight", + -12.684036254882812 + ], + [ + "kindly", + -12.684080123901367 + ], + [ + "therm", + -12.684305191040039 + ], + [ + "▁treaba", + -12.6846342086792 + ], + [ + "▁Trim", + -12.68471908569336 + ], + [ + "▁intelege", + -12.684842109680176 + ], + [ + "cino", + -12.685032844543457 + ], + [ + "▁straw", + -12.68508529663086 + ], + [ + "Tru", + -12.685251235961914 + ], + [ + "▁Television", + -12.68530559539795 + ], + [ + "Trader", + -12.68538761138916 + ], + [ + "▁Passion", + -12.685394287109375 + ], + [ + "rescu", + -12.685622215270996 + ], + [ + "Nicol", + -12.685635566711426 + ], + [ + "luj", + -12.685805320739746 + ], + [ + "▁mijloace", + -12.685921669006348 + ], + [ + "▁Removal", + -12.685922622680664 + ], + [ + "▁1944", + -12.686034202575684 + ], + [ + "▁shortcut", + -12.686159133911133 + ], + [ + "▁Fett", + -12.686258316040039 + ], + [ + "largement", + -12.686371803283691 + ], + [ + "▁altern", + -12.686446189880371 + ], + [ + "▁cleansing", + -12.686562538146973 + ], + [ + "▁Qatar", + -12.686692237854004 + ], + [ + "▁Ceci", + -12.686826705932617 + ], + [ + "▁weave", + -12.686848640441895 + ], + [ + "schmerz", + -12.686878204345703 + ], + [ + "▁dots", + -12.686888694763184 + ], + [ + "Télécharger", + -12.68691635131836 + ], + [ + "▁Conduct", + -12.686944007873535 + ], + [ + "bekannten", + -12.687325477600098 + ], + [ + "▁lungime", + -12.687344551086426 + ], + [ + "▁Ferrari", + -12.687390327453613 + ], + [ + "▁totusi", + -12.687605857849121 + ], + [ + "▁Anniversary", + -12.687911033630371 + ], + [ + "▁wilderness", + -12.687911987304688 + ], + [ + "▁Christoph", + -12.687939643859863 + ], + [ + "▁Nikon", + -12.688112258911133 + ], + [ + "▁Digi", + -12.68818473815918 + ], + [ + "▁Blumen", + -12.688190460205078 + ], + [ + "▁altul", + -12.688249588012695 + ], + [ + "▁Parish", + -12.688321113586426 + ], + [ + "czy", + -12.688393592834473 + ], + [ + "▁temper", + -12.688401222229004 + ], + [ + "▁Powder", + -12.688576698303223 + ], + [ + "▁Arnold", + -12.688577651977539 + ], + [ + "capacitatea", + -12.688687324523926 + ], + [ + "nderungen", + -12.688787460327148 + ], + [ + "▁utilization", + -12.688859939575195 + ], + [ + "99%", + -12.688942909240723 + ], + [ + "▁Fear", + -12.689099311828613 + ], + [ + "JE", + -12.689165115356445 + ], + [ + "▁Simpson", + -12.689239501953125 + ], + [ + "▁Podcast", + -12.68924617767334 + ], + [ + "▁Cardinal", + -12.689290046691895 + ], + [ + "▁Distribution", + -12.689315795898438 + ], + [ + "▁Drawing", + -12.689373970031738 + ], + [ + "▁tint", + -12.689412117004395 + ], + [ + "▁hran", + -12.68945598602295 + ], + [ + "▁Slide", + -12.68960189819336 + ], + [ + "▁Vertrauen", + -12.689654350280762 + ], + [ + "cloth", + -12.68971061706543 + ], + [ + "▁redirect", + -12.689728736877441 + ], + [ + "126", + -12.689842224121094 + ], + [ + "▁constituie", + -12.68985652923584 + ], + [ + "Mai", + -12.690070152282715 + ], + [ + "▁idol", + -12.690088272094727 + ], + [ + "▁tehnice", + -12.690163612365723 + ], + [ + "dip", + -12.690393447875977 + ], + [ + "▁soldier", + -12.690400123596191 + ], + [ + "▁Ordin", + -12.690409660339355 + ], + [ + "wobe", + -12.69050407409668 + ], + [ + "▁Brent", + -12.69058895111084 + ], + [ + "▁Sudan", + -12.690597534179688 + ], + [ + "6000", + -12.690619468688965 + ], + [ + "turism", + -12.690689086914062 + ], + [ + "▁Rocky", + -12.690744400024414 + ], + [ + "naming", + -12.69092082977295 + ], + [ + "▁entrepreneurial", + -12.690925598144531 + ], + [ + "hearted", + -12.690962791442871 + ], + [ + "ayne", + -12.69097900390625 + ], + [ + "▁hover", + -12.691081047058105 + ], + [ + "▁skull", + -12.691279411315918 + ], + [ + "▁tribal", + -12.691407203674316 + ], + [ + "▁crafting", + -12.691543579101562 + ], + [ + "bewertungen", + -12.691569328308105 + ], + [ + "▁decizii", + -12.691625595092773 + ], + [ + "obwohl", + -12.691655158996582 + ], + [ + "▁compromised", + -12.691875457763672 + ], + [ + "▁quelqu", + -12.69195556640625 + ], + [ + "▁Hilton", + -12.692075729370117 + ], + [ + "▁maturity", + -12.692095756530762 + ], + [ + "gelesen", + -12.692100524902344 + ], + [ + "▁harbor", + -12.69210433959961 + ], + [ + "▁maple", + -12.692326545715332 + ], + [ + "▁développ", + -12.6924409866333 + ], + [ + "▁Nobody", + -12.692517280578613 + ], + [ + "équipement", + -12.69255542755127 + ], + [ + "121", + -12.69274616241455 + ], + [ + "140", + -12.692827224731445 + ], + [ + "▁artistes", + -12.692914962768555 + ], + [ + "▁depune", + -12.692941665649414 + ], + [ + "▁erase", + -12.693129539489746 + ], + [ + "▁erzählt", + -12.693197250366211 + ], + [ + "▁Hyundai", + -12.69323444366455 + ], + [ + "▁impairment", + -12.69323444366455 + ], + [ + "▁conving", + -12.693279266357422 + ], + [ + "chasing", + -12.693426132202148 + ], + [ + "▁Claus", + -12.693438529968262 + ], + [ + "▁adaptée", + -12.693687438964844 + ], + [ + "▁Raz", + -12.693740844726562 + ], + [ + "rugs", + -12.693796157836914 + ], + [ + "▁urme", + -12.69387435913086 + ], + [ + "Nonetheless", + -12.693902015686035 + ], + [ + "▁Cemetery", + -12.693902969360352 + ], + [ + "umps", + -12.693906784057617 + ], + [ + "ACA", + -12.694003105163574 + ], + [ + "▁perioade", + -12.694235801696777 + ], + [ + "▁slogan", + -12.694263458251953 + ], + [ + "▁downward", + -12.694441795349121 + ], + [ + "eidig", + -12.694446563720703 + ], + [ + "RAC", + -12.69444751739502 + ], + [ + "▁inaugur", + -12.694496154785156 + ], + [ + "се", + -12.694588661193848 + ], + [ + "▁înțeleg", + -12.694608688354492 + ], + [ + "▁hopeful", + -12.694635391235352 + ], + [ + "▁customization", + -12.6946439743042 + ], + [ + "▁prisoners", + -12.694708824157715 + ], + [ + "▁Rau", + -12.695270538330078 + ], + [ + "▁Pitt", + -12.695389747619629 + ], + [ + "ături", + -12.695542335510254 + ], + [ + "▁metabolic", + -12.695842742919922 + ], + [ + "▁Zach", + -12.695868492126465 + ], + [ + "▁umfassende", + -12.695914268493652 + ], + [ + "▁révél", + -12.695950508117676 + ], + [ + "131", + -12.696052551269531 + ], + [ + "ismului", + -12.696062088012695 + ], + [ + "▁Sac", + -12.696076393127441 + ], + [ + "efficacité", + -12.69624137878418 + ], + [ + "cruci", + -12.69625473022461 + ], + [ + "bisschen", + -12.69632339477539 + ], + [ + "▁Oster", + -12.696324348449707 + ], + [ + "lowered", + -12.6964693069458 + ], + [ + "▁Ausland", + -12.69674015045166 + ], + [ + "▁Pub", + -12.696794509887695 + ], + [ + "▁Marseille", + -12.696925163269043 + ], + [ + "▁Charter", + -12.696959495544434 + ], + [ + "howcasing", + -12.697010040283203 + ], + [ + "risti", + -12.6971435546875 + ], + [ + "▁thermostat", + -12.697151184082031 + ], + [ + "▁Clin", + -12.697233200073242 + ], + [ + "▁entsteht", + -12.697246551513672 + ], + [ + "Choosing", + -12.697248458862305 + ], + [ + "▁Schmerz", + -12.697284698486328 + ], + [ + "▁Till", + -12.697307586669922 + ], + [ + "▁Polo", + -12.697399139404297 + ], + [ + "▁proceduri", + -12.697402000427246 + ], + [ + "▁Believe", + -12.697444915771484 + ], + [ + "▁playful", + -12.697514533996582 + ], + [ + "▁verändert", + -12.697588920593262 + ], + [ + "▁pairing", + -12.697654724121094 + ], + [ + "MAG", + -12.69784927368164 + ], + [ + "leiste", + -12.69788932800293 + ], + [ + "▁testimonial", + -12.697916030883789 + ], + [ + "▁Economy", + -12.697916984558105 + ], + [ + "▁Wechsel", + -12.697918891906738 + ], + [ + "wirkung", + -12.69801139831543 + ], + [ + "▁exceeded", + -12.698030471801758 + ], + [ + "South", + -12.698067665100098 + ], + [ + "create", + -12.698221206665039 + ], + [ + "▁davantage", + -12.698270797729492 + ], + [ + "Log", + -12.69831657409668 + ], + [ + "▁irregular", + -12.698587417602539 + ], + [ + "VB", + -12.698691368103027 + ], + [ + "▁Rö", + -12.698741912841797 + ], + [ + "▁intreb", + -12.698881149291992 + ], + [ + "▁penser", + -12.698920249938965 + ], + [ + "▁déclaré", + -12.698923110961914 + ], + [ + "▁Tommy", + -12.699026107788086 + ], + [ + "2,500", + -12.699163436889648 + ], + [ + "▁Uganda", + -12.699260711669922 + ], + [ + "contacting", + -12.699445724487305 + ], + [ + "▁apreciat", + -12.699485778808594 + ], + [ + "▁beginnen", + -12.6995210647583 + ], + [ + "▁Gain", + -12.699580192565918 + ], + [ + "Office", + -12.69969654083252 + ], + [ + "ermittlung", + -12.699710845947266 + ], + [ + "▁Admission", + -12.699727058410645 + ], + [ + "▁Earl", + -12.6997652053833 + ], + [ + "▁Aviation", + -12.699833869934082 + ], + [ + "▁apologize", + -12.699929237365723 + ], + [ + "▁enclosure", + -12.699929237365723 + ], + [ + "▁Lack", + -12.69998836517334 + ], + [ + "wife", + -12.699995994567871 + ], + [ + "▁rotating", + -12.700016975402832 + ], + [ + "▁hergestellt", + -12.700020790100098 + ], + [ + "▁repository", + -12.70002269744873 + ], + [ + "TK", + -12.700149536132812 + ], + [ + "▁lectur", + -12.700190544128418 + ], + [ + "▁reflex", + -12.700286865234375 + ], + [ + "▁Harmon", + -12.700401306152344 + ], + [ + "▁vrem", + -12.700479507446289 + ], + [ + "▁Strange", + -12.70055103302002 + ], + [ + "▁champagne", + -12.700615882873535 + ], + [ + "▁oscil", + -12.700647354125977 + ], + [ + "sensitive", + -12.700677871704102 + ], + [ + "▁Sheriff", + -12.700841903686523 + ], + [ + "PRES", + -12.700956344604492 + ], + [ + "▁vow", + -12.70123291015625 + ], + [ + "▁dioxide", + -12.701276779174805 + ], + [ + "ен", + -12.701374053955078 + ], + [ + "▁corpului", + -12.701376914978027 + ], + [ + "▁prevăzut", + -12.70160961151123 + ], + [ + "India", + -12.701827049255371 + ], + [ + "hausse", + -12.70189094543457 + ], + [ + "▁clienți", + -12.701957702636719 + ], + [ + "▁entour", + -12.70202350616455 + ], + [ + "▁Sharp", + -12.70209789276123 + ], + [ + "▁teatru", + -12.702285766601562 + ], + [ + "▁Grow", + -12.702327728271484 + ], + [ + "▁caravan", + -12.70234203338623 + ], + [ + "▁sieben", + -12.702420234680176 + ], + [ + "▁cunosc", + -12.702502250671387 + ], + [ + "Bereichen", + -12.702527046203613 + ], + [ + "▁Benutzer", + -12.702619552612305 + ], + [ + "▁Ethiopia", + -12.702619552612305 + ], + [ + "▁Physics", + -12.702619552612305 + ], + [ + "preserving", + -12.70263385772705 + ], + [ + "ал", + -12.702712059020996 + ], + [ + "▁aerial", + -12.70272159576416 + ], + [ + "▁nouvel", + -12.702741622924805 + ], + [ + "▁stamped", + -12.702954292297363 + ], + [ + "▁inaugural", + -12.702970504760742 + ], + [ + "▁medicinal", + -12.702999114990234 + ], + [ + "Quite", + -12.703028678894043 + ], + [ + "accumulated", + -12.703165054321289 + ], + [ + "register", + -12.703271865844727 + ], + [ + "▁Falcon", + -12.70327377319336 + ], + [ + "▁boiling", + -12.703301429748535 + ], + [ + "▁advertised", + -12.703339576721191 + ], + [ + "collect", + -12.703362464904785 + ], + [ + "albeit", + -12.703418731689453 + ], + [ + "▁Organis", + -12.703473091125488 + ], + [ + "luate", + -12.703536033630371 + ], + [ + "▁préféré", + -12.70369815826416 + ], + [ + "▁frumoasa", + -12.703968048095703 + ], + [ + "▁truc", + -12.704092979431152 + ], + [ + "▁Fä", + -12.704154968261719 + ], + [ + "▁dome", + -12.704180717468262 + ], + [ + "Mobile", + -12.704191207885742 + ], + [ + "▁redeem", + -12.704198837280273 + ], + [ + "IONS", + -12.70422077178955 + ], + [ + "▁țări", + -12.704235076904297 + ], + [ + "▁singular", + -12.704385757446289 + ], + [ + "▁livestock", + -12.704425811767578 + ], + [ + "▁démont", + -12.704427719116211 + ], + [ + "clés", + -12.704527854919434 + ], + [ + "music", + -12.704561233520508 + ], + [ + "▁explicat", + -12.704602241516113 + ], + [ + "▁Fellowship", + -12.704703330993652 + ], + [ + "▁electrode", + -12.704760551452637 + ], + [ + "129", + -12.704977035522461 + ], + [ + "▁Rescue", + -12.704983711242676 + ], + [ + "▁Rocket", + -12.705159187316895 + ], + [ + "OSE", + -12.705301284790039 + ], + [ + "▁Sacramento", + -12.705317497253418 + ], + [ + "▁Haiti", + -12.705357551574707 + ], + [ + "▁Erwachsene", + -12.705390930175781 + ], + [ + "▁Terminal", + -12.70541000366211 + ], + [ + "URI", + -12.705453872680664 + ], + [ + "▁Rural", + -12.70549201965332 + ], + [ + "▁achizitiona", + -12.70552921295166 + ], + [ + "▁identifiable", + -12.705655097961426 + ], + [ + "▁gekauft", + -12.705659866333008 + ], + [ + "▁improper", + -12.705673217773438 + ], + [ + "lashes", + -12.705751419067383 + ], + [ + "vorbim", + -12.705751419067383 + ], + [ + "▁hinder", + -12.705862045288086 + ], + [ + "▁Grenz", + -12.705878257751465 + ], + [ + "Nav", + -12.705955505371094 + ], + [ + "alimentation", + -12.705972671508789 + ], + [ + "▁Cottage", + -12.7059965133667 + ], + [ + "▁nötig", + -12.706197738647461 + ], + [ + "▁cuprinde", + -12.70622444152832 + ], + [ + "session", + -12.706256866455078 + ], + [ + "▁Separat", + -12.70634651184082 + ], + [ + "▁besuchen", + -12.706672668457031 + ], + [ + "▁noodles", + -12.706684112548828 + ], + [ + "▁ballet", + -12.706696510314941 + ], + [ + "WG", + -12.706731796264648 + ], + [ + "▁Duty", + -12.706871032714844 + ], + [ + "▁porc", + -12.706944465637207 + ], + [ + "▁booster", + -12.70698356628418 + ], + [ + "galerie", + -12.707056045532227 + ], + [ + "▁Lance", + -12.707119941711426 + ], + [ + "▁déplac", + -12.707178115844727 + ], + [ + "▁rugby", + -12.707240104675293 + ], + [ + "▁upholstery", + -12.707345962524414 + ], + [ + "▁bustl", + -12.70736312866211 + ], + [ + "▁Dealer", + -12.70740032196045 + ], + [ + "▁genome", + -12.707414627075195 + ], + [ + "▁citizenship", + -12.707466125488281 + ], + [ + "rora", + -12.707515716552734 + ], + [ + "ARK", + -12.707776069641113 + ], + [ + "▁Semi", + -12.707820892333984 + ], + [ + "▁Improvement", + -12.707892417907715 + ], + [ + "▁negru", + -12.708142280578613 + ], + [ + "▁Bruxelles", + -12.70836067199707 + ], + [ + "flüge", + -12.70837688446045 + ], + [ + "▁Technique", + -12.708392143249512 + ], + [ + "▁Obst", + -12.708413124084473 + ], + [ + "2020", + -12.708560943603516 + ], + [ + "▁gek", + -12.708593368530273 + ], + [ + "▁drepturi", + -12.708600997924805 + ], + [ + "▁Logan", + -12.708605766296387 + ], + [ + "gelöst", + -12.70863151550293 + ], + [ + "▁grandparents", + -12.708702087402344 + ], + [ + "phin", + -12.708950996398926 + ], + [ + "▁dwell", + -12.709037780761719 + ], + [ + "▁Nobel", + -12.709151268005371 + ], + [ + "dial", + -12.70927906036377 + ], + [ + "▁spontan", + -12.709344863891602 + ], + [ + "advancing", + -12.70937728881836 + ], + [ + "starring", + -12.70947551727295 + ], + [ + "▁astea", + -12.709498405456543 + ], + [ + "igueur", + -12.709638595581055 + ], + [ + "▁Ancient", + -12.709700584411621 + ], + [ + "filter", + -12.70971965789795 + ], + [ + "Doar", + -12.709758758544922 + ], + [ + "▁Workers", + -12.709759712219238 + ], + [ + "Certainly", + -12.709906578063965 + ], + [ + "▁commencé", + -12.709914207458496 + ], + [ + "▁zipper", + -12.710001945495605 + ], + [ + "▁Selection", + -12.710070610046387 + ], + [ + "▁succ", + -12.710280418395996 + ], + [ + "headed", + -12.710345268249512 + ], + [ + "RIA", + -12.710350036621094 + ], + [ + "▁papa", + -12.710366249084473 + ], + [ + "▁profesionale", + -12.710394859313965 + ], + [ + "▁Zeichen", + -12.710402488708496 + ], + [ + "▁artisans", + -12.710489273071289 + ], + [ + "▁Geist", + -12.710585594177246 + ], + [ + "practic", + -12.710741996765137 + ], + [ + "▁ministrul", + -12.71076488494873 + ], + [ + "viens", + -12.710912704467773 + ], + [ + "prezintă", + -12.710919380187988 + ], + [ + "Integrated", + -12.710981369018555 + ], + [ + "▁rooftop", + -12.710989952087402 + ], + [ + "▁successor", + -12.710991859436035 + ], + [ + "OTO", + -12.711012840270996 + ], + [ + "liés", + -12.711027145385742 + ], + [ + "▁Diver", + -12.71121597290039 + ], + [ + "Specifically", + -12.711297988891602 + ], + [ + "▁calibr", + -12.711301803588867 + ], + [ + "KK", + -12.711341857910156 + ], + [ + "▁défense", + -12.711414337158203 + ], + [ + "▁english", + -12.711414337158203 + ], + [ + "verbrauch", + -12.711418151855469 + ], + [ + "▁attire", + -12.711433410644531 + ], + [ + "▁Recipe", + -12.711441040039062 + ], + [ + "équilibre", + -12.711457252502441 + ], + [ + "accumul", + -12.71157169342041 + ], + [ + "▁financement", + -12.71169662475586 + ], + [ + "rij", + -12.711962699890137 + ], + [ + "▁prince", + -12.711999893188477 + ], + [ + "▁préparer", + -12.7120361328125 + ], + [ + "surviving", + -12.71211051940918 + ], + [ + "operation", + -12.712233543395996 + ], + [ + "▁judet", + -12.71242904663086 + ], + [ + "▁Verantwortung", + -12.712433815002441 + ], + [ + "▁Vinyl", + -12.712536811828613 + ], + [ + "DEN", + -12.712584495544434 + ], + [ + "▁Tail", + -12.712589263916016 + ], + [ + "yearly", + -12.712590217590332 + ], + [ + "▁comisi", + -12.712613105773926 + ], + [ + "lava", + -12.71261978149414 + ], + [ + "▁succession", + -12.71264934539795 + ], + [ + "▁Whisk", + -12.713030815124512 + ], + [ + "▁precizat", + -12.713096618652344 + ], + [ + "▁unmittelbar", + -12.713117599487305 + ], + [ + "ICH", + -12.713139533996582 + ], + [ + "▁atteint", + -12.713199615478516 + ], + [ + "▁hometown", + -12.713268280029297 + ], + [ + "▁Zip", + -12.71328353881836 + ], + [ + "▁Weekly", + -12.71336841583252 + ], + [ + "▁crashes", + -12.713401794433594 + ], + [ + "▁Turbo", + -12.713421821594238 + ], + [ + "▁susține", + -12.713468551635742 + ], + [ + "▁Venus", + -12.713587760925293 + ], + [ + "▁finalement", + -12.713595390319824 + ], + [ + "rewarded", + -12.713693618774414 + ], + [ + "▁principau", + -12.713899612426758 + ], + [ + "▁régional", + -12.713979721069336 + ], + [ + "▁1958", + -12.714178085327148 + ], + [ + "▁Musical", + -12.714189529418945 + ], + [ + "▁stylist", + -12.714251518249512 + ], + [ + "cetate", + -12.714282035827637 + ], + [ + "gorge", + -12.71433162689209 + ], + [ + "▁espresso", + -12.714493751525879 + ], + [ + "überall", + -12.714576721191406 + ], + [ + "▁NHL", + -12.714593887329102 + ], + [ + "▁Dock", + -12.71472454071045 + ], + [ + "▁mosquito", + -12.71481704711914 + ], + [ + "▁forthcoming", + -12.714852333068848 + ], + [ + "▁Visitors", + -12.714881896972656 + ], + [ + "kro", + -12.714882850646973 + ], + [ + "_______", + -12.715048789978027 + ], + [ + "▁STEM", + -12.715105056762695 + ], + [ + "9.5", + -12.715141296386719 + ], + [ + "accompagne", + -12.715177536010742 + ], + [ + "▁Trick", + -12.715202331542969 + ], + [ + "▁endorsement", + -12.715400695800781 + ], + [ + "▁amplifier", + -12.715498924255371 + ], + [ + "▁malicious", + -12.715499877929688 + ], + [ + "▁roam", + -12.71552848815918 + ], + [ + "▁kennt", + -12.715635299682617 + ], + [ + "Connor", + -12.715690612792969 + ], + [ + "▁dysfunction", + -12.715828895568848 + ], + [ + "▁zuverlässig", + -12.715840339660645 + ], + [ + "▁corpul", + -12.71595573425293 + ], + [ + "▁boule", + -12.715967178344727 + ], + [ + "otti", + -12.715991973876953 + ], + [ + "440", + -12.716050148010254 + ], + [ + "▁mimic", + -12.716056823730469 + ], + [ + "farben", + -12.716129302978516 + ], + [ + "▁Wagner", + -12.716214179992676 + ], + [ + "Kom", + -12.7162504196167 + ], + [ + "▁miteinander", + -12.716269493103027 + ], + [ + "▁String", + -12.716296195983887 + ], + [ + "▁Ellis", + -12.716313362121582 + ], + [ + "▁Perth", + -12.716337203979492 + ], + [ + "▁temperatura", + -12.716381072998047 + ], + [ + "umbling", + -12.716397285461426 + ], + [ + "▁Medizin", + -12.716554641723633 + ], + [ + "▁KY", + -12.71660327911377 + ], + [ + "apei", + -12.716642379760742 + ], + [ + "counter", + -12.716647148132324 + ], + [ + "strich", + -12.71665096282959 + ], + [ + "▁Între", + -12.716652870178223 + ], + [ + "▁Cliff", + -12.716785430908203 + ], + [ + "▁foreclosure", + -12.716864585876465 + ], + [ + "................", + -12.716878890991211 + ], + [ + "Clearly", + -12.717028617858887 + ], + [ + "AJ", + -12.717057228088379 + ], + [ + "ndro", + -12.717180252075195 + ], + [ + "▁Arsenal", + -12.717206001281738 + ], + [ + "▁Recherche", + -12.717216491699219 + ], + [ + "Guests", + -12.717225074768066 + ], + [ + "▁besucht", + -12.717242240905762 + ], + [ + "wissen", + -12.717266082763672 + ], + [ + "fekt", + -12.717414855957031 + ], + [ + "hottest", + -12.717414855957031 + ], + [ + "▁Tomorrow", + -12.717547416687012 + ], + [ + "▁Signature", + -12.717557907104492 + ], + [ + "127", + -12.717583656311035 + ], + [ + "▁competence", + -12.71766471862793 + ], + [ + "Einige", + -12.717686653137207 + ], + [ + "patented", + -12.71782112121582 + ], + [ + "▁Exhibition", + -12.717889785766602 + ], + [ + "▁verbessern", + -12.717889785766602 + ], + [ + "▁Garcia", + -12.718043327331543 + ], + [ + "▁inquire", + -12.718278884887695 + ], + [ + "coping", + -12.718353271484375 + ], + [ + "▁linguri", + -12.71842098236084 + ], + [ + "▁trivia", + -12.718433380126953 + ], + [ + "▁începutul", + -12.718489646911621 + ], + [ + "▁parteneriat", + -12.7186279296875 + ], + [ + "tagen", + -12.718636512756348 + ], + [ + "▁engagé", + -12.718916893005371 + ], + [ + "▁chalk", + -12.718944549560547 + ], + [ + "▁fashionable", + -12.719416618347168 + ], + [ + "0.8", + -12.719635009765625 + ], + [ + "▁sticker", + -12.719751358032227 + ], + [ + "▁desperately", + -12.719765663146973 + ], + [ + "höhe", + -12.719903945922852 + ], + [ + "▁fericire", + -12.71994400024414 + ], + [ + "évaluation", + -12.719948768615723 + ], + [ + "▁Divide", + -12.719959259033203 + ], + [ + "▁indulge", + -12.719979286193848 + ], + [ + "fett", + -12.720014572143555 + ], + [ + "▁communal", + -12.72017765045166 + ], + [ + "▁mindful", + -12.720187187194824 + ], + [ + "dauert", + -12.720192909240723 + ], + [ + "▁veille", + -12.720263481140137 + ], + [ + "▁vér", + -12.720330238342285 + ], + [ + "▁Baseball", + -12.720373153686523 + ], + [ + "▁succeeded", + -12.720418930053711 + ], + [ + "▁Terrasse", + -12.720420837402344 + ], + [ + "irgend", + -12.720500946044922 + ], + [ + "▁Munich", + -12.720556259155273 + ], + [ + "weisung", + -12.72067642211914 + ], + [ + "metre", + -12.720916748046875 + ], + [ + "▁Raymond", + -12.721015930175781 + ], + [ + "▁chute", + -12.72102165222168 + ], + [ + "▁Accounting", + -12.721075057983398 + ], + [ + "▁pantry", + -12.721122741699219 + ], + [ + "▁underwater", + -12.721181869506836 + ], + [ + "ARI", + -12.721222877502441 + ], + [ + "lowed", + -12.721245765686035 + ], + [ + "numbered", + -12.721430778503418 + ], + [ + "REN", + -12.72148609161377 + ], + [ + "▁industriel", + -12.721489906311035 + ], + [ + "wäh", + -12.721531867980957 + ], + [ + "kenntnis", + -12.721631050109863 + ], + [ + "▁govern", + -12.721635818481445 + ], + [ + "strained", + -12.721661567687988 + ], + [ + "▁rythme", + -12.721689224243164 + ], + [ + "ин", + -12.72169303894043 + ], + [ + "▁burner", + -12.721723556518555 + ], + [ + "▁zählt", + -12.721790313720703 + ], + [ + "▁verte", + -12.721883773803711 + ], + [ + "▁Catalog", + -12.721896171569824 + ], + [ + "▁Bruno", + -12.721988677978516 + ], + [ + "0.7", + -12.721997261047363 + ], + [ + "▁litig", + -12.72207260131836 + ], + [ + "▁greet", + -12.722129821777344 + ], + [ + "▁stool", + -12.722393035888672 + ], + [ + "gression", + -12.722457885742188 + ], + [ + "▁Klassen", + -12.722491264343262 + ], + [ + "▁neon", + -12.722661018371582 + ], + [ + "▁Tall", + -12.722734451293945 + ], + [ + "▁satin", + -12.722895622253418 + ], + [ + "▁Bend", + -12.722915649414062 + ], + [ + "▁soluţi", + -12.723077774047852 + ], + [ + "▁styl", + -12.723196983337402 + ], + [ + "▁Siri", + -12.723358154296875 + ], + [ + "▁Sanders", + -12.723464012145996 + ], + [ + "▁spike", + -12.723499298095703 + ], + [ + "pinion", + -12.723854064941406 + ], + [ + "▁purta", + -12.724122047424316 + ], + [ + "CARE", + -12.724224090576172 + ], + [ + "▁creştere", + -12.724311828613281 + ], + [ + "▁fry", + -12.724374771118164 + ], + [ + "▁Schweizer", + -12.724400520324707 + ], + [ + "durchschnittlich", + -12.724411010742188 + ], + [ + "celaşi", + -12.724446296691895 + ], + [ + "▁deceased", + -12.724474906921387 + ], + [ + "▁Nerv", + -12.724668502807617 + ], + [ + "2-2", + -12.7247314453125 + ], + [ + "▁Stahl", + -12.724753379821777 + ], + [ + "▁workload", + -12.724834442138672 + ], + [ + "erhielt", + -12.724984169006348 + ], + [ + "▁hypothesis", + -12.725103378295898 + ], + [ + "bib", + -12.725110054016113 + ], + [ + "▁ţară", + -12.725116729736328 + ], + [ + "vaut", + -12.725122451782227 + ], + [ + "prehensi", + -12.725184440612793 + ], + [ + "▁Offering", + -12.725188255310059 + ], + [ + "▁dislike", + -12.725252151489258 + ], + [ + "▁firewall", + -12.725252151489258 + ], + [ + "mania", + -12.725255966186523 + ], + [ + "195", + -12.725278854370117 + ], + [ + "▁Champ", + -12.725324630737305 + ], + [ + "▁philosophical", + -12.725343704223633 + ], + [ + "länge", + -12.72553539276123 + ], + [ + "advisable", + -12.725785255432129 + ], + [ + "negotiating", + -12.725785255432129 + ], + [ + "Providing", + -12.725791931152344 + ], + [ + "▁1959", + -12.725801467895508 + ], + [ + "▁spyware", + -12.725831031799316 + ], + [ + "sharing", + -12.725837707519531 + ], + [ + "▁prévoi", + -12.725905418395996 + ], + [ + "▁jaune", + -12.7260103225708 + ], + [ + "schoss", + -12.726028442382812 + ], + [ + "▁obține", + -12.726129531860352 + ], + [ + "▁attraktiv", + -12.726489067077637 + ], + [ + "gemeinschaft", + -12.7265043258667 + ], + [ + "BV", + -12.726505279541016 + ], + [ + "Top", + -12.726617813110352 + ], + [ + "▁Sharon", + -12.726625442504883 + ], + [ + "bok", + -12.726675033569336 + ], + [ + "▁résist", + -12.726811408996582 + ], + [ + "Napoca", + -12.726822853088379 + ], + [ + "▁Uncategorized", + -12.726898193359375 + ], + [ + "▁trustee", + -12.726936340332031 + ], + [ + "▁remise", + -12.727025985717773 + ], + [ + "▁aştept", + -12.727165222167969 + ], + [ + "▁allergic", + -12.727206230163574 + ], + [ + "èvre", + -12.727211952209473 + ], + [ + "LAR", + -12.72734546661377 + ], + [ + "1.9", + -12.727497100830078 + ], + [ + "▁outbreak", + -12.727520942687988 + ], + [ + "▁trocken", + -12.727568626403809 + ], + [ + "▁laughter", + -12.727724075317383 + ], + [ + "▁Attend", + -12.727785110473633 + ], + [ + "jung", + -12.727822303771973 + ], + [ + "racking", + -12.727934837341309 + ], + [ + "ORS", + -12.728178024291992 + ], + [ + "▁rasp", + -12.728527069091797 + ], + [ + "VF", + -12.728551864624023 + ], + [ + "▁Tamil", + -12.72860050201416 + ], + [ + "124", + -12.728602409362793 + ], + [ + "▁Fiber", + -12.728714942932129 + ], + [ + "▁launches", + -12.728755950927734 + ], + [ + "Post", + -12.728777885437012 + ], + [ + "▁bucks", + -12.729072570800781 + ], + [ + "▁Nicholas", + -12.72923755645752 + ], + [ + "▁cărți", + -12.729255676269531 + ], + [ + "emper", + -12.729681968688965 + ], + [ + "Point", + -12.729689598083496 + ], + [ + "fraction", + -12.729753494262695 + ], + [ + "▁BIG", + -12.729804992675781 + ], + [ + "▁lancer", + -12.729829788208008 + ], + [ + "EVER", + -12.72997760772705 + ], + [ + "trend", + -12.73000431060791 + ], + [ + "▁remerci", + -12.730076789855957 + ], + [ + "▁prevalent", + -12.730168342590332 + ], + [ + "370", + -12.730290412902832 + ], + [ + "▁bestellen", + -12.730327606201172 + ], + [ + "Buying", + -12.730341911315918 + ], + [ + "▁Aufbau", + -12.730416297912598 + ], + [ + "▁opini", + -12.730416297912598 + ], + [ + "▁regiune", + -12.730663299560547 + ], + [ + "▁martial", + -12.73069953918457 + ], + [ + "LK", + -12.730754852294922 + ], + [ + "▁Feuerwehr", + -12.730974197387695 + ], + [ + "screened", + -12.73099422454834 + ], + [ + "Blue", + -12.73120403289795 + ], + [ + "▁analize", + -12.731237411499023 + ], + [ + "▁lure", + -12.731247901916504 + ], + [ + "▁internally", + -12.731283187866211 + ], + [ + "father", + -12.731322288513184 + ], + [ + "▁diplomatic", + -12.731343269348145 + ], + [ + "▁Activity", + -12.731464385986328 + ], + [ + "▁cliqu", + -12.73156452178955 + ], + [ + "▁adequately", + -12.731809616088867 + ], + [ + "▁Elena", + -12.73183822631836 + ], + [ + "▁Citizens", + -12.732102394104004 + ], + [ + "▁Länge", + -12.732295989990234 + ], + [ + "▁respectful", + -12.732300758361816 + ], + [ + "▁zuständig", + -12.73248291015625 + ], + [ + "▁réception", + -12.732584953308105 + ], + [ + "▁headset", + -12.732686996459961 + ], + [ + "▁awhile", + -12.732705116271973 + ], + [ + "▁speculation", + -12.732707977294922 + ], + [ + "▁WhatsApp", + -12.732714653015137 + ], + [ + "▁tulbur", + -12.732731819152832 + ], + [ + "▁voluntar", + -12.732758522033691 + ], + [ + "▁Studium", + -12.73277473449707 + ], + [ + "▁protector", + -12.732833862304688 + ], + [ + "▁Wrap", + -12.732840538024902 + ], + [ + "staat", + -12.732951164245605 + ], + [ + "▁judgement", + -12.733396530151367 + ], + [ + "unauthorized", + -12.733397483825684 + ], + [ + "Rank", + -12.733487129211426 + ], + [ + "pră", + -12.733503341674805 + ], + [ + "▁Paw", + -12.733627319335938 + ], + [ + "▁relev", + -12.733664512634277 + ], + [ + "▁arbor", + -12.733830451965332 + ], + [ + "stretches", + -12.733885765075684 + ], + [ + "nook", + -12.733906745910645 + ], + [ + "▁Tunis", + -12.733907699584961 + ], + [ + "▁shocking", + -12.734036445617676 + ], + [ + "▁oppress", + -12.73414421081543 + ], + [ + "10.1", + -12.7341890335083 + ], + [ + "▁ERP", + -12.734310150146484 + ], + [ + "wolle", + -12.7343168258667 + ], + [ + "▁Catch", + -12.734352111816406 + ], + [ + "Plus", + -12.734368324279785 + ], + [ + "Market", + -12.734445571899414 + ], + [ + "scribed", + -12.734536170959473 + ], + [ + "▁décoration", + -12.734594345092773 + ], + [ + "▁chanson", + -12.734607696533203 + ], + [ + "▁Midwest", + -12.734763145446777 + ], + [ + "▁Spencer", + -12.734795570373535 + ], + [ + "▁societate", + -12.734807968139648 + ], + [ + "curated", + -12.735087394714355 + ], + [ + "▁canopy", + -12.735135078430176 + ], + [ + "ат", + -12.735142707824707 + ], + [ + "Sig", + -12.73514461517334 + ], + [ + "▁witch", + -12.735153198242188 + ], + [ + "envoyer", + -12.735175132751465 + ], + [ + "▁$1,000", + -12.735230445861816 + ], + [ + "▁peripheral", + -12.735482215881348 + ], + [ + "nnouncing", + -12.735509872436523 + ], + [ + "perfect", + -12.73559284210205 + ], + [ + "▁warten", + -12.735748291015625 + ], + [ + "ELI", + -12.735822677612305 + ], + [ + "▁recap", + -12.735912322998047 + ], + [ + "dün", + -12.735978126525879 + ], + [ + "▁Spre", + -12.736029624938965 + ], + [ + "2005", + -12.736153602600098 + ], + [ + "▁réparation", + -12.73617935180664 + ], + [ + "▁extraordinar", + -12.736196517944336 + ], + [ + "existence", + -12.736337661743164 + ], + [ + "oanele", + -12.736467361450195 + ], + [ + "▁reprezentant", + -12.736474990844727 + ], + [ + "▁attacker", + -12.736490249633789 + ], + [ + "▁Berliner", + -12.73657512664795 + ], + [ + "experience", + -12.736649513244629 + ], + [ + "▁Monde", + -12.736800193786621 + ], + [ + "intervention", + -12.736956596374512 + ], + [ + "▁Einstellung", + -12.736977577209473 + ], + [ + "▁Valentin", + -12.737011909484863 + ], + [ + "▁zonă", + -12.737200736999512 + ], + [ + "occupant", + -12.737223625183105 + ], + [ + "▁mobilis", + -12.737260818481445 + ], + [ + "metall", + -12.737261772155762 + ], + [ + "evangeli", + -12.73729133605957 + ], + [ + "Adding", + -12.737326622009277 + ], + [ + "▁Roland", + -12.73735237121582 + ], + [ + "ENCE", + -12.737462043762207 + ], + [ + "▁Insul", + -12.737478256225586 + ], + [ + "tellement", + -12.737497329711914 + ], + [ + "▁Blogger", + -12.737499237060547 + ], + [ + "▁prote", + -12.737504005432129 + ], + [ + "▁Minimum", + -12.737574577331543 + ], + [ + "▁termic", + -12.737624168395996 + ], + [ + "▁Sachen", + -12.737859725952148 + ], + [ + "▁Maschinen", + -12.737863540649414 + ], + [ + "▁Dragnea", + -12.737926483154297 + ], + [ + "▁overtime", + -12.737967491149902 + ], + [ + "calorie", + -12.737968444824219 + ], + [ + "▁jene", + -12.73814868927002 + ], + [ + "▁Satan", + -12.738153457641602 + ], + [ + "▁currencies", + -12.73827075958252 + ], + [ + "▁echipamente", + -12.738329887390137 + ], + [ + "▁forgiveness", + -12.73843765258789 + ], + [ + "▁Pause", + -12.738479614257812 + ], + [ + "▁Witt", + -12.738529205322266 + ], + [ + "STOR", + -12.738632202148438 + ], + [ + "▁actuelle", + -12.738703727722168 + ], + [ + "▁Ard", + -12.738853454589844 + ], + [ + "▁Constitu", + -12.738880157470703 + ], + [ + "ghan", + -12.7388916015625 + ], + [ + "Make", + -12.738906860351562 + ], + [ + "▁garne", + -12.738947868347168 + ], + [ + "▁Hitler", + -12.738956451416016 + ], + [ + "▁rubbish", + -12.738973617553711 + ], + [ + "6.0", + -12.739025115966797 + ], + [ + "▁Giving", + -12.739177703857422 + ], + [ + "▁persever", + -12.73937702178955 + ], + [ + "wirk", + -12.7394380569458 + ], + [ + "liegenden", + -12.739455223083496 + ], + [ + "▁morceau", + -12.73946762084961 + ], + [ + "atty", + -12.73961067199707 + ], + [ + "▁Quebec", + -12.739669799804688 + ], + [ + "harmonie", + -12.739705085754395 + ], + [ + "Nummer", + -12.739721298217773 + ], + [ + "▁splendid", + -12.739747047424316 + ], + [ + "▁halfway", + -12.739808082580566 + ], + [ + "▁periodically", + -12.740071296691895 + ], + [ + "▁Ländern", + -12.740077018737793 + ], + [ + "▁AAA", + -12.740083694458008 + ], + [ + "▁Frost", + -12.740198135375977 + ], + [ + "▁heroin", + -12.740289688110352 + ], + [ + "▁bucurie", + -12.7403564453125 + ], + [ + "▁Pradesh", + -12.74036693572998 + ], + [ + "zusetzen", + -12.740405082702637 + ], + [ + "raising", + -12.740425109863281 + ], + [ + "▁furniz", + -12.740567207336426 + ], + [ + "▁convi", + -12.740575790405273 + ], + [ + "pictured", + -12.740911483764648 + ], + [ + "▁inadequate", + -12.741065979003906 + ], + [ + "▁aprobat", + -12.741069793701172 + ], + [ + "▁exercising", + -12.741083145141602 + ], + [ + "▁faisai", + -12.741138458251953 + ], + [ + "▁prosecution", + -12.741231918334961 + ], + [ + "380", + -12.741402626037598 + ], + [ + "▁Potential", + -12.74145793914795 + ], + [ + "▁Magi", + -12.741523742675781 + ], + [ + "From", + -12.741752624511719 + ], + [ + "batterie", + -12.74181079864502 + ], + [ + "▁poisson", + -12.74185562133789 + ], + [ + "▁Probe", + -12.741950988769531 + ], + [ + "▁pastel", + -12.741998672485352 + ], + [ + "▁tracked", + -12.742410659790039 + ], + [ + "▁advertisers", + -12.74251937866211 + ], + [ + "adevar", + -12.742537498474121 + ], + [ + "ит", + -12.742776870727539 + ], + [ + "▁Herren", + -12.742815971374512 + ], + [ + "EAM", + -12.742820739746094 + ], + [ + "▁scooter", + -12.742822647094727 + ], + [ + "requesting", + -12.742841720581055 + ], + [ + "dynamis", + -12.742949485778809 + ], + [ + "▁dahin", + -12.742961883544922 + ], + [ + "▁tweak", + -12.743061065673828 + ], + [ + "▁hail", + -12.743101119995117 + ], + [ + "▁întotdeauna", + -12.743160247802734 + ], + [ + "▁Publikum", + -12.743167877197266 + ], + [ + "▁panoramic", + -12.743167877197266 + ], + [ + "▁PRE", + -12.74331283569336 + ], + [ + "▁thrill", + -12.743361473083496 + ], + [ + "Open", + -12.743366241455078 + ], + [ + "▁Layer", + -12.74345588684082 + ], + [ + "▁Bosch", + -12.743459701538086 + ], + [ + "hull", + -12.743511199951172 + ], + [ + "▁născut", + -12.743518829345703 + ], + [ + "tausch", + -12.743559837341309 + ], + [ + "▁autoturism", + -12.743577003479004 + ], + [ + "▁crank", + -12.743701934814453 + ], + [ + "CLE", + -12.743735313415527 + ], + [ + "▁Frederick", + -12.74386978149414 + ], + [ + "mog", + -12.743887901306152 + ], + [ + "behalten", + -12.74396800994873 + ], + [ + "▁aunt", + -12.744050979614258 + ], + [ + "▁Triple", + -12.744141578674316 + ], + [ + "▁Ark", + -12.744242668151855 + ], + [ + "AUD", + -12.744440078735352 + ], + [ + "▁Candy", + -12.744505882263184 + ], + [ + "tama", + -12.744515419006348 + ], + [ + "▁Evaluation", + -12.744571685791016 + ], + [ + "▁Memphis", + -12.744571685791016 + ], + [ + "▁stellar", + -12.74457836151123 + ], + [ + "▁fabricat", + -12.744632720947266 + ], + [ + "▁terminat", + -12.744868278503418 + ], + [ + "▁domnul", + -12.744913101196289 + ], + [ + "▁keynote", + -12.744925498962402 + ], + [ + "▁dentistry", + -12.744951248168945 + ], + [ + "rift", + -12.745052337646484 + ], + [ + "▁bilan", + -12.745119094848633 + ], + [ + "2.6", + -12.745125770568848 + ], + [ + "undergoing", + -12.745210647583008 + ], + [ + "▁pseudo", + -12.745274543762207 + ], + [ + "▁maşin", + -12.745280265808105 + ], + [ + "▁munte", + -12.74555492401123 + ], + [ + "▁VW", + -12.745932579040527 + ], + [ + "▁Rab", + -12.74593448638916 + ], + [ + "▁sustine", + -12.745972633361816 + ], + [ + "▁Bedingungen", + -12.745977401733398 + ], + [ + "▁învăţ", + -12.745980262756348 + ], + [ + "▁pyramid", + -12.745983123779297 + ], + [ + "HEN", + -12.746020317077637 + ], + [ + "▁citrus", + -12.746058464050293 + ], + [ + "Code", + -12.746064186096191 + ], + [ + "▁Beginning", + -12.746164321899414 + ], + [ + "▁discourse", + -12.746249198913574 + ], + [ + "▁miercuri", + -12.746329307556152 + ], + [ + "▁producător", + -12.74637508392334 + ], + [ + "▁analys", + -12.746397972106934 + ], + [ + "▁Evan", + -12.7467041015625 + ], + [ + "138", + -12.746987342834473 + ], + [ + "▁târziu", + -12.74703311920166 + ], + [ + "▁relocation", + -12.747052192687988 + ], + [ + "decizia", + -12.74708080291748 + ], + [ + "tollen", + -12.74714183807373 + ], + [ + "TRO", + -12.747180938720703 + ], + [ + "▁runway", + -12.74719524383545 + ], + [ + "illet", + -12.747270584106445 + ], + [ + "▁serveur", + -12.747387886047363 + ], + [ + "bezogen", + -12.747427940368652 + ], + [ + "▁believers", + -12.747668266296387 + ], + [ + "determined", + -12.747711181640625 + ], + [ + "▁reinforced", + -12.74791431427002 + ], + [ + "▁wedge", + -12.748006820678711 + ], + [ + "methyl", + -12.74807357788086 + ], + [ + "MES", + -12.748188018798828 + ], + [ + "vpn", + -12.748374938964844 + ], + [ + "▁consta", + -12.74837875366211 + ], + [ + "▁vizitat", + -12.748420715332031 + ], + [ + "modul", + -12.748455047607422 + ], + [ + "▁routing", + -12.748528480529785 + ], + [ + "tempted", + -12.748540878295898 + ], + [ + "URS", + -12.748785018920898 + ], + [ + "apprentissage", + -12.748795509338379 + ], + [ + "▁Hungary", + -12.748796463012695 + ], + [ + "Previously", + -12.74880313873291 + ], + [ + "▁translator", + -12.748804092407227 + ], + [ + "▁resonate", + -12.748830795288086 + ], + [ + "201", + -12.748851776123047 + ], + [ + "3-0", + -12.749029159545898 + ], + [ + "▁reunion", + -12.749090194702148 + ], + [ + "▁palate", + -12.749096870422363 + ], + [ + "0.4", + -12.749171257019043 + ], + [ + "reheat", + -12.74924373626709 + ], + [ + "Roo", + -12.749261856079102 + ], + [ + "200,000", + -12.74940013885498 + ], + [ + "Bro", + -12.749431610107422 + ], + [ + "▁estimation", + -12.749468803405762 + ], + [ + "schneiden", + -12.749499320983887 + ], + [ + "▁Inspired", + -12.749506950378418 + ], + [ + "▁lottery", + -12.749539375305176 + ], + [ + "▁Friedrich", + -12.749887466430664 + ], + [ + "FIT", + -12.749913215637207 + ], + [ + "0.6", + -12.7499418258667 + ], + [ + "▁dagegen", + -12.74997615814209 + ], + [ + "▁Reb", + -12.750115394592285 + ], + [ + "▁Eigenschaften", + -12.75020694732666 + ], + [ + "▁molding", + -12.750361442565918 + ], + [ + "▁Harper", + -12.750548362731934 + ], + [ + "verwaltung", + -12.75055980682373 + ], + [ + "▁Schlüssel", + -12.75055980682373 + ], + [ + "▁desfasura", + -12.75055980682373 + ], + [ + "▁rencontrer", + -12.75055980682373 + ], + [ + "▁negoci", + -12.750581741333008 + ], + [ + "▁Leading", + -12.750615119934082 + ], + [ + "▁necesita", + -12.750652313232422 + ], + [ + "▁biking", + -12.750683784484863 + ], + [ + "▁jointly", + -12.75069808959961 + ], + [ + "▁crush", + -12.750702857971191 + ], + [ + "Vol", + -12.750768661499023 + ], + [ + "▁ebay", + -12.750836372375488 + ], + [ + "▁Shri", + -12.750991821289062 + ], + [ + "▁AMD", + -12.751029968261719 + ], + [ + "FG", + -12.751032829284668 + ], + [ + "Argentin", + -12.75120735168457 + ], + [ + "▁incercat", + -12.751431465148926 + ], + [ + "▁tidy", + -12.751628875732422 + ], + [ + "▁provoqu", + -12.751635551452637 + ], + [ + "▁Written", + -12.751649856567383 + ], + [ + "▁Kooperation", + -12.751666069030762 + ], + [ + "▁scripture", + -12.751952171325684 + ], + [ + "▁Pflicht", + -12.751974105834961 + ], + [ + "ficial", + -12.752013206481934 + ], + [ + "vremea", + -12.752013206481934 + ], + [ + "▁Growing", + -12.752115249633789 + ], + [ + "▁redesign", + -12.752119064331055 + ], + [ + "▁obstacle", + -12.752214431762695 + ], + [ + "▁rugam", + -12.752235412597656 + ], + [ + "▁SPD", + -12.752243995666504 + ], + [ + "165", + -12.752270698547363 + ], + [ + "fiz", + -12.752284049987793 + ], + [ + "▁startet", + -12.752326011657715 + ], + [ + "▁Principle", + -12.752327919006348 + ], + [ + "▁abdominal", + -12.752327919006348 + ], + [ + "▁podium", + -12.752528190612793 + ], + [ + "duty", + -12.752616882324219 + ], + [ + "bonne", + -12.752679824829102 + ], + [ + "▁Serbia", + -12.752687454223633 + ], + [ + "▁brunch", + -12.752839088439941 + ], + [ + "▁Personne", + -12.752975463867188 + ], + [ + "▁Idea", + -12.753034591674805 + ], + [ + "forementioned", + -12.753036499023438 + ], + [ + "▁chassis", + -12.753037452697754 + ], + [ + "gebühr", + -12.753050804138184 + ], + [ + "ucun", + -12.753061294555664 + ], + [ + "▁Maz", + -12.7531156539917 + ], + [ + "1-4", + -12.75318431854248 + ], + [ + "kleid", + -12.753273963928223 + ], + [ + "▁Volvo", + -12.753337860107422 + ], + [ + "brechen", + -12.753378868103027 + ], + [ + "▁homepage", + -12.753472328186035 + ], + [ + "fuz", + -12.753509521484375 + ], + [ + "▁abgeschlossen", + -12.753595352172852 + ], + [ + "▁gelungen", + -12.753658294677734 + ], + [ + "▁booklet", + -12.753711700439453 + ], + [ + "▁Ukrainian", + -12.753745079040527 + ], + [ + "▁Melissa", + -12.753746032714844 + ], + [ + "CENT", + -12.75379467010498 + ], + [ + "▁intégré", + -12.753806114196777 + ], + [ + "weighing", + -12.753827095031738 + ], + [ + "▁crumbl", + -12.753894805908203 + ], + [ + "▁bunk", + -12.754167556762695 + ], + [ + "krieg", + -12.754207611083984 + ], + [ + "▁freshman", + -12.754307746887207 + ], + [ + "alaya", + -12.754339218139648 + ], + [ + "Avem", + -12.754353523254395 + ], + [ + "▁Kne", + -12.754423141479492 + ], + [ + "▁upstairs", + -12.75448226928711 + ], + [ + "AIL", + -12.754508972167969 + ], + [ + "țul", + -12.75478744506836 + ], + [ + "▁Lecture", + -12.754817962646484 + ], + [ + "▁entdecken", + -12.754843711853027 + ], + [ + "▁GMT", + -12.754912376403809 + ], + [ + "▁Leitung", + -12.754937171936035 + ], + [ + "▁inclined", + -12.755170822143555 + ], + [ + "▁skillet", + -12.75555419921875 + ], + [ + "FN", + -12.755742073059082 + ], + [ + "▁Perform", + -12.755821228027344 + ], + [ + "shift", + -12.75583267211914 + ], + [ + "recognizing", + -12.755873680114746 + ], + [ + "▁concise", + -12.755873680114746 + ], + [ + "▁obsessed", + -12.755873680114746 + ], + [ + "▁removable", + -12.755873680114746 + ], + [ + "▁Relax", + -12.755888938903809 + ], + [ + "delegates", + -12.75605583190918 + ], + [ + "▁expedi", + -12.756074905395508 + ], + [ + "▁Schä", + -12.756138801574707 + ], + [ + "iete", + -12.756211280822754 + ], + [ + "▁reciproc", + -12.756229400634766 + ], + [ + "▁neutr", + -12.75625228881836 + ], + [ + "lactic", + -12.756314277648926 + ], + [ + "▁Nah", + -12.756328582763672 + ], + [ + "scene", + -12.7565279006958 + ], + [ + "▁Helm", + -12.756563186645508 + ], + [ + "▁Bewerbung", + -12.756671905517578 + ], + [ + "▁Cassi", + -12.75667953491211 + ], + [ + "▁Gelegenheit", + -12.756939888000488 + ], + [ + "▁reflective", + -12.757140159606934 + ], + [ + "▁încredere", + -12.757149696350098 + ], + [ + "▁cigarettes", + -12.75717544555664 + ], + [ + "▁Zusätzlich", + -12.757295608520508 + ], + [ + "▁intercept", + -12.75731372833252 + ], + [ + "▁Finn", + -12.757468223571777 + ], + [ + "▁ignor", + -12.757661819458008 + ], + [ + "gian", + -12.75766372680664 + ], + [ + "BRA", + -12.757740020751953 + ], + [ + "leader", + -12.757957458496094 + ], + [ + "nius", + -12.757981300354004 + ], + [ + "▁skies", + -12.757987022399902 + ], + [ + "▁nunta", + -12.758023262023926 + ], + [ + "▁grec", + -12.758041381835938 + ], + [ + "arranging", + -12.75816822052002 + ], + [ + "wartet", + -12.758231163024902 + ], + [ + "▁kostet", + -12.758377075195312 + ], + [ + "▁Entre", + -12.758541107177734 + ], + [ + "Mag", + -12.758575439453125 + ], + [ + "▁radiator", + -12.758598327636719 + ], + [ + "übrigens", + -12.758689880371094 + ], + [ + "Internet", + -12.758706092834473 + ], + [ + "▁connexion", + -12.758718490600586 + ], + [ + "▁prolonged", + -12.758854866027832 + ], + [ + "▁capabil", + -12.75914192199707 + ], + [ + "▁feeder", + -12.759217262268066 + ], + [ + "Initially", + -12.759223937988281 + ], + [ + "Green", + -12.75926685333252 + ], + [ + "▁passiert", + -12.759272575378418 + ], + [ + "▁courtyard", + -12.759299278259277 + ], + [ + "▁judeţ", + -12.759320259094238 + ], + [ + "▁Coalition", + -12.759431838989258 + ], + [ + "▁atmospheric", + -12.759431838989258 + ], + [ + "▁velocity", + -12.759431838989258 + ], + [ + "▁Frühstück", + -12.759432792663574 + ], + [ + "vacancies", + -12.759438514709473 + ], + [ + "unified", + -12.759538650512695 + ], + [ + "▁Ahmed", + -12.759538650512695 + ], + [ + "poured", + -12.759550094604492 + ], + [ + "▁Mikro", + -12.75959587097168 + ], + [ + "▁Klar", + -12.759661674499512 + ], + [ + "kommt", + -12.759681701660156 + ], + [ + "seated", + -12.759744644165039 + ], + [ + "musik", + -12.75976848602295 + ], + [ + "▁stimulation", + -12.759841918945312 + ], + [ + "▁solicitat", + -12.759880065917969 + ], + [ + "▁politically", + -12.760165214538574 + ], + [ + "restoring", + -12.760322570800781 + ], + [ + "▁Rag", + -12.760435104370117 + ], + [ + "▁officielle", + -12.760468482971191 + ], + [ + "▁Annie", + -12.760479927062988 + ], + [ + "▁tourne", + -12.760634422302246 + ], + [ + "▁Joel", + -12.760642051696777 + ], + [ + "blieben", + -12.760666847229004 + ], + [ + "▁repayment", + -12.760736465454102 + ], + [ + "▁Strategi", + -12.760781288146973 + ], + [ + "▁prietenii", + -12.760804176330566 + ], + [ + "▁Montgomery", + -12.760858535766602 + ], + [ + "▁résidence", + -12.760858535766602 + ], + [ + "▁sunglasses", + -12.760858535766602 + ], + [ + "▁1956", + -12.760882377624512 + ], + [ + "MEN", + -12.76093578338623 + ], + [ + "pouvant", + -12.760997772216797 + ], + [ + "375", + -12.761061668395996 + ], + [ + "directed", + -12.761173248291016 + ], + [ + "▁grinder", + -12.76120662689209 + ], + [ + "rträge", + -12.761279106140137 + ], + [ + "▁nickel", + -12.761299133300781 + ], + [ + "▁Maintain", + -12.761313438415527 + ], + [ + "▁Holmes", + -12.761392593383789 + ], + [ + "▁obtinut", + -12.76157283782959 + ], + [ + "▁walnut", + -12.761585235595703 + ], + [ + "▁consultancy", + -12.761640548706055 + ], + [ + "cooled", + -12.761651039123535 + ], + [ + "▁Brig", + -12.761711120605469 + ], + [ + "▁Produc", + -12.761873245239258 + ], + [ + "street", + -12.76187515258789 + ], + [ + "▁Einfach", + -12.761897087097168 + ], + [ + "North", + -12.762149810791016 + ], + [ + "▁PET", + -12.76220989227295 + ], + [ + "▁Président", + -12.762288093566895 + ], + [ + "▁produsului", + -12.762457847595215 + ], + [ + "literatur", + -12.762483596801758 + ], + [ + "133", + -12.762561798095703 + ], + [ + "▁recours", + -12.762591361999512 + ], + [ + "▁verpflichtet", + -12.76264476776123 + ], + [ + "▁Wur", + -12.762733459472656 + ], + [ + "▁psiholog", + -12.762796401977539 + ], + [ + "Veg", + -12.762871742248535 + ], + [ + "▁hype", + -12.762930870056152 + ], + [ + "augmenter", + -12.762974739074707 + ], + [ + "▁Welsh", + -12.763012886047363 + ], + [ + "mounted", + -12.763158798217773 + ], + [ + "▁Wann", + -12.763425827026367 + ], + [ + "▁gezeigt", + -12.763620376586914 + ], + [ + "▁memo", + -12.763631820678711 + ], + [ + "veterinary", + -12.763717651367188 + ], + [ + "▁Olympia", + -12.763717651367188 + ], + [ + "▁handsome", + -12.763871192932129 + ], + [ + "yama", + -12.763911247253418 + ], + [ + "studio", + -12.763912200927734 + ], + [ + "sozial", + -12.764020919799805 + ], + [ + "▁reap", + -12.764104843139648 + ], + [ + "▁didactic", + -12.764111518859863 + ], + [ + "▁Cookie", + -12.764126777648926 + ], + [ + "▁cooper", + -12.764230728149414 + ], + [ + "▁discern", + -12.76441478729248 + ], + [ + "▁Ubuntu", + -12.764433860778809 + ], + [ + "domain", + -12.76443862915039 + ], + [ + "▁plasa", + -12.764460563659668 + ], + [ + "hong", + -12.764585494995117 + ], + [ + "▁Freiheit", + -12.764662742614746 + ], + [ + "▁Gateway", + -12.764678001403809 + ], + [ + "▁poke", + -12.764796257019043 + ], + [ + "▁niedrig", + -12.76484203338623 + ], + [ + "▁corrected", + -12.764899253845215 + ], + [ + "▁predator", + -12.76490306854248 + ], + [ + "QA", + -12.76507568359375 + ], + [ + "Physio", + -12.765101432800293 + ], + [ + "MAS", + -12.765108108520508 + ], + [ + "▁sanctuary", + -12.765151023864746 + ], + [ + "▁aferent", + -12.76523494720459 + ], + [ + "▁perdre", + -12.765268325805664 + ], + [ + "▁recherch", + -12.765397071838379 + ], + [ + "ready", + -12.76559829711914 + ], + [ + "without", + -12.76560115814209 + ], + [ + "▁locuitori", + -12.765628814697266 + ], + [ + "▁Memo", + -12.765636444091797 + ], + [ + "▁Laden", + -12.765646934509277 + ], + [ + "danken", + -12.76577377319336 + ], + [ + "▁CNC", + -12.765861511230469 + ], + [ + "▁jealous", + -12.765881538391113 + ], + [ + "▁Background", + -12.765951156616211 + ], + [ + "▁Marx", + -12.765999794006348 + ], + [ + "▁Heli", + -12.766039848327637 + ], + [ + "▁osteo", + -12.766057968139648 + ], + [ + "▁rassembl", + -12.766162872314453 + ], + [ + "▁altceva", + -12.766226768493652 + ], + [ + "▁beschäftigt", + -12.766226768493652 + ], + [ + "▁accru", + -12.766266822814941 + ], + [ + "üft", + -12.766273498535156 + ], + [ + "▁sprout", + -12.766288757324219 + ], + [ + "endorf", + -12.76647663116455 + ], + [ + "▁specialitate", + -12.766483306884766 + ], + [ + "éanmoins", + -12.766586303710938 + ], + [ + "▁poign", + -12.766663551330566 + ], + [ + "▁mânca", + -12.766668319702148 + ], + [ + "▁stretched", + -12.766752243041992 + ], + [ + "fensiv", + -12.76677131652832 + ], + [ + "▁Auction", + -12.76683235168457 + ], + [ + "hints", + -12.766944885253906 + ], + [ + "▁typo", + -12.766983032226562 + ], + [ + "▁Rare", + -12.767003059387207 + ], + [ + "▁interruption", + -12.767043113708496 + ], + [ + "▁Mean", + -12.76709270477295 + ], + [ + "privileged", + -12.767108917236328 + ], + [ + "▁purtat", + -12.767129898071289 + ], + [ + "studie", + -12.767229080200195 + ], + [ + "offres", + -12.767248153686523 + ], + [ + "▁flap", + -12.76729679107666 + ], + [ + "▁rhetoric", + -12.767304420471191 + ], + [ + "▁snapshot", + -12.767325401306152 + ], + [ + "▁Conservative", + -12.767367362976074 + ], + [ + "▁taie", + -12.767416954040527 + ], + [ + "Game", + -12.767499923706055 + ], + [ + "▁naissance", + -12.767663955688477 + ], + [ + "Prof", + -12.767704963684082 + ], + [ + "qualified", + -12.767745971679688 + ], + [ + "▁suppression", + -12.767749786376953 + ], + [ + "▁răspunde", + -12.767765045166016 + ], + [ + "▁1/3", + -12.767803192138672 + ], + [ + "▁lieben", + -12.767858505249023 + ], + [ + "ù", + -12.767898559570312 + ], + [ + "america", + -12.767955780029297 + ], + [ + "▁Mum", + -12.768182754516602 + ], + [ + "▁Researchers", + -12.76827335357666 + ], + [ + "quip", + -12.768308639526367 + ], + [ + "▁fenomen", + -12.768383026123047 + ], + [ + "stools", + -12.768387794494629 + ], + [ + "▁commodity", + -12.768742561340332 + ], + [ + "▁rejuvenat", + -12.768745422363281 + ], + [ + "▁ausgezeichnet", + -12.76876449584961 + ], + [ + "▁păcate", + -12.768784523010254 + ], + [ + "3.6", + -12.76882553100586 + ], + [ + "zwei", + -12.768904685974121 + ], + [ + "accounted", + -12.768982887268066 + ], + [ + "▁Cycle", + -12.76900863647461 + ], + [ + "politischen", + -12.769031524658203 + ], + [ + "Normally", + -12.76904010772705 + ], + [ + "▁transcend", + -12.769158363342285 + ], + [ + "▁Classes", + -12.769268989562988 + ], + [ + "▁vene", + -12.769363403320312 + ], + [ + "protein", + -12.76942253112793 + ], + [ + "formulaire", + -12.76944351196289 + ], + [ + "▁endurance", + -12.769463539123535 + ], + [ + "▁Census", + -12.769464492797852 + ], + [ + "▁census", + -12.7694673538208 + ], + [ + "▁conțin", + -12.76952838897705 + ], + [ + "▁multinational", + -12.769563674926758 + ], + [ + "▁consomm", + -12.769572257995605 + ], + [ + "▁Porter", + -12.769762992858887 + ], + [ + "▁marvel", + -12.769777297973633 + ], + [ + "▁probable", + -12.769824028015137 + ], + [ + "dependable", + -12.770044326782227 + ], + [ + "▁crore", + -12.77015495300293 + ], + [ + "▁6:30", + -12.770224571228027 + ], + [ + "▁Bradley", + -12.77032470703125 + ], + [ + "molecule", + -12.770400047302246 + ], + [ + "inclusiv", + -12.770516395568848 + ], + [ + "▁privilégi", + -12.770543098449707 + ], + [ + "▁cerere", + -12.770611763000488 + ], + [ + "ouille", + -12.770696640014648 + ], + [ + "▁âgé", + -12.770787239074707 + ], + [ + "▁ghid", + -12.770801544189453 + ], + [ + "▁Controller", + -12.77082347869873 + ], + [ + "▁incredere", + -12.770988464355469 + ], + [ + "▁hostel", + -12.771015167236328 + ], + [ + "wissenschaft", + -12.771121978759766 + ], + [ + "▁cooperate", + -12.771183967590332 + ], + [ + "ки", + -12.771202087402344 + ], + [ + "▁Küchen", + -12.771384239196777 + ], + [ + "▁BIO", + -12.771406173706055 + ], + [ + "▁deliveries", + -12.771458625793457 + ], + [ + "▁urmări", + -12.771553993225098 + ], + [ + "▁überzeugen", + -12.771631240844727 + ], + [ + "Roofing", + -12.771703720092773 + ], + [ + "▁Adel", + -12.771737098693848 + ], + [ + "▁navy", + -12.77181339263916 + ], + [ + "▁cider", + -12.772101402282715 + ], + [ + "▁dulce", + -12.772109985351562 + ], + [ + "▁inspirat", + -12.772163391113281 + ], + [ + "allez", + -12.772164344787598 + ], + [ + "HH", + -12.77221965789795 + ], + [ + "▁Danish", + -12.7722749710083 + ], + [ + "CDC", + -12.7722806930542 + ], + [ + "▁Milch", + -12.772303581237793 + ], + [ + "▁Hockey", + -12.772346496582031 + ], + [ + "▁Smooth", + -12.772347450256348 + ], + [ + "▁FIFA", + -12.772361755371094 + ], + [ + "▁Devon", + -12.772364616394043 + ], + [ + "chung", + -12.772379875183105 + ], + [ + "▁villain", + -12.772420883178711 + ], + [ + "▁musée", + -12.772441864013672 + ], + [ + "tiennent", + -12.772557258605957 + ], + [ + "chou", + -12.772732734680176 + ], + [ + "kopf", + -12.772809982299805 + ], + [ + "printed", + -12.77281379699707 + ], + [ + "▁Depression", + -12.773076057434082 + ], + [ + "▁opioid", + -12.773082733154297 + ], + [ + "nomie", + -12.773098945617676 + ], + [ + "▁footwear", + -12.773211479187012 + ], + [ + "▁Cause", + -12.773260116577148 + ], + [ + "SEL", + -12.773515701293945 + ], + [ + "▁Roller", + -12.773523330688477 + ], + [ + "▁einzigartige", + -12.773589134216309 + ], + [ + "desea", + -12.773597717285156 + ], + [ + "▁nasty", + -12.773792266845703 + ], + [ + "formulated", + -12.773877143859863 + ], + [ + "breaker", + -12.773958206176758 + ], + [ + "▁goodies", + -12.773961067199707 + ], + [ + "▁sandy", + -12.774189949035645 + ], + [ + "method", + -12.77425479888916 + ], + [ + "▁Maple", + -12.774308204650879 + ], + [ + "gefragt", + -12.774435997009277 + ], + [ + "▁decreasing", + -12.774515151977539 + ], + [ + "ceşti", + -12.774555206298828 + ], + [ + "▁DUI", + -12.774563789367676 + ], + [ + "▁pierdere", + -12.774574279785156 + ], + [ + "▁brushes", + -12.77466869354248 + ], + [ + "▁Fully", + -12.774712562561035 + ], + [ + "filtered", + -12.774789810180664 + ], + [ + "ruins", + -12.774988174438477 + ], + [ + "Save", + -12.775114059448242 + ], + [ + "sweeping", + -12.7752046585083 + ], + [ + "PCR", + -12.775334358215332 + ], + [ + "▁folded", + -12.775337219238281 + ], + [ + "▁urca", + -12.775444030761719 + ], + [ + "▁clic", + -12.775484085083008 + ], + [ + "▁spécialiste", + -12.775614738464355 + ], + [ + "▁durfte", + -12.775686264038086 + ], + [ + "tuși", + -12.775871276855469 + ], + [ + "▁diligent", + -12.77596378326416 + ], + [ + "▁verdict", + -12.775972366333008 + ], + [ + "▁chaise", + -12.776039123535156 + ], + [ + "▁cleanup", + -12.776068687438965 + ], + [ + "▁Guitar", + -12.776076316833496 + ], + [ + "▁Dip", + -12.776142120361328 + ], + [ + "vru", + -12.776260375976562 + ], + [ + "▁cogn", + -12.776373863220215 + ], + [ + "something", + -12.776529312133789 + ], + [ + "hidr", + -12.776535034179688 + ], + [ + "ENG", + -12.776607513427734 + ], + [ + "Paul", + -12.776679039001465 + ], + [ + "▁reboot", + -12.776687622070312 + ], + [ + "savvy", + -12.776688575744629 + ], + [ + "▁Macron", + -12.776710510253906 + ], + [ + "▁Kino", + -12.77682876586914 + ], + [ + "232", + -12.776832580566406 + ], + [ + "▁gravit", + -12.776861190795898 + ], + [ + "ANC", + -12.776883125305176 + ], + [ + "▁petrecut", + -12.776944160461426 + ], + [ + "▁signage", + -12.776959419250488 + ], + [ + "odia", + -12.776987075805664 + ], + [ + "▁GRA", + -12.77712631225586 + ], + [ + "▁alegeril", + -12.777129173278809 + ], + [ + "leger", + -12.77717399597168 + ], + [ + "▁medicamente", + -12.777174949645996 + ], + [ + "pentru", + -12.777249336242676 + ], + [ + "▁collectif", + -12.777251243591309 + ], + [ + "▁Sohn", + -12.777298927307129 + ], + [ + "205", + -12.777313232421875 + ], + [ + "▁Reach", + -12.77733039855957 + ], + [ + "RAM", + -12.777400970458984 + ], + [ + "3.4", + -12.777405738830566 + ], + [ + "▁bleach", + -12.777409553527832 + ], + [ + "▁diligence", + -12.777414321899414 + ], + [ + "▁MORE", + -12.777440071105957 + ], + [ + "▁Critical", + -12.777471542358398 + ], + [ + "▁singură", + -12.77767276763916 + ], + [ + "▁adversar", + -12.777791023254395 + ], + [ + "▁Buzz", + -12.7778902053833 + ], + [ + "▁demeure", + -12.778063774108887 + ], + [ + "▁nephew", + -12.778141021728516 + ], + [ + "▁Boom", + -12.77817440032959 + ], + [ + "▁shining", + -12.77819538116455 + ], + [ + "▁sponge", + -12.778206825256348 + ], + [ + "liest", + -12.77841854095459 + ], + [ + "rseits", + -12.778690338134766 + ], + [ + "▁capita", + -12.778823852539062 + ], + [ + "esthesia", + -12.778867721557617 + ], + [ + "500,000", + -12.77895736694336 + ], + [ + "▁Pressure", + -12.77898120880127 + ], + [ + "ifikation", + -12.779021263122559 + ], + [ + "▁acceleration", + -12.779181480407715 + ], + [ + "▁Pfarr", + -12.779282569885254 + ], + [ + "▁imobil", + -12.779304504394531 + ], + [ + "▁pericol", + -12.779326438903809 + ], + [ + "▁flock", + -12.779454231262207 + ], + [ + "▁Scholar", + -12.77962875366211 + ], + [ + "▁Fusion", + -12.779630661010742 + ], + [ + "▁revolve", + -12.779637336730957 + ], + [ + "Plugin", + -12.779664993286133 + ], + [ + "▁Ruf", + -12.779691696166992 + ], + [ + "▁tehnici", + -12.780024528503418 + ], + [ + "voice", + -12.78005313873291 + ], + [ + "▁anomal", + -12.780203819274902 + ], + [ + "▁gefallen", + -12.780252456665039 + ], + [ + "▁Wyoming", + -12.780322074890137 + ], + [ + "▁9:00", + -12.780354499816895 + ], + [ + "packed", + -12.780461311340332 + ], + [ + "▁Zimbabwe", + -12.780686378479004 + ], + [ + "▁glücklich", + -12.780766487121582 + ], + [ + "ethanol", + -12.78077220916748 + ], + [ + "▁effektiv", + -12.780936241149902 + ], + [ + "▁saptamani", + -12.781049728393555 + ], + [ + "▁umfasst", + -12.781052589416504 + ], + [ + "▁Werbung", + -12.781103134155273 + ], + [ + "▁undermine", + -12.781164169311523 + ], + [ + "▁Lego", + -12.781322479248047 + ], + [ + "▁Rac", + -12.781323432922363 + ], + [ + "educating", + -12.781441688537598 + ], + [ + "leiten", + -12.781451225280762 + ], + [ + "derma", + -12.781518936157227 + ], + [ + "hängen", + -12.781597137451172 + ], + [ + "Lumin", + -12.781846046447754 + ], + [ + "▁PNL", + -12.781913757324219 + ], + [ + "▁volcano", + -12.782064437866211 + ], + [ + "▁Anfrage", + -12.782066345214844 + ], + [ + "▁resp", + -12.782124519348145 + ], + [ + "leigh", + -12.78217601776123 + ], + [ + "▁addict", + -12.782176971435547 + ], + [ + "WORK", + -12.782312393188477 + ], + [ + "▁FY", + -12.782322883605957 + ], + [ + "▁maneuver", + -12.782513618469238 + ], + [ + "flächen", + -12.782525062561035 + ], + [ + "zweck", + -12.782527923583984 + ], + [ + "tolerant", + -12.782609939575195 + ], + [ + "Davidson", + -12.78272533416748 + ], + [ + "▁meteor", + -12.782849311828613 + ], + [ + "▁Stephanie", + -12.78291130065918 + ], + [ + "▁plafon", + -12.783126831054688 + ], + [ + "technischen", + -12.78316879272461 + ], + [ + "unused", + -12.783193588256836 + ], + [ + "▁voulai", + -12.783228874206543 + ], + [ + "▁fehlt", + -12.783447265625 + ], + [ + "möglichen", + -12.783955574035645 + ], + [ + "▁Twenty", + -12.783968925476074 + ], + [ + "composing", + -12.783979415893555 + ], + [ + "▁rebate", + -12.78400707244873 + ], + [ + "Italie", + -12.784036636352539 + ], + [ + "▁goodbye", + -12.784058570861816 + ], + [ + "wild", + -12.784061431884766 + ], + [ + "▁lancé", + -12.784077644348145 + ], + [ + "▁wunderschöne", + -12.784083366394043 + ], + [ + "▁Frontier", + -12.784139633178711 + ], + [ + "▁murit", + -12.784313201904297 + ], + [ + "▁scump", + -12.78464412689209 + ], + [ + "OVER", + -12.784682273864746 + ], + [ + "▁meme", + -12.784709930419922 + ], + [ + "Super", + -12.784733772277832 + ], + [ + "▁Crack", + -12.784849166870117 + ], + [ + "rennen", + -12.784907341003418 + ], + [ + "▁interessiert", + -12.784941673278809 + ], + [ + "▁relaţi", + -12.784942626953125 + ], + [ + "▁factories", + -12.784975051879883 + ], + [ + "▁[...]", + -12.785066604614258 + ], + [ + "▁vizite", + -12.785075187683105 + ], + [ + "▁erfolgen", + -12.785199165344238 + ], + [ + "▁Hosting", + -12.785244941711426 + ], + [ + "▁localitate", + -12.78528118133545 + ], + [ + "▁chasse", + -12.785415649414062 + ], + [ + "▁Meadow", + -12.785465240478516 + ], + [ + "▁expansive", + -12.785513877868652 + ], + [ + "hov", + -12.785874366760254 + ], + [ + "Phil", + -12.785978317260742 + ], + [ + "illian", + -12.786107063293457 + ], + [ + "▁manipulate", + -12.786107063293457 + ], + [ + "informationen", + -12.786130905151367 + ], + [ + "▁profesionist", + -12.786162376403809 + ], + [ + "risen", + -12.786252975463867 + ], + [ + "frem", + -12.786300659179688 + ], + [ + "Act", + -12.78640079498291 + ], + [ + "supervised", + -12.786491394042969 + ], + [ + "▁capul", + -12.786506652832031 + ], + [ + "▁Craiova", + -12.786528587341309 + ], + [ + "▁victoire", + -12.786528587341309 + ], + [ + "▁guitarist", + -12.786680221557617 + ], + [ + "▁identific", + -12.786684036254883 + ], + [ + "democrat", + -12.786864280700684 + ], + [ + "Authentic", + -12.786894798278809 + ], + [ + "▁Autumn", + -12.786894798278809 + ], + [ + "▁bodi", + -12.787014961242676 + ], + [ + "April", + -12.787044525146484 + ], + [ + "▁Burger", + -12.787049293518066 + ], + [ + "▁BEST", + -12.787490844726562 + ], + [ + "▁torrent", + -12.78749942779541 + ], + [ + "UV", + -12.787567138671875 + ], + [ + "▁renal", + -12.787676811218262 + ], + [ + "founded", + -12.787693977355957 + ], + [ + "203", + -12.787956237792969 + ], + [ + "▁Flooring", + -12.78799057006836 + ], + [ + "▁kilogram", + -12.787994384765625 + ], + [ + "▁garantiert", + -12.788139343261719 + ], + [ + "▁fulfil", + -12.788204193115234 + ], + [ + "303", + -12.788330078125 + ], + [ + "▁schafft", + -12.788363456726074 + ], + [ + "▁butterfly", + -12.788365364074707 + ], + [ + "▁Stuart", + -12.788382530212402 + ], + [ + "▁Versuch", + -12.788392066955566 + ], + [ + "▁liking", + -12.788412094116211 + ], + [ + "▁chercher", + -12.788508415222168 + ], + [ + "▁wrapping", + -12.788527488708496 + ], + [ + "schrieb", + -12.788652420043945 + ], + [ + "▁abuz", + -12.788718223571777 + ], + [ + "▁maîtrise", + -12.788772583007812 + ], + [ + "EQ", + -12.788887977600098 + ], + [ + "▁Erinnerung", + -12.789095878601074 + ], + [ + "▁bridal", + -12.78909969329834 + ], + [ + "Rock", + -12.789118766784668 + ], + [ + "▁copied", + -12.789193153381348 + ], + [ + "Met", + -12.789206504821777 + ], + [ + "▁incep", + -12.789233207702637 + ], + [ + "▁sinus", + -12.789336204528809 + ], + [ + "▁Felix", + -12.789831161499023 + ], + [ + "▁Deluxe", + -12.789837837219238 + ], + [ + "▁GPU", + -12.789848327636719 + ], + [ + "Sie", + -12.790164947509766 + ], + [ + "lowering", + -12.790262222290039 + ], + [ + "▁Trotz", + -12.790282249450684 + ], + [ + "333", + -12.790417671203613 + ], + [ + "withstand", + -12.79055118560791 + ], + [ + "▁Aufenthalt", + -12.790566444396973 + ], + [ + "▁unhealthy", + -12.790567398071289 + ], + [ + "▁urbain", + -12.790573120117188 + ], + [ + "▁LOL", + -12.790702819824219 + ], + [ + "▁Ballet", + -12.79074478149414 + ], + [ + "▁Decoration", + -12.79083251953125 + ], + [ + "weist", + -12.790839195251465 + ], + [ + "▁Residence", + -12.790932655334473 + ], + [ + "▁Leeds", + -12.791055679321289 + ], + [ + "▁Genau", + -12.791084289550781 + ], + [ + "Imagin", + -12.791136741638184 + ], + [ + "▁suspicion", + -12.791300773620605 + ], + [ + "▁pêche", + -12.791301727294922 + ], + [ + "▁Soccer", + -12.791306495666504 + ], + [ + "▁protectie", + -12.791553497314453 + ], + [ + "ATS", + -12.791796684265137 + ], + [ + "stocked", + -12.791838645935059 + ], + [ + "▁gymnas", + -12.79184627532959 + ], + [ + "ASP", + -12.792027473449707 + ], + [ + "▁Independence", + -12.792037010192871 + ], + [ + "▁Wizard", + -12.792037963867188 + ], + [ + "▁nitrogen", + -12.79204273223877 + ], + [ + "amerikanische", + -12.7920503616333 + ], + [ + "▁Indianapolis", + -12.79205322265625 + ], + [ + "catches", + -12.792131423950195 + ], + [ + "stria", + -12.792275428771973 + ], + [ + "schätze", + -12.79235553741455 + ], + [ + "▁Räume", + -12.792387962341309 + ], + [ + "▁Interesting", + -12.792403221130371 + ], + [ + "bürger", + -12.79240608215332 + ], + [ + "sweet", + -12.792410850524902 + ], + [ + "Identify", + -12.792632102966309 + ], + [ + "EEN", + -12.792651176452637 + ], + [ + "▁£3", + -12.792654991149902 + ], + [ + "interacting", + -12.7926664352417 + ], + [ + "NYSE", + -12.792762756347656 + ], + [ + "▁Dynamics", + -12.79277515411377 + ], + [ + "▁modificări", + -12.792777061462402 + ], + [ + "▁Kumar", + -12.792936325073242 + ], + [ + "chette", + -12.79313850402832 + ], + [ + "▁presiune", + -12.79316234588623 + ], + [ + "arni", + -12.793164253234863 + ], + [ + "▁vielfältig", + -12.793221473693848 + ], + [ + "KC", + -12.793259620666504 + ], + [ + "▁Cuisine", + -12.793513298034668 + ], + [ + "▁australia", + -12.793885231018066 + ], + [ + "▁încet", + -12.794026374816895 + ], + [ + "▁caracteristic", + -12.794257164001465 + ], + [ + "▁cookbook", + -12.794501304626465 + ], + [ + "▁douleur", + -12.79453182220459 + ], + [ + "AVI", + -12.794593811035156 + ], + [ + "artikel", + -12.794740676879883 + ], + [ + "feta", + -12.79493522644043 + ], + [ + "▁fréquent", + -12.794987678527832 + ], + [ + "▁Prophet", + -12.795051574707031 + ], + [ + "▁dépense", + -12.795202255249023 + ], + [ + "▁Smile", + -12.795235633850098 + ], + [ + "▁lawmakers", + -12.79525375366211 + ], + [ + "▁Kollegen", + -12.795391082763672 + ], + [ + "▁Pir", + -12.79555606842041 + ], + [ + "serez", + -12.79561710357666 + ], + [ + "▁consumator", + -12.795656204223633 + ], + [ + "▁playlist", + -12.795730590820312 + ], + [ + "▁envisage", + -12.795733451843262 + ], + [ + "swept", + -12.795780181884766 + ], + [ + "▁Grim", + -12.795825004577637 + ], + [ + "▁widow", + -12.795836448669434 + ], + [ + "authorised", + -12.795886039733887 + ], + [ + "▁(...)", + -12.796035766601562 + ], + [ + "▁photographic", + -12.796060562133789 + ], + [ + "▁libertate", + -12.796173095703125 + ], + [ + "▁principalement", + -12.796201705932617 + ], + [ + "umming", + -12.796260833740234 + ], + [ + "▁Montréal", + -12.796465873718262 + ], + [ + "▁compilation", + -12.796468734741211 + ], + [ + "▁erlaubt", + -12.79647159576416 + ], + [ + "▁biblical", + -12.796518325805664 + ], + [ + "volume", + -12.796561241149902 + ], + [ + "5-7", + -12.796809196472168 + ], + [ + "▁Versch", + -12.79689884185791 + ], + [ + "▁Shark", + -12.796957015991211 + ], + [ + "ologne", + -12.796969413757324 + ], + [ + "4.4", + -12.797086715698242 + ], + [ + "decken", + -12.797112464904785 + ], + [ + "▁frequencies", + -12.797205924987793 + ], + [ + "▁inferior", + -12.79720687866211 + ], + [ + "visible", + -12.797321319580078 + ], + [ + "▁educator", + -12.797394752502441 + ], + [ + "▁soziale", + -12.797420501708984 + ], + [ + "▁billet", + -12.797523498535156 + ], + [ + "folosirea", + -12.797574996948242 + ], + [ + "▁aufgenommen", + -12.797590255737305 + ], + [ + "▁Thread", + -12.797649383544922 + ], + [ + "registering", + -12.797694206237793 + ], + [ + "▁Loop", + -12.797747611999512 + ], + [ + "innovation", + -12.79783821105957 + ], + [ + "▁elimination", + -12.797857284545898 + ], + [ + "136", + -12.797883987426758 + ], + [ + "▁fluctu", + -12.797892570495605 + ], + [ + "▁Mercury", + -12.79794692993164 + ], + [ + "▁bouche", + -12.797955513000488 + ], + [ + "▁hurdle", + -12.7979736328125 + ], + [ + "▁Bennett", + -12.798040390014648 + ], + [ + "STI", + -12.79818344116211 + ], + [ + "▁théâtre", + -12.798316955566406 + ], + [ + "▁confortable", + -12.798359870910645 + ], + [ + "▁Automobil", + -12.79838752746582 + ], + [ + "▁Donna", + -12.798399925231934 + ], + [ + "▁foyer", + -12.79841136932373 + ], + [ + "▁hollow", + -12.798465728759766 + ], + [ + "▁règlement", + -12.79861068725586 + ], + [ + "effi", + -12.798616409301758 + ], + [ + "▁sediment", + -12.79869270324707 + ], + [ + "▁Mä", + -12.798774719238281 + ], + [ + "▁faint", + -12.798833847045898 + ], + [ + "feti", + -12.79890251159668 + ], + [ + "▁Concord", + -12.798959732055664 + ], + [ + "▁Ladies", + -12.798990249633789 + ], + [ + "▁pregatit", + -12.799052238464355 + ], + [ + "▁Ensemble", + -12.79905891418457 + ], + [ + "▁Ingredient", + -12.79905891418457 + ], + [ + "▁Respond", + -12.79914379119873 + ], + [ + "▁impaired", + -12.799356460571289 + ], + [ + "▁Feedback", + -12.799430847167969 + ], + [ + "▁ultrasound", + -12.799461364746094 + ], + [ + "▁Guvernului", + -12.799617767333984 + ], + [ + "▁Unterricht", + -12.799654006958008 + ], + [ + "▁prosecut", + -12.799662590026855 + ], + [ + "spend", + -12.799732208251953 + ], + [ + "▁capitol", + -12.799800872802734 + ], + [ + "USD", + -12.799822807312012 + ], + [ + "observing", + -12.799947738647461 + ], + [ + "▁effortlessly", + -12.800045013427734 + ], + [ + "▁Setting", + -12.80010986328125 + ], + [ + "▁spontaneous", + -12.80020809173584 + ], + [ + "▁LEGO", + -12.800238609313965 + ], + [ + "initiative", + -12.800299644470215 + ], + [ + "▁Sak", + -12.800299644470215 + ], + [ + "Interestingly", + -12.800326347351074 + ], + [ + "▁Yale", + -12.800352096557617 + ], + [ + "▁größer", + -12.80038070678711 + ], + [ + "RIC", + -12.800406455993652 + ], + [ + "▁distracted", + -12.800436973571777 + ], + [ + "drafted", + -12.800484657287598 + ], + [ + "▁Brenda", + -12.800522804260254 + ], + [ + "monopol", + -12.800551414489746 + ], + [ + "städt", + -12.800580024719238 + ], + [ + "▁altar", + -12.80058765411377 + ], + [ + "▁Hannover", + -12.800596237182617 + ], + [ + "▁Spiritual", + -12.800702095031738 + ], + [ + "▁thriller", + -12.800747871398926 + ], + [ + "▁Schneider", + -12.800760269165039 + ], + [ + "▁accumulate", + -12.800817489624023 + ], + [ + "▁mediului", + -12.800822257995605 + ], + [ + "▁Mathematics", + -12.800914764404297 + ], + [ + "▁paradox", + -12.800986289978027 + ], + [ + "▁Sham", + -12.801230430603027 + ], + [ + "▁SITE", + -12.801375389099121 + ], + [ + "▁echipei", + -12.801508903503418 + ], + [ + "▁staircase", + -12.801660537719727 + ], + [ + "▁întrebări", + -12.801705360412598 + ], + [ + "Commerce", + -12.802020072937012 + ], + [ + "▁selfie", + -12.802353858947754 + ], + [ + "▁Pocket", + -12.802404403686523 + ], + [ + "▁niemand", + -12.80263614654541 + ], + [ + "Tool", + -12.802678108215332 + ], + [ + "igma", + -12.802695274353027 + ], + [ + "utilisant", + -12.802915573120117 + ], + [ + "▁negatively", + -12.80295181274414 + ], + [ + "Secondly", + -12.802955627441406 + ], + [ + "▁ROI", + -12.8030366897583 + ], + [ + "Arch", + -12.803121566772461 + ], + [ + "▁continuity", + -12.80318546295166 + ], + [ + "▁Prayer", + -12.803235054016113 + ], + [ + "inverse", + -12.803241729736328 + ], + [ + "▁Himmel", + -12.803336143493652 + ], + [ + "prinz", + -12.803478240966797 + ], + [ + "wichtigen", + -12.803496360778809 + ], + [ + "étage", + -12.803522109985352 + ], + [ + "summe", + -12.8036527633667 + ], + [ + "▁Zeitung", + -12.80366039276123 + ], + [ + "▁realization", + -12.803897857666016 + ], + [ + "▁influent", + -12.804291725158691 + ], + [ + "▁Valid", + -12.804357528686523 + ], + [ + "▁publicity", + -12.804439544677734 + ], + [ + "▁vertreten", + -12.804447174072266 + ], + [ + "▁Shoes", + -12.804609298706055 + ], + [ + "▁Diabetes", + -12.80463695526123 + ], + [ + "▁anticipation", + -12.804670333862305 + ], + [ + "▁Blank", + -12.8047456741333 + ], + [ + "asked", + -12.804899215698242 + ], + [ + "Power", + -12.804938316345215 + ], + [ + "arrelage", + -12.805140495300293 + ], + [ + "▁appraisal", + -12.80538272857666 + ], + [ + "▁harassment", + -12.805542945861816 + ], + [ + "Anzeige", + -12.805682182312012 + ], + [ + "liners", + -12.80584716796875 + ], + [ + "Firstly", + -12.805851936340332 + ], + [ + "transferring", + -12.805951118469238 + ], + [ + "▁Diane", + -12.806012153625488 + ], + [ + "▁1/2\"", + -12.80606746673584 + ], + [ + "▁adrenal", + -12.806131362915039 + ], + [ + "▁Prague", + -12.806208610534668 + ], + [ + "insertion", + -12.80635929107666 + ], + [ + "▁Fahrer", + -12.806465148925781 + ], + [ + "▁divin", + -12.806585311889648 + ], + [ + "▁douche", + -12.80673885345459 + ], + [ + "▁meticulous", + -12.806879043579102 + ], + [ + "▁IEEE", + -12.806981086730957 + ], + [ + "▁Rabatt", + -12.807259559631348 + ], + [ + "Runner", + -12.807342529296875 + ], + [ + "▁Leder", + -12.807429313659668 + ], + [ + "project", + -12.80745792388916 + ], + [ + "▁Split", + -12.807562828063965 + ], + [ + "Gold", + -12.807600021362305 + ], + [ + "5.00", + -12.807629585266113 + ], + [ + "iola", + -12.807655334472656 + ], + [ + "standardized", + -12.807890892028809 + ], + [ + "ordination", + -12.807984352111816 + ], + [ + "▁Egal", + -12.808158874511719 + ], + [ + "▁ruhig", + -12.808241844177246 + ], + [ + "▁judiciar", + -12.80837345123291 + ], + [ + "▁Nowadays", + -12.808374404907227 + ], + [ + "▁whistle", + -12.808374404907227 + ], + [ + "▁superhero", + -12.808379173278809 + ], + [ + "▁PowerPoint", + -12.808408737182617 + ], + [ + "flop", + -12.808420181274414 + ], + [ + "olph", + -12.808460235595703 + ], + [ + "▁pallet", + -12.808916091918945 + ], + [ + "posons", + -12.809005737304688 + ], + [ + "▁Listing", + -12.809032440185547 + ], + [ + "Tag", + -12.809075355529785 + ], + [ + "introductory", + -12.809122085571289 + ], + [ + "▁Profil", + -12.809123992919922 + ], + [ + "symmetric", + -12.809126853942871 + ], + [ + "▁aisle", + -12.809138298034668 + ], + [ + "▁ajouté", + -12.809147834777832 + ], + [ + "opathy", + -12.809149742126465 + ], + [ + "prezentate", + -12.809155464172363 + ], + [ + "▁hurry", + -12.809165000915527 + ], + [ + "Auth", + -12.809310913085938 + ], + [ + "▁Homepage", + -12.809435844421387 + ], + [ + "ashes", + -12.809489250183105 + ], + [ + "▁inklusive", + -12.809496879577637 + ], + [ + "populated", + -12.809502601623535 + ], + [ + "▁nein", + -12.809554100036621 + ], + [ + "▁syndicat", + -12.809690475463867 + ], + [ + "▁développé", + -12.809842109680176 + ], + [ + "▁Domestic", + -12.809877395629883 + ], + [ + "essay", + -12.809967994689941 + ], + [ + "Atelier", + -12.809980392456055 + ], + [ + "▁proceeding", + -12.810006141662598 + ], + [ + "▁SAS", + -12.810038566589355 + ], + [ + "task", + -12.810063362121582 + ], + [ + "▁blackjack", + -12.810114860534668 + ], + [ + "Key", + -12.810186386108398 + ], + [ + "thérapie", + -12.810247421264648 + ], + [ + "▁Cohen", + -12.810397148132324 + ], + [ + "Direct", + -12.810510635375977 + ], + [ + "▁Estimat", + -12.810517311096191 + ], + [ + "élève", + -12.810616493225098 + ], + [ + "cind", + -12.810640335083008 + ], + [ + "▁prezenț", + -12.810701370239258 + ], + [ + "▁notorious", + -12.810725212097168 + ], + [ + "climbed", + -12.810816764831543 + ], + [ + "▁flexibil", + -12.810830116271973 + ], + [ + "▁entlang", + -12.810855865478516 + ], + [ + "longed", + -12.81103515625 + ], + [ + "▁elbow", + -12.811078071594238 + ], + [ + "BH", + -12.811296463012695 + ], + [ + "▁Radu", + -12.811376571655273 + ], + [ + "▁lonely", + -12.811378479003906 + ], + [ + "ALA", + -12.811405181884766 + ], + [ + "Variante", + -12.811639785766602 + ], + [ + "▁Influen", + -12.81169319152832 + ], + [ + "▁Budapest", + -12.811747550964355 + ], + [ + "▁Gemüse", + -12.811747550964355 + ], + [ + "▁continental", + -12.811750411987305 + ], + [ + "ippo", + -12.811771392822266 + ], + [ + "▁Affordable", + -12.81212329864502 + ], + [ + "▁niece", + -12.812187194824219 + ], + [ + "oscopic", + -12.812190055847168 + ], + [ + "▁Grid", + -12.81222152709961 + ], + [ + "sliced", + -12.812270164489746 + ], + [ + "▁voici", + -12.812294006347656 + ], + [ + "aveam", + -12.812471389770508 + ], + [ + "▁Lars", + -12.812612533569336 + ], + [ + "APA", + -12.812657356262207 + ], + [ + "▁particulière", + -12.812858581542969 + ], + [ + "sorb", + -12.8128662109375 + ], + [ + "▁1955", + -12.812887191772461 + ], + [ + "▁solutii", + -12.812942504882812 + ], + [ + "loch", + -12.812960624694824 + ], + [ + "▁summon", + -12.813212394714355 + ], + [ + "wurf", + -12.813271522521973 + ], + [ + "▁protecți", + -12.813288688659668 + ], + [ + "2001", + -12.813499450683594 + ], + [ + "▁sophomore", + -12.813627243041992 + ], + [ + "▁Schwerpunkt", + -12.813628196716309 + ], + [ + "▁diplomat", + -12.813687324523926 + ], + [ + "▁artistique", + -12.813726425170898 + ], + [ + "▁accueille", + -12.813739776611328 + ], + [ + "Disp", + -12.813746452331543 + ], + [ + "inherited", + -12.813764572143555 + ], + [ + "▁COMP", + -12.813889503479004 + ], + [ + "▁envoyé", + -12.814046859741211 + ], + [ + "▁tuning", + -12.814056396484375 + ], + [ + "▁entspricht", + -12.814062118530273 + ], + [ + "▁exerc", + -12.81406307220459 + ], + [ + "▁accessoires", + -12.8140869140625 + ], + [ + "▁Automat", + -12.814348220825195 + ], + [ + "importance", + -12.814408302307129 + ], + [ + "▁travellers", + -12.814432144165039 + ], + [ + "seiten", + -12.814474105834961 + ], + [ + "▁slider", + -12.814481735229492 + ], + [ + "effect", + -12.814591407775879 + ], + [ + "▁siding", + -12.814669609069824 + ], + [ + "▁Crit", + -12.814780235290527 + ], + [ + "▁sportif", + -12.814827919006348 + ], + [ + "▁Accessories", + -12.81513500213623 + ], + [ + "▁Anteil", + -12.815184593200684 + ], + [ + "▁limbi", + -12.81519603729248 + ], + [ + "▁vendre", + -12.815269470214844 + ], + [ + "borg", + -12.815435409545898 + ], + [ + "▁Deposit", + -12.815508842468262 + ], + [ + "▁Hö", + -12.815717697143555 + ], + [ + "employé", + -12.8157320022583 + ], + [ + "▁Bangalore", + -12.815887451171875 + ], + [ + "▁itinerary", + -12.815888404846191 + ], + [ + "▁Deliver", + -12.816008567810059 + ], + [ + "dik", + -12.816024780273438 + ], + [ + "▁advent", + -12.816100120544434 + ], + [ + "▁Turk", + -12.81614875793457 + ], + [ + "▁Nico", + -12.816154479980469 + ], + [ + "organizarea", + -12.816161155700684 + ], + [ + "▁remport", + -12.816166877746582 + ], + [ + "▁tribunal", + -12.816266059875488 + ], + [ + "▁Rusia", + -12.8162841796875 + ], + [ + "glazed", + -12.816339492797852 + ], + [ + "▁destiné", + -12.816502571105957 + ], + [ + "304", + -12.816533088684082 + ], + [ + "album", + -12.816650390625 + ], + [ + "▁junction", + -12.81665325164795 + ], + [ + "▁Fleet", + -12.816664695739746 + ], + [ + "venant", + -12.81667423248291 + ], + [ + "▁buddy", + -12.816694259643555 + ], + [ + "▁neglected", + -12.816694259643555 + ], + [ + "▁Mask", + -12.816783905029297 + ], + [ + "▁testament", + -12.816844940185547 + ], + [ + "▁Basil", + -12.81690788269043 + ], + [ + "masă", + -12.816922187805176 + ], + [ + "▁racist", + -12.81692886352539 + ], + [ + "640", + -12.816990852355957 + ], + [ + "▁Standing", + -12.817028045654297 + ], + [ + "▁MUST", + -12.817266464233398 + ], + [ + "situation", + -12.817327499389648 + ], + [ + "▁informiert", + -12.817337036132812 + ], + [ + "ABA", + -12.817353248596191 + ], + [ + "▁Timothy", + -12.817397117614746 + ], + [ + "▁generosity", + -12.817397117614746 + ], + [ + "▁erscheint", + -12.817402839660645 + ], + [ + "▁verarbeitet", + -12.81740665435791 + ], + [ + "▁burial", + -12.817444801330566 + ], + [ + "▁limestone", + -12.817458152770996 + ], + [ + "▁1953", + -12.817480087280273 + ], + [ + "▁Lucr", + -12.817506790161133 + ], + [ + "small", + -12.817633628845215 + ], + [ + "aveau", + -12.81763744354248 + ], + [ + "versiune", + -12.81773567199707 + ], + [ + "▁inkl", + -12.81775951385498 + ], + [ + "▁Minneapolis", + -12.81777572631836 + ], + [ + "Spiel", + -12.81781005859375 + ], + [ + "▁encode", + -12.817895889282227 + ], + [ + "▁beforehand", + -12.818021774291992 + ], + [ + "▁Vital", + -12.818086624145508 + ], + [ + "▁socialist", + -12.818228721618652 + ], + [ + "inho", + -12.81824779510498 + ], + [ + "▁chapel", + -12.81825065612793 + ], + [ + "▁Monitoring", + -12.81838607788086 + ], + [ + "▁quotidienne", + -12.818404197692871 + ], + [ + "cloud", + -12.818506240844727 + ], + [ + "▁desfăşur", + -12.818531036376953 + ], + [ + "▁1952", + -12.818638801574707 + ], + [ + "▁Rü", + -12.818690299987793 + ], + [ + "▁Sigma", + -12.818804740905762 + ], + [ + "134", + -12.818835258483887 + ], + [ + "Sullivan", + -12.818909645080566 + ], + [ + "▁Bevölkerung", + -12.818909645080566 + ], + [ + "▁sufficiently", + -12.818953514099121 + ], + [ + "Check", + -12.818992614746094 + ], + [ + "rnie", + -12.8190336227417 + ], + [ + "contamin", + -12.819132804870605 + ], + [ + "▁gewonnen", + -12.81928825378418 + ], + [ + "▁bugetul", + -12.819376945495605 + ], + [ + "▁mustard", + -12.819414138793945 + ], + [ + "132", + -12.819478988647461 + ], + [ + "0.9", + -12.819535255432129 + ], + [ + "▁tratat", + -12.81957721710205 + ], + [ + "▁dilemma", + -12.819666862487793 + ], + [ + "▁versatility", + -12.819666862487793 + ], + [ + "▁clutter", + -12.819670677185059 + ], + [ + "▁Musk", + -12.81973934173584 + ], + [ + "▁Beide", + -12.819750785827637 + ], + [ + "hurst", + -12.819758415222168 + ], + [ + "atsu", + -12.819767951965332 + ], + [ + "absence", + -12.819784164428711 + ], + [ + "rebounds", + -12.819881439208984 + ], + [ + "6.1", + -12.820029258728027 + ], + [ + "Dia", + -12.820046424865723 + ], + [ + "▁siguranță", + -12.820060729980469 + ], + [ + "▁Blade", + -12.820072174072266 + ], + [ + "▁disrupt", + -12.820074081420898 + ], + [ + "▁visiteurs", + -12.820169448852539 + ], + [ + "tested", + -12.820282936096191 + ], + [ + "▁Lup", + -12.820353507995605 + ], + [ + "▁Rouge", + -12.820371627807617 + ], + [ + "▁asbestos", + -12.82042407989502 + ], + [ + "▁moisturize", + -12.820427894592285 + ], + [ + "▁acknowledg", + -12.82045841217041 + ], + [ + "▁procent", + -12.820467948913574 + ], + [ + "▁swear", + -12.82050895690918 + ], + [ + "▁911", + -12.820647239685059 + ], + [ + "präsent", + -12.820724487304688 + ], + [ + "▁cohort", + -12.82072639465332 + ], + [ + "▁intimid", + -12.820830345153809 + ], + [ + "JS", + -12.820849418640137 + ], + [ + "îm", + -12.82096004486084 + ], + [ + "▁Kunststoff", + -12.820963859558105 + ], + [ + "rison", + -12.820972442626953 + ], + [ + "▁praf", + -12.82097339630127 + ], + [ + "▁convient", + -12.821019172668457 + ], + [ + "▁partenaire", + -12.821088790893555 + ], + [ + "▁Verantwortlich", + -12.821182250976562 + ], + [ + "▁semiconductor", + -12.821182250976562 + ], + [ + "▁kürz", + -12.821187019348145 + ], + [ + "▁Bottom", + -12.821187973022461 + ], + [ + "▁tratamentul", + -12.82127571105957 + ], + [ + "Source", + -12.821331024169922 + ], + [ + "authored", + -12.82172679901123 + ], + [ + "robo", + -12.821867942810059 + ], + [ + "▁turf", + -12.82194709777832 + ], + [ + "▁liebe", + -12.821971893310547 + ], + [ + "▁Fotografi", + -12.821995735168457 + ], + [ + "Big", + -12.822064399719238 + ], + [ + "▁fireworks", + -12.822081565856934 + ], + [ + "▁presă", + -12.822135925292969 + ], + [ + "▁conceal", + -12.822269439697266 + ], + [ + "▁originated", + -12.82227897644043 + ], + [ + "▁biciclet", + -12.822319984436035 + ], + [ + "acești", + -12.822577476501465 + ], + [ + "▁mortar", + -12.822585105895996 + ], + [ + "▁Wunder", + -12.822626113891602 + ], + [ + "ionist", + -12.822696685791016 + ], + [ + "KM", + -12.822871208190918 + ], + [ + "▁Marion", + -12.822918891906738 + ], + [ + "produkte", + -12.822933197021484 + ], + [ + "▁Sprint", + -12.822999000549316 + ], + [ + "▁Nachde", + -12.8230619430542 + ], + [ + "▁verfüge", + -12.823100090026855 + ], + [ + "Marea", + -12.823177337646484 + ], + [ + "▁compressor", + -12.823253631591797 + ], + [ + "Arm", + -12.823290824890137 + ], + [ + "Auf", + -12.823311805725098 + ], + [ + "▁Polyester", + -12.823461532592773 + ], + [ + "▁Sheffield", + -12.823461532592773 + ], + [ + "illiard", + -12.823494911193848 + ], + [ + "▁misleading", + -12.82353401184082 + ], + [ + "multi", + -12.823749542236328 + ], + [ + "ripped", + -12.82381820678711 + ], + [ + "▁Cosmetic", + -12.82383918762207 + ], + [ + "▁Regal", + -12.823890686035156 + ], + [ + "▁authenticity", + -12.82414436340332 + ], + [ + "▁customizable", + -12.824219703674316 + ], + [ + "▁bathtub", + -12.824275016784668 + ], + [ + "▁Average", + -12.824292182922363 + ], + [ + "▁Muster", + -12.824522018432617 + ], + [ + "290", + -12.824529647827148 + ], + [ + "▁Ersatz", + -12.824570655822754 + ], + [ + "▁Might", + -12.824588775634766 + ], + [ + "published", + -12.82461929321289 + ], + [ + "▁Interpret", + -12.824640274047852 + ], + [ + "▁încep", + -12.82480239868164 + ], + [ + "▁proto", + -12.824851036071777 + ], + [ + "▁disque", + -12.824889183044434 + ], + [ + "▁Palestine", + -12.824980735778809 + ], + [ + "Over", + -12.824981689453125 + ], + [ + "▁verbessert", + -12.824983596801758 + ], + [ + "▁liefern", + -12.825017929077148 + ], + [ + "▁Handlung", + -12.825095176696777 + ], + [ + "▁Handels", + -12.825150489807129 + ], + [ + "▁eater", + -12.825201988220215 + ], + [ + "▁$40", + -12.825251579284668 + ], + [ + "illard", + -12.825334548950195 + ], + [ + "▁apariti", + -12.825413703918457 + ], + [ + "▁gag", + -12.825422286987305 + ], + [ + "▁chimic", + -12.825541496276855 + ], + [ + "▁Guru", + -12.825594902038574 + ], + [ + "▁Toilet", + -12.82571792602539 + ], + [ + "▁Tochter", + -12.825748443603516 + ], + [ + "▁Aurora", + -12.82579231262207 + ], + [ + "contro", + -12.825922966003418 + ], + [ + "▁GOP", + -12.825995445251465 + ], + [ + "Provence", + -12.826130867004395 + ], + [ + "▁Frieden", + -12.82614803314209 + ], + [ + "ăci", + -12.826216697692871 + ], + [ + "portée", + -12.826268196105957 + ], + [ + "▁upright", + -12.826300621032715 + ], + [ + "▁Physician", + -12.82650375366211 + ], + [ + "▁juridique", + -12.82650375366211 + ], + [ + "▁territorial", + -12.82650375366211 + ], + [ + "▁kindergarten", + -12.826505661010742 + ], + [ + "aéroport", + -12.826510429382324 + ], + [ + "▁whisper", + -12.826513290405273 + ], + [ + "▁capacities", + -12.826562881469727 + ], + [ + "dichte", + -12.826641082763672 + ], + [ + "▁Grenzen", + -12.826822280883789 + ], + [ + "▁Riv", + -12.82710075378418 + ], + [ + "épreuve", + -12.827266693115234 + ], + [ + "▁Scheme", + -12.827290534973145 + ], + [ + "mesures", + -12.827330589294434 + ], + [ + "▁Einfluss", + -12.827333450317383 + ], + [ + "appui", + -12.827713966369629 + ], + [ + "▁apuc", + -12.827827453613281 + ], + [ + "▁radiat", + -12.82794189453125 + ], + [ + "▁allergy", + -12.828035354614258 + ], + [ + "▁spear", + -12.828038215637207 + ], + [ + "▁Luxembourg", + -12.828086853027344 + ], + [ + "▁Registered", + -12.828115463256836 + ], + [ + "▁Shape", + -12.828198432922363 + ], + [ + "genie", + -12.828328132629395 + ], + [ + "nsonsten", + -12.828385353088379 + ], + [ + "▁Symposium", + -12.828412055969238 + ], + [ + "forderung", + -12.828474998474121 + ], + [ + "▁personalizat", + -12.82866096496582 + ], + [ + "▁ştiu", + -12.82875919342041 + ], + [ + "blatt", + -12.828804016113281 + ], + [ + "▁geometry", + -12.828807830810547 + ], + [ + "▁8:30", + -12.828831672668457 + ], + [ + "▁Fahrrad", + -12.828861236572266 + ], + [ + "After", + -12.828927040100098 + ], + [ + "▁ventilat", + -12.829072952270508 + ], + [ + "▁nylon", + -12.829190254211426 + ], + [ + "▁verkauft", + -12.829304695129395 + ], + [ + "öß", + -12.829345703125 + ], + [ + "▁Kath", + -12.829523086547852 + ], + [ + "▁Nuclear", + -12.829558372497559 + ], + [ + "▁Verizon", + -12.829560279846191 + ], + [ + "▁spokesperson", + -12.829560279846191 + ], + [ + "▁vietii", + -12.829560279846191 + ], + [ + "▁prescri", + -12.829629898071289 + ], + [ + "ру", + -12.829666137695312 + ], + [ + "6.2", + -12.829801559448242 + ], + [ + "▁spațiu", + -12.830018997192383 + ], + [ + "▁solvent", + -12.83006763458252 + ], + [ + ",000,000", + -12.830142974853516 + ], + [ + "reuen", + -12.830185890197754 + ], + [ + "plast", + -12.830245018005371 + ], + [ + "▁Activities", + -12.830334663391113 + ], + [ + "▁domni", + -12.83056926727295 + ], + [ + "▁trophy", + -12.830572128295898 + ], + [ + "▁saddle", + -12.830657958984375 + ], + [ + "▁renovat", + -12.830708503723145 + ], + [ + "▁bumper", + -12.830717086791992 + ], + [ + "▁penny", + -12.830741882324219 + ], + [ + "omato", + -12.830743789672852 + ], + [ + "AQ", + -12.83083438873291 + ], + [ + "kunst", + -12.830843925476074 + ], + [ + "hydrat", + -12.830860137939453 + ], + [ + "minder", + -12.830931663513184 + ], + [ + "trecerea", + -12.830949783325195 + ], + [ + "brush", + -12.831185340881348 + ], + [ + "TEC", + -12.83121395111084 + ], + [ + "Please", + -12.831253051757812 + ], + [ + "hydrated", + -12.831483840942383 + ], + [ + "ICAL", + -12.831636428833008 + ], + [ + "trauen", + -12.831639289855957 + ], + [ + "9,000", + -12.83175277709961 + ], + [ + "▁2030", + -12.831830024719238 + ], + [ + "▁Chennai", + -12.831854820251465 + ], + [ + "▁empirical", + -12.831854820251465 + ], + [ + "▁Subscribe", + -12.83206844329834 + ], + [ + "▁vorgestellt", + -12.832120895385742 + ], + [ + "▁Springfield", + -12.832159996032715 + ], + [ + "▁continuu", + -12.832311630249023 + ], + [ + "208", + -12.832351684570312 + ], + [ + "▁Bearing", + -12.83240795135498 + ], + [ + "2003", + -12.832572937011719 + ], + [ + "cheta", + -12.832608222961426 + ], + [ + "▁empathy", + -12.832623481750488 + ], + [ + "▁Alert", + -12.832817077636719 + ], + [ + "▁recreate", + -12.832879066467285 + ], + [ + "PJ", + -12.833159446716309 + ], + [ + "Name", + -12.83323860168457 + ], + [ + "▁Mouse", + -12.833405494689941 + ], + [ + "▁disturbing", + -12.833443641662598 + ], + [ + "▁leichter", + -12.83344841003418 + ], + [ + "▁cruel", + -12.833507537841797 + ], + [ + "▁detective", + -12.833531379699707 + ], + [ + "▁reimbursement", + -12.833626747131348 + ], + [ + "▁Gemeinschaft", + -12.833772659301758 + ], + [ + "▁adolescents", + -12.833772659301758 + ], + [ + "▁Reality", + -12.833954811096191 + ], + [ + "▁Stockholm", + -12.83415699005127 + ], + [ + "▁Gründen", + -12.834304809570312 + ], + [ + "▁Reflect", + -12.83432388305664 + ], + [ + "▁Palmer", + -12.834336280822754 + ], + [ + "▁treac", + -12.8343505859375 + ], + [ + "▁tentative", + -12.834497451782227 + ], + [ + "▁surrender", + -12.834677696228027 + ], + [ + "▁broadly", + -12.834734916687012 + ], + [ + "▁județ", + -12.834814071655273 + ], + [ + "▁Thu", + -12.834845542907715 + ], + [ + "wärts", + -12.834961891174316 + ], + [ + "▁crește", + -12.835074424743652 + ], + [ + "▁déplacement", + -12.835208892822266 + ], + [ + "blanc", + -12.835268020629883 + ], + [ + "▁£5", + -12.835308074951172 + ], + [ + "▁confidentiality", + -12.835320472717285 + ], + [ + "veraging", + -12.835444450378418 + ], + [ + "unité", + -12.835609436035156 + ], + [ + "clar", + -12.83564567565918 + ], + [ + "rigg", + -12.835693359375 + ], + [ + "honneur", + -12.835694313049316 + ], + [ + "▁adventurous", + -12.835694313049316 + ], + [ + "▁Nutzen", + -12.835758209228516 + ], + [ + "▁Kabel", + -12.835800170898438 + ], + [ + "empowering", + -12.836040496826172 + ], + [ + "verhalten", + -12.836042404174805 + ], + [ + "▁prevail", + -12.8361234664917 + ], + [ + "mashed", + -12.836138725280762 + ], + [ + "▁1947", + -12.83616828918457 + ], + [ + "function", + -12.836292266845703 + ], + [ + "niveaux", + -12.83633041381836 + ], + [ + "▁territories", + -12.836463928222656 + ], + [ + "▁Permanent", + -12.836465835571289 + ], + [ + "▁christmas", + -12.836471557617188 + ], + [ + "arguing", + -12.836490631103516 + ], + [ + "zukünftig", + -12.836654663085938 + ], + [ + "▁Eindruck", + -12.836817741394043 + ], + [ + "personalised", + -12.836854934692383 + ], + [ + "▁vecin", + -12.837211608886719 + ], + [ + "▁Affiliate", + -12.837234497070312 + ], + [ + "▁Silk", + -12.837249755859375 + ], + [ + "▁Tub", + -12.837440490722656 + ], + [ + "▁remont", + -12.837493896484375 + ], + [ + "▁sauber", + -12.837530136108398 + ], + [ + "gehörig", + -12.837562561035156 + ], + [ + "Maritime", + -12.83771800994873 + ], + [ + "▁Bö", + -12.837973594665527 + ], + [ + "▁1957", + -12.83800220489502 + ], + [ + "▁unparalleled", + -12.838005065917969 + ], + [ + "▁fulfillment", + -12.838042259216309 + ], + [ + "▁collage", + -12.838179588317871 + ], + [ + "fenders", + -12.838248252868652 + ], + [ + "▁neige", + -12.838275909423828 + ], + [ + "▁gamers", + -12.838325500488281 + ], + [ + "tefan", + -12.838339805603027 + ], + [ + "▁wifi", + -12.838349342346191 + ], + [ + "▁leisten", + -12.83835506439209 + ], + [ + "▁Verbesserung", + -12.838390350341797 + ], + [ + "▁composant", + -12.838400840759277 + ], + [ + "▁LORD", + -12.8384370803833 + ], + [ + "arrive", + -12.838472366333008 + ], + [ + "▁conquer", + -12.838562965393066 + ], + [ + "▁lentil", + -12.838767051696777 + ], + [ + "▁Sprech", + -12.838995933532715 + ], + [ + "▁substitution", + -12.839015007019043 + ], + [ + ".05.", + -12.839020729064941 + ], + [ + "FORM", + -12.839144706726074 + ], + [ + "cădere", + -12.839154243469238 + ], + [ + "▁canyon", + -12.839430809020996 + ], + [ + "▁capacitate", + -12.839442253112793 + ], + [ + "▁menace", + -12.839461326599121 + ], + [ + "▁Antique", + -12.839519500732422 + ], + [ + "▁dizaine", + -12.839550971984863 + ], + [ + "▁Saturn", + -12.839578628540039 + ], + [ + "▁gastro", + -12.83962631225586 + ], + [ + "▁Vand", + -12.839641571044922 + ], + [ + "▁africa", + -12.839682579040527 + ], + [ + "▁hackers", + -12.839702606201172 + ], + [ + "▁Bailey", + -12.839736938476562 + ], + [ + "ouette", + -12.839822769165039 + ], + [ + "hoch", + -12.839885711669922 + ], + [ + "étudiant", + -12.839973449707031 + ], + [ + "▁1600", + -12.840004920959473 + ], + [ + "utiliz", + -12.840167999267578 + ], + [ + "reinigung", + -12.840263366699219 + ], + [ + "▁mileage", + -12.84029483795166 + ], + [ + "▁consacré", + -12.840309143066406 + ], + [ + "▁Norfolk", + -12.840327262878418 + ], + [ + "stacked", + -12.840659141540527 + ], + [ + "anbieter", + -12.840731620788574 + ], + [ + "▁gewünschte", + -12.84073543548584 + ], + [ + "▁silicon", + -12.840761184692383 + ], + [ + "Ensuite", + -12.840794563293457 + ], + [ + "▁vendu", + -12.840850830078125 + ], + [ + "▁viteza", + -12.840851783752441 + ], + [ + "▁evaluare", + -12.840913772583008 + ], + [ + "▁contient", + -12.841036796569824 + ], + [ + "▁Viagra", + -12.841100692749023 + ], + [ + "▁circumstance", + -12.841283798217773 + ], + [ + "walker", + -12.841383934020996 + ], + [ + "▁Aluminium", + -12.84148120880127 + ], + [ + "ço", + -12.841556549072266 + ], + [ + "▁Kli", + -12.841643333435059 + ], + [ + "▁deliberately", + -12.841649055480957 + ], + [ + "▁gamble", + -12.841893196105957 + ], + [ + "▁nourri", + -12.841903686523438 + ], + [ + "▁sealing", + -12.84194278717041 + ], + [ + "▁Atmosphäre", + -12.842255592346191 + ], + [ + "▁erschien", + -12.842260360717773 + ], + [ + "▁brightness", + -12.842340469360352 + ], + [ + "autonomie", + -12.84251594543457 + ], + [ + "▁propel", + -12.842525482177734 + ], + [ + "▁Infrastructure", + -12.842642784118652 + ], + [ + "▁război", + -12.842642784118652 + ], + [ + "▁jelly", + -12.842684745788574 + ], + [ + "scalable", + -12.84280776977539 + ], + [ + "regal", + -12.84296703338623 + ], + [ + "▁sarcini", + -12.843031883239746 + ], + [ + "▁Dienstag", + -12.84304428100586 + ], + [ + "▁Receive", + -12.8430814743042 + ], + [ + "▁mango", + -12.843356132507324 + ], + [ + "▁compétition", + -12.84341812133789 + ], + [ + "▁Monument", + -12.843428611755371 + ], + [ + "▁mast", + -12.844159126281738 + ], + [ + "▁instructed", + -12.84425163269043 + ], + [ + "▁aventur", + -12.844277381896973 + ], + [ + "139", + -12.844298362731934 + ], + [ + "▁Parmi", + -12.84435749053955 + ], + [ + "confined", + -12.844416618347168 + ], + [ + "acious", + -12.844441413879395 + ], + [ + "▁simptome", + -12.844581604003906 + ], + [ + "▁Fischer", + -12.844897270202637 + ], + [ + "störung", + -12.844985008239746 + ], + [ + "▁bilateral", + -12.84504508972168 + ], + [ + "preşedintele", + -12.845274925231934 + ], + [ + "accueillir", + -12.845357894897461 + ], + [ + "▁Schmidt", + -12.845359802246094 + ], + [ + "litis", + -12.845373153686523 + ], + [ + "WL", + -12.8454008102417 + ], + [ + "▁Rise", + -12.845436096191406 + ], + [ + "▁streamline", + -12.845556259155273 + ], + [ + "sozialen", + -12.845585823059082 + ], + [ + "▁Emirates", + -12.845746040344238 + ], + [ + "▁encrypted", + -12.845746040344238 + ], + [ + "▁unfamiliar", + -12.845746040344238 + ], + [ + "established", + -12.84577751159668 + ], + [ + "▁Tätigkeit", + -12.845818519592285 + ], + [ + "▁unaware", + -12.845913887023926 + ], + [ + "2:00", + -12.8460054397583 + ], + [ + "macher", + -12.846013069152832 + ], + [ + "NSA", + -12.8461275100708 + ], + [ + "▁rutier", + -12.846177101135254 + ], + [ + "▁Trent", + -12.846212387084961 + ], + [ + "▁sickness", + -12.846277236938477 + ], + [ + "▁advert", + -12.846417427062988 + ], + [ + "▁Kranken", + -12.846426963806152 + ], + [ + "▁Sandra", + -12.846443176269531 + ], + [ + "▁Recreation", + -12.846449851989746 + ], + [ + "▁Evidence", + -12.846524238586426 + ], + [ + "▁Immigration", + -12.846524238586426 + ], + [ + "▁carriage", + -12.846524238586426 + ], + [ + "▁justified", + -12.84655475616455 + ], + [ + "▁veche", + -12.846579551696777 + ], + [ + "PGA", + -12.846604347229004 + ], + [ + "▁Carmen", + -12.846735000610352 + ], + [ + "▁Faites", + -12.846750259399414 + ], + [ + "▁erfüllt", + -12.84691333770752 + ], + [ + "▁voilà", + -12.846931457519531 + ], + [ + "▁împlin", + -12.846959114074707 + ], + [ + "deposited", + -12.84721565246582 + ], + [ + "▁decisiv", + -12.847241401672363 + ], + [ + "CSA", + -12.847249031066895 + ], + [ + "pathy", + -12.84726619720459 + ], + [ + "▁erweitert", + -12.847302436828613 + ], + [ + "▁liquor", + -12.847302436828613 + ], + [ + "▁resilient", + -12.847302436828613 + ], + [ + "▁walmart", + -12.847302436828613 + ], + [ + "▁fencing", + -12.847308158874512 + ], + [ + "▁dépasse", + -12.84731388092041 + ], + [ + "KT", + -12.847354888916016 + ], + [ + "▁fries", + -12.847368240356445 + ], + [ + "vadă", + -12.847421646118164 + ], + [ + "▁Spania", + -12.847478866577148 + ], + [ + "▁complètement", + -12.847725868225098 + ], + [ + "▁lucrari", + -12.84777545928955 + ], + [ + "▁Lieb", + -12.847908973693848 + ], + [ + "leistungen", + -12.847943305969238 + ], + [ + "198", + -12.847979545593262 + ], + [ + "▁Schnell", + -12.847997665405273 + ], + [ + "▁radius", + -12.84814453125 + ], + [ + "▁beneficiaries", + -12.848151206970215 + ], + [ + "▁northwest", + -12.848174095153809 + ], + [ + "▁#4", + -12.848223686218262 + ], + [ + "▁embryo", + -12.848492622375488 + ], + [ + "▁ditch", + -12.848791122436523 + ], + [ + "▁Seriously", + -12.848859786987305 + ], + [ + "oppel", + -12.848941802978516 + ], + [ + "▁stalk", + -12.849053382873535 + ], + [ + "écriture", + -12.849066734313965 + ], + [ + "512", + -12.84912109375 + ], + [ + "wiesen", + -12.849271774291992 + ], + [ + "▁Consum", + -12.849321365356445 + ], + [ + "▁lună", + -12.849405288696289 + ], + [ + "▁lantern", + -12.849441528320312 + ], + [ + "▁italian", + -12.849629402160645 + ], + [ + "▁achiziți", + -12.849639892578125 + ], + [ + "▁catalyst", + -12.849639892578125 + ], + [ + "▁Arbeitgeber", + -12.849662780761719 + ], + [ + "▁researched", + -12.8496675491333 + ], + [ + "▁drastically", + -12.849679946899414 + ], + [ + "versammlung", + -12.849735260009766 + ], + [ + "410", + -12.849800109863281 + ], + [ + "▁impus", + -12.850153923034668 + ], + [ + "▁interchange", + -12.850173950195312 + ], + [ + "▁pharmacie", + -12.850215911865234 + ], + [ + "Live", + -12.850354194641113 + ], + [ + "dents", + -12.850384712219238 + ], + [ + "▁charcoal", + -12.850419998168945 + ], + [ + "▁odihn", + -12.850420951843262 + ], + [ + "▁pistol", + -12.850444793701172 + ], + [ + "▁complaining", + -12.850576400756836 + ], + [ + "manager", + -12.850578308105469 + ], + [ + "themed", + -12.850578308105469 + ], + [ + "▁Chang", + -12.850650787353516 + ], + [ + "▁rookie", + -12.85070514678955 + ], + [ + "Great", + -12.850706100463867 + ], + [ + "▁smoker", + -12.850733757019043 + ], + [ + "▁Container", + -12.850812911987305 + ], + [ + "▁bancaire", + -12.850852966308594 + ], + [ + "▁Actual", + -12.850966453552246 + ], + [ + "füllen", + -12.850982666015625 + ], + [ + "forum", + -12.850985527038574 + ], + [ + "bleib", + -12.851073265075684 + ], + [ + "▁combi", + -12.851079940795898 + ], + [ + "smoked", + -12.851137161254883 + ], + [ + "difficultés", + -12.851161003112793 + ], + [ + "▁tactical", + -12.851240158081055 + ], + [ + "▁sichtbar", + -12.851483345031738 + ], + [ + "▁dreptate", + -12.851598739624023 + ], + [ + "ERT", + -12.85168743133545 + ], + [ + "▁Pond", + -12.85177993774414 + ], + [ + "▁Holly", + -12.851844787597656 + ], + [ + "erfolg", + -12.8518705368042 + ], + [ + "▁Nordic", + -12.851896286010742 + ], + [ + "évènement", + -12.851983070373535 + ], + [ + "embracing", + -12.851984024047852 + ], + [ + "▁Maximum", + -12.851984024047852 + ], + [ + "▁défend", + -12.85205078125 + ], + [ + "▁fruct", + -12.852056503295898 + ], + [ + "▁Conditioning", + -12.852099418640137 + ], + [ + "LG", + -12.852127075195312 + ], + [ + "exigence", + -12.852166175842285 + ], + [ + "amide", + -12.852187156677246 + ], + [ + "▁darunter", + -12.852208137512207 + ], + [ + "▁EVERY", + -12.852420806884766 + ], + [ + "▁comparat", + -12.85244083404541 + ], + [ + "boosting", + -12.852452278137207 + ], + [ + "▁Hawaiian", + -12.852553367614746 + ], + [ + "▁Geburt", + -12.852752685546875 + ], + [ + "deci", + -12.852782249450684 + ], + [ + "▁Apollo", + -12.852803230285645 + ], + [ + "▁schützen", + -12.852821350097656 + ], + [ + "tragere", + -12.852893829345703 + ], + [ + "Online", + -12.852904319763184 + ], + [ + "▁neural", + -12.852913856506348 + ], + [ + "▁lucrez", + -12.853188514709473 + ], + [ + "▁phenomenal", + -12.853253364562988 + ], + [ + "▁Height", + -12.853368759155273 + ], + [ + "coordinating", + -12.853548049926758 + ], + [ + "geschnitten", + -12.853631019592285 + ], + [ + "auront", + -12.853641510009766 + ], + [ + "▁administer", + -12.853644371032715 + ], + [ + "▁contend", + -12.853707313537598 + ], + [ + "▁crispy", + -12.853784561157227 + ], + [ + "chuck", + -12.854011535644531 + ], + [ + "▁Condition", + -12.8540678024292 + ], + [ + "gestaltung", + -12.854324340820312 + ], + [ + "▁Blvd", + -12.854331970214844 + ], + [ + "▁subjective", + -12.854470252990723 + ], + [ + "▁événements", + -12.854708671569824 + ], + [ + "▁Jenny", + -12.855131149291992 + ], + [ + "▁cumpăra", + -12.85519027709961 + ], + [ + "constructing", + -12.855262756347656 + ], + [ + "▁instructional", + -12.85539436340332 + ], + [ + "▁sterling", + -12.855446815490723 + ], + [ + "scrise", + -12.855470657348633 + ], + [ + "▁Boulevard", + -12.855551719665527 + ], + [ + "pipe", + -12.855620384216309 + ], + [ + "▁Pride", + -12.855748176574707 + ], + [ + "▁Kau", + -12.855751991271973 + ], + [ + "▁overhaul", + -12.855924606323242 + ], + [ + "▁Recruitment", + -12.855925559997559 + ], + [ + "▁thrilling", + -12.856218338012695 + ], + [ + "living", + -12.856302261352539 + ], + [ + "▁rămân", + -12.85645866394043 + ], + [ + "▁MOD", + -12.85661792755127 + ], + [ + "▁Newport", + -12.856675148010254 + ], + [ + "▁infectious", + -12.856688499450684 + ], + [ + "6-3", + -12.856860160827637 + ], + [ + "▁Apache", + -12.856976509094238 + ], + [ + "▁dependence", + -12.85698413848877 + ], + [ + "nutzung", + -12.857199668884277 + ], + [ + "praised", + -12.857211112976074 + ], + [ + "▁craving", + -12.857346534729004 + ], + [ + "▁cramp", + -12.857397079467773 + ], + [ + "▁mancare", + -12.857455253601074 + ], + [ + "▁entdeckt", + -12.857474327087402 + ], + [ + "▁Pioneer", + -12.857484817504883 + ], + [ + "▁Adelaide", + -12.857490539550781 + ], + [ + "2.0", + -12.857503890991211 + ], + [ + "168", + -12.857526779174805 + ], + [ + "▁Decorating", + -12.857611656188965 + ], + [ + "▁unpleasant", + -12.857854843139648 + ], + [ + "▁déclaration", + -12.857865333557129 + ], + [ + "▁Grafik", + -12.857908248901367 + ], + [ + "5-2", + -12.857937812805176 + ], + [ + "căci", + -12.857940673828125 + ], + [ + "▁invade", + -12.858171463012695 + ], + [ + "▁internaţional", + -12.858259201049805 + ], + [ + "▁fraudulent", + -12.858281135559082 + ], + [ + "▁crestere", + -12.858441352844238 + ], + [ + "ografic", + -12.858729362487793 + ], + [ + "plină", + -12.859140396118164 + ], + [ + "sunteti", + -12.859150886535645 + ], + [ + "/04", + -12.859176635742188 + ], + [ + "▁admis", + -12.85935115814209 + ], + [ + "▁mediation", + -12.859403610229492 + ], + [ + "ICC", + -12.859424591064453 + ], + [ + "roș", + -12.859660148620605 + ], + [ + "▁Aroma", + -12.8596773147583 + ], + [ + "1:00", + -12.859792709350586 + ], + [ + "gasesc", + -12.859822273254395 + ], + [ + "▁Defence", + -12.859850883483887 + ], + [ + "▁dictionary", + -12.859856605529785 + ], + [ + "▁Batterie", + -12.859865188598633 + ], + [ + "▁gesunde", + -12.85997486114502 + ], + [ + "146", + -12.860099792480469 + ], + [ + "▁mortal", + -12.860129356384277 + ], + [ + "▁Flughafen", + -12.860230445861816 + ], + [ + "hhh", + -12.860284805297852 + ], + [ + "▁novice", + -12.860342025756836 + ], + [ + "▁Develop", + -12.86043930053711 + ], + [ + "▁accidental", + -12.860516548156738 + ], + [ + "Muzeul", + -12.86054515838623 + ], + [ + "▁Jupiter", + -12.86062240600586 + ], + [ + "supposedly", + -12.860662460327148 + ], + [ + "energy", + -12.860758781433105 + ], + [ + "▁montrer", + -12.860764503479004 + ], + [ + "recalled", + -12.860795021057129 + ], + [ + "Press", + -12.860801696777344 + ], + [ + "▁postcard", + -12.86080265045166 + ], + [ + "target", + -12.86081600189209 + ], + [ + "▁vêtements", + -12.860881805419922 + ], + [ + "▁particle", + -12.860888481140137 + ], + [ + "professional", + -12.8608980178833 + ], + [ + "▁1949", + -12.860917091369629 + ], + [ + "yah", + -12.860980033874512 + ], + [ + "▁Spiegel", + -12.861017227172852 + ], + [ + "▁Jeffrey", + -12.861023902893066 + ], + [ + "fahrzeug", + -12.861027717590332 + ], + [ + "▁Plug", + -12.861051559448242 + ], + [ + "▁violin", + -12.861150741577148 + ], + [ + "▁condemn", + -12.861381530761719 + ], + [ + "▁conducere", + -12.861398696899414 + ], + [ + "▁Chevrolet", + -12.861412048339844 + ], + [ + "▁conceput", + -12.861461639404297 + ], + [ + "▁Merri", + -12.861493110656738 + ], + [ + "judging", + -12.861559867858887 + ], + [ + "embraced", + -12.86168098449707 + ], + [ + "▁Compact", + -12.861715316772461 + ], + [ + "▁château", + -12.861807823181152 + ], + [ + "etch", + -12.861945152282715 + ], + [ + "bedroom", + -12.861995697021484 + ], + [ + "People", + -12.862038612365723 + ], + [ + "25,000", + -12.86209774017334 + ], + [ + "ocyte", + -12.862146377563477 + ], + [ + "▁Lenovo", + -12.862205505371094 + ], + [ + "▁Hampton", + -12.862241744995117 + ], + [ + "5.2", + -12.862244606018066 + ], + [ + "▁progres", + -12.862266540527344 + ], + [ + "hoc", + -12.862288475036621 + ], + [ + "▁complementary", + -12.86241340637207 + ], + [ + "turned", + -12.862485885620117 + ], + [ + "mangel", + -12.862508773803711 + ], + [ + "▁Drew", + -12.862592697143555 + ], + [ + "épisode", + -12.86259651184082 + ], + [ + "▁Versorgung", + -12.86259651184082 + ], + [ + "▁ausdrücklich", + -12.86259651184082 + ], + [ + "ciune", + -12.862788200378418 + ], + [ + "▁sfârșit", + -12.862990379333496 + ], + [ + "Agricultural", + -12.862991333007812 + ], + [ + "▁caffeine", + -12.862991333007812 + ], + [ + "▁emergencies", + -12.862991333007812 + ], + [ + "▁unhappy", + -12.862991333007812 + ], + [ + "(7)", + -12.863043785095215 + ], + [ + "▁inlocui", + -12.863059043884277 + ], + [ + "▁Rochester", + -12.863153457641602 + ], + [ + "183", + -12.863155364990234 + ], + [ + "niz", + -12.863285064697266 + ], + [ + "tasche", + -12.863462448120117 + ], + [ + "▁Salle", + -12.86347484588623 + ], + [ + "cît", + -12.863478660583496 + ], + [ + "▁Singer", + -12.863489151000977 + ], + [ + "▁economically", + -12.863506317138672 + ], + [ + "▁ieși", + -12.863525390625 + ], + [ + "▁façade", + -12.86378288269043 + ], + [ + "Ohne", + -12.863801956176758 + ], + [ + "▁edible", + -12.863842964172363 + ], + [ + "Rob", + -12.863851547241211 + ], + [ + "▁(2014)", + -12.863859176635742 + ], + [ + "▁Zar", + -12.863919258117676 + ], + [ + "▁obey", + -12.863995552062988 + ], + [ + "Pack", + -12.864087104797363 + ], + [ + "▁Omni", + -12.864198684692383 + ], + [ + "▁Gilbert", + -12.864212036132812 + ], + [ + "▁Vlad", + -12.86429500579834 + ], + [ + "▁pauvre", + -12.864333152770996 + ], + [ + "▁secular", + -12.864383697509766 + ], + [ + "Center", + -12.864415168762207 + ], + [ + "▁Prospect", + -12.864457130432129 + ], + [ + "▁Noah", + -12.86450481414795 + ], + [ + "▁Interactive", + -12.86471176147461 + ], + [ + "▁centaine", + -12.86485767364502 + ], + [ + "▁cerebral", + -12.864971160888672 + ], + [ + "▁Novel", + -12.865013122558594 + ], + [ + "▁Käufer", + -12.865039825439453 + ], + [ + "werfen", + -12.865056991577148 + ], + [ + "▁reluctant", + -12.865143775939941 + ], + [ + "ес", + -12.86520004272461 + ], + [ + "Look", + -12.86521053314209 + ], + [ + "Erkrankung", + -12.86536693572998 + ], + [ + "▁cucumber", + -12.86536693572998 + ], + [ + "/2017", + -12.865399360656738 + ], + [ + "▁flank", + -12.865405082702637 + ], + [ + "opportunité", + -12.865667343139648 + ], + [ + "zugleich", + -12.865766525268555 + ], + [ + "RAT", + -12.865840911865234 + ], + [ + "▁avantages", + -12.865880012512207 + ], + [ + "▁außer", + -12.866008758544922 + ], + [ + "GV", + -12.866090774536133 + ], + [ + "▁Continental", + -12.866159439086914 + ], + [ + "▁affiliation", + -12.866159439086914 + ], + [ + "▁ursprünglich", + -12.86618423461914 + ], + [ + "▁hardship", + -12.866349220275879 + ], + [ + "âme", + -12.86647891998291 + ], + [ + "▁hallway", + -12.866576194763184 + ], + [ + "▁afară", + -12.866578102111816 + ], + [ + "western", + -12.866714477539062 + ], + [ + "▁Jacket", + -12.866802215576172 + ], + [ + "▁culturelle", + -12.866876602172852 + ], + [ + "▁glaci", + -12.866995811462402 + ], + [ + "metoda", + -12.867036819458008 + ], + [ + "▁clerk", + -12.867045402526855 + ], + [ + "▁ordinance", + -12.867185592651367 + ], + [ + "▁Initial", + -12.867197036743164 + ], + [ + "waking", + -12.86722469329834 + ], + [ + "▁Secondary", + -12.867366790771484 + ], + [ + "▁Solomon", + -12.867411613464355 + ], + [ + "glomer", + -12.867488861083984 + ], + [ + "SYS", + -12.867530822753906 + ], + [ + "▁Florin", + -12.867596626281738 + ], + [ + "ffentlich", + -12.867670059204102 + ], + [ + "▁Printer", + -12.867674827575684 + ], + [ + "▁dimineata", + -12.86774730682373 + ], + [ + "▁stripes", + -12.867748260498047 + ], + [ + "plugged", + -12.86776065826416 + ], + [ + "öhl", + -12.867836952209473 + ], + [ + "infused", + -12.867875099182129 + ], + [ + "▁Rubber", + -12.867895126342773 + ], + [ + "paved", + -12.867898941040039 + ], + [ + "▁Devi", + -12.867995262145996 + ], + [ + "▁subway", + -12.8681640625 + ], + [ + "▁gases", + -12.868306159973145 + ], + [ + "▁reguli", + -12.868371963500977 + ], + [ + "▁Rebel", + -12.868413925170898 + ], + [ + "▁destructive", + -12.868546485900879 + ], + [ + "▁oferind", + -12.868664741516113 + ], + [ + "9001", + -12.868876457214355 + ], + [ + "CRA", + -12.868912696838379 + ], + [ + "why", + -12.868932723999023 + ], + [ + "sensul", + -12.869036674499512 + ], + [ + "guter", + -12.869277000427246 + ], + [ + "Empfehlung", + -12.869338035583496 + ], + [ + "▁convertible", + -12.86953353881836 + ], + [ + "▁predominantly", + -12.869637489318848 + ], + [ + "▁Mentor", + -12.869649887084961 + ], + [ + "Practic", + -12.869720458984375 + ], + [ + "▁echipă", + -12.869754791259766 + ], + [ + "onsite", + -12.869853019714355 + ], + [ + "▁zunehmend", + -12.86994743347168 + ], + [ + "▁Harbour", + -12.870016098022461 + ], + [ + "▁pineapple", + -12.870133399963379 + ], + [ + "▁gasoline", + -12.870139122009277 + ], + [ + "▁Jaguar", + -12.870158195495605 + ], + [ + "kno", + -12.870259284973145 + ], + [ + "▁heap", + -12.870448112487793 + ], + [ + "▁fictional", + -12.870481491088867 + ], + [ + "fiinta", + -12.870753288269043 + ], + [ + "▁Amber", + -12.87081241607666 + ], + [ + "▁Exclusive", + -12.870929718017578 + ], + [ + "▁Pharmaceutical", + -12.870929718017578 + ], + [ + "▁unterscheide", + -12.871044158935547 + ], + [ + "▁1942", + -12.871116638183594 + ], + [ + "▁Ceiling", + -12.87115478515625 + ], + [ + "developed", + -12.871228218078613 + ], + [ + "▁consacr", + -12.87132453918457 + ], + [ + "▁Membr", + -12.871411323547363 + ], + [ + "erton", + -12.871447563171387 + ], + [ + "habitation", + -12.871685981750488 + ], + [ + "▁longevity", + -12.871726989746094 + ], + [ + "▁Starbucks", + -12.871728897094727 + ], + [ + "▁poat", + -12.871771812438965 + ], + [ + "▁commissioner", + -12.871794700622559 + ], + [ + "pedia", + -12.871938705444336 + ], + [ + "popped", + -12.872468948364258 + ], + [ + "versorgung", + -12.872525215148926 + ], + [ + "▁Aktivitäten", + -12.872525215148926 + ], + [ + "▁Betreuung", + -12.872525215148926 + ], + [ + "▁afacere", + -12.872968673706055 + ], + [ + "▁Mechanical", + -12.873323440551758 + ], + [ + "▁Leiter", + -12.873346328735352 + ], + [ + "▁scaling", + -12.873427391052246 + ], + [ + "▁Slim", + -12.87350082397461 + ], + [ + "▁temperaturi", + -12.873516082763672 + ], + [ + "ACH", + -12.873558044433594 + ], + [ + "▁jährlich", + -12.873682022094727 + ], + [ + "▁photographie", + -12.873722076416016 + ], + [ + "▁préalable", + -12.873725891113281 + ], + [ + "▁părinți", + -12.87372875213623 + ], + [ + "▁Farmers", + -12.873873710632324 + ], + [ + "▁Printable", + -12.873905181884766 + ], + [ + "Früh", + -12.873908996582031 + ], + [ + "approved", + -12.87398624420166 + ], + [ + "otro", + -12.874094009399414 + ], + [ + "▁veneer", + -12.874099731445312 + ], + [ + "▁Warriors", + -12.874122619628906 + ], + [ + "▁Approach", + -12.874149322509766 + ], + [ + "Share", + -12.874238967895508 + ], + [ + "▁buds", + -12.874252319335938 + ], + [ + "▁Într", + -12.874330520629883 + ], + [ + "glichen", + -12.87452507019043 + ], + [ + "▁anbieten", + -12.87452507019043 + ], + [ + "MET", + -12.874539375305176 + ], + [ + "amélioration", + -12.87468147277832 + ], + [ + "ländische", + -12.87468433380127 + ], + [ + "nsgesamt", + -12.874764442443848 + ], + [ + "einiger", + -12.874822616577148 + ], + [ + "▁Förderung", + -12.874876022338867 + ], + [ + "destroying", + -12.874910354614258 + ], + [ + "▁accreditation", + -12.874922752380371 + ], + [ + "reminiscent", + -12.875094413757324 + ], + [ + "▁retriev", + -12.87528133392334 + ], + [ + "▁Flü", + -12.875306129455566 + ], + [ + "▁Monsieur", + -12.875322341918945 + ], + [ + "German", + -12.87536334991455 + ], + [ + "Orice", + -12.875443458557129 + ], + [ + "künftig", + -12.875523567199707 + ], + [ + "▁vorbi", + -12.875639915466309 + ], + [ + "▁intentionally", + -12.875733375549316 + ], + [ + "▁îngrij", + -12.875743865966797 + ], + [ + "▁laughed", + -12.875850677490234 + ], + [ + "▁Fiction", + -12.875913619995117 + ], + [ + "▁inteligent", + -12.875914573669434 + ], + [ + "▁Translation", + -12.875953674316406 + ], + [ + "greete", + -12.875983238220215 + ], + [ + "▁énergétique", + -12.876123428344727 + ], + [ + "uncovered", + -12.876248359680176 + ], + [ + "▁évidemment", + -12.876523971557617 + ], + [ + "▁Vietnamese", + -12.876535415649414 + ], + [ + "▁Libya", + -12.876675605773926 + ], + [ + "▁Trailer", + -12.876734733581543 + ], + [ + "▁Wohl", + -12.876871109008789 + ], + [ + "▁Congo", + -12.87698745727539 + ], + [ + "▁freut", + -12.877002716064453 + ], + [ + "zauber", + -12.877090454101562 + ], + [ + "▁Pân", + -12.877142906188965 + ], + [ + "▁mentine", + -12.877333641052246 + ], + [ + "▁welding", + -12.877335548400879 + ], + [ + "▁Mircea", + -12.8773775100708 + ], + [ + "▁optimism", + -12.877455711364746 + ], + [ + "VEL", + -12.877504348754883 + ], + [ + "oilea", + -12.877540588378906 + ], + [ + "▁thereafter", + -12.877612113952637 + ], + [ + "▁André", + -12.877710342407227 + ], + [ + "forschung", + -12.877799987792969 + ], + [ + "running", + -12.878022193908691 + ], + [ + "▁hostile", + -12.878059387207031 + ], + [ + "Homme", + -12.87811279296875 + ], + [ + "▁Satellite", + -12.878129005432129 + ], + [ + "▁collagen", + -12.87841796875 + ], + [ + "▁concedi", + -12.878518104553223 + ], + [ + "▁produziert", + -12.87852954864502 + ], + [ + "▁virgin", + -12.878540992736816 + ], + [ + "frant", + -12.87857723236084 + ], + [ + "▁teammates", + -12.878744125366211 + ], + [ + "▁faceti", + -12.878802299499512 + ], + [ + "▁Restoration", + -12.87893295288086 + ], + [ + "▁detached", + -12.878935813903809 + ], + [ + "▁Instructor", + -12.878950119018555 + ], + [ + "montag", + -12.879227638244629 + ], + [ + "▁borrowing", + -12.879375457763672 + ], + [ + "▁Retro", + -12.879446983337402 + ], + [ + "▁behandelt", + -12.879536628723145 + ], + [ + "▁Aussage", + -12.879715919494629 + ], + [ + "▁snorkel", + -12.879734992980957 + ], + [ + "▁Proceedings", + -12.879754066467285 + ], + [ + "▁Judy", + -12.879776000976562 + ], + [ + "▁Wendy", + -12.879783630371094 + ], + [ + "artă", + -12.879920959472656 + ], + [ + "▁Vergangenheit", + -12.88013744354248 + ], + [ + "▁Gegner", + -12.880139350891113 + ], + [ + "▁ulcer", + -12.880166053771973 + ], + [ + "wirksam", + -12.880553245544434 + ], + [ + "▁închis", + -12.880560874938965 + ], + [ + "▁emission", + -12.88068962097168 + ], + [ + "ulescu", + -12.880754470825195 + ], + [ + "▁bancar", + -12.880819320678711 + ], + [ + "compromising", + -12.880924224853516 + ], + [ + "▁Priest", + -12.881156921386719 + ], + [ + "▁Progress", + -12.881318092346191 + ], + [ + "▁punish", + -12.88144588470459 + ], + [ + "▁Afin", + -12.881450653076172 + ], + [ + "▁Bog", + -12.881514549255371 + ], + [ + "lunii", + -12.881525039672852 + ], + [ + "▁ressembl", + -12.881570816040039 + ], + [ + "▁Creation", + -12.881644248962402 + ], + [ + "effet", + -12.881668090820312 + ], + [ + "Versicherung", + -12.881671905517578 + ], + [ + "médias", + -12.881672859191895 + ], + [ + "▁Kritik", + -12.881793975830078 + ], + [ + "idia", + -12.881896018981934 + ], + [ + "▁Wasch", + -12.881929397583008 + ], + [ + "UAL", + -12.882059097290039 + ], + [ + "Approximately", + -12.882149696350098 + ], + [ + "izari", + -12.882152557373047 + ], + [ + "▁Dortmund", + -12.882152557373047 + ], + [ + "▁contul", + -12.882343292236328 + ], + [ + "▁Airways", + -12.882408142089844 + ], + [ + "sicherung", + -12.882535934448242 + ], + [ + "échelle", + -12.882560729980469 + ], + [ + "ADD", + -12.882582664489746 + ], + [ + "DIA", + -12.88259506225586 + ], + [ + "kabel", + -12.882621765136719 + ], + [ + "Media", + -12.88268756866455 + ], + [ + "ampli", + -12.882894515991211 + ], + [ + "▁quarry", + -12.88295841217041 + ], + [ + "▁acoper", + -12.883072853088379 + ], + [ + "halter", + -12.883326530456543 + ], + [ + "▁solicitor", + -12.883684158325195 + ], + [ + "phosphat", + -12.883763313293457 + ], + [ + "▁drown", + -12.883773803710938 + ], + [ + "congratulat", + -12.884047508239746 + ], + [ + "▁uneven", + -12.884087562561035 + ], + [ + "▁rupe", + -12.884154319763184 + ], + [ + "▁heureux", + -12.88417911529541 + ], + [ + "caractéristiques", + -12.884221076965332 + ], + [ + "60,000", + -12.884283065795898 + ], + [ + "ambigu", + -12.884340286254883 + ], + [ + "224", + -12.884417533874512 + ], + [ + "dov", + -12.88454532623291 + ], + [ + "▁Naturally", + -12.884629249572754 + ], + [ + "▁Ernst", + -12.884634017944336 + ], + [ + "Camp", + -12.884757995605469 + ], + [ + "▁Worldwide", + -12.884909629821777 + ], + [ + "▁antrenament", + -12.885042190551758 + ], + [ + "▁jocul", + -12.88521671295166 + ], + [ + "▁broccoli", + -12.88537883758545 + ], + [ + "▁fascinated", + -12.88537883758545 + ], + [ + "▁Abbey", + -12.885387420654297 + ], + [ + "▁aquarium", + -12.885390281677246 + ], + [ + "HAN", + -12.885458946228027 + ], + [ + "chaffung", + -12.885480880737305 + ], + [ + "137", + -12.885503768920898 + ], + [ + "rumors", + -12.885515213012695 + ], + [ + "reliance", + -12.885557174682617 + ], + [ + "▁vaccination", + -12.8856782913208 + ], + [ + "responsabilitate", + -12.885777473449707 + ], + [ + "▁legislati", + -12.885782241821289 + ], + [ + "ATT", + -12.885826110839844 + ], + [ + "206", + -12.885896682739258 + ], + [ + "▁miere", + -12.885967254638672 + ], + [ + "▁rezultatul", + -12.885988235473633 + ], + [ + "părea", + -12.88599681854248 + ], + [ + "zuführen", + -12.886159896850586 + ], + [ + "▁Kompetenz", + -12.886187553405762 + ], + [ + "▁nickname", + -12.886195182800293 + ], + [ + "pilot", + -12.88620376586914 + ], + [ + "▁ninth", + -12.886252403259277 + ], + [ + "▁Tyr", + -12.886446952819824 + ], + [ + "▁misuse", + -12.886469841003418 + ], + [ + "▁SUP", + -12.886514663696289 + ], + [ + "▁Attack", + -12.88667106628418 + ], + [ + "Smart", + -12.88669490814209 + ], + [ + "▁Philosoph", + -12.886930465698242 + ], + [ + "▁Alege", + -12.886931419372559 + ], + [ + "▁femeile", + -12.886967658996582 + ], + [ + "▁Heating", + -12.88698673248291 + ], + [ + "▁Cricket", + -12.886999130249023 + ], + [ + "▁scholar", + -12.887049674987793 + ], + [ + "Model", + -12.887073516845703 + ], + [ + "▁stimulating", + -12.887182235717773 + ], + [ + "▁industrielle", + -12.887189865112305 + ], + [ + "▁phenomena", + -12.887303352355957 + ], + [ + "▁Nahrung", + -12.887414932250977 + ], + [ + "▁Conditioner", + -12.887433052062988 + ], + [ + "führ", + -12.887489318847656 + ], + [ + "▁révolution", + -12.88757610321045 + ], + [ + "plastic", + -12.887595176696777 + ], + [ + "▁approximate", + -12.887596130371094 + ], + [ + "▁dienen", + -12.887624740600586 + ], + [ + "▁obsession", + -12.887807846069336 + ], + [ + "▁rectangular", + -12.887807846069336 + ], + [ + "Allemagne", + -12.887808799743652 + ], + [ + "▁Tanzania", + -12.887824058532715 + ], + [ + "border", + -12.887884140014648 + ], + [ + "▁crashed", + -12.887958526611328 + ], + [ + "visor", + -12.887974739074707 + ], + [ + "▁autorizat", + -12.888072967529297 + ], + [ + "▁Champagne", + -12.888222694396973 + ], + [ + "längst", + -12.888238906860352 + ], + [ + "▁realities", + -12.888314247131348 + ], + [ + "▁Keyword", + -12.88831615447998 + ], + [ + "▁GUI", + -12.888495445251465 + ], + [ + "▁simplified", + -12.88865852355957 + ], + [ + "▁Rack", + -12.888681411743164 + ], + [ + "▁Zahlen", + -12.888693809509277 + ], + [ + "growth", + -12.888897895812988 + ], + [ + "▁rehearsal", + -12.888991355895996 + ], + [ + "▁Epic", + -12.888999938964844 + ], + [ + "▁réussite", + -12.889195442199707 + ], + [ + "▁politician", + -12.889263153076172 + ], + [ + "▁emoți", + -12.889378547668457 + ], + [ + "▁delegation", + -12.889449119567871 + ], + [ + "▁со", + -12.889464378356934 + ], + [ + "oversized", + -12.889477729797363 + ], + [ + "▁Motto", + -12.889481544494629 + ], + [ + "1860", + -12.889788627624512 + ], + [ + "▁defective", + -12.889803886413574 + ], + [ + "brewing", + -12.889852523803711 + ], + [ + "linguistic", + -12.890243530273438 + ], + [ + "▁Hopkins", + -12.890265464782715 + ], + [ + "▁(2012)", + -12.89030933380127 + ], + [ + "crease", + -12.890436172485352 + ], + [ + "▁Versicherungs", + -12.89052677154541 + ], + [ + "▁Noble", + -12.890752792358398 + ], + [ + "▁Bekannt", + -12.890896797180176 + ], + [ + "▁vorstellen", + -12.89095401763916 + ], + [ + "▁suburban", + -12.890970230102539 + ], + [ + "DAC", + -12.890995025634766 + ], + [ + "▁scatter", + -12.89103889465332 + ], + [ + "▁Artificial", + -12.8910551071167 + ], + [ + "▁reactor", + -12.891073226928711 + ], + [ + "▁modelling", + -12.89108943939209 + ], + [ + "▁Holder", + -12.891148567199707 + ], + [ + "athon", + -12.891149520874023 + ], + [ + "147", + -12.891190528869629 + ], + [ + "▁stagn", + -12.891257286071777 + ], + [ + "ARY", + -12.891261100769043 + ], + [ + "Space", + -12.89126968383789 + ], + [ + "▁Gibson", + -12.891718864440918 + ], + [ + "▁Investigator", + -12.89173698425293 + ], + [ + "▁1914", + -12.891818046569824 + ], + [ + "▁Muhammad", + -12.891868591308594 + ], + [ + "▁shove", + -12.892073631286621 + ], + [ + "▁erklären", + -12.892276763916016 + ], + [ + "▁abdomen", + -12.892277717590332 + ], + [ + "▁Mazda", + -12.892349243164062 + ], + [ + "▁hemo", + -12.892364501953125 + ], + [ + "National", + -12.892455101013184 + ], + [ + "starken", + -12.89267635345459 + ], + [ + "▁Cyprus", + -12.892683982849121 + ], + [ + "▁tread", + -12.892721176147461 + ], + [ + "▁sweetness", + -12.892725944519043 + ], + [ + "stunden", + -12.892790794372559 + ], + [ + "▁couverture", + -12.893059730529785 + ], + [ + "▁Successful", + -12.893060684204102 + ], + [ + "▁oublier", + -12.893171310424805 + ], + [ + "▁esential", + -12.893203735351562 + ], + [ + "estival", + -12.89321231842041 + ], + [ + "gnac", + -12.893280029296875 + ], + [ + "▁Basement", + -12.893457412719727 + ], + [ + "presumably", + -12.893497467041016 + ], + [ + "▁mourn", + -12.893561363220215 + ], + [ + "armée", + -12.893677711486816 + ], + [ + "148", + -12.893845558166504 + ], + [ + "▁residue", + -12.894006729125977 + ], + [ + "▁metalic", + -12.89404296875 + ], + [ + "▁Zell", + -12.89425277709961 + ], + [ + "Build", + -12.894280433654785 + ], + [ + "▁prevalence", + -12.894312858581543 + ], + [ + "▁wrestling", + -12.894312858581543 + ], + [ + "▁ascuns", + -12.894325256347656 + ], + [ + "Sacred", + -12.894340515136719 + ], + [ + "Tec", + -12.89438533782959 + ], + [ + "▁Kindergarten", + -12.894389152526855 + ], + [ + "bindung", + -12.894464492797852 + ], + [ + "▁ritm", + -12.894545555114746 + ], + [ + "▁triste", + -12.894651412963867 + ], + [ + "▁introdus", + -12.894758224487305 + ], + [ + "/2016", + -12.894824028015137 + ], + [ + "▁română", + -12.894899368286133 + ], + [ + "▁bibli", + -12.89490032196045 + ], + [ + "▁cigar", + -12.894913673400879 + ], + [ + "Rie", + -12.894990921020508 + ], + [ + "▁intentional", + -12.894999504089355 + ], + [ + "▁cuprins", + -12.895098686218262 + ], + [ + "remarkably", + -12.895129203796387 + ], + [ + "▁printemps", + -12.895133972167969 + ], + [ + "▁declining", + -12.895171165466309 + ], + [ + "Magazin", + -12.89552116394043 + ], + [ + "▁săptămână", + -12.895537376403809 + ], + [ + "▁vérifier", + -12.895549774169922 + ], + [ + "▁Speise", + -12.895584106445312 + ], + [ + "▁reteta", + -12.8956298828125 + ], + [ + "heed", + -12.895772933959961 + ], + [ + "▁Compliance", + -12.895946502685547 + ], + [ + "▁embroidery", + -12.895946502685547 + ], + [ + "cried", + -12.896025657653809 + ], + [ + "▁(„", + -12.896282196044922 + ], + [ + "▁heck", + -12.89629077911377 + ], + [ + "▁sadness", + -12.896501541137695 + ], + [ + "▁impulse", + -12.896585464477539 + ], + [ + "ATH", + -12.896740913391113 + ], + [ + "▁lavender", + -12.896773338317871 + ], + [ + "uiesc", + -12.896790504455566 + ], + [ + "▁Disorder", + -12.896876335144043 + ], + [ + "stroke", + -12.896991729736328 + ], + [ + "▁piaţ", + -12.8970365524292 + ], + [ + "ournée", + -12.897049903869629 + ], + [ + "▁Barnes", + -12.8971586227417 + ], + [ + "▁scăzut", + -12.897172927856445 + ], + [ + "▁équipements", + -12.89725112915039 + ], + [ + "OND", + -12.897375106811523 + ], + [ + "▁Compet", + -12.897424697875977 + ], + [ + "▁Bestell", + -12.89748477935791 + ], + [ + "▁immédiatement", + -12.897587776184082 + ], + [ + "aparut", + -12.89759635925293 + ], + [ + "▁rainfall", + -12.897882461547852 + ], + [ + "oreille", + -12.89797306060791 + ], + [ + "▁ministère", + -12.898014068603516 + ], + [ + "iris", + -12.898140907287598 + ], + [ + "dyna", + -12.898279190063477 + ], + [ + "drücken", + -12.898343086242676 + ], + [ + "▁détect", + -12.89834976196289 + ], + [ + "▁fonctionnalité", + -12.89840030670166 + ], + [ + "▁imbalance", + -12.89840030670166 + ], + [ + "▁unpredictable", + -12.89840030670166 + ], + [ + "▁literar", + -12.89846134185791 + ], + [ + "▁Windsor", + -12.898472785949707 + ], + [ + "▁Unlimited", + -12.898481369018555 + ], + [ + "colour", + -12.898674964904785 + ], + [ + "▁Portfolio", + -12.898810386657715 + ], + [ + "149", + -12.898883819580078 + ], + [ + "volution", + -12.898890495300293 + ], + [ + "▁folgende", + -12.899078369140625 + ], + [ + "▁arbitration", + -12.899105072021484 + ], + [ + "kicking", + -12.89913558959961 + ], + [ + "zügig", + -12.89923095703125 + ], + [ + "▁1941", + -12.899311065673828 + ], + [ + "▁Drake", + -12.89955997467041 + ], + [ + "▁ausführlich", + -12.899630546569824 + ], + [ + "▁chaussure", + -12.899630546569824 + ], + [ + "▁intestinal", + -12.89976692199707 + ], + [ + "▁pilgrim", + -12.900040626525879 + ], + [ + "▁Bark", + -12.900142669677734 + ], + [ + "between", + -12.900157928466797 + ], + [ + "disposed", + -12.900175094604492 + ], + [ + "▁Dylan", + -12.900218963623047 + ], + [ + "ств", + -12.900253295898438 + ], + [ + "NOR", + -12.900287628173828 + ], + [ + "traces", + -12.90038776397705 + ], + [ + "▁moindre", + -12.900500297546387 + ], + [ + "▁$10,000", + -12.900552749633789 + ], + [ + "212", + -12.900599479675293 + ], + [ + "wusste", + -12.900659561157227 + ], + [ + "▁predictable", + -12.900671005249023 + ], + [ + "poţi", + -12.900679588317871 + ], + [ + "▁Celsius", + -12.900860786437988 + ], + [ + "gebunden", + -12.90086841583252 + ], + [ + "▁Legacy", + -12.900891304016113 + ], + [ + "movers", + -12.90090274810791 + ], + [ + "▁concret", + -12.90098762512207 + ], + [ + "▁simpla", + -12.901050567626953 + ], + [ + "rechnet", + -12.901103973388672 + ], + [ + "▁certainty", + -12.901144981384277 + ], + [ + "entrepreneurship", + -12.901153564453125 + ], + [ + "kohl", + -12.901289939880371 + ], + [ + "▁curte", + -12.901311874389648 + ], + [ + "▁Forbes", + -12.901411056518555 + ], + [ + "▁Zusatz", + -12.901535987854004 + ], + [ + "blending", + -12.90163803100586 + ], + [ + "▁variat", + -12.901642799377441 + ], + [ + "▁galaxy", + -12.90168285369873 + ], + [ + "▁safari", + -12.90168571472168 + ], + [ + "▁municipalities", + -12.9017972946167 + ], + [ + "▁Drept", + -12.90180778503418 + ], + [ + "aufnahme", + -12.902128219604492 + ], + [ + "▁endorse", + -12.902223587036133 + ], + [ + "einrichtung", + -12.902244567871094 + ], + [ + "Sync", + -12.902270317077637 + ], + [ + "abide", + -12.902323722839355 + ], + [ + "brushed", + -12.902350425720215 + ], + [ + "▁actiune", + -12.902410507202148 + ], + [ + "quaint", + -12.902498245239258 + ], + [ + "▁volatility", + -12.902504920959473 + ], + [ + "▁repetitive", + -12.902505874633789 + ], + [ + "▁découvr", + -12.902560234069824 + ], + [ + "Totodat", + -12.902585983276367 + ], + [ + "▁românesc", + -12.902682304382324 + ], + [ + "▁tempting", + -12.902772903442383 + ], + [ + "thesis", + -12.902947425842285 + ], + [ + "secure", + -12.903013229370117 + ], + [ + "delt", + -12.903019905090332 + ], + [ + "▁şef", + -12.903167724609375 + ], + [ + "▁epidemic", + -12.903326988220215 + ], + [ + "▁Appliance", + -12.903327941894531 + ], + [ + "cearcă", + -12.903331756591797 + ], + [ + "▁lodging", + -12.903361320495605 + ], + [ + "▁photographed", + -12.903507232666016 + ], + [ + "geschlagen", + -12.903794288635254 + ], + [ + "▁Methodist", + -12.90380859375 + ], + [ + "▁Transit", + -12.90389347076416 + ], + [ + "▁Länder", + -12.903934478759766 + ], + [ + "villa", + -12.903986930847168 + ], + [ + "▁toilette", + -12.904031753540039 + ], + [ + "anno", + -12.904074668884277 + ], + [ + "▁Aufnahme", + -12.904091835021973 + ], + [ + "▁Coral", + -12.904099464416504 + ], + [ + "pourraient", + -12.904129981994629 + ], + [ + "▁digestion", + -12.904245376586914 + ], + [ + "▁Vacation", + -12.904274940490723 + ], + [ + "▁Rugby", + -12.904275894165039 + ], + [ + "MIC", + -12.904311180114746 + ], + [ + "▁choc", + -12.904417991638184 + ], + [ + "2002", + -12.904492378234863 + ], + [ + "gestion", + -12.904674530029297 + ], + [ + "▁Zoom", + -12.904745101928711 + ], + [ + "essor", + -12.904763221740723 + ], + [ + "weighed", + -12.904793739318848 + ], + [ + "▁dispus", + -12.904987335205078 + ], + [ + "▁redemption", + -12.90502643585205 + ], + [ + "▁plaster", + -12.905071258544922 + ], + [ + "▁Quilt", + -12.90507698059082 + ], + [ + "▁teritoriul", + -12.905088424682617 + ], + [ + "ndern", + -12.905097961425781 + ], + [ + "▁expired", + -12.905105590820312 + ], + [ + "▁Tribunal", + -12.905122756958008 + ], + [ + "occupation", + -12.9052152633667 + ], + [ + "▁woodland", + -12.905248641967773 + ], + [ + "vieux", + -12.905254364013672 + ], + [ + "▁Midland", + -12.905465126037598 + ], + [ + "gât", + -12.90571117401123 + ], + [ + "électricité", + -12.905800819396973 + ], + [ + "▁vanzare", + -12.905811309814453 + ], + [ + "biologi", + -12.905961036682129 + ], + [ + "▁vive", + -12.906060218811035 + ], + [ + "▁Alarm", + -12.906097412109375 + ], + [ + "▁experiență", + -12.9061279296875 + ], + [ + "▁Loch", + -12.906133651733398 + ], + [ + "▁Pedro", + -12.906194686889648 + ], + [ + "▁detergent", + -12.906217575073242 + ], + [ + "language", + -12.906554222106934 + ], + [ + "▁sedan", + -12.906655311584473 + ], + [ + "▁Brady", + -12.906736373901367 + ], + [ + "▁compus", + -12.906976699829102 + ], + [ + "▁landfill", + -12.906982421875 + ], + [ + "giu", + -12.907039642333984 + ], + [ + "beziehung", + -12.9070405960083 + ], + [ + "▁picior", + -12.907184600830078 + ], + [ + "ALI", + -12.907235145568848 + ], + [ + "▁Commander", + -12.907256126403809 + ], + [ + "EPS", + -12.907303810119629 + ], + [ + "▁Textil", + -12.907320022583008 + ], + [ + "▁industria", + -12.907339096069336 + ], + [ + "lox", + -12.907365798950195 + ], + [ + "▁eclectic", + -12.907453536987305 + ], + [ + "▁gracious", + -12.907477378845215 + ], + [ + "Uniunea", + -12.907525062561035 + ], + [ + "bps", + -12.90754222869873 + ], + [ + "▁entertained", + -12.907634735107422 + ], + [ + "depinde", + -12.907767295837402 + ], + [ + "▁daylight", + -12.907893180847168 + ], + [ + "▁résistance", + -12.907995223999023 + ], + [ + "ARN", + -12.908194541931152 + ], + [ + "▁unavailable", + -12.908201217651367 + ], + [ + "Curtea", + -12.908390045166016 + ], + [ + "▁pores", + -12.908502578735352 + ], + [ + "▁Tonight", + -12.908649444580078 + ], + [ + "▁datori", + -12.90869426727295 + ], + [ + "▁gezielt", + -12.908703804016113 + ], + [ + "▁rupture", + -12.90875244140625 + ], + [ + "▁disput", + -12.908848762512207 + ], + [ + "▁sonstige", + -12.908895492553711 + ], + [ + "▁Ordnung", + -12.90910816192627 + ], + [ + "▁beschrieben", + -12.909114837646484 + ], + [ + "▁Rainbow", + -12.90911865234375 + ], + [ + "▁Werkzeug", + -12.909136772155762 + ], + [ + "GIN", + -12.909354209899902 + ], + [ + "facilitating", + -12.909490585327148 + ], + [ + "hunt", + -12.90955638885498 + ], + [ + "▁Serving", + -12.909673690795898 + ], + [ + "Writ", + -12.909692764282227 + ], + [ + "requisite", + -12.909798622131348 + ], + [ + "▁Kerry", + -12.90989875793457 + ], + [ + "▁riesig", + -12.909957885742188 + ], + [ + "▁Healing", + -12.91030502319336 + ], + [ + "▁1954", + -12.910365104675293 + ], + [ + "▁mousse", + -12.910428047180176 + ], + [ + "▁Positive", + -12.910764694213867 + ], + [ + "embodie", + -12.910772323608398 + ], + [ + "▁penetrate", + -12.910774230957031 + ], + [ + "endorsed", + -12.910882949829102 + ], + [ + "▁situatia", + -12.910927772521973 + ], + [ + "▁Unity", + -12.911083221435547 + ], + [ + "142", + -12.911102294921875 + ], + [ + "▁farmhouse", + -12.911138534545898 + ], + [ + "▁Handbook", + -12.911368370056152 + ], + [ + "▁symbolic", + -12.911378860473633 + ], + [ + "pristine", + -12.911439895629883 + ], + [ + "moitié", + -12.911595344543457 + ], + [ + "▁Sessions", + -12.912017822265625 + ], + [ + "technisch", + -12.912116050720215 + ], + [ + "▁lesquel", + -12.912148475646973 + ], + [ + "▁electronically", + -12.912208557128906 + ], + [ + "▁modificat", + -12.912240982055664 + ], + [ + "▁adjoin", + -12.912242889404297 + ], + [ + "actualité", + -12.912256240844727 + ], + [ + "vati", + -12.91229248046875 + ], + [ + "VENT", + -12.912299156188965 + ], + [ + "▁salsa", + -12.912333488464355 + ], + [ + "acupunctur", + -12.912424087524414 + ], + [ + "▁Opportunity", + -12.912424087524414 + ], + [ + "▁Inspection", + -12.912425994873047 + ], + [ + "▁vereinbart", + -12.912425994873047 + ], + [ + "▁Residents", + -12.912426948547363 + ], + [ + "▁perennial", + -12.91242790222168 + ], + [ + "CHAN", + -12.912555694580078 + ], + [ + "Search", + -12.912572860717773 + ], + [ + "UTE", + -12.912696838378906 + ], + [ + "▁Lens", + -12.912703514099121 + ], + [ + "▁Banner", + -12.91281509399414 + ], + [ + "aménagement", + -12.912839889526367 + ], + [ + "▁Decision", + -12.91286849975586 + ], + [ + "▁ferr", + -12.912869453430176 + ], + [ + "▁Transformation", + -12.912878036499023 + ], + [ + "▁Stamm", + -12.912955284118652 + ], + [ + "▁Galerie", + -12.913003921508789 + ], + [ + "onny", + -12.913126945495605 + ], + [ + "▁caption", + -12.913195610046387 + ], + [ + "▁viitorul", + -12.91323471069336 + ], + [ + "▁professionelle", + -12.913281440734863 + ], + [ + "drepturile", + -12.913294792175293 + ], + [ + "ylon", + -12.913345336914062 + ], + [ + "Société", + -12.913387298583984 + ], + [ + "AIS", + -12.913456916809082 + ], + [ + "March", + -12.91350269317627 + ], + [ + "▁Rav", + -12.91357707977295 + ], + [ + "▁1946", + -12.913691520690918 + ], + [ + "accompagnement", + -12.913713455200195 + ], + [ + "Liviu", + -12.913716316223145 + ], + [ + "▁Appeal", + -12.913826942443848 + ], + [ + "▁sentir", + -12.913952827453613 + ], + [ + "▁Indigenous", + -12.914087295532227 + ], + [ + "▁wizard", + -12.914087295532227 + ], + [ + "▁collateral", + -12.914127349853516 + ], + [ + "▁Proof", + -12.914324760437012 + ], + [ + "▁prze", + -12.914398193359375 + ], + [ + "▁obținut", + -12.91450309753418 + ], + [ + "COP", + -12.914629936218262 + ], + [ + "▁obiect", + -12.914681434631348 + ], + [ + "▁isolate", + -12.914685249328613 + ], + [ + "▁nieder", + -12.914793014526367 + ], + [ + "TECH", + -12.914953231811523 + ], + [ + "▁Sharing", + -12.914998054504395 + ], + [ + "Ideally", + -12.915008544921875 + ], + [ + "▁naked", + -12.915059089660645 + ], + [ + "horaire", + -12.915130615234375 + ], + [ + "▁prelucrare", + -12.915180206298828 + ], + [ + "▁forcément", + -12.915349006652832 + ], + [ + "▁ESPN", + -12.915403366088867 + ], + [ + "▁southwest", + -12.9154634475708 + ], + [ + "▁Timber", + -12.915682792663574 + ], + [ + "kleidung", + -12.915748596191406 + ], + [ + "MJ", + -12.915854454040527 + ], + [ + "Ped", + -12.915889739990234 + ], + [ + "▁lymph", + -12.916181564331055 + ], + [ + "wärme", + -12.916399002075195 + ], + [ + "▁Olivia", + -12.916610717773438 + ], + [ + "Ziua", + -12.916705131530762 + ], + [ + "reihe", + -12.916747093200684 + ], + [ + "▁selfish", + -12.916752815246582 + ], + [ + "▁geography", + -12.916814804077148 + ], + [ + "▁etaj", + -12.916924476623535 + ], + [ + "▁acquis", + -12.91698932647705 + ], + [ + "▁rejoin", + -12.91701602935791 + ], + [ + "7.1", + -12.917097091674805 + ], + [ + "▁paix", + -12.91713809967041 + ], + [ + "tirer", + -12.917284965515137 + ], + [ + "▁clase", + -12.91745662689209 + ], + [ + "▁blink", + -12.917572021484375 + ], + [ + "▁Interface", + -12.917611122131348 + ], + [ + "nado", + -12.917655944824219 + ], + [ + "RIT", + -12.91777515411377 + ], + [ + "ESC", + -12.918120384216309 + ], + [ + "▁carving", + -12.918190002441406 + ], + [ + "▁articolul", + -12.918194770812988 + ], + [ + "▁wreath", + -12.918258666992188 + ], + [ + "▁propaganda", + -12.918266296386719 + ], + [ + "▁Pair", + -12.918267250061035 + ], + [ + "▁pamant", + -12.91831111907959 + ], + [ + "▁venituri", + -12.918357849121094 + ], + [ + "rtz", + -12.91835880279541 + ], + [ + "uddle", + -12.918529510498047 + ], + [ + "uille", + -12.918543815612793 + ], + [ + "▁embed", + -12.918654441833496 + ], + [ + "0.05", + -12.918655395507812 + ], + [ + "▁Brighton", + -12.918718338012695 + ], + [ + "estens", + -12.918742179870605 + ], + [ + "▁occupational", + -12.918862342834473 + ], + [ + "ем", + -12.918890953063965 + ], + [ + "wünsche", + -12.919081687927246 + ], + [ + "▁Poetry", + -12.91909408569336 + ], + [ + "▁visualize", + -12.919109344482422 + ], + [ + "Across", + -12.919121742248535 + ], + [ + "▁essentielle", + -12.919123649597168 + ], + [ + "beratung", + -12.919143676757812 + ], + [ + "▁Guidelines", + -12.91919231414795 + ], + [ + "▁Fehl", + -12.919198036193848 + ], + [ + "▁liberty", + -12.91921329498291 + ], + [ + "▁Investigation", + -12.91922378540039 + ], + [ + "▁sunrise", + -12.919266700744629 + ], + [ + "▁12:00", + -12.919541358947754 + ], + [ + "venind", + -12.919583320617676 + ], + [ + "▁lotion", + -12.919655799865723 + ], + [ + "conscious", + -12.91968822479248 + ], + [ + "logists", + -12.91973876953125 + ], + [ + "▁judecător", + -12.919893264770508 + ], + [ + "▁Ecuador", + -12.919928550720215 + ], + [ + "▁ambulance", + -12.91994857788086 + ], + [ + "▁Already", + -12.920026779174805 + ], + [ + "▁eröffnet", + -12.920090675354004 + ], + [ + "▁naval", + -12.92010498046875 + ], + [ + "▁imposibil", + -12.92011547088623 + ], + [ + "▁Merry", + -12.92011833190918 + ], + [ + "▁Duncan", + -12.920272827148438 + ], + [ + "▁léger", + -12.9203519821167 + ], + [ + "▁delta", + -12.920391082763672 + ], + [ + "▁Machinery", + -12.920578002929688 + ], + [ + "▁craftsmanship", + -12.920766830444336 + ], + [ + "▁angezeigt", + -12.9207763671875 + ], + [ + "▁formidable", + -12.9207763671875 + ], + [ + "▁Startup", + -12.920878410339355 + ], + [ + "venus", + -12.920969009399414 + ], + [ + "▁tannin", + -12.921019554138184 + ], + [ + "collaborating", + -12.921128273010254 + ], + [ + "▁abrupt", + -12.921152114868164 + ], + [ + "emergence", + -12.921171188354492 + ], + [ + "Dienstleistungen", + -12.921197891235352 + ], + [ + "▁liefert", + -12.921217918395996 + ], + [ + "engagement", + -12.921222686767578 + ], + [ + "▁maximise", + -12.921304702758789 + ], + [ + "modeled", + -12.9214448928833 + ], + [ + "▁crane", + -12.92148208618164 + ], + [ + "▁effortless", + -12.921540260314941 + ], + [ + "▁Buffet", + -12.92160701751709 + ], + [ + "8000", + -12.921648979187012 + ], + [ + "▁Überblick", + -12.921687126159668 + ], + [ + "micro", + -12.921981811523438 + ], + [ + "▁vergleichen", + -12.92204475402832 + ], + [ + "143", + -12.922080993652344 + ], + [ + "5.6", + -12.922094345092773 + ], + [ + "▁odata", + -12.922131538391113 + ], + [ + "▁interviu", + -12.922162055969238 + ], + [ + "▁poliţi", + -12.922375679016113 + ], + [ + "plated", + -12.922383308410645 + ], + [ + "Roman", + -12.922406196594238 + ], + [ + "▁satisfactory", + -12.922453880310059 + ], + [ + "▁unanimous", + -12.922459602355957 + ], + [ + "▁întâln", + -12.922464370727539 + ], + [ + "nonsense", + -12.922558784484863 + ], + [ + "▁HOW", + -12.922616004943848 + ], + [ + "prezinta", + -12.922639846801758 + ], + [ + "▁măsura", + -12.9226655960083 + ], + [ + "▁Fuji", + -12.92275619506836 + ], + [ + "▁Meaning", + -12.92278003692627 + ], + [ + "aspiring", + -12.922850608825684 + ], + [ + "▁Suceava", + -12.922863006591797 + ], + [ + "arba", + -12.922983169555664 + ], + [ + "pressive", + -12.922988891601562 + ], + [ + "▁creek", + -12.92301082611084 + ], + [ + "trakt", + -12.923023223876953 + ], + [ + "▁fluffy", + -12.923303604125977 + ], + [ + "▁bateau", + -12.923371315002441 + ], + [ + "ме", + -12.923545837402344 + ], + [ + "UNG", + -12.923609733581543 + ], + [ + "motifs", + -12.923907279968262 + ], + [ + "Type", + -12.923958778381348 + ], + [ + "perçu", + -12.924132347106934 + ], + [ + "singurul", + -12.924139022827148 + ], + [ + "▁(2011)", + -12.92418384552002 + ], + [ + "▁hemp", + -12.924263954162598 + ], + [ + "betroffenen", + -12.92431640625 + ], + [ + "▁sermon", + -12.924369812011719 + ], + [ + "AID", + -12.924545288085938 + ], + [ + "3.7", + -12.924627304077148 + ], + [ + "▁heiß", + -12.92463207244873 + ], + [ + "▁bolnav", + -12.924982070922852 + ], + [ + "First", + -12.924995422363281 + ], + [ + "▁interrupt", + -12.925040245056152 + ], + [ + "phag", + -12.925106048583984 + ], + [ + "235", + -12.925201416015625 + ], + [ + "▁discoveries", + -12.925262451171875 + ], + [ + "▁Wellington", + -12.925263404846191 + ], + [ + "▁wechseln", + -12.925298690795898 + ], + [ + "▁strategically", + -12.925379753112793 + ], + [ + "▁iphone", + -12.925440788269043 + ], + [ + "geteilt", + -12.925646781921387 + ], + [ + "generative", + -12.925748825073242 + ], + [ + "▁Monroe", + -12.925806045532227 + ], + [ + "▁Execut", + -12.925863265991211 + ], + [ + "▁knitting", + -12.925931930541992 + ], + [ + "▁Couple", + -12.925939559936523 + ], + [ + "▁Shade", + -12.926020622253418 + ], + [ + "▁Taj", + -12.926060676574707 + ], + [ + "950", + -12.926077842712402 + ], + [ + "boiled", + -12.92609977722168 + ], + [ + "▁mixes", + -12.926130294799805 + ], + [ + "betroffene", + -12.926156044006348 + ], + [ + "▁continuation", + -12.926169395446777 + ], + [ + "▁begleitet", + -12.926226615905762 + ], + [ + "▁numerical", + -12.926281929016113 + ], + [ + "▁(2013)", + -12.92630386352539 + ], + [ + "▁nourish", + -12.926399230957031 + ], + [ + "oricar", + -12.926485061645508 + ], + [ + "focus", + -12.926486015319824 + ], + [ + "▁Crazy", + -12.926651000976562 + ], + [ + "▁ascend", + -12.926671028137207 + ], + [ + "▁vinde", + -12.926855087280273 + ], + [ + "roar", + -12.926874160766602 + ], + [ + "Vac", + -12.926929473876953 + ], + [ + "▁Zuschauer", + -12.927068710327148 + ], + [ + "izeze", + -12.927179336547852 + ], + [ + "▁Mindest", + -12.92721939086914 + ], + [ + "lingual", + -12.927229881286621 + ], + [ + "▁violet", + -12.927264213562012 + ], + [ + "▁Opfer", + -12.927299499511719 + ], + [ + "ARS", + -12.927431106567383 + ], + [ + "4.7", + -12.92744255065918 + ], + [ + "millennial", + -12.927492141723633 + ], + [ + "▁striv", + -12.927639961242676 + ], + [ + "▁bishop", + -12.927680015563965 + ], + [ + "▁Durham", + -12.927708625793457 + ], + [ + "opathic", + -12.927817344665527 + ], + [ + "Where", + -12.927999496459961 + ], + [ + "▁Rider", + -12.928030014038086 + ], + [ + "▁Reid", + -12.928030967712402 + ], + [ + "stumbled", + -12.928156852722168 + ], + [ + "deep", + -12.92827320098877 + ], + [ + "▁11:00", + -12.928340911865234 + ], + [ + "▁Essex", + -12.928380966186523 + ], + [ + "▁Analyst", + -12.928397178649902 + ], + [ + "feel", + -12.928546905517578 + ], + [ + "▁rave", + -12.928601264953613 + ], + [ + "▁Eddie", + -12.928631782531738 + ], + [ + "▁communiqué", + -12.928756713867188 + ], + [ + "[/", + -12.928791046142578 + ], + [ + "▁Tho", + -12.929011344909668 + ], + [ + "ffentlichkeit", + -12.929019927978516 + ], + [ + "instrument", + -12.929126739501953 + ], + [ + "▁metropolitan", + -12.929179191589355 + ], + [ + "▁experienţ", + -12.929181098937988 + ], + [ + "East", + -12.929198265075684 + ], + [ + "Compared", + -12.929434776306152 + ], + [ + "worn", + -12.929484367370605 + ], + [ + "berufliche", + -12.92966365814209 + ], + [ + "▁Umstände", + -12.929710388183594 + ], + [ + "individuellen", + -12.929901123046875 + ], + [ + "siehe", + -12.929912567138672 + ], + [ + "▁sfarsit", + -12.929969787597656 + ], + [ + "▁Strength", + -12.929999351501465 + ], + [ + "▁prejudice", + -12.930024147033691 + ], + [ + "▁shutdown", + -12.930159568786621 + ], + [ + "chatting", + -12.93022346496582 + ], + [ + "▁Gerne", + -12.930227279663086 + ], + [ + "▁Yum", + -12.930305480957031 + ], + [ + "▁coastline", + -12.930387496948242 + ], + [ + "▁headboard", + -12.930623054504395 + ], + [ + "▁politische", + -12.930768966674805 + ], + [ + "Sub", + -12.930838584899902 + ], + [ + "▁Henderson", + -12.930870056152344 + ], + [ + "▁astonishing", + -12.930870056152344 + ], + [ + "▁Dresden", + -12.930871963500977 + ], + [ + "▁strawberry", + -12.93088436126709 + ], + [ + "prenez", + -12.930889129638672 + ], + [ + "▁Monaco", + -12.930912971496582 + ], + [ + "▁empowered", + -12.930953025817871 + ], + [ + "fäl", + -12.93109130859375 + ], + [ + "▁creier", + -12.931120872497559 + ], + [ + "▁Equ", + -12.931300163269043 + ], + [ + "▁Selling", + -12.931379318237305 + ], + [ + "▁$35", + -12.931483268737793 + ], + [ + "konto", + -12.931503295898438 + ], + [ + "▁Procedure", + -12.931715965270996 + ], + [ + "▁reduziert", + -12.931715965270996 + ], + [ + "▁royalty", + -12.931740760803223 + ], + [ + "wyn", + -12.931756019592285 + ], + [ + "▁Unfall", + -12.932141304016113 + ], + [ + "NAT", + -12.932161331176758 + ], + [ + "▁grafic", + -12.93251895904541 + ], + [ + "▁Collective", + -12.932563781738281 + ], + [ + "▁Computing", + -12.932564735412598 + ], + [ + "▁Established", + -12.932594299316406 + ], + [ + "▁zest", + -12.932598114013672 + ], + [ + "venez", + -12.932611465454102 + ], + [ + "follow", + -12.9326171875 + ], + [ + "▁Motivation", + -12.932640075683594 + ], + [ + "▁dictator", + -12.932755470275879 + ], + [ + "whichever", + -12.93281078338623 + ], + [ + "▁întâmpl", + -12.93293285369873 + ], + [ + "Flüchtling", + -12.932987213134766 + ], + [ + "EMI", + -12.933015823364258 + ], + [ + "404", + -12.933019638061523 + ], + [ + "ICK", + -12.93302059173584 + ], + [ + "emplacement", + -12.933191299438477 + ], + [ + "complete", + -12.933349609375 + ], + [ + "advising", + -12.933412551879883 + ], + [ + "▁Administrative", + -12.933481216430664 + ], + [ + "▁deviation", + -12.933496475219727 + ], + [ + "▁experienț", + -12.933500289916992 + ], + [ + "lethor", + -12.933996200561523 + ], + [ + "▁compress", + -12.934081077575684 + ], + [ + "rival", + -12.934173583984375 + ], + [ + "reprendre", + -12.934186935424805 + ], + [ + "ugi", + -12.934266090393066 + ], + [ + "▁Invitation", + -12.934267044067383 + ], + [ + "▁retina", + -12.934332847595215 + ], + [ + "▁farther", + -12.934335708618164 + ], + [ + "▁fenêtre", + -12.934799194335938 + ], + [ + "6-7", + -12.934815406799316 + ], + [ + "zhou", + -12.934834480285645 + ], + [ + "▁Piano", + -12.934840202331543 + ], + [ + "▁Congrats", + -12.935114860534668 + ], + [ + "▁Configur", + -12.935131072998047 + ], + [ + "▁superficial", + -12.935179710388184 + ], + [ + "▁melting", + -12.935315132141113 + ], + [ + "▁raspunde", + -12.935626983642578 + ], + [ + "▁drip", + -12.93564224243164 + ], + [ + "östlich", + -12.9358491897583 + ], + [ + "189", + -12.935925483703613 + ], + [ + "▁Ludwig", + -12.935959815979004 + ], + [ + "▁keto", + -12.935985565185547 + ], + [ + "▁Bogdan", + -12.936013221740723 + ], + [ + "▁contracted", + -12.936029434204102 + ], + [ + "▁revive", + -12.936100006103516 + ], + [ + "▁cristal", + -12.936232566833496 + ], + [ + "▁mailbox", + -12.936257362365723 + ], + [ + "președintele", + -12.936559677124023 + ], + [ + "▁seekers", + -12.936627388000488 + ], + [ + "func", + -12.936904907226562 + ], + [ + "▁Markus", + -12.93691349029541 + ], + [ + "Unter", + -12.936923027038574 + ], + [ + "▁übertragen", + -12.937003135681152 + ], + [ + "▁adaptive", + -12.937024116516113 + ], + [ + "caster", + -12.937051773071289 + ], + [ + "▁geek", + -12.937164306640625 + ], + [ + "▁réservation", + -12.937236785888672 + ], + [ + "▁irritation", + -12.937240600585938 + ], + [ + "▁HDMI", + -12.937346458435059 + ], + [ + "Seeing", + -12.937485694885254 + ], + [ + "▁genul", + -12.937569618225098 + ], + [ + "▁catastrophe", + -12.937662124633789 + ], + [ + "▁Tweet", + -12.937665939331055 + ], + [ + "TZ", + -12.937729835510254 + ], + [ + "▁credible", + -12.937946319580078 + ], + [ + "▁cobor", + -12.938064575195312 + ], + [ + "▁realizeaz", + -12.938159942626953 + ], + [ + "journal", + -12.938274383544922 + ], + [ + "▁shaking", + -12.938532829284668 + ], + [ + "3-6", + -12.938572883605957 + ], + [ + "▁beneficiaz", + -12.938605308532715 + ], + [ + "▁Frankreich", + -12.938633918762207 + ], + [ + "committing", + -12.9386568069458 + ], + [ + "AMS", + -12.938835144042969 + ], + [ + "▁Feli", + -12.939007759094238 + ], + [ + "▁Producer", + -12.939023971557617 + ], + [ + "▁übrig", + -12.93940544128418 + ], + [ + "gemeinde", + -12.939593315124512 + ], + [ + "should", + -12.939799308776855 + ], + [ + "▁neurons", + -12.939799308776855 + ], + [ + "▁Agenda", + -12.939833641052246 + ], + [ + "▁hashtag", + -12.939896583557129 + ], + [ + "▁confortabil", + -12.939897537231445 + ], + [ + "520", + -12.940008163452148 + ], + [ + "bonded", + -12.940033912658691 + ], + [ + "▁următoare", + -12.940191268920898 + ], + [ + "▁volatile", + -12.940223693847656 + ], + [ + "infamous", + -12.940225601196289 + ], + [ + "seară", + -12.940229415893555 + ], + [ + "▁Sorge", + -12.940346717834473 + ], + [ + "▁Beiträge", + -12.940420150756836 + ], + [ + "▁îndeplin", + -12.940449714660645 + ], + [ + "gespräch", + -12.940649032592773 + ], + [ + "▁joueur", + -12.940701484680176 + ], + [ + "▁outsourcing", + -12.940701484680176 + ], + [ + "▁Guvernul", + -12.940814018249512 + ], + [ + "6-2", + -12.940818786621094 + ], + [ + "▁prioritize", + -12.941068649291992 + ], + [ + "▁duminică", + -12.941076278686523 + ], + [ + "▁resignation", + -12.941076278686523 + ], + [ + "▁Converter", + -12.941079139709473 + ], + [ + "hereby", + -12.941155433654785 + ], + [ + "▁stresses", + -12.941299438476562 + ], + [ + "▁brun", + -12.941415786743164 + ], + [ + "▁elev", + -12.941423416137695 + ], + [ + "▁Skip", + -12.941479682922363 + ], + [ + "540", + -12.941499710083008 + ], + [ + "TURE", + -12.941603660583496 + ], + [ + "▁Lynch", + -12.941635131835938 + ], + [ + "▁preveni", + -12.941643714904785 + ], + [ + "compatible", + -12.941692352294922 + ], + [ + "surveyed", + -12.941702842712402 + ], + [ + "▁Ausnahme", + -12.941713333129883 + ], + [ + "▁medicul", + -12.941812515258789 + ], + [ + "▁subtil", + -12.941865921020508 + ], + [ + "▁Quali", + -12.941890716552734 + ], + [ + "▁techno", + -12.941900253295898 + ], + [ + "presently", + -12.94193172454834 + ], + [ + "▁Müller", + -12.941934585571289 + ], + [ + "DIRECT", + -12.941937446594238 + ], + [ + "schuld", + -12.941944122314453 + ], + [ + "▁Bloomberg", + -12.941994667053223 + ], + [ + "feuer", + -12.942181587219238 + ], + [ + "▁Pharmacy", + -12.942270278930664 + ], + [ + "▁Schnitt", + -12.942301750183105 + ], + [ + "186", + -12.942333221435547 + ], + [ + "peaks", + -12.942355155944824 + ], + [ + "▁Gemeinsam", + -12.94235897064209 + ], + [ + "▁récemment", + -12.94235897064209 + ], + [ + "▁Pascal", + -12.942490577697754 + ], + [ + "filmed", + -12.942523956298828 + ], + [ + "RCA", + -12.942548751831055 + ], + [ + "▁virtuelle", + -12.942622184753418 + ], + [ + "▁dotat", + -12.942630767822266 + ], + [ + "logisch", + -12.942717552185059 + ], + [ + "▁Luck", + -12.943005561828613 + ], + [ + "cosy", + -12.943132400512695 + ], + [ + "▁Awareness", + -12.943216323852539 + ], + [ + "▁gesetzlich", + -12.943263053894043 + ], + [ + "padded", + -12.943306922912598 + ], + [ + "▁Lotus", + -12.943395614624023 + ], + [ + "urging", + -12.9434175491333 + ], + [ + "▁mushroom", + -12.943426132202148 + ], + [ + "▁adultes", + -12.943527221679688 + ], + [ + "▁Coca", + -12.943571090698242 + ], + [ + "▁recev", + -12.943586349487305 + ], + [ + "▁mantra", + -12.943610191345215 + ], + [ + "▁practise", + -12.943644523620605 + ], + [ + "▁acceler", + -12.943663597106934 + ], + [ + "bolster", + -12.943756103515625 + ], + [ + "▁compressed", + -12.943818092346191 + ], + [ + "TIN", + -12.943899154663086 + ], + [ + "▁aromatic", + -12.944236755371094 + ], + [ + "geleitet", + -12.944408416748047 + ], + [ + "▁fibr", + -12.944443702697754 + ], + [ + "exécut", + -12.94444751739502 + ], + [ + "▁unconscious", + -12.94456958770752 + ], + [ + "HAR", + -12.944607734680176 + ], + [ + "▁Gregory", + -12.944661140441895 + ], + [ + "▁Manila", + -12.944738388061523 + ], + [ + "ozitate", + -12.944756507873535 + ], + [ + "exemplary", + -12.944803237915039 + ], + [ + "éventuel", + -12.944906234741211 + ], + [ + "▁Craciun", + -12.944930076599121 + ], + [ + "▁tehnologii", + -12.944931030273438 + ], + [ + "▁Despre", + -12.945138931274414 + ], + [ + "▁1917", + -12.945141792297363 + ], + [ + "▁upfront", + -12.945146560668945 + ], + [ + "▁Iulia", + -12.945280075073242 + ], + [ + "▁erwähnt", + -12.945359230041504 + ], + [ + "▁magnesium", + -12.945359230041504 + ], + [ + "▁descriptive", + -12.94536304473877 + ], + [ + "▁consumul", + -12.945364952087402 + ], + [ + "▁10-15", + -12.945423126220703 + ], + [ + "▁erfüllen", + -12.945611953735352 + ], + [ + "gig", + -12.945657730102539 + ], + [ + "430", + -12.945765495300293 + ], + [ + "▁Migration", + -12.945789337158203 + ], + [ + "bră", + -12.94579029083252 + ], + [ + "▁réforme", + -12.945863723754883 + ], + [ + "▁york", + -12.94610595703125 + ], + [ + "dritten", + -12.946109771728516 + ], + [ + "cumva", + -12.946182250976562 + ], + [ + "▁Alumni", + -12.946218490600586 + ], + [ + "▁Ceramic", + -12.946222305297852 + ], + [ + "▁rappelle", + -12.946236610412598 + ], + [ + "▁pianist", + -12.946248054504395 + ], + [ + "twisted", + -12.946306228637695 + ], + [ + "earned", + -12.946432113647461 + ], + [ + "▁Hose", + -12.946514129638672 + ], + [ + "156", + -12.946610450744629 + ], + [ + "▁Salmon", + -12.946687698364258 + ], + [ + "Level", + -12.946913719177246 + ], + [ + "▁swirl", + -12.947052001953125 + ], + [ + "erfahrung", + -12.947061538696289 + ], + [ + "▁liabilities", + -12.947078704833984 + ], + [ + "praxis", + -12.9470853805542 + ], + [ + "IPO", + -12.947089195251465 + ], + [ + "▁screaming", + -12.947092056274414 + ], + [ + "emphasized", + -12.947200775146484 + ], + [ + "DEA", + -12.947260856628418 + ], + [ + "▁dermatolog", + -12.947351455688477 + ], + [ + "▁pacate", + -12.947498321533203 + ], + [ + "▁ansamblu", + -12.947507858276367 + ], + [ + "▁beteiligt", + -12.947509765625 + ], + [ + "▁Needles", + -12.947574615478516 + ], + [ + "▁organisiert", + -12.947607040405273 + ], + [ + "Pacific", + -12.947639465332031 + ], + [ + "actual", + -12.947823524475098 + ], + [ + "prindere", + -12.94801139831543 + ], + [ + "▁Indoor", + -12.948348045349121 + ], + [ + "▁Gewalt", + -12.948431015014648 + ], + [ + "▁rezid", + -12.948507308959961 + ], + [ + "censor", + -12.948522567749023 + ], + [ + "▁unlawful", + -12.94882869720459 + ], + [ + "▁Explain", + -12.948873519897461 + ], + [ + "▁Flame", + -12.948897361755371 + ], + [ + "▁brachte", + -12.948941230773926 + ], + [ + "▁Mustang", + -12.94899845123291 + ], + [ + "ectomy", + -12.949044227600098 + ], + [ + "▁deliberate", + -12.949064254760742 + ], + [ + "▁sparkle", + -12.949225425720215 + ], + [ + "▁inchis", + -12.94926929473877 + ], + [ + "▁Cristian", + -12.949289321899414 + ], + [ + "▁facture", + -12.949291229248047 + ], + [ + "▁Grundstück", + -12.949292182922363 + ], + [ + "außerhalb", + -12.949300765991211 + ], + [ + "coast", + -12.949321746826172 + ], + [ + "anilor", + -12.949396133422852 + ], + [ + "255", + -12.94952392578125 + ], + [ + "nterdisciplinary", + -12.949576377868652 + ], + [ + "▁Isabel", + -12.949655532836914 + ], + [ + "▁Städte", + -12.949701309204102 + ], + [ + "▁cicl", + -12.949837684631348 + ], + [ + "▁Zeug", + -12.949905395507812 + ], + [ + "▁Muskel", + -12.949951171875 + ], + [ + "▁indirectly", + -12.950051307678223 + ], + [ + "▁Vorbereitung", + -12.950093269348145 + ], + [ + "MMA", + -12.95012378692627 + ], + [ + "▁pudding", + -12.950197219848633 + ], + [ + "rax", + -12.950389862060547 + ], + [ + "▁Stimmung", + -12.95052433013916 + ], + [ + "▁hierarchy", + -12.95052433013916 + ], + [ + "partie", + -12.950597763061523 + ], + [ + "▁elevate", + -12.950685501098633 + ], + [ + "▁Persian", + -12.950690269470215 + ], + [ + "forensic", + -12.95077896118164 + ], + [ + "Become", + -12.950854301452637 + ], + [ + "leicht", + -12.9508695602417 + ], + [ + "▁staging", + -12.950942039489746 + ], + [ + "▁fühlt", + -12.950965881347656 + ], + [ + "fenster", + -12.950979232788086 + ], + [ + "▁unbelievable", + -12.951089859008789 + ], + [ + "„", + -12.951260566711426 + ], + [ + "▁Guatemala", + -12.951387405395508 + ], + [ + "LET", + -12.95141315460205 + ], + [ + "▁buff", + -12.951454162597656 + ], + [ + "▁Primul", + -12.951626777648926 + ], + [ + "▁mainland", + -12.951702117919922 + ], + [ + "campus", + -12.951923370361328 + ], + [ + "▁gefällt", + -12.952075958251953 + ], + [ + "BAN", + -12.952153205871582 + ], + [ + "finish", + -12.952229499816895 + ], + [ + "accustomed", + -12.952251434326172 + ], + [ + "▁Businesses", + -12.95234203338623 + ], + [ + "▁întreb", + -12.95239543914795 + ], + [ + "▁recomandă", + -12.952425956726074 + ], + [ + "▁pellet", + -12.952474594116211 + ], + [ + "▁GST", + -12.952507972717285 + ], + [ + "SEA", + -12.952601432800293 + ], + [ + "▁categorie", + -12.952631950378418 + ], + [ + "▁convainc", + -12.95268440246582 + ], + [ + "▁considéré", + -12.952739715576172 + ], + [ + "rois", + -12.952853202819824 + ], + [ + "▁thrust", + -12.952898979187012 + ], + [ + "ijk", + -12.953001022338867 + ], + [ + "gefüllt", + -12.953118324279785 + ], + [ + "▁situatii", + -12.953327178955078 + ], + [ + "▁Jacksonville", + -12.95337200164795 + ], + [ + "▁bakery", + -12.953473091125488 + ], + [ + "▁Accident", + -12.953554153442383 + ], + [ + "▁urmeaza", + -12.953572273254395 + ], + [ + "▁crib", + -12.953593254089355 + ], + [ + "getroffen", + -12.953707695007324 + ], + [ + "Based", + -12.953877449035645 + ], + [ + "Including", + -12.95398235321045 + ], + [ + "▁Morocco", + -12.95398235321045 + ], + [ + "▁casserole", + -12.95398235321045 + ], + [ + "▁enquiry", + -12.953983306884766 + ], + [ + "▁pahar", + -12.954017639160156 + ], + [ + "▁Unternehmer", + -12.954025268554688 + ], + [ + "électro", + -12.954068183898926 + ], + [ + "Marie", + -12.95413589477539 + ], + [ + "▁Sno", + -12.954153060913086 + ], + [ + "▁prostate", + -12.954168319702148 + ], + [ + "▁Wallace", + -12.95426082611084 + ], + [ + "empre", + -12.954402923583984 + ], + [ + "▁Multumesc", + -12.954415321350098 + ], + [ + "White", + -12.954675674438477 + ], + [ + "brief", + -12.954751014709473 + ], + [ + "▁kitten", + -12.954751014709473 + ], + [ + "füh", + -12.954780578613281 + ], + [ + "▁mankind", + -12.954821586608887 + ], + [ + "ENE", + -12.95483112335205 + ], + [ + "▁Ethics", + -12.954848289489746 + ], + [ + "▁Realty", + -12.954946517944336 + ], + [ + "▁Emerg", + -12.954988479614258 + ], + [ + "7-8", + -12.955055236816406 + ], + [ + "museum", + -12.955096244812012 + ], + [ + "BRE", + -12.95518970489502 + ], + [ + "▁kilometri", + -12.955282211303711 + ], + [ + "oyaume", + -12.955286026000977 + ], + [ + "▁Cambodia", + -12.955288887023926 + ], + [ + "▁bruit", + -12.955304145812988 + ], + [ + "▁sépar", + -12.955334663391113 + ], + [ + "mastered", + -12.9554443359375 + ], + [ + "shake", + -12.955608367919922 + ], + [ + "▁liaison", + -12.955718994140625 + ], + [ + "▁Boulder", + -12.955719947814941 + ], + [ + "▁tortilla", + -12.955720901489258 + ], + [ + "▁Fokus", + -12.955731391906738 + ], + [ + "▁Blair", + -12.95573902130127 + ], + [ + "▁disturbance", + -12.955775260925293 + ], + [ + "geladen", + -12.955843925476074 + ], + [ + "▁sunscreen", + -12.955886840820312 + ], + [ + "▁reuș", + -12.955896377563477 + ], + [ + "▁Braun", + -12.956155776977539 + ], + [ + "▁existente", + -12.956157684326172 + ], + [ + "stift", + -12.956242561340332 + ], + [ + "▁preot", + -12.956387519836426 + ], + [ + "▁doved", + -12.956445693969727 + ], + [ + "sexual", + -12.956488609313965 + ], + [ + "meanwhile", + -12.956583976745605 + ], + [ + "▁legislature", + -12.956583976745605 + ], + [ + "▁vermeiden", + -12.956583976745605 + ], + [ + "▁inequality", + -12.95687484741211 + ], + [ + "▁turc", + -12.956881523132324 + ], + [ + "ви", + -12.95698070526123 + ], + [ + "▁Kontrolle", + -12.95702075958252 + ], + [ + "▁Ursache", + -12.95704174041748 + ], + [ + "▁confess", + -12.95704174041748 + ], + [ + "▁poetic", + -12.957109451293945 + ], + [ + "attention", + -12.957236289978027 + ], + [ + "textured", + -12.957386016845703 + ], + [ + "GES", + -12.957586288452148 + ], + [ + "6-4", + -12.957637786865234 + ], + [ + "Ray", + -12.957696914672852 + ], + [ + "chromat", + -12.957745552062988 + ], + [ + "▁insightful", + -12.957775115966797 + ], + [ + "▁Navigation", + -12.957887649536133 + ], + [ + "▁destiny", + -12.957887649536133 + ], + [ + "▁ergeben", + -12.957892417907715 + ], + [ + "▁versteh", + -12.958090782165527 + ], + [ + "301", + -12.958209037780762 + ], + [ + "▁Exterior", + -12.958321571350098 + ], + [ + "église", + -12.958322525024414 + ], + [ + "▁Failure", + -12.958322525024414 + ], + [ + "▁Patricia", + -12.958324432373047 + ], + [ + "▁geschützt", + -12.958328247070312 + ], + [ + "intrarea", + -12.95833969116211 + ], + [ + "▁Forward", + -12.958368301391602 + ], + [ + "▁Portrait", + -12.95844841003418 + ], + [ + "▁enregistré", + -12.958480834960938 + ], + [ + "▁wagon", + -12.958620071411133 + ], + [ + "stealing", + -12.958879470825195 + ], + [ + "▁Numero", + -12.958880424499512 + ], + [ + "▁tradui", + -12.958986282348633 + ], + [ + "▁klassische", + -12.959033966064453 + ], + [ + "▁profitieren", + -12.959043502807617 + ], + [ + "▁laboratories", + -12.95919132232666 + ], + [ + "▁reconnaissance", + -12.95919132232666 + ], + [ + "ку", + -12.959314346313477 + ], + [ + "▁Petersburg", + -12.959359169006348 + ], + [ + "▁fertility", + -12.959421157836914 + ], + [ + "▁Understand", + -12.959516525268555 + ], + [ + "dehors", + -12.959746360778809 + ], + [ + "▁Knox", + -12.959762573242188 + ], + [ + "software", + -12.959797859191895 + ], + [ + "▁Celebration", + -12.959823608398438 + ], + [ + "4.6", + -12.959897994995117 + ], + [ + "quino", + -12.959930419921875 + ], + [ + "▁endeavour", + -12.960073471069336 + ], + [ + "▁temptation", + -12.960136413574219 + ], + [ + "▁Registry", + -12.96035385131836 + ], + [ + "IMP", + -12.960502624511719 + ], + [ + "bedingt", + -12.960625648498535 + ], + [ + "▁$60", + -12.960846900939941 + ], + [ + "▁Kriterien", + -12.96093463897705 + ], + [ + "▁strawberries", + -12.960943222045898 + ], + [ + "▁conspiracy", + -12.96094799041748 + ], + [ + "▁pouch", + -12.960976600646973 + ], + [ + "▁Alexandria", + -12.961017608642578 + ], + [ + "▁Mick", + -12.961102485656738 + ], + [ + "extra", + -12.961114883422852 + ], + [ + "▁Operator", + -12.961151123046875 + ], + [ + "enduring", + -12.96132755279541 + ], + [ + "▁smash", + -12.961359024047852 + ], + [ + "Euro", + -12.961360931396484 + ], + [ + "▁Nouvelle", + -12.961370468139648 + ], + [ + "▁Raspberry", + -12.961370468139648 + ], + [ + "▁präsentieren", + -12.961380004882812 + ], + [ + "▁electrician", + -12.961404800415039 + ], + [ + "▁cheerful", + -12.961472511291504 + ], + [ + "▁chargé", + -12.961508750915527 + ], + [ + "▁Diskussion", + -12.961511611938477 + ], + [ + "▁surpass", + -12.961604118347168 + ], + [ + "▁Acces", + -12.961701393127441 + ], + [ + "tausend", + -12.961771011352539 + ], + [ + "▁vigorous", + -12.961808204650879 + ], + [ + "▁tava", + -12.961810111999512 + ], + [ + "CHO", + -12.96193790435791 + ], + [ + "▁1951", + -12.961941719055176 + ], + [ + "▁Umsatz", + -12.962019920349121 + ], + [ + "▁slavery", + -12.962055206298828 + ], + [ + "travel", + -12.962294578552246 + ], + [ + "▁correspondent", + -12.962297439575195 + ], + [ + "▁$150", + -12.962307929992676 + ], + [ + "▁stärker", + -12.962594985961914 + ], + [ + "Alb", + -12.96264362335205 + ], + [ + "▁Lopez", + -12.962682723999023 + ], + [ + "▁longueur", + -12.962767601013184 + ], + [ + "▁successive", + -12.962772369384766 + ], + [ + "▁(2015)", + -12.96278190612793 + ], + [ + "teig", + -12.962790489196777 + ], + [ + "custom", + -12.962944984436035 + ], + [ + "TIM", + -12.963099479675293 + ], + [ + "▁Escape", + -12.963174819946289 + ], + [ + "▁Sekunden", + -12.963349342346191 + ], + [ + "tiré", + -12.963444709777832 + ], + [ + "▁chantier", + -12.963489532470703 + ], + [ + "▁saturated", + -12.963555335998535 + ], + [ + "▁confrontation", + -12.963804244995117 + ], + [ + "▁biography", + -12.963805198669434 + ], + [ + "zuerst", + -12.9639892578125 + ], + [ + "▁rencontré", + -12.963991165161133 + ], + [ + "▁harmless", + -12.96412181854248 + ], + [ + "Branche", + -12.964139938354492 + ], + [ + "▁QR", + -12.964380264282227 + ], + [ + "▁Ereignis", + -12.964430809020996 + ], + [ + "▁verkaufen", + -12.96444320678711 + ], + [ + "0:00", + -12.96451187133789 + ], + [ + "Association", + -12.96469783782959 + ], + [ + "▁Santiago", + -12.964865684509277 + ], + [ + "Control", + -12.964993476867676 + ], + [ + "▁Angriff", + -12.9650297164917 + ], + [ + "lase", + -12.96505069732666 + ], + [ + "▁sfaturi", + -12.965224266052246 + ], + [ + "▁Comprehensive", + -12.965304374694824 + ], + [ + "▁Shepherd", + -12.965304374694824 + ], + [ + "▁exponential", + -12.965304374694824 + ], + [ + "▁penetration", + -12.965304374694824 + ], + [ + "▁comble", + -12.965394973754883 + ], + [ + "ionar", + -12.965557098388672 + ], + [ + "slept", + -12.965563774108887 + ], + [ + "▁Spice", + -12.965633392333984 + ], + [ + "mAh", + -12.965688705444336 + ], + [ + "▁Vertreter", + -12.965747833251953 + ], + [ + "fehler", + -12.965752601623535 + ], + [ + "▁Scroll", + -12.96599292755127 + ], + [ + "▁WARRANT", + -12.966179847717285 + ], + [ + "▁minimise", + -12.966326713562012 + ], + [ + "▁Dept", + -12.966474533081055 + ], + [ + "▁urinar", + -12.96661376953125 + ], + [ + "établir", + -12.966619491577148 + ], + [ + "verhältnis", + -12.966713905334473 + ], + [ + "▁glowing", + -12.966979026794434 + ], + [ + "kulturelle", + -12.966984748840332 + ], + [ + "▁Pediatric", + -12.967057228088379 + ], + [ + "▁inconvenience", + -12.967057228088379 + ], + [ + "Antoine", + -12.967121124267578 + ], + [ + "▁Heck", + -12.967164993286133 + ], + [ + "▁couches", + -12.967265129089355 + ], + [ + "▁1938", + -12.967331886291504 + ], + [ + "maybe", + -12.967333793640137 + ], + [ + "ETA", + -12.9673433303833 + ], + [ + "▁solaire", + -12.96748161315918 + ], + [ + "▁Zürich", + -12.967495918273926 + ], + [ + "computer", + -12.967545509338379 + ], + [ + "milk", + -12.96756362915039 + ], + [ + "он", + -12.967585563659668 + ], + [ + "modalitate", + -12.967608451843262 + ], + [ + "spanning", + -12.967655181884766 + ], + [ + "▁Crypto", + -12.96774959564209 + ], + [ + "▁Spotify", + -12.967935562133789 + ], + [ + "mycin", + -12.967944145202637 + ], + [ + "▁similarities", + -12.96811294555664 + ], + [ + "▁eclipse", + -12.968377113342285 + ], + [ + "Map", + -12.968610763549805 + ], + [ + "double", + -12.96861743927002 + ], + [ + "corporate", + -12.968734741210938 + ], + [ + "▁Hindi", + -12.968853950500488 + ], + [ + "battling", + -12.968866348266602 + ], + [ + "▁habituel", + -12.969098091125488 + ], + [ + "▁Transition", + -12.969196319580078 + ], + [ + "▁luptă", + -12.96920394897461 + ], + [ + "▁trainee", + -12.969219207763672 + ], + [ + "LIS", + -12.96922492980957 + ], + [ + "▁Vatican", + -12.969254493713379 + ], + [ + "Archived", + -12.9692964553833 + ], + [ + "Connect", + -12.969305038452148 + ], + [ + "▁prealabil", + -12.969307899475098 + ], + [ + "▁Chambre", + -12.969327926635742 + ], + [ + "stuhl", + -12.969440460205078 + ], + [ + "▁arrivé", + -12.969557762145996 + ], + [ + "▁Urteil", + -12.969575881958008 + ], + [ + "▁scrutiny", + -12.969818115234375 + ], + [ + "▁memoir", + -12.969854354858398 + ], + [ + "▁innovant", + -12.9699068069458 + ], + [ + "▁sublime", + -12.969943046569824 + ], + [ + "children", + -12.970004081726074 + ], + [ + "▁Handwerk", + -12.970056533813477 + ], + [ + "▁campuses", + -12.970268249511719 + ], + [ + "▁durabil", + -12.970502853393555 + ], + [ + "▁immersive", + -12.970632553100586 + ], + [ + "▁Magnet", + -12.970732688903809 + ], + [ + "läufe", + -12.970808029174805 + ], + [ + "▁Techno", + -12.970837593078613 + ], + [ + "MAP", + -12.9710693359375 + ], + [ + "7.2", + -12.971145629882812 + ], + [ + "▁Schwimm", + -12.971181869506836 + ], + [ + "BOOK", + -12.971186637878418 + ], + [ + "188", + -12.971441268920898 + ], + [ + "▁Supervisor", + -12.971498489379883 + ], + [ + "prévue", + -12.971691131591797 + ], + [ + "needed", + -12.971813201904297 + ], + [ + "▁creditors", + -12.971822738647461 + ], + [ + "▁brin", + -12.971837043762207 + ], + [ + "▁Neck", + -12.971900939941406 + ], + [ + "▁Salut", + -12.971988677978516 + ], + [ + "▁despair", + -12.972105979919434 + ], + [ + "▁Sauce", + -12.972261428833008 + ], + [ + "▁Westminster", + -12.972335815429688 + ], + [ + "▁langfristig", + -12.972335815429688 + ], + [ + "▁northeast", + -12.972365379333496 + ], + [ + "▁încercat", + -12.972399711608887 + ], + [ + "▁nausea", + -12.972408294677734 + ], + [ + "▁Paypal", + -12.972440719604492 + ], + [ + "▁Arrow", + -12.972469329833984 + ], + [ + "▁Travis", + -12.972633361816406 + ], + [ + "(2009)", + -12.972713470458984 + ], + [ + "▁Rising", + -12.972719192504883 + ], + [ + "termes", + -12.973097801208496 + ], + [ + "Australie", + -12.973154067993164 + ], + [ + "▁scarf", + -12.973187446594238 + ], + [ + "klassischen", + -12.97337818145752 + ], + [ + "▁boug", + -12.973466873168945 + ], + [ + "DOT", + -12.97360610961914 + ], + [ + "▁Trink", + -12.97361946105957 + ], + [ + "▁bestätigt", + -12.97365951538086 + ], + [ + "▁officiel", + -12.97370433807373 + ], + [ + "Produkt", + -12.973873138427734 + ], + [ + "DNA", + -12.974140167236328 + ], + [ + "▁*******", + -12.97426700592041 + ], + [ + "GAR", + -12.974271774291992 + ], + [ + "therapeut", + -12.974377632141113 + ], + [ + "187", + -12.974420547485352 + ], + [ + "▁Louisville", + -12.974493026733398 + ], + [ + "▁geöffnet", + -12.97462272644043 + ], + [ + "Watch", + -12.974640846252441 + ], + [ + "85%", + -12.974678993225098 + ], + [ + "▁Candida", + -12.974698066711426 + ], + [ + "▁Kathy", + -12.974703788757324 + ], + [ + "▁Animation", + -12.974711418151855 + ], + [ + "planung", + -12.974715232849121 + ], + [ + "woche", + -12.974730491638184 + ], + [ + "Video", + -12.974966049194336 + ], + [ + "▁Automation", + -12.97507095336914 + ], + [ + "▁foliage", + -12.97507381439209 + ], + [ + "▁evenimentului", + -12.975175857543945 + ], + [ + "SEN", + -12.975362777709961 + ], + [ + "▁Dialog", + -12.975372314453125 + ], + [ + "▁ZIP", + -12.975372314453125 + ], + [ + "▁vieții", + -12.97537612915039 + ], + [ + "▁passionné", + -12.975425720214844 + ], + [ + "▁WOW", + -12.97544002532959 + ], + [ + "ectiv", + -12.975464820861816 + ], + [ + "▁vorbesc", + -12.975482940673828 + ], + [ + "▁computational", + -12.975533485412598 + ], + [ + "▁idiot", + -12.97557258605957 + ], + [ + "▁stigma", + -12.97567081451416 + ], + [ + "▁multumesc", + -12.975870132446289 + ], + [ + "▁sărbători", + -12.975870132446289 + ], + [ + "▁Advantage", + -12.975906372070312 + ], + [ + "▁alegeri", + -12.976024627685547 + ], + [ + "▁philosopher", + -12.976031303405762 + ], + [ + "RIE", + -12.976117134094238 + ], + [ + "refundable", + -12.976221084594727 + ], + [ + "▁Sofia", + -12.97623348236084 + ], + [ + "▁încheiat", + -12.976313591003418 + ], + [ + "meilleures", + -12.976473808288574 + ], + [ + "critical", + -12.976744651794434 + ], + [ + "▁cavity", + -12.976766586303711 + ], + [ + "▁ressort", + -12.976792335510254 + ], + [ + "strong", + -12.976798057556152 + ], + [ + "▁Backup", + -12.976948738098145 + ], + [ + "▁Zeitraum", + -12.977023124694824 + ], + [ + "▁Szene", + -12.977027893066406 + ], + [ + "▁Candle", + -12.977173805236816 + ], + [ + "▁ciocolat", + -12.977198600769043 + ], + [ + "etched", + -12.977227210998535 + ], + [ + "ан", + -12.977302551269531 + ], + [ + "▁Anchor", + -12.977365493774414 + ], + [ + "equate", + -12.977470397949219 + ], + [ + "▁bulg", + -12.977476119995117 + ], + [ + "▁motorist", + -12.977524757385254 + ], + [ + "träglich", + -12.977736473083496 + ], + [ + "please", + -12.977936744689941 + ], + [ + "different", + -12.978011131286621 + ], + [ + "▁Accel", + -12.97813606262207 + ], + [ + "Proiectul", + -12.97829818725586 + ], + [ + "▁cabbage", + -12.97852897644043 + ], + [ + "▁télécharger", + -12.97852897644043 + ], + [ + "▁Presentation", + -12.97856330871582 + ], + [ + "▁Struktur", + -12.978621482849121 + ], + [ + "bücher", + -12.978650093078613 + ], + [ + "▁flatter", + -12.978672981262207 + ], + [ + "emprunt", + -12.979074478149414 + ], + [ + "▁oriental", + -12.979111671447754 + ], + [ + "▁Turnier", + -12.979166984558105 + ], + [ + "brücke", + -12.97917366027832 + ], + [ + "▁légumes", + -12.979416847229004 + ], + [ + "gerechnet", + -12.979595184326172 + ], + [ + "flooded", + -12.979621887207031 + ], + [ + "LER", + -12.979679107666016 + ], + [ + "üben", + -12.97973918914795 + ], + [ + "internaute", + -12.979888916015625 + ], + [ + "▁Austausch", + -12.979935646057129 + ], + [ + "gefordert", + -12.980034828186035 + ], + [ + "▁adoptat", + -12.980277061462402 + ], + [ + "▁erinnern", + -12.980305671691895 + ], + [ + "▁dolphin", + -12.980307579040527 + ], + [ + "▁Parkinson", + -12.980308532714844 + ], + [ + "büro", + -12.980310440063477 + ], + [ + "▁Crest", + -12.980368614196777 + ], + [ + "▁Ikea", + -12.980437278747559 + ], + [ + "▁ecologic", + -12.980470657348633 + ], + [ + "mplă", + -12.98065185546875 + ], + [ + "▁șef", + -12.980655670166016 + ], + [ + "coop", + -12.980868339538574 + ], + [ + "▁Carson", + -12.980900764465332 + ], + [ + "▁uşor", + -12.981054306030273 + ], + [ + "▁exert", + -12.981070518493652 + ], + [ + "▁countertop", + -12.981114387512207 + ], + [ + "ntended", + -12.981136322021484 + ], + [ + "▁Civic", + -12.981313705444336 + ], + [ + "▁attentes", + -12.98133373260498 + ], + [ + "gesetzlichen", + -12.981356620788574 + ], + [ + "frischen", + -12.981475830078125 + ], + [ + "▁Bottle", + -12.981636047363281 + ], + [ + "▁cautare", + -12.982080459594727 + ], + [ + "▁waterfront", + -12.982226371765137 + ], + [ + "▁centerpiece", + -12.982312202453613 + ], + [ + "▁Castel", + -12.982441902160645 + ], + [ + "510", + -12.98270034790039 + ], + [ + "capped", + -12.982709884643555 + ], + [ + "▁mattresses", + -12.982850074768066 + ], + [ + "▁readiness", + -12.982865333557129 + ], + [ + "diag", + -12.982970237731934 + ], + [ + "▁geändert", + -12.982980728149414 + ], + [ + "▁complained", + -12.983051300048828 + ], + [ + "▁diary", + -12.983073234558105 + ], + [ + "▁ceremonies", + -12.983144760131836 + ], + [ + "▁următor", + -12.983181953430176 + ], + [ + "▁Engel", + -12.983270645141602 + ], + [ + "▁disconnect", + -12.9832763671875 + ], + [ + "▁Silvi", + -12.983282089233398 + ], + [ + "▁eingerichtet", + -12.9834566116333 + ], + [ + "medizin", + -12.983512878417969 + ], + [ + "▁majestic", + -12.983869552612305 + ], + [ + "▁Random", + -12.983943939208984 + ], + [ + "▁Equity", + -12.984046936035156 + ], + [ + "▁Echipa", + -12.984111785888672 + ], + [ + "са", + -12.984163284301758 + ], + [ + "316", + -12.984179496765137 + ], + [ + "▁Formation", + -12.984183311462402 + ], + [ + "inland", + -12.98421859741211 + ], + [ + "appuy", + -12.984301567077637 + ], + [ + "TAN", + -12.984481811523438 + ], + [ + "slipped", + -12.984918594360352 + ], + [ + "Certains", + -12.985247611999512 + ], + [ + "▁Silber", + -12.98525333404541 + ], + [ + "▁reçoi", + -12.985257148742676 + ], + [ + "▁Monthly", + -12.985323905944824 + ], + [ + "calculating", + -12.985494613647461 + ], + [ + "▁scratches", + -12.98554515838623 + ], + [ + "▁concurrence", + -12.985654830932617 + ], + [ + "▁Stärke", + -12.985662460327148 + ], + [ + "▁intermediar", + -12.985751152038574 + ], + [ + "▁erlebt", + -12.98579216003418 + ], + [ + "gesellschaftlich", + -12.986037254333496 + ], + [ + "▁Volk", + -12.986041069030762 + ], + [ + "▁Ansprüche", + -12.986101150512695 + ], + [ + "▁cumulative", + -12.986103057861328 + ], + [ + "▁Randy", + -12.986183166503906 + ], + [ + "▁instituții", + -12.98622989654541 + ], + [ + "together", + -12.986489295959473 + ], + [ + "▁Sap", + -12.986539840698242 + ], + [ + "▁modificari", + -12.986551284790039 + ], + [ + "▁erosion", + -12.986572265625 + ], + [ + "▁wicked", + -12.986577033996582 + ], + [ + "soaked", + -12.986613273620605 + ], + [ + "▁cellar", + -12.9866361618042 + ], + [ + "ignoring", + -12.986726760864258 + ], + [ + "▁scarce", + -12.986815452575684 + ], + [ + "ueuse", + -12.98697280883789 + ], + [ + "▁bibliothèque", + -12.986995697021484 + ], + [ + "critères", + -12.987017631530762 + ], + [ + "▁overlay", + -12.987166404724121 + ], + [ + "IPA", + -12.98737907409668 + ], + [ + "director", + -12.987393379211426 + ], + [ + "▁Krishna", + -12.987444877624512 + ], + [ + "▁methodologies", + -12.987451553344727 + ], + [ + "iocese", + -12.987513542175293 + ], + [ + "▁saucepan", + -12.987713813781738 + ], + [ + "184", + -12.987948417663574 + ], + [ + "275", + -12.987981796264648 + ], + [ + "▁précieu", + -12.988165855407715 + ], + [ + "▁academy", + -12.9883394241333 + ], + [ + "460", + -12.988438606262207 + ], + [ + "ERN", + -12.988679885864258 + ], + [ + "▁emoti", + -12.988725662231445 + ], + [ + "▁télévision", + -12.988823890686035 + ], + [ + "EDIT", + -12.988901138305664 + ], + [ + "▁Valeri", + -12.989045143127441 + ], + [ + "▁Charity", + -12.98911190032959 + ], + [ + "Voilà", + -12.989297866821289 + ], + [ + "▁lipsit", + -12.989356994628906 + ], + [ + "▁unleash", + -12.989373207092285 + ], + [ + "▁suferit", + -12.989506721496582 + ], + [ + "▁Lifestyle", + -12.98953914642334 + ], + [ + "▁Edel", + -12.989603996276855 + ], + [ + "▁Derek", + -12.989643096923828 + ], + [ + "▁Manga", + -12.989801406860352 + ], + [ + "▁increment", + -12.989990234375 + ], + [ + "▁plötzlich", + -12.990133285522461 + ], + [ + "▁5:30", + -12.990208625793457 + ], + [ + "▁Republicii", + -12.990246772766113 + ], + [ + "▁capitalism", + -12.990293502807617 + ], + [ + "ROW", + -12.990510940551758 + ], + [ + "▁Paar", + -12.990523338317871 + ], + [ + "allée", + -12.99057674407959 + ], + [ + "▁motto", + -12.990610122680664 + ], + [ + "Schäden", + -12.990630149841309 + ], + [ + "▁£10", + -12.99063491821289 + ], + [ + "RIP", + -12.990728378295898 + ], + [ + "courir", + -12.990761756896973 + ], + [ + "rocky", + -12.990944862365723 + ], + [ + "▁Sunshine", + -12.991031646728516 + ], + [ + "▁chimney", + -12.991044998168945 + ], + [ + "▁préfér", + -12.991153717041016 + ], + [ + "▁relaxare", + -12.991189956665039 + ], + [ + "▁colabora", + -12.99134349822998 + ], + [ + "liefer", + -12.99142837524414 + ], + [ + "▁ordentlich", + -12.991486549377441 + ], + [ + "▁dauerhaft", + -12.991535186767578 + ], + [ + "kammer", + -12.991572380065918 + ], + [ + "▁Basket", + -12.991579055786133 + ], + [ + "Site", + -12.991657257080078 + ], + [ + "▁Regina", + -12.991716384887695 + ], + [ + "▁simulate", + -12.991868019104004 + ], + [ + "▁wrestle", + -12.991939544677734 + ], + [ + "wertig", + -12.991986274719238 + ], + [ + "▁Christie", + -12.992018699645996 + ], + [ + "download", + -12.992033004760742 + ], + [ + "▁torch", + -12.992213249206543 + ], + [ + "riya", + -12.992216110229492 + ], + [ + "▁Grie", + -12.992247581481934 + ], + [ + "bitten", + -12.992356300354004 + ], + [ + "▁spezialisiert", + -12.99238109588623 + ], + [ + "▁Parade", + -12.992408752441406 + ], + [ + "▁migraine", + -12.992830276489258 + ], + [ + "▁Armstrong", + -12.992846488952637 + ], + [ + "▁cutie", + -12.9928560256958 + ], + [ + "▁bullying", + -12.992889404296875 + ], + [ + "▁Estonia", + -12.99293041229248 + ], + [ + "▁harvested", + -12.992948532104492 + ], + [ + "▁Hunger", + -12.992971420288086 + ], + [ + "▁frapp", + -12.992999076843262 + ], + [ + "REM", + -12.993117332458496 + ], + [ + "sensor", + -12.993189811706543 + ], + [ + "▁GREAT", + -12.993293762207031 + ], + [ + "▁thyroid", + -12.993302345275879 + ], + [ + "▁mărturi", + -12.993335723876953 + ], + [ + "ocupă", + -12.993809700012207 + ], + [ + "▁Wealth", + -12.993812561035156 + ], + [ + "▁convins", + -12.993841171264648 + ], + [ + "141", + -12.993876457214355 + ], + [ + "▁vingt", + -12.993901252746582 + ], + [ + "▁revel", + -12.994054794311523 + ], + [ + "▁Adri", + -12.994083404541016 + ], + [ + "▁remix", + -12.994207382202148 + ], + [ + "▁fermentation", + -12.99425220489502 + ], + [ + "▁achiziti", + -12.994352340698242 + ], + [ + "dream", + -12.994426727294922 + ], + [ + "▁contemporan", + -12.994632720947266 + ], + [ + "▁youngsters", + -12.994685173034668 + ], + [ + "▁Hartford", + -12.994745254516602 + ], + [ + "▁Wagen", + -12.994988441467285 + ], + [ + "▁Celebr", + -12.995214462280273 + ], + [ + "leveraging", + -12.99527645111084 + ], + [ + "▁Iasi", + -12.99549674987793 + ], + [ + "tackling", + -12.9955415725708 + ], + [ + "▁intrinsic", + -12.995553970336914 + ], + [ + "▁Macedon", + -12.995603561401367 + ], + [ + "NIA", + -12.995784759521484 + ], + [ + "▁bliss", + -12.995905876159668 + ], + [ + "▁gradual", + -12.995908737182617 + ], + [ + "▁inregistrat", + -12.995981216430664 + ], + [ + "▁volleyball", + -12.995986938476562 + ], + [ + "▁offiziell", + -12.996054649353027 + ], + [ + "▁carré", + -12.99611759185791 + ], + [ + "Mostly", + -12.996174812316895 + ], + [ + "▁Harley", + -12.996193885803223 + ], + [ + "▁locati", + -12.996216773986816 + ], + [ + "▁Klo", + -12.996223449707031 + ], + [ + "▁Equal", + -12.996238708496094 + ], + [ + "▁citat", + -12.996369361877441 + ], + [ + "▁argint", + -12.996478080749512 + ], + [ + "prüft", + -12.996528625488281 + ], + [ + "▁Fence", + -12.996600151062012 + ], + [ + "positive", + -12.996988296508789 + ], + [ + "▁Kaz", + -12.997245788574219 + ], + [ + "▁distortion", + -12.997342109680176 + ], + [ + "▁sâmbătă", + -12.997342109680176 + ], + [ + "▁frontière", + -12.997346878051758 + ], + [ + "▁revanch", + -12.997394561767578 + ], + [ + "▁Held", + -12.997465133666992 + ], + [ + "▁Hobb", + -12.99776554107666 + ], + [ + "▁reuşit", + -12.997796058654785 + ], + [ + "deem", + -12.997880935668945 + ], + [ + "▁dorint", + -12.997902870178223 + ], + [ + "▁Anlagen", + -12.997908592224121 + ], + [ + "▁cheval", + -12.997973442077637 + ], + [ + "630", + -12.99806022644043 + ], + [ + "▁implementare", + -12.99808406829834 + ], + [ + "▁curator", + -12.99821662902832 + ], + [ + "▁legislator", + -12.998247146606445 + ], + [ + "▁potassium", + -12.998247146606445 + ], + [ + "▁veterinarian", + -12.998247146606445 + ], + [ + "▁domenii", + -12.998273849487305 + ], + [ + "▁revue", + -12.998310089111328 + ], + [ + "Vielen", + -12.998333930969238 + ], + [ + "africain", + -12.998570442199707 + ], + [ + "before", + -12.998680114746094 + ], + [ + "▁Bestandteil", + -12.998702049255371 + ], + [ + "▁(2010)", + -12.998767852783203 + ], + [ + "▁Arlington", + -12.999153137207031 + ], + [ + "▁Gründung", + -12.999153137207031 + ], + [ + "▁Sprinkle", + -12.999153137207031 + ], + [ + "▁Princeton", + -12.999186515808105 + ], + [ + "chirurg", + -12.999228477478027 + ], + [ + "▁laissé", + -12.999357223510742 + ], + [ + "whoever", + -12.999384880065918 + ], + [ + "▁pasture", + -12.999431610107422 + ], + [ + "ajute", + -12.999436378479004 + ], + [ + "▁joyful", + -12.999494552612305 + ], + [ + "etapa", + -12.999905586242676 + ], + [ + "ESP", + -13.000017166137695 + ], + [ + "▁Iohannis", + -13.000059127807617 + ], + [ + "▁10:30", + -13.000127792358398 + ], + [ + "▁Kingston", + -13.000140190124512 + ], + [ + "▁contender", + -13.000164031982422 + ], + [ + "▁Damage", + -13.000177383422852 + ], + [ + "▁schreibt", + -13.000482559204102 + ], + [ + "sstisch", + -13.000631332397461 + ], + [ + "Associated", + -13.00072956085205 + ], + [ + "▁disposable", + -13.000782012939453 + ], + [ + "veranstaltung", + -13.00096607208252 + ], + [ + "▁puppet", + -13.00100040435791 + ], + [ + "pong", + -13.001093864440918 + ], + [ + "▁Chronicle", + -13.001176834106445 + ], + [ + "222", + -13.001286506652832 + ], + [ + "intuit", + -13.001396179199219 + ], + [ + "inscrire", + -13.001429557800293 + ], + [ + "▁speeches", + -13.001431465148926 + ], + [ + "▁Eingang", + -13.001775741577148 + ], + [ + "▁Adidas", + -13.001875877380371 + ], + [ + "▁cemetery", + -13.001877784729004 + ], + [ + "▁juicy", + -13.001885414123535 + ], + [ + "▁wertvolle", + -13.0018892288208 + ], + [ + "▁militari", + -13.001917839050293 + ], + [ + "China", + -13.00196361541748 + ], + [ + "ecția", + -13.002041816711426 + ], + [ + "luster", + -13.002063751220703 + ], + [ + "auftrag", + -13.00234317779541 + ], + [ + "▁Marius", + -13.002523422241211 + ], + [ + "▁crossover", + -13.002555847167969 + ], + [ + "▁enthusiast", + -13.002555847167969 + ], + [ + "▁cantitate", + -13.002630233764648 + ], + [ + "▁animat", + -13.002634048461914 + ], + [ + "Park", + -13.002793312072754 + ], + [ + "▁unchanged", + -13.00279426574707 + ], + [ + "russia", + -13.00281810760498 + ], + [ + "instant", + -13.002833366394043 + ], + [ + "ţiunea", + -13.002835273742676 + ], + [ + "▁franchi", + -13.002920150756836 + ], + [ + "▁mobiliz", + -13.002963066101074 + ], + [ + "athlet", + -13.003013610839844 + ], + [ + "▁Cardio", + -13.0031099319458 + ], + [ + "▁supus", + -13.003119468688965 + ], + [ + "▁Griff", + -13.003137588500977 + ], + [ + "flakes", + -13.003217697143555 + ], + [ + "soluble", + -13.003250122070312 + ], + [ + "Known", + -13.003693580627441 + ], + [ + "leaking", + -13.003741264343262 + ], + [ + "▁Holocaust", + -13.004148483276367 + ], + [ + "gift", + -13.004197120666504 + ], + [ + "▁tradiţi", + -13.004359245300293 + ], + [ + "▁southeast", + -13.004498481750488 + ], + [ + "▁correspondant", + -13.00460147857666 + ], + [ + "Isaiah", + -13.004603385925293 + ], + [ + "▁diagonal", + -13.004606246948242 + ], + [ + "▁Probabil", + -13.004680633544922 + ], + [ + "▁dégust", + -13.004791259765625 + ], + [ + "▁Naval", + -13.004802703857422 + ], + [ + "▁cultivation", + -13.004839897155762 + ], + [ + "▁Vertrieb", + -13.004849433898926 + ], + [ + "▁pony", + -13.004854202270508 + ], + [ + "▁Throw", + -13.0050048828125 + ], + [ + "little", + -13.005010604858398 + ], + [ + "▁remarque", + -13.005074501037598 + ], + [ + "▁parcare", + -13.005085945129395 + ], + [ + "3.8", + -13.00518798828125 + ], + [ + "▁renunt", + -13.005330085754395 + ], + [ + "▁Rewards", + -13.005487442016602 + ], + [ + "▁Thur", + -13.005496978759766 + ], + [ + "▁underestimate", + -13.005515098571777 + ], + [ + "▁frankly", + -13.005516052246094 + ], + [ + "Bretagne", + -13.005517959594727 + ], + [ + "axial", + -13.005537986755371 + ], + [ + "▁identities", + -13.0055570602417 + ], + [ + "▁Harvest", + -13.00561237335205 + ], + [ + "▁skippe", + -13.00561237335205 + ], + [ + "▁Boutique", + -13.005670547485352 + ], + [ + "▁intuition", + -13.005746841430664 + ], + [ + "▁Rotary", + -13.00581169128418 + ], + [ + "▁SERVICE", + -13.005875587463379 + ], + [ + "▁refill", + -13.005915641784668 + ], + [ + "▁arcade", + -13.006060600280762 + ], + [ + "▁komme", + -13.006386756896973 + ], + [ + "▁irrelevant", + -13.006427764892578 + ], + [ + "▁Sortiment", + -13.006429672241211 + ], + [ + "▁scriitor", + -13.006488800048828 + ], + [ + "▁clicked", + -13.006516456604004 + ], + [ + "▁ciel", + -13.006610870361328 + ], + [ + "▁Caesar", + -13.00680160522461 + ], + [ + "hound", + -13.006803512573242 + ], + [ + "whipped", + -13.006843566894531 + ], + [ + "licate", + -13.006867408752441 + ], + [ + "▁formatting", + -13.006986618041992 + ], + [ + "▁mosaic", + -13.007028579711914 + ], + [ + "(2017)", + -13.007122039794922 + ], + [ + "777", + -13.007257461547852 + ], + [ + "▁Messenger", + -13.007342338562012 + ], + [ + "dulci", + -13.007369041442871 + ], + [ + "▁(2016)", + -13.007420539855957 + ], + [ + "▁popcorn", + -13.007425308227539 + ], + [ + "▁Presidential", + -13.007497787475586 + ], + [ + "▁brokerage", + -13.007564544677734 + ], + [ + "dachte", + -13.00762939453125 + ], + [ + "verkauf", + -13.00768756866455 + ], + [ + "▁pomme", + -13.007721900939941 + ], + [ + "▁fret", + -13.007822036743164 + ], + [ + "▁revere", + -13.007894515991211 + ], + [ + "▁Canvas", + -13.008092880249023 + ], + [ + "▁Nottingham", + -13.008255004882812 + ], + [ + "▁Refuge", + -13.008257865905762 + ], + [ + "▁injustice", + -13.008259773254395 + ], + [ + "▁External", + -13.008264541625977 + ], + [ + "dincolo", + -13.008304595947266 + ], + [ + "directing", + -13.008511543273926 + ], + [ + "▁Toulouse", + -13.008710861206055 + ], + [ + "▁cheltuieli", + -13.008746147155762 + ], + [ + "▁distrus", + -13.008816719055176 + ], + [ + "impôt", + -13.008912086486816 + ], + [ + "landschaft", + -13.008964538574219 + ], + [ + "passion", + -13.00897216796875 + ], + [ + "▁Hobby", + -13.009099006652832 + ], + [ + "significant", + -13.009115219116211 + ], + [ + "▁Guinea", + -13.009209632873535 + ], + [ + "pecializing", + -13.009237289428711 + ], + [ + "pozitie", + -13.009245872497559 + ], + [ + "bourne", + -13.009295463562012 + ], + [ + "▁mâini", + -13.00933837890625 + ], + [ + "▁CFR", + -13.009395599365234 + ], + [ + "▁Konflikt", + -13.009626388549805 + ], + [ + "▁Vodafone", + -13.009626388549805 + ], + [ + "OUG", + -13.009681701660156 + ], + [ + "▁Übersicht", + -13.009735107421875 + ], + [ + "negotiated", + -13.009903907775879 + ], + [ + "▁gliss", + -13.010042190551758 + ], + [ + "▁Kapital", + -13.010111808776855 + ], + [ + "QC", + -13.0101318359375 + ], + [ + "▁gentleman", + -13.01024341583252 + ], + [ + "Inde", + -13.010514259338379 + ], + [ + "▁immensely", + -13.010639190673828 + ], + [ + "Business", + -13.010702133178711 + ], + [ + "▁04/2", + -13.010882377624512 + ], + [ + "societatea", + -13.010973930358887 + ], + [ + "fluoxetine", + -13.011000633239746 + ], + [ + "▁Wachstum", + -13.011000633239746 + ], + [ + "▁récit", + -13.011011123657227 + ], + [ + "▁Preisvergleich", + -13.011034965515137 + ], + [ + "▁Mohammed", + -13.011460304260254 + ], + [ + "gefangen", + -13.011462211608887 + ], + [ + "▁calibration", + -13.011608123779297 + ], + [ + "bekam", + -13.011728286743164 + ], + [ + "▁FUN", + -13.011758804321289 + ], + [ + "wasting", + -13.011839866638184 + ], + [ + "▁prosper", + -13.011862754821777 + ], + [ + "▁Afghan", + -13.011919021606445 + ], + [ + "▁Heroes", + -13.011921882629395 + ], + [ + "▁VMware", + -13.011927604675293 + ], + [ + "exception", + -13.011969566345215 + ], + [ + "▁înlocui", + -13.01244831085205 + ], + [ + "Neu", + -13.01246452331543 + ], + [ + "initiation", + -13.01250171661377 + ], + [ + "▁Peel", + -13.01281452178955 + ], + [ + "▁cunoaste", + -13.012836456298828 + ], + [ + "▁menschliche", + -13.012849807739258 + ], + [ + "▁poarta", + -13.012852668762207 + ], + [ + "▁congestion", + -13.012930870056152 + ], + [ + "▁îmbunătăț", + -13.013103485107422 + ], + [ + "EUR", + -13.013171195983887 + ], + [ + "▁sushi", + -13.01326847076416 + ], + [ + "Jährige", + -13.01329517364502 + ], + [ + "espoir", + -13.013423919677734 + ], + [ + "inspected", + -13.013444900512695 + ], + [ + "▁etape", + -13.013677597045898 + ], + [ + "▁pharmacist", + -13.013754844665527 + ], + [ + "flect", + -13.013840675354004 + ], + [ + "Changing", + -13.013932228088379 + ], + [ + "▁radiant", + -13.014046669006348 + ], + [ + "Daddy", + -13.014275550842285 + ], + [ + "▁categorii", + -13.014360427856445 + ], + [ + "quête", + -13.014628410339355 + ], + [ + "▁skincare", + -13.014657020568848 + ], + [ + "hébergement", + -13.014674186706543 + ], + [ + "840", + -13.01477336883545 + ], + [ + "awaiting", + -13.014822006225586 + ], + [ + "▁murdered", + -13.014841079711914 + ], + [ + "▁proficient", + -13.014863967895508 + ], + [ + "▁chauffe", + -13.014899253845215 + ], + [ + "▁contur", + -13.014937400817871 + ], + [ + "▁rejoindre", + -13.015145301818848 + ], + [ + "▁foloseste", + -13.01521110534668 + ], + [ + "▁Grup", + -13.01535701751709 + ], + [ + "152", + -13.01541519165039 + ], + [ + "▁workspace", + -13.015438079833984 + ], + [ + "▁primitive", + -13.015546798706055 + ], + [ + "▁Ginger", + -13.015557289123535 + ], + [ + "▁chemotherapy", + -13.015595436096191 + ], + [ + "▁platinum", + -13.015596389770508 + ], + [ + "▁sarcina", + -13.01559829711914 + ], + [ + "▁revival", + -13.015820503234863 + ], + [ + "▁Meditation", + -13.016111373901367 + ], + [ + "▁Vogel", + -13.0161714553833 + ], + [ + "IMA", + -13.016359329223633 + ], + [ + "▁handset", + -13.016486167907715 + ], + [ + "▁Nachmittag", + -13.01651668548584 + ], + [ + "▁déchets", + -13.016517639160156 + ], + [ + "▁Cornwall", + -13.0165433883667 + ], + [ + "▁Curry", + -13.016605377197266 + ], + [ + "▁cuplu", + -13.016607284545898 + ], + [ + "▁Birth", + -13.016822814941406 + ], + [ + "forward", + -13.016936302185059 + ], + [ + "Dezvoltare", + -13.016977310180664 + ], + [ + "▁irgendwie", + -13.016980171203613 + ], + [ + "▁erzielt", + -13.016993522644043 + ], + [ + "LOS", + -13.01700496673584 + ], + [ + "▁overload", + -13.01708984375 + ], + [ + "▁repay", + -13.01713752746582 + ], + [ + "urlaub", + -13.017155647277832 + ], + [ + "7.0", + -13.01716423034668 + ], + [ + "▁Wheat", + -13.01748275756836 + ], + [ + "▁degrab", + -13.017488479614258 + ], + [ + "▁Brock", + -13.017491340637207 + ], + [ + "▁inhabit", + -13.0176362991333 + ], + [ + "▁Speech", + -13.017834663391113 + ], + [ + "directional", + -13.017862319946289 + ], + [ + "▁Mandel", + -13.017909049987793 + ], + [ + "▁erscheinen", + -13.01791763305664 + ], + [ + "consciously", + -13.018059730529785 + ], + [ + "▁sunet", + -13.0182523727417 + ], + [ + "▁stole", + -13.018259048461914 + ], + [ + "▁Utilis", + -13.018349647521973 + ], + [ + "▁obstruction", + -13.01852798461914 + ], + [ + "▁mindfulness", + -13.0186767578125 + ], + [ + "partnering", + -13.01868724822998 + ], + [ + "CSI", + -13.018819808959961 + ], + [ + "204", + -13.01905632019043 + ], + [ + "▁squirrel", + -13.019286155700684 + ], + [ + "▁Rwanda", + -13.01975154876709 + ], + [ + "▁hunters", + -13.019850730895996 + ], + [ + "▁revitaliz", + -13.02022647857666 + ], + [ + "▁avansat", + -13.020232200622559 + ], + [ + "▁Yamaha", + -13.020294189453125 + ], + [ + "foto", + -13.020435333251953 + ], + [ + "▁Vegan", + -13.020469665527344 + ], + [ + "▁pitched", + -13.02053165435791 + ], + [ + "▁Vortrag", + -13.020540237426758 + ], + [ + "traditional", + -13.020809173583984 + ], + [ + "offrent", + -13.021024703979492 + ], + [ + "▁Expression", + -13.021315574645996 + ], + [ + "▁apprécié", + -13.021354675292969 + ], + [ + "▁Christina", + -13.021408081054688 + ], + [ + "eilig", + -13.021464347839355 + ], + [ + "▁verhindern", + -13.021599769592285 + ], + [ + "culturii", + -13.021607398986816 + ], + [ + "Aşa", + -13.021703720092773 + ], + [ + "▁enamel", + -13.021756172180176 + ], + [ + "▁fördern", + -13.021771430969238 + ], + [ + "▁acheté", + -13.021798133850098 + ], + [ + "▁eventuell", + -13.021842956542969 + ], + [ + "▁Sino", + -13.021873474121094 + ], + [ + "▁totodat", + -13.022008895874023 + ], + [ + "accelerated", + -13.022202491760254 + ], + [ + "▁strengthened", + -13.02245044708252 + ], + [ + "corro", + -13.022482872009277 + ], + [ + "4,5", + -13.02253246307373 + ], + [ + "▁Beverly", + -13.022533416748047 + ], + [ + "ulevard", + -13.022615432739258 + ], + [ + "▁hamper", + -13.022644996643066 + ], + [ + "▁Tempe", + -13.02268123626709 + ], + [ + "▁Yacht", + -13.022799491882324 + ], + [ + "▁LGBT", + -13.022871017456055 + ], + [ + "▁fingertips", + -13.022991180419922 + ], + [ + "▁Auftraggeber", + -13.02299976348877 + ], + [ + "▁harbour", + -13.0230131149292 + ], + [ + "blew", + -13.0230712890625 + ], + [ + "▁ideology", + -13.023115158081055 + ], + [ + "▁covenant", + -13.023170471191406 + ], + [ + "▁faction", + -13.023419380187988 + ], + [ + "▁animé", + -13.023481369018555 + ], + [ + "energie", + -13.023515701293945 + ], + [ + "iterführende", + -13.02369499206543 + ], + [ + "▁MAI", + -13.023784637451172 + ], + [ + "▁pluie", + -13.023905754089355 + ], + [ + "▁cathedral", + -13.023919105529785 + ], + [ + "▁chiropractic", + -13.023919105529785 + ], + [ + "monies", + -13.023968696594238 + ], + [ + "▁contraction", + -13.024054527282715 + ], + [ + "pvc", + -13.024202346801758 + ], + [ + "staff", + -13.024209022521973 + ], + [ + "BIT", + -13.024216651916504 + ], + [ + "EET", + -13.024514198303223 + ], + [ + "▁sanction", + -13.024575233459473 + ], + [ + "▁Reiki", + -13.024709701538086 + ], + [ + "Trying", + -13.024772644042969 + ], + [ + "▁endangered", + -13.024847984313965 + ], + [ + "▁Emperor", + -13.024849891662598 + ], + [ + "▁empfi", + -13.024909973144531 + ], + [ + "animation", + -13.024998664855957 + ], + [ + "207", + -13.025029182434082 + ], + [ + "separating", + -13.02512264251709 + ], + [ + "▁lucrative", + -13.025148391723633 + ], + [ + "▁ortho", + -13.02524185180664 + ], + [ + "variété", + -13.025266647338867 + ], + [ + "hésit", + -13.025287628173828 + ], + [ + "nuances", + -13.025289535522461 + ], + [ + "▁$250", + -13.025394439697266 + ], + [ + "▁drumuri", + -13.025435447692871 + ], + [ + "▁unsafe", + -13.025446891784668 + ], + [ + "▁1943", + -13.025477409362793 + ], + [ + "▁automatique", + -13.025524139404297 + ], + [ + "billed", + -13.025585174560547 + ], + [ + "▁rectangle", + -13.02578067779541 + ], + [ + "▁Spannung", + -13.025781631469727 + ], + [ + "▁dévoil", + -13.025790214538574 + ], + [ + "▁perimeter", + -13.02580738067627 + ], + [ + "▁imaginative", + -13.02581787109375 + ], + [ + "actifs", + -13.025851249694824 + ], + [ + "neuve", + -13.0259428024292 + ], + [ + "leagă", + -13.026269912719727 + ], + [ + "gehende", + -13.026700973510742 + ], + [ + "▁Gorgeous", + -13.026708602905273 + ], + [ + "▁impeccable", + -13.026708602905273 + ], + [ + "▁Curtain", + -13.026718139648438 + ], + [ + "▁presume", + -13.026731491088867 + ], + [ + "surpassed", + -13.02687931060791 + ], + [ + "schiff", + -13.026927947998047 + ], + [ + "Allied", + -13.02699089050293 + ], + [ + "fanden", + -13.027080535888672 + ], + [ + "▁célébr", + -13.027174949645996 + ], + [ + "▁phénomène", + -13.027174949645996 + ], + [ + "▁Powell", + -13.027413368225098 + ], + [ + "jean", + -13.027631759643555 + ], + [ + "▁peculiar", + -13.027640342712402 + ], + [ + "▁Antarctic", + -13.027641296386719 + ], + [ + "▁gradient", + -13.027663230895996 + ], + [ + "▁brainstorm", + -13.027704238891602 + ], + [ + "échapp", + -13.027726173400879 + ], + [ + "Bot", + -13.027738571166992 + ], + [ + "cita", + -13.027743339538574 + ], + [ + "▁lumber", + -13.027752876281738 + ], + [ + "weichen", + -13.027852058410645 + ], + [ + "▁Halte", + -13.028024673461914 + ], + [ + "▁noștri", + -13.028107643127441 + ], + [ + "construction", + -13.028165817260742 + ], + [ + "DOC", + -13.028236389160156 + ], + [ + "▁aluat", + -13.028319358825684 + ], + [ + "streamlined", + -13.028462409973145 + ], + [ + "Bio", + -13.028494834899902 + ], + [ + "▁nutritious", + -13.028573036193848 + ], + [ + "▁délicat", + -13.0286283493042 + ], + [ + "▁sticla", + -13.028656959533691 + ], + [ + "OVE", + -13.028721809387207 + ], + [ + "▁panneau", + -13.028793334960938 + ], + [ + "▁hetero", + -13.028801918029785 + ], + [ + "▁annul", + -13.028839111328125 + ], + [ + "IDA", + -13.028935432434082 + ], + [ + "▁pitches", + -13.028960227966309 + ], + [ + "▁Edmonton", + -13.029040336608887 + ], + [ + "mediated", + -13.029136657714844 + ], + [ + "AFP", + -13.029139518737793 + ], + [ + "▁Tibetan", + -13.029228210449219 + ], + [ + "intégration", + -13.02934455871582 + ], + [ + "▁Rox", + -13.0294771194458 + ], + [ + "energia", + -13.02950668334961 + ], + [ + "▁reconnaît", + -13.029509544372559 + ], + [ + "▁ține", + -13.029525756835938 + ], + [ + "▁ignition", + -13.029534339904785 + ], + [ + "Foarte", + -13.029541015625 + ], + [ + "▁HOME", + -13.029545783996582 + ], + [ + "▁MLB", + -13.029545783996582 + ], + [ + "▁Wähle", + -13.029590606689453 + ], + [ + "▁Merkel", + -13.029658317565918 + ], + [ + "poarte", + -13.029664993286133 + ], + [ + "ALT", + -13.02979850769043 + ], + [ + "jenigen", + -13.029985427856445 + ], + [ + "▁conflit", + -13.029987335205078 + ], + [ + "▁buckle", + -13.029996871948242 + ], + [ + "▁cacao", + -13.030035018920898 + ], + [ + "▁représentation", + -13.030076026916504 + ], + [ + "incepand", + -13.030267715454102 + ], + [ + "▁Carroll", + -13.030306816101074 + ], + [ + "▁clientilor", + -13.030370712280273 + ], + [ + "▁immunity", + -13.030441284179688 + ], + [ + "oût", + -13.03044319152832 + ], + [ + "▁Witch", + -13.030488014221191 + ], + [ + "▁Wolfgang", + -13.030532836914062 + ], + [ + "▁prudent", + -13.030701637268066 + ], + [ + "fotograf", + -13.03084945678711 + ], + [ + "paar", + -13.030871391296387 + ], + [ + "ergeti", + -13.030927658081055 + ], + [ + "▁empowerment", + -13.031112670898438 + ], + [ + "▁Admir", + -13.03122329711914 + ], + [ + "▁complémentaire", + -13.031340599060059 + ], + [ + "▁angepasst", + -13.031376838684082 + ], + [ + "▁flirt", + -13.031376838684082 + ], + [ + "▁elektronische", + -13.031388282775879 + ], + [ + "▁stereotype", + -13.03140640258789 + ], + [ + "SIL", + -13.031465530395508 + ], + [ + "▁Realtor", + -13.031471252441406 + ], + [ + "Edit", + -13.031774520874023 + ], + [ + "requête", + -13.03181266784668 + ], + [ + "▁Herstellung", + -13.031815528869629 + ], + [ + "▁cyst", + -13.031947135925293 + ], + [ + "syndic", + -13.031994819641113 + ], + [ + "leni", + -13.032007217407227 + ], + [ + "▁fringe", + -13.032020568847656 + ], + [ + "▁Jardin", + -13.032032012939453 + ], + [ + "▁Vezi", + -13.032052993774414 + ], + [ + "▁Ausstattung", + -13.032312393188477 + ], + [ + "▁glide", + -13.032590866088867 + ], + [ + "▁Andere", + -13.032758712768555 + ], + [ + "▁Haftung", + -13.032781600952148 + ], + [ + "maßnahmen", + -13.032788276672363 + ], + [ + "▁recommandé", + -13.032790184020996 + ], + [ + "▁nave", + -13.032793998718262 + ], + [ + "viziune", + -13.033051490783691 + ], + [ + "▁stimulus", + -13.033098220825195 + ], + [ + "faulty", + -13.0331449508667 + ], + [ + "▁vicinity", + -13.033249855041504 + ], + [ + "▁turnaround", + -13.033445358276367 + ], + [ + "stammt", + -13.033846855163574 + ], + [ + "▁problemlos", + -13.033856391906738 + ], + [ + "▁Establish", + -13.03415298461914 + ], + [ + "▁Silva", + -13.034172058105469 + ], + [ + "▁muzică", + -13.034187316894531 + ], + [ + "▁theatrical", + -13.03421401977539 + ], + [ + "▁braid", + -13.034242630004883 + ], + [ + "▁blieb", + -13.034276962280273 + ], + [ + "158", + -13.034296989440918 + ], + [ + "▁ignorance", + -13.034330368041992 + ], + [ + "onset", + -13.034416198730469 + ], + [ + "zeitlich", + -13.034523963928223 + ], + [ + "▁Sink", + -13.034523963928223 + ], + [ + "▁caractéris", + -13.034594535827637 + ], + [ + "▁kreative", + -13.03465747833252 + ], + [ + "behörde", + -13.034677505493164 + ], + [ + "repairing", + -13.034680366516113 + ], + [ + "▁tumble", + -13.034757614135742 + ], + [ + "zione", + -13.034871101379395 + ], + [ + "▁Evil", + -13.03494644165039 + ], + [ + "▁popping", + -13.034952163696289 + ], + [ + "▁mutant", + -13.035025596618652 + ], + [ + "emme", + -13.035030364990234 + ], + [ + "▁Pleasant", + -13.035125732421875 + ], + [ + "▁appetizer", + -13.035125732421875 + ], + [ + "▁PLEASE", + -13.035126686096191 + ], + [ + "▁physiological", + -13.035128593444824 + ], + [ + "▁Facility", + -13.035131454467773 + ], + [ + "▁quirky", + -13.035131454467773 + ], + [ + "▁colectiv", + -13.035154342651367 + ], + [ + "151", + -13.035181999206543 + ], + [ + "August", + -13.03531551361084 + ], + [ + "▁Jewelry", + -13.035327911376953 + ], + [ + "▁ziar", + -13.035481452941895 + ], + [ + "▁puissant", + -13.035489082336426 + ], + [ + "▁Argument", + -13.035595893859863 + ], + [ + "▁Betracht", + -13.035621643066406 + ], + [ + "▁TRANS", + -13.035636901855469 + ], + [ + "Exception", + -13.036011695861816 + ], + [ + "nosti", + -13.036083221435547 + ], + [ + "▁Geographic", + -13.036155700683594 + ], + [ + "amazingly", + -13.036173820495605 + ], + [ + "▁météo", + -13.036181449890137 + ], + [ + "streit", + -13.036314010620117 + ], + [ + "▁idle", + -13.036439895629883 + ], + [ + "179", + -13.036441802978516 + ], + [ + "▁Bremen", + -13.036534309387207 + ], + [ + "▁Kläger", + -13.03653621673584 + ], + [ + "▁Grammy", + -13.036598205566406 + ], + [ + "▁Philosophy", + -13.036613464355469 + ], + [ + "▁utilizeaz", + -13.036779403686523 + ], + [ + "Accord", + -13.036897659301758 + ], + [ + "▁USDA", + -13.036986351013184 + ], + [ + "Continuing", + -13.037010192871094 + ], + [ + "geschenk", + -13.037178039550781 + ], + [ + "kredit", + -13.037248611450195 + ], + [ + "Laugh", + -13.037297248840332 + ], + [ + "oaring", + -13.037406921386719 + ], + [ + "▁Richter", + -13.037460327148438 + ], + [ + "▁Figur", + -13.037938117980957 + ], + [ + "▁inconsistent", + -13.037947654724121 + ], + [ + "cresterea", + -13.038069725036621 + ], + [ + "▁regeneration", + -13.038130760192871 + ], + [ + "speaking", + -13.03818416595459 + ], + [ + "▁nasal", + -13.03824234008789 + ], + [ + "▁partagé", + -13.038259506225586 + ], + [ + "▁Warranty", + -13.038419723510742 + ], + [ + "▁Mueller", + -13.038501739501953 + ], + [ + "formează", + -13.038734436035156 + ], + [ + "hundert", + -13.038745880126953 + ], + [ + "gemeldet", + -13.038893699645996 + ], + [ + "▁excursions", + -13.038912773132324 + ], + [ + "▁linii", + -13.039066314697266 + ], + [ + "gefährlich", + -13.039067268371582 + ], + [ + "▁schema", + -13.03907299041748 + ], + [ + "nişte", + -13.039131164550781 + ], + [ + "▁roadway", + -13.039132118225098 + ], + [ + "▁regression", + -13.039135932922363 + ], + [ + "▁mână", + -13.039366722106934 + ], + [ + "5.3", + -13.039373397827148 + ], + [ + "▁Spät", + -13.039734840393066 + ], + [ + "▁stubborn", + -13.039833068847656 + ], + [ + "efectele", + -13.040030479431152 + ], + [ + "▁atenţi", + -13.040136337280273 + ], + [ + "▁dovedit", + -13.04018497467041 + ], + [ + "▁Agile", + -13.040190696716309 + ], + [ + "denying", + -13.04023265838623 + ], + [ + "fluss", + -13.040620803833008 + ], + [ + "▁Calvin", + -13.04066276550293 + ], + [ + "Sculpt", + -13.04083251953125 + ], + [ + "égalité", + -13.040884971618652 + ], + [ + "ticket", + -13.040977478027344 + ], + [ + "marketed", + -13.041044235229492 + ], + [ + "holic", + -13.041173934936523 + ], + [ + "▁eCommerce", + -13.041346549987793 + ], + [ + "▁Slip", + -13.041369438171387 + ], + [ + "▁degradation", + -13.041736602783203 + ], + [ + "écart", + -13.041742324829102 + ], + [ + "AGR", + -13.041807174682617 + ], + [ + "▁burglar", + -13.041837692260742 + ], + [ + "▁conjug", + -13.041903495788574 + ], + [ + "LLP", + -13.04194164276123 + ], + [ + "couvrir", + -13.041997909545898 + ], + [ + "▁Hearing", + -13.042001724243164 + ], + [ + "▁canton", + -13.042006492614746 + ], + [ + "▁sixteen", + -13.042068481445312 + ], + [ + "▁Verlust", + -13.042097091674805 + ], + [ + "allied", + -13.042268753051758 + ], + [ + "Performing", + -13.042393684387207 + ], + [ + "▁évoqu", + -13.042519569396973 + ], + [ + "▁bookstore", + -13.042574882507324 + ], + [ + "▁intrebari", + -13.042627334594727 + ], + [ + "▁Hyderabad", + -13.042668342590332 + ], + [ + "▁repertoire", + -13.042668342590332 + ], + [ + "▁cablu", + -13.042678833007812 + ], + [ + "▁Costume", + -13.04269790649414 + ], + [ + "▁Shannon", + -13.042713165283203 + ], + [ + "▁glossy", + -13.042800903320312 + ], + [ + "▁cible", + -13.042876243591309 + ], + [ + "Saint", + -13.042984008789062 + ], + [ + "▁Ultima", + -13.043042182922363 + ], + [ + "▁teint", + -13.0432767868042 + ], + [ + "▁envision", + -13.043477058410645 + ], + [ + "▁thinner", + -13.043478965759277 + ], + [ + "ис", + -13.043609619140625 + ], + [ + "▁bladder", + -13.043615341186523 + ], + [ + "▁Prairie", + -13.043618202209473 + ], + [ + "▁puppies", + -13.043633460998535 + ], + [ + "▁overweight", + -13.043729782104492 + ], + [ + "destined", + -13.043925285339355 + ], + [ + "▁addictive", + -13.043935775756836 + ], + [ + "▁posé", + -13.043993949890137 + ], + [ + "▁mecanism", + -13.044112205505371 + ], + [ + "▁chorus", + -13.044466972351074 + ], + [ + "weder", + -13.044528007507324 + ], + [ + "▁begrüß", + -13.044562339782715 + ], + [ + "▁unsuccessful", + -13.044562339782715 + ], + [ + "executing", + -13.044564247131348 + ], + [ + "▁metadata", + -13.044611930847168 + ], + [ + "traiter", + -13.044620513916016 + ], + [ + "▁borrowed", + -13.044649124145508 + ], + [ + "▁aeroport", + -13.044679641723633 + ], + [ + "▁Bibli", + -13.044761657714844 + ], + [ + "▁youthful", + -13.044902801513672 + ], + [ + "▁Herbert", + -13.044913291931152 + ], + [ + "client", + -13.04500961303711 + ], + [ + "merci", + -13.04520034790039 + ], + [ + "▁Beast", + -13.045210838317871 + ], + [ + "▁Entrepreneur", + -13.045230865478516 + ], + [ + "▁Gelände", + -13.045256614685059 + ], + [ + "▁Packers", + -13.045268058776855 + ], + [ + "formarea", + -13.045469284057617 + ], + [ + "▁Kündigung", + -13.045511245727539 + ], + [ + "▁verdient", + -13.045515060424805 + ], + [ + "▁solutie", + -13.045530319213867 + ], + [ + "figuration", + -13.045611381530762 + ], + [ + "voluntarily", + -13.045622825622559 + ], + [ + "Gregor", + -13.045742988586426 + ], + [ + "▁Uncle", + -13.04589557647705 + ], + [ + "tarifs", + -13.045907020568848 + ], + [ + "▁écologique", + -13.045987129211426 + ], + [ + "▁Investition", + -13.045991897583008 + ], + [ + "exemplar", + -13.046127319335938 + ], + [ + "▁prevede", + -13.046144485473633 + ], + [ + "▁waive", + -13.046147346496582 + ], + [ + "▁Legion", + -13.046156883239746 + ], + [ + "similar", + -13.046247482299805 + ], + [ + "▁shareholder", + -13.04626750946045 + ], + [ + "▁oyster", + -13.046476364135742 + ], + [ + "▁Lightning", + -13.046530723571777 + ], + [ + "experimenting", + -13.04662799835205 + ], + [ + "▁replies", + -13.04663372039795 + ], + [ + "80,000", + -13.046757698059082 + ], + [ + "▁adept", + -13.04692554473877 + ], + [ + "▁Crăciun", + -13.046935081481934 + ], + [ + "▁sanatos", + -13.046935081481934 + ], + [ + "305", + -13.04699993133545 + ], + [ + "specialised", + -13.047069549560547 + ], + [ + "▁drummer", + -13.047189712524414 + ], + [ + "Applicants", + -13.04741096496582 + ], + [ + "objekt", + -13.04741096496582 + ], + [ + "▁Fifth", + -13.047446250915527 + ], + [ + "rgic", + -13.047567367553711 + ], + [ + "theater", + -13.047635078430176 + ], + [ + "▁terminé", + -13.047852516174316 + ], + [ + "▁Englisch", + -13.047894477844238 + ], + [ + "▁Oradea", + -13.047898292541504 + ], + [ + "possesses", + -13.0479097366333 + ], + [ + "illiers", + -13.047986030578613 + ], + [ + "▁refurbish", + -13.048110961914062 + ], + [ + "graphie", + -13.04814338684082 + ], + [ + "▁Booth", + -13.048174858093262 + ], + [ + "▁Ausdruck", + -13.048192977905273 + ], + [ + "▁Marriage", + -13.048361778259277 + ], + [ + "▁knives", + -13.048362731933594 + ], + [ + "▁Relief", + -13.048368453979492 + ], + [ + "▁Clerk", + -13.048392295837402 + ], + [ + "wait", + -13.048501014709473 + ], + [ + "▁probablement", + -13.048698425292969 + ], + [ + "▁suplimentar", + -13.048701286315918 + ], + [ + "dollar", + -13.048797607421875 + ], + [ + "English", + -13.04898452758789 + ], + [ + "866", + -13.049300193786621 + ], + [ + "▁Savannah", + -13.049314498901367 + ], + [ + "▁aftermath", + -13.049318313598633 + ], + [ + "phé", + -13.04932689666748 + ], + [ + "▁Plum", + -13.049417495727539 + ], + [ + "264", + -13.049566268920898 + ], + [ + "2.000", + -13.049582481384277 + ], + [ + "niei", + -13.049603462219238 + ], + [ + "ATP", + -13.049803733825684 + ], + [ + "mila", + -13.04985523223877 + ], + [ + "▁glut", + -13.049887657165527 + ], + [ + "gotta", + -13.049891471862793 + ], + [ + "schütt", + -13.049893379211426 + ], + [ + "klick", + -13.049996376037598 + ], + [ + "whether", + -13.050090789794922 + ], + [ + "▁Wade", + -13.050163269042969 + ], + [ + "▁Riley", + -13.050280570983887 + ], + [ + "Chancellor", + -13.050288200378418 + ], + [ + "▁nebun", + -13.050300598144531 + ], + [ + "▁aufgebaut", + -13.050374984741211 + ], + [ + "steigt", + -13.050423622131348 + ], + [ + "▁entirety", + -13.050494194030762 + ], + [ + "▁telefoane", + -13.05074691772461 + ], + [ + "▁Roulette", + -13.050763130187988 + ], + [ + "1700", + -13.050787925720215 + ], + [ + "▁lycée", + -13.050856590270996 + ], + [ + "rotary", + -13.051128387451172 + ], + [ + "benefited", + -13.051170349121094 + ], + [ + "▁Bisericii", + -13.051220893859863 + ], + [ + "▁Rehabilitation", + -13.051220893859863 + ], + [ + "▁lithium", + -13.051228523254395 + ], + [ + "imposing", + -13.051279067993164 + ], + [ + "176", + -13.051329612731934 + ], + [ + "▁thunder", + -13.051527976989746 + ], + [ + "ăsesc", + -13.052000045776367 + ], + [ + "▁Einblick", + -13.052010536193848 + ], + [ + "oiled", + -13.052151679992676 + ], + [ + "SSA", + -13.052181243896484 + ], + [ + "apparition", + -13.05224609375 + ], + [ + "▁Impress", + -13.052273750305176 + ], + [ + "▁Aboriginal", + -13.052297592163086 + ], + [ + "loos", + -13.052383422851562 + ], + [ + "▁Bread", + -13.052440643310547 + ], + [ + "177", + -13.052619934082031 + ], + [ + "VERS", + -13.052638053894043 + ], + [ + "▁Respect", + -13.05271053314209 + ], + [ + "▁Practical", + -13.053047180175781 + ], + [ + "drafting", + -13.05306339263916 + ], + [ + "си", + -13.053099632263184 + ], + [ + "▁faza", + -13.053109169006348 + ], + [ + "▁sovereign", + -13.053123474121094 + ], + [ + "▁Untersuchung", + -13.05314826965332 + ], + [ + "▁Niveau", + -13.053154945373535 + ], + [ + "transport", + -13.053182601928711 + ], + [ + "▁downstream", + -13.053293228149414 + ], + [ + "▁Milton", + -13.053383827209473 + ], + [ + "▁knob", + -13.053390502929688 + ], + [ + "employeur", + -13.053499221801758 + ], + [ + "▁furnish", + -13.053544044494629 + ], + [ + "weather", + -13.053564071655273 + ], + [ + "LAB", + -13.053646087646484 + ], + [ + "166", + -13.053853988647461 + ], + [ + "▁salaire", + -13.053937911987305 + ], + [ + "▁Carnival", + -13.054088592529297 + ], + [ + "4-0", + -13.054168701171875 + ], + [ + "▁Angle", + -13.054291725158691 + ], + [ + "▁José", + -13.054399490356445 + ], + [ + "architecture", + -13.054475784301758 + ], + [ + "▁Sunset", + -13.054574966430664 + ], + [ + "▁Absolut", + -13.054694175720215 + ], + [ + "▁herrlich", + -13.05470085144043 + ], + [ + "12%", + -13.054703712463379 + ], + [ + "▁Indo", + -13.054823875427246 + ], + [ + "▁Komfort", + -13.055049896240234 + ], + [ + "▁acțiuni", + -13.05505084991455 + ], + [ + "energize", + -13.055085182189941 + ], + [ + "▁Warning", + -13.055171966552734 + ], + [ + "▁Sunny", + -13.055216789245605 + ], + [ + "▁razor", + -13.055489540100098 + ], + [ + "▁psychic", + -13.055490493774414 + ], + [ + "▁convivial", + -13.055525779724121 + ], + [ + "Voraussetzungen", + -13.05555534362793 + ], + [ + "IMO", + -13.055622100830078 + ], + [ + "opérateur", + -13.055743217468262 + ], + [ + "▁langjährige", + -13.05575942993164 + ], + [ + "▁Spanie", + -13.055901527404785 + ], + [ + "pulmonary", + -13.056004524230957 + ], + [ + "▁Bingo", + -13.056050300598145 + ], + [ + "▁confession", + -13.056096076965332 + ], + [ + "▁Petru", + -13.056100845336914 + ], + [ + "▁prerequisite", + -13.056164741516113 + ], + [ + "▁dodge", + -13.056352615356445 + ], + [ + "▁McN", + -13.056436538696289 + ], + [ + "▁originate", + -13.056577682495117 + ], + [ + "▁nettoy", + -13.056612014770508 + ], + [ + "▁$14", + -13.056645393371582 + ], + [ + "▁Bride", + -13.05669116973877 + ], + [ + "▁noisy", + -13.05673885345459 + ], + [ + "▁Worcester", + -13.056963920593262 + ], + [ + "▁Surrey", + -13.056982040405273 + ], + [ + "harmonis", + -13.057110786437988 + ], + [ + "▁représentant", + -13.057304382324219 + ], + [ + "organisée", + -13.057475090026855 + ], + [ + "truction", + -13.057513236999512 + ], + [ + "injected", + -13.057597160339355 + ], + [ + "▁Suzuki", + -13.057924270629883 + ], + [ + "▁japonais", + -13.057924270629883 + ], + [ + "▁turquoise", + -13.057924270629883 + ], + [ + "▁Peut", + -13.058004379272461 + ], + [ + "▁Sequ", + -13.058028221130371 + ], + [ + "slated", + -13.058037757873535 + ], + [ + "▁Alma", + -13.058215141296387 + ], + [ + "▁gebraucht", + -13.05827522277832 + ], + [ + "gängig", + -13.058281898498535 + ], + [ + "▁commis", + -13.058377265930176 + ], + [ + "ACS", + -13.05856990814209 + ], + [ + "pressure", + -13.058664321899414 + ], + [ + "cured", + -13.05874252319336 + ], + [ + "▁Jackie", + -13.058757781982422 + ], + [ + "▁Kashmir", + -13.05888557434082 + ], + [ + "▁recruited", + -13.059000968933105 + ], + [ + "▁vécu", + -13.059011459350586 + ], + [ + "▁opus", + -13.059052467346191 + ], + [ + "kWh", + -13.05927562713623 + ], + [ + "▁tapping", + -13.059292793273926 + ], + [ + "▁tehnologie", + -13.05931282043457 + ], + [ + "▁Gentle", + -13.059365272521973 + ], + [ + "▁bombard", + -13.059372901916504 + ], + [ + "▁caméra", + -13.059427261352539 + ], + [ + "züglich", + -13.059431076049805 + ], + [ + "▁bingo", + -13.059453010559082 + ], + [ + "private", + -13.059496879577637 + ], + [ + "▁mediator", + -13.059642791748047 + ], + [ + "▁carbohydrates", + -13.059847831726074 + ], + [ + "▁workmanship", + -13.059849739074707 + ], + [ + "▁Combat", + -13.059853553771973 + ], + [ + "▁Mickey", + -13.059901237487793 + ], + [ + "▁distressed", + -13.059908866882324 + ], + [ + "lucrează", + -13.059924125671387 + ], + [ + "treatment", + -13.06007194519043 + ], + [ + "▁Einwohner", + -13.060330390930176 + ], + [ + "▁glaze", + -13.060386657714844 + ], + [ + "scholarly", + -13.06043529510498 + ], + [ + "ROC", + -13.060750007629395 + ], + [ + "▁Darwin", + -13.060774803161621 + ], + [ + "drückt", + -13.060775756835938 + ], + [ + "▁treadmill", + -13.060819625854492 + ], + [ + "ntz", + -13.060830116271973 + ], + [ + "620", + -13.061087608337402 + ], + [ + "surface", + -13.061148643493652 + ], + [ + "▁vieţii", + -13.0612211227417 + ], + [ + "990", + -13.061296463012695 + ], + [ + "▁doigt", + -13.061341285705566 + ], + [ + "▁explor", + -13.061450004577637 + ], + [ + "▁asistent", + -13.061670303344727 + ], + [ + "coloriage", + -13.061734199523926 + ], + [ + "▁Martinez", + -13.061758041381836 + ], + [ + "▁antibodies", + -13.061775207519531 + ], + [ + "Schülerinnen", + -13.061779975891113 + ], + [ + "Honestly", + -13.06178092956543 + ], + [ + "grabbing", + -13.061871528625488 + ], + [ + "▁Cardiff", + -13.061897277832031 + ], + [ + "▁Trophy", + -13.062084197998047 + ], + [ + "▁pupil", + -13.062117576599121 + ], + [ + "▁invoke", + -13.062161445617676 + ], + [ + "bezüglich", + -13.062193870544434 + ], + [ + "Anschließend", + -13.062275886535645 + ], + [ + "perks", + -13.062360763549805 + ], + [ + "530", + -13.062373161315918 + ], + [ + "▁emblem", + -13.062431335449219 + ], + [ + "770", + -13.062543869018555 + ], + [ + "clairement", + -13.062590599060059 + ], + [ + "▁sublinia", + -13.062597274780273 + ], + [ + "▁1910", + -13.062719345092773 + ], + [ + "▁Embassy", + -13.062740325927734 + ], + [ + "▁Valencia", + -13.062740325927734 + ], + [ + "▁catastrophic", + -13.062740325927734 + ], + [ + "▁simulator", + -13.06274700164795 + ], + [ + "Pierre", + -13.062766075134277 + ], + [ + "▁doorstep", + -13.062806129455566 + ], + [ + "▁rallie", + -13.062881469726562 + ], + [ + "▁șans", + -13.062891960144043 + ], + [ + "▁crosses", + -13.06300163269043 + ], + [ + "▁zodi", + -13.06312084197998 + ], + [ + "Next", + -13.06314754486084 + ], + [ + "▁rebuilt", + -13.063152313232422 + ], + [ + "▁panorama", + -13.063222885131836 + ], + [ + "196", + -13.06324291229248 + ], + [ + "▁erinnert", + -13.06370735168457 + ], + [ + "lism", + -13.06371784210205 + ], + [ + "opened", + -13.06383228302002 + ], + [ + "▁breakout", + -13.064126014709473 + ], + [ + "▁mosque", + -13.064153671264648 + ], + [ + "boc", + -13.064507484436035 + ], + [ + "▁grout", + -13.064568519592285 + ], + [ + "▁Gather", + -13.064582824707031 + ], + [ + "▁vampire", + -13.06467342376709 + ], + [ + "▁tandem", + -13.064684867858887 + ], + [ + "▁pastra", + -13.064702033996582 + ], + [ + "▁lösen", + -13.064794540405273 + ], + [ + "▁discontinu", + -13.064826965332031 + ], + [ + "fuses", + -13.064885139465332 + ], + [ + "▁identitate", + -13.064947128295898 + ], + [ + "BAC", + -13.064964294433594 + ], + [ + "▁$100,000", + -13.065122604370117 + ], + [ + "Finder", + -13.06515121459961 + ], + [ + "▁Leicester", + -13.065157890319824 + ], + [ + "▁1933", + -13.065159797668457 + ], + [ + "informatiile", + -13.065234184265137 + ], + [ + "lädt", + -13.065309524536133 + ], + [ + "iggle", + -13.065399169921875 + ], + [ + "▁Discuss", + -13.065462112426758 + ], + [ + "distributing", + -13.065470695495605 + ], + [ + "▁disappoint", + -13.065475463867188 + ], + [ + "ecţia", + -13.065611839294434 + ], + [ + "▁condiment", + -13.065640449523926 + ], + [ + "▁Marriott", + -13.065642356872559 + ], + [ + "▁entspannt", + -13.065644264221191 + ], + [ + "arbitrary", + -13.06564998626709 + ], + [ + "rühren", + -13.06574821472168 + ], + [ + "Intensiv", + -13.065771102905273 + ], + [ + "eliminare", + -13.065895080566406 + ], + [ + "muster", + -13.06594467163086 + ], + [ + "▁komplexe", + -13.066130638122559 + ], + [ + "▁(2008)", + -13.066184997558594 + ], + [ + "absolument", + -13.066349029541016 + ], + [ + "aloo", + -13.066420555114746 + ], + [ + "cererea", + -13.06655216217041 + ], + [ + "▁imobiliar", + -13.066696166992188 + ], + [ + "▁paramount", + -13.066705703735352 + ], + [ + "▁Vince", + -13.066723823547363 + ], + [ + "pov", + -13.067076683044434 + ], + [ + "▁conveyor", + -13.067549705505371 + ], + [ + "▁Natalie", + -13.067583084106445 + ], + [ + "▁Comedy", + -13.067623138427734 + ], + [ + "Developing", + -13.0678129196167 + ], + [ + "disputed", + -13.067878723144531 + ], + [ + "164", + -13.067911148071289 + ], + [ + "▁Communist", + -13.067949295043945 + ], + [ + "▁Bahnhof", + -13.06806468963623 + ], + [ + "dokument", + -13.068145751953125 + ], + [ + "▁Somali", + -13.06828498840332 + ], + [ + "▁Strasbourg", + -13.068503379821777 + ], + [ + "▁Technician", + -13.068550109863281 + ], + [ + "▁subsidies", + -13.068633079528809 + ], + [ + "judeţul", + -13.068723678588867 + ], + [ + "▁bible", + -13.068769454956055 + ], + [ + "gefahren", + -13.068855285644531 + ], + [ + "▁literal", + -13.068882942199707 + ], + [ + "▁diminish", + -13.068940162658691 + ], + [ + "Sfântul", + -13.0689697265625 + ], + [ + "▁doreșt", + -13.068978309631348 + ], + [ + "▁Xiaomi", + -13.069036483764648 + ], + [ + "▁planète", + -13.069130897521973 + ], + [ + "▁LTD", + -13.069175720214844 + ], + [ + "▁Zugriff", + -13.069196701049805 + ], + [ + "beginn", + -13.06921672821045 + ], + [ + "▁Einführung", + -13.069294929504395 + ], + [ + "▁coronar", + -13.069393157958984 + ], + [ + "lomi", + -13.0693941116333 + ], + [ + "▁Accueil", + -13.0695219039917 + ], + [ + "scanned", + -13.069528579711914 + ], + [ + "▁Banque", + -13.06952953338623 + ], + [ + "▁réaction", + -13.069531440734863 + ], + [ + "▁Hoffman", + -13.069546699523926 + ], + [ + "▁merveille", + -13.069637298583984 + ], + [ + "navigating", + -13.069719314575195 + ], + [ + "schalten", + -13.06984806060791 + ], + [ + "▁ieşi", + -13.070136070251465 + ], + [ + "1-6", + -13.070175170898438 + ], + [ + "▁frustr", + -13.070670127868652 + ], + [ + "▁réfléchi", + -13.0709810256958 + ], + [ + "▁difuz", + -13.071100234985352 + ], + [ + "▁freue", + -13.07121753692627 + ], + [ + "besuch", + -13.071349143981934 + ], + [ + "153", + -13.071386337280273 + ], + [ + "▁butterflies", + -13.071467399597168 + ], + [ + "▁terrifying", + -13.071467399597168 + ], + [ + "▁încuraj", + -13.071468353271484 + ], + [ + "▁Château", + -13.071470260620117 + ], + [ + "▁contingent", + -13.071474075317383 + ], + [ + "▁abusive", + -13.0714750289917 + ], + [ + "▁SharePoint", + -13.07148551940918 + ], + [ + "▁skating", + -13.071573257446289 + ], + [ + "▁militaire", + -13.07166576385498 + ], + [ + "▁Vig", + -13.071690559387207 + ], + [ + "omics", + -13.071840286254883 + ], + [ + "▁Blockchain", + -13.07197093963623 + ], + [ + "▁principii", + -13.071975708007812 + ], + [ + "▁permitting", + -13.071979522705078 + ], + [ + "optimisation", + -13.072270393371582 + ], + [ + "▁maintien", + -13.072328567504883 + ], + [ + "▁Aluminum", + -13.072442054748535 + ], + [ + "▁Plymouth", + -13.072443008422852 + ], + [ + "▁Weiterbildung", + -13.072457313537598 + ], + [ + "▁Finanzierung", + -13.072505950927734 + ], + [ + "▁Kerala", + -13.072514533996582 + ], + [ + "insulated", + -13.072668075561523 + ], + [ + "▁loaf", + -13.072802543640137 + ], + [ + "▁Sammlung", + -13.072929382324219 + ], + [ + "▁îndepărt", + -13.072930335998535 + ], + [ + "▁Gewerbe", + -13.072942733764648 + ], + [ + "udel", + -13.072988510131836 + ], + [ + "▁coursework", + -13.073104858398438 + ], + [ + "▁Darstellung", + -13.073246002197266 + ], + [ + "▁indeplin", + -13.073433876037598 + ], + [ + "▁Gandhi", + -13.073434829711914 + ], + [ + "tossed", + -13.07361888885498 + ], + [ + "ewed", + -13.073844909667969 + ], + [ + "▁classement", + -13.073884963989258 + ], + [ + "▁Protestant", + -13.073905944824219 + ], + [ + "▁frumoasă", + -13.073905944824219 + ], + [ + "▁pantalon", + -13.073906898498535 + ], + [ + "▁rivet", + -13.073966979980469 + ], + [ + "▁Echt", + -13.0741605758667 + ], + [ + "erviciului", + -13.07421588897705 + ], + [ + "fabricated", + -13.074322700500488 + ], + [ + "Compania", + -13.074372291564941 + ], + [ + "▁juvenile", + -13.074394226074219 + ], + [ + "▁souligne", + -13.07444953918457 + ], + [ + "▁chrono", + -13.07447338104248 + ], + [ + "▁VII", + -13.074594497680664 + ], + [ + "▁Kirch", + -13.074714660644531 + ], + [ + "catcher", + -13.075014114379883 + ], + [ + "salv", + -13.075263023376465 + ], + [ + "▁Enforcement", + -13.075370788574219 + ], + [ + "▁Penguin", + -13.075410842895508 + ], + [ + "kowski", + -13.075465202331543 + ], + [ + "▁2:1", + -13.075470924377441 + ], + [ + "gesundheit", + -13.075475692749023 + ], + [ + "▁unveil", + -13.075519561767578 + ], + [ + "bending", + -13.075531959533691 + ], + [ + "▁conecta", + -13.075579643249512 + ], + [ + "▁faim", + -13.075885772705078 + ], + [ + "▁MacBook", + -13.075969696044922 + ], + [ + "versuch", + -13.07600212097168 + ], + [ + "▁regiuni", + -13.076029777526855 + ], + [ + "▁Willow", + -13.076184272766113 + ], + [ + "▁finanziell", + -13.076303482055664 + ], + [ + "▁nurturing", + -13.076354026794434 + ], + [ + "impuls", + -13.076370239257812 + ], + [ + "▁funktionieren", + -13.076371192932129 + ], + [ + "▁rezult", + -13.076554298400879 + ], + [ + "▁spui", + -13.076593399047852 + ], + [ + "▁walkway", + -13.076653480529785 + ], + [ + "▁Rauch", + -13.076708793640137 + ], + [ + "169", + -13.076793670654297 + ], + [ + "610", + -13.076863288879395 + ], + [ + "▁scazut", + -13.0773286819458 + ], + [ + "▁Garrett", + -13.077329635620117 + ], + [ + "▁necesită", + -13.077352523803711 + ], + [ + "Articolul", + -13.077364921569824 + ], + [ + "numită", + -13.077371597290039 + ], + [ + "Coastal", + -13.077383041381836 + ], + [ + "▁canned", + -13.077421188354492 + ], + [ + "▁Friendly", + -13.077499389648438 + ], + [ + "dissolved", + -13.0775728225708 + ], + [ + "seid", + -13.077674865722656 + ], + [ + "▁feminin", + -13.077685356140137 + ], + [ + "▁fetch", + -13.077710151672363 + ], + [ + "▁Accent", + -13.077767372131348 + ], + [ + "phrase", + -13.077771186828613 + ], + [ + "effekt", + -13.077775955200195 + ], + [ + "▁Progressive", + -13.077777862548828 + ], + [ + "▁canadien", + -13.077820777893066 + ], + [ + "iety", + -13.077839851379395 + ], + [ + "eignen", + -13.077984809875488 + ], + [ + "paraître", + -13.07812213897705 + ], + [ + "▁asylum", + -13.07833194732666 + ], + [ + "▁Albany", + -13.078362464904785 + ], + [ + "▁remis", + -13.078386306762695 + ], + [ + "▁Joyce", + -13.078664779663086 + ], + [ + "schätzt", + -13.078784942626953 + ], + [ + "▁begleiten", + -13.078801155090332 + ], + [ + "▁Siemens", + -13.079007148742676 + ], + [ + "▁schlimm", + -13.079061508178711 + ], + [ + "▁Libra", + -13.079254150390625 + ], + [ + "▁Composite", + -13.079290390014648 + ], + [ + "▁écr", + -13.079315185546875 + ], + [ + "disciplina", + -13.079379081726074 + ], + [ + "▁premature", + -13.079630851745605 + ], + [ + "▁scopuri", + -13.079681396484375 + ], + [ + "ffnung", + -13.079715728759766 + ], + [ + "7000", + -13.079726219177246 + ], + [ + "▁conséquent", + -13.079780578613281 + ], + [ + "▁côte", + -13.079787254333496 + ], + [ + "celul", + -13.079872131347656 + ], + [ + "▁fourteen", + -13.079940795898438 + ], + [ + "▁Riverside", + -13.080077171325684 + ], + [ + "gemacht", + -13.08013916015625 + ], + [ + "▁volcanic", + -13.080272674560547 + ], + [ + "▁Salesforce", + -13.080315589904785 + ], + [ + "▁Granite", + -13.080317497253418 + ], + [ + "▁Zentral", + -13.080329895019531 + ], + [ + "▁Female", + -13.080341339111328 + ], + [ + "▁culmin", + -13.08047103881836 + ], + [ + "▁urmatoare", + -13.080547332763672 + ], + [ + "toxicity", + -13.080560684204102 + ], + [ + "▁mâna", + -13.080678939819336 + ], + [ + "▁Umfang", + -13.080764770507812 + ], + [ + "▁Encore", + -13.08077621459961 + ], + [ + "▁Edgar", + -13.080831527709961 + ], + [ + "▁négoci", + -13.080852508544922 + ], + [ + "njeux", + -13.080873489379883 + ], + [ + "▁variance", + -13.080917358398438 + ], + [ + "▁Functional", + -13.080973625183105 + ], + [ + "172", + -13.081046104431152 + ], + [ + "▁dissolve", + -13.0811185836792 + ], + [ + "förderung", + -13.081188201904297 + ], + [ + "▁Brilliant", + -13.081254959106445 + ], + [ + "▁comprehension", + -13.081254959106445 + ], + [ + "▁soybean", + -13.081254959106445 + ], + [ + "▁standalone", + -13.081255912780762 + ], + [ + "▁Communi", + -13.081303596496582 + ], + [ + "▁ajut", + -13.081313133239746 + ], + [ + "▁lavish", + -13.081338882446289 + ], + [ + "Ouest", + -13.081384658813477 + ], + [ + "▁Maggie", + -13.081385612487793 + ], + [ + "▁evolutionary", + -13.081550598144531 + ], + [ + "bowel", + -13.081575393676758 + ], + [ + "▁glyco", + -13.081626892089844 + ], + [ + "▁Happi", + -13.081706047058105 + ], + [ + "organising", + -13.081710815429688 + ], + [ + "▁übernimm", + -13.081727027893066 + ], + [ + "▁snowboard", + -13.081793785095215 + ], + [ + "▁prévention", + -13.081830024719238 + ], + [ + "▁Celebrate", + -13.082160949707031 + ], + [ + "▁pottery", + -13.082254409790039 + ], + [ + "▁Outstanding", + -13.082328796386719 + ], + [ + "▁toamna", + -13.082331657409668 + ], + [ + "▁graceful", + -13.082548141479492 + ], + [ + "197", + -13.082559585571289 + ], + [ + "strecke", + -13.082598686218262 + ], + [ + "▁medizinische", + -13.082733154296875 + ], + [ + "216", + -13.082839965820312 + ], + [ + "▁prune", + -13.082868576049805 + ], + [ + "Pourtant", + -13.083000183105469 + ], + [ + "▁Difference", + -13.083224296569824 + ], + [ + "▁factura", + -13.083830833435059 + ], + [ + "Mass", + -13.084161758422852 + ], + [ + "▁Enhanc", + -13.084190368652344 + ], + [ + "upholstered", + -13.084209442138672 + ], + [ + "▁übernommen", + -13.084209442138672 + ], + [ + "▁mitigation", + -13.084210395812988 + ], + [ + "▁Hidden", + -13.084219932556152 + ], + [ + "▁Häuser", + -13.084234237670898 + ], + [ + "▁Pavel", + -13.084403991699219 + ], + [ + "▁congress", + -13.084512710571289 + ], + [ + "▁antibody", + -13.084598541259766 + ], + [ + "▁stitches", + -13.084811210632324 + ], + [ + "▁colonies", + -13.084820747375488 + ], + [ + "Into", + -13.084900856018066 + ], + [ + "▁démo", + -13.084924697875977 + ], + [ + "▁MVP", + -13.085041046142578 + ], + [ + "▁replay", + -13.085062026977539 + ], + [ + "▁usoara", + -13.08522891998291 + ], + [ + "▁Breast", + -13.085278511047363 + ], + [ + "ooney", + -13.085336685180664 + ], + [ + "▁außen", + -13.085663795471191 + ], + [ + "▁Motorola", + -13.085695266723633 + ], + [ + "▁spalat", + -13.08578109741211 + ], + [ + "euillez", + -13.086088180541992 + ], + [ + "▁jeunesse", + -13.086170196533203 + ], + [ + "▁pastoral", + -13.086174011230469 + ], + [ + "▁Sussex", + -13.086185455322266 + ], + [ + "▁stencil", + -13.08619213104248 + ], + [ + "▁organismului", + -13.086504936218262 + ], + [ + "seized", + -13.086649894714355 + ], + [ + "▁întrebare", + -13.086865425109863 + ], + [ + "cliquez", + -13.086874961853027 + ], + [ + "5.7", + -13.086984634399414 + ], + [ + "▁Yama", + -13.087080955505371 + ], + [ + "painted", + -13.08708667755127 + ], + [ + "▁Swimming", + -13.087176322937012 + ], + [ + "Rhythm", + -13.087202072143555 + ], + [ + "▁sorrow", + -13.087210655212402 + ], + [ + "▁Movers", + -13.08731460571289 + ], + [ + "renforcer", + -13.08735466003418 + ], + [ + "▁Wach", + -13.087381362915039 + ], + [ + "0,00", + -13.087390899658203 + ], + [ + "▁glove", + -13.08753490447998 + ], + [ + "▁stâng", + -13.087669372558594 + ], + [ + "rgendwann", + -13.087687492370605 + ], + [ + "▁Philippine", + -13.08769416809082 + ], + [ + "▁anunțat", + -13.087716102600098 + ], + [ + "▁Coleman", + -13.087723731994629 + ], + [ + "affir", + -13.087918281555176 + ], + [ + "uleiul", + -13.08808422088623 + ], + [ + "▁Coconut", + -13.088197708129883 + ], + [ + "▁Supplement", + -13.088210105895996 + ], + [ + "haudiere", + -13.088293075561523 + ], + [ + "▁kettle", + -13.088313102722168 + ], + [ + "▁3,5", + -13.088370323181152 + ], + [ + "refurbished", + -13.088425636291504 + ], + [ + "esthétique", + -13.088665962219238 + ], + [ + "performing", + -13.088667869567871 + ], + [ + "▁Engag", + -13.088762283325195 + ], + [ + "Group", + -13.088801383972168 + ], + [ + "▁viande", + -13.088887214660645 + ], + [ + "▁oricum", + -13.088888168334961 + ], + [ + "Spitalul", + -13.089093208312988 + ], + [ + "▁cesse", + -13.089110374450684 + ], + [ + "▁contradiction", + -13.089130401611328 + ], + [ + "▁Chrysler", + -13.089154243469238 + ], + [ + "▁poultry", + -13.089154243469238 + ], + [ + "▁thirteen", + -13.089154243469238 + ], + [ + "▁sightseeing", + -13.089155197143555 + ], + [ + "▁Miguel", + -13.089158058166504 + ], + [ + "▁terminology", + -13.089334487915039 + ], + [ + "▁Genetic", + -13.089553833007812 + ], + [ + "commercial", + -13.08963394165039 + ], + [ + "gehoben", + -13.08965015411377 + ], + [ + "RIGHT", + -13.08995532989502 + ], + [ + "▁proprietate", + -13.089990615844727 + ], + [ + "▁Cannes", + -13.090012550354004 + ], + [ + "▁klicken", + -13.090023040771484 + ], + [ + "▁Belgique", + -13.0901460647583 + ], + [ + "tapped", + -13.09034538269043 + ], + [ + "kinetic", + -13.090569496154785 + ], + [ + "▁feuilles", + -13.090673446655273 + ], + [ + "whitening", + -13.090760231018066 + ], + [ + "Any", + -13.090946197509766 + ], + [ + "Manager", + -13.091099739074707 + ], + [ + "▁constatat", + -13.091106414794922 + ], + [ + "▁Myanmar", + -13.091140747070312 + ], + [ + "▁Examination", + -13.091142654418945 + ], + [ + "▁règle", + -13.091208457946777 + ], + [ + "▁umgesetzt", + -13.09128475189209 + ], + [ + "211", + -13.091336250305176 + ], + [ + "▁Herald", + -13.091449737548828 + ], + [ + "Alex", + -13.091680526733398 + ], + [ + "▁drauf", + -13.091707229614258 + ], + [ + "logger", + -13.091714859008789 + ], + [ + "▁pictur", + -13.09186840057373 + ], + [ + "▁Divi", + -13.09196949005127 + ], + [ + "▁furnizat", + -13.092089653015137 + ], + [ + "▁verzichten", + -13.092132568359375 + ], + [ + "▁Sergi", + -13.092199325561523 + ], + [ + "contaminated", + -13.09223747253418 + ], + [ + "▁Buddy", + -13.092243194580078 + ], + [ + "▁chilled", + -13.092268943786621 + ], + [ + "▁vorlieg", + -13.092317581176758 + ], + [ + "▁Claudia", + -13.092632293701172 + ], + [ + "▁miserable", + -13.092653274536133 + ], + [ + "▁sketches", + -13.092683792114258 + ], + [ + "schicken", + -13.092814445495605 + ], + [ + "since", + -13.0928373336792 + ], + [ + "2.9", + -13.092840194702148 + ], + [ + "▁sitzen", + -13.092928886413574 + ], + [ + "ceapa", + -13.093396186828613 + ], + [ + "respectarea", + -13.093438148498535 + ], + [ + "▁handheld", + -13.093448638916016 + ], + [ + "popular", + -13.093527793884277 + ], + [ + "calming", + -13.093603134155273 + ], + [ + "Govern", + -13.093632698059082 + ], + [ + "▁omega", + -13.093645095825195 + ], + [ + "▁Planner", + -13.093791007995605 + ], + [ + "enriched", + -13.093850135803223 + ], + [ + "154", + -13.093976974487305 + ], + [ + "▁autorisé", + -13.093989372253418 + ], + [ + "▁cadouri", + -13.09407901763916 + ], + [ + "▁vulnerabilities", + -13.094143867492676 + ], + [ + "▁Arbeitnehmer", + -13.094158172607422 + ], + [ + "éditeur", + -13.094234466552734 + ], + [ + "▁Anleitung", + -13.094317436218262 + ], + [ + "rubbing", + -13.094343185424805 + ], + [ + "▁autovehicul", + -13.094621658325195 + ], + [ + "▁öffnen", + -13.094621658325195 + ], + [ + "▁Napoleon", + -13.094622611999512 + ], + [ + "▁cliché", + -13.094637870788574 + ], + [ + "▁Schaf", + -13.09469985961914 + ], + [ + "regulating", + -13.094894409179688 + ], + [ + "▁Kühl", + -13.09490966796875 + ], + [ + "▁blush", + -13.094913482666016 + ], + [ + "▁discard", + -13.094992637634277 + ], + [ + "▁confine", + -13.095027923583984 + ], + [ + "▁Rodriguez", + -13.09511947631836 + ], + [ + "▁ADHD", + -13.095165252685547 + ], + [ + "▁Madame", + -13.09516716003418 + ], + [ + "▁résolution", + -13.095319747924805 + ], + [ + "▁flair", + -13.095369338989258 + ], + [ + "▁claw", + -13.095422744750977 + ], + [ + "▁1929", + -13.095643043518066 + ], + [ + "ETH", + -13.095672607421875 + ], + [ + "nähe", + -13.095804214477539 + ], + [ + "▁soothe", + -13.0958251953125 + ], + [ + "4.9", + -13.095833778381348 + ], + [ + "montée", + -13.095925331115723 + ], + [ + "confirming", + -13.095989227294922 + ], + [ + "continent", + -13.09613037109375 + ], + [ + "reiz", + -13.09643840789795 + ], + [ + "john", + -13.096577644348145 + ], + [ + "IONAL", + -13.096588134765625 + ], + [ + "▁exported", + -13.0966215133667 + ], + [ + "▁Prison", + -13.096651077270508 + ], + [ + "possessed", + -13.096952438354492 + ], + [ + "▁placebo", + -13.096991539001465 + ], + [ + "▁biodiversity", + -13.097116470336914 + ], + [ + "▁combustion", + -13.097116470336914 + ], + [ + "▁Plumbing", + -13.09711742401123 + ], + [ + "ixie", + -13.097124099731445 + ], + [ + "▁repetition", + -13.09715461730957 + ], + [ + "▁soumis", + -13.097372055053711 + ], + [ + "▁reduc", + -13.097671508789062 + ], + [ + "▁constrain", + -13.097759246826172 + ], + [ + "Anti", + -13.097760200500488 + ], + [ + "consolidated", + -13.097817420959473 + ], + [ + "214", + -13.098095893859863 + ], + [ + "▁breaches", + -13.098108291625977 + ], + [ + "infringement", + -13.098115921020508 + ], + [ + "▁drizzle", + -13.098115921020508 + ], + [ + "▁erhöhen", + -13.098116874694824 + ], + [ + "▁Somerset", + -13.098118782043457 + ], + [ + "▁blonde", + -13.098132133483887 + ], + [ + "▁Funny", + -13.09813404083252 + ], + [ + "tuşi", + -13.098149299621582 + ], + [ + "▁reinvent", + -13.098162651062012 + ], + [ + "▁sérieux", + -13.098247528076172 + ], + [ + "▁croire", + -13.098308563232422 + ], + [ + "general", + -13.098315238952637 + ], + [ + "▁Distance", + -13.098319053649902 + ], + [ + "▁VoIP", + -13.098348617553711 + ], + [ + "▁adăugat", + -13.098406791687012 + ], + [ + "matik", + -13.098546028137207 + ], + [ + "▁avatar", + -13.098647117614746 + ], + [ + "▁superstar", + -13.098804473876953 + ], + [ + "8.0", + -13.098814010620117 + ], + [ + "lusieurs", + -13.098982810974121 + ], + [ + "▁Judeţean", + -13.099117279052734 + ], + [ + "offenen", + -13.099128723144531 + ], + [ + "RAF", + -13.099133491516113 + ], + [ + "▁restroom", + -13.099207878112793 + ], + [ + "enfance", + -13.099348068237305 + ], + [ + "▁garnish", + -13.099499702453613 + ], + [ + "▁vermittelt", + -13.099631309509277 + ], + [ + "Histoire", + -13.099634170532227 + ], + [ + "cyan", + -13.100628852844238 + ], + [ + "Talk", + -13.100666046142578 + ], + [ + "▁Varianten", + -13.10069465637207 + ], + [ + "▁Lille", + -13.10085678100586 + ], + [ + "▁offenbar", + -13.10098934173584 + ], + [ + "▁rénovation", + -13.10112190246582 + ], + [ + "▁comentarii", + -13.101249694824219 + ], + [ + "▁Bedford", + -13.10130500793457 + ], + [ + "▁cercetări", + -13.101325988769531 + ], + [ + "▁précision", + -13.101337432861328 + ], + [ + "MRC", + -13.101358413696289 + ], + [ + "alterations", + -13.101476669311523 + ], + [ + "▁discours", + -13.101531028747559 + ], + [ + "äger", + -13.101577758789062 + ], + [ + "▁antreprenor", + -13.101622581481934 + ], + [ + "▁Oriental", + -13.101849555969238 + ], + [ + "conducerea", + -13.101868629455566 + ], + [ + "CBC", + -13.101932525634766 + ], + [ + "▁mince", + -13.101985931396484 + ], + [ + "▁presidency", + -13.10212516784668 + ], + [ + "▁lipstick", + -13.102167129516602 + ], + [ + "▁SERVICES", + -13.102237701416016 + ], + [ + "productive", + -13.10237979888916 + ], + [ + "Assad", + -13.102400779724121 + ], + [ + "▁efectiv", + -13.102540969848633 + ], + [ + "▁gestern", + -13.102596282958984 + ], + [ + "▁RGB", + -13.102606773376465 + ], + [ + "▁Transilvania", + -13.102627754211426 + ], + [ + "▁Raleigh", + -13.102670669555664 + ], + [ + "DOM", + -13.102702140808105 + ], + [ + "▁iesit", + -13.102806091308594 + ], + [ + "▁anuntat", + -13.102810859680176 + ], + [ + "▁automatiquement", + -13.102901458740234 + ], + [ + "▁proliferation", + -13.103130340576172 + ], + [ + "▁Maroc", + -13.103156089782715 + ], + [ + "▁prezenţ", + -13.10323429107666 + ], + [ + "▁Filipino", + -13.103296279907227 + ], + [ + "▁Traian", + -13.103351593017578 + ], + [ + "▁swimmer", + -13.10356616973877 + ], + [ + "▁Slovenia", + -13.103632926940918 + ], + [ + "phobia", + -13.103724479675293 + ], + [ + "curricular", + -13.103734016418457 + ], + [ + "jurnal", + -13.103825569152832 + ], + [ + "▁vorne", + -13.103870391845703 + ], + [ + "▁asuma", + -13.103875160217285 + ], + [ + "defended", + -13.104104995727539 + ], + [ + "▁imminent", + -13.104140281677246 + ], + [ + "favored", + -13.10417366027832 + ], + [ + "▁innovator", + -13.104179382324219 + ], + [ + "▁Salzburg", + -13.104289054870605 + ], + [ + "5.4", + -13.104452133178711 + ], + [ + "Safe", + -13.104597091674805 + ], + [ + "▁inteleg", + -13.104744911193848 + ], + [ + "▁charisma", + -13.104781150817871 + ], + [ + "nature", + -13.104784965515137 + ], + [ + "4.8", + -13.104942321777344 + ], + [ + "argues", + -13.105104446411133 + ], + [ + "▁dimensiune", + -13.105142593383789 + ], + [ + "▁subdivision", + -13.105142593383789 + ], + [ + "▁embarrassing", + -13.105144500732422 + ], + [ + "▁confuse", + -13.105207443237305 + ], + [ + "DIC", + -13.105460166931152 + ], + [ + "rubrique", + -13.10549545288086 + ], + [ + "dépendance", + -13.105598449707031 + ], + [ + "INCLUD", + -13.10565185546875 + ], + [ + "▁Griffin", + -13.10574722290039 + ], + [ + "157", + -13.105751037597656 + ], + [ + "▁revamp", + -13.105839729309082 + ], + [ + "▁umgehen", + -13.10595989227295 + ], + [ + "▁mențin", + -13.106231689453125 + ], + [ + "▁1937", + -13.106695175170898 + ], + [ + "eklagte", + -13.106766700744629 + ], + [ + "▁clientèle", + -13.106801986694336 + ], + [ + "▁campsite", + -13.10708999633789 + ], + [ + "▁florist", + -13.107144355773926 + ], + [ + "▁Ferguson", + -13.107159614562988 + ], + [ + "▁demolition", + -13.107160568237305 + ], + [ + "▁McCain", + -13.107254981994629 + ], + [ + "▁reckon", + -13.10733413696289 + ], + [ + "striped", + -13.107414245605469 + ], + [ + "▁sonore", + -13.107481002807617 + ], + [ + "migrated", + -13.107548713684082 + ], + [ + "▁fluorescent", + -13.107664108276367 + ], + [ + "▁Colegi", + -13.107762336730957 + ], + [ + "ianu", + -13.107860565185547 + ], + [ + "cruising", + -13.107882499694824 + ], + [ + "LINK", + -13.107965469360352 + ], + [ + "▁Cutting", + -13.108001708984375 + ], + [ + "ABILITY", + -13.108168601989746 + ], + [ + "▁Categories", + -13.108168601989746 + ], + [ + "▁erhoben", + -13.108168601989746 + ], + [ + "▁Cocktail", + -13.108169555664062 + ], + [ + "▁Generator", + -13.108177185058594 + ], + [ + "▁gesucht", + -13.108186721801758 + ], + [ + "▁telescope", + -13.10818862915039 + ], + [ + "KET", + -13.108192443847656 + ], + [ + "▁hilfreich", + -13.108192443847656 + ], + [ + "▁beneficiary", + -13.108585357666016 + ], + [ + "▁Winston", + -13.108636856079102 + ], + [ + "Auswirkungen", + -13.108675956726074 + ], + [ + "portrayed", + -13.108705520629883 + ], + [ + "▁Aspekte", + -13.108743667602539 + ], + [ + "ffected", + -13.108901023864746 + ], + [ + "eutic", + -13.108905792236328 + ], + [ + "International", + -13.109021186828613 + ], + [ + "attente", + -13.109078407287598 + ], + [ + "mentioning", + -13.109119415283203 + ], + [ + "launch", + -13.109129905700684 + ], + [ + "▁EURO", + -13.109152793884277 + ], + [ + "▁Fraser", + -13.109344482421875 + ], + [ + "▁Johannes", + -13.109408378601074 + ], + [ + "▁felicit", + -13.109477043151855 + ], + [ + "▁plâng", + -13.109522819519043 + ], + [ + "izant", + -13.10971736907959 + ], + [ + "▁reţe", + -13.109846115112305 + ], + [ + "Mech", + -13.109954833984375 + ], + [ + "▁algebra", + -13.110193252563477 + ], + [ + "▁surgeries", + -13.110257148742676 + ], + [ + "▁semifinal", + -13.110262870788574 + ], + [ + "▁intimidating", + -13.110288619995117 + ], + [ + "▁exkl", + -13.110604286193848 + ], + [ + "asigurarea", + -13.110918998718262 + ], + [ + "Tek", + -13.111136436462402 + ], + [ + "▁Einladung", + -13.111205101013184 + ], + [ + "▁similaire", + -13.111205101013184 + ], + [ + "▁bebelus", + -13.111221313476562 + ], + [ + "▁déclin", + -13.111400604248047 + ], + [ + "▁Console", + -13.111495018005371 + ], + [ + "RET", + -13.111573219299316 + ], + [ + "appli", + -13.111586570739746 + ], + [ + "45%", + -13.111663818359375 + ], + [ + "Evenimentul", + -13.111811637878418 + ], + [ + "sincerely", + -13.111812591552734 + ], + [ + "sammlung", + -13.112098693847656 + ], + [ + "Amérique", + -13.112220764160156 + ], + [ + "▁1919", + -13.112326622009277 + ], + [ + "regulation", + -13.112367630004883 + ], + [ + "gebäude", + -13.112726211547852 + ], + [ + "▁Perspektive", + -13.112726211547852 + ], + [ + "Espagne", + -13.112744331359863 + ], + [ + "▁Underground", + -13.11283016204834 + ], + [ + "secret", + -13.112833976745605 + ], + [ + "▁Aussicht", + -13.112874031066895 + ], + [ + "Photo", + -13.112977027893066 + ], + [ + "▁Brust", + -13.113144874572754 + ], + [ + "▁Sustainability", + -13.11323356628418 + ], + [ + "▁clădiri", + -13.11323356628418 + ], + [ + "▁librarian", + -13.11323356628418 + ], + [ + "▁HBO", + -13.113235473632812 + ], + [ + "▁Parallel", + -13.113240242004395 + ], + [ + "▁shimmer", + -13.113283157348633 + ], + [ + "▁schlicht", + -13.113292694091797 + ], + [ + "▁anticipat", + -13.113311767578125 + ], + [ + "▁foolish", + -13.11335563659668 + ], + [ + "▁Ability", + -13.11347484588623 + ], + [ + "▁ceremoni", + -13.11358642578125 + ], + [ + "▁Ablauf", + -13.11359977722168 + ], + [ + "icrobial", + -13.113606452941895 + ], + [ + "▁actiuni", + -13.11362361907959 + ], + [ + "▁Wilhelm", + -13.113761901855469 + ], + [ + "▁nennen", + -13.113775253295898 + ], + [ + "▁botez", + -13.113832473754883 + ], + [ + "Alpes", + -13.113912582397461 + ], + [ + "▁libér", + -13.11392593383789 + ], + [ + "▁sneakers", + -13.114052772521973 + ], + [ + "geschafft", + -13.114252090454102 + ], + [ + "▁downstairs", + -13.114261627197266 + ], + [ + "▁wrench", + -13.114294052124023 + ], + [ + "▁erheblich", + -13.11442756652832 + ], + [ + "▁alimentar", + -13.114710807800293 + ], + [ + "▁suger", + -13.11474323272705 + ], + [ + "analysis", + -13.114883422851562 + ], + [ + "öhn", + -13.114891052246094 + ], + [ + "▁Nantes", + -13.114895820617676 + ], + [ + "▁Arbor", + -13.114899635314941 + ], + [ + "ooze", + -13.115150451660156 + ], + [ + "▁facade", + -13.115229606628418 + ], + [ + "▁MySQL", + -13.115266799926758 + ], + [ + "▁Salvador", + -13.115266799926758 + ], + [ + "▁Schlafzimmer", + -13.115279197692871 + ], + [ + "▁autentic", + -13.115320205688477 + ], + [ + "▁prezint", + -13.115348815917969 + ], + [ + "▁campground", + -13.115397453308105 + ], + [ + "Query", + -13.11540412902832 + ], + [ + "bekannt", + -13.115598678588867 + ], + [ + "arcinia", + -13.115632057189941 + ], + [ + "▁stunt", + -13.115825653076172 + ], + [ + "▁informare", + -13.115830421447754 + ], + [ + "▁interzis", + -13.11584186553955 + ], + [ + "▁Burke", + -13.115995407104492 + ], + [ + "certified", + -13.11601734161377 + ], + [ + "▁clove", + -13.11605167388916 + ], + [ + "java", + -13.116271018981934 + ], + [ + "▁Vielfalt", + -13.116284370422363 + ], + [ + "gebung", + -13.116329193115234 + ], + [ + "▁9/11", + -13.116497993469238 + ], + [ + "▁disruptive", + -13.11650562286377 + ], + [ + "visual", + -13.116693496704102 + ], + [ + "▁anunţat", + -13.11679458618164 + ], + [ + "▁Plätze", + -13.116799354553223 + ], + [ + "▁reduceri", + -13.116920471191406 + ], + [ + "autorisation", + -13.116950035095215 + ], + [ + "▁ligament", + -13.11705207824707 + ], + [ + "▁învăța", + -13.117081642150879 + ], + [ + "läufig", + -13.117303848266602 + ], + [ + "▁Copenhagen", + -13.117303848266602 + ], + [ + "▁commodities", + -13.117303848266602 + ], + [ + "▁eindeutig", + -13.117313385009766 + ], + [ + "▁catheter", + -13.117321014404297 + ], + [ + "erklärung", + -13.117720603942871 + ], + [ + "▁intelectual", + -13.117814064025879 + ], + [ + "▁municipality", + -13.117891311645508 + ], + [ + "▁1936", + -13.11798095703125 + ], + [ + "rruption", + -13.118217468261719 + ], + [ + "▁Lafayette", + -13.118324279785156 + ], + [ + "▁berühmte", + -13.118324279785156 + ], + [ + "▁idylli", + -13.118325233459473 + ], + [ + "▁caldura", + -13.118447303771973 + ], + [ + "▁tablette", + -13.118535995483398 + ], + [ + "▁liquidity", + -13.118728637695312 + ], + [ + "NGOs", + -13.118885040283203 + ], + [ + "▁supliment", + -13.11889934539795 + ], + [ + "contact", + -13.119075775146484 + ], + [ + "lustig", + -13.119219779968262 + ], + [ + "▁watercolor", + -13.119319915771484 + ], + [ + "▁Tiffany", + -13.119344711303711 + ], + [ + "▁Glauben", + -13.119365692138672 + ], + [ + "Immobilie", + -13.119406700134277 + ], + [ + "▁stripped", + -13.119549751281738 + ], + [ + "▁Beatles", + -13.119601249694824 + ], + [ + "ани", + -13.119770050048828 + ], + [ + "▁lifespan", + -13.119986534118652 + ], + [ + "▁profondeur", + -13.120251655578613 + ], + [ + "▁durere", + -13.120329856872559 + ], + [ + "▁Lithuania", + -13.120367050170898 + ], + [ + "▁resurrection", + -13.120367050170898 + ], + [ + "▁suitcase", + -13.120535850524902 + ], + [ + "▁Plumber", + -13.120545387268066 + ], + [ + "criticized", + -13.120595932006836 + ], + [ + "feared", + -13.120756149291992 + ], + [ + "▁Aunt", + -13.120929718017578 + ], + [ + "otwithstanding", + -13.121068000793457 + ], + [ + "verständlich", + -13.12115478515625 + ], + [ + "fiber", + -13.121248245239258 + ], + [ + "headquartered", + -13.121390342712402 + ], + [ + "▁Perspective", + -13.121391296386719 + ], + [ + "▁semantic", + -13.121413230895996 + ], + [ + "VIEW", + -13.121431350708008 + ], + [ + "▁Ersatzteile", + -13.121567726135254 + ], + [ + "▁disgust", + -13.121685981750488 + ], + [ + "rrington", + -13.121834754943848 + ], + [ + "ässe", + -13.121922492980957 + ], + [ + "▁anerkannt", + -13.121956825256348 + ], + [ + "meaning", + -13.12203598022461 + ], + [ + "178", + -13.122039794921875 + ], + [ + "▁grupuri", + -13.1221284866333 + ], + [ + "ciones", + -13.122267723083496 + ], + [ + "▁Mobility", + -13.122414588928223 + ], + [ + "▁unstable", + -13.122422218322754 + ], + [ + "▁FULL", + -13.122456550598145 + ], + [ + "austausch", + -13.122491836547852 + ], + [ + "▁culminat", + -13.122549057006836 + ], + [ + "▁Roast", + -13.122742652893066 + ], + [ + "existant", + -13.122940063476562 + ], + [ + "167", + -13.123008728027344 + ], + [ + "tinerii", + -13.123040199279785 + ], + [ + "September", + -13.123115539550781 + ], + [ + "▁haircut", + -13.123274803161621 + ], + [ + "▁Tutorial", + -13.123440742492676 + ], + [ + "▁enquiries", + -13.123440742492676 + ], + [ + "▁livelihood", + -13.123440742492676 + ], + [ + "▁proficiency", + -13.123440742492676 + ], + [ + "▁pavement", + -13.123443603515625 + ], + [ + "▁Reservation", + -13.123445510864258 + ], + [ + "aimerai", + -13.123491287231445 + ], + [ + "▁laboratoire", + -13.123492240905762 + ], + [ + "leihen", + -13.123501777648926 + ], + [ + "ministerium", + -13.123518943786621 + ], + [ + "▁Concentr", + -13.12366008758545 + ], + [ + "▁swipe", + -13.12368106842041 + ], + [ + "extrêmement", + -13.123687744140625 + ], + [ + "cultivated", + -13.123708724975586 + ], + [ + "▁Converse", + -13.123845100402832 + ], + [ + "▁paycheck", + -13.123863220214844 + ], + [ + "olltest", + -13.123995780944824 + ], + [ + "▁Bauch", + -13.124022483825684 + ], + [ + "▁autobuz", + -13.124067306518555 + ], + [ + "attack", + -13.124094009399414 + ], + [ + "While", + -13.124311447143555 + ], + [ + "Retrouvez", + -13.124320983886719 + ], + [ + "▁Dolphin", + -13.124466896057129 + ], + [ + "▁Shelby", + -13.124480247497559 + ], + [ + "▁Diagnostic", + -13.124486923217773 + ], + [ + "▁reconcil", + -13.124558448791504 + ], + [ + "▁Iaşi", + -13.124733924865723 + ], + [ + "▁iubesc", + -13.124979972839355 + ], + [ + "▁Bestseller", + -13.124985694885254 + ], + [ + "▁antrenor", + -13.125035285949707 + ], + [ + "▁Imaging", + -13.125089645385742 + ], + [ + "▁priorité", + -13.125295639038086 + ], + [ + "▁brewery", + -13.125494003295898 + ], + [ + "▁residual", + -13.125494003295898 + ], + [ + "▁intermittent", + -13.125494956970215 + ], + [ + "Kollekt", + -13.125585556030273 + ], + [ + "▁Walsh", + -13.12558650970459 + ], + [ + "▁marvelous", + -13.125653266906738 + ], + [ + "canceled", + -13.125686645507812 + ], + [ + "174", + -13.125761985778809 + ], + [ + "normes", + -13.125837326049805 + ], + [ + "▁Tempo", + -13.125996589660645 + ], + [ + "▁Târgu", + -13.126008987426758 + ], + [ + "877", + -13.126165390014648 + ], + [ + "5-8", + -13.126190185546875 + ], + [ + "960", + -13.126486778259277 + ], + [ + "▁Scandinavia", + -13.1265230178833 + ], + [ + "▁prolific", + -13.126526832580566 + ], + [ + "lasi", + -13.126916885375977 + ], + [ + "glück", + -13.127097129821777 + ], + [ + "▁immersion", + -13.127204895019531 + ], + [ + "RSA", + -13.127323150634766 + ], + [ + "▁Polk", + -13.127340316772461 + ], + [ + "▁transmitter", + -13.12747859954834 + ], + [ + "▁Kleidung", + -13.12755298614502 + ], + [ + "▁Cosmo", + -13.127676963806152 + ], + [ + "▁1935", + -13.127788543701172 + ], + [ + "höhere", + -13.127906799316406 + ], + [ + "▁Tatsache", + -13.128074645996094 + ], + [ + "▁Outlet", + -13.1282377243042 + ], + [ + "▁canalisation", + -13.12824821472168 + ], + [ + "Mbps", + -13.128433227539062 + ], + [ + "▁skeptical", + -13.128582954406738 + ], + [ + "mplification", + -13.128617286682129 + ], + [ + "▁Advice", + -13.128618240356445 + ], + [ + "▁détaillé", + -13.128676414489746 + ], + [ + "660", + -13.128701210021973 + ], + [ + "▁eyebrow", + -13.128722190856934 + ], + [ + "▁HIGH", + -13.128898620605469 + ], + [ + "hnlich", + -13.129073143005371 + ], + [ + "▁depăș", + -13.12910270690918 + ], + [ + "▁procurori", + -13.129140853881836 + ], + [ + "▁refrain", + -13.129212379455566 + ], + [ + "▁geschaffen", + -13.12952995300293 + ], + [ + "justement", + -13.129663467407227 + ], + [ + "exposing", + -13.129700660705566 + ], + [ + "243", + -13.1298828125 + ], + [ + "sectorul", + -13.130104064941406 + ], + [ + "▁courrier", + -13.130180358886719 + ], + [ + "▁carcas", + -13.130199432373047 + ], + [ + "sitter", + -13.13022518157959 + ], + [ + "▁Schreiben", + -13.130335807800293 + ], + [ + "▁malfunction", + -13.130358695983887 + ], + [ + "poartă", + -13.130522727966309 + ], + [ + "raisons", + -13.130565643310547 + ], + [ + "▁HOT", + -13.130650520324707 + ], + [ + "▁refreshed", + -13.130730628967285 + ], + [ + "mânt", + -13.130744934082031 + ], + [ + "▁coefficient", + -13.13097858428955 + ], + [ + "▁instituţii", + -13.131194114685059 + ], + [ + "▁sanguin", + -13.131202697753906 + ], + [ + "▁ceci", + -13.131213188171387 + ], + [ + "▁garçon", + -13.131232261657715 + ], + [ + "deluxe", + -13.131237030029297 + ], + [ + "▁rectif", + -13.131311416625977 + ], + [ + "920", + -13.131364822387695 + ], + [ + "Exista", + -13.131428718566895 + ], + [ + "▁magnif", + -13.131568908691406 + ], + [ + "efficiencies", + -13.131681442260742 + ], + [ + "▁Mitsubishi", + -13.131681442260742 + ], + [ + "▁consortium", + -13.131681442260742 + ], + [ + "▁baggage", + -13.131683349609375 + ], + [ + "▁guild", + -13.131736755371094 + ], + [ + "▁sixty", + -13.13193130493164 + ], + [ + "▁Retreat", + -13.13245677947998 + ], + [ + "batting", + -13.132473945617676 + ], + [ + "470", + -13.132708549499512 + ], + [ + "▁Britanie", + -13.132718086242676 + ], + [ + "displaced", + -13.132734298706055 + ], + [ + "▁spați", + -13.132794380187988 + ], + [ + "▁exceptionnelle", + -13.13281536102295 + ], + [ + "▁authorize", + -13.132906913757324 + ], + [ + "▁prescribe", + -13.133187294006348 + ], + [ + "▁dépannage", + -13.133234024047852 + ], + [ + "▁sexuelle", + -13.133234024047852 + ], + [ + "valid", + -13.133275032043457 + ], + [ + "▁hymn", + -13.133752822875977 + ], + [ + "▁histories", + -13.133757591247559 + ], + [ + "▁oriunde", + -13.133764266967773 + ], + [ + "Pop", + -13.133785247802734 + ], + [ + "▁dispoziţi", + -13.133800506591797 + ], + [ + "ADI", + -13.133819580078125 + ], + [ + "Google", + -13.133830070495605 + ], + [ + "▁Autism", + -13.133918762207031 + ], + [ + "▁aggr", + -13.134354591369629 + ], + [ + "bleed", + -13.134618759155273 + ], + [ + "▁displacement", + -13.13478946685791 + ], + [ + "▁hobbies", + -13.13478946685791 + ], + [ + "▁anatomy", + -13.134799003601074 + ], + [ + "▁Klinik", + -13.134821891784668 + ], + [ + "▁CCTV", + -13.1348237991333 + ], + [ + "readable", + -13.134886741638184 + ], + [ + "ulph", + -13.134982109069824 + ], + [ + "metabol", + -13.135035514831543 + ], + [ + "▁rugăm", + -13.135037422180176 + ], + [ + "▁Scotia", + -13.135087013244629 + ], + [ + "▁Einheit", + -13.135211944580078 + ], + [ + "▁troupe", + -13.13581371307373 + ], + [ + "▁Practitioner", + -13.135828018188477 + ], + [ + "▁oarec", + -13.135909080505371 + ], + [ + "Appel", + -13.135998725891113 + ], + [ + "situația", + -13.136096000671387 + ], + [ + "▁Yemen", + -13.136353492736816 + ], + [ + "piping", + -13.136515617370605 + ], + [ + "blood", + -13.136772155761719 + ], + [ + "engraved", + -13.136866569519043 + ], + [ + "▁Cristina", + -13.136866569519043 + ], + [ + "▁inaccurate", + -13.136866569519043 + ], + [ + "savory", + -13.136878967285156 + ], + [ + "atism", + -13.136919021606445 + ], + [ + "▁dependency", + -13.137007713317871 + ], + [ + "▁assertion", + -13.137015342712402 + ], + [ + "▁intersect", + -13.137201309204102 + ], + [ + "DATA", + -13.137224197387695 + ], + [ + "▁britanic", + -13.1373872756958 + ], + [ + "▁sanitaire", + -13.137393951416016 + ], + [ + "▁PLUS", + -13.137436866760254 + ], + [ + "▁platter", + -13.137730598449707 + ], + [ + "▁reconsider", + -13.137802124023438 + ], + [ + "▁Swim", + -13.13786792755127 + ], + [ + "▁Scene", + -13.137896537780762 + ], + [ + "▁Reynolds", + -13.137907028198242 + ], + [ + "▁gesund", + -13.137922286987305 + ], + [ + "international", + -13.137959480285645 + ], + [ + "government", + -13.13804817199707 + ], + [ + "▁gemstone", + -13.138052940368652 + ], + [ + "▁reproductive", + -13.1381196975708 + ], + [ + "▁expressive", + -13.13820743560791 + ], + [ + "▁tranche", + -13.13842487335205 + ], + [ + "▁Niagara", + -13.138427734375 + ], + [ + "▁Studierende", + -13.138434410095215 + ], + [ + "▁crave", + -13.138607025146484 + ], + [ + "pathetic", + -13.138739585876465 + ], + [ + "▁1916", + -13.138858795166016 + ], + [ + "▁Thousand", + -13.138873100280762 + ], + [ + "uffed", + -13.138893127441406 + ], + [ + "▁Lancaster", + -13.138960838317871 + ], + [ + "▁revenge", + -13.138972282409668 + ], + [ + "▁melody", + -13.1389741897583 + ], + [ + "Suitable", + -13.138991355895996 + ], + [ + "▁beacon", + -13.139082908630371 + ], + [ + "▁MAY", + -13.139205932617188 + ], + [ + "livré", + -13.139216423034668 + ], + [ + "Virus", + -13.139391899108887 + ], + [ + "▁collaborator", + -13.139413833618164 + ], + [ + "produktion", + -13.139480590820312 + ], + [ + "▁iluminat", + -13.139593124389648 + ], + [ + "facets", + -13.13975715637207 + ], + [ + "▁expus", + -13.139784812927246 + ], + [ + "▁baptism", + -13.13999080657959 + ], + [ + "▁urgency", + -13.140016555786133 + ], + [ + "artery", + -13.14030647277832 + ], + [ + "▁eingeladen", + -13.14043140411377 + ], + [ + "▁entfernen", + -13.14051342010498 + ], + [ + "soaking", + -13.140555381774902 + ], + [ + "▁irré", + -13.140557289123535 + ], + [ + "▁purity", + -13.140700340270996 + ], + [ + "▁adăug", + -13.140731811523438 + ], + [ + "historischen", + -13.140777587890625 + ], + [ + "crezi", + -13.140793800354004 + ], + [ + "▁tarziu", + -13.141035079956055 + ], + [ + "▁Mozart", + -13.141040802001953 + ], + [ + "▁trimming", + -13.141056060791016 + ], + [ + "▁violat", + -13.141056060791016 + ], + [ + "▁Vermögen", + -13.14108943939209 + ], + [ + "▁Theorie", + -13.141114234924316 + ], + [ + "scheibe", + -13.14114761352539 + ], + [ + "Partidul", + -13.141324996948242 + ], + [ + "▁childcare", + -13.14133071899414 + ], + [ + "ajele", + -13.141345977783203 + ], + [ + "▁Punjab", + -13.141390800476074 + ], + [ + "6.3", + -13.14156436920166 + ], + [ + "▁recount", + -13.141571044921875 + ], + [ + "▁repel", + -13.141799926757812 + ], + [ + "vantage", + -13.1419095993042 + ], + [ + "6.4", + -13.141953468322754 + ], + [ + "▁comedian", + -13.142087936401367 + ], + [ + "▁snappe", + -13.142256736755371 + ], + [ + "PLE", + -13.142271041870117 + ], + [ + "▁rapper", + -13.142439842224121 + ], + [ + "▁Belfast", + -13.142657279968262 + ], + [ + "▁predictive", + -13.14271068572998 + ], + [ + "dépôt", + -13.1427583694458 + ], + [ + "flavored", + -13.142769813537598 + ], + [ + "chließlich", + -13.14293098449707 + ], + [ + "▁stump", + -13.142955780029297 + ], + [ + "▁lakh", + -13.142963409423828 + ], + [ + "3:30", + -13.143021583557129 + ], + [ + "▁cetățeni", + -13.1431245803833 + ], + [ + "▁Milliarden", + -13.143125534057617 + ], + [ + "Assurance", + -13.143128395080566 + ], + [ + "▁Marketplace", + -13.143329620361328 + ], + [ + "equipped", + -13.143423080444336 + ], + [ + "▁russe", + -13.143462181091309 + ], + [ + "Exactly", + -13.143651008605957 + ], + [ + "▁Venez", + -13.144125938415527 + ], + [ + "▁Pavilion", + -13.144171714782715 + ], + [ + "▁incontournable", + -13.144171714782715 + ], + [ + "▁slaughter", + -13.14417839050293 + ], + [ + "asteptam", + -13.144190788269043 + ], + [ + "▁Fighter", + -13.144196510314941 + ], + [ + "▁Landkreis", + -13.144278526306152 + ], + [ + "▁lumini", + -13.144312858581543 + ], + [ + "▁connaît", + -13.144615173339844 + ], + [ + "▁Breite", + -13.144674301147461 + ], + [ + "▁Disability", + -13.144774436950684 + ], + [ + "▁Alfa", + -13.144786834716797 + ], + [ + "▁poise", + -13.144895553588867 + ], + [ + "▁Alpen", + -13.144898414611816 + ], + [ + "betont", + -13.145031929016113 + ], + [ + "159", + -13.145161628723145 + ], + [ + "▁geprägt", + -13.145219802856445 + ], + [ + "▁intrigued", + -13.145219802856445 + ], + [ + "▁sympathy", + -13.145220756530762 + ], + [ + "societal", + -13.145225524902344 + ], + [ + "▁sédui", + -13.145243644714355 + ], + [ + "▁differentiation", + -13.145384788513184 + ], + [ + "▁aprobare", + -13.145744323730469 + ], + [ + "schirm", + -13.14585018157959 + ], + [ + "sagt", + -13.145956039428711 + ], + [ + "7.3", + -13.146101951599121 + ], + [ + "Bib", + -13.146263122558594 + ], + [ + "europäischen", + -13.146268844604492 + ], + [ + "▁Innovative", + -13.146268844604492 + ], + [ + "▁autonome", + -13.146330833435059 + ], + [ + "▁Objective", + -13.146400451660156 + ], + [ + "▁refusal", + -13.146551132202148 + ], + [ + "▁exposé", + -13.146719932556152 + ], + [ + "▁cetăţeni", + -13.146793365478516 + ], + [ + "▁stimmt", + -13.146798133850098 + ], + [ + "acordul", + -13.147162437438965 + ], + [ + "▁hormonal", + -13.147254943847656 + ], + [ + "intermédiaire", + -13.147319793701172 + ], + [ + "▁doubl", + -13.147374153137207 + ], + [ + "▁flute", + -13.147509574890137 + ], + [ + "▁Balkon", + -13.147523880004883 + ], + [ + "▁Florian", + -13.147607803344727 + ], + [ + "737", + -13.147614479064941 + ], + [ + "▁dritte", + -13.147639274597168 + ], + [ + "spitze", + -13.147685050964355 + ], + [ + "donnent", + -13.14778995513916 + ], + [ + "▁Zuhause", + -13.147850036621094 + ], + [ + "▁VIII", + -13.147852897644043 + ], + [ + "familien", + -13.148151397705078 + ], + [ + "▁sécurisé", + -13.148313522338867 + ], + [ + "▁glamour", + -13.148370742797852 + ], + [ + "▁societati", + -13.148370742797852 + ], + [ + "typique", + -13.1483793258667 + ], + [ + "▁addicted", + -13.148421287536621 + ], + [ + "▁Providence", + -13.148500442504883 + ], + [ + "▁Extended", + -13.148506164550781 + ], + [ + "▁Barbie", + -13.148513793945312 + ], + [ + "zustand", + -13.148516654968262 + ], + [ + "▁Sauna", + -13.148638725280762 + ], + [ + "▁propane", + -13.148663520812988 + ], + [ + "europa", + -13.148894309997559 + ], + [ + "glued", + -13.148940086364746 + ], + [ + "▁Mystery", + -13.148941993713379 + ], + [ + "▁travaillé", + -13.149106979370117 + ], + [ + "riol", + -13.149251937866211 + ], + [ + "fleisch", + -13.149288177490234 + ], + [ + "▁Eintritt", + -13.149327278137207 + ], + [ + "▁Syndrome", + -13.149422645568848 + ], + [ + "▁petroleum", + -13.149426460266113 + ], + [ + "▁genial", + -13.149433135986328 + ], + [ + "sponsored", + -13.149436950683594 + ], + [ + "▁Cindy", + -13.149436950683594 + ], + [ + "▁courier", + -13.149600982666016 + ], + [ + "▁Scrap", + -13.149640083312988 + ], + [ + "▁conţin", + -13.149724006652832 + ], + [ + "(2007)", + -13.149764060974121 + ], + [ + "▁gewährleisten", + -13.149949073791504 + ], + [ + "▁proprietor", + -13.15011215209961 + ], + [ + "▁cheque", + -13.15046215057373 + ], + [ + "maternity", + -13.150477409362793 + ], + [ + "▁Gustav", + -13.15048599243164 + ], + [ + "▁arterial", + -13.150497436523438 + ], + [ + "▁whiskey", + -13.150510787963867 + ], + [ + "▁concealed", + -13.150525093078613 + ], + [ + "thèque", + -13.150553703308105 + ], + [ + "felony", + -13.150579452514648 + ], + [ + "▁tweeted", + -13.150613784790039 + ], + [ + "OTA", + -13.150619506835938 + ], + [ + "nsel", + -13.150664329528809 + ], + [ + "▁coarse", + -13.150664329528809 + ], + [ + "▁identificat", + -13.150707244873047 + ], + [ + "▁variability", + -13.150716781616211 + ], + [ + "civ", + -13.150843620300293 + ], + [ + "▁drastic", + -13.150956153869629 + ], + [ + "▁hatred", + -13.151090621948242 + ], + [ + "▁Bürgermeister", + -13.151237487792969 + ], + [ + "▁utilizatorilor", + -13.15124225616455 + ], + [ + "OULD", + -13.15137004852295 + ], + [ + "rmaßen", + -13.151383399963379 + ], + [ + "▁windshield", + -13.151530265808105 + ], + [ + "▁Particular", + -13.151531219482422 + ], + [ + "▁Tunnel", + -13.151638984680176 + ], + [ + "▁litri", + -13.15164852142334 + ], + [ + "extrême", + -13.15180492401123 + ], + [ + "▁Schalt", + -13.151944160461426 + ], + [ + "paket", + -13.152159690856934 + ], + [ + "berlin", + -13.152169227600098 + ], + [ + "▁slujb", + -13.152193069458008 + ], + [ + "facilitated", + -13.152206420898438 + ], + [ + "Congressional", + -13.152510643005371 + ], + [ + "▁honeymoon", + -13.152585983276367 + ], + [ + "▁Provision", + -13.152697563171387 + ], + [ + "▁Outfit", + -13.152779579162598 + ], + [ + "udder", + -13.152814865112305 + ], + [ + "▁chandelier", + -13.153002738952637 + ], + [ + "donating", + -13.153132438659668 + ], + [ + "historic", + -13.15333080291748 + ], + [ + "organized", + -13.153508186340332 + ], + [ + "(8)", + -13.15356731414795 + ], + [ + "▁touristique", + -13.153610229492188 + ], + [ + "▁Roosevelt", + -13.153643608093262 + ], + [ + "▁Verständnis", + -13.153643608093262 + ], + [ + "▁prilej", + -13.153655052185059 + ], + [ + "Vanity", + -13.153806686401367 + ], + [ + "chilly", + -13.153964042663574 + ], + [ + "loyer", + -13.154031753540039 + ], + [ + "▁Zhang", + -13.154053688049316 + ], + [ + "▁Nouveau", + -13.154193878173828 + ], + [ + "Soft", + -13.154326438903809 + ], + [ + "▁motherboard", + -13.15441608428955 + ], + [ + "▁Erklärung", + -13.154701232910156 + ], + [ + "▁Tasmania", + -13.154702186584473 + ], + [ + "▁verändern", + -13.154703140258789 + ], + [ + "▁seldom", + -13.154711723327637 + ], + [ + "▁Karriere", + -13.154714584350586 + ], + [ + "▁Mixed", + -13.154902458190918 + ], + [ + "umfang", + -13.154970169067383 + ], + [ + "▁Strategies", + -13.155035972595215 + ], + [ + "CHAR", + -13.155051231384277 + ], + [ + "olitary", + -13.155075073242188 + ], + [ + "▁Persoan", + -13.1550874710083 + ], + [ + "bewegung", + -13.155242919921875 + ], + [ + "▁Ernest", + -13.155367851257324 + ], + [ + "withdrawn", + -13.155855178833008 + ], + [ + "▁stationary", + -13.155881881713867 + ], + [ + "▁bland", + -13.155939102172852 + ], + [ + "▁Replace", + -13.156059265136719 + ], + [ + "▁Londres", + -13.156290054321289 + ], + [ + "▁plural", + -13.156290054321289 + ], + [ + "▁concentrat", + -13.156515121459961 + ], + [ + "Maschine", + -13.156675338745117 + ], + [ + "▁Advocate", + -13.156820297241211 + ], + [ + "▁vermitteln", + -13.156824111938477 + ], + [ + "▁dispenser", + -13.156827926635742 + ], + [ + "▁tedious", + -13.15695858001709 + ], + [ + "▁Straight", + -13.15705394744873 + ], + [ + "▁Corona", + -13.157061576843262 + ], + [ + "▁monumental", + -13.157073020935059 + ], + [ + "▁migrate", + -13.15720272064209 + ], + [ + "▁verlieren", + -13.157366752624512 + ], + [ + "▁Lub", + -13.157482147216797 + ], + [ + "▁reinforcement", + -13.157827377319336 + ], + [ + "▁cherish", + -13.157843589782715 + ], + [ + "Veterinary", + -13.157881736755371 + ], + [ + "geschwindigkeit", + -13.157881736755371 + ], + [ + "▁féminin", + -13.157881736755371 + ], + [ + "▁Facilities", + -13.157964706420898 + ], + [ + "▁urmari", + -13.158050537109375 + ], + [ + "▁Vertical", + -13.158098220825195 + ], + [ + "echoe", + -13.158188819885254 + ], + [ + "toured", + -13.158548355102539 + ], + [ + "Served", + -13.158772468566895 + ], + [ + "más", + -13.158853530883789 + ], + [ + "license", + -13.158893585205078 + ], + [ + "misunderstanding", + -13.158944129943848 + ], + [ + "▁glamorous", + -13.158944129943848 + ], + [ + "BJP", + -13.158973693847656 + ], + [ + "▁découvert", + -13.159173965454102 + ], + [ + "schönsten", + -13.159517288208008 + ], + [ + "▁(2018)", + -13.159577369689941 + ], + [ + "▁orasului", + -13.159581184387207 + ], + [ + "328", + -13.159674644470215 + ], + [ + "thighs", + -13.159801483154297 + ], + [ + "éclairage", + -13.160008430480957 + ], + [ + "Oamenii", + -13.160009384155273 + ], + [ + "▁Transmission", + -13.16014575958252 + ], + [ + "▁transpir", + -13.16015911102295 + ], + [ + "▁președinte", + -13.160321235656738 + ], + [ + "finalists", + -13.160327911376953 + ], + [ + "genügend", + -13.160524368286133 + ], + [ + "▁Aufmerksamkeit", + -13.160539627075195 + ], + [ + "▁unglaublich", + -13.160539627075195 + ], + [ + "▁descarc", + -13.160604476928711 + ], + [ + "▁Couch", + -13.160683631896973 + ], + [ + "eaucoup", + -13.160788536071777 + ], + [ + "▁adidas", + -13.161075592041016 + ], + [ + "▁1-800-", + -13.161077499389648 + ], + [ + "▁Communities", + -13.161102294921875 + ], + [ + "▁Einkommen", + -13.161102294921875 + ], + [ + "▁Reagan", + -13.16114330291748 + ], + [ + "▁Stoke", + -13.161260604858398 + ], + [ + "▁Snapchat", + -13.161269187927246 + ], + [ + "éclat", + -13.161272048950195 + ], + [ + "▁auseinander", + -13.161367416381836 + ], + [ + "▁richesse", + -13.16137409210205 + ], + [ + "▁toggle", + -13.161396026611328 + ], + [ + "▁Zutaten", + -13.161606788635254 + ], + [ + "▁député", + -13.16161060333252 + ], + [ + "▁battlefield", + -13.161611557006836 + ], + [ + "▁spirituel", + -13.161611557006836 + ], + [ + "▁Shuttle", + -13.161632537841797 + ], + [ + "▁Aktien", + -13.161665916442871 + ], + [ + "hormon", + -13.161819458007812 + ], + [ + "connection", + -13.16187858581543 + ], + [ + "▁vizitatori", + -13.16191577911377 + ], + [ + "érité", + -13.161971092224121 + ], + [ + "truck", + -13.1619873046875 + ], + [ + "▁yourselves", + -13.162139892578125 + ], + [ + "▁Logistics", + -13.162140846252441 + ], + [ + "coveted", + -13.16215705871582 + ], + [ + "▁şedinţ", + -13.162671089172363 + ], + [ + "▁messenger", + -13.162703514099121 + ], + [ + "▁țar", + -13.162918090820312 + ], + [ + "▁Grau", + -13.163025856018066 + ], + [ + "chirurgie", + -13.163138389587402 + ], + [ + "▁Ressourcen", + -13.16320514678955 + ], + [ + "▁Jésus", + -13.163207054138184 + ], + [ + "▁acțiune", + -13.163208961486816 + ], + [ + "▁Bundesliga", + -13.163249015808105 + ], + [ + "Lizenz", + -13.163379669189453 + ], + [ + "ELLE", + -13.163908958435059 + ], + [ + "vraie", + -13.1639986038208 + ], + [ + "ruined", + -13.164018630981445 + ], + [ + "▁Marble", + -13.164109230041504 + ], + [ + "▁Zambia", + -13.164308547973633 + ], + [ + "▁Finnish", + -13.164366722106934 + ], + [ + "▁trackback", + -13.164488792419434 + ], + [ + "héros", + -13.16451644897461 + ], + [ + "▁réclam", + -13.164534568786621 + ], + [ + "locurile", + -13.164706230163574 + ], + [ + "tägliche", + -13.164753913879395 + ], + [ + "IFF", + -13.164824485778809 + ], + [ + "▁contextual", + -13.164938926696777 + ], + [ + "▁Elvis", + -13.165084838867188 + ], + [ + "▁Batch", + -13.165183067321777 + ], + [ + "▁appris", + -13.16519546508789 + ], + [ + "intensive", + -13.165404319763184 + ], + [ + "▁întâmplat", + -13.16565990447998 + ], + [ + "▁prelucr", + -13.16576099395752 + ], + [ + "flore", + -13.165873527526855 + ], + [ + "▁Alkohol", + -13.165877342224121 + ], + [ + "Konzern", + -13.165895462036133 + ], + [ + "Delete", + -13.166082382202148 + ], + [ + "öck", + -13.16612720489502 + ], + [ + "▁clientii", + -13.16614818572998 + ], + [ + "▁innovate", + -13.166224479675293 + ], + [ + "▁ASAP", + -13.166345596313477 + ], + [ + "crumbs", + -13.166425704956055 + ], + [ + "reusable", + -13.166489601135254 + ], + [ + "▁Beaver", + -13.166507720947266 + ], + [ + "▁rosii", + -13.166643142700195 + ], + [ + "Arr", + -13.166704177856445 + ], + [ + "▁Zubehör", + -13.166948318481445 + ], + [ + "▁stolz", + -13.166952133178711 + ], + [ + "▁$75", + -13.16695499420166 + ], + [ + "▁Frühling", + -13.166967391967773 + ], + [ + "▁disagreement", + -13.166988372802734 + ], + [ + "▁formulate", + -13.167381286621094 + ], + [ + "braking", + -13.167522430419922 + ], + [ + "▁submarine", + -13.167535781860352 + ], + [ + "▁identificare", + -13.167652130126953 + ], + [ + "lansarea", + -13.167659759521484 + ], + [ + "covered", + -13.167753219604492 + ], + [ + "benso", + -13.167859077453613 + ], + [ + "▁situatie", + -13.167989730834961 + ], + [ + "hilf", + -13.1681547164917 + ], + [ + "▁Southampton", + -13.168557167053223 + ], + [ + "▁intéressé", + -13.168557167053223 + ], + [ + "▁congressional", + -13.168572425842285 + ], + [ + "65%", + -13.168595314025879 + ], + [ + "▁Allison", + -13.168627738952637 + ], + [ + "Mainland", + -13.168726921081543 + ], + [ + "▁touchscreen", + -13.16882038116455 + ], + [ + "leitet", + -13.168922424316406 + ], + [ + "mnului", + -13.16958999633789 + ], + [ + "▁engagiert", + -13.169631004333496 + ], + [ + "joacă", + -13.16964340209961 + ], + [ + "▁$5,000", + -13.169652938842773 + ], + [ + "upscale", + -13.1697359085083 + ], + [ + "▁vérité", + -13.16983413696289 + ], + [ + "flüssig", + -13.170167922973633 + ], + [ + "Richtlinie", + -13.170169830322266 + ], + [ + "▁positif", + -13.170169830322266 + ], + [ + "▁diferenta", + -13.170175552368164 + ], + [ + "▁întâi", + -13.170707702636719 + ], + [ + "ethylene", + -13.170791625976562 + ], + [ + "kreuz", + -13.170913696289062 + ], + [ + "Surely", + -13.170990943908691 + ], + [ + "puneti", + -13.171002388000488 + ], + [ + "europe", + -13.171142578125 + ], + [ + "▁comunist", + -13.171271324157715 + ], + [ + "unterricht", + -13.171302795410156 + ], + [ + "▁Füll", + -13.171304702758789 + ], + [ + "▁Aberdeen", + -13.171792030334473 + ], + [ + "▁DSLR", + -13.171792030334473 + ], + [ + "▁functioneaza", + -13.171799659729004 + ], + [ + "▁benches", + -13.171807289123535 + ], + [ + "▁Alpine", + -13.171866416931152 + ], + [ + "phthal", + -13.172003746032715 + ], + [ + "▁counselling", + -13.17219066619873 + ], + [ + "▁erzielen", + -13.172323226928711 + ], + [ + "▁părinţi", + -13.172329902648926 + ], + [ + "▁besitzen", + -13.17236614227295 + ], + [ + "heavenly", + -13.172389030456543 + ], + [ + "▁masque", + -13.17281723022461 + ], + [ + "▁Legislature", + -13.172859191894531 + ], + [ + "▁Recycling", + -13.172861099243164 + ], + [ + "▁Derma", + -13.172883987426758 + ], + [ + "reunite", + -13.172926902770996 + ], + [ + "recettes", + -13.17310619354248 + ], + [ + "converge", + -13.173262596130371 + ], + [ + "▁compoziti", + -13.17327880859375 + ], + [ + "▁Nürnberg", + -13.173398971557617 + ], + [ + "760", + -13.173545837402344 + ], + [ + "▁entière", + -13.173674583435059 + ], + [ + "▁parchment", + -13.173944473266602 + ], + [ + "▁Aufwand", + -13.173945426940918 + ], + [ + "▁antivirus", + -13.174087524414062 + ], + [ + "▁remettr", + -13.17409610748291 + ], + [ + "▁NEVER", + -13.174243927001953 + ], + [ + "▁restrictive", + -13.174266815185547 + ], + [ + "▁beurre", + -13.174283027648926 + ], + [ + "▁frigider", + -13.174478530883789 + ], + [ + "acquisition", + -13.174642562866211 + ], + [ + "▁Correct", + -13.174866676330566 + ], + [ + "▁immortal", + -13.175017356872559 + ], + [ + "▁occupancy", + -13.175017356872559 + ], + [ + "▁Tucson", + -13.175019264221191 + ], + [ + "▁Dhabi", + -13.175025939941406 + ], + [ + "obligation", + -13.175033569335938 + ], + [ + "▁warfare", + -13.175037384033203 + ], + [ + "▁syntax", + -13.175045013427734 + ], + [ + "APS", + -13.175106048583984 + ], + [ + "мен", + -13.175209999084473 + ], + [ + "▁diferenț", + -13.175251960754395 + ], + [ + "wordpress", + -13.17549991607666 + ], + [ + "▁Wohnzimmer", + -13.175593376159668 + ], + [ + "oppo", + -13.175736427307129 + ], + [ + "▁miscare", + -13.175762176513672 + ], + [ + "companiilor", + -13.17581558227539 + ], + [ + "▁bezahlt", + -13.17584228515625 + ], + [ + "Sterne", + -13.175864219665527 + ], + [ + "inability", + -13.175898551940918 + ], + [ + "▁Hoffnung", + -13.176156044006348 + ], + [ + "▁românească", + -13.176176071166992 + ], + [ + "document", + -13.176177024841309 + ], + [ + "borrowers", + -13.17625904083252 + ], + [ + "▁rasa", + -13.176301956176758 + ], + [ + "▁bénéfice", + -13.176445960998535 + ], + [ + "▁Panda", + -13.17645263671875 + ], + [ + "▁cărţi", + -13.176730155944824 + ], + [ + "▁Vorgehen", + -13.17690658569336 + ], + [ + "▁afecteaz", + -13.176956176757812 + ], + [ + "▁diagnos", + -13.177050590515137 + ], + [ + "▁Dentistry", + -13.177180290222168 + ], + [ + "▁staggering", + -13.177180290222168 + ], + [ + "präsident", + -13.177181243896484 + ], + [ + "▁vocational", + -13.177239418029785 + ], + [ + "Combined", + -13.177287101745605 + ], + [ + "stère", + -13.177306175231934 + ], + [ + "▁frunze", + -13.177478790283203 + ], + [ + "OLI", + -13.177525520324707 + ], + [ + "▁răc", + -13.177752494812012 + ], + [ + "▁changé", + -13.177754402160645 + ], + [ + "▁reprezentanți", + -13.177757263183594 + ], + [ + "▁ausgeschlossen", + -13.177777290344238 + ], + [ + "Windows", + -13.177891731262207 + ], + [ + "sometimes", + -13.177898406982422 + ], + [ + "▁dargestellt", + -13.178120613098145 + ], + [ + "provoking", + -13.178263664245605 + ], + [ + "terribly", + -13.178264617919922 + ], + [ + "▁speculate", + -13.178274154663086 + ], + [ + "▁complément", + -13.178305625915527 + ], + [ + "▁(2006)", + -13.178306579589844 + ], + [ + "zulegen", + -13.178668022155762 + ], + [ + "▁définitive", + -13.178876876831055 + ], + [ + "considerare", + -13.17911148071289 + ], + [ + "▁Subaru", + -13.179354667663574 + ], + [ + "WAN", + -13.179390907287598 + ], + [ + "guessed", + -13.179417610168457 + ], + [ + "spannung", + -13.179479598999023 + ], + [ + "▁supernatural", + -13.179515838623047 + ], + [ + "▁Interstate", + -13.17957878112793 + ], + [ + "▁redundant", + -13.179891586303711 + ], + [ + "▁HUG", + -13.179893493652344 + ], + [ + "▁restauration", + -13.180006980895996 + ], + [ + "repute", + -13.180011749267578 + ], + [ + "coagul", + -13.180028915405273 + ], + [ + "tehnologia", + -13.18043327331543 + ], + [ + "warded", + -13.180444717407227 + ], + [ + "▁lobster", + -13.180469512939453 + ], + [ + "▁Hafen", + -13.180542945861816 + ], + [ + "▁Guess", + -13.18056583404541 + ], + [ + "seraient", + -13.181038856506348 + ], + [ + "▁trench", + -13.181156158447266 + ], + [ + "▁piept", + -13.181283950805664 + ], + [ + "categorized", + -13.181396484375 + ], + [ + "softer", + -13.1815185546875 + ], + [ + "▁feasibility", + -13.181519508361816 + ], + [ + "▁restructuring", + -13.181519508361816 + ], + [ + "▁GOOD", + -13.181537628173828 + ], + [ + "▁inspiré", + -13.181610107421875 + ], + [ + "▁spéci", + -13.18163013458252 + ], + [ + "▁Mattress", + -13.181686401367188 + ], + [ + "▁biologique", + -13.181702613830566 + ], + [ + "▁Crema", + -13.182043075561523 + ], + [ + "▁korrekt", + -13.182063102722168 + ], + [ + "▁imperfect", + -13.182205200195312 + ], + [ + "▁advantageous", + -13.182329177856445 + ], + [ + "9.00", + -13.182390213012695 + ], + [ + "PAL", + -13.182557106018066 + ], + [ + "▁Illustration", + -13.182607650756836 + ], + [ + "▁Katherine", + -13.182607650756836 + ], + [ + "▁cervical", + -13.182607650756836 + ], + [ + "▁hectic", + -13.182611465454102 + ], + [ + "▁Belastung", + -13.182615280151367 + ], + [ + "▁Laguna", + -13.182628631591797 + ], + [ + "▁Burton", + -13.182761192321777 + ], + [ + "nettoyage", + -13.182875633239746 + ], + [ + "Toward", + -13.183072090148926 + ], + [ + "continuare", + -13.183072090148926 + ], + [ + "▁acumulat", + -13.183106422424316 + ], + [ + "▁déposé", + -13.183216094970703 + ], + [ + "▁prestige", + -13.183269500732422 + ], + [ + "▁LNG", + -13.183525085449219 + ], + [ + "▁Dacia", + -13.183662414550781 + ], + [ + "▁concede", + -13.183691024780273 + ], + [ + "▁reconciliation", + -13.183822631835938 + ], + [ + "Sistemul", + -13.183877944946289 + ], + [ + "Speed", + -13.183937072753906 + ], + [ + "▁Implant", + -13.183977127075195 + ], + [ + "▁möchtest", + -13.184020042419434 + ], + [ + "▁Norton", + -13.184064865112305 + ], + [ + "▁cosmic", + -13.184181213378906 + ], + [ + "enregistrement", + -13.184247016906738 + ], + [ + "țării", + -13.18433952331543 + ], + [ + "Veröffentlichung", + -13.184786796569824 + ], + [ + "erlebnis", + -13.184786796569824 + ], + [ + "▁Carpenter", + -13.184786796569824 + ], + [ + "▁INFORMATION", + -13.184786796569824 + ], + [ + "invites", + -13.18481731414795 + ], + [ + "▁gewan", + -13.1849365234375 + ], + [ + "▁réservé", + -13.184986114501953 + ], + [ + "▁aquatic", + -13.184988021850586 + ], + [ + "▁Seoul", + -13.18507194519043 + ], + [ + "▁älter", + -13.185185432434082 + ], + [ + "▁classmates", + -13.185223579406738 + ], + [ + "gelangen", + -13.185253143310547 + ], + [ + "▁Camill", + -13.185285568237305 + ], + [ + "simo", + -13.185291290283203 + ], + [ + "▁dormitor", + -13.185333251953125 + ], + [ + "wahren", + -13.185354232788086 + ], + [ + "▁incremental", + -13.185357093811035 + ], + [ + "▁caci", + -13.185494422912598 + ], + [ + "mittlere", + -13.185752868652344 + ], + [ + "▁condominium", + -13.185877799987793 + ], + [ + "▁rainforest", + -13.185877799987793 + ], + [ + "▁championnat", + -13.185891151428223 + ], + [ + "▁interrupted", + -13.185921669006348 + ], + [ + "▁tactile", + -13.185930252075195 + ], + [ + "▁unconditional", + -13.185945510864258 + ], + [ + "▁reactive", + -13.186041831970215 + ], + [ + "▁Stretch", + -13.1861572265625 + ], + [ + "▁serene", + -13.18624210357666 + ], + [ + "570", + -13.186318397521973 + ], + [ + "igte", + -13.186376571655273 + ], + [ + "Louis", + -13.186410903930664 + ], + [ + "▁Mittelpunkt", + -13.186493873596191 + ], + [ + "EEP", + -13.18651294708252 + ], + [ + "▁vault", + -13.186552047729492 + ], + [ + "absolu", + -13.186893463134766 + ], + [ + "▁solidarity", + -13.186971664428711 + ], + [ + "CLICK", + -13.18708324432373 + ], + [ + "▁hustle", + -13.187090873718262 + ], + [ + "▁microscope", + -13.187105178833008 + ], + [ + "▁Recommended", + -13.187111854553223 + ], + [ + "âche", + -13.18716812133789 + ], + [ + "▁flashlight", + -13.187286376953125 + ], + [ + "modificarea", + -13.18754768371582 + ], + [ + "izaţi", + -13.18773078918457 + ], + [ + "planned", + -13.187899589538574 + ], + [ + "Download", + -13.187906265258789 + ], + [ + "▁gourmand", + -13.188064575195312 + ], + [ + "▁subsidiaries", + -13.188064575195312 + ], + [ + "orthodox", + -13.188135147094727 + ], + [ + "▁Auburn", + -13.188323020935059 + ], + [ + "▁exprimat", + -13.188336372375488 + ], + [ + "procédé", + -13.18861198425293 + ], + [ + "▁ressenti", + -13.188648223876953 + ], + [ + "▁stint", + -13.188678741455078 + ], + [ + "Essentially", + -13.189072608947754 + ], + [ + "▁Savior", + -13.189164161682129 + ], + [ + "▁Flood", + -13.189168930053711 + ], + [ + "▁neurological", + -13.189249038696289 + ], + [ + "▁strig", + -13.189340591430664 + ], + [ + "scended", + -13.189421653747559 + ], + [ + "▁Shiva", + -13.189483642578125 + ], + [ + "▁Sketch", + -13.189544677734375 + ], + [ + "▁monarch", + -13.18956184387207 + ], + [ + "▁Preview", + -13.189632415771484 + ], + [ + "▁bewegt", + -13.189811706542969 + ], + [ + "mapped", + -13.189818382263184 + ], + [ + "énorme", + -13.189962387084961 + ], + [ + "▁définition", + -13.189963340759277 + ], + [ + "▁nécessité", + -13.189984321594238 + ], + [ + "▁antren", + -13.190027236938477 + ], + [ + "▁Infant", + -13.190072059631348 + ], + [ + "▁incumbent", + -13.190255165100098 + ], + [ + "▁pavilion", + -13.190255165100098 + ], + [ + "▁Taliban", + -13.19025707244873 + ], + [ + "Easily", + -13.19025993347168 + ], + [ + "▁verteilt", + -13.19030475616455 + ], + [ + "▁Biblical", + -13.190320014953613 + ], + [ + "Christian", + -13.190333366394043 + ], + [ + "județul", + -13.190436363220215 + ], + [ + "Learning", + -13.19046688079834 + ], + [ + "▁Expand", + -13.19054126739502 + ], + [ + "▁Attach", + -13.19056224822998 + ], + [ + "consideră", + -13.190573692321777 + ], + [ + "einsatz", + -13.190574645996094 + ], + [ + "Numai", + -13.190585136413574 + ], + [ + "▁Eintrag", + -13.190597534179688 + ], + [ + "▁üblich", + -13.190607070922852 + ], + [ + "▁cumpără", + -13.19062614440918 + ], + [ + "escaped", + -13.190693855285645 + ], + [ + "▁Ortodox", + -13.190804481506348 + ], + [ + "▁obţinut", + -13.190805435180664 + ], + [ + "ecluded", + -13.191036224365234 + ], + [ + "▁brownie", + -13.191089630126953 + ], + [ + "▁regulament", + -13.191253662109375 + ], + [ + "▁Chaos", + -13.191302299499512 + ], + [ + "▁masiv", + -13.19132137298584 + ], + [ + "▁Gerald", + -13.191376686096191 + ], + [ + "▁Sigur", + -13.191380500793457 + ], + [ + "▁wavelength", + -13.191380500793457 + ], + [ + "▁retiring", + -13.191396713256836 + ], + [ + "▁exactement", + -13.191819190979004 + ], + [ + "ntino", + -13.191823959350586 + ], + [ + "▁Krebs", + -13.19194221496582 + ], + [ + "▁monatlich", + -13.191956520080566 + ], + [ + "▁aranj", + -13.192011833190918 + ], + [ + "▁priveşt", + -13.192099571228027 + ], + [ + "▁mecanic", + -13.192109107971191 + ], + [ + "money", + -13.192233085632324 + ], + [ + "parliamentary", + -13.1922607421875 + ], + [ + "▁probation", + -13.192427635192871 + ], + [ + "embroidered", + -13.192451477050781 + ], + [ + "▁amenajat", + -13.192451477050781 + ], + [ + "▁remnant", + -13.192451477050781 + ], + [ + "▁senzati", + -13.192472457885742 + ], + [ + "▁Declaration", + -13.192483901977539 + ], + [ + "farbe", + -13.192506790161133 + ], + [ + "▁skinny", + -13.19260311126709 + ], + [ + "Energi", + -13.192648887634277 + ], + [ + "verhältnisse", + -13.19288158416748 + ], + [ + "Recruit", + -13.192972183227539 + ], + [ + "frying", + -13.193161010742188 + ], + [ + "925", + -13.193294525146484 + ], + [ + "nstruire", + -13.193302154541016 + ], + [ + "toasted", + -13.193424224853516 + ], + [ + "▁nicotine", + -13.193551063537598 + ], + [ + "recessed", + -13.193570137023926 + ], + [ + "▁dialect", + -13.193572044372559 + ], + [ + "▁confisc", + -13.193575859069824 + ], + [ + "▁bubbl", + -13.193643569946289 + ], + [ + "▁Precision", + -13.193682670593262 + ], + [ + "▁sollicit", + -13.193842887878418 + ], + [ + "▁Moral", + -13.193977355957031 + ], + [ + "▁renseignements", + -13.194112777709961 + ], + [ + "UMP", + -13.194116592407227 + ], + [ + "ijn", + -13.194183349609375 + ], + [ + "▁fermeture", + -13.194320678710938 + ], + [ + "▁blueprint", + -13.19462776184082 + ], + [ + "▁groceries", + -13.194652557373047 + ], + [ + "möbel", + -13.194655418395996 + ], + [ + "▁Plenty", + -13.194657325744629 + ], + [ + "▁forfeit", + -13.194719314575195 + ], + [ + "méthodes", + -13.194915771484375 + ], + [ + "paving", + -13.19493293762207 + ], + [ + "outheastern", + -13.194979667663574 + ], + [ + "▁Overview", + -13.19503116607666 + ], + [ + "▁observers", + -13.195171356201172 + ], + [ + "▁Timișoara", + -13.19520378112793 + ], + [ + "noticing", + -13.195332527160645 + ], + [ + "▁Owl", + -13.195381164550781 + ], + [ + "▁1925", + -13.195517539978027 + ], + [ + "▁prüfen", + -13.195755004882812 + ], + [ + "▁Bewohner", + -13.195756912231445 + ], + [ + "▁Latvia", + -13.195770263671875 + ], + [ + "▁Tuscan", + -13.19577407836914 + ], + [ + "▁apprenticeship", + -13.195789337158203 + ], + [ + "▁courteous", + -13.1958646774292 + ], + [ + "adult", + -13.196023941040039 + ], + [ + "Licensed", + -13.196029663085938 + ], + [ + "abused", + -13.196762084960938 + ], + [ + "confidence", + -13.19678020477295 + ], + [ + "▁revolt", + -13.196782112121582 + ], + [ + "conference", + -13.196861267089844 + ], + [ + "genoss", + -13.196914672851562 + ], + [ + "▁răni", + -13.196944236755371 + ], + [ + "▁Intervention", + -13.196949005126953 + ], + [ + "▁primesc", + -13.196969985961914 + ], + [ + "trays", + -13.197041511535645 + ], + [ + "nozzle", + -13.197216033935547 + ], + [ + "▁splitting", + -13.197443962097168 + ], + [ + "▁könne", + -13.197507858276367 + ], + [ + "▁peisaj", + -13.197943687438965 + ], + [ + "▁academia", + -13.197962760925293 + ], + [ + "▁chakra", + -13.197979927062988 + ], + [ + "▁Abdul", + -13.1981201171875 + ], + [ + "▁Beschreibung", + -13.198225021362305 + ], + [ + "Regeln", + -13.19831371307373 + ], + [ + "eezy", + -13.198314666748047 + ], + [ + "▁problématique", + -13.198515892028809 + ], + [ + "▁Ausführung", + -13.198524475097656 + ], + [ + "▁reconnect", + -13.19868278503418 + ], + [ + "▁telefonic", + -13.198966026306152 + ], + [ + "▁Ethereum", + -13.199069023132324 + ], + [ + "▁Winnipeg", + -13.199069023132324 + ], + [ + "▁misconception", + -13.199069023132324 + ], + [ + "▁Verpackung", + -13.199070930480957 + ], + [ + "▁erzeugt", + -13.199097633361816 + ], + [ + "▁Identity", + -13.199104309082031 + ], + [ + "▁dunkle", + -13.199109077453613 + ], + [ + "sustaining", + -13.19916820526123 + ], + [ + "▁pereche", + -13.199178695678711 + ], + [ + "▁neîn", + -13.199239730834961 + ], + [ + "directorul", + -13.199291229248047 + ], + [ + "▁élabor", + -13.199584007263184 + ], + [ + "▁Hollow", + -13.19960880279541 + ], + [ + "▁getestet", + -13.199751853942871 + ], + [ + "▁Promote", + -13.199797630310059 + ], + [ + "agriculture", + -13.199920654296875 + ], + [ + "▁deosebir", + -13.199934005737305 + ], + [ + "▁neam", + -13.199999809265137 + ], + [ + "aufbau", + -13.200042724609375 + ], + [ + "▁susținut", + -13.200079917907715 + ], + [ + "fueled", + -13.200119018554688 + ], + [ + "▁impresionant", + -13.200177192687988 + ], + [ + "innate", + -13.20026969909668 + ], + [ + "grenzt", + -13.200340270996094 + ], + [ + "rescued", + -13.200514793395996 + ], + [ + "bestand", + -13.200559616088867 + ], + [ + "▁adjunct", + -13.200729370117188 + ], + [ + "▁Mischung", + -13.200754165649414 + ], + [ + "▁Lease", + -13.201258659362793 + ], + [ + "espagnol", + -13.201284408569336 + ], + [ + "▁Kickstarter", + -13.201284408569336 + ], + [ + "▁buzunar", + -13.201284408569336 + ], + [ + "▁buddies", + -13.20129108428955 + ], + [ + "käufe", + -13.201485633850098 + ], + [ + "cevoir", + -13.201582908630371 + ], + [ + "▁creşte", + -13.201675415039062 + ], + [ + "▁Cluster", + -13.201825141906738 + ], + [ + "▁obișnui", + -13.201838493347168 + ], + [ + "▁cassette", + -13.201889038085938 + ], + [ + "▁optisch", + -13.201947212219238 + ], + [ + "manned", + -13.20200252532959 + ], + [ + "schneid", + -13.202362060546875 + ], + [ + "Württemberg", + -13.202393531799316 + ], + [ + "shredded", + -13.202393531799316 + ], + [ + "▁botanical", + -13.20239543914795 + ], + [ + "characterization", + -13.202445983886719 + ], + [ + "▁Durchführung", + -13.202452659606934 + ], + [ + "▁tireless", + -13.20250129699707 + ], + [ + "lässlich", + -13.20254135131836 + ], + [ + "▁Merchant", + -13.202570915222168 + ], + [ + "joutez", + -13.20259952545166 + ], + [ + "▁amélior", + -13.202676773071289 + ], + [ + "fixed", + -13.202741622924805 + ], + [ + "kho", + -13.202760696411133 + ], + [ + "▁televizor", + -13.202948570251465 + ], + [ + "▁Davies", + -13.202964782714844 + ], + [ + "enceinte", + -13.203118324279785 + ], + [ + "▁Panorama", + -13.20350456237793 + ], + [ + "▁maternal", + -13.203507423400879 + ], + [ + "diversified", + -13.203513145446777 + ], + [ + "▁Jü", + -13.203570365905762 + ], + [ + "▁naz", + -13.203730583190918 + ], + [ + "▁plonge", + -13.2039213180542 + ], + [ + "geschickt", + -13.203944206237793 + ], + [ + "MIS", + -13.204215049743652 + ], + [ + "ragged", + -13.204553604125977 + ], + [ + "▁diarrhea", + -13.20461654663086 + ], + [ + "▁tsunami", + -13.20461654663086 + ], + [ + "▁Nikola", + -13.204625129699707 + ], + [ + "▁festivities", + -13.20464038848877 + ], + [ + "potting", + -13.20479965209961 + ], + [ + "▁telefonisch", + -13.204874038696289 + ], + [ + "TAR", + -13.204971313476562 + ], + [ + "▁schimbări", + -13.205023765563965 + ], + [ + "▁occidental", + -13.205172538757324 + ], + [ + "schloss", + -13.205179214477539 + ], + [ + "Print", + -13.205284118652344 + ], + [ + "▁autoritățil", + -13.205361366271973 + ], + [ + "idos", + -13.20556640625 + ], + [ + "mediocr", + -13.20559310913086 + ], + [ + "▁Decla", + -13.205686569213867 + ], + [ + "▁Elliott", + -13.205729484558105 + ], + [ + "▁pinpoint", + -13.205734252929688 + ], + [ + "▁disciple", + -13.20579719543457 + ], + [ + "▁Cairo", + -13.2058744430542 + ], + [ + "▁15-20", + -13.2059326171875 + ], + [ + "▁limbaj", + -13.20611572265625 + ], + [ + "▁retenu", + -13.206154823303223 + ], + [ + "▁Blüte", + -13.20628833770752 + ], + [ + "▁MINI", + -13.206467628479004 + ], + [ + "▁lumină", + -13.206567764282227 + ], + [ + "▁flawed", + -13.206846237182617 + ], + [ + "▁Belarus", + -13.207067489624023 + ], + [ + "Totul", + -13.207207679748535 + ], + [ + "hôte", + -13.207273483276367 + ], + [ + "▁verbringen", + -13.207315444946289 + ], + [ + "▁simultaneous", + -13.207344055175781 + ], + [ + "▁competiți", + -13.207402229309082 + ], + [ + "▁lancement", + -13.207413673400879 + ], + [ + "▁proprietati", + -13.207432746887207 + ], + [ + "▁angajator", + -13.207465171813965 + ], + [ + "▁ignorant", + -13.207674026489258 + ], + [ + "▁indicative", + -13.207700729370117 + ], + [ + "▁Bearbeitung", + -13.207961082458496 + ], + [ + "▁Ungaria", + -13.207961082458496 + ], + [ + "▁Sfint", + -13.208015441894531 + ], + [ + "▁Trojan", + -13.20804214477539 + ], + [ + "▁1911", + -13.208100318908691 + ], + [ + "▁reliabl", + -13.2081937789917 + ], + [ + "6-0", + -13.20827865600586 + ], + [ + "obst", + -13.208523750305176 + ], + [ + "▁relève", + -13.208579063415527 + ], + [ + "▁standpoint", + -13.208874702453613 + ], + [ + "ridden", + -13.208918571472168 + ], + [ + "▁Pdf", + -13.209005355834961 + ], + [ + "tatewide", + -13.209051132202148 + ], + [ + "Water", + -13.209062576293945 + ], + [ + "▁Pricing", + -13.209089279174805 + ], + [ + "▁protecţi", + -13.209168434143066 + ], + [ + "November", + -13.209615707397461 + ], + [ + "▁televiziune", + -13.20964241027832 + ], + [ + "Sodium", + -13.209881782531738 + ], + [ + "douceur", + -13.209942817687988 + ], + [ + "▁Flasche", + -13.210183143615723 + ], + [ + "3.9", + -13.210193634033203 + ], + [ + "▁electromagnetic", + -13.210195541381836 + ], + [ + "▁mitochondria", + -13.210195541381836 + ], + [ + "Suddenly", + -13.210199356079102 + ], + [ + "▁Drupal", + -13.210201263427734 + ], + [ + "▁supraveghere", + -13.210211753845215 + ], + [ + "▁cornea", + -13.210288047790527 + ], + [ + "räumt", + -13.210309982299805 + ], + [ + "▁healed", + -13.210410118103027 + ], + [ + "Roc", + -13.210649490356445 + ], + [ + "▁temporar", + -13.210707664489746 + ], + [ + "▁amaze", + -13.210770606994629 + ], + [ + "▁confrunta", + -13.210833549499512 + ], + [ + "Afterward", + -13.210836410522461 + ], + [ + "▁festgelegt", + -13.21084213256836 + ], + [ + "▁Kuchen", + -13.210844993591309 + ], + [ + "▁perpetual", + -13.210858345031738 + ], + [ + "systematically", + -13.211000442504883 + ], + [ + "▁coloan", + -13.211006164550781 + ], + [ + "▁extensi", + -13.211058616638184 + ], + [ + "▁Județean", + -13.211315155029297 + ], + [ + "▁amelior", + -13.211315155029297 + ], + [ + "▁illustrator", + -13.211315155029297 + ], + [ + "▁titanium", + -13.211344718933105 + ], + [ + "SMEs", + -13.211384773254395 + ], + [ + "taxable", + -13.211578369140625 + ], + [ + "▁Borough", + -13.211607933044434 + ], + [ + "verlust", + -13.211772918701172 + ], + [ + "ductive", + -13.21233081817627 + ], + [ + "▁Küste", + -13.212335586547852 + ], + [ + "▁végétal", + -13.212410926818848 + ], + [ + "▁breastfeeding", + -13.212435722351074 + ], + [ + "▁captivating", + -13.212435722351074 + ], + [ + "▁Chevy", + -13.212443351745605 + ], + [ + "▁aerospace", + -13.212469100952148 + ], + [ + "pozitia", + -13.213095664978027 + ], + [ + "Tutor", + -13.213199615478516 + ], + [ + "▁spum", + -13.213312149047852 + ], + [ + "curând", + -13.213419914245605 + ], + [ + "iscus", + -13.213458061218262 + ], + [ + "October", + -13.213495254516602 + ], + [ + "▁Reparatur", + -13.213557243347168 + ], + [ + "▁Servicii", + -13.213574409484863 + ], + [ + "▁Gonz", + -13.21357536315918 + ], + [ + "▁cybersecurity", + -13.21357536315918 + ], + [ + "▁UCLA", + -13.213678359985352 + ], + [ + "rissa", + -13.213835716247559 + ], + [ + "▁Kemp", + -13.213850021362305 + ], + [ + "▁piston", + -13.214046478271484 + ], + [ + "▁révèle", + -13.214118957519531 + ], + [ + "▁posséd", + -13.21412181854248 + ], + [ + "▁versehen", + -13.214129447937012 + ], + [ + "▁scrutin", + -13.214226722717285 + ], + [ + "donnant", + -13.21436882019043 + ], + [ + "▁Geschwindigkeit", + -13.214680671691895 + ], + [ + "▁Panasonic", + -13.214680671691895 + ], + [ + "audio", + -13.214700698852539 + ], + [ + "▁Packaging", + -13.214771270751953 + ], + [ + "phra", + -13.2147798538208 + ], + [ + "▁Letzte", + -13.214954376220703 + ], + [ + "insicht", + -13.215141296386719 + ], + [ + "▁sammeln", + -13.215243339538574 + ], + [ + "▁extins", + -13.215259552001953 + ], + [ + "▁collège", + -13.215266227722168 + ], + [ + "ancies", + -13.215343475341797 + ], + [ + "▁întâlnit", + -13.215350151062012 + ], + [ + "▁Servi", + -13.215392112731934 + ], + [ + "stattet", + -13.215493202209473 + ], + [ + "▁abstraction", + -13.215566635131836 + ], + [ + "▁candidature", + -13.215592384338379 + ], + [ + "ONU", + -13.215676307678223 + ], + [ + "▁raffle", + -13.215826988220215 + ], + [ + "▁Soldier", + -13.215834617614746 + ], + [ + "▁stipulate", + -13.215883255004883 + ], + [ + "▁vizual", + -13.215950012207031 + ], + [ + "lucht", + -13.216007232666016 + ], + [ + "▁circus", + -13.216068267822266 + ], + [ + "▁decree", + -13.216259002685547 + ], + [ + "immeuble", + -13.216367721557617 + ], + [ + "Store", + -13.216426849365234 + ], + [ + "randul", + -13.216622352600098 + ], + [ + "▁narration", + -13.216933250427246 + ], + [ + "implication", + -13.216958045959473 + ], + [ + "▁discontinued", + -13.216971397399902 + ], + [ + "▁Pilates", + -13.216989517211914 + ], + [ + "▁biais", + -13.21701431274414 + ], + [ + "panel", + -13.217325210571289 + ], + [ + "▁mower", + -13.217458724975586 + ], + [ + "▁Castro", + -13.21753978729248 + ], + [ + "pregătire", + -13.217641830444336 + ], + [ + "▁denomination", + -13.218062400817871 + ], + [ + "▁throttle", + -13.21806526184082 + ], + [ + "▁finition", + -13.218086242675781 + ], + [ + "▁clarification", + -13.218286514282227 + ], + [ + "laut", + -13.218366622924805 + ], + [ + "▁wastewater", + -13.2184419631958 + ], + [ + "▁Sanchez", + -13.218770980834961 + ], + [ + "▁Umfeld", + -13.2189359664917 + ], + [ + "▁consili", + -13.218997955322266 + ], + [ + "extrait", + -13.219013214111328 + ], + [ + "ionism", + -13.2190523147583 + ], + [ + "▁Cannabis", + -13.219186782836914 + ], + [ + "▁misconduct", + -13.219186782836914 + ], + [ + "▁shepherd", + -13.219186782836914 + ], + [ + "▁feminist", + -13.21919059753418 + ], + [ + "▁criterii", + -13.219212532043457 + ], + [ + "America", + -13.219219207763672 + ], + [ + "▁Telephone", + -13.219270706176758 + ], + [ + "▁Fritz", + -13.219438552856445 + ], + [ + "▁cheltui", + -13.219794273376465 + ], + [ + "▁Übung", + -13.219857215881348 + ], + [ + "făcută", + -13.22006893157959 + ], + [ + "▁străzi", + -13.220170021057129 + ], + [ + "influencing", + -13.220315933227539 + ], + [ + "▁Democracy", + -13.220321655273438 + ], + [ + "atorium", + -13.220376014709473 + ], + [ + "▁Stufe", + -13.220465660095215 + ], + [ + "▁Cornell", + -13.220660209655762 + ], + [ + "zugehen", + -13.22074031829834 + ], + [ + "▁coton", + -13.220804214477539 + ], + [ + "▁beinhaltet", + -13.220881462097168 + ], + [ + "▁kritisch", + -13.220884323120117 + ], + [ + "▁Kalender", + -13.22105884552002 + ], + [ + "▁Teig", + -13.221253395080566 + ], + [ + "cooked", + -13.221264839172363 + ], + [ + "▁diversité", + -13.221390724182129 + ], + [ + "recognizable", + -13.221446990966797 + ], + [ + "▁Dictionary", + -13.221446990966797 + ], + [ + "attribution", + -13.22145938873291 + ], + [ + "▁Teresa", + -13.221471786499023 + ], + [ + "▁Ahmad", + -13.221487998962402 + ], + [ + "HAM", + -13.221627235412598 + ], + [ + "▁floss", + -13.221668243408203 + ], + [ + "génie", + -13.2218599319458 + ], + [ + "▁Espa", + -13.221989631652832 + ], + [ + "hersteller", + -13.221993446350098 + ], + [ + "Musée", + -13.222001075744629 + ], + [ + "▁Crawford", + -13.222579002380371 + ], + [ + "▁Phantom", + -13.222579002380371 + ], + [ + "▁Jenkins", + -13.222640037536621 + ], + [ + "genauer", + -13.222774505615234 + ], + [ + "▁acţiuni", + -13.222885131835938 + ], + [ + "▁meciuri", + -13.22322940826416 + ], + [ + "▁verstärkt", + -13.22326374053955 + ], + [ + "▁troop", + -13.22341251373291 + ], + [ + "räder", + -13.223483085632324 + ], + [ + "Putting", + -13.223536491394043 + ], + [ + "NASDAQ", + -13.223712921142578 + ], + [ + "▁Buddhism", + -13.223712921142578 + ], + [ + "▁Religious", + -13.223712921142578 + ], + [ + "▁accommodating", + -13.223712921142578 + ], + [ + "▁lendemain", + -13.223712921142578 + ], + [ + "▁plywood", + -13.223714828491211 + ], + [ + "▁inflatable", + -13.223724365234375 + ], + [ + "▁sèche", + -13.223731994628906 + ], + [ + "▁fragil", + -13.223845481872559 + ], + [ + "▁Filip", + -13.224115371704102 + ], + [ + "▁Terrace", + -13.224274635314941 + ], + [ + "Biblio", + -13.22432804107666 + ], + [ + "resides", + -13.22448444366455 + ], + [ + "▁varf", + -13.22451114654541 + ], + [ + "Bildern", + -13.224528312683105 + ], + [ + "loß", + -13.224685668945312 + ], + [ + "555", + -13.224702835083008 + ], + [ + "▁astounding", + -13.224847793579102 + ], + [ + "▁brillant", + -13.224857330322266 + ], + [ + "▁Railroad", + -13.224871635437012 + ], + [ + "minimizing", + -13.224907875061035 + ], + [ + "▁Benedict", + -13.225019454956055 + ], + [ + "▁$400", + -13.225068092346191 + ], + [ + "▁schematic", + -13.225217819213867 + ], + [ + "Canada", + -13.225371360778809 + ], + [ + "▁psihic", + -13.225415229797363 + ], + [ + "▁avertiz", + -13.225497245788574 + ], + [ + "▁Breed", + -13.225550651550293 + ], + [ + "▁gradina", + -13.225606918334961 + ], + [ + "▁Liege", + -13.225822448730469 + ], + [ + "▁Retirement", + -13.225983619689941 + ], + [ + "▁pergola", + -13.226005554199219 + ], + [ + "▁Kuwait", + -13.2260103225708 + ], + [ + "▁logistic", + -13.22629451751709 + ], + [ + "▁captive", + -13.22651481628418 + ], + [ + "prepared", + -13.226568222045898 + ], + [ + "▁prononc", + -13.226568222045898 + ], + [ + "Celui", + -13.226676940917969 + ], + [ + "deutschland", + -13.227120399475098 + ], + [ + "▁devreme", + -13.227124214172363 + ], + [ + "▁părți", + -13.227270126342773 + ], + [ + "▁1934", + -13.227517127990723 + ], + [ + "▁ersetzt", + -13.227560997009277 + ], + [ + "▁frightening", + -13.227689743041992 + ], + [ + "▁fiecărui", + -13.227819442749023 + ], + [ + "correct", + -13.22799015045166 + ], + [ + "6.6", + -13.228057861328125 + ], + [ + "▁Manitoba", + -13.228259086608887 + ], + [ + "Chartered", + -13.228416442871094 + ], + [ + "▁părăs", + -13.228543281555176 + ], + [ + "Powered", + -13.228697776794434 + ], + [ + "impede", + -13.22876262664795 + ], + [ + "agonist", + -13.22878646850586 + ], + [ + "▁stratégique", + -13.228829383850098 + ], + [ + "▁vigilant", + -13.228830337524414 + ], + [ + "faceted", + -13.228930473327637 + ], + [ + "available", + -13.229308128356934 + ], + [ + "▁Promise", + -13.229388236999512 + ], + [ + "▁humorous", + -13.229446411132812 + ], + [ + "treibt", + -13.229449272155762 + ], + [ + "▁Patrol", + -13.229514122009277 + ], + [ + "huh", + -13.229523658752441 + ], + [ + "ztlich", + -13.229804039001465 + ], + [ + "▁rejet", + -13.2299165725708 + ], + [ + "odeur", + -13.229935646057129 + ], + [ + "usziehbar", + -13.22996997833252 + ], + [ + "▁gespannt", + -13.229972839355469 + ], + [ + "church", + -13.230018615722656 + ], + [ + "▁Popescu", + -13.230109214782715 + ], + [ + "▁einmalig", + -13.230518341064453 + ], + [ + "diluted", + -13.230551719665527 + ], + [ + "lighted", + -13.231070518493652 + ], + [ + "▁stattfinden", + -13.23111343383789 + ], + [ + "▁Reaktion", + -13.231183052062988 + ], + [ + "▁délivr", + -13.23134994506836 + ], + [ + "▁Helfer", + -13.231407165527344 + ], + [ + "Fiind", + -13.23142147064209 + ], + [ + "rmând", + -13.231507301330566 + ], + [ + "▁Beweis", + -13.231671333312988 + ], + [ + "▁Violet", + -13.231733322143555 + ], + [ + "kamera", + -13.231764793395996 + ], + [ + "▁Romney", + -13.231779098510742 + ], + [ + "▁Bradford", + -13.231800079345703 + ], + [ + "stellbar", + -13.231852531433105 + ], + [ + "▁roadmap", + -13.231921195983887 + ], + [ + "▁subconscious", + -13.23204231262207 + ], + [ + "contrasting", + -13.232138633728027 + ], + [ + "mécanisme", + -13.232254981994629 + ], + [ + "kämpft", + -13.232255935668945 + ], + [ + "▁Preston", + -13.232719421386719 + ], + [ + "▁Anliegen", + -13.232802391052246 + ], + [ + "▁necessities", + -13.232827186584473 + ], + [ + "▁detrimental", + -13.232828140258789 + ], + [ + "▁sprawl", + -13.232830047607422 + ], + [ + "▁Erfüllung", + -13.23287582397461 + ], + [ + "▁massacre", + -13.2329683303833 + ], + [ + "▁pietre", + -13.232987403869629 + ], + [ + "▁situații", + -13.233027458190918 + ], + [ + "vêtement", + -13.233080863952637 + ], + [ + "Listed", + -13.233144760131836 + ], + [ + "▁extravagant", + -13.233399391174316 + ], + [ + "▁axle", + -13.233525276184082 + ], + [ + "OTT", + -13.233663558959961 + ], + [ + "wildly", + -13.233744621276855 + ], + [ + "70,000", + -13.233797073364258 + ], + [ + "▁chauffeur", + -13.23384952545166 + ], + [ + "▁Brasov", + -13.233972549438477 + ], + [ + "▁Fähigkeiten", + -13.233972549438477 + ], + [ + "▁staatlich", + -13.234025001525879 + ], + [ + "outlines", + -13.234034538269043 + ], + [ + "▁aufmerksam", + -13.234545707702637 + ], + [ + "▁Relation", + -13.234749794006348 + ], + [ + "▁Stephan", + -13.234947204589844 + ], + [ + "yland", + -13.23494815826416 + ], + [ + "proclaimed", + -13.235086441040039 + ], + [ + "Wallet", + -13.235100746154785 + ], + [ + "verarbeitung", + -13.235118865966797 + ], + [ + "▁überraschen", + -13.235118865966797 + ], + [ + "▁Injury", + -13.235125541687012 + ], + [ + "▁horsepower", + -13.235237121582031 + ], + [ + "▁Tropical", + -13.23523998260498 + ], + [ + "▁wives", + -13.235459327697754 + ], + [ + "adherence", + -13.235677719116211 + ], + [ + "schätzung", + -13.235692977905273 + ], + [ + "▁coherent", + -13.235708236694336 + ], + [ + "parlament", + -13.23574161529541 + ], + [ + "▁stup", + -13.235852241516113 + ], + [ + "▁resonance", + -13.23626708984375 + ], + [ + "▁inheritance", + -13.236355781555176 + ], + [ + "commenced", + -13.23645305633545 + ], + [ + "▁supervise", + -13.236475944519043 + ], + [ + "▁facilitator", + -13.236488342285156 + ], + [ + "fares", + -13.236678123474121 + ], + [ + "▁Tibet", + -13.23672866821289 + ], + [ + "communication", + -13.236787796020508 + ], + [ + "yog", + -13.236806869506836 + ], + [ + "▁WLAN", + -13.236842155456543 + ], + [ + "▁Chili", + -13.23685073852539 + ], + [ + "▁Harold", + -13.2369966506958 + ], + [ + "▁Guerre", + -13.237005233764648 + ], + [ + "▁Femme", + -13.237146377563477 + ], + [ + "▁Lisbon", + -13.237231254577637 + ], + [ + "▁mulțumi", + -13.237415313720703 + ], + [ + "▁vorbereitet", + -13.237415313720703 + ], + [ + "▁aperture", + -13.237422943115234 + ], + [ + "▁Universities", + -13.237442016601562 + ], + [ + "▁reckless", + -13.237471580505371 + ], + [ + "▁Botschaft", + -13.237533569335938 + ], + [ + "▁Squad", + -13.238022804260254 + ], + [ + "▁buoy", + -13.238061904907227 + ], + [ + "participarea", + -13.238236427307129 + ], + [ + "stiinta", + -13.238389015197754 + ], + [ + "▁repeal", + -13.238415718078613 + ], + [ + "drilled", + -13.238489151000977 + ], + [ + "▁Conversation", + -13.238567352294922 + ], + [ + "▁subsid", + -13.238615036010742 + ], + [ + "anstalt", + -13.238741874694824 + ], + [ + "faktor", + -13.23874282836914 + ], + [ + "▁swamp", + -13.238790512084961 + ], + [ + "pflichtig", + -13.238921165466309 + ], + [ + "▁camion", + -13.238970756530762 + ], + [ + "▁gouvern", + -13.239032745361328 + ], + [ + "▁archaeological", + -13.239141464233398 + ], + [ + "▁glitch", + -13.239198684692383 + ], + [ + "average", + -13.239294052124023 + ], + [ + "▁coffre", + -13.239481925964355 + ], + [ + "▁Insert", + -13.239513397216797 + ], + [ + "▁colonne", + -13.2395601272583 + ], + [ + "▁Assess", + -13.23962116241455 + ], + [ + "▁batches", + -13.239716529846191 + ], + [ + "▁ammunition", + -13.239717483520508 + ], + [ + "▁scissors", + -13.239717483520508 + ], + [ + "▁Locksmith", + -13.239740371704102 + ], + [ + "▁Bollywood", + -13.239991188049316 + ], + [ + "expédi", + -13.240288734436035 + ], + [ + "▁descendants", + -13.24039363861084 + ], + [ + "▁unwilling", + -13.240506172180176 + ], + [ + "▁Noise", + -13.240649223327637 + ], + [ + "▁Directive", + -13.240660667419434 + ], + [ + "ATOR", + -13.240765571594238 + ], + [ + "▁Rajasthan", + -13.240870475769043 + ], + [ + "▁chaotic", + -13.240888595581055 + ], + [ + "▁NEED", + -13.24093246459961 + ], + [ + "▁părere", + -13.24095344543457 + ], + [ + "▁begonnen", + -13.241448402404785 + ], + [ + "▁Reef", + -13.241504669189453 + ], + [ + "▁vorgesehen", + -13.24161434173584 + ], + [ + "▁allocate", + -13.241826057434082 + ], + [ + "▁exceptionnel", + -13.241936683654785 + ], + [ + "▁gefertigt", + -13.24203872680664 + ], + [ + "fading", + -13.242072105407715 + ], + [ + "▁interpersonal", + -13.242178916931152 + ], + [ + "▁occupie", + -13.242204666137695 + ], + [ + "▁Teatr", + -13.242579460144043 + ], + [ + "▁kilomètres", + -13.242603302001953 + ], + [ + "▁verbinden", + -13.242608070373535 + ], + [ + "▁Frucht", + -13.242643356323242 + ], + [ + "augmented", + -13.242720603942871 + ], + [ + "▁twentieth", + -13.243181228637695 + ], + [ + "▁aggression", + -13.243183135986328 + ], + [ + "▁Miracle", + -13.243184089660645 + ], + [ + "▁peninsula", + -13.243184089660645 + ], + [ + "▁Fernando", + -13.243185043334961 + ], + [ + "▁autorităţil", + -13.243203163146973 + ], + [ + "▁Iisus", + -13.243217468261719 + ], + [ + "▁puck", + -13.243423461914062 + ], + [ + "titel", + -13.243454933166504 + ], + [ + "▁remake", + -13.243562698364258 + ], + [ + "freiheit", + -13.243563652038574 + ], + [ + "▁Belize", + -13.243590354919434 + ], + [ + "▁secundar", + -13.243779182434082 + ], + [ + "▁perpetrat", + -13.243786811828613 + ], + [ + "jedenfalls", + -13.243797302246094 + ], + [ + "linked", + -13.243820190429688 + ], + [ + "▁dégag", + -13.243918418884277 + ], + [ + "LAY", + -13.243926048278809 + ], + [ + "behandlung", + -13.244172096252441 + ], + [ + "▁1928", + -13.244193077087402 + ], + [ + "▁Nickel", + -13.244205474853516 + ], + [ + "rophy", + -13.244256973266602 + ], + [ + "▁autonomy", + -13.244338989257812 + ], + [ + "▁Treffen", + -13.244402885437012 + ], + [ + "▁groundbreaking", + -13.24445915222168 + ], + [ + "politisch", + -13.244484901428223 + ], + [ + "▁Vector", + -13.244553565979004 + ], + [ + "oricine", + -13.244684219360352 + ], + [ + "utilisées", + -13.244684219360352 + ], + [ + "plete", + -13.244771003723145 + ], + [ + "droht", + -13.244918823242188 + ], + [ + "▁alternativ", + -13.245104789733887 + ], + [ + "▁Bernie", + -13.245213508605957 + ], + [ + "▁embellish", + -13.245260238647461 + ], + [ + "▁Curriculum", + -13.24549674987793 + ], + [ + "herrscht", + -13.245525360107422 + ], + [ + "escalier", + -13.246126174926758 + ], + [ + "hian", + -13.246333122253418 + ], + [ + "ertaining", + -13.246387481689453 + ], + [ + "hitter", + -13.246430397033691 + ], + [ + "▁kompetente", + -13.24665641784668 + ], + [ + "▁trekking", + -13.246760368347168 + ], + [ + "EACH", + -13.246841430664062 + ], + [ + "▁Bedien", + -13.2470703125 + ], + [ + "starred", + -13.247169494628906 + ], + [ + "▁săptămâna", + -13.247236251831055 + ], + [ + "▁Gratuit", + -13.247239112854004 + ], + [ + "▁Jahrzehnte", + -13.247241020202637 + ], + [ + "ingénieur", + -13.24731731414795 + ], + [ + "▁Huang", + -13.24736213684082 + ], + [ + "Music", + -13.247401237487793 + ], + [ + "misiei", + -13.247544288635254 + ], + [ + "▁masuri", + -13.247733116149902 + ], + [ + "▁Achievement", + -13.247817039489746 + ], + [ + "▁Dorothy", + -13.247817039489746 + ], + [ + "blätter", + -13.247817993164062 + ], + [ + "éloign", + -13.247817993164062 + ], + [ + "▁Anglia", + -13.247990608215332 + ], + [ + "brach", + -13.248013496398926 + ], + [ + "▁Optimization", + -13.248085021972656 + ], + [ + "6.7", + -13.248170852661133 + ], + [ + "winkel", + -13.248210906982422 + ], + [ + "contenan", + -13.248347282409668 + ], + [ + "Astăzi", + -13.248398780822754 + ], + [ + "wiped", + -13.248441696166992 + ], + [ + "granting", + -13.248665809631348 + ], + [ + "▁plăti", + -13.248859405517578 + ], + [ + "▁Compensation", + -13.248979568481445 + ], + [ + "▁Verkäufer", + -13.248979568481445 + ], + [ + "▁angajați", + -13.248980522155762 + ], + [ + "▁diminished", + -13.24902057647705 + ], + [ + "employment", + -13.249250411987305 + ], + [ + "yahoo", + -13.249435424804688 + ], + [ + "▁détrui", + -13.249698638916016 + ], + [ + "▁suffisant", + -13.24982738494873 + ], + [ + "▁Moldovei", + -13.250144004821777 + ], + [ + "▁Pokemon", + -13.250144004821777 + ], + [ + "▁Malcolm", + -13.250144958496094 + ], + [ + "▁mysteries", + -13.250147819519043 + ], + [ + "▁Diversity", + -13.250149726867676 + ], + [ + "▁clinique", + -13.250327110290527 + ], + [ + "landais", + -13.250344276428223 + ], + [ + "▁campanii", + -13.250399589538574 + ], + [ + "▁témoignage", + -13.250439643859863 + ], + [ + "▁paralel", + -13.250467300415039 + ], + [ + "▁travailleurs", + -13.250576972961426 + ], + [ + "▁salvage", + -13.250580787658691 + ], + [ + "▁crayon", + -13.250732421875 + ], + [ + "immédiat", + -13.25085163116455 + ], + [ + "hopped", + -13.250958442687988 + ], + [ + "▁senzor", + -13.25102710723877 + ], + [ + "▁imbunatati", + -13.251073837280273 + ], + [ + "▁capitalize", + -13.2511568069458 + ], + [ + "▁Elephant", + -13.25130844116211 + ], + [ + "▁insomnia", + -13.25131607055664 + ], + [ + "▁Ansicht", + -13.251325607299805 + ], + [ + "▁lupte", + -13.251556396484375 + ], + [ + "▁genomic", + -13.251557350158691 + ], + [ + "▁Grape", + -13.251769065856934 + ], + [ + "MONT", + -13.25197982788086 + ], + [ + "métiers", + -13.252004623413086 + ], + [ + "▁Pierce", + -13.252123832702637 + ], + [ + "consulted", + -13.252388954162598 + ], + [ + "▁Responsible", + -13.252474784851074 + ], + [ + "symmetry", + -13.252476692199707 + ], + [ + "▁sulfur", + -13.252487182617188 + ], + [ + "▁înapoi", + -13.252510070800781 + ], + [ + "▁Junction", + -13.252549171447754 + ], + [ + "▁trilogy", + -13.252622604370117 + ], + [ + "▁unkompliziert", + -13.253059387207031 + ], + [ + "▁zugänglich", + -13.253059387207031 + ], + [ + "▁préfèr", + -13.253153800964355 + ], + [ + "oarelor", + -13.253361701965332 + ], + [ + "langage", + -13.253460884094238 + ], + [ + "admired", + -13.253589630126953 + ], + [ + "platform", + -13.253595352172852 + ], + [ + "▁pluralit", + -13.253616333007812 + ], + [ + "▁betrachtet", + -13.253643035888672 + ], + [ + "▁reproduc", + -13.253790855407715 + ], + [ + "exemple", + -13.25385570526123 + ], + [ + "▁conspir", + -13.254347801208496 + ], + [ + "▁pelvi", + -13.25437068939209 + ], + [ + "leased", + -13.254551887512207 + ], + [ + "▁souffle", + -13.254570960998535 + ], + [ + "▁approprié", + -13.254705429077148 + ], + [ + "absorbing", + -13.254817962646484 + ], + [ + "dividing", + -13.254855155944824 + ], + [ + "herently", + -13.255147933959961 + ], + [ + "▁blister", + -13.255179405212402 + ], + [ + "löst", + -13.255182266235352 + ], + [ + "Apotheke", + -13.255398750305176 + ], + [ + "▁Asociaţi", + -13.255424499511719 + ], + [ + "education", + -13.255904197692871 + ], + [ + "▁retract", + -13.255982398986816 + ], + [ + "▁appraise", + -13.255990982055664 + ], + [ + "▁Debbie", + -13.256075859069824 + ], + [ + "▁arhitect", + -13.256193161010742 + ], + [ + "▁Mohamed", + -13.256568908691406 + ], + [ + "▁îndrept", + -13.256568908691406 + ], + [ + "▁exhaustive", + -13.256753921508789 + ], + [ + "▁Notebook", + -13.257004737854004 + ], + [ + "crashing", + -13.257068634033203 + ], + [ + "▁Betreiber", + -13.257155418395996 + ], + [ + "▁présidentielle", + -13.257159233093262 + ], + [ + "▁Träger", + -13.257172584533691 + ], + [ + "▁noteworthy", + -13.257259368896484 + ], + [ + "▁séparé", + -13.257729530334473 + ], + [ + "▁doppelt", + -13.257795333862305 + ], + [ + "tină", + -13.258066177368164 + ], + [ + "Quelques", + -13.258085250854492 + ], + [ + "culoarea", + -13.258100509643555 + ], + [ + "▁ethic", + -13.258166313171387 + ], + [ + "▁cohesive", + -13.258329391479492 + ], + [ + "▁congratulations", + -13.258334159851074 + ], + [ + "▁sovereignty", + -13.25833797454834 + ], + [ + "▁Aplica", + -13.258413314819336 + ], + [ + "▁Covenant", + -13.25851058959961 + ], + [ + "▁multicultural", + -13.258591651916504 + ], + [ + "assemblée", + -13.258955001831055 + ], + [ + "▁petals", + -13.258974075317383 + ], + [ + "erode", + -13.259026527404785 + ], + [ + "▁porumb", + -13.259035110473633 + ], + [ + "▁Barrier", + -13.259050369262695 + ], + [ + "▁WWE", + -13.259085655212402 + ], + [ + "Etwa", + -13.259175300598145 + ], + [ + "▁recunosc", + -13.259271621704102 + ], + [ + "▁turtle", + -13.259415626525879 + ], + [ + "▁vârf", + -13.259444236755371 + ], + [ + "▁Ranking", + -13.259448051452637 + ], + [ + "▁sympathetic", + -13.259514808654785 + ], + [ + "exploded", + -13.2595796585083 + ], + [ + "▁influenț", + -13.259591102600098 + ], + [ + "▁Fireplace", + -13.25972843170166 + ], + [ + "▁Nachwuchs", + -13.260090827941895 + ], + [ + "▁empfohlen", + -13.260090827941895 + ], + [ + "Voir", + -13.260661125183105 + ], + [ + "▁Vimeo", + -13.26069164276123 + ], + [ + "▁weaving", + -13.260967254638672 + ], + [ + "beneficiar", + -13.261198043823242 + ], + [ + "▁balade", + -13.261216163635254 + ], + [ + "▁Mercy", + -13.261566162109375 + ], + [ + "3.000", + -13.26181697845459 + ], + [ + "Immediately", + -13.261857032775879 + ], + [ + "▁frosting", + -13.261868476867676 + ], + [ + "▁Fiscal", + -13.261882781982422 + ], + [ + "downloadable", + -13.26188850402832 + ], + [ + "▁Hwy", + -13.261902809143066 + ], + [ + "évoluer", + -13.261951446533203 + ], + [ + "▁vieille", + -13.2620210647583 + ], + [ + "heißen", + -13.262436866760254 + ], + [ + "▁étrangère", + -13.262446403503418 + ], + [ + "▁incapable", + -13.262490272521973 + ], + [ + "volunteered", + -13.262520790100098 + ], + [ + "fortunately", + -13.262564659118652 + ], + [ + "company", + -13.262738227844238 + ], + [ + "denkt", + -13.2627592086792 + ], + [ + "▁citesc", + -13.262818336486816 + ], + [ + "▁intrebare", + -13.262896537780762 + ], + [ + "pleasantly", + -13.262990951538086 + ], + [ + "▁Minecraft", + -13.263079643249512 + ], + [ + "▁Schmuck", + -13.26308536529541 + ], + [ + "▁maghiar", + -13.263099670410156 + ], + [ + "conductive", + -13.263339042663574 + ], + [ + "décrit", + -13.263534545898438 + ], + [ + "provide", + -13.26353931427002 + ], + [ + "▁depăş", + -13.263628959655762 + ], + [ + "ituated", + -13.263657569885254 + ], + [ + "▁trumpet", + -13.264216423034668 + ], + [ + "▁nastere", + -13.2642240524292 + ], + [ + "▁Région", + -13.264245986938477 + ], + [ + "Occupational", + -13.264411926269531 + ], + [ + "▁Grecia", + -13.264415740966797 + ], + [ + "▁Conclusion", + -13.26449203491211 + ], + [ + "▁collaborateurs", + -13.264927864074707 + ], + [ + "▁Alibaba", + -13.265398025512695 + ], + [ + "▁amplasat", + -13.265398979187012 + ], + [ + "▁Plastik", + -13.265992164611816 + ], + [ + "▁stash", + -13.266023635864258 + ], + [ + "▁Bonnie", + -13.266045570373535 + ], + [ + "▁ehrlich", + -13.266156196594238 + ], + [ + "▁contention", + -13.266193389892578 + ], + [ + "▁Oslo", + -13.266263008117676 + ], + [ + "englische", + -13.266319274902344 + ], + [ + "measurable", + -13.266439437866211 + ], + [ + "loppy", + -13.266470909118652 + ], + [ + "▁Refrigerat", + -13.266579627990723 + ], + [ + "▁remboursement", + -13.266580581665039 + ], + [ + "▁societăţi", + -13.266580581665039 + ], + [ + "translates", + -13.266607284545898 + ], + [ + "ichtigkeit", + -13.266685485839844 + ], + [ + "agentur", + -13.266741752624512 + ], + [ + "▁compute", + -13.266800880432129 + ], + [ + "berater", + -13.266921043395996 + ], + [ + "▁Georgetown", + -13.266945838928223 + ], + [ + "wolves", + -13.266951560974121 + ], + [ + "ceased", + -13.266959190368652 + ], + [ + "▁Binary", + -13.267030715942383 + ], + [ + "▁kontrolliert", + -13.267172813415527 + ], + [ + "informer", + -13.267416000366211 + ], + [ + "lehrer", + -13.267578125 + ], + [ + "lieferung", + -13.267709732055664 + ], + [ + "▁definit", + -13.267742156982422 + ], + [ + "chèque", + -13.267765045166016 + ], + [ + "▁clergy", + -13.267765045166016 + ], + [ + "▁ministries", + -13.267767906188965 + ], + [ + "▁plague", + -13.267779350280762 + ], + [ + "▁Jedi", + -13.267805099487305 + ], + [ + "▁Blackjack", + -13.268025398254395 + ], + [ + "▁subsection", + -13.26807689666748 + ], + [ + "▁Sachsen", + -13.268121719360352 + ], + [ + "valorile", + -13.268146514892578 + ], + [ + "molded", + -13.26816463470459 + ], + [ + "▁betroffen", + -13.268183708190918 + ], + [ + "▁adecvat", + -13.268229484558105 + ], + [ + "▁collègue", + -13.26835823059082 + ], + [ + "▁chinez", + -13.268392562866211 + ], + [ + "emelle", + -13.268695831298828 + ], + [ + "▁körperliche", + -13.268902778625488 + ], + [ + "▁titan", + -13.26891040802002 + ], + [ + "▁sophistication", + -13.268951416015625 + ], + [ + "▁provoke", + -13.268957138061523 + ], + [ + "▁pensii", + -13.269042015075684 + ], + [ + "▁Tucker", + -13.269377708435059 + ], + [ + "▁motoare", + -13.26943302154541 + ], + [ + "supported", + -13.269536972045898 + ], + [ + "▁Sicil", + -13.269697189331055 + ], + [ + "▁Ausgangs", + -13.26987361907959 + ], + [ + "▁verletzt", + -13.269908905029297 + ], + [ + "Ligue", + -13.269996643066406 + ], + [ + "▁organizatori", + -13.270026206970215 + ], + [ + "▁apprentice", + -13.270099639892578 + ], + [ + "▁Potato", + -13.270183563232422 + ], + [ + "▁Duft", + -13.27039623260498 + ], + [ + "▁medicament", + -13.270566940307617 + ], + [ + "Hôtel", + -13.270740509033203 + ], + [ + "▁Triangle", + -13.270842552185059 + ], + [ + "buted", + -13.271100044250488 + ], + [ + "▁Bentley", + -13.271336555480957 + ], + [ + "următoarele", + -13.271389961242676 + ], + [ + "animate", + -13.271404266357422 + ], + [ + "megapixel", + -13.271404266357422 + ], + [ + "einfachen", + -13.271514892578125 + ], + [ + "▁performanț", + -13.271544456481934 + ], + [ + "lurry", + -13.27184009552002 + ], + [ + "suffisamment", + -13.27192211151123 + ], + [ + "▁Weihnachten", + -13.27192211151123 + ], + [ + "▁Detective", + -13.27194595336914 + ], + [ + "▁lovit", + -13.272049903869629 + ], + [ + "▁blouse", + -13.27213191986084 + ], + [ + "▁hartie", + -13.272163391113281 + ], + [ + "vro", + -13.27225112915039 + ], + [ + "▁disastrous", + -13.272517204284668 + ], + [ + "vermutlich", + -13.2725191116333 + ], + [ + "▁Stafford", + -13.272527694702148 + ], + [ + "ehlt", + -13.272628784179688 + ], + [ + "▁vielseitig", + -13.272643089294434 + ], + [ + "Manifest", + -13.273274421691895 + ], + [ + "homage", + -13.27354907989502 + ], + [ + "menée", + -13.273566246032715 + ], + [ + "▁erläuter", + -13.27370834350586 + ], + [ + "▁volontaire", + -13.273709297180176 + ], + [ + "wrought", + -13.27371597290039 + ], + [ + "▁Naples", + -13.273719787597656 + ], + [ + "recommending", + -13.273759841918945 + ], + [ + "▁thermique", + -13.273774147033691 + ], + [ + "▁subtitle", + -13.273787498474121 + ], + [ + "▁Slam", + -13.273809432983398 + ], + [ + "▁necesitate", + -13.273809432983398 + ], + [ + "trimmed", + -13.274099349975586 + ], + [ + "urmatoarele", + -13.274178504943848 + ], + [ + "▁Sorin", + -13.274245262145996 + ], + [ + "▁compromis", + -13.274300575256348 + ], + [ + "overcoming", + -13.274477005004883 + ], + [ + "▁Samantha", + -13.274901390075684 + ], + [ + "dazzling", + -13.27490234375 + ], + [ + "▁Pearson", + -13.274903297424316 + ], + [ + "▁glazing", + -13.274911880493164 + ], + [ + "Revelation", + -13.274921417236328 + ], + [ + "destinée", + -13.275156021118164 + ], + [ + "öffnet", + -13.27515983581543 + ], + [ + "CERT", + -13.275327682495117 + ], + [ + "▁Sneak", + -13.275503158569336 + ], + [ + "proiectele", + -13.275605201721191 + ], + [ + "▁longitudinal", + -13.27609634399414 + ], + [ + "▁cocaine", + -13.276098251342773 + ], + [ + "▁universitar", + -13.276108741760254 + ], + [ + "▁refreshments", + -13.276166915893555 + ], + [ + "▁instanţ", + -13.276243209838867 + ], + [ + "▁kostenfrei", + -13.276397705078125 + ], + [ + "▁comédie", + -13.276451110839844 + ], + [ + "▁Locat", + -13.276725769042969 + ], + [ + "▁Albania", + -13.276732444763184 + ], + [ + "▁mécanique", + -13.276776313781738 + ], + [ + "messung", + -13.27683162689209 + ], + [ + "issus", + -13.277260780334473 + ], + [ + "pinned", + -13.277328491210938 + ], + [ + "▁sanft", + -13.277335166931152 + ], + [ + "▁geprüft", + -13.277435302734375 + ], + [ + "▁procè", + -13.277442932128906 + ], + [ + "▁Üb", + -13.277765274047852 + ], + [ + "5-0", + -13.277802467346191 + ], + [ + "▁Catering", + -13.277957916259766 + ], + [ + "▁prosperous", + -13.27801513671875 + ], + [ + "▁replication", + -13.278098106384277 + ], + [ + "▁obese", + -13.278441429138184 + ], + [ + "clerosis", + -13.278489112854004 + ], + [ + "▁Carnegie", + -13.278489112854004 + ], + [ + "▁Incredible", + -13.278489112854004 + ], + [ + "▁Teppich", + -13.278489112854004 + ], + [ + "▁crunchy", + -13.278489112854004 + ], + [ + "▁vomiting", + -13.278529167175293 + ], + [ + "▁sourire", + -13.278619766235352 + ], + [ + "publish", + -13.278948783874512 + ], + [ + "▁exterioar", + -13.279094696044922 + ], + [ + "▁forehead", + -13.279107093811035 + ], + [ + "▁climatique", + -13.279313087463379 + ], + [ + "▁conservator", + -13.279458999633789 + ], + [ + "▁Russland", + -13.279687881469727 + ], + [ + "▁kombiniert", + -13.279687881469727 + ], + [ + "▁Thrones", + -13.279688835144043 + ], + [ + "▁Griffith", + -13.27968978881836 + ], + [ + "▁fragrant", + -13.279695510864258 + ], + [ + "▁RSVP", + -13.279698371887207 + ], + [ + "klima", + -13.279751777648926 + ], + [ + "▁situație", + -13.279808044433594 + ], + [ + "deschiderea", + -13.280009269714355 + ], + [ + "▁moale", + -13.280033111572266 + ], + [ + "▁Trevor", + -13.280112266540527 + ], + [ + "ménager", + -13.28011417388916 + ], + [ + "deploying", + -13.280428886413574 + ], + [ + "▁Loft", + -13.280500411987305 + ], + [ + "▁Willkommen", + -13.28059196472168 + ], + [ + "▁Bezirks", + -13.280887603759766 + ], + [ + "▁Himself", + -13.280975341796875 + ], + [ + "▁quarant", + -13.28101634979248 + ], + [ + "▁1901", + -13.281079292297363 + ], + [ + "▁tripod", + -13.28136920928955 + ], + [ + "▁récolt", + -13.281553268432617 + ], + [ + "natură", + -13.281631469726562 + ], + [ + "School", + -13.281649589538574 + ], + [ + "contested", + -13.281773567199707 + ], + [ + "bwohl", + -13.281784057617188 + ], + [ + "Darren", + -13.281830787658691 + ], + [ + "medicine", + -13.281903266906738 + ], + [ + "▁Impuls", + -13.282041549682617 + ], + [ + "prevailing", + -13.282057762145996 + ], + [ + "▁orthodontic", + -13.282089233398438 + ], + [ + "▁sequential", + -13.282089233398438 + ], + [ + "▁Kolkata", + -13.28209114074707 + ], + [ + "▁séch", + -13.282100677490234 + ], + [ + "▁diaper", + -13.28212833404541 + ], + [ + "▁simplifie", + -13.282144546508789 + ], + [ + "▁reflux", + -13.282163619995117 + ], + [ + "▁Hypo", + -13.282242774963379 + ], + [ + "imprimer", + -13.282251358032227 + ], + [ + "▁Folosi", + -13.282401084899902 + ], + [ + "Info", + -13.282570838928223 + ], + [ + "▁Investiga", + -13.282801628112793 + ], + [ + "stabilirea", + -13.282845497131348 + ], + [ + "élis", + -13.283149719238281 + ], + [ + "ccessed", + -13.28320026397705 + ], + [ + "▁recyclable", + -13.283293724060059 + ], + [ + "▁forbidden", + -13.283295631408691 + ], + [ + "▁Colonel", + -13.283297538757324 + ], + [ + "▁nisip", + -13.28330135345459 + ], + [ + "▁Fundamental", + -13.283303260803223 + ], + [ + "▁nouveauté", + -13.283308029174805 + ], + [ + "khi", + -13.283357620239258 + ], + [ + "▁ecology", + -13.28339672088623 + ], + [ + "▁filament", + -13.283540725708008 + ], + [ + "▁relentless", + -13.283559799194336 + ], + [ + "▁Behavior", + -13.283669471740723 + ], + [ + "titulaire", + -13.283900260925293 + ], + [ + "▁administrativ", + -13.28404426574707 + ], + [ + "▁Vorlage", + -13.284209251403809 + ], + [ + "zeigte", + -13.28427791595459 + ], + [ + "▁Bäume", + -13.284497261047363 + ], + [ + "▁Kartoffel", + -13.284497261047363 + ], + [ + "▁Possible", + -13.284500122070312 + ], + [ + "▁perturb", + -13.28466510772705 + ], + [ + "▁Grigor", + -13.284717559814453 + ], + [ + "▁streng", + -13.284759521484375 + ], + [ + "▁vânzare", + -13.285101890563965 + ], + [ + "concentrating", + -13.285698890686035 + ], + [ + "▁rechtzeitig", + -13.2857027053833 + ], + [ + "▁eternity", + -13.28570556640625 + ], + [ + "▁Puzzle", + -13.28575611114502 + ], + [ + "▁malade", + -13.285775184631348 + ], + [ + "▁Metallic", + -13.285776138305664 + ], + [ + "▁Unterhaltung", + -13.285783767700195 + ], + [ + "▁4:00", + -13.285820960998535 + ], + [ + "▁magique", + -13.285908699035645 + ], + [ + "▁cellphone", + -13.285975456237793 + ], + [ + "▁inhibition", + -13.286023139953613 + ], + [ + "▁remplacement", + -13.286025047302246 + ], + [ + "▁WWII", + -13.286089897155762 + ], + [ + "Eff", + -13.286258697509766 + ], + [ + "kontakt", + -13.286832809448242 + ], + [ + "Update", + -13.286869049072266 + ], + [ + "▁Emerald", + -13.286910057067871 + ], + [ + "▁hammock", + -13.286910057067871 + ], + [ + "POWER", + -13.286917686462402 + ], + [ + "automne", + -13.286917686462402 + ], + [ + "▁(2004)", + -13.286961555480957 + ], + [ + "▁participanți", + -13.287012100219727 + ], + [ + "1998)", + -13.287014961242676 + ], + [ + "▁deletion", + -13.287186622619629 + ], + [ + "▁Proiect", + -13.287226676940918 + ], + [ + "IDENT", + -13.287504196166992 + ], + [ + "▁precis", + -13.287623405456543 + ], + [ + "▁limp", + -13.287676811218262 + ], + [ + "▁Pompe", + -13.287686347961426 + ], + [ + "▁ménage", + -13.28780746459961 + ], + [ + "▁Wahrheit", + -13.288119316101074 + ], + [ + "▁Intelligent", + -13.28812026977539 + ], + [ + "▁instability", + -13.2881441116333 + ], + [ + "insurance", + -13.288346290588379 + ], + [ + "▁Nursery", + -13.288352966308594 + ], + [ + "▁synonym", + -13.288427352905273 + ], + [ + "▁ignite", + -13.28848934173584 + ], + [ + "▁Vernon", + -13.28849983215332 + ], + [ + "purchase", + -13.288524627685547 + ], + [ + "▁disponibilité", + -13.288662910461426 + ], + [ + "▁producţi", + -13.28909969329834 + ], + [ + "▁Pentagon", + -13.289329528808594 + ], + [ + "▁illumination", + -13.289329528808594 + ], + [ + "▁obsolete", + -13.289329528808594 + ], + [ + "▁unacceptable", + -13.28933048248291 + ], + [ + "Gleichzeitig", + -13.289938926696777 + ], + [ + "rutsch", + -13.290071487426758 + ], + [ + "viziuni", + -13.290409088134766 + ], + [ + "▁Nicaragua", + -13.29054069519043 + ], + [ + "▁hesitation", + -13.290541648864746 + ], + [ + "▁nascut", + -13.290545463562012 + ], + [ + "▁Warehouse", + -13.29055404663086 + ], + [ + "geboten", + -13.290558815002441 + ], + [ + "▁Lagos", + -13.290844917297363 + ], + [ + "produced", + -13.290874481201172 + ], + [ + "cativa", + -13.291309356689453 + ], + [ + "▁Tracy", + -13.291326522827148 + ], + [ + "Projekt", + -13.291468620300293 + ], + [ + "▁malaria", + -13.291692733764648 + ], + [ + "▁Baldwin", + -13.291755676269531 + ], + [ + "Take", + -13.291791915893555 + ], + [ + "▁fluctuations", + -13.291844367980957 + ], + [ + "▁titular", + -13.29194450378418 + ], + [ + "bmw", + -13.291976928710938 + ], + [ + "▁brevet", + -13.29202651977539 + ], + [ + "étapes", + -13.292173385620117 + ], + [ + "wikipedia", + -13.292373657226562 + ], + [ + "▁corporal", + -13.292424201965332 + ], + [ + "▁Schönheit", + -13.2926664352417 + ], + [ + "utilizatorii", + -13.292695999145508 + ], + [ + "INFO", + -13.292807579040527 + ], + [ + "▁formularul", + -13.292900085449219 + ], + [ + "femi", + -13.292959213256836 + ], + [ + "Konferenz", + -13.29296875 + ], + [ + "▁carnival", + -13.29296875 + ], + [ + "▁Kräuter", + -13.292969703674316 + ], + [ + "▁gelernt", + -13.292981147766113 + ], + [ + "▁Sherman", + -13.293017387390137 + ], + [ + "▁persistence", + -13.293289184570312 + ], + [ + "▁Behörden", + -13.293577194213867 + ], + [ + "▁Frühjahr", + -13.293578147888184 + ], + [ + "▁Guvern", + -13.293649673461914 + ], + [ + "interpreting", + -13.293878555297852 + ], + [ + "▁nommé", + -13.294021606445312 + ], + [ + "consult", + -13.294035911560059 + ], + [ + "▁obligaţi", + -13.294184684753418 + ], + [ + "▁Newspaper", + -13.2942476272583 + ], + [ + "(2005)", + -13.294515609741211 + ], + [ + "pumped", + -13.294614791870117 + ], + [ + "▁autoritati", + -13.294634819030762 + ], + [ + "▁aplicatii", + -13.294644355773926 + ], + [ + "▁verhindert", + -13.294794082641602 + ], + [ + "▁évident", + -13.294794082641602 + ], + [ + "▁getrennt", + -13.294795036315918 + ], + [ + "▁Encourage", + -13.295403480529785 + ], + [ + "▁lurk", + -13.295432090759277 + ], + [ + "▁condemned", + -13.295455932617188 + ], + [ + "▁4:30", + -13.295502662658691 + ], + [ + "labelled", + -13.29576587677002 + ], + [ + "ordinea", + -13.295899391174316 + ], + [ + "▁pantofi", + -13.296012878417969 + ], + [ + "Default", + -13.296042442321777 + ], + [ + "▁beruh", + -13.296120643615723 + ], + [ + "/01/", + -13.296268463134766 + ], + [ + "league", + -13.296503067016602 + ], + [ + "▁couvert", + -13.296524047851562 + ], + [ + "▁competencies", + -13.296622276306152 + ], + [ + "▁mozzarella", + -13.296622276306152 + ], + [ + "jihad", + -13.29662799835205 + ], + [ + "▁gossip", + -13.29662799835205 + ], + [ + "▁Omaha", + -13.296628952026367 + ], + [ + "▁coincidence", + -13.296669960021973 + ], + [ + "▁Pinot", + -13.296710968017578 + ], + [ + "dotted", + -13.296789169311523 + ], + [ + "schilder", + -13.297197341918945 + ], + [ + "▁Munte", + -13.297224998474121 + ], + [ + "▁Vermieter", + -13.297232627868652 + ], + [ + "▁britannique", + -13.297232627868652 + ], + [ + "▁comentariu", + -13.297235488891602 + ], + [ + "abonnement", + -13.29725456237793 + ], + [ + "▁inventive", + -13.29727840423584 + ], + [ + "complie", + -13.297279357910156 + ], + [ + "composée", + -13.29734992980957 + ], + [ + "▁glatt", + -13.297684669494629 + ], + [ + "adorned", + -13.297842979431152 + ], + [ + "▁Opportunities", + -13.297842979431152 + ], + [ + "▁equilibrium", + -13.297842979431152 + ], + [ + "▁persuasive", + -13.297842979431152 + ], + [ + "▁achiziţi", + -13.297843933105469 + ], + [ + "▁déterminer", + -13.297843933105469 + ], + [ + "▁fleece", + -13.297857284545898 + ], + [ + "▁ivory", + -13.29786205291748 + ], + [ + "▁Genuss", + -13.297900199890137 + ], + [ + "Thousands", + -13.297930717468262 + ], + [ + "▁izolat", + -13.297965049743652 + ], + [ + "▁symbolize", + -13.298033714294434 + ], + [ + "gâteau", + -13.298051834106445 + ], + [ + "▁relații", + -13.298062324523926 + ], + [ + "▁Classroom", + -13.298144340515137 + ], + [ + "settlers", + -13.298155784606934 + ], + [ + "▁vremuri", + -13.298195838928223 + ], + [ + "▁Serial", + -13.29838752746582 + ], + [ + "▁boite", + -13.298399925231934 + ], + [ + "équivalent", + -13.298453330993652 + ], + [ + "▁benutzen", + -13.298454284667969 + ], + [ + "▁Recomand", + -13.298462867736816 + ], + [ + "▁Sinai", + -13.298968315124512 + ], + [ + "▁Advertise", + -13.29906940460205 + ], + [ + "▁Thermal", + -13.299206733703613 + ], + [ + "fiance", + -13.299471855163574 + ], + [ + "▁universitaire", + -13.299683570861816 + ], + [ + "▁rivière", + -13.299793243408203 + ], + [ + "▁reimburse", + -13.299907684326172 + ], + [ + "ţara", + -13.299932479858398 + ], + [ + "tician", + -13.30002498626709 + ], + [ + "intelligence", + -13.300041198730469 + ], + [ + "▁abgestimmt", + -13.300288200378418 + ], + [ + "▁compliqué", + -13.300288200378418 + ], + [ + "▁succulent", + -13.300297737121582 + ], + [ + "opéra", + -13.300395011901855 + ], + [ + "7-9", + -13.300456047058105 + ], + [ + "▁pierderi", + -13.300654411315918 + ], + [ + "extinction", + -13.30090045928955 + ], + [ + "▁Zweifel", + -13.30103874206543 + ], + [ + "ATCH", + -13.30112361907959 + ], + [ + "10,000", + -13.301222801208496 + ], + [ + "▁uninterrupted", + -13.301513671875 + ], + [ + "▁Eigentum", + -13.301517486572266 + ], + [ + "▁Utility", + -13.301517486572266 + ], + [ + "ско", + -13.301529884338379 + ], + [ + "▁tornado", + -13.301544189453125 + ], + [ + "▁Güte", + -13.301727294921875 + ], + [ + "▁pertain", + -13.301923751831055 + ], + [ + "painters", + -13.301993370056152 + ], + [ + "Help", + -13.3021240234375 + ], + [ + "▁străinătate", + -13.30212688446045 + ], + [ + "▁stammen", + -13.302170753479004 + ], + [ + "opposition", + -13.302229881286621 + ], + [ + "▁rhino", + -13.302233695983887 + ], + [ + "intervenir", + -13.302427291870117 + ], + [ + "▁hyperlink", + -13.302441596984863 + ], + [ + "höchst", + -13.302518844604492 + ], + [ + "roach", + -13.302627563476562 + ], + [ + "wSt", + -13.302687644958496 + ], + [ + "▁monastery", + -13.302740097045898 + ], + [ + "▁algae", + -13.302754402160645 + ], + [ + "▁shaving", + -13.302757263183594 + ], + [ + "présentent", + -13.302804946899414 + ], + [ + "Africa", + -13.302860260009766 + ], + [ + "eigener", + -13.303047180175781 + ], + [ + "▁glace", + -13.303153991699219 + ], + [ + "▁discurs", + -13.303179740905762 + ], + [ + "▁autograph", + -13.303204536437988 + ], + [ + "▁Conflict", + -13.303359031677246 + ], + [ + "▁școli", + -13.303411483764648 + ], + [ + "▁excerpt", + -13.303617477416992 + ], + [ + "correlated", + -13.303628921508789 + ], + [ + "empel", + -13.303841590881348 + ], + [ + "cryptocurrencies", + -13.30396842956543 + ], + [ + "▁symposium", + -13.30396842956543 + ], + [ + "▁gewohnt", + -13.303994178771973 + ], + [ + "PTSD", + -13.304070472717285 + ], + [ + "▁harmonic", + -13.304166793823242 + ], + [ + "discarded", + -13.304282188415527 + ], + [ + "▁Flint", + -13.304359436035156 + ], + [ + "Russia", + -13.304422378540039 + ], + [ + "▁ședinț", + -13.304583549499512 + ], + [ + "▁accusations", + -13.304727554321289 + ], + [ + "▁încălc", + -13.304827690124512 + ], + [ + "sendung", + -13.305152893066406 + ], + [ + "▁Chiropractic", + -13.305197715759277 + ], + [ + "▁excepți", + -13.305201530456543 + ], + [ + "▁proclaim", + -13.305201530456543 + ], + [ + "▁Flexible", + -13.305295944213867 + ], + [ + "▁Hüt", + -13.30538272857666 + ], + [ + "▁Baltic", + -13.30539608001709 + ], + [ + "▁inaltime", + -13.30553913116455 + ], + [ + "▁montré", + -13.305868148803711 + ], + [ + "exécution", + -13.305898666381836 + ], + [ + "partei", + -13.305961608886719 + ], + [ + "▁specifie", + -13.306072235107422 + ], + [ + "▁Jackpot", + -13.306105613708496 + ], + [ + "▁stumble", + -13.306134223937988 + ], + [ + "▁individuel", + -13.306161880493164 + ], + [ + "▁Veteran", + -13.306217193603516 + ], + [ + "▁Supplies", + -13.306428909301758 + ], + [ + "▁excavation", + -13.306428909301758 + ], + [ + "▁Libraries", + -13.306469917297363 + ], + [ + "▁prénom", + -13.306476593017578 + ], + [ + "WOOD", + -13.30650806427002 + ], + [ + "meciul", + -13.306917190551758 + ], + [ + "Chef", + -13.306938171386719 + ], + [ + "▁SUPER", + -13.306940078735352 + ], + [ + "Appeals", + -13.30696964263916 + ], + [ + "terapia", + -13.307113647460938 + ], + [ + "▁relatii", + -13.30713939666748 + ], + [ + "modifying", + -13.30748462677002 + ], + [ + "▁Regulament", + -13.307662010192871 + ], + [ + "▁bănci", + -13.307662963867188 + ], + [ + "▁agility", + -13.307666778564453 + ], + [ + "▁Magnetic", + -13.307674407958984 + ], + [ + "▁piatra", + -13.30767822265625 + ], + [ + "▁Governance", + -13.307680130004883 + ], + [ + "▁clown", + -13.30772876739502 + ], + [ + "▁Choir", + -13.308337211608887 + ], + [ + "aujourd", + -13.308548927307129 + ], + [ + "▁vendeur", + -13.308732032775879 + ], + [ + "ndererseits", + -13.308859825134277 + ], + [ + "▁Bahrain", + -13.3088960647583 + ], + [ + "▁Timisoara", + -13.3088960647583 + ], + [ + "▁exklusive", + -13.3088960647583 + ], + [ + "▁Population", + -13.309001922607422 + ], + [ + "▁nepo", + -13.309073448181152 + ], + [ + "▁relish", + -13.309085845947266 + ], + [ + "▁Pumpkin", + -13.309571266174316 + ], + [ + "▁détente", + -13.309784889221191 + ], + [ + "▁episcop", + -13.309860229492188 + ], + [ + "patterned", + -13.309929847717285 + ], + [ + "▁THANK", + -13.310132026672363 + ], + [ + "▁Widerspruch", + -13.310132026672363 + ], + [ + "▁Crisis", + -13.310189247131348 + ], + [ + "▁goose", + -13.310226440429688 + ], + [ + "▁couture", + -13.310307502746582 + ], + [ + "▁hinweg", + -13.310446739196777 + ], + [ + "supplemental", + -13.310486793518066 + ], + [ + "shingles", + -13.31060791015625 + ], + [ + "investir", + -13.310635566711426 + ], + [ + "▁steriliz", + -13.310759544372559 + ], + [ + "tractors", + -13.310761451721191 + ], + [ + "cellules", + -13.31078815460205 + ], + [ + "▁Gloria", + -13.310888290405273 + ], + [ + "▁teilnehmen", + -13.311092376708984 + ], + [ + "companiile", + -13.311248779296875 + ], + [ + "surfacing", + -13.311279296875 + ], + [ + "▁nostalgic", + -13.311368942260742 + ], + [ + "▁Badezimmer", + -13.311369895935059 + ], + [ + "▁conjoint", + -13.311370849609375 + ], + [ + "vacancy", + -13.31145191192627 + ], + [ + "▁homeland", + -13.311582565307617 + ], + [ + "▁Abschnitt", + -13.311625480651855 + ], + [ + "Cartea", + -13.311653137207031 + ], + [ + "SIA", + -13.311782836914062 + ], + [ + "▁explode", + -13.311786651611328 + ], + [ + "fostering", + -13.311959266662598 + ], + [ + "▁ceilalti", + -13.31198787689209 + ], + [ + "▁gentil", + -13.31214714050293 + ], + [ + "oplasty", + -13.31218433380127 + ], + [ + "bodied", + -13.312424659729004 + ], + [ + "▁1906", + -13.312499046325684 + ], + [ + "▁BlackBerry", + -13.312607765197754 + ], + [ + "▁Presbyterian", + -13.312607765197754 + ], + [ + "▁berücksichtigt", + -13.312607765197754 + ], + [ + "▁compartiment", + -13.312607765197754 + ], + [ + "▁compulsory", + -13.312607765197754 + ], + [ + "Millennial", + -13.312609672546387 + ], + [ + "▁sanitar", + -13.312638282775879 + ], + [ + "▁stink", + -13.312975883483887 + ], + [ + "lius", + -13.313047409057617 + ], + [ + "thankfully", + -13.313136100769043 + ], + [ + "modalité", + -13.313173294067383 + ], + [ + "▁cunoaște", + -13.313226699829102 + ], + [ + "Infrastruktur", + -13.313227653503418 + ], + [ + "▁studenți", + -13.313253402709961 + ], + [ + "Bref", + -13.313270568847656 + ], + [ + "London", + -13.31360149383545 + ], + [ + "▁Arduino", + -13.313847541809082 + ], + [ + "▁cilantro", + -13.313847541809082 + ], + [ + "▁Rafael", + -13.313848495483398 + ], + [ + "▁untersucht", + -13.313861846923828 + ], + [ + "▁martyr", + -13.31389331817627 + ], + [ + "▁Mormon", + -13.313984870910645 + ], + [ + "▁wicket", + -13.313996315002441 + ], + [ + "cherished", + -13.314335823059082 + ], + [ + "liquid", + -13.314417839050293 + ], + [ + "▁dorinț", + -13.314571380615234 + ], + [ + "lehnt", + -13.314717292785645 + ], + [ + "meisterschaft", + -13.31493091583252 + ], + [ + "fondateur", + -13.314971923828125 + ], + [ + "câble", + -13.315078735351562 + ], + [ + "▁erreichbar", + -13.315091133117676 + ], + [ + "▁footsteps", + -13.315094947814941 + ], + [ + "▁Kloster", + -13.31519889831543 + ], + [ + "▁multiplayer", + -13.315218925476074 + ], + [ + "▁substitu", + -13.315276145935059 + ], + [ + "▁Frisch", + -13.315526962280273 + ], + [ + "▁arsenal", + -13.315712928771973 + ], + [ + "explication", + -13.315866470336914 + ], + [ + "▁conexiun", + -13.315986633300781 + ], + [ + "muddy", + -13.316045761108398 + ], + [ + "▁Reifen", + -13.316120147705078 + ], + [ + "auraient", + -13.316132545471191 + ], + [ + "▁biologic", + -13.316136360168457 + ], + [ + "▁acquainted", + -13.316332817077637 + ], + [ + "▁shelving", + -13.316341400146484 + ], + [ + "Stunning", + -13.316373825073242 + ], + [ + "▁Clothing", + -13.316394805908203 + ], + [ + "▁kidding", + -13.316431999206543 + ], + [ + "excellent", + -13.316452026367188 + ], + [ + "▁susțin", + -13.316487312316895 + ], + [ + "bătut", + -13.316502571105957 + ], + [ + "elusive", + -13.3165283203125 + ], + [ + "werbung", + -13.316743850708008 + ], + [ + "slipping", + -13.316813468933105 + ], + [ + "▁configura", + -13.316926956176758 + ], + [ + "▁proaspat", + -13.31695556640625 + ], + [ + "▁apporté", + -13.317120552062988 + ], + [ + "▁démarr", + -13.317328453063965 + ], + [ + "Spezialist", + -13.317578315734863 + ], + [ + "▁obligați", + -13.317578315734863 + ], + [ + "▁societăți", + -13.317578315734863 + ], + [ + "▁malpractice", + -13.31757926940918 + ], + [ + "Hundreds", + -13.317609786987305 + ], + [ + "▁3:1", + -13.318138122558594 + ], + [ + "▁computation", + -13.31817626953125 + ], + [ + "▁Heilig", + -13.318528175354004 + ], + [ + "▁Helsinki", + -13.318824768066406 + ], + [ + "▁firefighters", + -13.318824768066406 + ], + [ + "▁obedience", + -13.318824768066406 + ], + [ + "▁evacuate", + -13.318825721740723 + ], + [ + "▁Floyd", + -13.318840026855469 + ], + [ + "▁Disneyland", + -13.318859100341797 + ], + [ + "Cathy", + -13.319069862365723 + ], + [ + "▁Broken", + -13.319278717041016 + ], + [ + "cript", + -13.319952011108398 + ], + [ + "▁Gewähr", + -13.320073127746582 + ], + [ + "▁embarrassed", + -13.320073127746582 + ], + [ + "▁Leicht", + -13.32007884979248 + ], + [ + "▁témoign", + -13.320379257202148 + ], + [ + "▁viteze", + -13.3206148147583 + ], + [ + "▁hallmark", + -13.320731163024902 + ], + [ + "uploads", + -13.32082462310791 + ], + [ + "▁Submission", + -13.320929527282715 + ], + [ + "▁croissant", + -13.321049690246582 + ], + [ + "awning", + -13.32105827331543 + ], + [ + "detecting", + -13.321198463439941 + ], + [ + "▁Bahamas", + -13.321322441101074 + ], + [ + "▁Kathleen", + -13.321325302124023 + ], + [ + "▁latch", + -13.321377754211426 + ], + [ + "▁pronounce", + -13.321380615234375 + ], + [ + "▁choke", + -13.321428298950195 + ], + [ + "▁$50,000", + -13.3215970993042 + ], + [ + "▁historische", + -13.321642875671387 + ], + [ + "jugé", + -13.321829795837402 + ], + [ + "▁MasterCard", + -13.321949005126953 + ], + [ + "▁Horror", + -13.321955680847168 + ], + [ + "spoiled", + -13.321958541870117 + ], + [ + "▁apariți", + -13.32202434539795 + ], + [ + "geschaltet", + -13.3225736618042 + ], + [ + "▁Londra", + -13.322578430175781 + ], + [ + "viction", + -13.322580337524414 + ], + [ + "▁Disaster", + -13.322593688964844 + ], + [ + "▁desigur", + -13.322601318359375 + ], + [ + "▁substanț", + -13.322601318359375 + ], + [ + "▁compiler", + -13.322613716125488 + ], + [ + "▁vanzari", + -13.32262897491455 + ], + [ + "▁Simulation", + -13.322669982910156 + ], + [ + "Occasionally", + -13.322842597961426 + ], + [ + "Seite", + -13.322884559631348 + ], + [ + "Linked", + -13.322938919067383 + ], + [ + "Roll", + -13.323015213012695 + ], + [ + "▁trajet", + -13.323244094848633 + ], + [ + "Molecular", + -13.323834419250488 + ], + [ + "▁pragmatic", + -13.323843002319336 + ], + [ + "judecată", + -13.323915481567383 + ], + [ + "ров", + -13.32400894165039 + ], + [ + "serrurerie", + -13.324024200439453 + ], + [ + "▁reconstruct", + -13.324129104614258 + ], + [ + "▁heureuse", + -13.324179649353027 + ], + [ + "▁knight", + -13.32422924041748 + ], + [ + "knowingly", + -13.324431419372559 + ], + [ + "▁perspectiva", + -13.324453353881836 + ], + [ + "ordinary", + -13.324604034423828 + ], + [ + "▁chaudière", + -13.324721336364746 + ], + [ + "Neill", + -13.324727058410645 + ], + [ + "cellulose", + -13.325080871582031 + ], + [ + "▁Delicious", + -13.325080871582031 + ], + [ + "▁incearca", + -13.325080871582031 + ], + [ + "▁retrospective", + -13.325080871582031 + ], + [ + "▁mundane", + -13.325081825256348 + ], + [ + "▁definiert", + -13.32508659362793 + ], + [ + "▁cockpit", + -13.325088500976562 + ], + [ + "Aktionen", + -13.325363159179688 + ], + [ + "▁distanț", + -13.325654029846191 + ], + [ + "▁diplôme", + -13.325708389282227 + ], + [ + "prepaid", + -13.325737953186035 + ], + [ + "▁Tabellen", + -13.325758934020996 + ], + [ + "▁economie", + -13.325770378112793 + ], + [ + "December", + -13.325826644897461 + ], + [ + "Punkten", + -13.32613754272461 + ], + [ + "▁Punch", + -13.32614517211914 + ], + [ + "Martin", + -13.326154708862305 + ], + [ + "▁Espresso", + -13.326314926147461 + ], + [ + "▁ubiquitous", + -13.326335906982422 + ], + [ + "▁Mongolia", + -13.326337814331055 + ], + [ + "▁collabor", + -13.326635360717773 + ], + [ + "▁Vordergrund", + -13.32696533203125 + ], + [ + "cameră", + -13.327091217041016 + ], + [ + "represented", + -13.327268600463867 + ], + [ + "▁AUTO", + -13.327446937561035 + ], + [ + "▁Ofert", + -13.327542304992676 + ], + [ + "neig", + -13.327593803405762 + ], + [ + "▁Hazard", + -13.327595710754395 + ], + [ + "▁Constanta", + -13.327596664428711 + ], + [ + "▁tumour", + -13.32759952545166 + ], + [ + "▁Neighborhood", + -13.327603340148926 + ], + [ + "▁detaliat", + -13.327619552612305 + ], + [ + "▁extraordinaire", + -13.327665328979492 + ], + [ + "▁Therapeutic", + -13.327686309814453 + ], + [ + "predicting", + -13.327693939208984 + ], + [ + "▁institutii", + -13.32776165008545 + ], + [ + "ifizierung", + -13.327797889709473 + ], + [ + "wählt", + -13.328207015991211 + ], + [ + "▁remarquable", + -13.32822322845459 + ], + [ + "Invent", + -13.328512191772461 + ], + [ + "▁foloseșt", + -13.328514099121094 + ], + [ + "öfte", + -13.328703880310059 + ], + [ + "▁discreet", + -13.328853607177734 + ], + [ + "▁Flickr", + -13.32885456085205 + ], + [ + "▁trésor", + -13.328856468200684 + ], + [ + "▁steroids", + -13.328872680664062 + ], + [ + "▁personnalité", + -13.328953742980957 + ], + [ + "▁Krankenhaus", + -13.32901668548584 + ], + [ + "▁affordability", + -13.329218864440918 + ], + [ + "deuten", + -13.329398155212402 + ], + [ + "Detailed", + -13.329412460327148 + ], + [ + "Walk", + -13.329444885253906 + ], + [ + "▁parallèle", + -13.329483032226562 + ], + [ + "thèse", + -13.329649925231934 + ], + [ + "▁gefördert", + -13.330117225646973 + ], + [ + "Greeting", + -13.33014965057373 + ], + [ + "gelistet", + -13.330172538757324 + ], + [ + "▁chlorine", + -13.330392837524414 + ], + [ + "behält", + -13.33039665222168 + ], + [ + "emption", + -13.330435752868652 + ], + [ + "▁mobilité", + -13.330601692199707 + ], + [ + "▁randonnée", + -13.330668449401855 + ], + [ + "habitant", + -13.330718040466309 + ], + [ + "zilla", + -13.331082344055176 + ], + [ + "▁Lili", + -13.331160545349121 + ], + [ + "▁répét", + -13.331341743469238 + ], + [ + "trucât", + -13.331376075744629 + ], + [ + "▁Hospice", + -13.331376075744629 + ], + [ + "▁grassroots", + -13.331377029418945 + ], + [ + "▁affiché", + -13.331393241882324 + ], + [ + "pears", + -13.331470489501953 + ], + [ + "▁linistit", + -13.331497192382812 + ], + [ + "▁Patron", + -13.331552505493164 + ], + [ + "▁Stalin", + -13.331626892089844 + ], + [ + "▁închiri", + -13.331751823425293 + ], + [ + "▁Apostol", + -13.332018852233887 + ], + [ + "▁poudre", + -13.332246780395508 + ], + [ + "▁piscin", + -13.332419395446777 + ], + [ + "merlin", + -13.33259391784668 + ], + [ + "limited", + -13.33260726928711 + ], + [ + "▁métallique", + -13.332639694213867 + ], + [ + "gazebo", + -13.33267879486084 + ], + [ + "weilige", + -13.332718849182129 + ], + [ + "prosecutors", + -13.33278751373291 + ], + [ + "Expert", + -13.33314323425293 + ], + [ + "Assemblée", + -13.333271980285645 + ], + [ + "▁fauna", + -13.333285331726074 + ], + [ + "▁Turtle", + -13.333353996276855 + ], + [ + "▁Consortium", + -13.333905220031738 + ], + [ + "▁assemblies", + -13.333905220031738 + ], + [ + "▁trajectory", + -13.333905220031738 + ], + [ + "▁Vineyard", + -13.333906173706055 + ], + [ + "▁Mehrwert", + -13.334037780761719 + ], + [ + "▁sunflower", + -13.334043502807617 + ], + [ + "develop", + -13.334060668945312 + ], + [ + "▁heroic", + -13.334100723266602 + ], + [ + "▁riscuri", + -13.334151268005371 + ], + [ + "oeuf", + -13.334300994873047 + ], + [ + "influence", + -13.334452629089355 + ], + [ + "▁Voraussetzung", + -13.334500312805176 + ], + [ + "utoritatea", + -13.334518432617188 + ], + [ + "Produsul", + -13.334654808044434 + ], + [ + "▁gewährleistet", + -13.335171699523926 + ], + [ + "▁brûl", + -13.335175514221191 + ], + [ + "▁Column", + -13.335184097290039 + ], + [ + "▁trousers", + -13.335209846496582 + ], + [ + "▁posterior", + -13.33521556854248 + ], + [ + "glyph", + -13.335251808166504 + ], + [ + "▁Happen", + -13.335280418395996 + ], + [ + "▁créateur", + -13.335667610168457 + ], + [ + "▁apostle", + -13.335898399353027 + ], + [ + "▁padding", + -13.335907936096191 + ], + [ + "▁Digitalisierung", + -13.335908889770508 + ], + [ + "▁Laurie", + -13.335915565490723 + ], + [ + "▁Erwerb", + -13.336065292358398 + ], + [ + "▁bătrân", + -13.336440086364746 + ], + [ + "▁harmonious", + -13.336441040039062 + ], + [ + "▁ailments", + -13.336456298828125 + ], + [ + "▁Venue", + -13.33650016784668 + ], + [ + "▁Motorcycle", + -13.336523056030273 + ], + [ + "▁cortex", + -13.336551666259766 + ], + [ + "▁Sunrise", + -13.336636543273926 + ], + [ + "Software", + -13.336775779724121 + ], + [ + "▁advocat", + -13.336934089660645 + ], + [ + "essentiellement", + -13.337422370910645 + ], + [ + "•", + -13.337494850158691 + ], + [ + "părut", + -13.337522506713867 + ], + [ + "▁Suffolk", + -13.337711334228516 + ], + [ + "▁righteousness", + -13.337711334228516 + ], + [ + "▁Shirley", + -13.337712287902832 + ], + [ + "▁Famous", + -13.337749481201172 + ], + [ + "▁emulate", + -13.337788581848145 + ], + [ + "vermögen", + -13.33788776397705 + ], + [ + "generated", + -13.337963104248047 + ], + [ + "Ecole", + -13.337977409362793 + ], + [ + "▁managerial", + -13.338086128234863 + ], + [ + "believe", + -13.338091850280762 + ], + [ + "▁récupére", + -13.338348388671875 + ], + [ + "▁recens", + -13.338531494140625 + ], + [ + "▁Barrett", + -13.338778495788574 + ], + [ + "▁courageous", + -13.338814735412598 + ], + [ + "9.95", + -13.338961601257324 + ], + [ + "▁Odyssey", + -13.338982582092285 + ], + [ + "▁Violence", + -13.338982582092285 + ], + [ + "▁concasseur", + -13.338982582092285 + ], + [ + "▁evacuation", + -13.338982582092285 + ], + [ + "▁kontinuierlich", + -13.338982582092285 + ], + [ + "▁epidemi", + -13.3389892578125 + ], + [ + "▁disconnected", + -13.339197158813477 + ], + [ + "frucht", + -13.339339256286621 + ], + [ + "Trustees", + -13.339348793029785 + ], + [ + "▁Massiv", + -13.339459419250488 + ], + [ + "gebucht", + -13.339473724365234 + ], + [ + "stütze", + -13.339526176452637 + ], + [ + "▁febr", + -13.339741706848145 + ], + [ + "honoured", + -13.339743614196777 + ], + [ + "▁digitiz", + -13.340079307556152 + ], + [ + "Image", + -13.34021282196045 + ], + [ + "▁Brunswick", + -13.34025764465332 + ], + [ + "▁Therapist", + -13.34026050567627 + ], + [ + "accessoire", + -13.340264320373535 + ], + [ + "▁croqu", + -13.340291023254395 + ], + [ + "Pflanz", + -13.34052848815918 + ], + [ + "dragging", + -13.340536117553711 + ], + [ + "▁Facilit", + -13.340750694274902 + ], + [ + "soucis", + -13.340765953063965 + ], + [ + "Asadar", + -13.34081745147705 + ], + [ + "▁Thames", + -13.341021537780762 + ], + [ + "▁cariera", + -13.341116905212402 + ], + [ + "▁mercury", + -13.341530799865723 + ], + [ + "▁Blessed", + -13.341533660888672 + ], + [ + "▁Whitney", + -13.341630935668945 + ], + [ + "▁géant", + -13.341926574707031 + ], + [ + "▁coordonnée", + -13.342217445373535 + ], + [ + "oidal", + -13.342623710632324 + ], + [ + "Wohnungen", + -13.342696189880371 + ], + [ + "▁Spectrum", + -13.34280776977539 + ], + [ + "▁Avengers", + -13.342808723449707 + ], + [ + "▁Gloucester", + -13.342808723449707 + ], + [ + "▁nützlich", + -13.342811584472656 + ], + [ + "▁toothbrush", + -13.342830657958984 + ], + [ + "▁Vanessa", + -13.342843055725098 + ], + [ + "Saxon", + -13.342947959899902 + ], + [ + "▁comunități", + -13.343165397644043 + ], + [ + "reprezentanţi", + -13.343175888061523 + ], + [ + "▁întâlnire", + -13.343225479125977 + ], + [ + "delve", + -13.343234062194824 + ], + [ + "▁technologique", + -13.343452453613281 + ], + [ + "Describe", + -13.343466758728027 + ], + [ + "▁constient", + -13.343501091003418 + ], + [ + "gestalt", + -13.343600273132324 + ], + [ + "▁Tribune", + -13.344090461730957 + ], + [ + "▁fiberglass", + -13.34412956237793 + ], + [ + "verbindung", + -13.344210624694824 + ], + [ + "sacrificing", + -13.344351768493652 + ], + [ + "▁Pablo", + -13.344470024108887 + ], + [ + "▁adanc", + -13.34525203704834 + ], + [ + "omia", + -13.345309257507324 + ], + [ + "hâte", + -13.345317840576172 + ], + [ + "▁Sanctuary", + -13.345366477966309 + ], + [ + "▁accolade", + -13.345368385314941 + ], + [ + "▁Wurzel", + -13.345398902893066 + ], + [ + "▁spacing", + -13.345433235168457 + ], + [ + "▁bedeutend", + -13.345481872558594 + ], + [ + "▁biased", + -13.345499992370605 + ], + [ + "randomized", + -13.345747947692871 + ], + [ + "▁agenți", + -13.345856666564941 + ], + [ + "▁excepţi", + -13.346012115478516 + ], + [ + "▁fișier", + -13.346028327941895 + ], + [ + "▁fisier", + -13.34664535522461 + ], + [ + "irrespective", + -13.346648216247559 + ], + [ + "▁Gardner", + -13.34665584564209 + ], + [ + "▁aprecia", + -13.346884727478027 + ], + [ + "▁Klu", + -13.347082138061523 + ], + [ + "▁apropie", + -13.347535133361816 + ], + [ + "▁echival", + -13.347784042358398 + ], + [ + "tauchen", + -13.347862243652344 + ], + [ + "▁hauptsächlich", + -13.347930908203125 + ], + [ + "▁pollutants", + -13.347930908203125 + ], + [ + "▁mammals", + -13.347931861877441 + ], + [ + "▁Landwirtschaft", + -13.347936630249023 + ], + [ + "▁stăpân", + -13.34793758392334 + ], + [ + "▁Prüf", + -13.347990989685059 + ], + [ + "▁Motorsport", + -13.34807300567627 + ], + [ + "Leaving", + -13.348352432250977 + ], + [ + "schädigung", + -13.348573684692383 + ], + [ + "▁calendrier", + -13.348573684692383 + ], + [ + "plikation", + -13.348655700683594 + ], + [ + "▁DOE", + -13.348655700683594 + ], + [ + "ред", + -13.348966598510742 + ], + [ + "Jahr", + -13.34913444519043 + ], + [ + "▁entitlement", + -13.34921646118164 + ], + [ + "schuldig", + -13.349217414855957 + ], + [ + "▁Münster", + -13.349218368530273 + ], + [ + "pository", + -13.349451065063477 + ], + [ + "▁numero", + -13.350220680236816 + ], + [ + "▁entsprechen", + -13.350383758544922 + ], + [ + "▁astronaut", + -13.350502967834473 + ], + [ + "▁hexagon", + -13.350502967834473 + ], + [ + "▁DAMAGE", + -13.350503921508789 + ], + [ + "▁Quartz", + -13.350504875183105 + ], + [ + "▁rédaction", + -13.350504875183105 + ], + [ + "▁replenish", + -13.350508689880371 + ], + [ + "▁amoureux", + -13.350523948669434 + ], + [ + "▁opțiun", + -13.350616455078125 + ], + [ + "Custom", + -13.350622177124023 + ], + [ + "▁Telekom", + -13.350639343261719 + ], + [ + "▁RFID", + -13.351163864135742 + ], + [ + "▁Scorpio", + -13.351264953613281 + ], + [ + "▁thirst", + -13.35152816772461 + ], + [ + "▁Kosovo", + -13.351791381835938 + ], + [ + "▁precursor", + -13.351794242858887 + ], + [ + "▁sarbatori", + -13.351810455322266 + ], + [ + "▁Daisy", + -13.351828575134277 + ], + [ + "▁Dropbox", + -13.351898193359375 + ], + [ + "Smith", + -13.351949691772461 + ], + [ + "contabil", + -13.352191925048828 + ], + [ + "▁monnaie", + -13.352437973022461 + ], + [ + "capsul", + -13.352577209472656 + ], + [ + "treff", + -13.352760314941406 + ], + [ + "beauftragte", + -13.352761268615723 + ], + [ + "industrial", + -13.353006362915039 + ], + [ + "responsables", + -13.353010177612305 + ], + [ + "▁FIRST", + -13.353080749511719 + ], + [ + "▁crezut", + -13.35308837890625 + ], + [ + "▁reseller", + -13.353107452392578 + ], + [ + "▁direcți", + -13.353154182434082 + ], + [ + "mouvoir", + -13.353294372558594 + ], + [ + "▁Invite", + -13.353431701660156 + ], + [ + "▁constructii", + -13.353440284729004 + ], + [ + "▁oublié", + -13.353577613830566 + ], + [ + "găseșt", + -13.353687286376953 + ], + [ + "▁végét", + -13.353755950927734 + ], + [ + "idine", + -13.35385799407959 + ], + [ + "▁Ajout", + -13.353951454162598 + ], + [ + "▁Shelf", + -13.354195594787598 + ], + [ + "HALL", + -13.35422420501709 + ], + [ + "▁nostalgia", + -13.35437297821045 + ], + [ + "▁ottoman", + -13.35437297821045 + ], + [ + "▁ambalaj", + -13.354398727416992 + ], + [ + "municipiul", + -13.354405403137207 + ], + [ + "NOVA", + -13.354500770568848 + ], + [ + "▁disregard", + -13.354997634887695 + ], + [ + "▁bijuterii", + -13.355018615722656 + ], + [ + "▁sorgfältig", + -13.355018615722656 + ], + [ + "vraient", + -13.355307579040527 + ], + [ + "▁backsplash", + -13.355669975280762 + ], + [ + "▁nuisance", + -13.355679512023926 + ], + [ + "▁Territory", + -13.35568618774414 + ], + [ + "▁surprins", + -13.355693817138672 + ], + [ + "enchanting", + -13.35571002960205 + ], + [ + "trospecti", + -13.355847358703613 + ], + [ + "▁dvd", + -13.356199264526367 + ], + [ + "Totally", + -13.356329917907715 + ], + [ + "▁Edelstahl", + -13.35696029663086 + ], + [ + "▁sequencing", + -13.356961250305176 + ], + [ + "▁Circus", + -13.35696792602539 + ], + [ + "▁ashamed", + -13.35696792602539 + ], + [ + "▁horrific", + -13.357028007507324 + ], + [ + "▁taiat", + -13.357033729553223 + ], + [ + "▁Angehörige", + -13.357125282287598 + ], + [ + "Michel", + -13.357256889343262 + ], + [ + "▁communion", + -13.357298851013184 + ], + [ + "▁psiho", + -13.357378959655762 + ], + [ + "losigkeit", + -13.357405662536621 + ], + [ + "dipping", + -13.357512474060059 + ], + [ + "▁profesională", + -13.357608795166016 + ], + [ + "Indiferent", + -13.357609748840332 + ], + [ + "▁crestin", + -13.357723236083984 + ], + [ + "wholesome", + -13.357796669006348 + ], + [ + "▁Welfare", + -13.358257293701172 + ], + [ + "▁plentiful", + -13.358257293701172 + ], + [ + "▁Triumph", + -13.358258247375488 + ], + [ + "▁fascination", + -13.358260154724121 + ], + [ + "▁vicious", + -13.358291625976562 + ], + [ + "▁Höchst", + -13.358294486999512 + ], + [ + "▁Dunkel", + -13.358386039733887 + ], + [ + "▁harass", + -13.358406066894531 + ], + [ + "ambogia", + -13.358475685119629 + ], + [ + "▁synonymous", + -13.358598709106445 + ], + [ + "bottom", + -13.35879898071289 + ], + [ + "▁bénévole", + -13.358906745910645 + ], + [ + "▁suprafaț", + -13.358906745910645 + ], + [ + "▁umplut", + -13.358997344970703 + ], + [ + "▁Teddy", + -13.359162330627441 + ], + [ + "breathable", + -13.359292984008789 + ], + [ + "▁Toshiba", + -13.3595552444458 + ], + [ + "▁seismic", + -13.359569549560547 + ], + [ + "▁dringend", + -13.359583854675293 + ], + [ + "▁cultură", + -13.359585762023926 + ], + [ + "▁Waffen", + -13.359665870666504 + ], + [ + "▁Bubble", + -13.359702110290527 + ], + [ + "▁Brigade", + -13.359759330749512 + ], + [ + "▁Blatt", + -13.36012077331543 + ], + [ + "▁scénario", + -13.36020565032959 + ], + [ + "allah", + -13.360396385192871 + ], + [ + "▁superintendent", + -13.360855102539062 + ], + [ + "pflanzen", + -13.360856056213379 + ], + [ + "▁kurzfristig", + -13.360856056213379 + ], + [ + "▁raspberry", + -13.360876083374023 + ], + [ + "▁Evident", + -13.360904693603516 + ], + [ + "▁inutile", + -13.361076354980469 + ], + [ + "prouvé", + -13.361104011535645 + ], + [ + "▁obtien", + -13.36141300201416 + ], + [ + "▁Matthias", + -13.361506462097168 + ], + [ + "▁déclench", + -13.361506462097168 + ], + [ + "Situationen", + -13.361529350280762 + ], + [ + "▁Disclaimer", + -13.362156867980957 + ], + [ + "▁loneliness", + -13.362156867980957 + ], + [ + "▁Gothic", + -13.362164497375488 + ], + [ + "▁humility", + -13.362165451049805 + ], + [ + "▁machiaj", + -13.362175941467285 + ], + [ + "▁Sophia", + -13.362178802490234 + ], + [ + "▁Forecast", + -13.362265586853027 + ], + [ + "IBLE", + -13.362456321716309 + ], + [ + "ivism", + -13.362480163574219 + ], + [ + "israel", + -13.36278247833252 + ], + [ + "▁kümmern", + -13.362809181213379 + ], + [ + "▁verbreitet", + -13.362825393676758 + ], + [ + "▁capacitor", + -13.362832069396973 + ], + [ + "deprived", + -13.3634614944458 + ], + [ + "unbiased", + -13.3634614944458 + ], + [ + "▁Dominique", + -13.3634614944458 + ], + [ + "▁Bamboo", + -13.363462448120117 + ], + [ + "▁Heinrich", + -13.363465309143066 + ], + [ + "individualized", + -13.363550186157227 + ], + [ + "▁ansprechen", + -13.363776206970215 + ], + [ + "ordinaire", + -13.363801002502441 + ], + [ + "▁Ucraina", + -13.364112854003906 + ], + [ + "▁militare", + -13.364115715026855 + ], + [ + "massif", + -13.364352226257324 + ], + [ + "▁emisiuni", + -13.364501953125 + ], + [ + "maladies", + -13.364622116088867 + ], + [ + "▁pneumonia", + -13.364765167236328 + ], + [ + "▁graffiti", + -13.364767074584961 + ], + [ + "▁Determine", + -13.3648099899292 + ], + [ + "▁Northwestern", + -13.364893913269043 + ], + [ + "▁grasimi", + -13.364897727966309 + ], + [ + "▁lebendig", + -13.364920616149902 + ], + [ + "▁cifre", + -13.364946365356445 + ], + [ + "▁accelerator", + -13.36533260345459 + ], + [ + "▁nib", + -13.365374565124512 + ], + [ + "▁Jocuri", + -13.365400314331055 + ], + [ + "▁außergewöhnlich", + -13.365402221679688 + ], + [ + "▁orchid", + -13.36542797088623 + ], + [ + "zugreifen", + -13.365530967712402 + ], + [ + "utilisent", + -13.365662574768066 + ], + [ + "▁nineteenth", + -13.366071701049805 + ], + [ + "improvisation", + -13.366072654724121 + ], + [ + "▁Disclosure", + -13.366072654724121 + ], + [ + "▁Überraschung", + -13.366072654724121 + ], + [ + "▁Casual", + -13.366093635559082 + ], + [ + "▁Witness", + -13.366093635559082 + ], + [ + "teacher", + -13.366125106811523 + ], + [ + "Printed", + -13.366129875183105 + ], + [ + "▁prețuri", + -13.366189956665039 + ], + [ + "rues", + -13.366216659545898 + ], + [ + "▁cerinte", + -13.366338729858398 + ], + [ + "rouvent", + -13.36662483215332 + ], + [ + "assembling", + -13.36673355102539 + ], + [ + "▁atenție", + -13.366769790649414 + ], + [ + "▁amintiri", + -13.366782188415527 + ], + [ + "▁sustinut", + -13.366805076599121 + ], + [ + "Digital", + -13.367257118225098 + ], + [ + "▁Deborah", + -13.36738109588623 + ], + [ + "gesichts", + -13.367382049560547 + ], + [ + "▁temperament", + -13.367440223693848 + ], + [ + "▁competency", + -13.367447853088379 + ], + [ + "▁dwarf", + -13.367515563964844 + ], + [ + "▁dureaz", + -13.367539405822754 + ], + [ + "habilit", + -13.367764472961426 + ], + [ + "leaned", + -13.3679838180542 + ], + [ + "▁illicit", + -13.368348121643066 + ], + [ + "Availability", + -13.368691444396973 + ], + [ + "▁Brașov", + -13.368691444396973 + ], + [ + "▁Pyramid", + -13.368691444396973 + ], + [ + "▁achievable", + -13.368691444396973 + ], + [ + "▁judiciaire", + -13.368691444396973 + ], + [ + "Übrigen", + -13.368693351745605 + ], + [ + "▁activism", + -13.368795394897461 + ], + [ + "▁boycott", + -13.368839263916016 + ], + [ + "Desigur", + -13.368927001953125 + ], + [ + "klingt", + -13.369264602661133 + ], + [ + "▁Leidenschaft", + -13.369346618652344 + ], + [ + "▁Richtig", + -13.369701385498047 + ], + [ + "▁Airbnb", + -13.370002746582031 + ], + [ + "▁învățământ", + -13.370002746582031 + ], + [ + "Kampagne", + -13.370004653930664 + ], + [ + "▁thumbnail", + -13.370014190673828 + ], + [ + "Bestimmungen", + -13.370016098022461 + ], + [ + "▁vollkommen", + -13.37001895904541 + ], + [ + "▁biomass", + -13.370027542114258 + ], + [ + "▁escalate", + -13.370030403137207 + ], + [ + "wächst", + -13.370085716247559 + ], + [ + "▁scăpa", + -13.370098114013672 + ], + [ + "▁résult", + -13.37014389038086 + ], + [ + "▁shrine", + -13.370217323303223 + ], + [ + "maximizing", + -13.370370864868164 + ], + [ + "avoue", + -13.370492935180664 + ], + [ + "dirigeants", + -13.370665550231934 + ], + [ + "▁cerveau", + -13.370672225952148 + ], + [ + "▁proast", + -13.370955467224121 + ], + [ + "▁contaminants", + -13.371325492858887 + ], + [ + "effectue", + -13.37151050567627 + ], + [ + "ediție", + -13.371539115905762 + ], + [ + "monetiz", + -13.371772766113281 + ], + [ + "▁deplasare", + -13.371976852416992 + ], + [ + "▁Sfant", + -13.37209415435791 + ], + [ + "ROOM", + -13.372113227844238 + ], + [ + "bushes", + -13.372151374816895 + ], + [ + "mairie", + -13.37251091003418 + ], + [ + "obligate", + -13.372528076171875 + ], + [ + "▁tug", + -13.372573852539062 + ], + [ + "▁Collector", + -13.372632026672363 + ], + [ + "▁annoyed", + -13.372633934020996 + ], + [ + "▁aerobic", + -13.372654914855957 + ], + [ + "▁integer", + -13.372830390930176 + ], + [ + "▁Upload", + -13.373249053955078 + ], + [ + "▁impartial", + -13.37346076965332 + ], + [ + "▁discuţi", + -13.373623847961426 + ], + [ + "gastrointestinal", + -13.37394905090332 + ], + [ + "▁chiropractor", + -13.37394905090332 + ], + [ + "▁treptat", + -13.373950004577637 + ], + [ + "▁fishermen", + -13.37395191192627 + ], + [ + "levitra", + -13.3739595413208 + ], + [ + "Gruppe", + -13.373964309692383 + ], + [ + "▁Apostle", + -13.373970985412598 + ], + [ + "▁conseillé", + -13.374068260192871 + ], + [ + "Isra", + -13.37421703338623 + ], + [ + "▁Persönlichkeit", + -13.374431610107422 + ], + [ + "▁cantitati", + -13.374459266662598 + ], + [ + "▁incredibil", + -13.374614715576172 + ], + [ + "▁Berater", + -13.374800682067871 + ], + [ + "▁propuneri", + -13.374835014343262 + ], + [ + "MEDIA", + -13.375236511230469 + ], + [ + "▁opaque", + -13.37526798248291 + ], + [ + "▁Nielsen", + -13.375269889831543 + ], + [ + "▁cartofi", + -13.375277519226074 + ], + [ + "▁Whale", + -13.37533950805664 + ], + [ + "erzeugen", + -13.375890731811523 + ], + [ + "▁knack", + -13.375931739807129 + ], + [ + "Kandidat", + -13.375936508178711 + ], + [ + "▁tradițional", + -13.375937461853027 + ], + [ + "zählige", + -13.375983238220215 + ], + [ + "▁Petroleum", + -13.376588821411133 + ], + [ + "▁deficiencies", + -13.376588821411133 + ], + [ + "▁persecution", + -13.376588821411133 + ], + [ + "▁zgomot", + -13.376588821411133 + ], + [ + "▁reiterate", + -13.376592636108398 + ], + [ + "▁Slice", + -13.376670837402344 + ], + [ + "▁envy", + -13.376704216003418 + ], + [ + "▁stomac", + -13.376851081848145 + ], + [ + "Donnell", + -13.376914978027344 + ], + [ + "▁primordial", + -13.377249717712402 + ], + [ + "reclining", + -13.377274513244629 + ], + [ + "PASS", + -13.377861976623535 + ], + [ + "▁Resistance", + -13.377910614013672 + ], + [ + "▁Widerruf", + -13.377911567687988 + ], + [ + "▁vodka", + -13.377911567687988 + ], + [ + "▁yolk", + -13.377912521362305 + ], + [ + "ollywood", + -13.377915382385254 + ], + [ + "▁truffle", + -13.377933502197266 + ], + [ + "▁Sänger", + -13.377955436706543 + ], + [ + "▁Kenntnis", + -13.377968788146973 + ], + [ + "▁Kiel", + -13.37803840637207 + ], + [ + "▁Mutual", + -13.378044128417969 + ], + [ + "▁saliva", + -13.37816047668457 + ], + [ + "▁renforce", + -13.378411293029785 + ], + [ + "▁mulch", + -13.378680229187012 + ], + [ + "▁reviste", + -13.378875732421875 + ], + [ + "lucrarea", + -13.378978729248047 + ], + [ + "▁multiply", + -13.379130363464355 + ], + [ + "▁marshmallow", + -13.379234313964844 + ], + [ + "▁Durchschnitt", + -13.379288673400879 + ], + [ + "▁Authorities", + -13.379426002502441 + ], + [ + "▁greed", + -13.379521369934082 + ], + [ + "Visiting", + -13.379638671875 + ], + [ + "Carlton", + -13.379727363586426 + ], + [ + "▁splend", + -13.37975025177002 + ], + [ + "▁Erkenntnisse", + -13.379898071289062 + ], + [ + "▁Russie", + -13.379916191101074 + ], + [ + "Agence", + -13.38007926940918 + ], + [ + "schickt", + -13.380288124084473 + ], + [ + "##", + -13.3804931640625 + ], + [ + "▁Erweiterung", + -13.380560874938965 + ], + [ + "▁Franchise", + -13.380560874938965 + ], + [ + "Dedicated", + -13.380563735961914 + ], + [ + "▁Wisdom", + -13.380569458007812 + ], + [ + "▁gagnant", + -13.380592346191406 + ], + [ + "planetary", + -13.380598068237305 + ], + [ + "▁affinity", + -13.380619049072266 + ], + [ + "▁préférence", + -13.380739212036133 + ], + [ + "▁intellect", + -13.380810737609863 + ], + [ + "▁Translat", + -13.380830764770508 + ], + [ + "▁Sultan", + -13.38089370727539 + ], + [ + "▁birouri", + -13.38101577758789 + ], + [ + "▁Academie", + -13.381224632263184 + ], + [ + "▁consequential", + -13.38138484954834 + ], + [ + "▁festgestellt", + -13.381402015686035 + ], + [ + "▁Chanel", + -13.381444931030273 + ], + [ + "▁soutenu", + -13.381875038146973 + ], + [ + "▁Montessori", + -13.381888389587402 + ], + [ + "▁equitable", + -13.381892204284668 + ], + [ + "▁théorie", + -13.381893157958984 + ], + [ + "▁primavara", + -13.3818941116333 + ], + [ + "▁Daughter", + -13.38189697265625 + ], + [ + "▁Dixon", + -13.381898880004883 + ], + [ + "▁unravel", + -13.38190746307373 + ], + [ + "Olimp", + -13.381915092468262 + ], + [ + "▁disturbed", + -13.381916999816895 + ], + [ + "▁novelty", + -13.382004737854004 + ], + [ + "synchronous", + -13.382113456726074 + ], + [ + "relevant", + -13.382166862487793 + ], + [ + "bourgeois", + -13.38251781463623 + ], + [ + "▁Parfum", + -13.38255500793457 + ], + [ + "▁Polonia", + -13.382563591003418 + ], + [ + "▁monoton", + -13.382781028747559 + ], + [ + "tratare", + -13.38302230834961 + ], + [ + "dumping", + -13.38318157196045 + ], + [ + "▁Bibliothek", + -13.383217811584473 + ], + [ + "▁Saskatchewan", + -13.383217811584473 + ], + [ + "▁experiential", + -13.383217811584473 + ], + [ + "▁verursacht", + -13.383217811584473 + ], + [ + "intègre", + -13.383218765258789 + ], + [ + "▁Intermediate", + -13.383275032043457 + ], + [ + "Israel", + -13.383476257324219 + ], + [ + "lucreaza", + -13.383495330810547 + ], + [ + "▁quantify", + -13.383862495422363 + ], + [ + "▁zahăr", + -13.383882522583008 + ], + [ + "▁încadr", + -13.383902549743652 + ], + [ + "Personalized", + -13.383946418762207 + ], + [ + "▁Chronic", + -13.384309768676758 + ], + [ + "hôpital", + -13.384549140930176 + ], + [ + "▁diskutiert", + -13.384549140930176 + ], + [ + "electrique", + -13.3848876953125 + ], + [ + "ethos", + -13.384978294372559 + ], + [ + "Nase", + -13.385059356689453 + ], + [ + "atmosphère", + -13.385214805603027 + ], + [ + "▁ungefähr", + -13.385215759277344 + ], + [ + "évaluer", + -13.385251998901367 + ], + [ + "▁scuz", + -13.385321617126465 + ], + [ + "haltige", + -13.38533878326416 + ], + [ + "January", + -13.38557243347168 + ], + [ + "▁Sharma", + -13.385603904724121 + ], + [ + "▁seizures", + -13.385881423950195 + ], + [ + "▁zucchini", + -13.385881423950195 + ], + [ + "▁Stadi", + -13.385885238647461 + ], + [ + "▁eccentric", + -13.385885238647461 + ], + [ + "▁offensichtlich", + -13.385909080505371 + ], + [ + "▁Irvine", + -13.385920524597168 + ], + [ + "cuprinse", + -13.38601303100586 + ], + [ + "▁Arbitr", + -13.386157035827637 + ], + [ + "Buenos", + -13.386183738708496 + ], + [ + "▁Shelter", + -13.386210441589355 + ], + [ + "CEPT", + -13.386454582214355 + ], + [ + "ouvri", + -13.386455535888672 + ], + [ + "acryl", + -13.386539459228516 + ], + [ + "▁Gourmet", + -13.38654899597168 + ], + [ + "scented", + -13.386595726013184 + ], + [ + "doubling", + -13.38659954071045 + ], + [ + "▁rafina", + -13.386608123779297 + ], + [ + "▁Vereinbarung", + -13.38721752166748 + ], + [ + "▁Dashboard", + -13.387218475341797 + ], + [ + "▁Sandwich", + -13.387218475341797 + ], + [ + "▁Riviera", + -13.387226104736328 + ], + [ + "échec", + -13.387237548828125 + ], + [ + "Giro", + -13.387253761291504 + ], + [ + "▁oasis", + -13.38725757598877 + ], + [ + "▁apology", + -13.3872709274292 + ], + [ + "▁YEAR", + -13.387272834777832 + ], + [ + "▁realtor", + -13.387504577636719 + ], + [ + "acheteur", + -13.38754653930664 + ], + [ + "▁larva", + -13.387613296508789 + ], + [ + "▁invitați", + -13.388097763061523 + ], + [ + "exhibiting", + -13.38830852508545 + ], + [ + "modernen", + -13.388331413269043 + ], + [ + "▁Collaboration", + -13.38855266571045 + ], + [ + "▁dezvălui", + -13.38855266571045 + ], + [ + "▁kiosk", + -13.38855266571045 + ], + [ + "▁Bermuda", + -13.388553619384766 + ], + [ + "Copiii", + -13.388564109802246 + ], + [ + "▁goddess", + -13.388581275939941 + ], + [ + "uplifting", + -13.388609886169434 + ], + [ + "▁simultan", + -13.388808250427246 + ], + [ + "▁episod", + -13.388884544372559 + ], + [ + "▁Braşov", + -13.38922119140625 + ], + [ + "cunoscută", + -13.389634132385254 + ], + [ + "▁Cherokee", + -13.389890670776367 + ], + [ + "▁Kazakhstan", + -13.389890670776367 + ], + [ + "▁Lauderdale", + -13.389890670776367 + ], + [ + "▁închisoare", + -13.389898300170898 + ], + [ + "▁Christchurch", + -13.389934539794922 + ], + [ + "▁influenţ", + -13.389982223510742 + ], + [ + "▁Meghan", + -13.390019416809082 + ], + [ + "▁Dienstleistung", + -13.390557289123535 + ], + [ + "▁cladiri", + -13.390564918518066 + ], + [ + "▁evrei", + -13.391148567199707 + ], + [ + "▁oatmeal", + -13.391230583190918 + ], + [ + "▁chronique", + -13.3912353515625 + ], + [ + "▁associée", + -13.391264915466309 + ], + [ + "▁Goose", + -13.391283988952637 + ], + [ + "gänz", + -13.391855239868164 + ], + [ + "▁Blätter", + -13.391901969909668 + ], + [ + "▁jurnalist", + -13.392212867736816 + ], + [ + "cedat", + -13.392263412475586 + ], + [ + "nommée", + -13.392315864562988 + ], + [ + "écrivain", + -13.392572402954102 + ], + [ + "▁epoxy", + -13.392577171325684 + ], + [ + "▁verlangt", + -13.392590522766113 + ], + [ + "Störung", + -13.392708778381348 + ], + [ + "▁Doyle", + -13.392729759216309 + ], + [ + "▁Philharmoni", + -13.392844200134277 + ], + [ + "▁déclare", + -13.393044471740723 + ], + [ + "effort", + -13.393045425415039 + ], + [ + "ström", + -13.393118858337402 + ], + [ + "▁cunoaşte", + -13.393244743347168 + ], + [ + "▁gigantic", + -13.3932466506958 + ], + [ + "któ", + -13.393378257751465 + ], + [ + "▁ilustr", + -13.393529891967773 + ], + [ + "▁frec", + -13.39371109008789 + ], + [ + "▁Syracuse", + -13.393916130065918 + ], + [ + "▁Einwilligung", + -13.393917083740234 + ], + [ + "▁miraculous", + -13.393917083740234 + ], + [ + "▁ökologisch", + -13.393917083740234 + ], + [ + "▁Simmons", + -13.393922805786133 + ], + [ + "▁albastru", + -13.393926620483398 + ], + [ + "besser", + -13.393962860107422 + ], + [ + "▁interioare", + -13.394006729125977 + ], + [ + "▁Trocken", + -13.394068717956543 + ], + [ + "niveau", + -13.39406967163086 + ], + [ + "▁Torah", + -13.394122123718262 + ], + [ + "▁beobachten", + -13.3945894241333 + ], + [ + "▁behandeln", + -13.394637107849121 + ], + [ + "staffed", + -13.394742965698242 + ], + [ + "hütte", + -13.394824028015137 + ], + [ + "Central", + -13.394939422607422 + ], + [ + "▁Freiburg", + -13.395198822021484 + ], + [ + "▁Netanyahu", + -13.395261764526367 + ], + [ + "▁Lexington", + -13.395302772521973 + ], + [ + "▁insotit", + -13.395492553710938 + ], + [ + "▁depasi", + -13.39560604095459 + ], + [ + "sewage", + -13.395853996276855 + ], + [ + "erkrankung", + -13.395951271057129 + ], + [ + "▁părţi", + -13.396234512329102 + ], + [ + "▁Nixon", + -13.39661693572998 + ], + [ + "Byron", + -13.396905899047852 + ], + [ + "▁varietat", + -13.39724063873291 + ], + [ + "▁Bildschirm", + -13.397299766540527 + ], + [ + "▁accompli", + -13.397424697875977 + ], + [ + "affirmed", + -13.397525787353516 + ], + [ + "▁phyto", + -13.397533416748047 + ], + [ + "sectiune", + -13.397592544555664 + ], + [ + "abteilung", + -13.397932052612305 + ], + [ + "▁voastre", + -13.397957801818848 + ], + [ + "GitHub", + -13.397958755493164 + ], + [ + "▁Jorge", + -13.39796257019043 + ], + [ + "ACTION", + -13.397972106933594 + ], + [ + "voastra", + -13.397984504699707 + ], + [ + "▁Peanut", + -13.397987365722656 + ], + [ + "▁bilingual", + -13.398011207580566 + ], + [ + "▁nourriture", + -13.39803695678711 + ], + [ + "▁Asphalt", + -13.398640632629395 + ], + [ + "emballage", + -13.399310111999512 + ], + [ + "▁sanitation", + -13.399310111999512 + ], + [ + "▁Dessert", + -13.399313926696777 + ], + [ + "intitulé", + -13.399322509765625 + ], + [ + "▁acţiune", + -13.399374008178711 + ], + [ + "▁Übersetzung", + -13.399402618408203 + ], + [ + "destinate", + -13.39941692352295 + ], + [ + "▁Goddess", + -13.399504661560059 + ], + [ + "poziție", + -13.399576187133789 + ], + [ + "denumirea", + -13.400002479553223 + ], + [ + "cantitatea", + -13.40002727508545 + ], + [ + "▁Stereo", + -13.400223731994629 + ], + [ + "object", + -13.400373458862305 + ], + [ + "▁décè", + -13.40058708190918 + ], + [ + "▁Handeln", + -13.400665283203125 + ], + [ + "▁ambience", + -13.400697708129883 + ], + [ + "▁Lindsay", + -13.4006986618042 + ], + [ + "▁tensiune", + -13.400781631469727 + ], + [ + "▁thrift", + -13.400788307189941 + ], + [ + "▁Optimiz", + -13.400843620300293 + ], + [ + "▁beantworten", + -13.401338577270508 + ], + [ + "▁magistrat", + -13.401342391967773 + ], + [ + "évidence", + -13.402016639709473 + ], + [ + "▁Eclipse", + -13.402016639709473 + ], + [ + "▁Ribbon", + -13.402016639709473 + ], + [ + "▁condensation", + -13.402016639709473 + ], + [ + "▁innocence", + -13.402018547058105 + ], + [ + "▁mascara", + -13.402023315429688 + ], + [ + "▁seventeen", + -13.402290344238281 + ], + [ + "▁compétent", + -13.402694702148438 + ], + [ + "bewertet", + -13.402717590332031 + ], + [ + "▁Muzic", + -13.40285587310791 + ], + [ + "complexities", + -13.402928352355957 + ], + [ + "ddington", + -13.403324127197266 + ], + [ + "Entwickler", + -13.403372764587402 + ], + [ + "masonry", + -13.4033784866333 + ], + [ + "Führer", + -13.403386116027832 + ], + [ + "▁awakening", + -13.403388977050781 + ], + [ + "▁lovitur", + -13.403806686401367 + ], + [ + "gebrochen", + -13.404068946838379 + ], + [ + "indexed", + -13.404478073120117 + ], + [ + "campania", + -13.404515266418457 + ], + [ + "▁Fountain", + -13.404730796813965 + ], + [ + "▁Joomla", + -13.404730796813965 + ], + [ + "▁Superintendent", + -13.404730796813965 + ], + [ + "▁Dahl", + -13.404742240905762 + ], + [ + "▁Benefici", + -13.404863357543945 + ], + [ + "optimiser", + -13.404919624328613 + ], + [ + "bursting", + -13.405380249023438 + ], + [ + "diplom", + -13.405427932739258 + ], + [ + "microsoft", + -13.405621528625488 + ], + [ + "▁correlate", + -13.405776977539062 + ], + [ + "▁arhitectura", + -13.405848503112793 + ], + [ + "▁lunette", + -13.40611743927002 + ], + [ + "Statistical", + -13.406147003173828 + ], + [ + "▁iarnă", + -13.406201362609863 + ], + [ + "▁importanț", + -13.406932830810547 + ], + [ + "sistence", + -13.407366752624512 + ], + [ + "associated", + -13.407402992248535 + ], + [ + "Occident", + -13.407452583312988 + ], + [ + "▁Heidelberg", + -13.407452583312988 + ], + [ + "▁acquaintance", + -13.407452583312988 + ], + [ + "Introducing", + -13.407453536987305 + ], + [ + "▁ripple", + -13.407480239868164 + ], + [ + "▁Childhood", + -13.407563209533691 + ], + [ + "drywall", + -13.407577514648438 + ], + [ + "Vreau", + -13.40771770477295 + ], + [ + "▁compétence", + -13.407967567443848 + ], + [ + "▁asteapta", + -13.408135414123535 + ], + [ + "▁duhovnic", + -13.408135414123535 + ], + [ + "▁învăţământ", + -13.408141136169434 + ], + [ + "encompassing", + -13.40829849243164 + ], + [ + "1997)", + -13.408370018005371 + ], + [ + "▁atractiv", + -13.408515930175781 + ], + [ + "Majoritatea", + -13.408775329589844 + ], + [ + "▁bungalow", + -13.40881633758545 + ], + [ + "▁Introduce", + -13.408817291259766 + ], + [ + "▁culprit", + -13.408817291259766 + ], + [ + "▁malheureusement", + -13.408817291259766 + ], + [ + "▁voudrai", + -13.408817291259766 + ], + [ + "Europäische", + -13.408825874328613 + ], + [ + "wunsch", + -13.408880233764648 + ], + [ + "▁înțeles", + -13.408892631530762 + ], + [ + "▁infestation", + -13.40889835357666 + ], + [ + "Bringing", + -13.409186363220215 + ], + [ + "▁Mehrheit", + -13.409229278564453 + ], + [ + "ски", + -13.409456253051758 + ], + [ + "▁procéder", + -13.409499168395996 + ], + [ + "grupului", + -13.409504890441895 + ], + [ + "▁dispoziti", + -13.40964412689209 + ], + [ + "▁snug", + -13.409950256347656 + ], + [ + "▁Afrika", + -13.41018295288086 + ], + [ + "▁Madagascar", + -13.41018295288086 + ], + [ + "Părinte", + -13.410195350646973 + ], + [ + "▁Clayton", + -13.410223960876465 + ], + [ + "▁antagonist", + -13.410239219665527 + ], + [ + "termeni", + -13.410250663757324 + ], + [ + "▁Literary", + -13.410391807556152 + ], + [ + "▁Babylon", + -13.410452842712402 + ], + [ + "▁überprüfen", + -13.410865783691406 + ], + [ + "▁duminica", + -13.410879135131836 + ], + [ + "farbig", + -13.410970687866211 + ], + [ + "nennt", + -13.411064147949219 + ], + [ + "annual", + -13.411487579345703 + ], + [ + "▁Qualcomm", + -13.41154956817627 + ], + [ + "▁Slovakia", + -13.41154956817627 + ], + [ + "▁plictis", + -13.411552429199219 + ], + [ + "▁prairie", + -13.411554336547852 + ], + [ + "▁Schatten", + -13.411622047424316 + ], + [ + "▁compléter", + -13.41223430633545 + ], + [ + "inauguration", + -13.412376403808594 + ], + [ + "▁apărare", + -13.412407875061035 + ], + [ + "▁întăr", + -13.412412643432617 + ], + [ + "▁pronunciation", + -13.412919044494629 + ], + [ + "▁bewährt", + -13.412919998168945 + ], + [ + "▁Viertel", + -13.413084983825684 + ], + [ + "▁Heidi", + -13.413252830505371 + ], + [ + "▁Gummi", + -13.413507461547852 + ], + [ + "▁veggie", + -13.413552284240723 + ], + [ + "▁monsieur", + -13.413604736328125 + ], + [ + "éveil", + -13.413630485534668 + ], + [ + "shipments", + -13.413928985595703 + ], + [ + "▁Medikamente", + -13.414290428161621 + ], + [ + "▁Johannesburg", + -13.414314270019531 + ], + [ + "▁ermittelt", + -13.414321899414062 + ], + [ + "▁bataille", + -13.414440155029297 + ], + [ + "extrem", + -13.414609909057617 + ], + [ + "▁1:2", + -13.414671897888184 + ], + [ + "Array", + -13.414725303649902 + ], + [ + "▁portail", + -13.414857864379883 + ], + [ + "▁găzdui", + -13.414977073669434 + ], + [ + "▁Calcium", + -13.41497802734375 + ], + [ + "▁Correction", + -13.415104866027832 + ], + [ + "bureaux", + -13.41528034210205 + ], + [ + "bestselling", + -13.415338516235352 + ], + [ + "Übungen", + -13.415420532226562 + ], + [ + "paramètres", + -13.415633201599121 + ], + [ + "▁Provincial", + -13.415663719177246 + ], + [ + "▁outrageous", + -13.415680885314941 + ], + [ + "▁Giveaway", + -13.415775299072266 + ], + [ + "▁LGBTQ", + -13.41589641571045 + ], + [ + "geklärt", + -13.416854858398438 + ], + [ + "▁Karlsruhe", + -13.417038917541504 + ], + [ + "▁esențial", + -13.417038917541504 + ], + [ + "avancée", + -13.41703987121582 + ], + [ + "hesitant", + -13.417040824890137 + ], + [ + "enlarged", + -13.417069435119629 + ], + [ + "▁inherit", + -13.417121887207031 + ], + [ + "Food", + -13.4171724319458 + ], + [ + "bucuria", + -13.417181015014648 + ], + [ + "▁BTW", + -13.417400360107422 + ], + [ + "associe", + -13.417579650878906 + ], + [ + "▁Möchte", + -13.417742729187012 + ], + [ + "demokrat", + -13.417789459228516 + ], + [ + "Turcia", + -13.417964935302734 + ], + [ + "forged", + -13.418370246887207 + ], + [ + "▁Zhao", + -13.418442726135254 + ], + [ + "▁cherries", + -13.418556213378906 + ], + [ + "▁evangelical", + -13.418631553649902 + ], + [ + "▁jüng", + -13.418792724609375 + ], + [ + "spans", + -13.41880989074707 + ], + [ + "▁străluc", + -13.41888427734375 + ], + [ + "▁geschie", + -13.41893196105957 + ], + [ + "▁Tattoo", + -13.419112205505371 + ], + [ + "sanitary", + -13.419114112854004 + ], + [ + "▁biopsy", + -13.419353485107422 + ], + [ + "▁imprumut", + -13.419795036315918 + ], + [ + "▁unreasonable", + -13.419795036315918 + ], + [ + "Funktion", + -13.419800758361816 + ], + [ + "▁prohibition", + -13.419904708862305 + ], + [ + "▁Prezent", + -13.419939041137695 + ], + [ + "boosted", + -13.419967651367188 + ], + [ + "▁chalet", + -13.420382499694824 + ], + [ + "▁tanar", + -13.420450210571289 + ], + [ + "Faktoren", + -13.420489311218262 + ], + [ + "▁Mozilla", + -13.420550346374512 + ], + [ + "▁Lambert", + -13.420760154724121 + ], + [ + "▁Cruci", + -13.420927047729492 + ], + [ + "▁Flugzeug", + -13.421198844909668 + ], + [ + "reassure", + -13.421205520629883 + ], + [ + "envisioned", + -13.421542167663574 + ], + [ + "Traditionally", + -13.421773910522461 + ], + [ + "▁parametri", + -13.42185115814209 + ], + [ + "▁unicorn", + -13.421891212463379 + ], + [ + "▁adéquat", + -13.421894073486328 + ], + [ + "▁Colonial", + -13.421915054321289 + ], + [ + "▁Kwa", + -13.422097206115723 + ], + [ + "▁SERV", + -13.422333717346191 + ], + [ + "tourism", + -13.422627449035645 + ], + [ + "▁Kiev", + -13.422974586486816 + ], + [ + "heightened", + -13.42309284210205 + ], + [ + "circulating", + -13.423099517822266 + ], + [ + "▁Kreditkarte", + -13.42310619354248 + ], + [ + "gedruckt", + -13.423110008239746 + ], + [ + "▁Depend", + -13.423120498657227 + ], + [ + "Style", + -13.423196792602539 + ], + [ + "▁Rettungs", + -13.42325496673584 + ], + [ + "wrongful", + -13.423418998718262 + ], + [ + "▁devour", + -13.423453330993652 + ], + [ + "▁manevr", + -13.423582077026367 + ], + [ + "carora", + -13.423628807067871 + ], + [ + "erfolgreichen", + -13.423723220825195 + ], + [ + "überwiegend", + -13.423942565917969 + ], + [ + "▁Sauvignon", + -13.423942565917969 + ], + [ + "händler", + -13.423944473266602 + ], + [ + "▁annotation", + -13.424009323120117 + ], + [ + "▁expans", + -13.424020767211914 + ], + [ + "▁recital", + -13.424080848693848 + ], + [ + "inhabited", + -13.424367904663086 + ], + [ + "OnePlus", + -13.424549102783203 + ], + [ + "Gästen", + -13.424588203430176 + ], + [ + "beliebig", + -13.424613952636719 + ], + [ + "▁Anonymous", + -13.424635887145996 + ], + [ + "▁Ansprechpartner", + -13.424635887145996 + ], + [ + "▁tamb", + -13.42464542388916 + ], + [ + "estimating", + -13.424670219421387 + ], + [ + "frequent", + -13.424769401550293 + ], + [ + "▁disciplin", + -13.425241470336914 + ], + [ + "▁plombier", + -13.425329208374023 + ], + [ + "▁teoretic", + -13.42533016204834 + ], + [ + "greift", + -13.425339698791504 + ], + [ + "▁Einschränkung", + -13.42537784576416 + ], + [ + "obscur", + -13.426115989685059 + ], + [ + "architecte", + -13.426233291625977 + ], + [ + "▁détour", + -13.42647647857666 + ], + [ + "▁spaghetti", + -13.426717758178711 + ], + [ + "croft", + -13.42693042755127 + ], + [ + "▁Grammar", + -13.426953315734863 + ], + [ + "▁investitii", + -13.427062034606934 + ], + [ + "▁glorif", + -13.427067756652832 + ], + [ + "architekt", + -13.427412033081055 + ], + [ + "Oricum", + -13.427451133728027 + ], + [ + "▁bruise", + -13.427692413330078 + ], + [ + "▁McCarthy", + -13.428107261657715 + ], + [ + "▁Uruguay", + -13.428107261657715 + ], + [ + "Produsele", + -13.428109169006348 + ], + [ + "▁Comparison", + -13.42811107635498 + ], + [ + "▁fondamental", + -13.42811107635498 + ], + [ + "▁stradă", + -13.428115844726562 + ], + [ + "▁Countries", + -13.428131103515625 + ], + [ + "▁guéri", + -13.42825698852539 + ], + [ + "▁bâti", + -13.428339004516602 + ], + [ + "▁blunt", + -13.428515434265137 + ], + [ + "▁Sistem", + -13.428645133972168 + ], + [ + "▁Betroffenen", + -13.428803443908691 + ], + [ + "efectuare", + -13.428823471069336 + ], + [ + "▁scharf", + -13.428899765014648 + ], + [ + "naps", + -13.429057121276855 + ], + [ + "▁plaid", + -13.429163932800293 + ], + [ + "▁investiții", + -13.429367065429688 + ], + [ + "evenimentele", + -13.42948055267334 + ], + [ + "▁Phuket", + -13.429499626159668 + ], + [ + "▁testosterone", + -13.429499626159668 + ], + [ + "▁scaffold", + -13.429500579833984 + ], + [ + "▁rasch", + -13.430022239685059 + ], + [ + "▁adânc", + -13.430076599121094 + ], + [ + "atteinte", + -13.430228233337402 + ], + [ + "▁educație", + -13.430320739746094 + ], + [ + "▁leopard", + -13.430893898010254 + ], + [ + "▁superioare", + -13.430893898010254 + ], + [ + "▁téléchargement", + -13.430893898010254 + ], + [ + "▁Weapon", + -13.431103706359863 + ], + [ + "favourable", + -13.431336402893066 + ], + [ + "nourishing", + -13.43143367767334 + ], + [ + "▁verfolgt", + -13.43160629272461 + ], + [ + "▁tablou", + -13.431633949279785 + ], + [ + "Algérie", + -13.431657791137695 + ], + [ + "Islam", + -13.431700706481934 + ], + [ + "faser", + -13.431825637817383 + ], + [ + "rhythm", + -13.432214736938477 + ], + [ + "▁Anthropolog", + -13.432291030883789 + ], + [ + "▁clôtur", + -13.432291030883789 + ], + [ + "spüren", + -13.432291984558105 + ], + [ + "▁Architectural", + -13.432294845581055 + ], + [ + "▁imaginary", + -13.432368278503418 + ], + [ + "cône", + -13.432456016540527 + ], + [ + "▁snuggl", + -13.432744026184082 + ], + [ + "disadvantaged", + -13.432745933532715 + ], + [ + "radically", + -13.4329195022583 + ], + [ + "Première", + -13.433011054992676 + ], + [ + "▁combinaison", + -13.433027267456055 + ], + [ + "▁Algeria", + -13.43303108215332 + ], + [ + "▁Wände", + -13.43317985534668 + ], + [ + "aesthetically", + -13.43336009979248 + ], + [ + "▁McKe", + -13.433368682861328 + ], + [ + "interroge", + -13.433473587036133 + ], + [ + "exclusive", + -13.433475494384766 + ], + [ + "▁Thomson", + -13.433688163757324 + ], + [ + "▁Gujarat", + -13.43368911743164 + ], + [ + "irgendwo", + -13.433690071105957 + ], + [ + "Severin", + -13.433767318725586 + ], + [ + "▁imitation", + -13.433926582336426 + ], + [ + "constructed", + -13.434194564819336 + ], + [ + "▁Montpellier", + -13.434388160705566 + ], + [ + "cedent", + -13.434539794921875 + ], + [ + "accelerating", + -13.434563636779785 + ], + [ + "dommages", + -13.4346284866333 + ], + [ + "lideri", + -13.434730529785156 + ], + [ + "▁Millennium", + -13.435089111328125 + ], + [ + "▁imprisonment", + -13.435089111328125 + ], + [ + "machining", + -13.435111999511719 + ], + [ + "▁anxiet", + -13.43521499633789 + ], + [ + "Contains", + -13.435298919677734 + ], + [ + "pleade", + -13.435563087463379 + ], + [ + "DOWN", + -13.43564510345459 + ], + [ + "geschehen", + -13.435797691345215 + ], + [ + "restaurant", + -13.435811996459961 + ], + [ + "Totusi", + -13.435839653015137 + ], + [ + "amintesc", + -13.436158180236816 + ], + [ + "▁Crisp", + -13.436233520507812 + ], + [ + "aduse", + -13.436278343200684 + ], + [ + "▁imposé", + -13.436351776123047 + ], + [ + "Jubiläum", + -13.436490058898926 + ], + [ + "▁Plaintiff", + -13.436491012573242 + ], + [ + "▁authoritative", + -13.436491966247559 + ], + [ + "▁rendition", + -13.436633110046387 + ], + [ + "Royce", + -13.436707496643066 + ], + [ + "1996)", + -13.436724662780762 + ], + [ + "Asociația", + -13.437192916870117 + ], + [ + "▁Gluten", + -13.437264442443848 + ], + [ + "feature", + -13.43741226196289 + ], + [ + "Behavioral", + -13.437454223632812 + ], + [ + "tearing", + -13.437763214111328 + ], + [ + "▁Entfernung", + -13.437894821166992 + ], + [ + "▁Responsibility", + -13.437894821166992 + ], + [ + "▁negligent", + -13.437894821166992 + ], + [ + "▁syllabus", + -13.437894821166992 + ], + [ + "▁Cycling", + -13.437895774841309 + ], + [ + "generell", + -13.438114166259766 + ], + [ + "customised", + -13.438392639160156 + ], + [ + "Management", + -13.43850326538086 + ], + [ + "▁timid", + -13.438518524169922 + ], + [ + "Tagged", + -13.438730239868164 + ], + [ + "▁susţinut", + -13.438809394836426 + ], + [ + "anchored", + -13.43892765045166 + ], + [ + "alternating", + -13.439055442810059 + ], + [ + "▁obligatoriu", + -13.439300537109375 + ], + [ + "▁reinstate", + -13.439456939697266 + ], + [ + "Können", + -13.43946361541748 + ], + [ + "▁Paol", + -13.439596176147461 + ], + [ + "öhr", + -13.439603805541992 + ], + [ + "▁Asociati", + -13.439876556396484 + ], + [ + "▁commenc", + -13.440285682678223 + ], + [ + "reinigt", + -13.440293312072754 + ], + [ + "commended", + -13.440350532531738 + ], + [ + "▁Proceed", + -13.440675735473633 + ], + [ + "beutel", + -13.440702438354492 + ], + [ + "▁Experimental", + -13.44070816040039 + ], + [ + "▁constellation", + -13.44070816040039 + ], + [ + "▁gepflegt", + -13.44070816040039 + ], + [ + "▁Ergänzung", + -13.440709114074707 + ], + [ + "Judith", + -13.440713882446289 + ], + [ + "▁Quartet", + -13.440720558166504 + ], + [ + "complemented", + -13.440742492675781 + ], + [ + "ausbildung", + -13.440750122070312 + ], + [ + "▁uncertainties", + -13.44077205657959 + ], + [ + "▁humiliat", + -13.440914154052734 + ], + [ + "luta", + -13.441121101379395 + ], + [ + "▁complexion", + -13.441482543945312 + ], + [ + "Serviciul", + -13.441612243652344 + ], + [ + "▁Toast", + -13.441722869873047 + ], + [ + "ummies", + -13.442425727844238 + ], + [ + "▁irit", + -13.442463874816895 + ], + [ + "producing", + -13.442585945129395 + ], + [ + "amenajare", + -13.442825317382812 + ], + [ + "▁béton", + -13.442828178405762 + ], + [ + "▁serpent", + -13.442851066589355 + ], + [ + "▁vizită", + -13.442996978759766 + ], + [ + "▁Beamte", + -13.443017959594727 + ], + [ + "▁Füße", + -13.443166732788086 + ], + [ + "▁Norwich", + -13.443531036376953 + ], + [ + "▁acronym", + -13.443531036376953 + ], + [ + "▁eradicate", + -13.443531036376953 + ], + [ + "▁solidarité", + -13.44353199005127 + ], + [ + "▁eggplant", + -13.443582534790039 + ], + [ + "▁sailors", + -13.443619728088379 + ], + [ + "waschen", + -13.444538116455078 + ], + [ + "Editura", + -13.444757461547852 + ], + [ + "▁erwerben", + -13.444944381713867 + ], + [ + "▁unconventional", + -13.444944381713867 + ], + [ + "▁boulder", + -13.444948196411133 + ], + [ + "Diplom", + -13.445013046264648 + ], + [ + "influx", + -13.446162223815918 + ], + [ + "▁Twelve", + -13.446361541748047 + ], + [ + "▁Sexual", + -13.44636344909668 + ], + [ + "numite", + -13.446369171142578 + ], + [ + "▁kontaktieren", + -13.446370124816895 + ], + [ + "▁strâns", + -13.44637680053711 + ], + [ + "▁précisément", + -13.446382522583008 + ], + [ + "empfindlich", + -13.446405410766602 + ], + [ + "▁divulg", + -13.446490287780762 + ], + [ + "▁delicat", + -13.446539878845215 + ], + [ + "compete", + -13.446542739868164 + ], + [ + "▁implique", + -13.446616172790527 + ], + [ + "implantation", + -13.44672966003418 + ], + [ + "frères", + -13.447328567504883 + ], + [ + "shedding", + -13.44758415222168 + ], + [ + "découvrez", + -13.447657585144043 + ], + [ + "rith", + -13.447735786437988 + ], + [ + "▁réglementation", + -13.447778701782227 + ], + [ + "▁transistor", + -13.447785377502441 + ], + [ + "inflated", + -13.447792053222656 + ], + [ + "▁Bluff", + -13.447887420654297 + ], + [ + "▁Aquarium", + -13.448526382446289 + ], + [ + "▁mananc", + -13.448638916015625 + ], + [ + "▁disinfect", + -13.448700904846191 + ], + [ + "tuft", + -13.448740005493164 + ], + [ + "Public", + -13.449081420898438 + ], + [ + "conceivabl", + -13.449197769165039 + ], + [ + "▁Cadillac", + -13.449197769165039 + ], + [ + "Assassin", + -13.449199676513672 + ], + [ + "issuance", + -13.449252128601074 + ], + [ + "▁Achtung", + -13.449287414550781 + ], + [ + "▁grundlegend", + -13.449909210205078 + ], + [ + "▁Băsescu", + -13.449910163879395 + ], + [ + "schaden", + -13.45014476776123 + ], + [ + "coached", + -13.450409889221191 + ], + [ + "▁betreffend", + -13.45046329498291 + ], + [ + "ergebnis", + -13.450541496276855 + ], + [ + "▁Lieutenant", + -13.4506196975708 + ], + [ + "WORLD", + -13.450620651245117 + ], + [ + "▁Moroccan", + -13.450620651245117 + ], + [ + "▁Butterfly", + -13.450621604919434 + ], + [ + "would", + -13.450737953186035 + ], + [ + "▁Metropol", + -13.451025009155273 + ], + [ + "lexic", + -13.451192855834961 + ], + [ + "comunitatea", + -13.45124340057373 + ], + [ + "vapeur", + -13.451456069946289 + ], + [ + "4.000", + -13.451559066772461 + ], + [ + "Pentru", + -13.451581954956055 + ], + [ + "üblichen", + -13.451613426208496 + ], + [ + "▁Général", + -13.451770782470703 + ], + [ + "▁Versailles", + -13.452046394348145 + ], + [ + "▁engraving", + -13.452046394348145 + ], + [ + "▁pédagogique", + -13.452192306518555 + ], + [ + "▁Policies", + -13.452759742736816 + ], + [ + "descending", + -13.453235626220703 + ], + [ + "stärkt", + -13.453349113464355 + ], + [ + "▁démocratie", + -13.453470230102539 + ], + [ + "▁granddaughter", + -13.453470230102539 + ], + [ + "▁buffalo", + -13.453474998474121 + ], + [ + "Datorita", + -13.45347785949707 + ], + [ + "hydroxy", + -13.453537940979004 + ], + [ + "▁ganduri", + -13.453566551208496 + ], + [ + "▁hijack", + -13.453624725341797 + ], + [ + "zahn", + -13.453699111938477 + ], + [ + "poziția", + -13.45406436920166 + ], + [ + "▁Zähne", + -13.454184532165527 + ], + [ + "▁grossesse", + -13.454296112060547 + ], + [ + "embassy", + -13.4548978805542 + ], + [ + "▁cérémonie", + -13.4548978805542 + ], + [ + "Rhône", + -13.454898834228516 + ], + [ + "▁Cabernet", + -13.454898834228516 + ], + [ + "▁Namibia", + -13.454902648925781 + ], + [ + "▁pedestal", + -13.454902648925781 + ], + [ + "▁Fighting", + -13.45490550994873 + ], + [ + "▁Threat", + -13.454962730407715 + ], + [ + "▁ideological", + -13.455047607421875 + ], + [ + "▁restitu", + -13.455183029174805 + ], + [ + "gelangt", + -13.455510139465332 + ], + [ + "Mitgliedern", + -13.455537796020508 + ], + [ + "acquérir", + -13.455613136291504 + ], + [ + "▁inferioar", + -13.45561695098877 + ], + [ + "Thierry", + -13.455619812011719 + ], + [ + "▁Entspannung", + -13.455638885498047 + ], + [ + "frequency", + -13.45566177368164 + ], + [ + "▁Fluid", + -13.455686569213867 + ], + [ + "▁betreut", + -13.455901145935059 + ], + [ + "Biological", + -13.455965995788574 + ], + [ + "▁Constanţa", + -13.456328392028809 + ], + [ + "▁beschäftigen", + -13.456328392028809 + ], + [ + "▁undesirable", + -13.456328392028809 + ], + [ + "▁protégé", + -13.456365585327148 + ], + [ + "▁nautical", + -13.456474304199219 + ], + [ + "▁sniff", + -13.456507682800293 + ], + [ + "Decizi", + -13.456510543823242 + ], + [ + "▁căldur", + -13.45706558227539 + ], + [ + "▁ideologi", + -13.457335472106934 + ], + [ + "Fraktion", + -13.457545280456543 + ], + [ + "collegiate", + -13.45776081085205 + ], + [ + "▁sănătos", + -13.45776081085205 + ], + [ + "▁Observatory", + -13.45776653289795 + ], + [ + "▁saturation", + -13.457769393920898 + ], + [ + "organizate", + -13.457771301269531 + ], + [ + "mergem", + -13.458321571350098 + ], + [ + "Publish", + -13.458451271057129 + ], + [ + "▁rattle", + -13.458460807800293 + ], + [ + "▁întâlniri", + -13.458663940429688 + ], + [ + "emporte", + -13.458741188049316 + ], + [ + "▁înscris", + -13.459046363830566 + ], + [ + "▁Patterson", + -13.459195137023926 + ], + [ + "▁ehrenamtlich", + -13.459195137023926 + ], + [ + "linux", + -13.459213256835938 + ], + [ + "conduire", + -13.45921802520752 + ], + [ + "▁absolven", + -13.459223747253418 + ], + [ + "▁einzigartig", + -13.459598541259766 + ], + [ + "▁_____", + -13.459803581237793 + ], + [ + "▁Beschäftigung", + -13.459912300109863 + ], + [ + "▁erfasst", + -13.459927558898926 + ], + [ + "▁Datum", + -13.459992408752441 + ], + [ + "raportul", + -13.460284233093262 + ], + [ + "ennemi", + -13.460460662841797 + ], + [ + "default", + -13.460643768310547 + ], + [ + "icillin", + -13.46066951751709 + ], + [ + "▁diamant", + -13.460671424865723 + ], + [ + "amerika", + -13.460684776306152 + ], + [ + "▁pescuit", + -13.46070384979248 + ], + [ + "▁grappl", + -13.460797309875488 + ], + [ + "▁Homeland", + -13.46082592010498 + ], + [ + "▁tromb", + -13.46112060546875 + ], + [ + "▁reduzieren", + -13.461349487304688 + ], + [ + "▁Statut", + -13.461593627929688 + ], + [ + "booming", + -13.461670875549316 + ], + [ + "fenced", + -13.461723327636719 + ], + [ + "measure", + -13.461888313293457 + ], + [ + "témoin", + -13.462069511413574 + ], + [ + "▁Inventory", + -13.462069511413574 + ], + [ + "▁circonstance", + -13.462069511413574 + ], + [ + "▁téléphonique", + -13.462069511413574 + ], + [ + "▁împiedic", + -13.46207046508789 + ], + [ + "▁Settlement", + -13.462072372436523 + ], + [ + "kannte", + -13.462076187133789 + ], + [ + "▁substantive", + -13.462385177612305 + ], + [ + "miterea", + -13.462642669677734 + ], + [ + "▁noştri", + -13.462790489196777 + ], + [ + "▁plăcere", + -13.462791442871094 + ], + [ + "▁eticheta", + -13.462823867797852 + ], + [ + "quickest", + -13.462993621826172 + ], + [ + "▁pasageri", + -13.463089942932129 + ], + [ + "▁Publi", + -13.463495254516602 + ], + [ + "▁Suzanne", + -13.463509559631348 + ], + [ + "▁bucătări", + -13.463509559631348 + ], + [ + "Regulatory", + -13.463510513305664 + ], + [ + "▁Mandarin", + -13.463647842407227 + ], + [ + "surgical", + -13.463947296142578 + ], + [ + "▁Smash", + -13.463950157165527 + ], + [ + "▁mândr", + -13.46403694152832 + ], + [ + "▁Unterkunft", + -13.464315414428711 + ], + [ + "moos", + -13.464374542236328 + ], + [ + "Camere", + -13.464510917663574 + ], + [ + "/03/", + -13.464651107788086 + ], + [ + "▁ethno", + -13.464677810668945 + ], + [ + "▁Eröffnung", + -13.46495246887207 + ], + [ + "▁Snyder", + -13.46495246887207 + ], + [ + "▁Wilmington", + -13.46495246887207 + ], + [ + "▁Canberra", + -13.464953422546387 + ], + [ + "▁Tahoe", + -13.464953422546387 + ], + [ + "▁slippery", + -13.464953422546387 + ], + [ + "▁Snake", + -13.464957237243652 + ], + [ + "▁turmeric", + -13.464963912963867 + ], + [ + "▁Cartoon", + -13.46499252319336 + ], + [ + "▁scrisoare", + -13.46500015258789 + ], + [ + "▁reprend", + -13.465425491333008 + ], + [ + "▁Konkurrenz", + -13.46567440032959 + ], + [ + "▁raisins", + -13.465693473815918 + ], + [ + "▁Werkstatt", + -13.465713500976562 + ], + [ + "▁agresiv", + -13.465795516967773 + ], + [ + "hugs", + -13.46615219116211 + ], + [ + "cazurile", + -13.46618938446045 + ], + [ + "spirited", + -13.466232299804688 + ], + [ + "▁britisch", + -13.466307640075684 + ], + [ + "spritz", + -13.466367721557617 + ], + [ + "auxiliary", + -13.46639633178711 + ], + [ + "interprétation", + -13.46639633178711 + ], + [ + "▁verbindet", + -13.46639633178711 + ], + [ + "▁fuzzy", + -13.466429710388184 + ], + [ + "▁turmoil", + -13.466432571411133 + ], + [ + "▁redefine", + -13.466819763183594 + ], + [ + "▁Kiwi", + -13.466890335083008 + ], + [ + "oiseaux", + -13.46712875366211 + ], + [ + "▁pamper", + -13.467146873474121 + ], + [ + "▁desfaso", + -13.46719741821289 + ], + [ + "▁pragu", + -13.467576026916504 + ], + [ + "prevenirea", + -13.467730522155762 + ], + [ + "▁convergence", + -13.467846870422363 + ], + [ + "tufted", + -13.467878341674805 + ], + [ + "brewed", + -13.467981338500977 + ], + [ + "villagers", + -13.468003273010254 + ], + [ + "▁Irving", + -13.468170166015625 + ], + [ + "nigsten", + -13.468660354614258 + ], + [ + "▁embod", + -13.468742370605469 + ], + [ + "Alicia", + -13.468938827514648 + ], + [ + "probably", + -13.469009399414062 + ], + [ + "divider", + -13.46904468536377 + ], + [ + "Attempt", + -13.469223022460938 + ], + [ + "▁Cognitive", + -13.469292640686035 + ], + [ + "▁Recognition", + -13.469292640686035 + ], + [ + "▁concierge", + -13.469292640686035 + ], + [ + "▁Semester", + -13.4692964553833 + ], + [ + "Economie", + -13.469417572021484 + ], + [ + "sortiment", + -13.469460487365723 + ], + [ + "shortest", + -13.46961498260498 + ], + [ + "üchtig", + -13.469650268554688 + ], + [ + "▁conveyanc", + -13.469978332519531 + ], + [ + "▁Ferdinand", + -13.470017433166504 + ], + [ + "▁permanence", + -13.470019340515137 + ], + [ + "▁incadr", + -13.470145225524902 + ], + [ + "▁estrogen", + -13.470290184020996 + ], + [ + "February", + -13.470661163330078 + ], + [ + "gedeckt", + -13.470704078674316 + ], + [ + "▁reagieren", + -13.470743179321289 + ], + [ + "▁meditate", + -13.470980644226074 + ], + [ + "simulated", + -13.471010208129883 + ], + [ + "▁supprimer", + -13.471468925476074 + ], + [ + "▁bumbac", + -13.47146987915039 + ], + [ + "▁vânzări", + -13.471477508544922 + ], + [ + "▁Kapitel", + -13.471478462219238 + ], + [ + "▁Weltkrieg", + -13.471513748168945 + ], + [ + "déposer", + -13.471674919128418 + ], + [ + "Asus", + -13.4718017578125 + ], + [ + "▁Communicat", + -13.471851348876953 + ], + [ + "Finished", + -13.47188949584961 + ], + [ + "▁Telegraph", + -13.472054481506348 + ], + [ + "▁Competitive", + -13.472196578979492 + ], + [ + "▁collectivités", + -13.472197532653809 + ], + [ + "▁protège", + -13.472199440002441 + ], + [ + "▁scallop", + -13.472219467163086 + ], + [ + "Happy", + -13.472335815429688 + ], + [ + "tehnică", + -13.472352981567383 + ], + [ + "▁Gestalt", + -13.47270393371582 + ], + [ + "▁benign", + -13.47295093536377 + ], + [ + "kraut", + -13.473149299621582 + ], + [ + "louer", + -13.473221778869629 + ], + [ + "▁Printr", + -13.47326946258545 + ], + [ + "mputation", + -13.473346710205078 + ], + [ + "▁dicke", + -13.473429679870605 + ], + [ + "▁Halifax", + -13.473650932312012 + ], + [ + "▁bounty", + -13.473650932312012 + ], + [ + "▁cauliflower", + -13.473650932312012 + ], + [ + "▁Survival", + -13.473654747009277 + ], + [ + "▁Chandler", + -13.473684310913086 + ], + [ + "▁bemüh", + -13.473760604858398 + ], + [ + "phro", + -13.473855972290039 + ], + [ + "Friday", + -13.474018096923828 + ], + [ + "particularly", + -13.474032402038574 + ], + [ + "arteries", + -13.474197387695312 + ], + [ + "Lösung", + -13.474771499633789 + ], + [ + "▁causal", + -13.474817276000977 + ], + [ + "▁recueilli", + -13.475075721740723 + ], + [ + "Stylish", + -13.47510814666748 + ], + [ + "schränke", + -13.47510814666748 + ], + [ + "▁francophone", + -13.47510814666748 + ], + [ + "▁limousine", + -13.47510814666748 + ], + [ + "▁statistiques", + -13.47510814666748 + ], + [ + "▁Kleider", + -13.475111961364746 + ], + [ + "▁dunkel", + -13.475127220153809 + ], + [ + "tätigkeit", + -13.475190162658691 + ], + [ + "▁punished", + -13.475257873535156 + ], + [ + "▁implică", + -13.475539207458496 + ], + [ + "▁inițial", + -13.475568771362305 + ], + [ + "▁Eminescu", + -13.475837707519531 + ], + [ + "▁expliqué", + -13.475837707519531 + ], + [ + "▁Eduard", + -13.475839614868164 + ], + [ + "▁psychologique", + -13.475870132446289 + ], + [ + "▁protejeaz", + -13.476580619812012 + ], + [ + "spül", + -13.476709365844727 + ], + [ + "▁Virtu", + -13.477021217346191 + ], + [ + "▁régulière", + -13.477044105529785 + ], + [ + "▁Outreach", + -13.477130889892578 + ], + [ + "▁Apprentice", + -13.47729778289795 + ], + [ + "▁compréhension", + -13.47729778289795 + ], + [ + "▁zwölf", + -13.47729778289795 + ], + [ + "Surgical", + -13.477315902709961 + ], + [ + "latéral", + -13.477417945861816 + ], + [ + "▁Ceremony", + -13.47803020477295 + ], + [ + "▁Shampoo", + -13.47803783416748 + ], + [ + "Global", + -13.478239059448242 + ], + [ + "▁paradis", + -13.478302955627441 + ], + [ + "Developed", + -13.478493690490723 + ], + [ + "▁figurine", + -13.478549003601074 + ], + [ + "sujets", + -13.478574752807617 + ], + [ + "▁Naomi", + -13.478772163391113 + ], + [ + "financed", + -13.478838920593262 + ], + [ + "forestry", + -13.478896141052246 + ], + [ + "▁Anregung", + -13.479494094848633 + ], + [ + "▁spectateur", + -13.479804039001465 + ], + [ + "▁exercitii", + -13.479815483093262 + ], + [ + "▁russisch", + -13.479888916015625 + ], + [ + "gefunden", + -13.479988098144531 + ], + [ + "schleunig", + -13.480225563049316 + ], + [ + "▁géographique", + -13.480225563049316 + ], + [ + "▁Delphi", + -13.480317115783691 + ], + [ + "Freddie", + -13.4806489944458 + ], + [ + "▁muzici", + -13.480958938598633 + ], + [ + "▁Edmund", + -13.48095989227295 + ], + [ + "finanzielle", + -13.481032371520996 + ], + [ + "(2003)", + -13.481319427490234 + ], + [ + "accentuate", + -13.481437683105469 + ], + [ + "overlapping", + -13.48151969909668 + ], + [ + "▁Pluto", + -13.481595993041992 + ], + [ + "românii", + -13.481683731079102 + ], + [ + "▁Timişoara", + -13.48169231414795 + ], + [ + "▁poivr", + -13.481754302978516 + ], + [ + "▁repris", + -13.481852531433105 + ], + [ + "▁Geschlecht", + -13.482426643371582 + ], + [ + "▁thieves", + -13.482426643371582 + ], + [ + "▁Transformer", + -13.482431411743164 + ], + [ + "▁shortcomings", + -13.482438087463379 + ], + [ + "▁aptitude", + -13.48244571685791 + ], + [ + "pitfalls", + -13.482468605041504 + ], + [ + "▁manicure", + -13.482577323913574 + ], + [ + "mystical", + -13.482723236083984 + ], + [ + "▁abolish", + -13.482833862304688 + ], + [ + "▁Zielgruppe", + -13.482873916625977 + ], + [ + "▁naţionale", + -13.483160972595215 + ], + [ + "▁trandafir", + -13.483160972595215 + ], + [ + "▁matematic", + -13.483193397521973 + ], + [ + "▁Hirsch", + -13.483257293701172 + ], + [ + "Fahr", + -13.483458518981934 + ], + [ + "connaissent", + -13.483476638793945 + ], + [ + "browned", + -13.483846664428711 + ], + [ + "▁bearbeitet", + -13.483881950378418 + ], + [ + "▁usturoi", + -13.483896255493164 + ], + [ + "▁Surprise", + -13.48389720916748 + ], + [ + "▁Tehran", + -13.483899116516113 + ], + [ + "▁BLACK", + -13.483901023864746 + ], + [ + "▁abonament", + -13.483904838562012 + ], + [ + "▁mêl", + -13.483972549438477 + ], + [ + "Angebot", + -13.484091758728027 + ], + [ + "ajungi", + -13.48410415649414 + ], + [ + "▁Woodland", + -13.48420524597168 + ], + [ + "▁gradini", + -13.484305381774902 + ], + [ + "▁Marilyn", + -13.48464584350586 + ], + [ + "kilometer", + -13.484880447387695 + ], + [ + "tempered", + -13.485230445861816 + ], + [ + "▁intimacy", + -13.485371589660645 + ], + [ + "▁thunderstorm", + -13.485373497009277 + ], + [ + "▁Uttar", + -13.485413551330566 + ], + [ + "▁varnish", + -13.485535621643066 + ], + [ + "opathie", + -13.485982894897461 + ], + [ + "▁școlar", + -13.48611068725586 + ], + [ + "▁raisonnable", + -13.486114501953125 + ], + [ + "proactively", + -13.486490249633789 + ], + [ + "▁gib", + -13.486536979675293 + ], + [ + "▁hospice", + -13.48684310913086 + ], + [ + "▁constă", + -13.486896514892578 + ], + [ + "▁Crescent", + -13.48690128326416 + ], + [ + "▁ambasad", + -13.486933708190918 + ], + [ + "hotărâre", + -13.486969947814941 + ], + [ + "▁fraîche", + -13.48709774017334 + ], + [ + "▁bundesweit", + -13.487581253051758 + ], + [ + "nsbesondere", + -13.487812042236328 + ], + [ + "▁intoarce", + -13.487863540649414 + ], + [ + "▁Schokolade", + -13.488319396972656 + ], + [ + "▁adjective", + -13.488319396972656 + ], + [ + "▁incalzire", + -13.488319396972656 + ], + [ + "▁Qualification", + -13.488320350646973 + ], + [ + "▁Bolivia", + -13.488324165344238 + ], + [ + "▁cruelty", + -13.488334655761719 + ], + [ + "pläne", + -13.48834228515625 + ], + [ + "▁solitude", + -13.488354682922363 + ], + [ + "▁Bosnia", + -13.488568305969238 + ], + [ + "rohr", + -13.488643646240234 + ], + [ + "▁regrette", + -13.48877239227295 + ], + [ + "zusammengestellt", + -13.48924732208252 + ], + [ + "▁Kardashian", + -13.489798545837402 + ], + [ + "▁Picasso", + -13.489798545837402 + ], + [ + "▁unverbindlich", + -13.489798545837402 + ], + [ + "▁Headquarters", + -13.489799499511719 + ], + [ + "métrage", + -13.4898099899292 + ], + [ + "▁Magento", + -13.489816665649414 + ], + [ + "▁exhibitors", + -13.489898681640625 + ], + [ + "utty", + -13.490381240844727 + ], + [ + "▁Fünf", + -13.490538597106934 + ], + [ + "▁Peugeot", + -13.490538597106934 + ], + [ + "▁verdienen", + -13.490538597106934 + ], + [ + "▁absolviert", + -13.49053955078125 + ], + [ + "schutzerklärung", + -13.490679740905762 + ], + [ + "sistemele", + -13.49089241027832 + ], + [ + "▁concrète", + -13.491279602050781 + ], + [ + "▁rhyme", + -13.491279602050781 + ], + [ + "▁Continuous", + -13.49128246307373 + ], + [ + "versprechen", + -13.491312026977539 + ], + [ + "▁Melanie", + -13.49202823638916 + ], + [ + "▁clienţi", + -13.492046356201172 + ], + [ + "luckily", + -13.492205619812012 + ], + [ + "▁counterfeit", + -13.492762565612793 + ], + [ + "▁locomotive", + -13.492889404296875 + ], + [ + "▁reacți", + -13.492908477783203 + ], + [ + "ampered", + -13.493005752563477 + ], + [ + "atenția", + -13.493011474609375 + ], + [ + "Suppose", + -13.493062973022461 + ], + [ + "hinweis", + -13.493464469909668 + ], + [ + "verletzung", + -13.493504524230957 + ], + [ + "▁mănânc", + -13.493504524230957 + ], + [ + "▁provoac", + -13.493507385253906 + ], + [ + "▁regizor", + -13.493511199951172 + ], + [ + "kundig", + -13.49352741241455 + ], + [ + "embarqu", + -13.493584632873535 + ], + [ + "Radio", + -13.493690490722656 + ], + [ + "Ministrul", + -13.493896484375 + ], + [ + "weakened", + -13.494214057922363 + ], + [ + "▁translucent", + -13.494247436523438 + ], + [ + "George", + -13.494380950927734 + ], + [ + "▁bacterii", + -13.494402885437012 + ], + [ + "intervalul", + -13.494803428649902 + ], + [ + "▁vizualiz", + -13.494832038879395 + ], + [ + "▁Feuchtigkeit", + -13.494991302490234 + ], + [ + "▁choisissez", + -13.494991302490234 + ], + [ + "▁plausible", + -13.494991302490234 + ], + [ + "▁perpetu", + -13.495122909545898 + ], + [ + "▁bucati", + -13.495194435119629 + ], + [ + "▁Giovanni", + -13.495735168457031 + ], + [ + "▁bluetooth", + -13.495736122131348 + ], + [ + "▁translating", + -13.49573802947998 + ], + [ + "▁Kyoto", + -13.495739936828613 + ], + [ + "▁homosexual", + -13.495745658874512 + ], + [ + "treabă", + -13.495820045471191 + ], + [ + "ntrepid", + -13.495983123779297 + ], + [ + "▁fachlich", + -13.496664047241211 + ], + [ + "Vaccin", + -13.496774673461914 + ], + [ + "▁Treib", + -13.497248649597168 + ], + [ + "varsity", + -13.497272491455078 + ], + [ + "▁Tavern", + -13.497278213500977 + ], + [ + "▁ensue", + -13.497330665588379 + ], + [ + "flexibel", + -13.497971534729004 + ], + [ + "retrieved", + -13.498102188110352 + ], + [ + "traditionellen", + -13.498230934143066 + ], + [ + "▁circulati", + -13.498546600341797 + ], + [ + "▁Diagnose", + -13.498717308044434 + ], + [ + "▁Strawberry", + -13.498717308044434 + ], + [ + "Societatea", + -13.49871826171875 + ], + [ + "expertise", + -13.498849868774414 + ], + [ + "▁naturii", + -13.499464988708496 + ], + [ + "▁4:1", + -13.499515533447266 + ], + [ + "Frequently", + -13.500210762023926 + ], + [ + "disproportionate", + -13.500210762023926 + ], + [ + "▁LIMITED", + -13.500210762023926 + ], + [ + "▁ancestral", + -13.500227928161621 + ], + [ + "▁Logistik", + -13.500237464904785 + ], + [ + "▁recolt", + -13.50042724609375 + ], + [ + "▁liebevoll", + -13.500436782836914 + ], + [ + "importing", + -13.500452041625977 + ], + [ + "aparatul", + -13.500458717346191 + ], + [ + "poziţia", + -13.500564575195312 + ], + [ + "facerilor", + -13.500658988952637 + ], + [ + "Submitted", + -13.50086784362793 + ], + [ + "ografia", + -13.501221656799316 + ], + [ + "onformément", + -13.50168228149414 + ], + [ + "▁dissemination", + -13.501708030700684 + ], + [ + "afli", + -13.501834869384766 + ], + [ + "luminous", + -13.502154350280762 + ], + [ + "▁draußen", + -13.502456665039062 + ], + [ + "▁Zauber", + -13.502535820007324 + ], + [ + "▁Ibrahim", + -13.503207206726074 + ], + [ + "▁eruption", + -13.503216743469238 + ], + [ + "écrite", + -13.50357723236084 + ], + [ + "avril", + -13.503898620605469 + ], + [ + "Increasing", + -13.504171371459961 + ], + [ + "hingeg", + -13.504411697387695 + ], + [ + "fidelity", + -13.504707336425781 + ], + [ + "étonnant", + -13.504707336425781 + ], + [ + "▁créativité", + -13.504707336425781 + ], + [ + "▁Required", + -13.504708290100098 + ], + [ + "▁Edison", + -13.504719734191895 + ], + [ + "▁Stuhl", + -13.504719734191895 + ], + [ + "outhwestern", + -13.506060600280762 + ], + [ + "▁Beschwerden", + -13.506210327148438 + ], + [ + "▁angajaţi", + -13.506210327148438 + ], + [ + "▁Currency", + -13.506211280822754 + ], + [ + "▁reagiert", + -13.506214141845703 + ], + [ + "Science", + -13.506229400634766 + ], + [ + "hospital", + -13.506253242492676 + ], + [ + "professionellen", + -13.50649356842041 + ], + [ + "▁Trouve", + -13.506768226623535 + ], + [ + "▁utopi", + -13.50683307647705 + ], + [ + "gypte", + -13.506928443908691 + ], + [ + "▁Konsequenz", + -13.506962776184082 + ], + [ + "▁pacienți", + -13.506962776184082 + ], + [ + "▁orizont", + -13.506988525390625 + ], + [ + "Corey", + -13.506999015808105 + ], + [ + "▁quartet", + -13.507009506225586 + ], + [ + "▁Sherlock", + -13.50710678100586 + ], + [ + "▁gagné", + -13.507237434387207 + ], + [ + "▁Jusqu", + -13.50732707977295 + ], + [ + "▁Clickfunnel", + -13.507465362548828 + ], + [ + "Survivor", + -13.507716178894043 + ], + [ + "▁Beethoven", + -13.507716178894043 + ], + [ + "▁Exemplar", + -13.507716178894043 + ], + [ + "▁Gonzalez", + -13.507716178894043 + ], + [ + "▁Illustrator", + -13.507716178894043 + ], + [ + "▁Verpflichtung", + -13.507718086242676 + ], + [ + "Possibly", + -13.507719993591309 + ], + [ + "Maintenant", + -13.507721900939941 + ], + [ + "▁incendiu", + -13.507721900939941 + ], + [ + "▁poêl", + -13.507747650146484 + ], + [ + "▁aşez", + -13.507757186889648 + ], + [ + "phenol", + -13.508248329162598 + ], + [ + "▁magician", + -13.508421897888184 + ], + [ + "éventuellement", + -13.508512496948242 + ], + [ + "▁amortiz", + -13.508736610412598 + ], + [ + "bouchage", + -13.50873851776123 + ], + [ + "▁Accommodation", + -13.509223937988281 + ], + [ + "▁Significant", + -13.509223937988281 + ], + [ + "▁rejoice", + -13.509223937988281 + ], + [ + "▁Lorraine", + -13.509224891662598 + ], + [ + "▁Necklace", + -13.509234428405762 + ], + [ + "▁hamburger", + -13.509273529052734 + ], + [ + "Enhanced", + -13.5095796585083 + ], + [ + "▁Audrey", + -13.509978294372559 + ], + [ + "▁considère", + -13.509986877441406 + ], + [ + "hafen", + -13.51050853729248 + ], + [ + "acordare", + -13.510509490966797 + ], + [ + "▁ediți", + -13.51075553894043 + ], + [ + "▁militia", + -13.510767936706543 + ], + [ + "captivate", + -13.510771751403809 + ], + [ + "▁rebellion", + -13.510777473449707 + ], + [ + "▁veranstalte", + -13.510844230651855 + ], + [ + "▁matelas", + -13.510859489440918 + ], + [ + "originating", + -13.510873794555664 + ], + [ + "Typical", + -13.51092529296875 + ], + [ + "▁législat", + -13.511360168457031 + ], + [ + "▁Kräfte", + -13.511488914489746 + ], + [ + "▁Eigentümer", + -13.511489868164062 + ], + [ + "▁gonfl", + -13.511608123779297 + ], + [ + "dispoziție", + -13.512028694152832 + ], + [ + "▁Fabulous", + -13.512246131896973 + ], + [ + "▁Guillaume", + -13.512246131896973 + ], + [ + "▁Genuine", + -13.512247085571289 + ], + [ + "selbe", + -13.512449264526367 + ], + [ + "(2002)", + -13.512616157531738 + ], + [ + "Einen", + -13.512908935546875 + ], + [ + "▁Snapdragon", + -13.513002395629883 + ], + [ + "▁plagiarism", + -13.513002395629883 + ], + [ + "▁Rendez", + -13.513019561767578 + ], + [ + "▁înregistrare", + -13.513033866882324 + ], + [ + "probiert", + -13.513081550598145 + ], + [ + "gestiegen", + -13.513153076171875 + ], + [ + "Teatrul", + -13.513370513916016 + ], + [ + "trove", + -13.513469696044922 + ], + [ + "ntsprechend", + -13.513566017150879 + ], + [ + "Städten", + -13.513691902160645 + ], + [ + "unforeseen", + -13.513760566711426 + ], + [ + "▁Meridian", + -13.513761520385742 + ], + [ + "▁Ministries", + -13.513763427734375 + ], + [ + "plaît", + -13.513769149780273 + ], + [ + "▁Telefonnummer", + -13.513772010803223 + ], + [ + "welded", + -13.513788223266602 + ], + [ + "pondere", + -13.513976097106934 + ], + [ + "▁funcţiona", + -13.514012336730957 + ], + [ + "▁politicieni", + -13.514187812805176 + ], + [ + "fleck", + -13.514240264892578 + ], + [ + "▁Nitro", + -13.514264106750488 + ], + [ + "wettbewerb", + -13.514518737792969 + ], + [ + "▁ingrijire", + -13.514518737792969 + ], + [ + "▁Gehirn", + -13.514521598815918 + ], + [ + "sigură", + -13.514904022216797 + ], + [ + "400,000", + -13.515237808227539 + ], + [ + "▁cataract", + -13.515277862548828 + ], + [ + "outskirt", + -13.515280723571777 + ], + [ + "▁Identification", + -13.515287399291992 + ], + [ + "▁imperfections", + -13.515317916870117 + ], + [ + "▁Dokumentation", + -13.515474319458008 + ], + [ + "Engine", + -13.515851974487305 + ], + [ + "extindere", + -13.516046524047852 + ], + [ + "bijoux", + -13.516797065734863 + ], + [ + "▁dărui", + -13.516802787780762 + ], + [ + "▁Moderator", + -13.516913414001465 + ], + [ + "biblio", + -13.517024040222168 + ], + [ + "енн", + -13.517024040222168 + ], + [ + "▁Relevan", + -13.51728630065918 + ], + [ + "ansprüche", + -13.517557144165039 + ], + [ + "épaisseur", + -13.517580032348633 + ], + [ + "▁emoţi", + -13.517677307128906 + ], + [ + "exacerbate", + -13.518318176269531 + ], + [ + "▁Wimbledon", + -13.518318176269531 + ], + [ + "▁Pandora", + -13.518319129943848 + ], + [ + "perhaps", + -13.518725395202637 + ], + [ + "certify", + -13.518762588500977 + ], + [ + "Strukturen", + -13.5189208984375 + ], + [ + "▁Kreativität", + -13.519079208374023 + ], + [ + "schlägt", + -13.51908016204834 + ], + [ + "▁certifié", + -13.51911735534668 + ], + [ + "/09/", + -13.519211769104004 + ], + [ + "▁suprafaţ", + -13.519493103027344 + ], + [ + "verständnis", + -13.519841194152832 + ], + [ + "presedintele", + -13.519842147827148 + ], + [ + "▁orthopedic", + -13.519842147827148 + ], + [ + "▁superioara", + -13.519843101501465 + ], + [ + "älteste", + -13.519903182983398 + ], + [ + "▁conducător", + -13.520153999328613 + ], + [ + "supplementary", + -13.520243644714355 + ], + [ + "wetlands", + -13.520438194274902 + ], + [ + "▁suprafete", + -13.520605087280273 + ], + [ + "▁aparțin", + -13.520951271057129 + ], + [ + "analiză", + -13.521014213562012 + ], + [ + "Uneori", + -13.52115535736084 + ], + [ + "Toujours", + -13.521368026733398 + ], + [ + "▁Nairobi", + -13.521368026733398 + ], + [ + "▁asparagus", + -13.521368026733398 + ], + [ + "▁crowdfunding", + -13.521368026733398 + ], + [ + "gutachten", + -13.521369934082031 + ], + [ + "smelling", + -13.521659851074219 + ], + [ + "▁elektrisch", + -13.521718978881836 + ], + [ + "begging", + -13.522055625915527 + ], + [ + "▁Renewable", + -13.522896766662598 + ], + [ + "▁Trouble", + -13.522896766662598 + ], + [ + "▁devastated", + -13.522896766662598 + ], + [ + "▁remplacé", + -13.522896766662598 + ], + [ + "▁schmeckt", + -13.522896766662598 + ], + [ + "▁exerciți", + -13.523005485534668 + ], + [ + "▁vermute", + -13.523650169372559 + ], + [ + "▁Constanța", + -13.523661613464355 + ], + [ + "expunere", + -13.523693084716797 + ], + [ + "▁Fitzgerald", + -13.52442741394043 + ], + [ + "▁Mechanism", + -13.524429321289062 + ], + [ + "▁underscore", + -13.524484634399414 + ], + [ + "poziţie", + -13.524901390075684 + ], + [ + "stöbern", + -13.525193214416504 + ], + [ + "▁littérature", + -13.525193214416504 + ], + [ + "▁împrumut", + -13.525193214416504 + ], + [ + "Vision", + -13.525771141052246 + ], + [ + "▁overwhelm", + -13.525773048400879 + ], + [ + "▁erweitern", + -13.525959968566895 + ], + [ + "skeletal", + -13.525960922241211 + ], + [ + "▁terrified", + -13.525960922241211 + ], + [ + "aggravate", + -13.525962829589844 + ], + [ + "▁Malawi", + -13.525969505310059 + ], + [ + "▁neuroscience", + -13.526009559631348 + ], + [ + "trecută", + -13.526097297668457 + ], + [ + "▁maestr", + -13.52634334564209 + ], + [ + "нов", + -13.526555061340332 + ], + [ + "▁Cobb", + -13.52667236328125 + ], + [ + "▁Schwangerschaft", + -13.526727676391602 + ], + [ + "▁internationaux", + -13.526727676391602 + ], + [ + "▁entspannen", + -13.526729583740234 + ], + [ + "▁Früchte", + -13.52676773071289 + ], + [ + "mâine", + -13.526805877685547 + ], + [ + "stützt", + -13.526938438415527 + ], + [ + "flipped", + -13.527076721191406 + ], + [ + "Palatul", + -13.527252197265625 + ], + [ + "▁Gérard", + -13.527496337890625 + ], + [ + "▁Kensington", + -13.527498245239258 + ], + [ + "chargée", + -13.52807331085205 + ], + [ + "iolo", + -13.528203964233398 + ], + [ + "▁excesiv", + -13.52904987335205 + ], + [ + "▁Gymnas", + -13.52962875366211 + ], + [ + "▁optimise", + -13.529678344726562 + ], + [ + "possibilités", + -13.529717445373535 + ], + [ + "▁periculoas", + -13.529810905456543 + ], + [ + "mechanical", + -13.529839515686035 + ], + [ + "▁confruntă", + -13.529868125915527 + ], + [ + "quatrième", + -13.530573844909668 + ], + [ + "▁Preservation", + -13.530573844909668 + ], + [ + "▁Juventus", + -13.530574798583984 + ], + [ + "vorsitzende", + -13.5305757522583 + ], + [ + "électora", + -13.530586242675781 + ], + [ + "▁fascinant", + -13.53061580657959 + ], + [ + "▁lagoon", + -13.530671119689941 + ], + [ + "referencing", + -13.53079605102539 + ], + [ + "appointed", + -13.530988693237305 + ], + [ + "Audible", + -13.531112670898438 + ], + [ + "sighted", + -13.531612396240234 + ], + [ + "▁gewünscht", + -13.532061576843262 + ], + [ + "▁Expedition", + -13.532115936279297 + ], + [ + "▁genunchi", + -13.532115936279297 + ], + [ + "▁PROVIDE", + -13.53211784362793 + ], + [ + "▁rosemary", + -13.532118797302246 + ], + [ + "▁cleanliness", + -13.532130241394043 + ], + [ + "commanded", + -13.53223991394043 + ], + [ + "ältere", + -13.532530784606934 + ], + [ + "ност", + -13.532547950744629 + ], + [ + "kühlen", + -13.532917976379395 + ], + [ + "mettez", + -13.533548355102539 + ], + [ + "connaitre", + -13.533661842346191 + ], + [ + "Qaeda", + -13.533662796020508 + ], + [ + "▁traumhaft", + -13.53366470336914 + ], + [ + "kommst", + -13.533666610717773 + ], + [ + "▁Abbott", + -13.533669471740723 + ], + [ + "▁Fool", + -13.533686637878418 + ], + [ + "▁médaill", + -13.533687591552734 + ], + [ + "▁genotyp", + -13.533693313598633 + ], + [ + "▁Fälle", + -13.53375244140625 + ], + [ + "▁actuator", + -13.533843994140625 + ], + [ + "CLASS", + -13.534042358398438 + ], + [ + "progressively", + -13.534421920776367 + ], + [ + "negative", + -13.53469467163086 + ], + [ + "bundled", + -13.535009384155273 + ], + [ + "▁dezbatere", + -13.535208702087402 + ], + [ + "kamagra", + -13.535237312316895 + ], + [ + "gardinen", + -13.535250663757324 + ], + [ + "unsecured", + -13.535271644592285 + ], + [ + "Assisted", + -13.535298347473145 + ], + [ + "Gymnasium", + -13.535386085510254 + ], + [ + "▁brusc", + -13.535591125488281 + ], + [ + "prinzip", + -13.535655975341797 + ], + [ + "Torrent", + -13.535964965820312 + ], + [ + "Presented", + -13.535967826843262 + ], + [ + "▁impressionnant", + -13.53628921508789 + ], + [ + "charakter", + -13.536758422851562 + ], + [ + "▁Acoustic", + -13.536762237548828 + ], + [ + "▁appartient", + -13.536763191223145 + ], + [ + "gesteuert", + -13.536879539489746 + ], + [ + "▁condiți", + -13.537089347839355 + ], + [ + "authentic", + -13.537313461303711 + ], + [ + "▁Erholung", + -13.537534713745117 + ], + [ + "▁Veranstalter", + -13.537534713745117 + ], + [ + "▁Filial", + -13.537665367126465 + ], + [ + "ruhigen", + -13.537714958190918 + ], + [ + "symptôme", + -13.538311004638672 + ], + [ + "▁Efficiency", + -13.538311004638672 + ], + [ + "▁stunned", + -13.538311004638672 + ], + [ + "▁sympathique", + -13.538311004638672 + ], + [ + "Uploaded", + -13.538352966308594 + ], + [ + "▁geistig", + -13.538453102111816 + ], + [ + "Pläne", + -13.538509368896484 + ], + [ + "▁Apartament", + -13.53855037689209 + ], + [ + "▁ușoar", + -13.539119720458984 + ], + [ + "▁locuinț", + -13.539122581481934 + ], + [ + "épouse", + -13.539166450500488 + ], + [ + "îngrijire", + -13.539215087890625 + ], + [ + "Obtain", + -13.539261817932129 + ], + [ + "Detect", + -13.539590835571289 + ], + [ + "▁Dumitru", + -13.539865493774414 + ], + [ + "▁refrigeration", + -13.539865493774414 + ], + [ + "ärztliche", + -13.539881706237793 + ], + [ + "efficiency", + -13.540032386779785 + ], + [ + "▁snail", + -13.540328979492188 + ], + [ + "gelände", + -13.540419578552246 + ], + [ + "expected", + -13.540620803833008 + ], + [ + "kompetenz", + -13.540643692016602 + ], + [ + "▁sfânt", + -13.540643692016602 + ], + [ + "océan", + -13.540685653686523 + ], + [ + "▁Plasma", + -13.540717124938965 + ], + [ + "▁vulgar", + -13.54075813293457 + ], + [ + "▁slump", + -13.541083335876465 + ], + [ + "autoimmune", + -13.541422843933105 + ], + [ + "▁Cynthia", + -13.541422843933105 + ], + [ + "▁dimineaţ", + -13.541422843933105 + ], + [ + "▁whimsical", + -13.541422843933105 + ], + [ + "▁evaporate", + -13.541488647460938 + ], + [ + "▁calorii", + -13.54186725616455 + ], + [ + "portion", + -13.54187297821045 + ], + [ + "crowned", + -13.5419282913208 + ], + [ + "▁întâmpin", + -13.54220199584961 + ], + [ + "▁Centenar", + -13.542620658874512 + ], + [ + "▁Genehmigung", + -13.54298210144043 + ], + [ + "▁Wahrscheinlich", + -13.54298210144043 + ], + [ + "▁accompaniment", + -13.54298210144043 + ], + [ + "▁Negoti", + -13.542984962463379 + ], + [ + "▁Vanilla", + -13.543000221252441 + ], + [ + "▁Receiv", + -13.543014526367188 + ], + [ + "▁bestseller", + -13.543052673339844 + ], + [ + "tendons", + -13.543069839477539 + ], + [ + "Reilly", + -13.543192863464355 + ], + [ + "▁refroidi", + -13.543731689453125 + ], + [ + "▁überrascht", + -13.543763160705566 + ], + [ + "Gitarre", + -13.543828964233398 + ], + [ + "wände", + -13.544173240661621 + ], + [ + "veniturile", + -13.544321060180664 + ], + [ + "▁portofoliu", + -13.54454517364502 + ], + [ + "▁temporaire", + -13.54454517364502 + ], + [ + "▁Dawson", + -13.544546127319336 + ], + [ + "foreseeable", + -13.544547080993652 + ], + [ + "▁Gastgeber", + -13.545344352722168 + ], + [ + "Access", + -13.545432090759277 + ], + [ + "▁Defender", + -13.545537948608398 + ], + [ + "▁Quarry", + -13.546109199523926 + ], + [ + "▁trolley", + -13.546110153198242 + ], + [ + "▁carburant", + -13.546111106872559 + ], + [ + "▁titluri", + -13.54631233215332 + ], + [ + "comparatively", + -13.546327590942383 + ], + [ + "nachfolgend", + -13.54659652709961 + ], + [ + "anfang", + -13.546740531921387 + ], + [ + "▁faszinieren", + -13.546891212463379 + ], + [ + "trăiesc", + -13.547082901000977 + ], + [ + "▁Travail", + -13.547159194946289 + ], + [ + "Contact", + -13.547235488891602 + ], + [ + "fashion", + -13.547245025634766 + ], + [ + "▁épais", + -13.547585487365723 + ], + [ + "plattform", + -13.547676086425781 + ], + [ + "ventricular", + -13.547677040100098 + ], + [ + "▁Portsmouth", + -13.547677993774414 + ], + [ + "▁împărat", + -13.54767894744873 + ], + [ + "▁vândut", + -13.547698020935059 + ], + [ + "▁evidenț", + -13.547708511352539 + ], + [ + "Purchasing", + -13.547877311706543 + ], + [ + "discerning", + -13.54804801940918 + ], + [ + "odonti", + -13.548080444335938 + ], + [ + "distilled", + -13.548316955566406 + ], + [ + "saveur", + -13.548447608947754 + ], + [ + "▁récompense", + -13.54845905303955 + ], + [ + "confortul", + -13.548552513122559 + ], + [ + "arbeitete", + -13.548787117004395 + ], + [ + "partenerii", + -13.549064636230469 + ], + [ + "mirrored", + -13.54908561706543 + ], + [ + "Dienstleister", + -13.549243927001953 + ], + [ + "▁Jakarta", + -13.549243927001953 + ], + [ + "▁WEBSITE", + -13.549243927001953 + ], + [ + "▁Acquisition", + -13.549262046813965 + ], + [ + "▁Miranda", + -13.549287796020508 + ], + [ + "Syndic", + -13.549356460571289 + ], + [ + "▁stadiu", + -13.549450874328613 + ], + [ + "▁Parchet", + -13.549498558044434 + ], + [ + "Générale", + -13.54954719543457 + ], + [ + "▁jpl", + -13.549579620361328 + ], + [ + "attainable", + -13.549949645996094 + ], + [ + "École", + -13.550041198730469 + ], + [ + "Sphere", + -13.550538063049316 + ], + [ + "obtainable", + -13.550592422485352 + ], + [ + "▁Sapphire", + -13.55081558227539 + ], + [ + "▁aérienne", + -13.55081558227539 + ], + [ + "▁bărbați", + -13.55081558227539 + ], + [ + "▁irritating", + -13.55081558227539 + ], + [ + "▁ultraviolet", + -13.550816535949707 + ], + [ + "untouched", + -13.550817489624023 + ], + [ + "▁Ramsey", + -13.550819396972656 + ], + [ + "titres", + -13.551087379455566 + ], + [ + "▁Coordinat", + -13.551218032836914 + ], + [ + "believable", + -13.551358222961426 + ], + [ + "▁Grundsätzlich", + -13.551602363586426 + ], + [ + "▁konsequent", + -13.551602363586426 + ], + [ + "▁Cerceta", + -13.551909446716309 + ], + [ + "dirigé", + -13.552116394042969 + ], + [ + "▁disturb", + -13.552151679992676 + ], + [ + "conciliation", + -13.552210807800293 + ], + [ + "▁gelöscht", + -13.552390098571777 + ], + [ + "▁sauvegarde", + -13.552391052246094 + ], + [ + "▁cavities", + -13.552393913269043 + ], + [ + "stunde", + -13.55241584777832 + ], + [ + "▁foloseasc", + -13.552430152893066 + ], + [ + "▁simpati", + -13.552873611450195 + ], + [ + "Chacun", + -13.553032875061035 + ], + [ + "adversaire", + -13.553178787231445 + ], + [ + "Eigentlich", + -13.55319881439209 + ], + [ + "defense", + -13.553593635559082 + ], + [ + "consider", + -13.553672790527344 + ], + [ + "▁Trinidad", + -13.553966522216797 + ], + [ + "▁strategist", + -13.553966522216797 + ], + [ + "distorted", + -13.553967475891113 + ], + [ + "▁hypothetical", + -13.553967475891113 + ], + [ + "▁ramburs", + -13.55396842956543 + ], + [ + "▁Mallorca", + -13.553970336914062 + ], + [ + "▁Domino", + -13.554018020629883 + ], + [ + "arrondissement", + -13.554756164550781 + ], + [ + "konferenz", + -13.554756164550781 + ], + [ + "▁Beleuchtung", + -13.554756164550781 + ], + [ + "aggregat", + -13.55484676361084 + ], + [ + "subsidize", + -13.554896354675293 + ], + [ + "shri", + -13.555503845214844 + ], + [ + "Kaufentscheidung", + -13.555545806884766 + ], + [ + "▁Hernandez", + -13.555545806884766 + ], + [ + "▁Upholster", + -13.555546760559082 + ], + [ + "atlantic", + -13.555614471435547 + ], + [ + "▁locuinte", + -13.555652618408203 + ], + [ + "integrates", + -13.55583381652832 + ], + [ + "ewusst", + -13.555878639221191 + ], + [ + "▁Avocado", + -13.556337356567383 + ], + [ + "Decorative", + -13.557014465332031 + ], + [ + "▁Corinthians", + -13.557127952575684 + ], + [ + "▁clădire", + -13.557127952575684 + ], + [ + "▁plomberie", + -13.557127952575684 + ], + [ + "vases", + -13.557143211364746 + ], + [ + "▁crippl", + -13.557247161865234 + ], + [ + "cluttered", + -13.557487487792969 + ], + [ + "departed", + -13.557807922363281 + ], + [ + "▁entscheidet", + -13.5579195022583 + ], + [ + "Certaine", + -13.558243751525879 + ], + [ + "honda", + -13.558294296264648 + ], + [ + "triggering", + -13.558527946472168 + ], + [ + "▁Erdogan", + -13.558712005615234 + ], + [ + "▁Widerstand", + -13.558712005615234 + ], + [ + "▁Bhutan", + -13.558713912963867 + ], + [ + "▁ascunde", + -13.558736801147461 + ], + [ + "▁shading", + -13.558748245239258 + ], + [ + "behavioural", + -13.559172630310059 + ], + [ + "▁transfér", + -13.55960750579834 + ], + [ + "versichert", + -13.559623718261719 + ], + [ + "▁vinovat", + -13.559646606445312 + ], + [ + "▁airfare", + -13.560142517089844 + ], + [ + "▁simplistic", + -13.56030559539795 + ], + [ + "▁Asigura", + -13.560320854187012 + ], + [ + "Chauffe", + -13.560480117797852 + ], + [ + "scrisă", + -13.560585975646973 + ], + [ + "trouvez", + -13.560702323913574 + ], + [ + "greasy", + -13.560709953308105 + ], + [ + "bottled", + -13.560809135437012 + ], + [ + "grouped", + -13.560934066772461 + ], + [ + "▁beeinflussen", + -13.561092376708984 + ], + [ + "▁chronological", + -13.561114311218262 + ], + [ + "(2000)", + -13.56127643585205 + ], + [ + "sheltered", + -13.561298370361328 + ], + [ + "Historically", + -13.561931610107422 + ], + [ + "piled", + -13.562012672424316 + ], + [ + "publicate", + -13.562378883361816 + ], + [ + "▁étudié", + -13.56268310546875 + ], + [ + "▁vertraut", + -13.562688827514648 + ], + [ + "▁Anpassung", + -13.562697410583496 + ], + [ + "cifra", + -13.562705993652344 + ], + [ + "▁recueil", + -13.562762260437012 + ], + [ + "enforceable", + -13.563183784484863 + ], + [ + "Distinguished", + -13.56347942352295 + ], + [ + "Empfänger", + -13.56347942352295 + ], + [ + "▁Acrylic", + -13.56347942352295 + ], + [ + "▁Encyclopedia", + -13.56347942352295 + ], + [ + "▁proaspete", + -13.56347942352295 + ], + [ + "▁unrealistic", + -13.56347942352295 + ], + [ + "▁Assignment", + -13.563481330871582 + ], + [ + "▁incubator", + -13.563491821289062 + ], + [ + "▁unilateral", + -13.563501358032227 + ], + [ + "elasticity", + -13.564398765563965 + ], + [ + "amintim", + -13.564475059509277 + ], + [ + "fournit", + -13.564553260803223 + ], + [ + "semblent", + -13.564763069152832 + ], + [ + "▁$69.", + -13.56496524810791 + ], + [ + "▁prominence", + -13.56507396697998 + ], + [ + "Übertragung", + -13.565075874328613 + ], + [ + "▁2014-11-", + -13.565075874328613 + ], + [ + "▁Giurgiu", + -13.565104484558105 + ], + [ + "étendue", + -13.565123558044434 + ], + [ + "ceputul", + -13.565187454223633 + ], + [ + "Schwierigkeiten", + -13.565872192382812 + ], + [ + "▁subtract", + -13.565881729125977 + ], + [ + "▁gesichert", + -13.56589126586914 + ], + [ + "▁uimit", + -13.565925598144531 + ], + [ + "▁mensuel", + -13.565967559814453 + ], + [ + "Vorgaben", + -13.566215515136719 + ], + [ + "▁legitimacy", + -13.566670417785645 + ], + [ + "▁Kendall", + -13.566673278808594 + ], + [ + "▁détach", + -13.566790580749512 + ], + [ + "▁kennenlernen", + -13.567469596862793 + ], + [ + "▁gewöhnlich", + -13.56747055053711 + ], + [ + "Octav", + -13.567917823791504 + ], + [ + "responsive", + -13.568169593811035 + ], + [ + "▁Mängel", + -13.568269729614258 + ], + [ + "▁mișcare", + -13.568269729614258 + ], + [ + "▁ludique", + -13.568270683288574 + ], + [ + "▁Exeter", + -13.568324089050293 + ], + [ + "▁respins", + -13.569114685058594 + ], + [ + "oraşului", + -13.569173812866211 + ], + [ + "▁sfârşit", + -13.56949520111084 + ], + [ + "BUSINESS", + -13.56987190246582 + ], + [ + "illustrating", + -13.56987190246582 + ], + [ + "▁Tottenham", + -13.56987190246582 + ], + [ + "▁pruning", + -13.569886207580566 + ], + [ + "▁Înainte", + -13.569904327392578 + ], + [ + "▁interesel", + -13.570096969604492 + ], + [ + "discovered", + -13.57031536102295 + ], + [ + "(0)", + -13.570572853088379 + ], + [ + "▁Bewerber", + -13.570673942565918 + ], + [ + "▁DESIGN", + -13.570673942565918 + ], + [ + "▁Orientierung", + -13.570686340332031 + ], + [ + "library", + -13.571041107177734 + ], + [ + "cheltuielile", + -13.571419715881348 + ], + [ + "▁Canterbury", + -13.571475982666016 + ], + [ + "▁intellectuelle", + -13.571477890014648 + ], + [ + "▁amalgam", + -13.571497917175293 + ], + [ + "▁Toledo", + -13.57150650024414 + ], + [ + "gezahlt", + -13.571531295776367 + ], + [ + "Veronica", + -13.571659088134766 + ], + [ + "deleting", + -13.571946144104004 + ], + [ + "▁Merlin", + -13.572442054748535 + ], + [ + "▁opérationnel", + -13.572554588317871 + ], + [ + "schmutz", + -13.572568893432617 + ], + [ + "hyroid", + -13.57279109954834 + ], + [ + "▁Compatible", + -13.57308292388916 + ], + [ + "▁Leopard", + -13.57308292388916 + ], + [ + "▁cylindrical", + -13.57308292388916 + ], + [ + "▁terrestrial", + -13.57308292388916 + ], + [ + "conferencing", + -13.573088645935059 + ], + [ + "▁Variety", + -13.573097229003906 + ], + [ + "▁Screw", + -13.573164939880371 + ], + [ + "character", + -13.573637962341309 + ], + [ + "shortened", + -13.573643684387207 + ], + [ + "▁întrerup", + -13.573736190795898 + ], + [ + "freude", + -13.573884010314941 + ], + [ + "▁dezbateri", + -13.573887825012207 + ], + [ + "viteză", + -13.574563026428223 + ], + [ + "formațiile", + -13.574600219726562 + ], + [ + "▁responsibly", + -13.574692726135254 + ], + [ + "Dimensiuni", + -13.574695587158203 + ], + [ + "Arrangement", + -13.57469654083252 + ], + [ + "▁Leisure", + -13.574712753295898 + ], + [ + "escaping", + -13.5750732421875 + ], + [ + "flexion", + -13.575104713439941 + ], + [ + "▁religieuse", + -13.575308799743652 + ], + [ + "crystalline", + -13.575457572937012 + ], + [ + "▁clasp", + -13.575520515441895 + ], + [ + "festigt", + -13.57554817199707 + ], + [ + "▁trouvai", + -13.57596206665039 + ], + [ + "cutaneous", + -13.576305389404297 + ], + [ + "▁carcinoma", + -13.576305389404297 + ], + [ + "▁juxtapos", + -13.576305389404297 + ], + [ + "assemblage", + -13.576306343078613 + ], + [ + "▁Messiah", + -13.576306343078613 + ], + [ + "▁Sleeve", + -13.576306343078613 + ], + [ + "▁șofer", + -13.576386451721191 + ], + [ + "/05/", + -13.57666301727295 + ], + [ + "▁expoziți", + -13.576703071594238 + ], + [ + "▁pătrun", + -13.577343940734863 + ], + [ + "▁Lydia", + -13.57739543914795 + ], + [ + "▁grădini", + -13.577919006347656 + ], + [ + "▁toothpaste", + -13.577919960021973 + ], + [ + "ordained", + -13.577921867370605 + ], + [ + "▁Renovation", + -13.577922821044922 + ], + [ + "voicing", + -13.578327178955078 + ], + [ + "président", + -13.578595161437988 + ], + [ + "▁gestartet", + -13.578728675842285 + ], + [ + "Multi", + -13.579121589660645 + ], + [ + "itinéraire", + -13.579537391662598 + ], + [ + "▁influenza", + -13.579537391662598 + ], + [ + "▁psychiatrist", + -13.579537391662598 + ], + [ + "▁schizophrenia", + -13.579537391662598 + ], + [ + "▁Magnolia", + -13.57953929901123 + ], + [ + "▁Scottsdale", + -13.579541206359863 + ], + [ + "▁interessieren", + -13.579548835754395 + ], + [ + "▁asfalt", + -13.579643249511719 + ], + [ + "▁Journalism", + -13.57977294921875 + ], + [ + "Multe", + -13.580089569091797 + ], + [ + "Westfalen", + -13.580347061157227 + ], + [ + "▁Vorschriften", + -13.580348014831543 + ], + [ + "Angleterre", + -13.58034896850586 + ], + [ + "sustainable", + -13.580354690551758 + ], + [ + "▁Retour", + -13.580589294433594 + ], + [ + "▁pâr", + -13.5809965133667 + ], + [ + "steigert", + -13.581120491027832 + ], + [ + "▁AMAZING", + -13.581157684326172 + ], + [ + "▁turbulent", + -13.581157684326172 + ], + [ + "costing", + -13.58155345916748 + ], + [ + "▁Carolyn", + -13.581634521484375 + ], + [ + "utti", + -13.581802368164062 + ], + [ + "dürftig", + -13.581968307495117 + ], + [ + "Keep", + -13.582038879394531 + ], + [ + "▁Théâtre", + -13.582780838012695 + ], + [ + "▁combustibil", + -13.582780838012695 + ], + [ + "▁halloween", + -13.582780838012695 + ], + [ + "▁emulator", + -13.582785606384277 + ], + [ + "▁povești", + -13.582785606384277 + ], + [ + "broyeur", + -13.582810401916504 + ], + [ + "▁émerg", + -13.582927703857422 + ], + [ + "overwhelmingly", + -13.583025932312012 + ], + [ + "regulă", + -13.583124160766602 + ], + [ + "goutte", + -13.583125114440918 + ], + [ + "▁Fertigung", + -13.583593368530273 + ], + [ + "constituted", + -13.584304809570312 + ], + [ + "▁QuickBooks", + -13.584406852722168 + ], + [ + "▁genealogy", + -13.584407806396484 + ], + [ + "▁laundering", + -13.584432601928711 + ], + [ + "▁échéan", + -13.584491729736328 + ], + [ + "Account", + -13.584601402282715 + ], + [ + "oyons", + -13.584792137145996 + ], + [ + "nitro", + -13.584905624389648 + ], + [ + "▁corespund", + -13.585219383239746 + ], + [ + "▁suggér", + -13.58527660369873 + ], + [ + "manipulated", + -13.585348129272461 + ], + [ + "deseori", + -13.585817337036133 + ], + [ + "permeabil", + -13.585912704467773 + ], + [ + "Australia", + -13.58594799041748 + ], + [ + "▁Erasmus", + -13.586034774780273 + ], + [ + "▁disrespect", + -13.586034774780273 + ], + [ + "▁trimestre", + -13.586038589477539 + ], + [ + "▁emanat", + -13.586103439331055 + ], + [ + "Schraub", + -13.58624267578125 + ], + [ + "distinctly", + -13.586319923400879 + ], + [ + "Germain", + -13.586637496948242 + ], + [ + "▁pedepse", + -13.5868501663208 + ], + [ + "réglage", + -13.5868558883667 + ], + [ + "făcute", + -13.587308883666992 + ], + [ + "▁garanteaz", + -13.587434768676758 + ], + [ + "▁unterlieg", + -13.587701797485352 + ], + [ + "▁cheddar", + -13.587712287902832 + ], + [ + "▁refugi", + -13.587756156921387 + ], + [ + "▁inférieur", + -13.587836265563965 + ], + [ + "dimension", + -13.588440895080566 + ], + [ + "▁erkennt", + -13.588570594787598 + ], + [ + "amitié", + -13.588632583618164 + ], + [ + "▁predominant", + -13.588680267333984 + ], + [ + "nourishe", + -13.588800430297852 + ], + [ + "exerce", + -13.588907241821289 + ], + [ + "▁disguise", + -13.589225769042969 + ], + [ + "▁traditi", + -13.589289665222168 + ], + [ + "▁Intellectual", + -13.5892972946167 + ], + [ + "▁imunitar", + -13.589299201965332 + ], + [ + "▁Cushion", + -13.589300155639648 + ], + [ + "▁erwachsene", + -13.589517593383789 + ], + [ + "▁Internațional", + -13.590115547180176 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ], + [ + "", + 0.0 + ] + ], + "byte_fallback": false + } +} \ No newline at end of file diff --git a/MagicQuill/comfy/t5_tokenizer/tokenizer_config.json b/MagicQuill/comfy/t5_tokenizer/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..02020eb6d20746871e1ea93f14c4475cf9368f98 --- /dev/null +++ b/MagicQuill/comfy/t5_tokenizer/tokenizer_config.json @@ -0,0 +1,939 @@ +{ + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32000": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32001": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32002": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32003": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32004": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32005": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32006": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32007": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32008": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32009": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32010": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32011": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32012": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32013": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32014": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32015": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32016": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32017": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32018": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32019": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32020": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32021": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32022": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32023": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32024": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32025": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32026": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32027": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32028": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32029": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32030": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32031": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32032": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32033": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32034": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32035": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32036": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32037": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32038": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32039": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32040": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32041": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32042": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32043": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32044": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32045": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32046": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32047": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32048": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32049": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32050": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32051": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32052": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32053": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32054": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32055": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32056": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32057": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32058": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32059": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32060": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32061": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32062": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32063": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32064": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32065": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32066": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32067": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32068": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32069": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32070": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32071": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32072": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32073": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32074": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32075": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32076": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32077": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32078": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32079": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32080": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32081": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32082": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32083": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32084": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32085": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32086": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32087": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32088": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32089": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32090": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32091": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32092": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32093": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32094": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32095": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32096": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32097": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32098": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32099": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [ + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "" + ], + "clean_up_tokenization_spaces": true, + "eos_token": "", + "extra_ids": 100, + "legacy": false, + "model_max_length": 512, + "pad_token": "", + "sp_model_kwargs": {}, + "tokenizer_class": "T5Tokenizer", + "unk_token": "" +} diff --git a/MagicQuill/comfy/taesd/__pycache__/taesd.cpython-310.pyc b/MagicQuill/comfy/taesd/__pycache__/taesd.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0932688b81b27dafa7b884340ea11b1ed5748839 Binary files /dev/null and b/MagicQuill/comfy/taesd/__pycache__/taesd.cpython-310.pyc differ diff --git a/MagicQuill/comfy/taesd/taesd.py b/MagicQuill/comfy/taesd/taesd.py new file mode 100644 index 0000000000000000000000000000000000000000..ce36f1a84dae599a35e84a8da3462408c0f0ccc6 --- /dev/null +++ b/MagicQuill/comfy/taesd/taesd.py @@ -0,0 +1,79 @@ +#!/usr/bin/env python3 +""" +Tiny AutoEncoder for Stable Diffusion +(DNN for encoding / decoding SD's latent space) +""" +import torch +import torch.nn as nn + +import comfy.utils +import comfy.ops + +def conv(n_in, n_out, **kwargs): + return comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 3, padding=1, **kwargs) + +class Clamp(nn.Module): + def forward(self, x): + return torch.tanh(x / 3) * 3 + +class Block(nn.Module): + def __init__(self, n_in, n_out): + super().__init__() + self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out)) + self.skip = comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() + self.fuse = nn.ReLU() + def forward(self, x): + return self.fuse(self.conv(x) + self.skip(x)) + +def Encoder(latent_channels=4): + return nn.Sequential( + conv(3, 64), Block(64, 64), + conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), + conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), + conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), + conv(64, latent_channels), + ) + + +def Decoder(latent_channels=4): + return nn.Sequential( + Clamp(), conv(latent_channels, 64), nn.ReLU(), + Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), + Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), + Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), + Block(64, 64), conv(64, 3), + ) + +class TAESD(nn.Module): + latent_magnitude = 3 + latent_shift = 0.5 + + def __init__(self, encoder_path=None, decoder_path=None, latent_channels=4): + """Initialize pretrained TAESD on the given device from the given checkpoints.""" + super().__init__() + self.taesd_encoder = Encoder(latent_channels=latent_channels) + self.taesd_decoder = Decoder(latent_channels=latent_channels) + self.vae_scale = torch.nn.Parameter(torch.tensor(1.0)) + self.vae_shift = torch.nn.Parameter(torch.tensor(0.0)) + if encoder_path is not None: + self.taesd_encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True)) + if decoder_path is not None: + self.taesd_decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True)) + + @staticmethod + def scale_latents(x): + """raw latents -> [0, 1]""" + return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1) + + @staticmethod + def unscale_latents(x): + """[0, 1] -> raw latents""" + return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) + + def decode(self, x): + x_sample = self.taesd_decoder((x - self.vae_shift) * self.vae_scale) + x_sample = x_sample.sub(0.5).mul(2) + return x_sample + + def encode(self, x): + return (self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale) + self.vae_shift diff --git a/MagicQuill/comfy/types.py b/MagicQuill/comfy/types.py new file mode 100644 index 0000000000000000000000000000000000000000..70cf4b158e5f969192c0c11d9bd461964aaea5b5 --- /dev/null +++ b/MagicQuill/comfy/types.py @@ -0,0 +1,32 @@ +import torch +from typing import Callable, Protocol, TypedDict, Optional, List + + +class UnetApplyFunction(Protocol): + """Function signature protocol on comfy.model_base.BaseModel.apply_model""" + + def __call__(self, x: torch.Tensor, t: torch.Tensor, **kwargs) -> torch.Tensor: + pass + + +class UnetApplyConds(TypedDict): + """Optional conditions for unet apply function.""" + + c_concat: Optional[torch.Tensor] + c_crossattn: Optional[torch.Tensor] + control: Optional[torch.Tensor] + transformer_options: Optional[dict] + + +class UnetParams(TypedDict): + # Tensor of shape [B, C, H, W] + input: torch.Tensor + # Tensor of shape [B] + timestep: torch.Tensor + c: UnetApplyConds + # List of [0, 1], [0], [1], ... + # 0 means conditional, 1 means conditional unconditional + cond_or_uncond: List[int] + + +UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor] diff --git a/MagicQuill/comfy/utils.py b/MagicQuill/comfy/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..884404cceb39ebfafffa2e712f2a95d6b69f6c7e --- /dev/null +++ b/MagicQuill/comfy/utils.py @@ -0,0 +1,483 @@ +import torch +import math +import struct +import comfy.checkpoint_pickle +import safetensors.torch +import numpy as np +from PIL import Image +import logging + +def load_torch_file(ckpt, safe_load=False, device=None): + if device is None: + device = torch.device("cpu") + if ckpt.lower().endswith(".safetensors"): + sd = safetensors.torch.load_file(ckpt, device=device.type) + else: + if safe_load: + if not 'weights_only' in torch.load.__code__.co_varnames: + logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.") + safe_load = False + if safe_load: + pl_sd = torch.load(ckpt, map_location=device, weights_only=True) + else: + pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle) + if "global_step" in pl_sd: + logging.debug(f"Global Step: {pl_sd['global_step']}") + if "state_dict" in pl_sd: + sd = pl_sd["state_dict"] + else: + sd = pl_sd + return sd + +def save_torch_file(sd, ckpt, metadata=None): + if metadata is not None: + safetensors.torch.save_file(sd, ckpt, metadata=metadata) + else: + safetensors.torch.save_file(sd, ckpt) + +def calculate_parameters(sd, prefix=""): + params = 0 + for k in sd.keys(): + if k.startswith(prefix): + params += sd[k].nelement() + return params + +def state_dict_key_replace(state_dict, keys_to_replace): + for x in keys_to_replace: + if x in state_dict: + state_dict[keys_to_replace[x]] = state_dict.pop(x) + return state_dict + +def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False): + if filter_keys: + out = {} + else: + out = state_dict + for rp in replace_prefix: + replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys()))) + for x in replace: + w = state_dict.pop(x[0]) + out[x[1]] = w + return out + + +def transformers_convert(sd, prefix_from, prefix_to, number): + keys_to_replace = { + "{}positional_embedding": "{}embeddings.position_embedding.weight", + "{}token_embedding.weight": "{}embeddings.token_embedding.weight", + "{}ln_final.weight": "{}final_layer_norm.weight", + "{}ln_final.bias": "{}final_layer_norm.bias", + } + + for k in keys_to_replace: + x = k.format(prefix_from) + if x in sd: + sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x) + + resblock_to_replace = { + "ln_1": "layer_norm1", + "ln_2": "layer_norm2", + "mlp.c_fc": "mlp.fc1", + "mlp.c_proj": "mlp.fc2", + "attn.out_proj": "self_attn.out_proj", + } + + for resblock in range(number): + for x in resblock_to_replace: + for y in ["weight", "bias"]: + k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y) + k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y) + if k in sd: + sd[k_to] = sd.pop(k) + + for y in ["weight", "bias"]: + k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y) + if k_from in sd: + weights = sd.pop(k_from) + shape_from = weights.shape[0] // 3 + for x in range(3): + p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"] + k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y) + sd[k_to] = weights[shape_from*x:shape_from*(x + 1)] + + return sd + +def clip_text_transformers_convert(sd, prefix_from, prefix_to): + sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32) + + tp = "{}text_projection.weight".format(prefix_from) + if tp in sd: + sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp) + + tp = "{}text_projection".format(prefix_from) + if tp in sd: + sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1).contiguous() + return sd + + +UNET_MAP_ATTENTIONS = { + "proj_in.weight", + "proj_in.bias", + "proj_out.weight", + "proj_out.bias", + "norm.weight", + "norm.bias", +} + +TRANSFORMER_BLOCKS = { + "norm1.weight", + "norm1.bias", + "norm2.weight", + "norm2.bias", + "norm3.weight", + "norm3.bias", + "attn1.to_q.weight", + "attn1.to_k.weight", + "attn1.to_v.weight", + "attn1.to_out.0.weight", + "attn1.to_out.0.bias", + "attn2.to_q.weight", + "attn2.to_k.weight", + "attn2.to_v.weight", + "attn2.to_out.0.weight", + "attn2.to_out.0.bias", + "ff.net.0.proj.weight", + "ff.net.0.proj.bias", + "ff.net.2.weight", + "ff.net.2.bias", +} + +UNET_MAP_RESNET = { + "in_layers.2.weight": "conv1.weight", + "in_layers.2.bias": "conv1.bias", + "emb_layers.1.weight": "time_emb_proj.weight", + "emb_layers.1.bias": "time_emb_proj.bias", + "out_layers.3.weight": "conv2.weight", + "out_layers.3.bias": "conv2.bias", + "skip_connection.weight": "conv_shortcut.weight", + "skip_connection.bias": "conv_shortcut.bias", + "in_layers.0.weight": "norm1.weight", + "in_layers.0.bias": "norm1.bias", + "out_layers.0.weight": "norm2.weight", + "out_layers.0.bias": "norm2.bias", +} + +UNET_MAP_BASIC = { + ("label_emb.0.0.weight", "class_embedding.linear_1.weight"), + ("label_emb.0.0.bias", "class_embedding.linear_1.bias"), + ("label_emb.0.2.weight", "class_embedding.linear_2.weight"), + ("label_emb.0.2.bias", "class_embedding.linear_2.bias"), + ("label_emb.0.0.weight", "add_embedding.linear_1.weight"), + ("label_emb.0.0.bias", "add_embedding.linear_1.bias"), + ("label_emb.0.2.weight", "add_embedding.linear_2.weight"), + ("label_emb.0.2.bias", "add_embedding.linear_2.bias"), + ("input_blocks.0.0.weight", "conv_in.weight"), + ("input_blocks.0.0.bias", "conv_in.bias"), + ("out.0.weight", "conv_norm_out.weight"), + ("out.0.bias", "conv_norm_out.bias"), + ("out.2.weight", "conv_out.weight"), + ("out.2.bias", "conv_out.bias"), + ("time_embed.0.weight", "time_embedding.linear_1.weight"), + ("time_embed.0.bias", "time_embedding.linear_1.bias"), + ("time_embed.2.weight", "time_embedding.linear_2.weight"), + ("time_embed.2.bias", "time_embedding.linear_2.bias") +} + +def unet_to_diffusers(unet_config): + if "num_res_blocks" not in unet_config: + return {} + num_res_blocks = unet_config["num_res_blocks"] + channel_mult = unet_config["channel_mult"] + transformer_depth = unet_config["transformer_depth"][:] + transformer_depth_output = unet_config["transformer_depth_output"][:] + num_blocks = len(channel_mult) + + transformers_mid = unet_config.get("transformer_depth_middle", None) + + diffusers_unet_map = {} + for x in range(num_blocks): + n = 1 + (num_res_blocks[x] + 1) * x + for i in range(num_res_blocks[x]): + for b in UNET_MAP_RESNET: + diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b) + num_transformers = transformer_depth.pop(0) + if num_transformers > 0: + for b in UNET_MAP_ATTENTIONS: + diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b) + for t in range(num_transformers): + for b in TRANSFORMER_BLOCKS: + diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) + n += 1 + for k in ["weight", "bias"]: + diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k) + + i = 0 + for b in UNET_MAP_ATTENTIONS: + diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b) + for t in range(transformers_mid): + for b in TRANSFORMER_BLOCKS: + diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b) + + for i, n in enumerate([0, 2]): + for b in UNET_MAP_RESNET: + diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b) + + num_res_blocks = list(reversed(num_res_blocks)) + for x in range(num_blocks): + n = (num_res_blocks[x] + 1) * x + l = num_res_blocks[x] + 1 + for i in range(l): + c = 0 + for b in UNET_MAP_RESNET: + diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b) + c += 1 + num_transformers = transformer_depth_output.pop() + if num_transformers > 0: + c += 1 + for b in UNET_MAP_ATTENTIONS: + diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b) + for t in range(num_transformers): + for b in TRANSFORMER_BLOCKS: + diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) + if i == l - 1: + for k in ["weight", "bias"]: + diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k) + n += 1 + + for k in UNET_MAP_BASIC: + diffusers_unet_map[k[1]] = k[0] + + return diffusers_unet_map + +def repeat_to_batch_size(tensor, batch_size, dim=0): + if tensor.shape[dim] > batch_size: + return tensor.narrow(dim, 0, batch_size) + elif tensor.shape[dim] < batch_size: + return tensor.repeat(dim * [1] + [math.ceil(batch_size / tensor.shape[dim])] + [1] * (len(tensor.shape) - 1 - dim)).narrow(dim, 0, batch_size) + return tensor + +def resize_to_batch_size(tensor, batch_size): + in_batch_size = tensor.shape[0] + if in_batch_size == batch_size: + return tensor + + if batch_size <= 1: + return tensor[:batch_size] + + output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device) + if batch_size < in_batch_size: + scale = (in_batch_size - 1) / (batch_size - 1) + for i in range(batch_size): + output[i] = tensor[min(round(i * scale), in_batch_size - 1)] + else: + scale = in_batch_size / batch_size + for i in range(batch_size): + output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)] + + return output + +def convert_sd_to(state_dict, dtype): + keys = list(state_dict.keys()) + for k in keys: + state_dict[k] = state_dict[k].to(dtype) + return state_dict + +def safetensors_header(safetensors_path, max_size=100*1024*1024): + with open(safetensors_path, "rb") as f: + header = f.read(8) + length_of_header = struct.unpack(' max_size: + return None + return f.read(length_of_header) + +def set_attr(obj, attr, value): + attrs = attr.split(".") + for name in attrs[:-1]: + obj = getattr(obj, name) + prev = getattr(obj, attrs[-1]) + setattr(obj, attrs[-1], value) + return prev + +def set_attr_param(obj, attr, value): + return set_attr(obj, attr, torch.nn.Parameter(value, requires_grad=False)) + +def copy_to_param(obj, attr, value): + # inplace update tensor instead of replacing it + attrs = attr.split(".") + for name in attrs[:-1]: + obj = getattr(obj, name) + prev = getattr(obj, attrs[-1]) + prev.data.copy_(value) + +def get_attr(obj, attr): + attrs = attr.split(".") + for name in attrs: + obj = getattr(obj, name) + return obj + +def bislerp(samples, width, height): + def slerp(b1, b2, r): + '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC''' + + c = b1.shape[-1] + + #norms + b1_norms = torch.norm(b1, dim=-1, keepdim=True) + b2_norms = torch.norm(b2, dim=-1, keepdim=True) + + #normalize + b1_normalized = b1 / b1_norms + b2_normalized = b2 / b2_norms + + #zero when norms are zero + b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0 + b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0 + + #slerp + dot = (b1_normalized*b2_normalized).sum(1) + omega = torch.acos(dot) + so = torch.sin(omega) + + #technically not mathematically correct, but more pleasing? + res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized + res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c) + + #edge cases for same or polar opposites + res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] + res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1] + return res + + def generate_bilinear_data(length_old, length_new, device): + coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear") + ratios = coords_1 - coords_1.floor() + coords_1 = coords_1.to(torch.int64) + + coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1 + coords_2[:,:,:,-1] -= 1 + coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear") + coords_2 = coords_2.to(torch.int64) + return ratios, coords_1, coords_2 + + orig_dtype = samples.dtype + samples = samples.float() + n,c,h,w = samples.shape + h_new, w_new = (height, width) + + #linear w + ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device) + coords_1 = coords_1.expand((n, c, h, -1)) + coords_2 = coords_2.expand((n, c, h, -1)) + ratios = ratios.expand((n, 1, h, -1)) + + pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c)) + pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c)) + ratios = ratios.movedim(1, -1).reshape((-1,1)) + + result = slerp(pass_1, pass_2, ratios) + result = result.reshape(n, h, w_new, c).movedim(-1, 1) + + #linear h + ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device) + coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) + coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) + ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new)) + + pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c)) + pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c)) + ratios = ratios.movedim(1, -1).reshape((-1,1)) + + result = slerp(pass_1, pass_2, ratios) + result = result.reshape(n, h_new, w_new, c).movedim(-1, 1) + return result.to(orig_dtype) + +def lanczos(samples, width, height): + images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] + images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images] + images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] + result = torch.stack(images) + return result.to(samples.device, samples.dtype) + +def common_upscale(samples, width, height, upscale_method, crop): + if crop == "center": + old_width = samples.shape[3] + old_height = samples.shape[2] + old_aspect = old_width / old_height + new_aspect = width / height + x = 0 + y = 0 + if old_aspect > new_aspect: + x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) + elif old_aspect < new_aspect: + y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) + s = samples[:,:,y:old_height-y,x:old_width-x] + else: + s = samples + + if upscale_method == "bislerp": + return bislerp(s, width, height) + elif upscale_method == "lanczos": + return lanczos(s, width, height) + else: + return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) + +def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap): + return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap))) + +@torch.inference_mode() +def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None): + output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device=output_device) + for b in range(samples.shape[0]): + s = samples[b:b+1] + out = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device) + out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device) + for y in range(0, s.shape[2], tile_y - overlap): + for x in range(0, s.shape[3], tile_x - overlap): + x = max(0, min(s.shape[-1] - overlap, x)) + y = max(0, min(s.shape[-2] - overlap, y)) + s_in = s[:,:,y:y+tile_y,x:x+tile_x] + + ps = function(s_in).to(output_device) + mask = torch.ones_like(ps) + feather = round(overlap * upscale_amount) + for t in range(feather): + mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1)) + mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1)) + mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1)) + mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1)) + out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask + out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask + if pbar is not None: + pbar.update(1) + + output[b:b+1] = out/out_div + return output + +PROGRESS_BAR_ENABLED = True +def set_progress_bar_enabled(enabled): + global PROGRESS_BAR_ENABLED + PROGRESS_BAR_ENABLED = enabled + +PROGRESS_BAR_HOOK = None +def set_progress_bar_global_hook(function): + global PROGRESS_BAR_HOOK + PROGRESS_BAR_HOOK = function + +class ProgressBar: + def __init__(self, total): + global PROGRESS_BAR_HOOK + self.total = total + self.current = 0 + self.hook = PROGRESS_BAR_HOOK + + def update_absolute(self, value, total=None, preview=None): + if total is not None: + self.total = total + if value > self.total: + value = self.total + self.current = value + if self.hook is not None: + self.hook(self.current, self.total, preview) + + def update(self, value): + self.update_absolute(self.current + value) diff --git a/MagicQuill/comfyui_utils.py b/MagicQuill/comfyui_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..718a2417fc60b78bf83c4f449a2c68011a8b3202 --- /dev/null +++ b/MagicQuill/comfyui_utils.py @@ -0,0 +1,403 @@ +import os +import folder_paths +import comfy.diffusers_load +import comfy.samplers +import comfy.sample +import comfy.sd +import comfy.utils +import comfy.controlnet +import comfy.clip_vision +import comfy.model_management +from comfy.cli_args import args +import torch +import torch.nn as nn +import numpy as np +import latent_preview +from PIL import Image +from einops import rearrange +import scipy.ndimage +import sys +import cv2 +from magic_utils import HWC3, apply_color, common_input_validate, resize_image_with_pad +from pidi import pidinet + + +supported_pt_extensions = set(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl']) +folder_names_and_paths = {} + +base_path = os.path.dirname(os.path.realpath(__file__)) +models_dir = os.path.join(base_path, "../models") + +folder_names_and_paths["checkpoints"] = ([os.path.join(models_dir, "checkpoints")], supported_pt_extensions) +folder_names_and_paths["configs"] = ([os.path.join(models_dir, "configs")], [".yaml"]) + +folder_names_and_paths["loras"] = ([os.path.join(models_dir, "loras")], supported_pt_extensions) +folder_names_and_paths["vae"] = ([os.path.join(models_dir, "vae")], supported_pt_extensions) +folder_names_and_paths["clip"] = ([os.path.join(models_dir, "clip")], supported_pt_extensions) +folder_names_and_paths["unet"] = ([os.path.join(models_dir, "unet")], supported_pt_extensions) +folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision")], supported_pt_extensions) +folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions) +folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions) +folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"]) +folder_names_and_paths["vae_approx"] = ([os.path.join(models_dir, "vae_approx")], supported_pt_extensions) + +folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions) +folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], supported_pt_extensions) +folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions) +folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions) +folder_names_and_paths["photomaker"] = ([os.path.join(models_dir, "photomaker")], supported_pt_extensions) +folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers")], {""}) + +def common_annotator_call(model, tensor_image, input_batch=False, show_pbar=True, **kwargs): + if "detect_resolution" in kwargs: + del kwargs["detect_resolution"] #Prevent weird case? + + if "resolution" in kwargs: + detect_resolution = kwargs["resolution"] if type(kwargs["resolution"]) == int and kwargs["resolution"] >= 64 else 512 + del kwargs["resolution"] + else: + detect_resolution = 512 + + if input_batch: + np_images = np.asarray(tensor_image * 255., dtype=np.uint8) + np_results = model(np_images, output_type="np", detect_resolution=detect_resolution, **kwargs) + return torch.from_numpy(np_results.astype(np.float32) / 255.0) + + batch_size = tensor_image.shape[0] + if show_pbar: + pbar = comfy.utils.ProgressBar(batch_size) + out_tensor = None + for i, image in enumerate(tensor_image): + np_image = np.asarray(image.cpu() * 255., dtype=np.uint8) + np_result = model(np_image, output_type="np", detect_resolution=detect_resolution, **kwargs) + out = torch.from_numpy(np_result.astype(np.float32) / 255.0) + if out_tensor is None: + out_tensor = torch.zeros(batch_size, *out.shape, dtype=torch.float32) + out_tensor[i] = out + if show_pbar: + pbar.update(1) + return out_tensor + +class CheckpointLoaderSimple: + def load_checkpoint(self, ckpt_name): + ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) + print("Loading checkpoint from:", ckpt_path) + out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) + return out[:3] + +class ControlNetLoader: + def load_controlnet(self, control_net_name): + controlnet_path = folder_paths.get_full_path("controlnet", control_net_name) + controlnet = comfy.controlnet.load_controlnet(controlnet_path) + return (controlnet, ) + +class ControlNetApplyAdvanced: + def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent): + if strength == 0: + return (positive, negative) + + control_hint = image.movedim(-1,1) + cnets = {} + + out = [] + for conditioning in [positive, negative]: + c = [] + for t in conditioning: + d = t[1].copy() + + prev_cnet = d.get('control', None) + if prev_cnet in cnets: + c_net = cnets[prev_cnet] + else: + c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent)) + c_net.set_previous_controlnet(prev_cnet) + cnets[prev_cnet] = c_net + + d['control'] = c_net + d['control_apply_to_uncond'] = False + n = [t[0], d] + c.append(n) + out.append(c) + return (out[0], out[1]) + +class CLIPTextEncode: + def encode(self, clip, text): + tokens = clip.tokenize(text) + cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) + return ([[cond, {"pooled_output": pooled}]], ) + +class KSampler: + def common_ksampler(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): + latent_image = latent["samples"] + latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image) + + if disable_noise: + noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") + else: + batch_inds = latent["batch_index"] if "batch_index" in latent else None + noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) + + noise_mask = None + if "noise_mask" in latent: + noise_mask = latent["noise_mask"] + + callback = latent_preview.prepare_callback(model, steps) + disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED + samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, + denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step, + force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) + out = latent.copy() + out["samples"] = samples + return (out, ) + + def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0): + return self.common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise) + +class VAEDecode: + def decode(self, vae, samples): + return (vae.decode(samples["samples"]), ) + +class ColorDetector: + def __call__(self, input_image=None, detect_resolution=2048, output_type=None, **kwargs): + input_image, output_type = common_input_validate(input_image, output_type, **kwargs) + input_image = HWC3(input_image) + detected_map = HWC3(apply_color(input_image, detect_resolution)) + + if output_type == "pil": + detected_map = Image.fromarray(detected_map) + + return detected_map + +class Color_Preprocessor: + def execute(self, image, resolution=512, **kwargs): + return (common_annotator_call(ColorDetector(), image, resolution=resolution), ) + +norm_layer = nn.InstanceNorm2d +class ResidualBlock(nn.Module): + def __init__(self, in_features): + super(ResidualBlock, self).__init__() + + conv_block = [ nn.ReflectionPad2d(1), + nn.Conv2d(in_features, in_features, 3), + norm_layer(in_features), + nn.ReLU(inplace=True), + nn.ReflectionPad2d(1), + nn.Conv2d(in_features, in_features, 3), + norm_layer(in_features) + ] + + self.conv_block = nn.Sequential(*conv_block) + + def forward(self, x): + return x + self.conv_block(x) + +class Generator(nn.Module): + def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): + super(Generator, self).__init__() + + # Initial convolution block + model0 = [ nn.ReflectionPad2d(3), + nn.Conv2d(input_nc, 64, 7), + norm_layer(64), + nn.ReLU(inplace=True) ] + self.model0 = nn.Sequential(*model0) + + # Downsampling + model1 = [] + in_features = 64 + out_features = in_features*2 + for _ in range(2): + model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), + norm_layer(out_features), + nn.ReLU(inplace=True) ] + in_features = out_features + out_features = in_features*2 + self.model1 = nn.Sequential(*model1) + + model2 = [] + # Residual blocks + for _ in range(n_residual_blocks): + model2 += [ResidualBlock(in_features)] + self.model2 = nn.Sequential(*model2) + + # Upsampling + model3 = [] + out_features = in_features//2 + for _ in range(2): + model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), + norm_layer(out_features), + nn.ReLU(inplace=True) ] + in_features = out_features + out_features = in_features//2 + self.model3 = nn.Sequential(*model3) + + # Output layer + model4 = [ nn.ReflectionPad2d(3), + nn.Conv2d(64, output_nc, 7)] + if sigmoid: + model4 += [nn.Sigmoid()] + + self.model4 = nn.Sequential(*model4) + + def forward(self, x, cond=None): + out = self.model0(x) + out = self.model1(out) + out = self.model2(out) + out = self.model3(out) + out = self.model4(out) + + return out + +class LineartDetector: + def __init__(self, model, coarse_model): + self.model = model + self.model_coarse = coarse_model + self.device = "cpu" + + @classmethod + def from_pretrained(cls): + current_dir = os.path.dirname(os.path.abspath(__file__)) + model_path = os.path.join(current_dir, "../models/preprocessor/sk_model.pth") + coarse_model_path = os.path.join(current_dir, "../models/preprocessor/sk_model2.pth") + + # print("model_path:", model_path) + model = Generator(3, 1, 3) + model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) + model.eval() + + coarse_model = Generator(3, 1, 3) + coarse_model.load_state_dict(torch.load(coarse_model_path, map_location=torch.device('cpu'))) + coarse_model.eval() + + return cls(model, coarse_model) + + def to(self, device): + self.model.to(device) + self.model_coarse.to(device) + self.device = device + return self + + def __call__(self, input_image, coarse=False, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", **kwargs): + input_image, output_type = common_input_validate(input_image, output_type, **kwargs) + detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) + + model = self.model_coarse if coarse else self.model + assert detected_map.ndim == 3 + with torch.no_grad(): + image = torch.from_numpy(detected_map).float().to(self.device) + image = image / 255.0 + image = rearrange(image, 'h w c -> 1 c h w') + line = model(image)[0][0] + + line = line.cpu().numpy() + line = (line * 255.0).clip(0, 255).astype(np.uint8) + + detected_map = HWC3(line) + detected_map = remove_pad(255 - detected_map) + + if output_type == "pil": + detected_map = Image.fromarray(detected_map) + + return detected_map + +class LineArt_Preprocessor: + def execute(self, image, resolution=512, **kwargs): + model = LineartDetector.from_pretrained().to(comfy.model_management.get_torch_device()) + print("model.device:", model.device) + out = common_annotator_call(model, image, resolution=resolution, apply_filter=False, coarse = kwargs["coarse"] == "enable") + del model + return (out, ) + +def nms(x, t, s): + x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) + + f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) + f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) + f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) + f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) + + y = np.zeros_like(x) + + for f in [f1, f2, f3, f4]: + np.putmask(y, cv2.dilate(x, kernel=f) == x, x) + + z = np.zeros_like(y, dtype=np.uint8) + z[y > t] = 255 + return z + +class PidiNetDetector: + def __init__(self, netNetwork): + self.netNetwork = netNetwork + self.device = "cpu" + + @classmethod + def from_pretrained(cls, filename="table5_pidinet.pth"): + current_dir = os.path.dirname(os.path.abspath(__file__)) + model_path = os.path.join(current_dir, f"../models/preprocessor/{filename}") + + netNetwork = pidinet() + netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(model_path)['state_dict'].items()}) + netNetwork.eval() + + return cls(netNetwork) + + def to(self, device): + self.netNetwork.to(device) + self.device = device + return self + + def __call__(self, input_image, detect_resolution=512, safe=False, output_type="pil", scribble=False, apply_filter=True, upscale_method="INTER_CUBIC", **kwargs): + input_image, output_type = common_input_validate(input_image, output_type, **kwargs) + detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) + + detected_map = detected_map[:, :, ::-1].copy() + with torch.no_grad(): + image_pidi = torch.from_numpy(detected_map).float().to(self.device) + image_pidi = image_pidi / 255.0 + image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') + edge = self.netNetwork(image_pidi)[-1] + edge = edge.cpu().numpy() + if apply_filter: + edge = edge > 0.5 + edge = (edge * 255.0).clip(0, 255).astype(np.uint8) + + detected_map = edge[0, 0] + + if scribble: + detected_map = nms(detected_map, 127, 3.0) + detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) + detected_map[detected_map > 4] = 255 + detected_map[detected_map < 255] = 0 + + detected_map = HWC3(remove_pad(detected_map)) + + if output_type == "pil": + detected_map = Image.fromarray(detected_map) + + return detected_map + +class GrowMask: + def expand_mask(self, mask, expand, tapered_corners): + c = 0 if tapered_corners else 1 + kernel = np.array([[c, 1, c], + [1, 1, 1], + [c, 1, c]]) + mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) + out = [] + for m in mask: + output = m.numpy() + for _ in range(abs(expand)): + if expand < 0: + output = scipy.ndimage.grey_erosion(output, footprint=kernel) + else: + output = scipy.ndimage.grey_dilation(output, footprint=kernel) + output = torch.from_numpy(output) + out.append(output) + return (torch.stack(out, dim=0),) + +class PIDINET_Preprocessor: + def execute(self, image, resolution=512, **kwargs): + model = PidiNetDetector.from_pretrained().to(comfy.model_management.get_torch_device()) + out = common_annotator_call(model, image, resolution=resolution, safe=True) + del model + return (out, ) \ No newline at end of file diff --git a/MagicQuill/folder_paths.py b/MagicQuill/folder_paths.py new file mode 100644 index 0000000000000000000000000000000000000000..5e8f6874aa3453d8b1ef22501f91c1841806adf7 --- /dev/null +++ b/MagicQuill/folder_paths.py @@ -0,0 +1,269 @@ +import os +import time +import logging +from typing import Set, List, Dict, Tuple + +supported_pt_extensions: Set[str] = set(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl']) + +SupportedFileExtensionsType = Set[str] +ScanPathType = List[str] +folder_names_and_paths: Dict[str, Tuple[ScanPathType, SupportedFileExtensionsType]] = {} + +base_path = os.path.dirname(os.path.realpath(__file__)) +models_dir = os.path.join(base_path, "../models") + +folder_names_and_paths["checkpoints"] = ([os.path.join(models_dir, "checkpoints")], supported_pt_extensions) +folder_names_and_paths["configs"] = ([os.path.join(models_dir, "configs")], [".yaml"]) + +folder_names_and_paths["loras"] = ([os.path.join(models_dir, "loras")], supported_pt_extensions) +folder_names_and_paths["vae"] = ([os.path.join(models_dir, "vae")], supported_pt_extensions) +folder_names_and_paths["clip"] = ([os.path.join(models_dir, "clip")], supported_pt_extensions) +folder_names_and_paths["unet"] = ([os.path.join(models_dir, "unet")], supported_pt_extensions) +folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision")], supported_pt_extensions) +folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions) +folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions) +folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"]) +folder_names_and_paths["vae_approx"] = ([os.path.join(models_dir, "vae_approx")], supported_pt_extensions) + +folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions) +folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], supported_pt_extensions) + +folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions) + +folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions) + +folder_names_and_paths["photomaker"] = ([os.path.join(models_dir, "photomaker")], supported_pt_extensions) + +folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers")], {""}) + +output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output") +temp_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp") +input_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input") +user_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "user") + +filename_list_cache = {} + +if not os.path.exists(input_directory): + try: + os.makedirs(input_directory) + except: + logging.error("Failed to create input directory") + +def set_output_directory(output_dir): + global output_directory + output_directory = output_dir + +def set_temp_directory(temp_dir): + global temp_directory + temp_directory = temp_dir + +def set_input_directory(input_dir): + global input_directory + input_directory = input_dir + +def get_output_directory(): + global output_directory + return output_directory + +def get_temp_directory(): + global temp_directory + return temp_directory + +def get_input_directory(): + global input_directory + return input_directory + + +#NOTE: used in http server so don't put folders that should not be accessed remotely +def get_directory_by_type(type_name): + if type_name == "output": + return get_output_directory() + if type_name == "temp": + return get_temp_directory() + if type_name == "input": + return get_input_directory() + return None + + +# determine base_dir rely on annotation if name is 'filename.ext [annotation]' format +# otherwise use default_path as base_dir +def annotated_filepath(name): + if name.endswith("[output]"): + base_dir = get_output_directory() + name = name[:-9] + elif name.endswith("[input]"): + base_dir = get_input_directory() + name = name[:-8] + elif name.endswith("[temp]"): + base_dir = get_temp_directory() + name = name[:-7] + else: + return name, None + + return name, base_dir + + +def get_annotated_filepath(name, default_dir=None): + name, base_dir = annotated_filepath(name) + + if base_dir is None: + if default_dir is not None: + base_dir = default_dir + else: + base_dir = get_input_directory() # fallback path + + return os.path.join(base_dir, name) + + +def exists_annotated_filepath(name): + name, base_dir = annotated_filepath(name) + + if base_dir is None: + base_dir = get_input_directory() # fallback path + + filepath = os.path.join(base_dir, name) + return os.path.exists(filepath) + + +def add_model_folder_path(folder_name, full_folder_path): + global folder_names_and_paths + if folder_name in folder_names_and_paths: + folder_names_and_paths[folder_name][0].append(full_folder_path) + else: + folder_names_and_paths[folder_name] = ([full_folder_path], set()) + +def get_folder_paths(folder_name): + return folder_names_and_paths[folder_name][0][:] + +def recursive_search(directory, excluded_dir_names=None): + if not os.path.isdir(directory): + return [], {} + + if excluded_dir_names is None: + excluded_dir_names = [] + + result = [] + dirs = {} + + # Attempt to add the initial directory to dirs with error handling + try: + dirs[directory] = os.path.getmtime(directory) + except FileNotFoundError: + logging.warning(f"Warning: Unable to access {directory}. Skipping this path.") + + logging.debug("recursive file list on directory {}".format(directory)) + for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True): + subdirs[:] = [d for d in subdirs if d not in excluded_dir_names] + for file_name in filenames: + relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory) + result.append(relative_path) + + for d in subdirs: + path = os.path.join(dirpath, d) + try: + dirs[path] = os.path.getmtime(path) + except FileNotFoundError: + logging.warning(f"Warning: Unable to access {path}. Skipping this path.") + continue + logging.debug("found {} files".format(len(result))) + return result, dirs + +def filter_files_extensions(files, extensions): + return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions or len(extensions) == 0, files))) + + + +def get_full_path(folder_name, filename): + global folder_names_and_paths + if folder_name not in folder_names_and_paths: + return None + folders = folder_names_and_paths[folder_name] + filename = os.path.relpath(os.path.join("/", filename), "/") + for x in folders[0]: + full_path = os.path.join(x, filename) + if os.path.isfile(full_path): + return full_path + elif os.path.islink(full_path): + logging.warning("WARNING path {} exists but doesn't link anywhere, skipping.".format(full_path)) + + return None + +def get_filename_list_(folder_name): + global folder_names_and_paths + output_list = set() + folders = folder_names_and_paths[folder_name] + output_folders = {} + for x in folders[0]: + files, folders_all = recursive_search(x, excluded_dir_names=[".git"]) + output_list.update(filter_files_extensions(files, folders[1])) + output_folders = {**output_folders, **folders_all} + + return (sorted(list(output_list)), output_folders, time.perf_counter()) + +def cached_filename_list_(folder_name): + global filename_list_cache + global folder_names_and_paths + if folder_name not in filename_list_cache: + return None + out = filename_list_cache[folder_name] + + for x in out[1]: + time_modified = out[1][x] + folder = x + if os.path.getmtime(folder) != time_modified: + return None + + folders = folder_names_and_paths[folder_name] + for x in folders[0]: + if os.path.isdir(x): + if x not in out[1]: + return None + + return out + +def get_filename_list(folder_name): + out = cached_filename_list_(folder_name) + if out is None: + out = get_filename_list_(folder_name) + global filename_list_cache + filename_list_cache[folder_name] = out + return list(out[0]) + +def get_save_image_path(filename_prefix, output_dir, image_width=0, image_height=0): + def map_filename(filename): + prefix_len = len(os.path.basename(filename_prefix)) + prefix = filename[:prefix_len + 1] + try: + digits = int(filename[prefix_len + 1:].split('_')[0]) + except: + digits = 0 + return (digits, prefix) + + def compute_vars(input, image_width, image_height): + input = input.replace("%width%", str(image_width)) + input = input.replace("%height%", str(image_height)) + return input + + filename_prefix = compute_vars(filename_prefix, image_width, image_height) + + subfolder = os.path.dirname(os.path.normpath(filename_prefix)) + filename = os.path.basename(os.path.normpath(filename_prefix)) + + full_output_folder = os.path.join(output_dir, subfolder) + + if os.path.commonpath((output_dir, os.path.abspath(full_output_folder))) != output_dir: + err = "**** ERROR: Saving image outside the output folder is not allowed." + \ + "\n full_output_folder: " + os.path.abspath(full_output_folder) + \ + "\n output_dir: " + output_dir + \ + "\n commonpath: " + os.path.commonpath((output_dir, os.path.abspath(full_output_folder))) + logging.error(err) + raise Exception(err) + + try: + counter = max(filter(lambda a: os.path.normcase(a[1][:-1]) == os.path.normcase(filename) and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1 + except ValueError: + counter = 1 + except FileNotFoundError: + os.makedirs(full_output_folder, exist_ok=True) + counter = 1 + return full_output_folder, filename, counter, subfolder, filename_prefix diff --git a/MagicQuill/latent_preview.py b/MagicQuill/latent_preview.py new file mode 100644 index 0000000000000000000000000000000000000000..1a6b71e90a2c15b115ffd0eaac5fd321067bdeaf --- /dev/null +++ b/MagicQuill/latent_preview.py @@ -0,0 +1,99 @@ +import torch +from PIL import Image +import struct +import numpy as np +from comfy.cli_args import args, LatentPreviewMethod +from comfy.taesd.taesd import TAESD +import comfy.model_management +import folder_paths +import comfy.utils +import logging +import gradio as gr + +MAX_PREVIEW_RESOLUTION = 512 + +def preview_to_image(latent_image): + latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1 + .mul(0xFF) # to 0..255 + ).to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device)) + + return Image.fromarray(latents_ubyte.numpy()) + +class LatentPreviewer: + def decode_latent_to_preview(self, x0): + pass + + def decode_latent_to_preview_image(self, preview_format, x0): + preview_image = self.decode_latent_to_preview(x0) + return ("JPEG", preview_image, MAX_PREVIEW_RESOLUTION) + +class TAESDPreviewerImpl(LatentPreviewer): + def __init__(self, taesd): + self.taesd = taesd + + def decode_latent_to_preview(self, x0): + x_sample = self.taesd.decode(x0[:1])[0].movedim(0, 2) + return preview_to_image(x_sample) + + +class Latent2RGBPreviewer(LatentPreviewer): + def __init__(self, latent_rgb_factors): + self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu") + + def decode_latent_to_preview(self, x0): + self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device) + latent_image = x0[0].permute(1, 2, 0) @ self.latent_rgb_factors + return preview_to_image(latent_image) + + +def get_previewer(device, latent_format): + previewer = None + method = args.preview_method + if method != LatentPreviewMethod.NoPreviews: + # TODO previewer methods + taesd_decoder_path = None + if latent_format.taesd_decoder_name is not None: + taesd_decoder_path = next( + (fn for fn in folder_paths.get_filename_list("vae_approx") + if fn.startswith(latent_format.taesd_decoder_name)), + "" + ) + taesd_decoder_path = folder_paths.get_full_path("vae_approx", taesd_decoder_path) + + if method == LatentPreviewMethod.Auto: + method = LatentPreviewMethod.Latent2RGB + + if method == LatentPreviewMethod.TAESD: + if taesd_decoder_path: + taesd = TAESD(None, taesd_decoder_path, latent_channels=latent_format.latent_channels).to(device) + previewer = TAESDPreviewerImpl(taesd) + else: + logging.warning("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name)) + + if previewer is None: + if latent_format.latent_rgb_factors is not None: + previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors) + return previewer + +def prepare_callback(model, steps, x0_output_dict=None): + preview_format = "JPEG" + if preview_format not in ["JPEG", "PNG"]: + preview_format = "JPEG" + + previewer = get_previewer(model.load_device, model.model.latent_format) + + pbar = comfy.utils.ProgressBar(steps) + gradio_progress = gr.Progress() + gradio_bar = gradio_progress.tqdm(range(steps)) + # print(type(gradio_bar)) + def callback(step, x0, x, total_steps): + if x0_output_dict is not None: + x0_output_dict["x0"] = x0 + + preview_bytes = None + if previewer: + preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) + pbar.update_absolute(step + 1, total_steps, preview_bytes) + gradio_bar.update(1) + return callback + diff --git a/MagicQuill/llava_new.py b/MagicQuill/llava_new.py new file mode 100644 index 0000000000000000000000000000000000000000..4bbc34f7da7e23855d5cfdc827969fdde03961bf --- /dev/null +++ b/MagicQuill/llava_new.py @@ -0,0 +1,111 @@ +import torch +from transformers import TextStreamer +import webcolors +import os +import random +from collections import Counter +import numpy as np +from torchvision import transforms +from .magic_utils import get_colored_contour, find_different_colors, get_bounding_box_from_mask +from .LLaVA.llava.conversation import conv_templates, SeparatorStyle +from .LLaVA.llava.model.builder import load_pretrained_model +from .LLaVA.llava.mm_utils import get_model_name_from_path, expand2square, tokenizer_image_token +from .LLaVA.llava.constants import ( + IMAGE_TOKEN_INDEX, + DEFAULT_IMAGE_TOKEN, + DEFAULT_IM_START_TOKEN, + DEFAULT_IM_END_TOKEN, + IMAGE_PLACEHOLDER, +) +import re + +class LLaVAModel: + def __init__(self): + current_dir = os.path.dirname(os.path.abspath(__file__)) + model_path = os.path.join(current_dir, "../models/llava-v1.5-7b-finetune-clean") + self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model( + model_path=model_path, + model_base=None, + model_name=get_model_name_from_path(model_path), + load_4bit=True + ) + + def generate_description(self, images, question): + qs = question + image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + if IMAGE_PLACEHOLDER in qs: + if self.model.config.mm_use_im_start_end: + qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) + else: + qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) + else: + if self.model.config.mm_use_im_start_end: + qs = image_token_se + "\n" + qs + else: + qs = DEFAULT_IMAGE_TOKEN + "\n" + qs + + images_tensor = [] + image_sizes = [] + to_pil = transforms.ToPILImage() + for image in images: + image = image.clone().permute(2, 0, 1).cpu() + image = to_pil(image) + image_sizes.append(image.size) + image = expand2square(image, tuple(int(x) for x in self.image_processor.image_mean)) + image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] + images_tensor.append(image.half()) + + conv = conv_templates["llava_v1"].copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + input_ids = ( + tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") + .unsqueeze(0) + .cuda() + ) + + with torch.inference_mode(): + output_ids = self.model.generate( + input_ids, + images=images_tensor, + image_sizes=image_sizes, + temperature=0.2, + do_sample=True, + use_cache=True, + ) + outputs = self.tokenizer.decode(output_ids[0]).strip() + outputs = outputs.split('>')[1].split('<')[0] + # print(outputs) + return outputs + + def process(self, image, colored_image, add_mask): + description = "" + answer1 = "" + answer2 = "" + + image_with_sketch = image.clone() + if torch.sum(add_mask).item() > 0: + x_min, y_min, x_max, y_max = get_bounding_box_from_mask(add_mask) + # print(x_min, y_min, x_max, y_max) + question = f"This is an 'I draw, you guess' game. I will upload an image containing some sketches. To help you locate the sketch, I will give you the normalized bounding box coordinates of the sketch where their original coordinates are divided by the image width and height. The top-left corner of the bounding box is at ({x_min}, {y_min}), and the bottom-right corner is at ({x_max}, {y_max}). Now tell me, what am I trying to draw with these sketches in the image?" + # image_with_sketch[add_mask > 0.5] = 1.0 + bool_add_mask = add_mask > 0.5 + mean_brightness = image_with_sketch[bool_add_mask].mean() + if mean_brightness > 0.8: + image_with_sketch[bool_add_mask] = 0.0 + else: + image_with_sketch[bool_add_mask] = 1.0 + answer1 = self.generate_description([image_with_sketch.squeeze() * 255], question) + print(answer1) + + if not torch.equal(image, colored_image): + color = find_different_colors(image.squeeze() * 255, colored_image.squeeze() * 255) + image_with_bbox, colored_mask = get_colored_contour(colored_image.squeeze() * 255, image.squeeze() * 255) + x_min, y_min, x_max, y_max = get_bounding_box_from_mask(colored_mask) + question = f"The user will upload an image containing some contours in red color. To help you locate the contour, I will give you the normalized bounding box coordinates where their original coordinates are divided by the image width and height. The top-left corner of the bounding box is at ({x_min}, {y_min}), and the bottom-right corner is at ({x_max}, {y_max}). You need to identify what is inside the contours using a single word or phrase." + answer2 = color + ', ' + self.generate_description([image_with_bbox.squeeze() * 255], question) + print(answer2) + + return (description, answer1, answer2) \ No newline at end of file diff --git a/MagicQuill/magic_utils.py b/MagicQuill/magic_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..da45c785cf489e67c77c39144d9a80df4b79d80c --- /dev/null +++ b/MagicQuill/magic_utils.py @@ -0,0 +1,216 @@ +import webcolors +import random +from collections import Counter +import numpy as np +from torchvision import transforms +import cv2 # OpenCV +import torch +import warnings +import os + + + +def HWC3(x): + assert x.dtype == np.uint8 + if x.ndim == 2: + x = x[:, :, None] + assert x.ndim == 3 + H, W, C = x.shape + assert C == 1 or C == 3 or C == 4 + if C == 3: + return x + if C == 1: + return np.concatenate([x, x, x], axis=2) + if C == 4: + color = x[:, :, 0:3].astype(np.float32) + alpha = x[:, :, 3:4].astype(np.float32) / 255.0 + y = color * alpha + 255.0 * (1.0 - alpha) + y = y.clip(0, 255).astype(np.uint8) + return y + +def common_input_validate(input_image, output_type, **kwargs): + if "img" in kwargs: + warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning) + input_image = kwargs.pop("img") + + if "return_pil" in kwargs: + warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) + output_type = "pil" if kwargs["return_pil"] else "np" + + if type(output_type) is bool: + warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") + if output_type: + output_type = "pil" + + if input_image is None: + raise ValueError("input_image must be defined.") + + if not isinstance(input_image, np.ndarray): + input_image = np.array(input_image, dtype=np.uint8) + output_type = output_type or "pil" + else: + output_type = output_type or "np" + + return (input_image, output_type) + +def cv2_resize_shortest_edge(image, size): + h, w = image.shape[:2] + if h < w: + new_h = size + new_w = int(round(w / h * size)) + else: + new_w = size + new_h = int(round(h / w * size)) + resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA) + return resized_image + +def apply_color(img, res=512): + img = cv2_resize_shortest_edge(img, res) + h, w = img.shape[:2] + + input_img_color = cv2.resize(img, (w//64, h//64), interpolation=cv2.INTER_CUBIC) + input_img_color = cv2.resize(input_img_color, (w, h), interpolation=cv2.INTER_NEAREST) + return input_img_color + +UPSCALE_METHODS = ["INTER_NEAREST", "INTER_LINEAR", "INTER_AREA", "INTER_CUBIC", "INTER_LANCZOS4"] +def get_upscale_method(method_str): + assert method_str in UPSCALE_METHODS, f"Method {method_str} not found in {UPSCALE_METHODS}" + return getattr(cv2, method_str) + +def pad64(x): + return int(np.ceil(float(x) / 64.0) * 64 - x) + +def safer_memory(x): + # Fix many MAC/AMD problems + return np.ascontiguousarray(x.copy()).copy() + +def resize_image_with_pad(input_image, resolution, upscale_method = "", skip_hwc3=False, mode='edge'): + if skip_hwc3: + img = input_image + else: + img = HWC3(input_image) + H_raw, W_raw, _ = img.shape + if resolution == 0: + return img, lambda x: x + k = float(resolution) / float(min(H_raw, W_raw)) + H_target = int(np.round(float(H_raw) * k)) + W_target = int(np.round(float(W_raw) * k)) + img = cv2.resize(img, (W_target, H_target), interpolation=get_upscale_method(upscale_method) if k > 1 else cv2.INTER_AREA) + H_pad, W_pad = pad64(H_target), pad64(W_target) + img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode) + + def remove_pad(x): + return safer_memory(x[:H_target, :W_target, ...]) + + return safer_memory(img_padded), remove_pad + +def draw_contour(img, mask): + mask_np = mask.numpy().astype(np.uint8) * 255 + img_np = img.numpy() + img_np = img_np.astype(np.uint8) + img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) + + # 膨胀掩码 + kernel = np.ones((5, 5), np.uint8) + mask_dilated = cv2.dilate(mask_np, kernel, iterations=3) + contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) + for contour in contours: + cv2.drawContours(img_bgr, [contour], -1, (0, 0, 255), thickness=10) # 红色线条绘制轮廓 + img_np = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) + # 转换回tensor + transform = transforms.ToTensor() + img_tensor = transform(img_np) + + img_tensor = img_tensor.permute(1, 2, 0) + + return img_tensor.unsqueeze(0) + +def get_colored_contour(img1, img2, threshold=10): + diff = torch.abs(img1 - img2).float() + diff_gray = torch.mean(diff, dim=-1) + # 阈值处理以生成二进制掩码 + mask = diff_gray > threshold + + return draw_contour(img2, mask), mask + +def closest_colour(requested_colour): + min_colours = {} + for key, name in webcolors.CSS3_HEX_TO_NAMES.items(): + r_c, g_c, b_c = webcolors.hex_to_rgb(key) + rd = (r_c - requested_colour[0].item()) ** 2 + gd = (g_c - requested_colour[1].item()) ** 2 + bd = (b_c - requested_colour[2].item()) ** 2 + min_colours[(rd + gd + bd)] = name + return min_colours[min(min_colours.keys())] + +def rgb_to_name(rgb_tuple): + try: + return webcolors.rgb_to_name(rgb_tuple) + except ValueError: + closest_name = closest_colour(rgb_tuple) + return closest_name + +def find_different_colors(img1, img2, threshold=10): + img1 = img1.to(torch.uint8) + img2 = img2.to(torch.uint8) + # 计算图像之间的绝对差异 + diff = torch.abs(img1 - img2).float().mean(dim=-1) + # 找到大于阈值的差异区域 + diff_mask = diff > threshold + diff_indices = torch.nonzero(diff_mask, as_tuple=True) + + if len(diff_indices[0]) > 100: + sampled_indices = random.sample(range(len(diff_indices[0])), 100) + sampled_diff_indices = (diff_indices[0][sampled_indices], diff_indices[1][sampled_indices]) + else: + sampled_diff_indices = diff_indices + + # 提取不同区域的颜色 + diff_colors = img2[sampled_diff_indices[0], sampled_diff_indices[1], :] + # 将颜色值转换为颜色名称 + color_names = [rgb_to_name(tuple(color)) for color in diff_colors] + name_counter = Counter(color_names) + # 过滤出现超过10次的颜色 + filtered_colors = {name: count for name, count in name_counter.items() if count > 10} + # 按出现次数从大到小排序 + sorted_color_names = [name for name, count in sorted(filtered_colors.items(), key=lambda item: item[1], reverse=True)] + if len(sorted_color_names) >= 3: + return "colorful" + unique_color_names_str = ', '.join(sorted_color_names) + return unique_color_names_str + +def get_bounding_box_from_mask(mask, padded=False): + # Ensure the mask is a binary mask (0s and 1s) + mask = mask.squeeze() + rows, cols = torch.where(mask > 0.5) + # If there are no '1's in the mask, return None or an appropriate bounding box like (0,0,0,0) + if len(rows) == 0 or len(cols) == 0: + return (0, 0, 0, 0) + height, width = mask.shape + if padded: + padded_size = max(width, height) + # 检查填充发生在哪个方向 + if width < height: + # 宽度较小,填充发生在宽度上 + offset_x = (padded_size - width) / 2 + offset_y = 0 + else: + # 高度较小,填充发生在高度上 + offset_y = (padded_size - height) / 2 + offset_x = 0 + # Find the bounding box coordinates + top_left_x = round(float((torch.min(cols).item() + offset_x) / padded_size), 3) + bottom_right_x = round(float((torch.max(cols).item() + offset_x) / padded_size), 3) + top_left_y = round(float((torch.min(rows).item() + offset_y) / padded_size), 3) + bottom_right_y = round(float((torch.max(rows).item() + offset_y) / padded_size), 3) + else: + offset_x = 0 + offset_y = 0 + + top_left_x = round(float(torch.min(cols).item() / width), 3) + bottom_right_x = round(float(torch.max(cols).item() / width), 3) + top_left_y = round(float(torch.min(rows).item() / height), 3) + bottom_right_y = round(float(torch.max(rows).item() / height), 3) + + + return (top_left_x, top_left_y, bottom_right_x, bottom_right_y) \ No newline at end of file diff --git a/MagicQuill/model_patch.py b/MagicQuill/model_patch.py new file mode 100644 index 0000000000000000000000000000000000000000..e31113f8a07d0b10749d124e7d0a2e2220f2d212 --- /dev/null +++ b/MagicQuill/model_patch.py @@ -0,0 +1,138 @@ +import torch +import comfy + + +# Check and add 'model_patch' to model.model_options['transformer_options'] +def add_model_patch_option(model): + if 'transformer_options' not in model.model_options: + model.model_options['transformer_options'] = {} + to = model.model_options['transformer_options'] + if "model_patch" not in to: + to["model_patch"] = {} + return to + + +# Patch model with model_function_wrapper +def patch_model_function_wrapper(model, forward_patch, remove=False): + + def brushnet_model_function_wrapper(apply_model_method, options_dict): + to = options_dict['c']['transformer_options'] + + control = None + if 'control' in options_dict['c']: + control = options_dict['c']['control'] + + x = options_dict['input'] + timestep = options_dict['timestep'] + + # check if there are patches to execute + if 'model_patch' not in to or 'forward' not in to['model_patch']: + return apply_model_method(x, timestep, **options_dict['c']) + + mp = to['model_patch'] + unet = mp['unet'] + + all_sigmas = mp['all_sigmas'] + sigma = to['sigmas'][0].item() + total_steps = all_sigmas.shape[0] - 1 + step = torch.argmin((all_sigmas - sigma).abs()).item() + + mp['step'] = step + mp['total_steps'] = total_steps + + # comfy.model_base.apply_model + xc = model.model.model_sampling.calculate_input(timestep, x) + if 'c_concat' in options_dict['c'] and options_dict['c']['c_concat'] is not None: + xc = torch.cat([xc] + [options_dict['c']['c_concat']], dim=1) + t = model.model.model_sampling.timestep(timestep).float() + # execute all patches + for method in mp['forward']: + method(unet, xc, t, to, control) + + return apply_model_method(x, timestep, **options_dict['c']) + + if "model_function_wrapper" in model.model_options and model.model_options["model_function_wrapper"]: + print('BrushNet is going to replace existing model_function_wrapper:', model.model_options["model_function_wrapper"]) + model.set_model_unet_function_wrapper(brushnet_model_function_wrapper) + + to = add_model_patch_option(model) + mp = to['model_patch'] + + if isinstance(model.model.model_config, comfy.supported_models.SD15): + mp['SDXL'] = False + elif isinstance(model.model.model_config, comfy.supported_models.SDXL): + mp['SDXL'] = True + else: + print('Base model type: ', type(model.model.model_config)) + raise Exception("Unsupported model type: ", type(model.model.model_config)) + + if 'forward' not in mp: + mp['forward'] = [] + + if remove: + if forward_patch in mp['forward']: + mp['forward'].remove(forward_patch) + else: + mp['forward'].append(forward_patch) + + mp['unet'] = model.model.diffusion_model + mp['step'] = 0 + mp['total_steps'] = 1 + + # apply patches to code + if comfy.samplers.sample.__doc__ is None or 'BrushNet' not in comfy.samplers.sample.__doc__: + comfy.samplers.original_sample = comfy.samplers.sample + comfy.samplers.sample = modified_sample + + if comfy.ldm.modules.diffusionmodules.openaimodel.apply_control.__doc__ is None or \ + 'BrushNet' not in comfy.ldm.modules.diffusionmodules.openaimodel.apply_control.__doc__: + comfy.ldm.modules.diffusionmodules.openaimodel.original_apply_control = comfy.ldm.modules.diffusionmodules.openaimodel.apply_control + comfy.ldm.modules.diffusionmodules.openaimodel.apply_control = modified_apply_control + + +# Model needs current step number and cfg at inference step. It is possible to write a custom KSampler but I'd like to use ComfyUI's one. +# The first versions had modified_common_ksampler, but it broke custom KSampler nodes +def modified_sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, + latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): + ''' + Modified by BrushNet nodes + ''' + cfg_guider = comfy.samplers.CFGGuider(model) + cfg_guider.set_conds(positive, negative) + cfg_guider.set_cfg(cfg) + + ### Modified part ###################################################################### + # + to = add_model_patch_option(model) + to['model_patch']['all_sigmas'] = sigmas + # + #sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) + #sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) + # + # + #if math.isclose(cfg, 1.0) and model_options.get("disable_cfg1_optimization", False) == False: + # to['model_patch']['free_guidance'] = False + #else: + # to['model_patch']['free_guidance'] = True + # + ####################################################################################### + + return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) + + +# To use Controlnet with RAUNet it is much easier to modify apply_control a little +def modified_apply_control(h, control, name): + ''' + Modified by BrushNet nodes + ''' + if control is not None and name in control and len(control[name]) > 0: + ctrl = control[name].pop() + if ctrl is not None: + if h.shape[2] != ctrl.shape[2] or h.shape[3] != ctrl.shape[3]: + ctrl = torch.nn.functional.interpolate(ctrl, size=(h.shape[2], h.shape[3]), mode='bicubic').to(h.dtype).to(h.device) + try: + h += ctrl + except: + print.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape)) + return h + diff --git a/MagicQuill/pidi.py b/MagicQuill/pidi.py new file mode 100644 index 0000000000000000000000000000000000000000..13dcaf42a8b2aff722a62d366727e9ab72894cd9 --- /dev/null +++ b/MagicQuill/pidi.py @@ -0,0 +1,667 @@ +""" +Author: Zhuo Su, Wenzhe Liu +Date: Feb 18, 2021 +""" + +import math + +import cv2 +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def img2tensor(imgs, bgr2rgb=True, float32=True): + """Numpy array to tensor. + + Args: + imgs (list[ndarray] | ndarray): Input images. + bgr2rgb (bool): Whether to change bgr to rgb. + float32 (bool): Whether to change to float32. + + Returns: + list[tensor] | tensor: Tensor images. If returned results only have + one element, just return tensor. + """ + + def _totensor(img, bgr2rgb, float32): + if img.shape[2] == 3 and bgr2rgb: + if img.dtype == 'float64': + img = img.astype('float32') + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + img = torch.from_numpy(img.transpose(2, 0, 1)) + if float32: + img = img.float() + return img + + if isinstance(imgs, list): + return [_totensor(img, bgr2rgb, float32) for img in imgs] + else: + return _totensor(imgs, bgr2rgb, float32) + +nets = { + 'baseline': { + 'layer0': 'cv', + 'layer1': 'cv', + 'layer2': 'cv', + 'layer3': 'cv', + 'layer4': 'cv', + 'layer5': 'cv', + 'layer6': 'cv', + 'layer7': 'cv', + 'layer8': 'cv', + 'layer9': 'cv', + 'layer10': 'cv', + 'layer11': 'cv', + 'layer12': 'cv', + 'layer13': 'cv', + 'layer14': 'cv', + 'layer15': 'cv', + }, + 'c-v15': { + 'layer0': 'cd', + 'layer1': 'cv', + 'layer2': 'cv', + 'layer3': 'cv', + 'layer4': 'cv', + 'layer5': 'cv', + 'layer6': 'cv', + 'layer7': 'cv', + 'layer8': 'cv', + 'layer9': 'cv', + 'layer10': 'cv', + 'layer11': 'cv', + 'layer12': 'cv', + 'layer13': 'cv', + 'layer14': 'cv', + 'layer15': 'cv', + }, + 'a-v15': { + 'layer0': 'ad', + 'layer1': 'cv', + 'layer2': 'cv', + 'layer3': 'cv', + 'layer4': 'cv', + 'layer5': 'cv', + 'layer6': 'cv', + 'layer7': 'cv', + 'layer8': 'cv', + 'layer9': 'cv', + 'layer10': 'cv', + 'layer11': 'cv', + 'layer12': 'cv', + 'layer13': 'cv', + 'layer14': 'cv', + 'layer15': 'cv', + }, + 'r-v15': { + 'layer0': 'rd', + 'layer1': 'cv', + 'layer2': 'cv', + 'layer3': 'cv', + 'layer4': 'cv', + 'layer5': 'cv', + 'layer6': 'cv', + 'layer7': 'cv', + 'layer8': 'cv', + 'layer9': 'cv', + 'layer10': 'cv', + 'layer11': 'cv', + 'layer12': 'cv', + 'layer13': 'cv', + 'layer14': 'cv', + 'layer15': 'cv', + }, + 'cvvv4': { + 'layer0': 'cd', + 'layer1': 'cv', + 'layer2': 'cv', + 'layer3': 'cv', + 'layer4': 'cd', + 'layer5': 'cv', + 'layer6': 'cv', + 'layer7': 'cv', + 'layer8': 'cd', + 'layer9': 'cv', + 'layer10': 'cv', + 'layer11': 'cv', + 'layer12': 'cd', + 'layer13': 'cv', + 'layer14': 'cv', + 'layer15': 'cv', + }, + 'avvv4': { + 'layer0': 'ad', + 'layer1': 'cv', + 'layer2': 'cv', + 'layer3': 'cv', + 'layer4': 'ad', + 'layer5': 'cv', + 'layer6': 'cv', + 'layer7': 'cv', + 'layer8': 'ad', + 'layer9': 'cv', + 'layer10': 'cv', + 'layer11': 'cv', + 'layer12': 'ad', + 'layer13': 'cv', + 'layer14': 'cv', + 'layer15': 'cv', + }, + 'rvvv4': { + 'layer0': 'rd', + 'layer1': 'cv', + 'layer2': 'cv', + 'layer3': 'cv', + 'layer4': 'rd', + 'layer5': 'cv', + 'layer6': 'cv', + 'layer7': 'cv', + 'layer8': 'rd', + 'layer9': 'cv', + 'layer10': 'cv', + 'layer11': 'cv', + 'layer12': 'rd', + 'layer13': 'cv', + 'layer14': 'cv', + 'layer15': 'cv', + }, + 'cccv4': { + 'layer0': 'cd', + 'layer1': 'cd', + 'layer2': 'cd', + 'layer3': 'cv', + 'layer4': 'cd', + 'layer5': 'cd', + 'layer6': 'cd', + 'layer7': 'cv', + 'layer8': 'cd', + 'layer9': 'cd', + 'layer10': 'cd', + 'layer11': 'cv', + 'layer12': 'cd', + 'layer13': 'cd', + 'layer14': 'cd', + 'layer15': 'cv', + }, + 'aaav4': { + 'layer0': 'ad', + 'layer1': 'ad', + 'layer2': 'ad', + 'layer3': 'cv', + 'layer4': 'ad', + 'layer5': 'ad', + 'layer6': 'ad', + 'layer7': 'cv', + 'layer8': 'ad', + 'layer9': 'ad', + 'layer10': 'ad', + 'layer11': 'cv', + 'layer12': 'ad', + 'layer13': 'ad', + 'layer14': 'ad', + 'layer15': 'cv', + }, + 'rrrv4': { + 'layer0': 'rd', + 'layer1': 'rd', + 'layer2': 'rd', + 'layer3': 'cv', + 'layer4': 'rd', + 'layer5': 'rd', + 'layer6': 'rd', + 'layer7': 'cv', + 'layer8': 'rd', + 'layer9': 'rd', + 'layer10': 'rd', + 'layer11': 'cv', + 'layer12': 'rd', + 'layer13': 'rd', + 'layer14': 'rd', + 'layer15': 'cv', + }, + 'c16': { + 'layer0': 'cd', + 'layer1': 'cd', + 'layer2': 'cd', + 'layer3': 'cd', + 'layer4': 'cd', + 'layer5': 'cd', + 'layer6': 'cd', + 'layer7': 'cd', + 'layer8': 'cd', + 'layer9': 'cd', + 'layer10': 'cd', + 'layer11': 'cd', + 'layer12': 'cd', + 'layer13': 'cd', + 'layer14': 'cd', + 'layer15': 'cd', + }, + 'a16': { + 'layer0': 'ad', + 'layer1': 'ad', + 'layer2': 'ad', + 'layer3': 'ad', + 'layer4': 'ad', + 'layer5': 'ad', + 'layer6': 'ad', + 'layer7': 'ad', + 'layer8': 'ad', + 'layer9': 'ad', + 'layer10': 'ad', + 'layer11': 'ad', + 'layer12': 'ad', + 'layer13': 'ad', + 'layer14': 'ad', + 'layer15': 'ad', + }, + 'r16': { + 'layer0': 'rd', + 'layer1': 'rd', + 'layer2': 'rd', + 'layer3': 'rd', + 'layer4': 'rd', + 'layer5': 'rd', + 'layer6': 'rd', + 'layer7': 'rd', + 'layer8': 'rd', + 'layer9': 'rd', + 'layer10': 'rd', + 'layer11': 'rd', + 'layer12': 'rd', + 'layer13': 'rd', + 'layer14': 'rd', + 'layer15': 'rd', + }, + 'carv4': { + 'layer0': 'cd', + 'layer1': 'ad', + 'layer2': 'rd', + 'layer3': 'cv', + 'layer4': 'cd', + 'layer5': 'ad', + 'layer6': 'rd', + 'layer7': 'cv', + 'layer8': 'cd', + 'layer9': 'ad', + 'layer10': 'rd', + 'layer11': 'cv', + 'layer12': 'cd', + 'layer13': 'ad', + 'layer14': 'rd', + 'layer15': 'cv', + }, + } + +def createConvFunc(op_type): + assert op_type in ['cv', 'cd', 'ad', 'rd'], 'unknown op type: %s' % str(op_type) + if op_type == 'cv': + return F.conv2d + + if op_type == 'cd': + def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): + assert dilation in [1, 2], 'dilation for cd_conv should be in 1 or 2' + assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for cd_conv should be 3x3' + assert padding == dilation, 'padding for cd_conv set wrong' + + weights_c = weights.sum(dim=[2, 3], keepdim=True) + yc = F.conv2d(x, weights_c, stride=stride, padding=0, groups=groups) + y = F.conv2d(x, weights, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) + return y - yc + return func + elif op_type == 'ad': + def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): + assert dilation in [1, 2], 'dilation for ad_conv should be in 1 or 2' + assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for ad_conv should be 3x3' + assert padding == dilation, 'padding for ad_conv set wrong' + + shape = weights.shape + weights = weights.view(shape[0], shape[1], -1) + weights_conv = (weights - weights[:, :, [3, 0, 1, 6, 4, 2, 7, 8, 5]]).view(shape) # clock-wise + y = F.conv2d(x, weights_conv, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) + return y + return func + elif op_type == 'rd': + def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): + assert dilation in [1, 2], 'dilation for rd_conv should be in 1 or 2' + assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for rd_conv should be 3x3' + padding = 2 * dilation + + shape = weights.shape + if weights.is_cuda: + buffer = torch.cuda.FloatTensor(shape[0], shape[1], 5 * 5).fill_(0) + else: + buffer = torch.zeros(shape[0], shape[1], 5 * 5).to(weights.device) + weights = weights.view(shape[0], shape[1], -1) + buffer[:, :, [0, 2, 4, 10, 14, 20, 22, 24]] = weights[:, :, 1:] + buffer[:, :, [6, 7, 8, 11, 13, 16, 17, 18]] = -weights[:, :, 1:] + buffer[:, :, 12] = 0 + buffer = buffer.view(shape[0], shape[1], 5, 5) + y = F.conv2d(x, buffer, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) + return y + return func + else: + print('impossible to be here unless you force that') + return None + +class Conv2d(nn.Module): + def __init__(self, pdc, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False): + super(Conv2d, self).__init__() + if in_channels % groups != 0: + raise ValueError('in_channels must be divisible by groups') + if out_channels % groups != 0: + raise ValueError('out_channels must be divisible by groups') + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.stride = stride + self.padding = padding + self.dilation = dilation + self.groups = groups + self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size, kernel_size)) + if bias: + self.bias = nn.Parameter(torch.Tensor(out_channels)) + else: + self.register_parameter('bias', None) + self.reset_parameters() + self.pdc = pdc + + def reset_parameters(self): + nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) + if self.bias is not None: + fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight) + bound = 1 / math.sqrt(fan_in) + nn.init.uniform_(self.bias, -bound, bound) + + def forward(self, input): + + return self.pdc(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + +class CSAM(nn.Module): + """ + Compact Spatial Attention Module + """ + def __init__(self, channels): + super(CSAM, self).__init__() + + mid_channels = 4 + self.relu1 = nn.ReLU() + self.conv1 = nn.Conv2d(channels, mid_channels, kernel_size=1, padding=0) + self.conv2 = nn.Conv2d(mid_channels, 1, kernel_size=3, padding=1, bias=False) + self.sigmoid = nn.Sigmoid() + nn.init.constant_(self.conv1.bias, 0) + + def forward(self, x): + y = self.relu1(x) + y = self.conv1(y) + y = self.conv2(y) + y = self.sigmoid(y) + + return x * y + +class CDCM(nn.Module): + """ + Compact Dilation Convolution based Module + """ + def __init__(self, in_channels, out_channels): + super(CDCM, self).__init__() + + self.relu1 = nn.ReLU() + self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) + self.conv2_1 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=5, padding=5, bias=False) + self.conv2_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=7, padding=7, bias=False) + self.conv2_3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=9, padding=9, bias=False) + self.conv2_4 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=11, padding=11, bias=False) + nn.init.constant_(self.conv1.bias, 0) + + def forward(self, x): + x = self.relu1(x) + x = self.conv1(x) + x1 = self.conv2_1(x) + x2 = self.conv2_2(x) + x3 = self.conv2_3(x) + x4 = self.conv2_4(x) + return x1 + x2 + x3 + x4 + + +class MapReduce(nn.Module): + """ + Reduce feature maps into a single edge map + """ + def __init__(self, channels): + super(MapReduce, self).__init__() + self.conv = nn.Conv2d(channels, 1, kernel_size=1, padding=0) + nn.init.constant_(self.conv.bias, 0) + + def forward(self, x): + return self.conv(x) + + +class PDCBlock(nn.Module): + def __init__(self, pdc, inplane, ouplane, stride=1): + super(PDCBlock, self).__init__() + self.stride=stride + + self.stride=stride + if self.stride > 1: + self.pool = nn.MaxPool2d(kernel_size=2, stride=2) + self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0) + self.conv1 = Conv2d(pdc, inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False) + self.relu2 = nn.ReLU() + self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False) + + def forward(self, x): + if self.stride > 1: + x = self.pool(x) + y = self.conv1(x) + y = self.relu2(y) + y = self.conv2(y) + if self.stride > 1: + x = self.shortcut(x) + y = y + x + return y + +class PDCBlock_converted(nn.Module): + """ + CPDC, APDC can be converted to vanilla 3x3 convolution + RPDC can be converted to vanilla 5x5 convolution + """ + def __init__(self, pdc, inplane, ouplane, stride=1): + super(PDCBlock_converted, self).__init__() + self.stride=stride + + if self.stride > 1: + self.pool = nn.MaxPool2d(kernel_size=2, stride=2) + self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0) + if pdc == 'rd': + self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=5, padding=2, groups=inplane, bias=False) + else: + self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False) + self.relu2 = nn.ReLU() + self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False) + + def forward(self, x): + if self.stride > 1: + x = self.pool(x) + y = self.conv1(x) + y = self.relu2(y) + y = self.conv2(y) + if self.stride > 1: + x = self.shortcut(x) + y = y + x + return y + +class PiDiNet(nn.Module): + def __init__(self, inplane, pdcs, dil=None, sa=False, convert=False): + super(PiDiNet, self).__init__() + self.sa = sa + if dil is not None: + assert isinstance(dil, int), 'dil should be an int' + self.dil = dil + + self.fuseplanes = [] + + self.inplane = inplane + if convert: + if pdcs[0] == 'rd': + init_kernel_size = 5 + init_padding = 2 + else: + init_kernel_size = 3 + init_padding = 1 + self.init_block = nn.Conv2d(3, self.inplane, + kernel_size=init_kernel_size, padding=init_padding, bias=False) + block_class = PDCBlock_converted + else: + self.init_block = Conv2d(pdcs[0], 3, self.inplane, kernel_size=3, padding=1) + block_class = PDCBlock + + self.block1_1 = block_class(pdcs[1], self.inplane, self.inplane) + self.block1_2 = block_class(pdcs[2], self.inplane, self.inplane) + self.block1_3 = block_class(pdcs[3], self.inplane, self.inplane) + self.fuseplanes.append(self.inplane) # C + + inplane = self.inplane + self.inplane = self.inplane * 2 + self.block2_1 = block_class(pdcs[4], inplane, self.inplane, stride=2) + self.block2_2 = block_class(pdcs[5], self.inplane, self.inplane) + self.block2_3 = block_class(pdcs[6], self.inplane, self.inplane) + self.block2_4 = block_class(pdcs[7], self.inplane, self.inplane) + self.fuseplanes.append(self.inplane) # 2C + + inplane = self.inplane + self.inplane = self.inplane * 2 + self.block3_1 = block_class(pdcs[8], inplane, self.inplane, stride=2) + self.block3_2 = block_class(pdcs[9], self.inplane, self.inplane) + self.block3_3 = block_class(pdcs[10], self.inplane, self.inplane) + self.block3_4 = block_class(pdcs[11], self.inplane, self.inplane) + self.fuseplanes.append(self.inplane) # 4C + + self.block4_1 = block_class(pdcs[12], self.inplane, self.inplane, stride=2) + self.block4_2 = block_class(pdcs[13], self.inplane, self.inplane) + self.block4_3 = block_class(pdcs[14], self.inplane, self.inplane) + self.block4_4 = block_class(pdcs[15], self.inplane, self.inplane) + self.fuseplanes.append(self.inplane) # 4C + + self.conv_reduces = nn.ModuleList() + if self.sa and self.dil is not None: + self.attentions = nn.ModuleList() + self.dilations = nn.ModuleList() + for i in range(4): + self.dilations.append(CDCM(self.fuseplanes[i], self.dil)) + self.attentions.append(CSAM(self.dil)) + self.conv_reduces.append(MapReduce(self.dil)) + elif self.sa: + self.attentions = nn.ModuleList() + for i in range(4): + self.attentions.append(CSAM(self.fuseplanes[i])) + self.conv_reduces.append(MapReduce(self.fuseplanes[i])) + elif self.dil is not None: + self.dilations = nn.ModuleList() + for i in range(4): + self.dilations.append(CDCM(self.fuseplanes[i], self.dil)) + self.conv_reduces.append(MapReduce(self.dil)) + else: + for i in range(4): + self.conv_reduces.append(MapReduce(self.fuseplanes[i])) + + self.classifier = nn.Conv2d(4, 1, kernel_size=1) # has bias + nn.init.constant_(self.classifier.weight, 0.25) + nn.init.constant_(self.classifier.bias, 0) + + # print('initialization done') + + def get_weights(self): + conv_weights = [] + bn_weights = [] + relu_weights = [] + for pname, p in self.named_parameters(): + if 'bn' in pname: + bn_weights.append(p) + elif 'relu' in pname: + relu_weights.append(p) + else: + conv_weights.append(p) + + return conv_weights, bn_weights, relu_weights + + def forward(self, x): + H, W = x.size()[2:] + + x = self.init_block(x) + + x1 = self.block1_1(x) + x1 = self.block1_2(x1) + x1 = self.block1_3(x1) + + x2 = self.block2_1(x1) + x2 = self.block2_2(x2) + x2 = self.block2_3(x2) + x2 = self.block2_4(x2) + + x3 = self.block3_1(x2) + x3 = self.block3_2(x3) + x3 = self.block3_3(x3) + x3 = self.block3_4(x3) + + x4 = self.block4_1(x3) + x4 = self.block4_2(x4) + x4 = self.block4_3(x4) + x4 = self.block4_4(x4) + + x_fuses = [] + if self.sa and self.dil is not None: + for i, xi in enumerate([x1, x2, x3, x4]): + x_fuses.append(self.attentions[i](self.dilations[i](xi))) + elif self.sa: + for i, xi in enumerate([x1, x2, x3, x4]): + x_fuses.append(self.attentions[i](xi)) + elif self.dil is not None: + for i, xi in enumerate([x1, x2, x3, x4]): + x_fuses.append(self.dilations[i](xi)) + else: + x_fuses = [x1, x2, x3, x4] + + e1 = self.conv_reduces[0](x_fuses[0]) + e1 = F.interpolate(e1, (H, W), mode="bilinear", align_corners=False) + + e2 = self.conv_reduces[1](x_fuses[1]) + e2 = F.interpolate(e2, (H, W), mode="bilinear", align_corners=False) + + e3 = self.conv_reduces[2](x_fuses[2]) + e3 = F.interpolate(e3, (H, W), mode="bilinear", align_corners=False) + + e4 = self.conv_reduces[3](x_fuses[3]) + e4 = F.interpolate(e4, (H, W), mode="bilinear", align_corners=False) + + outputs = [e1, e2, e3, e4] + + output = self.classifier(torch.cat(outputs, dim=1)) + #if not self.training: + # return torch.sigmoid(output) + + outputs.append(output) + outputs = [torch.sigmoid(r) for r in outputs] + return outputs + +def config_model(model): + model_options = list(nets.keys()) + assert model in model_options, \ + 'unrecognized model, please choose from %s' % str(model_options) + + # print(str(nets[model])) + + pdcs = [] + for i in range(16): + layer_name = 'layer%d' % i + op = nets[model][layer_name] + pdcs.append(createConvFunc(op)) + + return pdcs + +def pidinet(): + pdcs = config_model('carv4') + dil = 24 #if args.dil else None + return PiDiNet(60, pdcs, dil=dil, sa=True) \ No newline at end of file diff --git a/MagicQuill/scribble_color_edit.py b/MagicQuill/scribble_color_edit.py new file mode 100644 index 0000000000000000000000000000000000000000..d8c69ea9ee88defd849c4104dcd9b75c56d59307 --- /dev/null +++ b/MagicQuill/scribble_color_edit.py @@ -0,0 +1,132 @@ +import torch.nn.functional as F +import torch +import numpy as np +from PIL import Image +import os +import sys +sys.path.append(os.path.dirname(os.path.abspath(__file__))) + +from .brushnet_nodes import BrushNetLoader, BrushNet, BlendInpaint, get_files_with_extension +from .comfyui_utils import CheckpointLoaderSimple, ControlNetLoader, ControlNetApplyAdvanced, CLIPTextEncode, KSampler, VAEDecode, GrowMask, PIDINET_Preprocessor, LineArt_Preprocessor, Color_Preprocessor + +class ScribbleColorEditModel(): + def __init__(self): + self.checkpoint_loader = CheckpointLoaderSimple() + self.clip_text_encoder = CLIPTextEncode() + self.mask_processor = GrowMask() + self.controlnet_loader = ControlNetLoader() + self.scribble_processor = PIDINET_Preprocessor() + self.lineart_processor = LineArt_Preprocessor() + self.color_processor = Color_Preprocessor() + self.brushnet_loader = BrushNetLoader() + self.brushnet_node = BrushNet() + self.controlnet_apply = ControlNetApplyAdvanced() + self.ksampler = KSampler() + self.vae_decoder = VAEDecode() + self.blender = BlendInpaint() + self.ckpt_name = "SD1.5/realisticVisionV60B1_v51VAE.safetensors" + with torch.no_grad(): + self.model, self.clip, self.vae = self.checkpoint_loader.load_checkpoint(self.ckpt_name) + self.load_models('SD1.5', 'float16') + + def load_models(self, base_model_version="SD1.5", dtype='float16'): + if base_model_version == "SD1.5": + edge_controlnet_name = "control_v11p_sd15_scribble.safetensors" + color_controlnet_name = "color_finetune.safetensors" + brushnet_name = "brushnet/random_mask_brushnet_ckpt/diffusion_pytorch_model.safetensors" + # elif base_model_version == "SDXL": + # edge_controlnet_name = "controlnet-scribble-sdxl-1.0.safetensors" + # color_controlnet_name = "colorGridControlnet_v10.safetensors" + # brushnet_name = "brushnet_xl/random_mask_brushnet_ckpt_sdxl_v0/diffusion_pytorch_model.safetensors" + else: + raise ValueError("Invalid base_model_version, not supported yet!!!: {}".format(base_model_version)) + self.edge_controlnet = self.controlnet_loader.load_controlnet(edge_controlnet_name)[0] + self.color_controlnet = self.controlnet_loader.load_controlnet(color_controlnet_name)[0] + self.brushnet_loader.inpaint_files = get_files_with_extension('inpaint') + print("self.brushnet_loader.inpaint_files: ", get_files_with_extension('inpaint')) + self.brushnet = self.brushnet_loader.brushnet_loading(brushnet_name, dtype)[0] + + def process(self, ckpt_name, image, colored_image, positive_prompt, negative_prompt, mask, add_mask, remove_mask, grow_size, stroke_as_edge, fine_edge, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler, base_model_version='SD1.5', dtype='float16', palette_resolution=2048): + if ckpt_name != self.ckpt_name: + self.ckpt_name = ckpt_name + with torch.no_grad(): + self.model, self.clip, self.vae = self.checkpoint_loader.load_checkpoint(ckpt_name) + if not hasattr(self, 'edge_controlnet') or not hasattr(self, 'color_controlnet') or not hasattr(self, 'brushnet'): + self.load_models(base_model_version, dtype) + # 根据基础模型版本加载相应的 ControlNet&BrushNet 模型 + positive = self.clip_text_encoder.encode(self.clip, positive_prompt)[0] + negative = self.clip_text_encoder.encode(self.clip, negative_prompt)[0] + # Grow Mask for Color Editing + mask = self.mask_processor.expand_mask(mask, expand=grow_size, tapered_corners=True)[0] + # Realistic Lineart + image_copy = image.clone() + if stroke_as_edge == "disable": + bool_add_mask = add_mask > 0.5 + mean_brightness = image_copy[bool_add_mask].mean() + if mean_brightness > 0.8: + image_copy[bool_add_mask] = 0.0 + else: + image_copy[bool_add_mask] = 1.0 + + + if not torch.equal(image, colored_image): + print("Apply color controlnet") + color_output = self.color_processor.execute(colored_image, resolution=palette_resolution)[0] + lineart_output = self.lineart_processor.execute(image, resolution=512, coarse=False)[0] + positive, negative = self.controlnet_apply.apply_controlnet(positive, negative, self.color_controlnet, color_output, color_strength, 0.0, 1.0) + positive, negative = self.controlnet_apply.apply_controlnet(positive, negative, self.edge_controlnet, lineart_output, 0.8, 0.0, 1.0) + else: + print("Apply edge controlnet") + # Resize masks to match the dimensions of lineart_output + color_output = self.color_processor.execute(image, resolution=palette_resolution)[0] + if fine_edge == "enable": + lineart_output = self.lineart_processor.execute(image, resolution=512, coarse=False)[0] + else: + lineart_output = self.scribble_processor.execute(image, resolution=512)[0] + add_mask_resized = F.interpolate(add_mask.unsqueeze(0).unsqueeze(0).float(), size=(1, lineart_output.shape[1], lineart_output.shape[2]), mode='nearest').squeeze(0).squeeze(0) + remove_mask_resized = F.interpolate(remove_mask.unsqueeze(0).unsqueeze(0).float(), size=(1, lineart_output.shape[1], lineart_output.shape[2]), mode='nearest').squeeze(0).squeeze(0) + + bool_add_mask_resized = (add_mask_resized > 0.5) + bool_remove_mask_resized = (remove_mask_resized > 0.5) + + if stroke_as_edge == "enable": + # 将remove_mask区域的像素变成黑色 + lineart_output[bool_remove_mask_resized] = 0.0 + # 将add_mask区域的像素变成白色 + lineart_output[bool_add_mask_resized] = 1.0 + else: + lineart_output[bool_remove_mask_resized & ~bool_add_mask_resized] = 0.0 + positive, negative = self.controlnet_apply.apply_controlnet(positive, negative, self.edge_controlnet, lineart_output, edge_strength, 0.0, 1.0) + + # BrushNet + model, positive, negative, latent = self.brushnet_node.model_update( + model=self.model, + vae=self.vae, # 需要根据实际情况提供 VAE 模型 + image=image, + mask=mask, + brushnet=self.brushnet, + positive=positive, + negative=negative, + scale=inpaint_strength, + start_at=0, + end_at=10000 + ) + + # KSampler Node + latent_samples = self.ksampler.sample( + model=model, + seed=seed, + steps=steps, + cfg=cfg, + sampler_name=sampler_name, + scheduler=scheduler, + positive=positive, + negative=negative, + latent_image=latent, + )[0] + + final_image = self.vae_decoder.decode(self.vae, latent_samples)[0] + final_image = self.blender.blend_inpaint(final_image, image, mask, kernel=10, sigma=10.0)[0] + + # Return the final image + return (latent_samples, final_image, lineart_output, color_output) diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..407c524ef94eb842db6000f1c6dc1067395c98cb --- /dev/null +++ b/README.md @@ -0,0 +1,13 @@ +--- +title: MagicQuill +emoji: 📉 +colorFrom: purple +colorTo: yellow +sdk: gradio +sdk_version: 4.44.1 +app_file: app.py +pinned: false +license: apache-2.0 +--- + +Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference \ No newline at end of file diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..ddac0862167b84afea30073761e98214be22c416 --- /dev/null +++ b/app.py @@ -0,0 +1,329 @@ +import subprocess +import shlex +subprocess.run( + shlex.split( + "pip install ./gradio_magicquill-0.0.1-py3-none-any.whl" + ) +) +import gradio as gr +from gradio_magicquill import MagicQuill +import random +import torch +import numpy as np +from PIL import Image, ImageOps +import base64 +import io +from fastapi import FastAPI, Request +import uvicorn +from MagicQuill import folder_paths +from MagicQuill.scribble_color_edit import ScribbleColorEditModel +from gradio_client import Client, handle_file +from huggingface_hub import snapshot_download +import tempfile +import cv2 +import os +import requests + +snapshot_download(repo_id="LiuZichen/MagicQuill-models", repo_type="model", local_dir="models") +HF_TOKEN = os.environ.get("HF_TOKEN") +client = Client("LiuZichen/DrawNGuess", hf_token=HF_TOKEN) +scribbleColorEditModel = ScribbleColorEditModel() + +def tensor_to_numpy(tensor): + if isinstance(tensor, torch.Tensor): + return (tensor.detach().cpu().numpy() * 255).astype(np.uint8) + return tensor + +def tensor_to_base64(tensor): + tensor = tensor.squeeze(0) * 255. + pil_image = Image.fromarray(tensor.cpu().byte().numpy()) + buffered = io.BytesIO() + pil_image.save(buffered, format="PNG") + img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") + + return img_str + +def read_base64_image(base64_image): + if base64_image.startswith("data:image/png;base64,"): + base64_image = base64_image.split(",")[1] + elif base64_image.startswith("data:image/jpeg;base64,"): + base64_image = base64_image.split(",")[1] + elif base64_image.startswith("data:image/webp;base64,"): + base64_image = base64_image.split(",")[1] + else: + raise ValueError("Unsupported image format.") + image_data = base64.b64decode(base64_image) + image = Image.open(io.BytesIO(image_data)) + image = ImageOps.exif_transpose(image) + return image + +def create_alpha_mask(base64_image): + """Create an alpha mask from the alpha channel of an image.""" + image = read_base64_image(base64_image) + mask = torch.zeros((1, image.height, image.width), dtype=torch.float32, device="cpu") + if 'A' in image.getbands(): + alpha_channel = np.array(image.getchannel('A')).astype(np.float32) / 255.0 + mask[0] = 1.0 - torch.from_numpy(alpha_channel) + return mask + +def load_and_preprocess_image(base64_image, convert_to='RGB', has_alpha=False): + """Load and preprocess a base64 image.""" + image = read_base64_image(base64_image) + image = image.convert(convert_to) + image_array = np.array(image).astype(np.float32) / 255.0 + image_tensor = torch.from_numpy(image_array)[None,] + return image_tensor + +def load_and_resize_image(base64_image, convert_to='RGB', max_size=512): + """Load and preprocess a base64 image, resize if necessary.""" + image = read_base64_image(base64_image) + image = image.convert(convert_to) + width, height = image.size + # if min(width, height) > max_size: + scaling_factor = max_size / min(width, height) + new_size = (int(width * scaling_factor), int(height * scaling_factor)) + image = image.resize(new_size, Image.LANCZOS) + image_array = np.array(image).astype(np.float32) / 255.0 + image_tensor = torch.from_numpy(image_array)[None,] + return image_tensor + +def prepare_images_and_masks(total_mask, original_image, add_color_image, add_edge_image, remove_edge_image): + total_mask = create_alpha_mask(total_mask) + original_image_tensor = load_and_preprocess_image(original_image) + if add_color_image: + add_color_image_tensor = load_and_preprocess_image(add_color_image) + else: + add_color_image_tensor = original_image_tensor + + add_edge_mask = create_alpha_mask(add_edge_image) if add_edge_image else torch.zeros_like(total_mask) + remove_edge_mask = create_alpha_mask(remove_edge_image) if remove_edge_image else torch.zeros_like(total_mask) + return add_color_image_tensor, original_image_tensor, total_mask, add_edge_mask, remove_edge_mask + +def guess_prompt_handler(original_image, add_color_image, add_edge_image): + # 将张量转换为 NumPy 数组 + original_image_tensor = load_and_preprocess_image(original_image) + + if add_color_image: + add_color_image_tensor = load_and_preprocess_image(add_color_image) + else: + add_color_image_tensor = original_image_tensor + + width, height = original_image_tensor.shape[1], original_image_tensor.shape[2] + add_edge_mask = create_alpha_mask(add_edge_image) if add_edge_image else torch.zeros((1, height, width), dtype=torch.float32, device="cpu") + + original_image_numpy = tensor_to_numpy(original_image_tensor.squeeze(0)) + add_color_image_numpy = tensor_to_numpy(add_color_image_tensor.squeeze(0)) + add_edge_mask_numpy = tensor_to_numpy(add_edge_mask.squeeze(0).unsqueeze(-1)) + + original_image_numpy = cv2.cvtColor(original_image_numpy, cv2.COLOR_RGB2BGR) + add_color_image_numpy = cv2.cvtColor(add_color_image_numpy, cv2.COLOR_RGB2BGR) + + # 创建临时文件,保存 NumPy 数组为图像文件 + original_image_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png", mode='w+b') + add_color_image_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png", mode='w+b') + add_edge_mask_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png", mode='w+b') + + # 保存 NumPy 数组为 PNG 图像文件 + cv2.imwrite(original_image_file.name, original_image_numpy) + cv2.imwrite(add_color_image_file.name, add_color_image_numpy) + cv2.imwrite(add_edge_mask_file.name, add_edge_mask_numpy) + + # 确保文件关闭以保证内容写入磁盘 + original_image_file.close() + add_color_image_file.close() + add_edge_mask_file.close() + + # 调用 API,传递临时文件的路径 + res = client.predict( + handle_file(original_image_file.name), + handle_file(add_color_image_file.name), + handle_file(add_edge_mask_file.name) + ) + + # 删除临时文件,确保它们存在且已被创建 + if original_image_file and os.path.exists(original_image_file.name): + os.remove(original_image_file.name) + if add_color_image_file and os.path.exists(add_color_image_file.name): + os.remove(add_color_image_file.name) + if add_edge_mask_file and os.path.exists(add_edge_mask_file.name): + os.remove(add_edge_mask_file.name) + + return res + +def generate(ckpt_name, total_mask, original_image, add_color_image, add_edge_image, remove_edge_image, positive_prompt, negative_prompt, grow_size, stroke_as_edge, fine_edge, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler): + add_color_image, original_image, total_mask, add_edge_mask, remove_edge_mask = prepare_images_and_masks(total_mask, original_image, add_color_image, add_edge_image, remove_edge_image) + progress = None + if fine_edge == 'disable': + if torch.sum(remove_edge_mask).item() > 0 and torch.sum(add_edge_mask).item() == 0: + if positive_prompt == "": + positive_prompt = "empty scene" + edge_strength /= 3. + + latent_samples, final_image, lineart_output, color_output = scribbleColorEditModel.process( + ckpt_name, + original_image, + add_color_image, + positive_prompt, + negative_prompt, + total_mask, + add_edge_mask, + remove_edge_mask, + grow_size, + stroke_as_edge, + fine_edge, + edge_strength, + color_strength, + inpaint_strength, + seed, + steps, + cfg, + sampler_name, + scheduler, + progress + ) + + final_image_base64 = tensor_to_base64(final_image) + return final_image_base64 + +def generate_image_handler(x, ckpt_name, negative_prompt, fine_edge, grow_size, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler): + if seed == -1: + seed = random.randint(0, 2**32 - 1) + ms_data = x['from_frontend'] + positive_prompt = x['from_backend']['prompt'] + stroke_as_edge = "enable" + res = generate(ckpt_name, ms_data['total_mask'], ms_data['original_image'], ms_data['add_color_image'], ms_data['add_edge_image'], ms_data['remove_edge_image'], positive_prompt, negative_prompt, grow_size, stroke_as_edge, fine_edge, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler) + x["from_backend"]["generated_image"] = res + return x + +css = ''' +.row { + width: 90%; + margin: auto; +} +footer { + visibility: + hidden +} +''' + +with gr.Blocks(css=css) as demo: + with gr.Row(elem_classes="row"): + ms = MagicQuill() + with gr.Row(elem_classes="row"): + with gr.Column(): + btn = gr.Button("Run", variant="primary") + with gr.Column(): + with gr.Accordion("parameters", open=False): + ckpt_name = gr.Dropdown( + label="Base Model Name", + choices=folder_paths.get_filename_list("checkpoints"), + value='SD1.5/realisticVisionV60B1_v51VAE.safetensors', + interactive=True + ) + negative_prompt = gr.Textbox( + label="Negative Prompt", + value="", + interactive=True + ) + # stroke_as_edge = gr.Radio( + # label="Stroke as Edge", + # choices=['enable', 'disable'], + # value='enable', + # interactive=True + # ) + fine_edge = gr.Radio( + label="Fine Edge", + choices=['enable', 'disable'], + value='disable', + interactive=True + ) + grow_size = gr.Slider( + label="Grow Size", + minimum=0, + maximum=100, + value=15, + step=1, + interactive=True + ) + edge_strength = gr.Slider( + label="Edge Strength", + minimum=0.0, + maximum=5.0, + value=0.6, + step=0.01, + interactive=True + ) + color_strength = gr.Slider( + label="Color Strength", + minimum=0.0, + maximum=5.0, + value=0.6, + step=0.01, + interactive=True + ) + inpaint_strength = gr.Slider( + label="Inpaint Strength", + minimum=0.0, + maximum=5.0, + value=1.0, + step=0.01, + interactive=True + ) + seed = gr.Number( + label="Seed", + value=-1, + precision=0, + interactive=True + ) + steps = gr.Slider( + label="Steps", + minimum=1, + maximum=50, + value=20, + step=1, + interactive=True + ) + cfg = gr.Slider( + label="CFG", + minimum=0.0, + maximum=20.0, + value=5.0, + step=0.1, + interactive=True + ) + sampler_name = gr.Dropdown( + label="Sampler Name", + choices=["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "ddim", "uni_pc", "uni_pc_bh2"], + value='euler_ancestral', + interactive=True + ) + scheduler = gr.Dropdown( + label="Scheduler", + choices=["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"], + value='karras', + interactive=True + ) + btn.click(generate_image_handler, inputs=[ms, ckpt_name, negative_prompt, fine_edge, grow_size, edge_strength, color_strength, inpaint_strength, seed, steps, cfg, sampler_name, scheduler], outputs=ms, concurrency_limit=1) + +demo.queue(max_size=20, status_update_rate=0.1) +app = FastAPI() + +@app.post("/magic_quill/guess_prompt") +async def guess_prompt(request: Request): + data = await request.json() + res = guess_prompt_handler(data['original_image'], data['add_color_image'], data['add_edge_image']) + return res + +@app.post("/magic_quill/process_background_img") +async def process_background_img(request: Request): + img = await request.json() + resized_img_tensor = load_and_resize_image(img) + resized_img_base64 = "data:image/png;base64," + tensor_to_base64(resized_img_tensor) + # add more processing here + return resized_img_base64 + +app = gr.mount_gradio_app(app, demo, "/") + +if __name__ == "__main__": + uvicorn.run(app, host="0.0.0.0", port=7860) + # demo.launch() \ No newline at end of file diff --git a/gradio_magicquill-0.0.1-py3-none-any.whl b/gradio_magicquill-0.0.1-py3-none-any.whl new file mode 100644 index 0000000000000000000000000000000000000000..92b2bd7d11a6f9a9345d57b49af65bcb9983c325 Binary files /dev/null and b/gradio_magicquill-0.0.1-py3-none-any.whl differ diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..543fbe93353e0ee4d2e886a7e7e934e9d8a129d9 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,171 @@ +absl-py==2.1.0 +accelerate==0.33.0 +addict==2.4.0 +aiofiles==23.2.1 +aiohappyeyeballs==2.3.4 +aiohttp==3.10.0 +aiosignal==1.3.1 +albucore==0.0.13 +albumentations==1.4.12 +altair==5.3.0 +annotated-types==0.7.0 +antlr4-python3-runtime==4.9.3 +anyio==4.4.0 +async-timeout==4.0.3 +attrs==23.2.0 +beautifulsoup4==4.12.3 +bitsandbytes==0.43.3 +certifi==2024.7.4 +cffi==1.16.0 +chardet==5.2.0 +charset-normalizer==3.3.2 +click==8.1.7 +colorlog==6.8.2 +contourpy==1.2.1 +cryptography==43.0.0 +cssselect2==0.7.0 +ctranslate2==4.3.1 +cycler==0.12.1 +deprecated==1.2.14 +diffusers==0.29.2 +einops==0.6.1 +einops-exts==0.0.4 +embreex==2.17.7.post5 +eval-type-backport==0.2.0 +exceptiongroup==1.2.2 +fastapi +ffmpy==0.4.0 +filelock==3.15.4 +flatbuffers==24.3.25 +fonttools==4.53.1 +frozenlist==1.4.1 +fsspec==2024.6.1 +ftfy==6.2.0 +fvcore==0.1.5.post20221221 +gitdb==4.0.11 +gitpython==3.1.43 +gradio-client==1.3.0 +h11==0.14.0 +h2==4.1.0 +hpack==4.0.0 +httpcore==1.0.5 +httpx==0.27.0 +huggingface-hub +hyperframe==6.0.1 +idna==3.8 +imageio==2.34.2 +importlib-metadata==8.2.0 +importlib-resources==6.4.4 +iopath==0.1.10 +jax==0.4.31 +jaxlib==0.4.31 +jinja2==3.1.4 +joblib==1.4.2 +jsonschema==4.23.0 +jsonschema-specifications==2023.12.1 +kiwisolver==1.4.5 +kornia==0.7.3 +kornia-rs==0.1.5 +latex2mathml==3.77.0 +lazy-loader==0.4 +lxml==5.2.2 +manifold3d==2.5.1 +markdown-it-py==3.0.0 +markdown2==2.5.0 +markupsafe==2.1.5 +matplotlib==3.9.2 +mdurl==0.1.2 +mediapipe==0.10.14 +ml-dtypes==0.4.0 +mpmath==1.3.0 +multidict==6.0.5 +networkx==3.3 +ninja==1.11.1.1 +numpy==1.26.4 +omegaconf==2.3.0 +opencv-python-headless==4.10.0.84 +opt-einsum==3.3.0 +orjson==3.10.7 +packaging==24.1 +pandas==2.2.2 +peft==0.12.0 +pillow==10.4.0 +platformdirs==4.2.2 +portalocker==2.10.1 +protobuf==4.25.4 +pycollada==0.8 +pycparser==2.22 +pydantic==2.8.2 +pydantic-core==2.20.1 +pydub==0.25.1 +pygithub==2.3.0 +pygments==2.18.0 +pyjwt==2.9.0 +pynacl==1.5.0 +pyparsing==3.1.4 +python-dateutil==2.9.0.post0 +python-multipart +pytz==2024.1 +pyyaml==6.0.2 +referencing==0.35.1 +regex==2024.7.24 +reportlab==4.2.2 +requests==2.32.3 +rich==13.8.0 +rpds-py==0.19.1 +rtree==1.3.0 +ruff==0.6.2 +sacremoses==0.0.53 +safetensors==0.4.3 +scikit-image==0.24.0 +scikit-learn==1.2.2 +scipy==1.14.0 +semantic-version==2.10.0 +sentencepiece==0.2.0 +shapely==2.0.5 +shellingham==1.5.4 +shortuuid==1.0.13 +six==1.16.0 +smmap==5.0.1 +sniffio==1.3.1 +sounddevice==0.4.7 +soupsieve==2.5 +spandrel==0.3.4 +stanza==1.1.1 +starlette +svg-path==6.3 +svglib==1.5.1 +svgwrite==1.4.3 +sympy==1.13.1 +tabulate==0.9.0 +termcolor==2.4.0 +threadpoolctl==3.5.0 +tifffile==2024.7.24 +timm==0.6.13 +tinycss2==1.3.0 +tokenizers==0.15.1 +tomli==2.0.1 +tomlkit==0.12.0 +toolz==0.12.1 +tqdm==4.66.5 +trampoline==0.1.2 +transformers==4.37.2 +trimesh==4.4.3 +triton==2.1.0 +torchsde==0.2.6 +typer==0.12.5 +typing-extensions==4.12.2 +tzdata==2024.1 +uvicorn==0.30.6 +vhacdx==0.0.8.post1 +wcwidth==0.2.13 +webcolors==1.13 +webencodings==0.5.1 +websockets==12.0 +wrapt==1.16.0 +xatlas==0.0.9 +xxhash==3.4.1 +yacs==0.1.8 +yapf==0.40.2 +yarl==1.9.4 +zipp==3.19.2 \ No newline at end of file